

5405 Twin Knolls Road, Suite 1 • Columbia, MD 21045 • ph: 410.740.1911 • fax: 410.740.3299 • www.cgs.us.com

January 27, 2021

Mr. Brian Dietz Land Restoration Program Maryland Department of the Environment 1800 Washington Boulevard Baltimore, MD 21230

RE: Hot Spot Investigation

**Montgomery Brothers Dump (MD-137)** 

Inverness Drive, North East, MD CGS Project No. CG-09-0423.10

Dear Mr. Dietz:

Chesapeake GeoSciences, Inc. (CGS) is pleased to present this report which summarizes the activities performed during the Hot Spot Investigation at the Montgomery Brothers Dump site located off of Inverness Drive in North East, Maryland (Site) (**Figure 1**).

## 1.0 INTRODUCTION

## 1.1 Background

CGS performed subsurface investigation activities and groundwater and soil vapor sampling at the Site, on behalf of the Maryland Department of the Environment, Land Restoration Program (MDE-LRP), in October and November 2019. This work was performed as part of establishing the Site Monitoring Program (SMP) and conducting the first Semi-Annual Sampling Event. The data collected during this work demonstrated that a hot spot of soil, groundwater, and soil vapor contamination, primarily consisting of chlorinated volatile organic compounds (c-VOCs), exists at groundwater monitoring well SMP-MW-03 and vapor monitoring point SMP-VMP-03. As MDE-LRP specified in its Request for Proposal (RFP) for the Hot Spot Investigation, "The source of the hot spot contamination is currently unknown and there is speculation, based on historical site records, that it may represent an area of contaminated soil that was not removed during EPA's Emergency Removal Action in the late 1980s. It is also possible that the contamination represents an area of preferential off-gassing from the dumpsite."

The layout of the Site and the surrounding area and the area in which the Hot Spot Investigation was performed are shown on **Figure 2**. Work activities were performed on-site and on two off-site residential properties. MDE-LRP arranged access to each of the off-site residential properties where work activities were performed. Unless noted otherwise, the scope of work for the Hot Spot Investigation was performed as specified in the Work Plan included in CGS Proposal CG-P20-2535R, dated April 29, 2020.

## 1.2 Purpose and Areas of Concern (AOCs)

The purpose of the Hot Spot Investigation was to gather data to provide for the following:

- 1. Delineation of the vertical and lateral extent of the hot spot contamination in soil both on-site and on the adjacent residential properties located at 105 and 107 Inverness Drive;
- 2. Evaluation of the direct contact with surface/near surface soil potential exposure pathway onsite and at 105 and 107 Inverness Drive; and
- 3. Evaluation of the vapor intrusion/indoor inhalation potential exposure pathway at 105 and 107 Inverness Drive.

Work activities for the Hot Spot Investigation were performed in three AOCs. The AOCs are shown on **Figures 2 and 3** and are defined as follows.

- AOC-1 (Backyard of 105 Inverness Drive): A rectangular area delineated by the guardrail (to the southwest), the property's back fence (to the northwest and southeast), and extending approximately 30 feet northeast into the yard from the guardrail.
- AOC-2 (Backyard of 107 Inverness Drive): A rectangular area delineated by the guardrail (to the southwest), the property's back fence (to the northwest), the property line (to the southeast), and extending approximately 25 feet northeast into the yard from the guardrail.
- AOC-3 (Vicinity of SMP-MW-03 Hotspot Area): A rectangular area as delineated by the guardrail (to the northeast) and extending to just beyond MW-3 (to the northwest), just beyond MW-2 (to the southeast), and approximately 50 feet from the guardrail (to the southwest).

Note that the hatched area between the guardrail and the back fences on 105 and 107 Inverness Drive is thickly vegetated and/or very narrow. This area was not accessed during this investigation.

# 2.0 FIELD INVESTIGATION – METHODOLOGY, FIELD OBSERVATIONS, AND INTERIM RESULTS

The field investigation was initiated on August 6, 2020 and, for the most part, was completed on November 6, 2020. A site specific Health & Safety Plan (HASP) was developed for the field tasks performed during the field investigation. The field investigation was comprised of public utility clearances; a High Resolution Site Characterization (HRSC) Survey; collection of surface/near surface soil samples, groundwater samples, and subsurface soil samples; installation of four vapor monitoring point (VMPs); collection of soil vapor and crawl space/outdoor air samples; cap and rut repairs; and investigation derived waste (IDW) containment, waste characterization sampling, and IDW disposal. Pickup of the IDW was performed on January 8, 2021. Brief discussions of the field investigation methodologies, field observations, and interim results are presented below.

## 2.1 Pre-Field Mobilization Activities

#### **Schedule Coordination**

CGS coordinated scheduling of the various field investigation sub-tasks with the MDE-LRP project manager and the property owner/tenant for 105 Inverness Drive and the property owner representatives for 107 Inverness Drive.

# **Utility Clearances**

Prior to initiating subsurface investigation activities, CGS requested public utility clearances using the Miss Utility system for the on-site and off-site areas where subsurface activities were planned. Miss Utility clearance requests were updated as required as the project progressed.

## Site Visit

CGS conducted a site visit on August 6 to stake/flag the AOC outlines and perform other pre-field mobilization activities including opening sections of fencing on both 105 and 107 Inverness Drive and viewing/evaluating the crawl spaces beneath the mobile homes at 105 and 107 Inverness Drive in preparation for the crawl space air sampling.

#### 2.2 High Resolution Site Characterization (HRSC) Survey

# 2.2.1 HRSC Survey Methodology

The HRSC Survey was conducted to gain data on the three-dimensional extent of contamination in the three AOCs. The survey was performed using a Geoprobe® 6620DT direct-push technology (DPT) rig, operated by Tidewater, Inc. (TW) of Elkridge, Maryland, and a state-of-the-art Membrane Interface Hydraulic Profiling Tool (MIHPT) probing system, operated by Cascade Technical Services (Cascade) of Jackson, New Jersey, and was supervised/directed on-site by a CGS geologist. The field work for the survey was originally initiated on August 10; however, due to a catastrophic equipment failure in the field, it could not be performed at that time. The equipment was repaired, and the survey was performed from September 8 through September 11. A total of 50 HRSC borings (HSI-HRSC-01 through HSI-HRSC-50) were advanced during the survey. The HRSC borings locations, presenting only the boring number for brevity, are shown on **Figure 4**.

A MIHPT probe is a 1.75-inch-diameter steel probe, which is driven into the subsurface using a Geoprobe® DPT rig. As the MIHPT probe advances through soil and groundwater, subsurface VOC concentrations are characterized using a lab grade gas chromatograph (GC) equipped with Electron Capture Detector (ECD), Halogenated Specific Detector (XSD), Photoionization Detector (PID), and Flame Ionization Detector (FID) sensors. The ECD and XSD are the primary instruments which detect chlorinated compounds, and the FID is the primary instrument which detects petroleum hydrocarbons. The PID detects both chlorinated compounds and petroleum hydrocarbons. When discussed collectively in this report, the ECD/XSD/PID/FID data will be referred to as Membrane Interface Probe (MIP) data.

The MIHPT probe is also equipped with an Electrical Conductivity (EC) sensor and a Hydraulic Profiling Tool (HPT) which are utilized to characterize soil types and hydraulic properties of the soil as the probe advances in the boring. EC values vary with respect to the grain size distribution of a formation. Water pressure and flow rate measurements acquired by the HPT can be used to estimate hydraulic properties of a formation. The vertical HRSC profiling was coupled with real time data collection to generate a log that was emailed to the CGS project manager at the completion of each boring.

The HRSC Survey was performed using a progressive approach. Under this approach, the survey was initiated on-site in areas of known contamination and then expanded outward from there to define the area where MIP response data were observed. Additional borings were then advanced to fill in the defined area. The survey was commenced on-site near MW-2 for initial setup and calibration (HSI-HRSC-01 and HSI-HRSC-02). The survey then progressed to the area of SMP-MW-03/SMP-VMP-03 (HSI-HRSC-03 through HSI-HRSC-06) to gain data in the hot spot area. HSI-HRSC-08 through HSI-HRSC-27 were advanced on 105 and 107 Inverness Drive in a rough grid pattern. Following the advancement of HSI-HRSC-27, the survey moved back on-site where HSI-HRSC-28 through HSI-HRSC-44 were advanced to continue the

rough grid pattern. HSI-HRSC-45 through HSI-HRSC-50 were advanced on-site for additional delineation in the hot spot area. The CGS project manager utilized the real time HRSC Survey data as they were received to choose the location of each successive HRSC boring, following the completion of HSI-HRSC-08, and conveyed the chosen location information to CGS' field geologist. Activities performed in the core of the hot spot area were conducted using Level C respiratory protection.

Most of the HRSC borings were advanced to depths ranging from 19 to 21 feet below grade (BG) (i.e., within a foot of the target boring depth of 20 feet BG). HSI-HRSC-03 and HSI-HRSC-13 were advanced to depths of 23.4 and 23.5 feet BG, respectively, to continue to characterize observed MIP responses at the target depth. HSI-HRSC-38 was terminated at a depth of 17.6 feet BG where refusal was encountered. HSI-HRSC-24 was terminated at a depth of 18.4 feet BG due to a lack of MIP responses and desire to use the time more productively elsewhere. All of the HRSC borings were advanced below the groundwater table. The depth to groundwater was gauged at depths of approximately 5 feet BG in SMP-MW-03 and approximately 12.5 feet BG in MW-2 on September 8.

The HRSC borings were abandoned using bentonite and capped with soil. The location of each boring was flagged, and global positioning system (GPS) coordinates were recorded for each boring.

Cascade's Final Data Report (**Attachment A**) presents additional technical details on the MIHPT probing system and provides the HRSC Survey data logs. CGS appended two additional sets of common scale logs, that were generated by Cascade and that present ECD and XSD data, to the end of Cascade's report.

# 2.2.2 HRSC Survey Data Evaluation, Sample Point Location Selection, and Follow-Up Site Visit

CGS reviewed the HRSC Survey data logs and selected nine locations for surface/near surface soil sampling (discussed below in Section 2.3), four locations for grab groundwater sampling (discussed below in Section 2.4), six initial locations for subsurface soil sampling (discussed below in Section 2.5), and four locations for soil vapor sampling (discussed below in Section 2.6). CGS generated a table listing the rationale for each proposed sampling location and maps showing the proposed sampling locations and conferred with the MDE-LRP project manager who approved all of the proposed locations. Waypoints were then generated for each location, and CGS utilized a handheld differential global positioning system (DGPS) receiver to navigate to each set of waypoints and staked/flagged each location.

#### 2.3 Surface/Near Surface Soil Sampling

Sampling of surface soil and near surface soil was performed to gather data for the evaluation of the direct contact with surface/near surface soil potential exposure pathway. Surface/near surface soil samples were collected at nine locations. Each of the nine locations (HSI-SS-01 through HSI-SS-09) was chosen adjacent to a HRSC boring that appeared to demonstrate a MIP response in the top one foot of the boring. Three sampling locations were chosen in each AOC and across the extent of each AOC. The surface/near surface soil sampling locations are shown on **Figure 5**.

The soil samples were collected on September 25, using a hand auger and/or other hand tools, below the vegetative cover. Nine surface soil samples and one duplicate surface soil sample were collected between the depths of 0 and 0.5 foot BG for analysis of semi-volatile organic compounds (SVOCs) and target analyte list (TAL) metals. Nine co-located near surface soil samples and one duplicate near surface soil sample were collected between the depths of 0.5 and 1.0 foot BG for analysis of VOCs. Soil samples, for VOC analysis, were collected using Terra-Core samplers according to EPA Method 5035.

The soil samples were submitted, with an accompanying Chain-of-Custody (COC) form, to Hampton-Clarke, Inc. (Hampton-Clarke) in Fairfield, New Jersey for laboratory analysis of VOCs via EPA Method 8260 or SVOCs via EPA Method 8270 and TAL metals EPA Methods 6010/6020/7471.

#### 2.4 Grab Groundwater Sampling

Groundwater sampling was performed to calibrate the magnitude of groundwater contamination between the hot spot and the mobile homes at 105 and 107 Inverness Drive. Grab groundwater samples were collected at four locations (HSI-GW-01 through HSI-GW-04) in AOC-1 and AOC-2 down-gradient from the hot spot. HSI-GW-01 through HSI-GW-03 were each advanced adjacent to a HRSC boring. HSI-GW-04 was advanced at the mid-point between two HRSC borings. The grab groundwater sampling locations are shown on **Figure 6**.

The grab groundwater sampling was performed on September 28 using TW's Geoprobe® rig. Because the stratigraphy at the Site contains significant intervals of silt and clay, soil borings were advanced first to enable identification of water bearing intervals from which grab groundwater samples could be obtained. The borings were advanced to the target depth of 20 feet BG. Continuous soil core was retrieved from the borings using a Macrocore sampler. The CGS geologist screened the soil core using a photoionization detector (PID) and logged the soil core according to the Unified Soil Classification System (USCS). PID readings in the soil core ranged from 0 to 368 parts per million (ppm). Handwritten soil boring logs are included in **Attachment B**.

A temporary one-inch diameter well was installed in each soil boring. A grab groundwater sample was collected from each temporary well using a peristaltic pump. Following the completion of sampling, the temporary wells were removed and the borings were abandoned using the excess soil core from that specific boring followed with bentonite as backfill and capped with soil.

The grab groundwater samples and one trip blank were submitted, with an accompanying COC form, to Hampton-Clarke for laboratory analysis of VOCs via EPA Method 8260.

#### 2.5 Subsurface Soil Sampling

Subsurface soil sampling was performed to delineate the vertical and lateral extent of the hot spot soil contamination. Subsurface soil samples were collected from ten soil boings (HSI-SB-01 through HSI-SB-10) that were advanced in AOC-1 and AOC-3. HSI-SB-01 through HSI-SB-05 were advanced at locations that were pre-determined after the HRSC Survey had been completed as discussed above in Section 2.2.2. HSI-SB-01 was advanced in the core of the hot spot area between SMP-MW-03 and HRSC boring HSI-HRSC-45 where the highest MIP response was observed to calibrate the magnitude of the soil contamination at this location. HSI-SB-02 through HSI-SB-05 were each advanced adjacent to a HRSC boring located at the periphery of the hot spot area as defined during the HRSC Survey to calibrate the magnitude of the soil contamination in areas potentially representative of the edges of the hot spot area. HSI-SB-06 through HSI-SB-10 were advanced at additional locations chosen, as the subsurface soil sampling event progressed, to further define the periphery of the hot spot area. CGS conferred with the MDE-LRP project manager who approved the proposed locations for HSI-SB-06 through HSI-SB-10. The soil boing locations are shown on **Figure 7**.

The borings were advanced between September 28 and October 1 using TW's Geoprobe® rig to the target depth of 20 feet BG. Continuous soil core was retrieved from the borings using a Macrocore sampler. The CGS geologist screened the soil core using the PID and logged the soil core according to the USCS. PID readings in the soil core ranged from 0 to 15,000 ppm. 15,000 ppm is the highest reading that the PID, that was utilized, can register. Soil boring logs are included in **Attachment C**. Activities performed in the core of the hot spot area were conducted using Level C respiratory protection.

Between one and four soil samples were collected from each soil boring for analysis of VOCs. Samples for VOC analysis were chosen based on PID readings to characterize the top of the impact, the highest impact,

and the bottom of the impact. Only one soil sample was collected for VOC analysis from borings where the highest PID reading was relatively low (i.e., less than 40 ppm). Soil samples, for VOC analysis, were collected using Terra-Core samplers according to EPA Method 5035.

Additional samples were collected from select borings for analysis of SVOCs and TAL metals. These samples were chosen based primarily on field observations and secondarily on PID readings.

CGS conferred with the MDE-LRP project manager as the soil samples were being collected, and the process resulted in a list of samples that were approved for laboratory analysis. A total of 22 subsurface soil samples and two duplicate subsurface soil samples were chosen for analysis of VOCs. Six subsurface soil samples and one duplicate subsurface soil sample were chosen for analysis of SVOCs and TAL metals.

Following the completion of sampling, the borings were abandoned using the excess soil core from that specific boring followed with bentonite as backfill and capped with soil.

The soil samples were submitted, with an accompanying COC form, to Hampton-Clarke for laboratory analysis of VOCs via EPA Method 8260 or SVOCs via EPA Method 8270 and TAL metals EPA Methods 6010/6020/7471.

## 2.6 Vapor Monitoring Point (VMP) Installations

Four new VMPs, which will be incorporated into SMP during future semi-annual sampling events, were installed during this investigation. Two VMPs (SMP-VMP-10 and SMP-VMP-11) were installed on 105 Inverness Drive, and two VMPs (SMP-VMP-12 and SMP-VMP-13) were installed on 107 Inverness Drive. The VMPs were installed at locations down-gradient from the hot spot beyond the point where MIP response data, that are deemed attributable to shallow soil vapor impacts, were observed. The VMP locations are shown on **Figure 8.** 

Each VMP was constructed using a stainless steel screen implant (¼-inch x 6-inch) with Teflon tubing in a 4.5-inch diameter boring that had been advanced to a depth of 3 feet BG. #1 Silica Sand was placed around the screen implant. The annular space between the tubing and the wall of the borehole was sealed with hydrated bentonite. A small, flush-mounted manhole cover was installed at the top of each VMP in a concrete pad. A seal was placed on the end of the Teflon tubing inside the cover. The VMPs were completed on October 2.

# 2.7 Crawl Space and Outdoor Air Sample and VMP Soil Vapor Collection

The collection of the crawl space and outdoor air samples and sampling of soil vapor from VMPs SMP-VMP-10 through SMP-VMP-13 were performed on October 6 and 7. The air sample locations and the VMP locations are shown on **Figure 8.** 

## 2.7.1 Crawl Space and Outdoor Air Sampling

The air sampling event was performed on October 6 and 7. The air samples were collected in pre-evacuated, pre-cleaned 6-liter Summa canisters. The Summa canister regulators were calibrated by the laboratory to collect air over a 24-hour period at a rate of 3.75 milliliters per minute (mL/min) for a target residual vacuum of approximately 3 inches of mercury ("Hg). A new pair of nitrile sampling gloves was donned prior to each sample setup.

One crawl space air sample was collected toward the rear of each crawl space, and the second crawl space air sample was collected near the middle of each crawl space. The outdoor air sample Summa canister was

set up on the railing of the porch for 107 Inverness Drive between the two properties at a height of approximately 5 feet above grade.

The crawl space beneath 105 Inverness Drive was accessed via a panel in the skirt that surrounded the space beneath the mobile home. The ground beneath the mobile home had been covered with plastic sheeting, and, although very dusty and dirty, the crawl space was free of debris. The CGS sampler donned a Tyvek suit each time that the crawl space beneath 105 Inverness Drive was accessed. The height of the crawl space at the middle location was sufficient to allow access via crawling; whereas the height of the crawl space at the rear location was too low for crawling. The sampler slid while flat to access the rear location.

The crawl space beneath 107 Inverness Drive was accessed via large openings in the skirt that partially surrounded the space beneath the mobile home. The crawl space beneath the mobile home contained considerable debris and other undesirable items, potentially including infestation and raw sewage, which precluded entry by CGS. CGS nestled the Summa canisters for the crawl space air samples in cardboard boxes and attached the boxes to snow sleds which were pushed beneath the mobile home to the approximate locations shown on **Figure 8**. Each sled was pulled out and then pushed back under the mobile home each time the Summa canisters were accessed.

The Summa canisters were setup on October 6 and retrieved on October 7. No items were identified during the August 6 site visit that were deemed to be potential VOC sources that required removal prior to sampling. CGS provided full-time coverage to conduct the sampling and to provide security for the Summa canisters. The Summa canisters for the outdoor air sample and crawl space air samples at 105 Inverness Drive were also secured with a cable and padlock to an immoveable object for added security.

A parts per billion (ppb) level PID was used to monitor VOCs in the crawl space air at 105 Inverness Drive and in the outdoor air during sample setup and retrieval, and no PID readings above background levels were measured. Pre-sample and post-sample Summa canister vacuums were measured using the canister and regulator vacuum gauges and recorded on the sample setup and retrieval forms. The regulator vacuum readings are summarized below in **Table A**.

All samples were set up according to routine procedures. The vacuum gauges on the Summa canisters were monitored three or more times after setup to confirm that the canister vacuums were decreasing, and to confirm that the change in vacuum over time was proceeding at the appropriate rate. After the first routine check, CGS noted that one of the crawl space air samples (HSI-105M-CSA) was being collected at a rate slightly more rapid than anticipated. CGS tightened the connection between the canister and regulator but continued to note a similar sample collection rate. CGS determined that the canister would fill over a time period of approximately 19 and a half hours at the calculated rate. The CGS project manager deemed this sample collection duration to be sufficient to meet the project objectives. On the sample retrieval date, CGS found that one of the crawl space air samples (HSI-107R-CSA) and outdoor air sample were lagging behind the anticipated sample collection rate. CGS allowed the sample for HSI-107R-CSA to continue collection for 4 hours longer than the planned 24-hour period. CGS allowed the outdoor air sample to continue collection for 2 hours longer at which point a grab sample was collected until a residual vacuum within the desired target range was reached.

The samples were shipped at the completion of the sampling event, with an accompanying COC form, to Enthalpy Analytical (Enthalpy) in Richmond, Virginia for laboratory analysis of VOCs via EPA Method TO-15 Low Level. Low Level sample analysis was requested to obtain low analyte method detection limits (MDLs).

**Table A** below also includes the vacuum readings recorded at the laboratory upon sample receipt. The laboratory recorded vacuums on each of the Summa canisters that ranged from 0 to 8 "Hg. As shown in **Table A**, three of the canisters were measured by the laboratory to have no residual vacuum. The lack of

residual vacuum raises concern about the sample collection duration and the possibility of air leaking into the canister after sampling. CGS was aware that the sample collection duration for HSI-105M-CSA was less than 24 hours and anticipated a zero residual vacuum for this sample. CGS is confident however, based on the series of vacuum gauge readings recorded on the field data sheets, that all of these samples were collected over sample collection durations that are sufficient to meet the project objectives. CGS' meticulous sampling protocol includes double checking to ensure that the valves are tight before the canisters are removed from the sampling locations to ensure that no air entered the canisters after sampling was completed.

Table A
Crawl Space and Outdoor Air Samples
Pre-sample and Post-sample Vacuum Readings (inches of Mercury)

| Address            | 105 Inverness Drive Samples                       |                                           | 107 Inverness Drive Samples                    |                                           | Outdoor Air<br>Sample                                                                           |  |  |
|--------------------|---------------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|
| Sample ID          | HSI-105M-<br>CSA                                  | HSI-105R-<br>CSA                          | HSI-107M-<br>CSA                               | HSI-107R-<br>CSA                          | HSI-OAA                                                                                         |  |  |
| Sample Type        | Crawl Space<br>Air                                | Crawl Space<br>Air                        | Crawl Space<br>Air                             | Crawl Space<br>Air                        | Outdoor Air                                                                                     |  |  |
| Sample Location    | Beneath the<br>mid-point of<br>the mobile<br>home | Beneath the<br>rear of the<br>mobile home | Beneath the<br>mid-point of the<br>mobile home | Beneath the<br>rear of the<br>mobile home | On the railing<br>for the porch at<br>107 Inverness<br>Drive (between<br>the two<br>residences) |  |  |
| Vacuum Readings    |                                                   |                                           |                                                |                                           |                                                                                                 |  |  |
| Pre-sample         | >30                                               | >>30                                      | 30                                             | 28                                        | 28.5                                                                                            |  |  |
| Post-sample        | 2                                                 | 3                                         | 1                                              | 3.5                                       | 4                                                                                               |  |  |
| Laboratory receipt | 0                                                 | 0                                         | 0                                              | 4                                         | 8                                                                                               |  |  |

#### 2.7.2 Inert Tracer Gas Monitoring

Inert tracer gas monitoring was performed on October 6 to monitor for leaks around the surface seal of each VMP. The monitoring was performed using the methodology described in Section 2.7.5 of the New York State Department of Health, Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOE, 2006) (NYSDOH Guidance Document). Helium was utilized as the inert tracer gas for the monitoring. The helium monitoring was performed using an Ion Science GasCheck Helium Leak Detector. For each test, a plastic container, with a foam gasket on its open end, was placed over each VMP. VMP tubing was then extended through a small hole that had been drilled through the container, and the interior space of the container was enriched with helium through a second small hole in the container. 1.5 to 2.5 liters of soil vapor were then purged from each VMP using a peristaltic pump. Monitoring was performed to determine pre-test background helium readings in ambient air, pre-test readings in each VMP, the enriched container readings, and post-purge readings in each VMP.

Background helium readings in ambient air ranged from 0.033 to 0.222%. Pre-test helium readings in the VMPs ranged from 0.035 to 0.357%. The helium reading in the enriched container exceeded the range of the helium detector at 99.99% during each test. According to the NYSDOH Guidance Document, post-purge helium readings in the VMPs of less than 10% of that in the enriched container demonstrate surface seal integrity. Post-purge helium readings in the monitored VMPs ranged from 0.018 to 0.199%, thereby demonstrating surface seal integrity at each VMP.

Soil vapor purge rates achieved during the monitoring indicated that the formation screened at SMP-VMP-12 is less permeable than the formation screened at the three remaining new VMPs.

## 2.7.3 Soil Vapor Sampling

The soil vapor sampling was performed on October 7. The VMPs were purged using a peristaltic pump prior to sampling. SMP-VMP-12 was purged of approximately 1.25 liters of soil vapor, and the remaining VMPs were purged of approximately 2 liters of soil vapor. A Swagelok® valve, which had been connected to the Teflon tubing at each VMP, was utilized to ensure that ambient air did not re-enter the VMP following purging.

The soil vapor samples were collected in pre-evacuated, pre-cleaned 6-liter Summa canisters. The Summa canister regulators were calibrated by the laboratory to collect soil vapor over a 4-hour period at an average rate of 22.5 mL/min for a target residual vacuum of approximately 3"Hg. A new pair of nitrile sampling gloves was donned prior to each sample setup.

The VMP canisters were connected to the Swagelok® valve at each VMP using additional Teflon tubing and a Swagelok® fitting. A duplicate sample (SMP-VMP-D) was collected, using a T-splitter, from SMP-VMP-11. The vacuum gauges on the Summa canisters were periodically monitored after setup to confirm that the canister vacuums were decreasing, and to confirm that the change in vacuum over time was proceeding at the appropriate rate. The vacuum readings were recorded on the sample setup and retrieval forms. The pre-sample and post-sample vacuum readings are summarized below in **Table B**.

During the course of vacuum gauge monitoring, two conditions were noted.

- The vacuum gauges on the Summa canister for SMP-VMP-12 did not change between setup and
  the first check. The regulator was removed to allow unrestricted flow into the canister. Water
  droplets were observed in the VMP tubing during the third check, and the sampling was
  immediately terminated. Accordingly, a high residual vacuum, indicative of a low sample volume,
  remained on the canister.
- It was determined that the parent sample from SMP-VMP-11 was being collected too rapidly. The
  canister and regulator were quickly replaced without disturbing the duplicate sample which was
  being properly collected.

Table B
Soil Vapor Samples
Pre-sample and Post-sample Vacuum Readings (inches of Mercury)

| Sample ID          | SMP-VMP-10 | SMP-VMP-11 | SMP-VMP-11<br>[SMP-VMP-D] | SMP-VMP-12 | SMP-VMP-13 |  |
|--------------------|------------|------------|---------------------------|------------|------------|--|
| Vacuum Readings    |            |            |                           |            |            |  |
| Pre-sample         | >30        | >30        | >30                       | 28         | 29         |  |
| Post-sample        | 3          | 4          | 1                         | 26         | 2          |  |
| Laboratory receipt | 2          | 3          | 1                         | 26         | 2          |  |

The samples were shipped at the completion of the sampling event, with an accompanying COC form, to Enthalpy for laboratory analysis of VOCs via EPA Method TO-15 Low Level.

#### 2.8 Restoration Activities

# Fence Repairs

The sections of fencing on the property lines on both 105 and 107 Inverness Drive that were opened during the field investigation were closed prior to the completion of all sampling activities. Per the owner of 105

Inverness Drive, the interior fencing that had been located in the back yard did not require re-installation. Given the vacancy at 107 Inverness Drive, the interior fencing was also not re-installed.

All stakes and flags that had been placed in the backyards of 105 and 107 Inverness Drive were removed at the completion of all sampling activities.

## Cap Repairs

Repairs to the cap, that were noted as being needed at part of the Spring 2020 Semi-Annual Sampling Event, were performed on November 6. Top soil was placed in the area near SMP-SW-02 and at the southwestern corner of the guardrail where the clay cap had become exposed. Grass seed and straw were then spread in these areas. Additional grass seed and straw were spread in other areas above the cap where bare topsoil was exposed.

# **Rut Repairs**

Repairs to the driveway entrance to the Site were also performed on November 6. Geofabric and stone were placed in areas of the driveway where ruts had developed as a result of vehicles repeatedly entering and exiting the Site.

## 2.9 IDW Containment, Waste Characterization, and Disposal

This section discusses the containment, waste characterization sampling, and disposal of the IDW generated during the hot spot investigation as well as the IDW generated during the Spring 2020 and Fall 2020 Semi-Annual Sampling Events. The IDW from these three events was collectively disposed of following completion of the groundwater sampling portion of the Fall 2020 Semi-Annual Sampling Event. This joint discussion is included in this report to simplify its presentation.

The drums containing non-hazardous waste were labeled as containing controlled waste. The drum containing hazardous waste was labeled as containing hazardous waste. All drums were staged on-site between generation and the time of pick-up.

#### 2.9.1 Water IDW Containment and Waste Characterization

The water IDW was contained in 55-gallon drums. Prior groundwater analytical data were used to characterize the water IDW. Purge water from the wells other than SMP-MW-03 and small-equipment decontamination water characterized as non-hazardous. Purge water from SMP-MW-03 characterized as hazardous. The purge water from SMP-MW-03 generated during both sampling events was contained separately from the purge water from the remaining wells. The water used for small-equipment cleaning during the hot spot investigation was drummed along with the non-hazardous purge water that had been generated during the Spring 2020 Semi-Annual Sampling Event. It should be noted that the drum containing the hazardous purge water that had been generated during the Spring 2020 Semi-Annual Sampling Event had been removed from the Site by unauthorized personnel soon after it was generated.

# 2.9.2 Soil IDW Containment and Waste Characterization Sampling and Results

Excess soil core generated during the hot spot investigation that was not used for boring abandonment was placed into a separate 55-gallon drum.

CGS collected aliquots for the creation of two composite waste characterization soil samples to characterize the drummed soil IDW that was generated during the hot spot investigation and to pre-characterize soil in the hot spot area for disposal in anticipation of a potential upcoming soil removal remedial response. One

composite waste characterization soil sample was generated from the excess soil core that had been drummed and where field evidence of impact suggested likely non-hazardous waste characterization (HSI-WC-NH). The second composite waste characterization soil sample was generated from the soil core collected from areas where field evidence of impact suggests possible hazardous waste characterization (HSI-WC-H).

The composite waste characterization soil samples were submitted, with an accompanying COC form, to Hampton-Clarke for laboratory analysis of the Toxicity Characteristic Leaching Procedure (TCLP) for VOCs, SVOCs, and Metals via EPA Methods 1311/8260/8270/6010-7470 respectively, polychlorinated biphenyls (PCBs) via EPA Method 8082, Total Petroleum Hydrocarbon-Gasoline Range Organics (TPH-GRO) and TPH-Diesel Range Organics (TPH-DRO) via EPA Method 8015, and Percent Solids via Method SM2540. The laboratory report and COC documentation that includes the waste characterization soil samples is discussed below in Section 3.5.

HSI-WC-NH (representative of the drummed soil) characterized as non-hazardous waste. HSI-WC-H (representative of the soil in the core of the hot spot that may be excavated in the future) characterized as hazardous waste.

## 2.9.3 IDW Disposal

CGS arranged for the removal and proper disposal of the IDW, listed below in **Table C**, with Environmental Waste Specialists, Inc. (EWSI) of Manassas, Virginia. Because some of the waste was being disposed of as hazardous, the MDE-LRP project manager arranged for a permanent EPA hazardous waste generator identification number for the Site. Shipping manifests were signed by MDE-LRP as the agent for an unknown generator.

Table C Drum Inventory

| Contents                                                        | Number of | Waste            |
|-----------------------------------------------------------------|-----------|------------------|
|                                                                 | Drums     | Characterization |
| Excess soil core generated during the hot spot investigation    | 1         | Non-Hazardous    |
| Purge water from wells other than SMP-MW-03 and small-equipment | 2         | Non-Hazardous    |
| decontamination water                                           |           |                  |
| Purge water from SMP-MW-03                                      | 1         | Hazardous        |

The drums were transported to ECOFLO, Inc.'s permitted disposal facility in Greensboro, North Carolina by ECOFLO, on January 8, 2021. The IDW disposal documentation is included in **Attachment D**.

#### 3.0 LABORATORY ANALYTICAL RESULTS

The analytical results for the detected analytes in the soil samples, groundwater samples, soil vapor samples, and air samples are presented in **Tables 1 through 7**. Full analytical results are presented in **Tables E-1 through E-7** in **Attachment E**. The results are reported in the data tables in milligrams per kilogram (mg/kg or ppm) for the soil samples, in micrograms per liter [ $\mu$ g/L or parts per billion (ppb)] for the groundwater samples, and in micrograms per cubic meter ( $\mu$ g/m³) for the vapor and air samples. Concentrations for detected analytes are shown on the tables in bold text. Method Detection Limits (MDLs) for analytes that were not detected in a particular sample are shown in the tables in gray text and qualified with a "U". Any analyte detected in the samples at a concentration above the MDL, but below the Reporting Limit (RL) (for the soil and groundwater samples) or the Limit of Quantitation (LOQ) (for the soil vapor and air samples) is presented in the tables with a "J" qualifier, indicating that the result is considered an estimated concentration. Concentrations denoted in the data tables with a "B" qualifier indicate that the analyte was detected in the Method Blank and in the sample. Concentrations denoted in the data tables with a "D"

qualifier were analyzed at a higher dilution factor to allow quantitation within the calibration range of the instrument. The laboratory reports and COC documentation are included in **Attachments F and G**.

# 3.1 Analytical Laboratory Results Screening Methodology

The analytical results were compared to generic risk-based screening levels (RBSLs) to preliminarily identify analytes and associated concentrations that may be of potential concern for the Site and/or off-site properties.

Details of the screening are as follows:

- The soil analytical data were compared to the MDE Residential Soil Cleanup Standards (RSCSs) (MDE, October 2018). These screening levels were developed for residential receptors based on the dermal contact, incidental ingestion, and inhalation of volatiles/fugitive dust (in open air) exposure routes and are applicable for the evaluation of the direct contact with surface/near surface soil potential exposure pathway. While not directly applicable for the subsurface soil (i.e., direct contact with the subsurface soil is not anticipated given its depth), use of the MDE RSCSs provides a conservative means of highlighting concentrations that may be of potential concern in the event of a complete direct contact exposure pathway. The soil metals analytical data were also compared to the MDE Anticipated Typical Concentrations (ATCs) for Central Maryland (MDE, October 2018).
- The groundwater analytical data were compared to the EPA Residential Groundwater Vapor Intrusion Screening Levels (VISLs) corresponding to a Cancer Risk of 1x10<sup>-5</sup> or a Hazard Quotient of 1 (EPA, May 2020) for the evaluation of the vapor intrusion/indoor inhalation potential exposure pathway.
- The soil vapor analytical data were compared to the MDE Residential Soil Gas Tier 1 and Tier 2 Remediation Goals (RGs) (MDE, September 2019) for the evaluation of the vapor intrusion/indoor inhalation potential exposure pathway. These RGs were developed by MDE based on the May 2019 EPA Residential Indoor Air Regional Screening Levels (RSLs), a Cancer Risk of 1x10<sup>-5</sup> or a Hazard Quotient of 1, and Attenuation Factors (AFs) 20 for Tier 1 and 100 for Tier 2.
- The crawl space air analytical data were compared to the EPA Residential Indoor Air RSLs corresponding to a Cancer Risk of 1x10<sup>-5</sup> or a Hazard Quotient of 1 (EPA, May 2020) for the evaluation of the vapor intrusion/indoor inhalation potential exposure pathway.

The results of the screening are shown in **Tables 1 through 7** and in **Tables E-1 through E-7 in Attachment E**. Detected analyte concentrations or MDLs which exceed the respective primary RBSLs (i.e., MDE RSCSs, EPA VISLs, MDE Tier 1 RGs, and EPA RSLs) are underlined. Red text is used to highlight detected VOC and SVOC concentrations which exceed the primary RBSLs. Red text is also used to highlight detected metals concentrations in soil which exceed both the primary RBSLs (i.e., MDE RSCSs) and the secondary RBSLs (i.e., MDE ATCs). Asterisks are used to denote detected VOC concentrations in soil vapor which also exceed the secondary RBSLs (i.e., MDE Tier 2 RGs). Brief summaries of the analytical results and the results of the screening are included below in Sections 3.2 through 3.7. A more detailed interpretation of the analytical results is included below in Section 4.2.

# 3.2 Surface/Near Surface Soil Sample Analytical Results

The analytical results for the surface/near surface soil samples are presented in **Tables 1 and 2** (detected analytes) and in **Tables E-1 and E-2 in Attachment E** (full data table). The laboratory report is included in **Attachment F**.

As shown in **Table 1**, 13 VOCs were detected in the soil samples. (Note: Total xylenes was not included in this accounting because its isomers were reported.) No VOCs were detected at concentrations that exceed the MDE RSCSs.

As shown in **Table 2**, 12 SVOCs were detected in the soil samples. No SVOCs were detected at concentrations that exceed the MDE RSCSs.

The detection of 22 metals were reported in the soil samples (**Table 2**). This is as expected given that metals are naturally occurring elements. Arsenic, iron, manganese, thallium, and vanadium were detected at concentrations that exceed the MDE RSCSs. Only arsenic and vanadium were detected at concentrations that also exceed the MDE ATCs.

## 3.3 Grab Groundwater Sample Analytical Results

The analytical results for the grab groundwater samples are presented in **Table 3** and in **Table E-3**. The laboratory report is included in **Attachment G**.

Eighteen (18) VOCs were detected in the groundwater samples. 1,2-Dichloroethane, benzene, chlorobenzene, trichloroethene (TCE), and vinyl chloride (VC) were detected at concentrations that exceed the EPA Residential Groundwater VISLs.

# 3.4 Subsurface Soil Sample Analytical Results

The analytical results for the subsurface soil samples are presented in **Tables 4 and 5** and in **Tables E-4** and **E-5**. The laboratory report is included in **Attachment G**.

As shown in **Table 4**, 25 VOCs were detected in the subsurface soil samples. 1,1,2,2-Tetrachloroethane, 1,2-dichloroethane, benzene, chlorobenzene, cis-1,2-dichloroethene, ethylbenzene, m&p-xylene, methylene chloride, tetrachloroethene (PCE), toluene, TCE, VC, and total xylenes were detected at concentrations that exceed the MDE RSCSs.

As shown in **Table 5**, nine SVOCs were detected in the subsurface soil samples. bis(2-Ethylhexyl) phthalate and naphthalene were detected at concentrations that exceed the MDE RSCSs.

The detection of 22 metals were reported in the subsurface soil samples (**Table 5**). Arsenic, cadmium, and iron were detected at concentrations that exceed the MDE RSCSs. Only cadmium was detected at a concentration that also exceed the MDE ATC.

#### 3.5 Waste Characterization Sample Analytical Results

As discussed above in Section 2.9.2, the soil waste characterization samples were analyzed for TCLP-VOCs, TCLP-SVOCs, TCLP-metals, PCBs, TPH-GRO, TPH-DRO, and percent solids. The laboratory report which presents the waste characterization sample analytical results is included in **Attachment G**. The results of the waste characterization analyses are presented above in Section 2.9.2.

#### 3.6 Soil Vapor Sample Analytical Results

The analytical results for the soil vapor samples are presented in **Table 6** and in **Table E-6**. The laboratory report is included in **Attachment H**.

Forty-four (44) VOCs were detected in the soil vapor samples. 1,1,2,2-Tetrachloroethane, 1,1,2-trichloroethane, acrolein, bromodichloromethane, chloroform, and TCE were detected at concentrations

that exceed the MDE Residential Soil Gas Tier 1 RGs. 1,1,2,2-Tetrachloroethane, chloroform, and TCE were detected at concentrations that also exceed the MDE Residential Soil Gas Tier 2 RGs.

## 3.7 Crawl Space Air and Outdoor Air Sample Analytical Results

The analytical results for the crawl space air and outdoor air samples are presented in **Table 7** and in **Table E-7**. The laboratory report is included in **Attachment H**.

Twenty (20) VOCs were detected in the crawl space air and outdoor air samples. Acrolein and naphthalene were detected at concentrations that exceed the EPA Residential Indoor Air RSLs.

#### 4.0 SITE CHARACTERIZATION DISCUSSION

Previous site data were utilized in combination with the data generated during this investigation to gain additional understanding of the hydrogeologic and contaminant conditions within the investigation area as discussed below in Sections 4.1 and 4.2, respectively.

# 4.1 Hydrogeologic Data Discussion

The stratigraphy encountered in the soil borings, advanced as discussed above in Sections 2.4 and 2.5, consisted primarily of damp, medium stiff to stiff, clayey silt/silt or damp, medium dense to dense, silty or clayey sand. Occasional intervals predominately containing other fractions (e.g., gravel, gravelly sand, sand, and silty clay) and/or softer/looser fractions were also encountered in the borings. Intervals identified as fill or reworked material were encountered in all of the borings to depths ranging from 1.5 to 13 feet BG. At times, the fill contained debris such as plastic sheeting, plastic, brick fragments, glass, rubber, ceramics, or trash. Some borings contained intervals of organic/swamp sediments and or wood fragments. Soil core obtained below depths ranging from 5 to 14.5 feet BG often exhibited a weathered bedrock texture. Weathered bedrock was encountered in HSI-GW-02 at a depth of 11 feet BG and in HSI-GW-04 at a depth of 16.5 feet BG. Refusal was encountered at a depth of 17.6 feet BG in HSI-HRSC-38.

Sustained wet conditions were observed in the soil core from only one of the borings [i.e., HSI-SB-04 (12-20 feet BG)]. Wet conditions were observed in discrete intervals in the soil core from five of the remaining 13 borings [i.e., HSI-GW-01 (13-15 feet BG), HSI-GW-04 (perched interval at 2 to 3 feet BG), HSI-SB-05 (9-9.5 feet BG), HSI-SB-06 (13 feet BG), and HSI-SB-09 (16-17 feet BG)]. In five of the remaining eight borings, indications of possible groundwater were observed on occasional as thin slightly moist/moist zones. Damp conditions only were observed in the soil core from three of the borings. Groundwater accumulated in all four of the temporary wells (HSI-GW-01 through HSI-GW-04) to depths ranging from 8.88 feet BG at HSI-GW-04 to 16.28 feet BG at HSI-GW-02.

Historic gauging data, from the three wells located within AOC-3 and listed geographically from northwest to southeast, are summarized below in Table D. Note that near drought conditions occurred during the Fall 2019 Semi-Annual Sampling Event as reflected in the gauging data collected on October 31, 2019.

Table D Historic Gauging Data (feet BG)

| Well      | 11/7/2001         | 3/16/2016 | 10/31/2019 | 5/5/2020 | 9/8/2020   |
|-----------|-------------------|-----------|------------|----------|------------|
| MW-3      | 5.7               | 0.8       | 6.3        | 1.5      | Not Gauged |
| SMP-MW-03 | Not yet installed |           | 9.6        | 5.8      | 5          |
| MW-2      | 16.2              | 9.1       | 17.3       | 8.4      | 12.5       |

The groundwater/surface water contour map generated during the Spring 2020 Semi-Annual Sampling Event indicates that the direction of groundwater flow from the hot spot area is toward the east-northeast.

As discussed above in Section 2.7.3, the low permeability of the shallow subsurface soil, and the presence of water in the interstitial pore spaces, impacted the collection of the soil vapor sample from SMP-VMP-12. This condition was also observed during VMP sampling events conducted at/near the Site during both of the Semi-Annual Sampling Events performed to date. This condition occurred in two of the VMPs during the Fall 2019 event and in seven of the VMPs during the Spring 2020 event.

#### 4.2 Contaminant Site Characterization

**Figures 9 through 13** were generated to illustrate the distribution of analytes detected in the various media that were sampled. **Figures 14 through 22** were generated to illustrate data that were acquired during the HRSC Survey. The process used to generate **Figures 14 through 22** is discussed below in Section 4.2.1. Discussion of the data illustrated in these figures, relative to the goals of the Hot Spot Investigation (discussed above in Section 1.2), is presented below in Sections 4.2.2 through 4.2.4.

The VOCs detected, in the subsurface media that were sampled, at concentrations above the respective RBSLs (**Tables 3, 4, and 6**) fall into the following three categories:

- Chlorinated VOCs (c-VOCs): 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,2-dichloroethane, bromodichloromethane, chlorobenzene, chloroform, cis-1,2-dichloroethene (cis-1,2-DCE), methylene chloride, PCE, TCE, and VC.
- Petroleum VOCs (p-VOCs): benzene, ethylbenzene, toluene, xylenes, and naphthalene (as a SVOC); and
- Other VOCs: acrolein.

# 4.2.1 Generation and Viewing of the HRSC Survey Graphics (Figures 10 through 22)

HRSC data are collected 20 times per foot (i.e., once every 0.05 foot) of boring advancement. Logs presenting these data are included in Cascade's Final Data Report (Attachment A). Cascade utilized sophisticated software to laterally interpolate the HRSC data between the borings and generate two and three dimensional graphics from the data.

As discussed above in Section 2.2.1, the ECD and XSD are the primary instruments which detect c-VOCs. The results of the Semi-Annual Sampling Events demonstrate that c-VOCs are the primary constituents of potential concern (COPCs) for the Site. Accordingly, site characterization discussion of the HRSC Survey data will focus on the ECD and XSD responses.

Cascade provided CGS with a series of graphics files that provide two and three dimensional views of the ECD and XSD data and two dimensional views of the EC and HTP pressure data. Each of the graphics is interactive so that it can be viewed from any angle or magnification.

The three dimensional models present views at three different response levels. The two dimensional models (i.e., vertical cross-sections and horizontal cross-sections) can be viewed as a progressing slide show or "short movie." The slide shows can also be progressed one slide at a time, and screen shots of individual slides (also referred to as "slices") can be captured.

Cascade generated its graphics using CGS' **Figure 4** as its base map and the GPS data that were recorded for each boring. Vertical distances are depicted as elevation amsl. Horizontal distances are depicted in feet in the Maryland State Plane coordinate system.

CGS captured screen shots of individual slides from the ECD, XSD, EC, and HTP pressure graphics to generate the figures. Each screen shot was selected to best illustrate the vertical and the lateral extent of the contamination within the area included in the HRSC Survey. Data are presented in the graphics using color gradients. The color gradient scale for each image presented in the figures is included for reference. **Figures 14 through 19** were generated from the three dimensional models of the ECD and XSD data and each present four views from these models. View A (i.e., **Figure 14A**, **Figure 15A**, etc.) presents a two dimensional plan view of the three dimensional data for the respective sensor and response levels. Views B, C, and D present three dimensional views from the west, south, and northwest respectively for the respective sensor and response levels. **Figure 20** presents a Cross-Section Location Map. **Figures 21 and 22** were generated from the two dimensional models of the ECD, XSD, EC, and HTP pressure data. **Figure 21** presents a cross-section that intersects in the vicinity of HSI-HRSC-48, HSI-HRSC-49, HSI-HRSC-22. **Figure 22** presents a cross-section that intersects in the vicinity of HSI-HRSC-49, HSI-HRSC-39, and HSI-HRSC-39.

As discussed in Cascade's Final Data Report (**Attachment A**), the ECD and XSD respond to halogenated compounds (i.e., chlorinated, fluorinated, brominated) only. The ECD is more sensitive to compounds that are more highly halogenated and provides a greater response to PCE and TCE versus cis-1,2-DCE and VC; whereas the XSD provides a greater response to cis-1,2-DCE and VC. The ECD is highly sensitive and can go over-range in areas of very high concentrations. The ECD can become over-saturated at these times and often requires additional time before the instrument clears. This can result in a carry down of high ECD responses to deeper depths. As shown in the logs included in Cascade's Final Data Report (**Attachment A**), carry down of high ECD responses to the bottom of the borings may have occurred at HSI-HRSC-03 and HSI-HRSC-45. Carry down of XSD responses was not observed at these locations.

# **4.2.2** Hot Spot Area Soil Contamination Delineation

#### **VOC Data Evaluation**

**Table 4** presents the analytical results for the VOCs detected in the subsurface soil samples collected from HSI-SB-01 through HSI-SB-10. **Figures 11, 14 through 19, 21, and 22** were generated to illustrate data collected in the hot spot area.

**Figures 16A and 19A** illustrate four areas where the highest ECD and XSD responses were detected. The first area (i.e., the hot spot area) includes HSI-HRSC-03, HSI-HRSC-04, HSI-HRSC-10, HSI-HRSC-39, HSI-HRSC-40, HSI-HRSC-45, HSI-HRSC-46, HSI-HRSC-47, HSI-HRSC-49, and HSI-HRSC-50; the second area includes HSI-HRSC-22; the third area includes HSI-HRSC-33 and HSI-HRSC-34; and the fourth area, shown on **Figure 16A** only, includes HSI-HRSC-02 and HSI-HRSC-28. Comparison of **Figure 16A** with **Figures 14A and 15A** and of **Figure 19A** with **Figures 17A and 18A** demonstrate that the hot spot area that was known to exist at SMP-MW-03 and SMP-VMP-03 is segregated from other areas where the highest ECD and XSD responses were detected by areas where lower ECD and XSD responses were detected. Comparison of **Figure 16C** with **Figures 14C and 15C** and of **Figure 19C** with **Figures 17C and 18C** demonstrate that the areas where the highest ECD and XSD responses were detected outside of the hot spot area are limited in extent relative to the extent of the hot spot area.

As per the purpose of this section, discussion herein will focus on the hot spot area only. **Figures 16B, C, and D and 19 B, C, and D** illustrate three dimensional views of the hot spot area where the highest ECD and XSD responses were detected. **Figures 21A, 21B, 22A, and 22B** illustrate two dimensional views of the hot spot area where the highest ECD and XSD responses were detected. It should be noted that the MIP sensors detect contamination in subsurface vapor (vapor-phased contamination), in subsurface soil (adsorbed-phased contamination), and in groundwater (dissolved-phased contamination) without distinction of media. As discussed above in Section 2.2.1, groundwater was gauged at a depth of approximately 5 feet BG in SMP-MW-03 on the first day of the HRSC Survey. Accordingly, the ECD and XSD responses detected at depths of 5 feet BG or less in this immediate area may reflect vapor-phased and/or adsorbed-phased contamination; whereas the ECD and XSD responses detected at depths of 5 feet BG or greater may reflect adsorbed-phased and/or dissolved-phased contamination. The HRSC Survey graphics demonstrate high levels of contamination in the hot spot area to depths exceeding 20 feet BG.

The HRSC Survey graphics, and **Figures 22A and 22B** in particular, demonstrate an area of shallow contamination centered at HSI-HRSC-39 that starts at a depth of approximately 1.5 feet BG which diminishes vertically downward at this location but connects laterally toward HSI-HRSC-03 where deep responses were recorded.

As shown in **Table 4** and illustrated on **Figure 11**, eight c-VOCs (1,1,2,2-tetrachloroethane, 1,2-dichloroethane, chlorobenzene, cis-1,2-DCE, methylene chloride, PCE, TCE, and VC) and four p-VOCs (benzene, ethylbenzene, toluene, and xylenes) were detected at concentrations that exceed the MDE RSCSs in the subsurface soil samples collected from HSI-SB-01 between the depths of 2.5 and 10.5 feet BG. The highest VOC concentrations were detected in one of the soil samples collected from HSI-SB-01 between the depths of 6 and 6.5 feet BG (i.e., below the then current groundwater table) where a PID reading of 12,950 ppm was recorded. The variation in the VOC concentrations detected in the two samples collected from this interval reflect the non-homogeneous nature of soil samples. This depth corresponds with the depths where the highest XSD responses were detected in HSI-HRSC-03 (approximately 6.5 to 9 feet BG) and in HSI-HRSC-45 (approximately 4.5 to 9.5 feet BG). No VOCs were detected at concentrations that exceed the MDE RSCSs in the subsurface soil sample collected from HSI-SB-01 between the depths of 14.5 and 15 feet BG where a PID reading of 132 ppm was recorded. As shown in the soil boring log for HSI-SB-01, PID readings higher than this level were recorded to depths ranging to 18.5 feet BG.

As shown in **Table 4** and illustrated on **Figure 11**, only two c-VOCs (either TCE or VC) were detected at concentrations that exceed the MDE RSCSs in subsurface soil samples collected from HSI-SB-03, HSI-SB-04, HSI-SB-05, HSI-SB-06, HSI-SB-08, and HSI-SB-10. These samples were collected between the depths of 3.5 and 13 feet BG. No VOCs were detected at concentrations that exceed the MDE RSCSs in subsurface soil samples collected from HSI-SB-02, HSI-SB-07, and HSI-SB-09.

# **SVOC** and Metals Data Evaluation

As shown in **Table 5** and illustrated on **Figure 12**, two SVOCs [bis(2-ethylhexyl)phthalate and naphthalene] and three metals (arsenic, cadmium, and iron) were detected in the subsurface soil samples at concentrations that exceed the MDE RSCSs. Only cadmium was detected at a concentration that also exceed the MDE ATC. The bis(2-ethylhexyl)phthalate, naphthalene, and cadmium concentrations were detected in the same sample interval discussed above where the highest VOC concentrations were detected (i.e., from HSI-SB-01 between the depths of 6 and 6.5 feet BG). No other SVOC or metals concentrations that may be of concern were detected in the subsurface soil samples submitted for these analyses.

# **Summary**

The data collected during the Hot Spot Investigation fulfilled the goal of delineating the vertical and lateral extent of soil contamination in the hot spot area both on-site and on the adjacent residential properties. The data collected during the HRSC Survey were critical in developing this understanding. The data demonstrate that the hot spot area is fairly limited in extent and that the core of the hot spot area is located at SMP-MW-03, HSI-HRSC-03, HSI-HRSC-45, and HSI-SB-10. Soil contamination in the hot spot area extends to depths below the groundwater table. The edge of the hot spot area contamination extends into the backyard of 105 Inverness Drive at HSI-HRSC-03 and HSI-SB-10. It should be noted that the backyards of 105 and 107 Inverness Drive extend past the property line to the location of the on-site guardrail. **Figure** 7 demonstrates that HSI-HRSC-03 and HSI-SB-10 are located within the on-site property boundary.

# 4.2.3 Evaluation of the Direct Contact with Surface/Near Surface Soil Potential Exposure Pathway

#### VOC and SVOC Data Evaluation

As shown in **Tables 1 and 2** and illustrated on **Figure 9**, no VOC or SVOC concentrations that exceed the MDE RSCSs were detected in the surface/near surface soil samples. This includes the near surface soil sample collected at HSI-SS-07 located adjacent to HSI-HRSC-39 where shallow contamination that starts at a depth of approximately 1.5 feet BG was detected

#### Metals Data Evaluation

As shown in **Table 2** and illustrated on **Figure 9**, five metals (arsenic, iron, manganese, thallium, and vanadium) were detected at concentrations that exceed the MDE RSCSs. Arsenic and iron were detected at concentrations that exceed the MDE RSCSs at all nine of the sampling locations. Manganese, thallium, and vanadium were detected at concentrations that exceed the MDE RSCSs at one sampling location each. However, only arsenic and vanadium, at one location each, were detected at concentrations that also exceed the MDE ATCs. Consultation with MDE's toxicologist indicates that they are not a cause for concern. Summary

The data collected during the Hot Spot Investigation fulfilled the goal of providing data for use in evaluating the direct contact with surface/near surface soil potential exposure pathway both on-site and at 105 and 107 Inverness Drive. No VOC, SVOC, or metals concentrations, that may be of concern for this potential exposure pathway, were detected in the surface/near surface soil samples.

# 4.2.4 Evaluation of the Vapor Intrusion/Indoor Inhalation Potential Exposure Pathway

#### Data Evaluation

**Tables 3, 6, and 7** present the grab groundwater, soil vapor, and crawl space and outdoor air analytical results used in the evaluation of the vapor intrusion/indoor inhalation potential exposure pathway. **Figures 10, 13, 14 through 19, and 21** were generated to illustrate data used in this evaluation. Discussion included herein will focus on data acquired at HRSC Survey borings HSI-HRSC-13, HSI-HRSC-14, HSI-HRSC-15, and HSI-HRSC-22 located in the backyard of 105 Inverness Drive closest to the mobile home and at the grab groundwater, soil vapor, and crawl space and outdoor air sampling locations.

**Figures 16A and 19A** show the areas where the highest ECD and XSD responses were detected. As noted above, one of those areas includes HSI-HRSC-22. **Figures 21A and 21B** present a cross-sectional view that includes the hot spot area and HSI-HRSC-22 and illustrate the ECD and XSD responses in this slice. **Figure 14A** shows that ECD responses above 3,000,000 microVolts ( $\mu$ V) were recorded at HSI-HRSC-15 in additional to HSI-HRSC-22. **Figure 17A** shows that XSD responses above 3,000  $\mu$ V were recorded at

HSI-HRSC-13 and HSI-HRSC-14 in additional to HSI-HRSC-22 and several other of the HRSC borings advanced in the backyard of 105 Inverness Drive. The D view of **Figures 14 through 19** (i.e., **Figure 14D, 15D,** etc.) present three dimensional views of the ECD and XSD responses in the area of HSI-HRSC-13, HSI-HRSC-14, HSI-HRSC-15, and HSI-HRSC-22 (i.e., the three dimensional shapes on the left side of the diagrams left of the hot spot three dimensional shapes).

HSI-HRSC-22 is located directly down-gradient of the hot spot area. The grade elevation at HSI-HRSC-22 is lower than the grade elevation at SMP-MW-03. The profile log for HSI-HRSC-22 demonstrates that the highest ECD and XSD responses were detected at a depth of approximately 3.5 feet BG at this location. These ECD and XSD responses are depicted on **Figures 21A and 21B.** Perched groundwater was encountered at a depth of 2 to 3 feet BG in a more permeable interval in the boring for HSI-GW-04. It follows that the ECD and XSD responses detected at 3.5 feet BG and deeper in HSI-HRSC-22 (and in HSI-HRSC-13, HSI-HRSC-14, and HSI-HRSC-15) likely result from dissolved-phased migration from the hot spot area through more permeable intervals as opposed to vapor-phased migration. **Figures 21A and 21B** present the EC and HTP pressure data for this cross-section and exhibit inter-fingering of varying soil types and hydraulic properties. EC responses on the orange end of the scale reflect coarser grained sediments, and EC responses on the grey end of the scale reflect finer grained sediments. HTP pressure responses on the grey end of the scale reflect less permeable intervals.

**Figures 21A and 21B** demonstrate that the XSD response at HSI-HRSC-22 extends deeper than the ECD response. This suggests higher cis-1,2-DCE and VC concentrations and lower PCE and TCE concentrations in groundwater at this location, which is consistent with the analytical data for HSI-GW-02 and with the analytical data for HSI-GW-01, HSI-GW-03, and HSI-GW-04 as well (**Table 3**).

As shown in **Tables 3 and 6**, VOCs, likely attributable to the on-site contamination, were detected in all of the grab groundwater samples and in three of the four soil vapor samples (i.e., SMP-VMP-10, SMP-VMP-11, and SMP-VMP-13) at concentrations that exceed the respective EPA Residential Groundwater VISLs or MDE Residential Soil Gas Tier 1 RGs. These VOCs include 1,2-dichloroethane, benzene, chlorobenzene, TCE, and VC in groundwater and 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, and TCE in soil vapor. [Note that detections of acrolein, bromodichloromethane, and chloroform often result from anthropogenic sources not related to subsurface contamination.] 1,1,2,2-Tetrachloroethane and TCE were detected in soil vapor at concentrations that also exceed the MDE Residential Soil Gas Tier 2 RGs. These results suggest that vapor intrusion would be a potential concern in the event that structures with slab-ongrade construction or with basements were located on these properties.

The results of the crawl space air and outdoor air sampling are presented in **Table 7**. The results demonstrate general consistency between the outdoor air sample and the four crawl space air samples. All of the analytes detected in these samples, including acrolein and naphthalene that were detected at concentrations that exceed the EPA Residential Indoor Air RSLs, can be attributed to anthropogenic sources not related to subsurface contamination. The crawl space air analytical data do not suggest potential impact from vapor intrusion, likely due to a high degree of ventilation in the crawl space area beneath both mobile homes.

#### Summary

The data collected during the Hot Spot Investigation fulfilled the goal of providing data for use in evaluating the vapor intrusion/indoor inhalation potential exposure pathway at 105 and 107 Inverness Drive. The groundwater and soil vapor analytical data suggest that vapor intrusion might be a potential concern in the event that structures with slab-on-grade construction or with basements were located on these properties. However, the crawl space air and outdoor air analytical data do not suggest potential impact from vapor intrusion, likely due to a high degree of ventilation in the crawl space area beneath both mobile homes. Consultation with MDE's toxicologist confirms this interpretation.

#### 5.0 CONCLUSIONS

CGS has performed a Hot Spot Investigation at the Montgomery Brothers Dump site located off of Inverness Drive in North East, Maryland. The Hot Spot Investigation was performed to delineate the vertical and lateral extent of the soil contamination in the hot spot and to evaluate the direct contact with surface/near surface soil and the vapor intrusion/indoor inhalation potential exposure pathways. Among other activities, the Hot Spot Investigation included a HRSC survey; collection of surface/near surface soil samples, groundwater samples, and subsurface soil samples; installation of four VMPs; and collection of soil vapor and crawl space/outdoor air samples. Based on data obtained during this investigation, CGS concludes the following:

- The data collected during the Hot Spot Investigation fulfilled the goal of delineating the vertical and lateral extent of soil contamination in the hot spot area both on-site and on the adjacent residential properties. The data demonstrate that the hot spot area is fairly limited in extent and has a well-defined core. Soil contamination in the hot spot area extends to depths below the groundwater table. The edge of the hot spot area extends approximately 10 feet into the backyard of 105 Inverness Drive; however, this area is located within the on-site property line.
- The data collected during the Hot Spot Investigation fulfilled the goal of providing data for use in evaluating the direct contact with surface/near surface soil potential exposure pathway both on-site and at 105 and 107 Inverness Drive. No VOC, SVOC, or metals concentrations, that may be of concern for this potential exposure pathway, were detected in the surface/near surface soil samples.
- The data collected during the Hot Spot Investigation fulfilled the goal of providing data for use in evaluating the vapor intrusion/indoor inhalation potential exposure pathway at 105 and 107 Inverness Drive. The groundwater and soil vapor analytical data suggest that vapor intrusion might be a potential concern in the event that structures with slab-on-grade construction or with basements were located on these properties. However, the crawl space air and outdoor air analytical data do not suggest potential impact from vapor intrusion, likely due to a high degree of ventilation in the crawl space area beneath both mobile homes. Consultation with MDE's toxicologist confirms this interpretation.

# **6.0 LIMITATIONS**

The work performed in conjunction with this project, and the data developed, are intended as a description of available information at the sample locations indicated and the dates specified. Generally accepted industry standards were used in the preparation of this report.

Laboratory data are intended to approximate actual conditions at the time of sampling. Results from future sampling and testing may vary significantly as a result of natural conditions, a changing environment, or the limits of analytical capabilities. This report does not warrant against future operations or conditions, nor does it warrant against operations or conditions present of a type or at a specific location not investigated. The limited sampling conducted is intended to approximate conditions by extrapolation between data points. Actual conditions may vary.

CGS has based its characterization on observable conditions and analytical results from independent analytical laboratories that are solely responsible for the accuracy of their methods and results.

CGS is pleased to be assisting the Maryland Department of the Environment on this project. If you have any questions, please contact our office in Columbia, Maryland at (410) 740-1911 or via email. The undersigned can be reached at extension 106 or nlove@cgs.us.com or at extension 103 or khoward@cgs.us.com.

Sincerely,

Chesapeake GeoSciences, Inc.

Nancy D. Love, PG

Principal

Kevin W. Howard, PG

President

cc: Project File

#### Attachments:

#### **Figures**

Figure 1: Site Location Map

Figure 2: Hot Spot Investigation Base Map

Figure 3: Hot Spot Investigation Area

Figure 4: HRSC Boring Location Map

Figure 5: Surface/Near Surface Soil Sample Location Map

Figure 6: Grab Groundwater Sample Location Map

Figure 7: Soil Boring Location Map

Figure 8: VMP and Crawl Space/Outdoor Air Sample Location Map

Figure 9: Surface/Near Surface Soil Contaminant Distribution Map - Detected Analytes

Figure 10: Grab Groundwater Contaminant Distribution Map - Detected VOCs

Figure 11: Subsurface Soil Contaminant Distribution Map - Detected VOCs

Figure 12: Subsurface Soil Contaminant Distribution Map - Detected SVOCs and Metals

Figure 13: Soil Vapor and Crawl Space/Outdoor Air Contaminant Distribution Map - Detected VOCs

Figure 14: HRSC Survey - Three Dimensional Model - ECD at 3,000,000 µV

Figure 15: HRSC Survey - Three Dimensional Model - ECD at 4,000,000 μV

Figure 16: HRSC Survey - Three Dimensional Model - ECD at 6,000,000 µV

Figure 17: HRSC Survey - Three Dimensional Model - XSD at 3,000 μV

Figure 18: HRSC Survey - Three Dimensional Model - XSD at 5,000 µV

Figure 19: HRSC Survey - Three Dimensional Model - XSD at 12,000 µV

Figure 20: HRSC Survey - Cross-Section Location Map

Figure 21: HRSC Survey - Cross-Section A-A' Northing: 711383 Intersecting: 44, 48, 45, and 22

Figure 22: HRSC Survey - Cross-Section B-B' Easting: 1606313 Intersecting: 49, 03, and 39

# **Tables**

Table 1: Surface/Near Surface Soil Sample Analytical Results - Detected Analytes - VOCs

Table 2: Surface/Near Surface Soil Sample Analytical Results - Detected Analytes - SVOCs and Metals

Table 3: Grab Groundwater Sample Analytical Results - Detected Analytes - VOCs

Table 4: Subsurface Soil Sample Analytical Results - Detected Analytes - VOCs

Table 5: Subsurface Soil Sample Analytical Results - Detected Analytes - SVOCs and Metals

Table 6: Soil Vapor Sample Analytical Results - Detected Analytes - VOCs

Table 7: Crawl Space/Outdoor Air Sample Analytical Results - Detected Analytes - VOCs

## Attachments

Attachment A: Cascade HRSC Data Report

Attachment B: Groundwater Sample Soil Boring Logs

Attachment C: Soil Sample Soil Boring Logs

Attachment D: IDW Disposal Documents

Attachment E: Full Laboratory Analytical Data Tables

Attachment F: Surface/Near Surface Soil Sample Laboratory Analytical Report

Attachment G: Groundwater, Subsurface Soil, and Waste Characterization Sample Laboratory Analytical Reports

Attachment H: Crawl Space Air, Outdoor Air, and Soil Vapor Sample Laboratory Analytical Report

**FIGURES** 





























**FIGURE 14A: PLAN VIEW** 



FIGURE 14C: VIEW FROM SOUTH



FIGURE 14B: VIEW FROM WEST



FIGURE 14D: VIEW FROM NORTHWEST



## FIGURE 14

# HRSC SURVEY THREE DIMENSIONAL MODEL ECD AT 3,000,000 µV

Montgomery Brothers Dump Inverness Drive North East, MD 21901

CGS Project No. CG-09-0423.10 Prepared by: M. Walsh Date: 11-24-2020





**FIGURE 15A: PLAN VIEW** 



FIGURE 15C: VIEW FROM SOUTH



FIGURE 15B: VIEW FROM WEST



FIGURE 15D: VIEW FROM NORTHWEST



## FIGURE 15

# HRSC SURVEY THREE DIMENSIONAL MODEL ECD AT 4,000,000 µV

Montgomery Brothers Dump Inverness Drive North East, MD 21901

CGS Project No. CG-09-0423.10 Prepared by: M. Walsh Date: 11-24-2020





**FIGURE 16A: PLAN VIEW** 



FIGURE 16C: VIEW FROM SOUTH



FIGURE 16B: VIEW FROM WEST



FIGURE 16D: VIEW FROM NORTHWEST



## FIGURE 16

# HRSC SURVEY THREE DIMENSIONAL MODEL ECD AT 6,000,000 µV

Montgomery Brothers Dump Inverness Drive North East, MD 21901

CGS Project No. CG-09-0423.10 Prepared by: M. Walsh Date: 11-24-2020





**FIGURE 17A: PLAN VIEW** 



FIGURE 17C: VIEW FROM SOUTH



FIGURE 17B: VIEW FROM WEST



FIGURE 17D: VIEW FROM NORTHWEST



# FIGURE 17

# HRSC SURVEY THREE DIMENSIONAL MODEL XSD AT 3,000 µV

Montgomery Brothers Dump Inverness Drive North East, MD 21901

CGS Project No. CG-09-0423.10 Prepared by: M. Walsh Date: 11-24-2020





**FIGURE 18A: PLAN VIEW** 



FIGURE 18C: VIEW FROM SOUTH



FIGURE 18B: VIEW FROM WEST



FIGURE 18D: VIEW FROM NORTHWEST



## FIGURE 18

# HRSC SURVEY THREE DIMENSIONAL MODEL XSD AT 5,000 µV

Montgomery Brothers Dump Inverness Drive North East, MD 21901

CGS Project No. CG-09-0423.10 Prepared by: M. Walsh Date: 11-24-2020





**FIGURE 19A: PLAN VIEW** 



FIGURE 19C: VIEW FROM SOUTH



FIGURE 19B:VIEW FROM WEST



FIGURE 19D: VIEW FROM NORTHWEST



# FIGURE 19

# HRSC SURVEY THREE DIMENSIONAL MODEL XSD AT 12,000 µV

Montgomery Brothers Dump Inverness Drive North East, MD 21901

CGS Project No. CG-09-0423.10 Prepared by: M. Walsh Date: 11-24-2020







Slice Position: 711383.0

XSD Corr (uV)

741,523 uV

300,000 uV

100,000 uV

10,000 uV

11,000 uV

11,000 uV

11,000 uV

1,000 uV

FIGURE 21A: ECD

FIGURE 21B: XSD





FIGURE 21C: EC

FIGURE 21D: HTP PRESSURE



## FIGURE 21

HRSC SURVEY
CROSS-SECTION
A-A'
NORTHING: 711383
INTERSECTING: 44, 48, 45
AND 22

Montgomery Brothers Dump Inverness Drive North East, MD 21901

CGS Project No. CG-09-0423.10 Prepared by: M. Walsh Date: 11-24-2020



FIGURE 22A: ECD



FIGURE 22B: XSD



FIGURE 22C: EC



FIGURE 22D: HTP PRESSURE



## FIGURE 22

HRSC SURVEY
CROSS-SECTION
B-B'
EASTING: 1606313
INTERSECTING: 49, 03
AND 39

Montgomery Brothers Dump Inverness Drive North East, MD 21901

CGS Project No. CG-09-0423.10 Prepared by: M. Walsh Date: 11-24-2020 **TABLES** 

# Table 1 Montgomery Brothers Dump (MD-137), Inverness Drive, North East, MD Hot Spot Investigation

#### Surface/Near Surface Soil Sample Analytical Results - Detected Analytes September 25, 2020 Volatile Organic Compounds (VOCs)

| Sample ID                 | HSI-SS-01<br>(0.5-1') | HSI-SS-02<br>(0.5-1') | HSI-SS-03<br>(0.5-1') | HSI-SS-04<br>(0.5-1') | HSI-SS-05<br>(0.5-1') | HSI-SS-06<br>(0.5-1') | HSI-SS-07<br>(0.5-1') | HSI-SS-07<br>(0.5-1')<br>[HSI-SS-D<br>(0.5-1')] | HSI-SS-08<br>(0.5-1') | HSI-SS-09<br>(0.5-1') | MDE Residential<br>Soil Standards |
|---------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------------------------|-----------------------|-----------------------|-----------------------------------|
| Dilution Factor           | 0.752                 | 0.74                  | 0.883                 | 0.824                 | 0.723                 | 0.919                 | 0.816                 | 0.74                                            | 0.766                 | 1.03                  |                                   |
| Analyte Name              |                       |                       |                       |                       |                       | Concentration (m      | ng/kg)                |                                                 |                       |                       |                                   |
| 1,1,2,2-Tetrachloroethane | 0.0018                | 0.012                 | 0.0065                | 0.00041 U             | 0.011                 | 0.0039                | 0.00052 U             | 0.00042 U                                       | 0.0015 J              | 0.00050 U             | 6.0E-01                           |
| 1,1,2-Trichloroethane     | 0.00038 U             | <b>0.0014</b> J       | 0.00050 U             | 0.00042 U             | 0.00037 U             | 0.00046 U             | 0.00053 U             | 0.00043 U                                       | <b>0.00066</b> J      | 0.00051 U             | 1.5E-01                           |
| 2-Butanone                | 0.00098 U             | <b>0.0010</b> J       | 0.0013 U              | 0.0011 U              | 0.00096 U             | 0.0035                | 0.14                  | 0.0011 U                                        | 0.0010 U              | 0.0013 U              | 2.7E+03                           |
| Acetone                   | 0.0055 U              | 0.044                 | 0.0074 U              | 0.011                 | 0.0069 J              | 0.064                 | 0.74                  | 0.0063 U                                        | <b>0.0074</b> J       | 0.020                 | 6.1E+03                           |
| Chlorobenzene             | 0.00051 U             | 0.00050 U             | 0.00068 U             | 0.00056 U             | <b>0.00050</b> J      | 0.00063 U             | 0.00071 U             | 0.00058 U                                       | 0.00053 U             | 0.00069 U             | 2.8E+01                           |
| m&p-Xylene                | 0.00098 U             | 0.00098 U             | 0.0013 U              | 0.0011 U              | 0.00096 U             | 0.0012 U              | 0.0014 U              | 0.0011 U                                        | 0.0010 U              | 0.0014                | 5.8E+01                           |
| Methylcyclohexane         | 0.00074 U             | 0.00073 U             | 0.00098 U             | 0.00081 U             | 0.00072 U             | 0.0024                | 0.0010 U              | 0.00084 U                                       | 0.00077 U             | 0.0010 U              | na                                |
| Methylene chloride        | 0.0036                | 0.0024                | 0.0057                | 0.0049                | 0.0017                | 0.0035                | <b>0.0022</b> J       | 0.00070 U                                       | 0.0071                | 0.0046                | 3.5E+01                           |
| Styrene                   | 0.00045 U             | 0.00045 U             | 0.00060 U             | 0.00050 U             | 0.00044 U             | 0.36                  | 0.00063 U             | 0.00051 U                                       | 0.00047 U             | 0.00061 U             | 6.0E+02                           |
| Tetrachloroethene         | 0.00080 U             | 0.0045                | 0.024                 | 0.00089 U             | 0.00079 U             | 0.0035                | 0.0011 U              | 0.00092 U                                       | <b>0.0011</b> J       | 0.0011 J              | 8.1E+00                           |
| Toluene                   | 0.00054 U             | 0.00054 U             | 0.00072 U             | 0.00060 U             | 0.00073 J             | 0.00067 U             | 0.070                 | 0.00062 U                                       | 0.00057 U             | 0.00073 U             | 4.9E+02                           |
| Trichloroethene           | 0.00067 U             | 0.0021                | 0.0072                | 0.00074 U             | 0.00066 U             | 0.00083 U             | 0.00094 U             | 0.00077 U                                       | 0.00071 U             | 0.00091 U             | 4.1E-01                           |
| Trichlorofluoromethane    | 0.00096 U             | 0.00096 U             | 0.0013 U              | 0.0011 U              | 0.00095 U             | 0.0012 U              | 0.0092                | 0.0034                                          | 0.0010 U              | 0.0013 U              | na                                |
| Xylenes (Total)           | 0.00058 U             | 0.00058 U             | 0.00077 U             | 0.00064 U             | 0.00057 U             | 0.00072 U             | 0.00082 U             | 0.00066 U                                       | 0.00061 U             | 0.0014                | 5.8E+01                           |

#### **Table Notes:**

VOCs Analytical Method: EPA Method 8260C

[Sample ID] - Sample Identification as shown on the COC and in the Lab Report for the duplicate sample. mg/kg - milligrams per kilogram or parts per million (ppm)

- U Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Reporting Limit (RL); therefore, result is an estimated concentration. na not applicable

**Bold** - Detected analyte concentration

#### Screening Levels (SLs):

MDE Residential Soil Clean-up Standards (October 2018)

#### **Screening Evaluation Notes:**

No detected analyte concentrations exceed the respective SL. No MDLs exceed the respective SLs

#### **Additional Screening Level Notes:**

Analyte MDE Residential Soil Standard

m+p-Xylenes Total Xylenes o-Xylene Total Xylenes

#### Table 2 Montgomery Brothers Dump (MD-137), Inverness Drive, North East, MD Hot Spot Investigation

#### Surface/Near Surface Soil Sample Analytical Results - Detected Analytes September 25, 2020 Semi-Volatile Organic Compounds (SVOCs) and Metals

| Analytical<br>Suite | Sample ID                  | HSI-SS-01<br>(0-0.5') | HSI-SS-02<br>(0-0.5') | HSI-SS-02<br>(0-0.5')<br>[HSI-SS-D<br>(0-0.5')] | HSI-SS-03<br>(0-0.5') | HSI-SS-04<br>(0-0.5') | HSI-SS-05<br>(0-0.5') | HSI-SS-06<br>(0-0.5') | HSI-SS-07<br>(0-0.5') | HSI-SS-08<br>(0-0.5') | HSI-SS-09<br>(0-0.5') | MDE<br>Residential<br>Soil Standards | MDE ATC |
|---------------------|----------------------------|-----------------------|-----------------------|-------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------------------------|---------|
| Suite               | Dilution Factor (SVOCs)    | 1                     | 1                     | 1                                               | 1                     | 1                     | 1                     | 1                     | 1                     | 3                     | 1                     | - Son Standards                      | '       |
|                     | Dilution Factor (Metals)   | 1                     | 1                     | 1                                               | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     |                                      |         |
|                     | Analyte Name               |                       |                       |                                                 |                       |                       | Concentration         |                       | •                     |                       | •                     | _                                    |         |
|                     | Acetophenone               | 0.019 J               | 0.023 J               | 0.013 U                                         | 0.015 U               | 0.013 U               | 0.014 U               | 0.013 U               | 0.015 U               | 0.038 U               | 0.013 U               | na                                   | na      |
|                     | Benzo[a]pyrene             | <b>0.014</b> J        | 0.012 U               | 0.012 U                                         | 0.014 U               | 0.013 U               | 0.013 U               | 0.012 U               | 0.014 U               | 0.036 U               | 0.012 U               | 1.1E-01                              | na      |
|                     | Benzo[b]fluoranthene       | 0.013 U               | 0.013 U               | 0.013 U                                         | 0.015 U               | 0.018 J               | 0.014 U               | 0.013 U               | 0.015 U               | 0.038 U               | 0.015 J               | 1.1E+00                              | na      |
|                     | Benzo[g,h,i]perylene       | 0.0092 J              | 0.00025 U             | 0.00025 U                                       | 0.00028 U             | 0.00026 U             | 0.00026 U             | 0.00025 U             | 0.00028 U             | 0.033 J               | 0.00025 U             | na                                   | na      |
|                     | bis(2-Ethylhexyl)phthalate | 0.24                  | 0.44                  | 0.38                                            | 0.036 Ј               | 0.15                  | 0.28                  | 0.34                  | 0.42                  | 0.094 U               | 0.12                  | 3.9E+01                              | na      |
| SVOCs               | Butylbenzylphthalate       | 0.028 U               | 0.028 U               | 0.028 U                                         | 0.031 U               | 0.028 U               | <b>0.033</b> J        | 0.028 U               | 0.031 U               | 0.082 U               | 0.027 U               | na                                   | na      |
| Svocs               | Chrysene                   | 0.016 J               | 0.012 U               | 0.012 U                                         | 0.014 U               | 0.013 U               | 0.013 U               | 0.012 U               | 0.014 U               | 0.036 U               | 0.012 U               | 1.1E+02                              | na      |
|                     | Dimethylphthalate          | 0.010 U               | 0.010 U               | 0.010 U                                         | 0.011 U               | 0.010 U               | 0.011 U               | 0.010 U               | 0.011 U               | 0.030 U               | 0.066                 | na                                   | na      |
|                     | Di-n-butylphthalate        | 0.12                  | 0.16                  | 0.17                                            | 0.047 U               | 0.042 U               | 0.067                 | 0.077                 | 0.061                 | 0.12 U                | 0.058                 | na                                   | na      |
|                     | Di-n-octylphthalate        | 0.025 U               | 0.024 U               | 0.024 J                                         | 0.027 U               | 0.025 U               | 0.025 U               | 0.024 U               | 0.027 U               | 0.070 U               | 0.024 U               | na                                   | na      |
|                     | Fluorene                   | 0.010 U               | 0.010 U               | 0.0099 U                                        | 0.012 J               | 0.010 U               | 0.010 U               | 0.0099 U              | 0.011 U               | 0.029 U               | 0.0098 U              | 2.4E+02                              | na      |
|                     | Pyrene                     | 0.013 U               | 0.012 U               | 0.012 U                                         | 0.014 U               | 0.013 U               | 0.013 U               | 0.012 U               | 0.014 U               | 0.036 U               | 0.015 J               | 1.8E+02                              | na      |
|                     | Aluminum                   | 3,200                 | 3,800                 | 3,700                                           | 4,000                 | 6,700                 | 3,300                 | 5,000                 | 3,200                 | 3,900                 | 5,000                 | 7.7E+03                              | 1.9E+04 |
|                     | Antimony                   | 0.13 J                | 0.11 J                | 0.063 J                                         | 0.027 U               | 0.031 J               | 0.058 J               | 0.053 J               | 0.084 J               | 0.024 U               | 0.031 J               | 3.1E+00                              | 6.8E+00 |
|                     | Arsenic                    | <b>3.9</b> B          | 3.2 B                 | 3.0 B                                           | <b>3.6</b> B          | <u><b>7.1</b></u> B   | <b>3.0</b> B          | 3.2 B                 | <b>2.2</b> B          | <b>2.2</b> B          | 3.5 B                 | 6.8E-01                              | 4.9E+00 |
|                     | Barium                     | 21                    | 20                    | 20                                              | 22                    | 22                    | 15                    | 24                    | 21                    | 29                    | 37                    | 1.5E+03                              | 9.9E+01 |
|                     | Beryllium                  | 0.18 J                | <b>0.18</b> J         | <b>0.17</b> J                                   | 0.19 Ј                | 0.20 Ј                | 0.20 Ј                | 0.18 J                | <b>0.14</b> J         | <b>0.14</b> J         | 0.19 J                | 1.6E+01                              | 1.6E+00 |
|                     | Cadmium                    | 0.38 J                | 0.49                  | 0.39 J                                          | <b>0.17</b> J         | 0.15 J                | 0.50                  | 0.18 J                | 0.48 J                | 0.15 J                | 0.26 Ј                | 7.1E+00                              | 1.1E+00 |
|                     | Calcium                    | 1,700                 | 1,600                 | 1,400                                           | 1,700                 | 210 Ј                 | 190 J                 | 290 Ј                 | 410 J                 | 19,000                | 1,400                 | na                                   | 1.2E+04 |
|                     | Chromium                   | 19 B                  | <b>20</b> B           | <b>17</b> B                                     | <b>23</b> B           | <b>24</b> B           | <b>20</b> B           | <b>21</b> B           | <b>18</b> B           | 15 B                  | 17 B                  | na                                   | 3.0E+01 |
|                     | Cobalt                     | 0.95 J                | <b>1.4</b> J          | 1.5 J                                           | 1.2 J                 | 1.5 J                 | 0.94 Ј                | 1.5 J                 | 1.6 J                 | 3.1                   | 4.0                   | na                                   | 3.3E+01 |
|                     | Copper                     | <b>14</b> B           | 18 B                  | <b>16</b> B                                     | <b>9.2</b> B          | <b>7.3</b> B          | <b>13</b> B           | <b>8.9</b> B          | <b>12</b> B           | 11 B                  | <b>27</b> B           | 3.1E+02                              | 4.2E+01 |
|                     | Iron                       | 6,500 B               | 6,700 B               | 6,500 B                                         | <b>7,100</b> B        | 11,000 B              | <b>7,000</b> B        | 9,900 B               | <b>14,000</b> B       | <b>8,100</b> B        | 11,000 B              | 5.5E+03                              | 2.6E+04 |
| Metals              | Lead                       | 17                    | 23                    | 140                                             | 3.9 J                 | 7.1                   | 22                    | 15                    | 22                    | 6.6                   | 9.8                   | 2.0E+02                              | 6.1E+01 |
|                     | Magnesium                  | 450 J                 | <b>540</b> J          | 550                                             | 560 J                 | 680                   | <b>340</b> J          | 510 J                 | 300 J                 | 7,900                 | 2,200                 | na                                   | 3.7E+03 |
|                     | Manganese                  | 50                    | 61                    | 56                                              | 54                    | 31                    | 28                    | 37                    | 68                    | 150                   | 210                   | 1.8E+02                              | 1.4E+03 |
|                     | Mercury                    | 0.014 U               | 0.020 Ј               | 0.014 J                                         | 0.015 U               | 0.014 U               | 0.015 U               | 0.014 U               | 0.038 J               | 0.013 U               | 0.014 U               | 1.1E+00                              | 1.4E-01 |
|                     | Nickel                     | 3.5 J                 | <b>4.5</b> J          | <b>3.8</b> J                                    | 3.0 J                 | <b>4.2</b> J          | <b>4.7</b> J          | 3.8 J                 | <b>4.6</b> J          | 9.1                   | 9.8                   | 1.5E+02                              | 2.2E+01 |
|                     | Potassium                  | 150 J                 | 160 J                 | 160 J                                           | 180 J                 | 220 J                 | 140 J                 | 150 J                 | 150 Ј                 | 540                   | 550                   | na                                   | 2.6E+03 |
|                     | Selenium                   | 1.2 JB                | <b>1.4</b> JB         | 1.3 JB                                          | 1.2 JB                | <b>0.88</b> JB        | <b>4.0</b> B          | 1.1 JB                | <b>1.4</b> JB         | <b>0.87</b> JB        | 0.99 JB               | 3.9E+01                              | 1.0E+00 |
|                     | Silver                     | 0.067 JB              | <b>0.048</b> JB       | <b>0.041</b> JB                                 | 0.050 JB              | 0.037 JB              | 0.061 JB              | <b>0.047</b> JB       | <b>0.084</b> JB       | 0.049 JB              | 0.050 JB              | 3.9E+01                              | 1.0E+00 |
|                     | Sodium                     | 140 U                 | 140 U                 | 140 U                                           | 150 U                 | 140 U                 | 140 U                 | 140 U                 | 150 U                 | 130 U                 | 140 U                 | na                                   | 2.3E+02 |
|                     | Thallium                   | 0.10 J                | 0.020 J               | 0.019 U                                         | 0.026 Ј               | 0.039 J               | 0.061 U               | 0.035 J               | 0.022 J               | 0.028 J               | 0.037 J               | 7.8E-02                              | 1.5E+00 |
|                     | Vanadium                   | 47 B                  | 18 B                  | 18 B                                            | 19 B                  | 22 B                  | 21 B                  | 17 B                  | 16 B                  | 15 B                  | <b>20</b> B           | 3.9E+01                              | 3.5E+01 |
|                     | Zinc                       | 43 B                  | 29 B                  | 26 B                                            | 22 B                  | 18 B                  | 24 B                  | 25 B                  | <b>42</b> B           | 22 B                  | 38 B                  | 2.3E+03                              | 7.3E+01 |

#### **Table Notes:**

SVOCs Analytical Method: EPA Method 8270D

Target Analyte List (TAL) Metals Analytical Methods: EPA Method 6010D, 6020B, and 7471B

[Sample ID] - Sample Identification as shown on the COC and in the Lab Report for the duplicate sample. mg/kg - milligrams per kilogram or parts per million (ppm)

- $\ensuremath{\mathrm{U}}$  Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Reporting Limit (RL); therefore, result is an estimated concentration.
- B Indicates analyte was present in the Method Blank and sample.

na - not applicable

**Bold** - Detected analyte concentration

#### Screening Levels (SLs):

MDE Residential Soil Clean-up Standards (October 2018)

MDE Anticipated Typical Concentration (ATC) for Central Maryland (October 2018)

#### **Screening Evaluation Notes:**

SVOCs: No detected analyte concentrations or MDLs exceed the respective MDE Residential Soil Clean-up Standard.

Metals: <u>Bold and underline</u> - Detected analyte concentration exceeds the respective MDE Residential Soil Clean-up Standard.

Red, bold, and underline - Detected analyte concentration exceeds the MDE Residential Soil Clean-up Standard and the ATC for Central

Maryland.

No MDLs exceed the respective MDE Residential Soil Clean-up Standard.

#### **Additional Screening Level Notes:**

Analyte MDE Residential Soil Standard

Total Mercury Mercury (elemental)

# Table 3 Montgomery Brothers Dump (MD-137), Inverness Drive, North East, MD Hot Spot Investigation

#### Grab Groundwater Sample Analytical Results - Detected Analytes September 28, 2020 Volatile Organic Compounds (VOCs)

| Sample ID                 | HSI-GW-01    | HSI-GW-02    | HSI-GW-03    | HSI-GW-04       | HSI-TB-01 | EPA Residential   |
|---------------------------|--------------|--------------|--------------|-----------------|-----------|-------------------|
| Dilution Factor           | 5            | 5            | 5            | 5               | 1         | Groundwater VISLs |
| Sample Type               |              | Groun        |              | Blank           |           |                   |
| Analyte Name              |              | _            | Conce        | ntration (ug/L) |           |                   |
| 1,1,2,2-Tetrachloroethane | 2.2 U        | 7.5          | <b>2.4</b> J | 12              | 0.45 U    | 3.2E+01           |
| 1,1-Dichloroethane        | 6.9          | <b>3.6</b> J | <b>2.7</b> J | <b>4.5</b> J    | 0.43 U    | 7.6E+01           |
| 1,2-Dichloroethane        | <u>35</u>    | <u>24</u>    | 3.2 U        | 20              | 0.64 U    | 2.2E+01           |
| Benzene                   | <u>40</u>    | <u>36</u>    | 13           | <u>28</u>       | 0.30 U    | 1.6E+01           |
| Chlorobenzene             | <u>510</u>   | <u>550</u>   | 320          | <u>460</u>      | 0.33 U    | 4.1E+02           |
| Chloroethane              | 2.9 U        | 2.9 U        | <b>4.5</b> J | <b>3.6</b> J    | 0.58 U    | na                |
| cis-1,2-Dichloroethene    | 360          | 97           | <b>4.7</b> J | 120             | 0.64 U    | na                |
| Ethylbenzene              | <b>3.6</b> J | 17           | 2.3 U        | 2.3 U           | 0.47 U    | 3.5E+01           |
| Isopropylbenzene          | 2.5 U        | <b>2.9</b> J | 2.5 U        | 2.5 U           | 0.49 U    | 8.9E+02           |
| m&p-Xylene                | 6.6          | 39           | 4.2 U        | 4.2 U           | 0.85 U    | 3.9E+02           |
| Methyl Acetate            | <b>11</b> B  | <b>13</b> B  | 15 B         | <b>14</b> B     | 0.70 U    | na                |
| Methylene chloride        | 1.5 U        | 1.5 U        | 1.5 U        | <b>1.9</b> J    | 0.29 U    | 4.7E+03           |
| Methyl-t-butyl ether      | 18           | 4.1          | <b>1.9</b> J | 9.6             | 0.31 U    | 4.5E+03           |
| o-Xylene                  | <b>3.6</b> J | 13           | 3.4 U        | 3.4 U           | 0.68 U    | 4.9E+02           |
| Toluene                   | <b>2.1</b> J | 120          | 1.6 U        | <b>4.3</b> J    | 0.33 U    | 1.9E+04           |
| trans-1,2-Dichloroethene  | 91           | 15           | <b>1.9</b> J | 32              | 0.31 U    | na                |
| Trichloroethene           | <u>10</u>    | <u>16</u>    | 1.7 U        | <u>26</u>       | 0.35 U    | 5.2E+00           |
| Vinyl chloride            | <u>65</u>    | <u>45</u>    | <u>9.0</u>   | <u>48</u>       | 0.71 U    | 1.5E+00           |
| Xylenes (Total)           | 10           | 52           | 3.4 U        | 3.4 U           | 0.68 U    | 3.9E+02           |

#### **Table Notes:**

VOCs Analytical Method: EPA Method 8260D

ug/L - micrograms per liter or parts per billion (ppb)

- U Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Reporting Limit (RL); therefore, result is an estimated concentration.
- B Indicates analyte was present in the Method Blank and sample.

na - not applicable

**Bold** - Detected analyte concentration

#### Residential Screening Levels (SLs):

EPA Residential Groundwater Vapor Intrusion Screening Levels (VISLs) (May 2020) (at  $CR = 1 \times 10^{-5}$  or HI = 1)

#### **Screening Evaluation Notes:**

Red, bold, and underline - Detected analyte concentration exceeds the respective SL. No MDLs exceed the respective SLs

#### **Additional Screening Level Notes**

Analyte EPA VISLs m+p-Xylenes o-Xylene o-Xylene

Page 1 of 1

# Table 4 Montgomery Brothers Dump (MD-137), Inverness Drive, North East, MD Hot Spot Investigation

Subsurface Soil Sample Analytical Results - Detected Analytes September 28 - October 1, 2020 Volatile Organic Compounds (VOCs)

| Sample ID                 | HSI-SB-01<br>(2.5-3) | HSI-SB-01<br>(6-6.5) | HSI-SB-01<br>(6-6.5)<br>[HSI-SB-D1] | HSI-SB-01<br>(10-10.5) | HSI-SB-01<br>(14.5-15) | HSI-SB-02<br>(3.5-4) | HSI-SB-02<br>(10-10.5) | HSI-SB-02<br>(11-11.5) | HSI-SB-03<br>(3.5-4) | HSI-SB-03<br>(10-10.5) | HSI-SB-03<br>(11-11.5) | HSI-SB-04<br>(9.5-10) | HSI-SB-05<br>(4.5-5) |
|---------------------------|----------------------|----------------------|-------------------------------------|------------------------|------------------------|----------------------|------------------------|------------------------|----------------------|------------------------|------------------------|-----------------------|----------------------|
| Dilution Factor           | 63.5                 | 1220                 | 6590                                | 0.616                  | 0.71                   | 74.5                 | 0.687                  | 56.9                   | 65.2                 | 65.2                   | 69.1                   | 0.665                 | 68.8                 |
| Sample Collection Date    | 09/29/20             | 09/29/20             | 09/29/20                            | 09/29/20               | 09/29/20               | 09/28/20             | 09/28/20               | 09/28/20               | 09/29/20             | 09/29/20               | 09/29/20               | 09/29/20              | 09/30/20             |
| Analyte Name              |                      | 1                    | 1                                   |                        | 1                      |                      | ncentration (mg/       | - "                    |                      | 1                      | T                      | 1                     |                      |
| 1,1,2,2-Tetrachloroethane | <u>2.7</u>           | <u>58</u>            | <u>200</u>                          | <b>0.0011</b> J        | 0.0024                 | 0.040 U              | 0.0063                 | 0.032 U                | 0.43                 | 0.035 U                | 0.039 U                | 0.00037 U             | 0.036 U              |
| 1,1,2-Trichloroethane     | <b>0.031</b> J       | <u>0.47</u> U        | <u>2.5</u> U                        | 0.00035 U              | 0.00041 U              | 0.029 U              | 0.00039 U              | 0.023 U                | <b>0.025</b> J       | 0.025 U                | 0.028 U                | 0.00038 U             | 0.026 U              |
| 1,1-Dichloroethane        | 0.031 U              | 0.63 U               | 3.4 U                               | <b>0.00097</b> J       | 0.00077 U              | 0.038 U              | <b>0.0011</b> J        | 0.031 U                | 0.032 U              | 0.033 U                | 0.037 U                | <b>0.0014</b> J       | 0.034 U              |
| 1,1-Dichloroethene        | 0.039 U              | 0.78 U               | 4.2 U                               | 0.0016                 | 0.0010 U               | 0.048 U              | 0.00099 U              | 0.038 U                | 0.040 U              | 0.041 U                | 0.046 U                | 0.00094 U             | 0.043 U              |
| 1,2-Dichlorobenzene       | 0.024 U              | 0.48 U               | 2.5 U                               | 0.00038 U              | 0.00045 U              | 0.029 U              | <b>0.0016</b> J        | 0.023 U                | 0.025 U              | 0.025 U                | 0.028 U                | 0.00042 U             | 0.026 U              |
| 1,2-Dichloroethane        | <u>1.8</u>           | <u>19</u>            | <u>74</u>                           | 0.0073                 | 0.010                  | 0.057 U              | 0.00035 U              | 0.046 U                | 0.39                 | 0.050 U                | 0.055 U                | 0.0028                | 0.10                 |
| 1,4-Dichlorobenzene       | 0.027 U              | 0.54 U               | <u>2.9</u> U                        | 0.00040 U              | 0.00047 U              | 0.033 U              | 0.00075 J              | 0.026 U                | 0.028 U              | 0.028 U                | 0.032 U                | 0.00044 U             | 0.029 U              |
| 2-Butanone                | 0.055 U              | 1.1 U                | 5.9 U                               | 0.00090 U              | 0.0011 U               | 0.067 U              | 0.0093                 | 0.054 U                | 0.057 U              | 0.058 U                | 0.065 U                | 0.00099 U             | 0.060 U              |
| 4-Methyl-2-pentanone      | 0.59                 | 14                   | 76                                  | 0.0040                 | 0.00081 J              | 0.044 U              | 0.0042                 | 0.035 U                | 0.037 U              | 0.038 U                | 0.042 U                | 0.00048 U             | 0.039 U              |
| Acetone                   | 0.33 U               | 6.7 U                | 36 U                                | 0.0080                 | 0.012                  | 0.41 U               | 0.034                  | 0.33 U                 | 0.35 U               | 0.36 U                 | 0.40 U                 | 0.0056 U              | 0.37 U               |
| Benzene                   | 0.034 J              | 2.4                  | <u>9.7</u>                          | 0.0086                 | 0.0030                 | 0.027 U              | 0.083                  | 0.098                  | 0.022 U              | 0.023 U                | 0.026 U                | 0.0072                | 0.024 U              |
| Chlorobenzene             | 1.5                  | 320                  | <u>1,200</u>                        | 0.18                   | 0.065                  | 9.1                  | 0.00053 U              | 2.7                    | <b>0.057</b> J       | 0.33                   | 0.19                   | 0.097                 | 0.050 J              |
| cis-1,2-Dichloroethene    | 0.35                 | 9.9                  | <u>33</u>                           | 0.052                  | 0.014                  | 0.057 U              | 0.00070 U              | 0.046 U                | 0.18                 | 0.049 U                | <b>0.079</b> J         | 0.030                 | 0.34                 |
| Ethylbenzene              | 0.034 U              | <u>12</u>            | <u>44</u>                           | 0.0028                 | 0.00070 Ј              | 0.78                 | 0.074                  | 0.046 J                | 0.035 U              | 0.036 U                | 0.040 U                | 0.00057 U             | 0.037 U              |
| Isopropylbenzene          | 0.036 U              | <b>1.2</b> J         | 5.0 J                               | 0.00062 U              | 0.00074 U              | 0.044 U              | 0.035                  | 0.035 U                | 0.037 U              | 0.038 U                | 0.042 U                | 0.00068 U             | 0.039 U              |
| m&p-Xylene                | 0.11                 | 57                   | <u>200</u>                          | 0.0024                 | 0.0013                 | 4.1                  | 0.29                   | 0.14                   | 0.064 U              | 0.066 U                | 0.073 U                | 0.0010                | 0.068 U              |
| Methylcyclohexane         | 0.045 U              | 1.8                  | 4.8 U                               | 0.00093 J              | 0.00080 U              | 0.055 U              | 0.0025                 | 0.044 U                | 0.047 U              | 0.048 U                | 0.053 U                | 0.00074 U             | 0.049 U              |
| Methylene chloride        | 2.3                  | <u>49</u>            | <u>160</u>                          | 0.0031                 | 0.022                  | 0.026 U              | 0.0024                 | 0.021 U                | 0.022 U              | 0.023 U                | 0.025 U                | 0.0022                | 0.024 U              |
| Methyl-t-butyl ether      | 0.023 U              | 0.46 U               | 2.4 U                               | 0.00041 U              | 0.0012                 | 0.028 U              | 0.00046 U              | 0.022 U                | 0.024 U              | 0.024 U                | 0.027 U                | 0.00070 Ј             | 0.025 U              |
| o-Xylene                  | 0.050 U              | 13                   | 46                                  | 0.0019                 | 0.00063 U              | 1.3                  | 0.12                   | 0.049 U                | 0.052 U              | 0.053 U                | 0.059 U                | 0.0014                | 0.055 U              |
| Tetrachloroethene         | 0.21                 | <u>29</u>            | <u>95</u>                           | 0.00074 U              | 0.00087 U              | 0.032 U              | 0.00084 U              | 0.026 U                | 0.17                 | 0.028 U                | 0.031 U                | 0.00080 U             | 0.059 J              |
| Toluene                   | 0.75                 | <u>570</u>           | <u>2,200</u>                        | 0.0094                 | 0.035                  | 0.31                 | 0.17                   | 1.2                    | <b>0.042</b> J       | 0.37                   | <b>0.082</b> J         | 0.0049                | 0.026 U              |
| trans-1,2-Dichloroethene  | 0.088                | 3.4                  | 12                                  | 0.0027                 | 0.0027                 | 0.028 U              | 0.0010 U               | 0.022 U                | 0.023 U              | 0.024 U                | 0.027 U                | 0.0033                | <b>0.076</b> J       |
| Trichloroethene           | 4.4                  | <u>460</u>           | <u>1,700</u>                        | 0.030                  | 0.040                  | 0.031 U              | 0.00070 U              | 0.025 U                | <u>2.3</u>           | 0.027 U                | <b>0.032</b> J         | 0.0012 J              | <u>0.85</u>          |
| Vinyl chloride            | 0.052 U              | <u>1.0</u> U         | <u>5.5</u> U                        | 0.084                  | 0.0075                 | <u>0.063</u> U       | 0.0010 U               | 0.051 U                | 0.054 U              | 0.055 U                | <u>0.061</u> U         | <u>0.14</u>           | 0.056 U              |
| Xylenes (Total)           | 0.11                 | <u>70</u>            | <u>250</u>                          | 0.0043                 | 0.0013                 | 5.4                  | 0.41                   | 0.14                   | 0.052 U              | 0.053 U                | 0.059 U                | 0.0024                | 0.055 U              |

#### **Table Notes:**

VOCs Analytical Method: EPA Method 8260D

[Sample ID] - Sample Identification as shown on the COC and in the Lab Report for the duplicate sample. mg/kg - milligrams per kilogram or parts per million (ppm)

- U Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Reporting Limit (RL); therefore, result is an estimated concentration. na not applicable

**Bold** - Detected analyte concentration

#### **Screening Levels (SLs):**

MDE Residential Soil Clean-up Standards (October 2018)

#### **Screening Evaluation Notes:**

Red, bold, and underline - Detected analyte concentration exceeds the respective SL. Underline - MDL exceeds the respective SL.

#### **Additional Screening Level Notes:**

Analyte MDE Residential Soil Standard

m+p-Xylenes o-Xylene Total Xylenes
Total Xylenes

# Table 4 Montgomery Brothers Dump (MD-137), Inverness Drive, North East, MD Hot Spot Investigation

Subsurface Soil Sample Analytical Results - Detected Analytes September 28 - October 1, 2020 Volatile Organic Compounds (VOCs)

| Sample ID                 | HSI-SB-06<br>(4.5-5) | HSI-SB-07<br>(4.5-5) | HSI-SB-08<br>(3.5-4) | HSI-SB-08<br>(8-8.5) | HSI-SB-08<br>(12-13) | HSI-SB-08<br>(12-13)<br>[HSI-SB-D2] | HSI-SB-08<br>(13-13.5) | HSI-SB-09<br>(14-14.5) | HSI-SB-10<br>(5.5-6) | HSI-SB-10<br>(7-7.5) | HSI-SB-10<br>(8-8.5) | MDE<br>Residential |
|---------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------------------|------------------------|------------------------|----------------------|----------------------|----------------------|--------------------|
| Dilution Factor           | 67.5                 | 70.8                 | 64.7                 | 66.2                 | 69.4                 | 70.7                                | 0.681                  | 0.697                  | 63.2                 | 61.7                 | 0.679                | Soil Standards     |
| Sample Collection Date    | 09/30/20             | 09/30/20             | 10/01/20             | 10/01/20             | 10/01/20             | 10/01/20                            | 10/01/20               | 10/01/20               | 10/01/20             | 10/01/20             | 10/01/20             |                    |
| Analyte Name              |                      |                      |                      |                      | 1                    | Concentration                       |                        | T                      | 1                    | •                    |                      |                    |
| 1,1,2,2-Tetrachloroethane | 0.036 U              | 0.17                 | 0.033 U              | 0.036 U              | 0.041 U              | 0.042 U                             | 0.00040 U              | 0.00039 U              | <b>0.052</b> J       | 0.033 U              | 0.028                | 6.0E-01            |
| 1,1,2-Trichloroethane     | 0.025 U              | 0.026 U              | 0.024 U              | 0.026 U              | 0.029 U              | 0.030 U                             | 0.00041 U              | 0.00040 U              | 0.023 U              | 0.024 U              | 0.0043               | 1.5E-01            |
| 1,1-Dichloroethane        | 0.034 U              | 0.035 U              | 0.032 U              | 0.035 U              | 0.039 U              | 0.040 U                             | 0.00077 U              | 0.00076 U              | 0.030 U              | 0.032 U              | 0.00072 U            | 3.6E+00            |
| 1,1-Dichloroethene        | 0.042 U              | 0.044 U              | 0.040 U              | 0.043 U              | 0.049 U              | 0.050 U                             | 0.0010 U               | 0.0010 U               | 0.038 U              | 0.040 U              | 0.00095 U            | 2.3E+01            |
| 1,2-Dichlorobenzene       | 0.026 U              | 0.027 U              | <b>0.029</b> J       | 0.026 U              | 0.030 U              | 0.030 U                             | 0.00045 U              | 0.00044 U              | 0.023 U              | 0.024 U              | 0.00042 U            | 1.8E+02            |
| 1,2-Dichloroethane        | 0.051 U              | 0.087                | 0.047 U              | 0.052 U              | 0.058 U              | 0.059 U                             | 0.00036 U              | 0.0047                 | 0.070                | 0.047 U              | 0.018                | 4.6E-01            |
| 1,4-Dichlorobenzene       | 0.029 U              | 0.030 U              | 0.027 U              | 0.030 U              | 0.033 U              | 0.034 U                             | 0.00047 U              | 0.00046 U              | 0.026 U              | 0.027 U              | 0.00044 U            | 2.6E+00            |
| 2-Butanone                | 0.059 U              | 0.062 U              | 0.056 U              | 0.060 U              | 0.068 U              | 0.070 U                             | 0.0011 U               | 0.0010 U               | 0.053 U              | 0.056 U              | 0.00099 U            | 2.7E+03            |
| 4-Methyl-2-pentanone      | 0.039 U              | 0.040 U              | 0.036 U              | 0.039 U              | 0.044 U              | 4.1                                 | 0.00051 U              | 0.00051 U              | 0.035 U              | 0.036 U              | 0.00048 U            | 3.3E+03            |
| Acetone                   | 0.36 U               | 0.38 U               | 0.34 U               | 0.37 U               | 0.42 U               | 0.43 U                              | 0.0060 U               | 0.0059 U               | 0.33 U               | 0.34 U               | 0.019                | 6.1E+03            |
| Benzene                   | 0.023 U              | 0.024 U              | 0.022 U              | <b>0.040</b> J       | 0.13                 | 0.12                                | 0.0086                 | 0.0039                 | 0.021 U              | <b>0.031</b> J       | 0.0018               | 1.2E+00            |
| Chlorobenzene             | 1.4                  | 0.027 U              | 1.3                  | 1.0                  | 3.7                  | 3.7                                 | 0.20                   | 0.064                  | 0.17                 | 0.81                 | 0.052                | 2.8E+01            |
| cis-1,2-Dichloroethene    | 0.17                 | 0.052 U              | 0.047 U              | 0.051 U              | 0.058 U              | 0.40                                | 0.00072 U              | 0.040                  | 0.40                 | 0.81                 | 0.059                | 1.6E+01            |
| Ethylbenzene              | <b>0.044</b> J       | 0.038 U              | 0.11                 | 0.15                 | 0.065 J              | 0.069 J                             | 0.0019                 | 0.00060 U              | 0.053 J              | <b>0.045</b> J       | 0.00057 U            | 5.8E+00            |
| Isopropylbenzene          | 0.039 U              | 0.041 U              | 0.037 U              | 0.040 U              | 0.045 U              | 0.046 U                             | 0.00073 U              | 0.00072 U              | 0.035 U              | 0.037 U              | 0.00069 U            | 1.9E+02            |
| m&p-Xylene                | 0.16                 | 0.070 U              | 0.47                 | 0.56                 | 0.27                 | 0.25                                | 0.0071                 | 0.0010 U               | 0.099                | 0.063 U              | 0.00099 U            | 5.8E+01            |
| Methylcyclohexane         | 0.049 U              | 0.051 U              | 0.046 U              | 0.050 U              | 0.056 U              | 0.057 U                             | 0.00080 U              | 0.00078 U              | 0.044 U              | 0.046 U              | 0.00075 U            | na                 |
| Methylene chloride        | 0.023 U              | 0.024 U              | 0.022 U              | 0.024 U              | 0.027 U              | 0.027 U                             | 0.00066 U              | 0.00065 U              | 0.021 U              | 0.022 U              | 0.00062 U            | 3.5E+01            |
| Methyl-t-butyl ether      | 0.025 U              | 0.026 U              | 0.023 U              | 0.025 U              | 0.029 U              | 0.029 U                             | 0.0016                 | 0.0022                 | 0.022 U              | 0.023 U              | 0.00045 U            | 4.7E+01            |
| o-Xylene                  | 0.067 J              | 0.056 U              | 0.14                 | 0.18                 | 0.068 J              | 0.076 J                             | 0.0019                 | 0.00062 U              | 0.054 J              | 0.051 U              | 0.00059 U            | 5.8E+01            |
| Tetrachloroethene         | 0.028 J              | 0.029 U              | 0.027 U              | 0.029 U              | 0.033 U              | 0.033 U                             | 0.00087 U              | 0.00085 U              | 0.028 J              | 0.027 U              | 0.0035               | 8.1E+00            |
| Toluene                   | 0.39                 | 0.027 U              | 0.49                 | 0.053 J              | 1.1                  | 5.4                                 | 0.0035                 | 0.0038                 | <b>0.040</b> J       | 0.063 J              | 0.0030               | 4.9E+02            |
| trans-1,2-Dichloroethene  | 0.025 U              | 0.025 U              | 0.023 U              | 0.025 U              | 0.028 U              | 0.068 J                             | 0.0011 U               | 0.010                  | 0.022 U              | 0.023 U              | 0.0019               | 1.6E+02            |
| Trichloroethene           | <u>0.54</u>          | 0.11                 | <b>0.030</b> J       | 0.028 U              | 0.032 U              | 0.032 U                             | 0.0033                 | 0.0062                 | 0.24                 | 0.026 U              | 0.061                | 4.1E-01            |
| Vinyl chloride            | 0.056 U              | 0.058 U              | 0.053 U              | 0.057 U              | <u>0.065</u> U       | <u>1.1</u>                          | 0.0011 U               | 0.0057                 | 0.050 U              | <u>0.75</u>          | 0.010                | 5.9E-02            |
| Xylenes (Total)           | 0.23                 | 0.056 U              | 0.61                 | 0.74                 | 0.34                 | 0.33                                | 0.0090                 | 0.00062 U              | 0.15                 | 0.051 U              | 0.00059 U            | 5.8E+01            |

#### **Table Notes:**

VOCs Analytical Method: EPA Method 8260D

[Sample ID] - Sample Identification as shown on the COC and in the Lab Report for the duplicate sample. mg/kg - milligrams per kilogram or parts per million (ppm)

- U Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Reporting Limit (RL); therefore, result is an estimated concentration. na not applicable

**Bold** - Detected analyte concentration

#### **Screening Levels (SLs):**

MDE Residential Soil Clean-up Standards (October 2018)

#### **Screening Evaluation Notes:**

Red, bold, and underline - Detected analyte concentration exceeds the respective SL. Underline - MDL exceeds the respective SL.

#### **Additional Screening Level Notes:**

Analyte MDE Residential Soil Standard

m+p-Xylenes Total Xylenes o-Xylene Total Xylenes

# Table 5 Montgomery Brothers Dump (MD-137), Inverness Drive, North East, MD Hot Spot Investigation

#### Subsurface Soil Sample Analytical Results - Detected Analytes September 28 - October 1, 2020 Semi-Volatile Organic Compounds (SVOCs) and Metals

| Analytical          | Sample ID                  | HSI-SB-01<br>(2.5-3)  | HSI-SB-01<br>(6-6.5) | HSI-SB-01<br>(6-6.5)<br>[HSI-SB-D1] | HSI-SB-02<br>(10-10.5) | HSI-SB-03<br>(10-10.5) | HSI-SB-08<br>(3.5-4) | HSI-SB-10<br>(5.5-6) | MDE Residential | MDE ATC |  |  |
|---------------------|----------------------------|-----------------------|----------------------|-------------------------------------|------------------------|------------------------|----------------------|----------------------|-----------------|---------|--|--|
| Analytical<br>Suite | Dilution Factor (SVOCs)    | 1                     | 200                  | 400                                 | 1                      | 1                      | 1                    | 1                    | Soil Standards  | MDE ATC |  |  |
| Suite               | Dilution Factor (Metals)   | 1                     | 1                    | 1                                   | 1/3                    | 1                      | 1                    | 1                    |                 |         |  |  |
|                     | Sample Collection Date     | 09/29/20              | 09/29/20             | 09/29/20                            | 09/28/20               | 09/29/20               | 10/01/20             | 10/01/20             |                 |         |  |  |
|                     | Analyte Name               | Concentration (mg/kg) |                      |                                     |                        |                        |                      |                      |                 |         |  |  |
|                     | 1,1'-Biphenyl              | 0.011 U               | 2.3 U                | 4.6 U                               | 0.012 U                | 0.011 U                | 0.10                 | 0.011 U              | na              | na      |  |  |
|                     | 2-Chlorophenol             | 0.35                  | 13                   | 24                                  | 0.014 U                | 0.013 U                | 0.013 U              | 0.012 U              | 3.9E+01         | na      |  |  |
|                     | 2-Methylnaphthalene        | 0.012 U               | 2.5 U                | 4.9 U                               | 0.013 U                | 0.012 U                | 0.12                 | 0.012 U              | 2.4E+01         | na      |  |  |
|                     | 2-Methylphenol             | 0.013                 | 2.3 U                | 4.6 U                               | 0.012 U                | 0.011 U                | 0.011 U              | 0.011 U              | 3.2E+02         | na      |  |  |
| SVOCs               | 3&4-Methylphenol           | 0.011 U               | 2.3 U                | 4.6 U                               | 0.012 U                | 0.012 U                | 0.021                | 0.011 U              | 6.3E+02         | na      |  |  |
|                     | bis(2-Ethylhexyl)phthalate | 0.25                  | <u>50</u>            | <u>58</u>                           | 0.34                   | 0.035 U                | 0.38                 | 0.033 U              | 3.9E+01         | na      |  |  |
|                     | Di-n-butylphthalate        | 0.25                  | 720                  | 1,200                               | 1.6                    | 0.046 U                | 0.064                | 0.043 U              | na              | na      |  |  |
|                     | Naphthalene                | 0.063                 | <u>16</u>            | <u>26</u>                           | 0.058                  | 0.011 U                | 0.10                 | 0.011 U              | 3.8E+00         | na      |  |  |
|                     | Phenanthrene               | 0.012 U               | 2.6 U                | 5.1 U                               | 0.013 U                | 0.013 U                | 0.019 J              | 0.012 U              | 1.8E+02         | na      |  |  |
|                     | Aluminum                   | 4,200                 | 4,200                | 5,000                               | 2,200                  | 570                    | 4,000                | 5,900                | 7.7E+03         | 1.9E+04 |  |  |
|                     | Antimony                   | <b>0.045</b> J        | <b>0.84</b> J        | 1.3                                 | 0.053 J                | 0.027 U                | 0.026 U              | 0.025 U              | 3.1E+00         | 6.8E+00 |  |  |
|                     | Arsenic                    | <u>1.8</u>            | <u>2.3</u>           | 2.3                                 | <u>1.9</u>             | 0.30                   | <u>3.7</u>           | <u>1.5</u>           | 6.8E-01         | 4.9E+00 |  |  |
|                     | Barium                     | <b>9.1</b> J          | 75                   | 37                                  | 15                     | 0.80 U                 | 20                   | 28                   | 1.5E+03         | 9.9E+01 |  |  |
|                     | Beryllium                  | 0.059 J               | <b>0.20</b> J        | <b>0.17</b> J                       | <b>0.12</b> JD         | <b>0.040</b> J         | <b>0.18</b> J        | <b>0.22</b> J        | 1.6E+01         | 1.6E+00 |  |  |
|                     | Cadmium                    | <b>0.40</b> J         | <u>11</u>            | 6.2                                 | <b>0.24</b> J          | 0.017 U                | <b>0.21</b> J        | 0.020 Ј              | 7.1E+00         | 1.1E+00 |  |  |
|                     | Calcium                    | 120 U                 | <b>290</b> J         | 1,300                               | 200 J                  | 120 U                  | 120 U                | <b>120</b> J         | na              | 1.2E+04 |  |  |
|                     | Chromium                   | 20                    | 60                   | 49                                  | 21                     | <b>1.0</b> J           | 19                   | 21                   | na              | 3.0E+01 |  |  |
|                     | Cobalt                     | 0.82 U                | <b>1.3</b> J         | <b>1.4</b> J                        | 0.89 U                 | 0.85 U                 | 0.82 U               | <b>2.1</b> J         | na              | 3.3E+01 |  |  |
|                     | Copper                     | 7.0                   | 12                   | 12                                  | 8.0                    | <b>1.0</b> J           | 10                   | 8.1                  | 3.1E+02         | 4.2E+01 |  |  |
|                     | Iron                       | <u>7,600</u>          | <u>8,200</u>         | <u>9,700</u>                        | 5,300                  | 1,400                  | 8,200                | <u>6,900</u>         | 5.5E+03         | 2.6E+04 |  |  |
| Metals              | Lead                       | 9.8                   | 160                  | 140                                 | 13                     | <b>1.2</b> J           | 7.1                  | <b>4.4</b> J         | 2.0E+02         | 6.1E+01 |  |  |
|                     | Magnesium                  | 350 J                 | <b>420</b> J         | <b>440</b> J                        | <b>160</b> J           | 23 U                   | <b>390</b> JB        | <b>940</b> B         | na              | 3.7E+03 |  |  |
|                     | Manganese                  | 13                    | 27                   | 27                                  | <b>12</b> J            | <b>1.4</b> J           | 16                   | 36                   | 1.8E+02         | 1.4E+03 |  |  |
|                     | Mercury                    | 0.015 U               | 0.063 J              | 0.14                                | 0.016 U                | 0.015 U                | 0.015 U              | 0.014 U              | 1.1E+00         | 1.4E-01 |  |  |
|                     | Nickel                     | <b>3.5</b> J          | 8.1                  | 9.0                                 | <b>2.5</b> J           | 1.3 U                  | <b>3.3</b> J         | 7.6                  | 1.5E+02         | 2.2E+01 |  |  |
|                     | Potassium                  | 160 J                 | 160 J                | 190 J                               | 120 U                  | 120 U                  | 150 J                | <b>280</b> J         | na              | 2.6E+03 |  |  |
|                     | Selenium                   | <b>0.80</b> J         | 3.3                  | 2.8                                 | 3.1                    | <b>1.1</b> J           | 2.6                  | <b>1.3</b> J         | 3.9E+01         | 1.0E+00 |  |  |
|                     | Silver                     | <b>0.054</b> J        | 0.062 J              | 0.064 J                             | <b>0.12</b> J          | <b>0.077</b> J         | <b>0.045</b> JB      | <b>0.042</b> JB      | 3.9E+01         | 1.0E+00 |  |  |
|                     | Sodium                     | 140 U                 | 150 U                | 150 U                               | 160 U                  | 150 U                  | 140 U                | 140 U                | na              | 2.3E+02 |  |  |
|                     | Thallium                   | 0.020 U               | 0.021 U              | 0.021 U                             | 0.066 UD               | 0.021 U                | <b>0.021</b> J       | 0.021 J              | 7.8E-02         | 1.5E+00 |  |  |
|                     | Vanadium                   | 14                    | 18                   | 19                                  | 32                     | 7.5                    | <b>20</b> B          | <b>20</b> B          | 3.9E+01         | 3.5E+01 |  |  |
|                     | Zinc                       | <b>9.0</b> J          | 33                   | 31                                  | 23                     | 1.8 U                  | <b>7.7</b> J         | 12                   | 2.3E+03         | 7.3E+01 |  |  |

#### **Table Notes:**

SVOCs Analytical Method: EPA Method 8270E

Target Analyte List (TAL) Metals Analytical Methods: EPA Method 6010D, 6020B, and 7471B [Sample ID] - Sample Identification as shown on the COC and in the Lab Report for the duplicate sample.

mg/kg - milligrams per kilogram or parts per million (ppm)

- U Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Reporting Limit (RL); therefore, result is an estimated concentration.
- B Indicates analyte was present in the Method Blank and sample.
- D Sample analyzed at a higher dilution factor to allow calibration of this analyte. na not applicable

**Bold** - Detected analyte concentration

#### **Screening Levels (SLs):**

MDE Residential Soil Clean-up Standards (October 2018)

MDE Anticipated Typical Concentration (ATC) for Central Maryland (October 2018)

#### **Screening Evaluation Notes:**

SVOCs: Red, bold, and underline - Detected analyte concentration exceeds the respective MDE Residential Soil

lean-up Standard.

No MDLs exceed the respective MDE Residential Soil Clean-up Standard.

Bold and underline - Detected analyte concentration exceeds the respective MDE Residential Soil Clean-

up Standard.

Red, bold, and underline - Detected analyte concentration exceeds the MDE Residential Soil Clean-up

Standard and the ATC for Central Maryland.

No MDLs exceed the respective MDE Residential Soil Clean-up Standard.

#### **Additional Screening Level Notes:**

Analyte MDE Residential Soil Standard

Total Mercury Mercury (elemental)

Page 1 of 1

#### Table 6 Montgomery Brothers Dump (MD-137), Inverness Drive, North East, MD Hot Spot Investigation

#### Soil Vapor Sample Analytical Results - Detected Analytes October 7, 2020 Volatile Organic Compounds (VOCs)

| Sample ID                     | SMP-VMP-10    | SMP-VMP-11    | SMP-VMP-11<br>[SMP-VMP-D] | SMP-VMP-12      | SMP-VMP-13     | MDE Residential<br>Soil Gas | MDE Residential<br>Soil Gas |
|-------------------------------|---------------|---------------|---------------------------|-----------------|----------------|-----------------------------|-----------------------------|
| Dilution Factor               | 2/20          | 2/20          | 2/20                      | 6.67            | 2/20           | Tier 1 RGs                  | Tier 2 RGs                  |
| Analyte Name                  |               |               | _                         | Concentration ( |                |                             |                             |
| 1,1,2,2-Tetrachloroethane     | <u>120</u> *  | <u>28</u>     | <u>31</u>                 | 4.6 U           | <u>400</u> D * | 8.4E+00                     | 4.2E+01                     |
| 1,1,2-Trichloroethane         | 3.2           | 1.5 J         | <b>1.4</b> J              | 3.6 U           | <u>17</u>      | 4.2E+00                     | 2.1E+01                     |
| 1,2,4-Trichlorobenzene        | 1.5 U         | 1.5 U         | <b>1.9</b> J              | 4.9 U           | 1.5 U          | 4.2E+01                     | 2.1E+02                     |
| 1,2,4-Trimethylbenzene        | 4.0           | 7.8           | 7.9                       | <b>6.3</b> J    | <b>1.7</b> J   | 1.3E+03                     | 6.3E+03                     |
| 1,2-Dichloroethane            | 0.81 U        | 0.81 U        | 0.81 U                    | <b>4.6</b> J    | <b>1.3</b> J   | 1.9E+01                     | 9.4E+01                     |
| 1,2-Dichlorotetrafluoroethane | <b>2.4</b> J  | <b>2.2</b> J  | <b>2.3</b> J              | 4.7 U           | 1.4 U          | na                          | na                          |
| 1,3,5-Trimethylbenzene        | 0.98 U        | 3.5           | 3.3                       | 3.3 U           | 0.98 U         | 1.3E+03                     | 6.3E+03                     |
| 1,4-Dichlorobenzene           | 1.2 U         | <b>1.2</b> J  | 2.9                       | 4.0 U           | <b>1.7</b> J   | 4.6E+01                     | 2.3E+02                     |
| 1-Ethyl-4-methyl benzene      | 0.98 U        | 0.98 U        | 0.98 U                    | 12              | 0.98 U         | na                          | na                          |
| 2-Butanone (MEK)              | 1.5           | <b>1.1</b> J  | 2.3                       | <b>2.8</b> J    | 2.2            | 1.1E+05                     | 5.3E+05                     |
| 4-Methyl-2-pentanone (MIBK)   | 2.3 U         | 2.3 U         | <b>4.1</b> J              | 17              | <b>3.1</b> J   | 6.4E+04                     | 3.2E+05                     |
| Acetone                       | 6.9           | 7.3           | 12                        | 1.6 U           | 44             | 6.6E+05                     | 3.3E+06                     |
| Acrolein                      | <u>0.46</u> U | <u>0.46</u> U | <u>0.58</u> J             | <u>1.5</u> U    | <u>0.87</u> J  | 4.2E-01                     | 2.1E+00                     |
| Benzene                       | 0.64 U        | 0.64 U        | 0.64 U                    | 7.6             | 3.1            | 6.4E+01                     | 3.2E+02                     |
| Bromodichloromethane          | 5.8           | <u>21</u>     | <u>21</u>                 | <b>4.5</b> J    | <u>17</u>      | 1.3E+01                     | 6.6E+01                     |
| Carbon Disulfide              | 4.7           | 6.4           | 6.2                       | <b>5.3</b> J    | 6.2            | 1.5E+04                     | 7.3E+04                     |
| Chlorobenzene                 | 0.92 U        | 2.3           | 2.3                       | 3.9 J           | 0.92 U         | 1.1E+03                     | 5.3E+03                     |
| Chloroform                    | <u>31</u>     | 140 *         | 140 *                     | <u>120</u> *    | 120 *          | 2.2E+01                     | 1.1E+02                     |
| cis-1,2-Dichloroethylene      | 0.79 U        | 0.79 U        | 0.79 U                    | 35              | 24             | 7.4E+02                     | 3.7E+03                     |
| Dibromochloromethane          | 1.7 U         | 1.9 J         | 2.0 J                     | 5.7 U           | 1.7 U          | 1.8E+01                     | 9.1E+01                     |
| Dichlorodifluoromethane       | 1.5 J         | 1.5 J         | <b>1.7</b> J              | 3.3 U           | <b>1.9</b> J   | 2.1E+03                     | 1.1E+04                     |
| Ethanol                       | 2.5           | <b>1.4</b> J  | 2.4                       | <b>2.1</b> J    | 2.6            | na                          | na                          |
| Ethylbenzene                  | 1.2 J         | 4.7           | 6.0                       | 18              | 2.5            | 2.0E+02                     | 1.0E+03                     |
| Heptane                       | 0.82 U        | 0.82 U        | 0.82 U                    | 3.9 J           | 0.82 U         | 8.4E+03                     | 4.2E+04                     |
| Hexane                        | 0.70 U        | 0.70 U        | 0.70 U                    | 17              | 0.70 U         | 1.5E+04                     | 7.3E+04                     |
| Isooctane                     | 0.93 U        | 0.93 U        | 0.93 U                    | 3.6 J           | 0.93 U         | na                          | na                          |
| Isopropyl alcohol             | 0.49 U        | 0.80 Ј        | <b>2.1</b> J              | 1.6 U           | <b>1.6</b> J   | 4.2E+03                     | 2.1E+04                     |
| Isopropylbenzene              | 0.98 U        | 1.6 J         | 1.9 J                     | 3.3 U           | 0.98 U         | 8.4E+03                     | 4.2E+04                     |
| m+p-Xylenes                   | 4.0           | 22            | 25                        | 42              | 6.9            | 2.1E+03                     | 1.1E+04                     |
| Methylene chloride            | 0.69 U        | 1.1 J         | 1.1 J                     | 12 J            | 1.4 J          | 1.3E+04                     | 6.3E+04                     |
| Methyl-t-butyl ether (MTBE)   | 0.72 U        | 0.72 U        | 0.72 U                    | 12              | 0.72 U         | 1.9E+03                     | 9.4E+03                     |
| Naphthalene                   | 2.3           | 3.9           | 5.2                       | 8.3             | 2.9            | 1.4E+01                     | 7.2E+01                     |
| n-Pentane (C5)                | 0.89 J        | 1.7           | 1.8                       | 44              | 3.2            | 2.1E+04                     | 1.1E+05                     |
| n-Propylbenzene               | 0.98 U        | 1.1 J         | 1.5 J                     | 3.3 U           | 0.98 U         | 2.1E+04                     | 1.1E+05                     |
| o-Xylene                      | 3.7           | 9.1           | 10                        | 11              | 2.6            | 2.1E+03                     | 1.1E+04                     |
| Propylene                     | 0.34 U        | 0.90          | 1.0                       | 71              | 3.5            | 6.4E+04                     | 3.2E+05                     |
| tert-Butyl alcohol (TBA)      | <b>1.9</b> J  | 0.67 J        | 0.73 J                    | 2.0 U           | 16             | na                          | na                          |
| Tetrachloroethylene (PCE)     | 590 D         | 500 D         | 530 D                     | <b>6.2</b> J    | 120            | 8.4E+02                     | 4.2E+03                     |
| Tetrahydrofuran               | 2.4           | 9.8           | 8.5                       | 3.1 J           | 120            | 4.2E+04                     | 2.1E+05                     |
| Toluene                       | 2.0           | 5.1           | 6.8                       | 25              | 8.6            | 1.1E+05                     | 5.3E+05                     |
| trans-1,2-Dichloroethylene    | 0.79 U        | 0.79 U        | 0.79 U                    | 3.0 J           | 27             | 1.1E+03<br>1.5E+03          | 7.4E+03                     |
| Trichloroethylene             | 19            | 12            | 15                        | 7.0 J           | 250 D *        | 4.2E+01                     | 2.1E+02                     |
| Trichlorofluoromethane        | 1,2 J         | 1.8 J         | 1.8 J                     | 3.7 U           | 250 D *        | 4.2E+01<br>1.5E+04          | 7.3E+04                     |
| Vinyl chloride                | 0.51 U        | 0.51 U        | 0.51 U                    |                 | 0.51 U         | 3.4E+01                     | 1.7E+02                     |
| -                             |               |               |                           | 2.9 J           |                |                             |                             |
| Xylenes, Total                | 7.7           | 31            | 35                        | 53              | 9.5            | 2.1E+03                     | 1.1E+04                     |

#### **Table Notes:**

VOC Analytical Method: EPA TO-15 Low Level

 $[Sample\ ID]$  - Sample Identification as shown on the COC and in the Lab Report for the duplicate sample.

 $ug/m^3$  - micrograms per cubic meter

RG - Remediation Goal

CR - Cancer Risk HI - Hazard Index

AF - Attenuation Factor

 $\ensuremath{\mathrm{U}}$  - Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).

J - Detected above the MDL but below the Limit of Quantitation (LOQ); therefore, result is an estimated concentration.

 $\boldsymbol{D}$  - Sample analyzed at a higher dilution factor to allow calibration of this analyte. na - not applicable

**Bold** - Detected analyte concentration

#### $\underline{\textbf{Residential Screening Levels (SLs):}}$

Primary SL: MDE Residential Soil Gas Tier 1 RGs (Sept 2019) (at  $CR = 1x10^{-5}$  or HI = 1 and AF of 20) Secondary SL: MDE Residential Soil Gas Tier 2 RGs (Sept 2019) (at  $CR = 1x10^{-5}$  or HI = 1 and AF of 100)

#### **Screening Evaluation Notes:**

Red, bold, and underline - Detected analyte concentration exceeds the respective Primary SL.

\* - Detected analyte concentration exceeds the respective Secondary SL.

 $\underline{\text{Underline}}$  - MDL exceeds the respective Primary SL.

#### <u>Additional Screening Level Notes</u>

AnalyteMDE RGsm+p-XylenesTotal Xyleneso-Xyleneo-Xylene

# Table 7 Montgomery Brothers Dump (MD-137), Inverness Drive, North East, MD Hot Spot Investigation

# Crawl Space Air and Outdoor Air Sample Analytical Results - Detected Analytes October 6 - 7, 2020 Volatile Organic Compounds (VOCs)

| Sample ID                   | HSI-105M-CSA  | HSI-105R-CSA  | HSI-107M-CSA  | HSI-107R-CSA<br>[HIS-107R-CSA] | HSI-OAA       | EPA Residential |
|-----------------------------|---------------|---------------|---------------|--------------------------------|---------------|-----------------|
| Dilution Factor             | 1.25          | 1.25          | 1.25          | 1.25                           | 1.25/5        | Indoor Air RSLs |
| Sample Type                 |               | Crawl S       | pace Air      |                                | Outdoor Air   |                 |
| Analyte Name                |               |               | Concentrati   | on (ug/m³)                     |               | _               |
| 2-Butanone (MEK)            | <b>0.68</b> J | <b>0.72</b> J | 0.81          | 1.2                            | 0.95          | 5.2E+03         |
| 2-Hexanone (MBK)            | 0.51 U        | 0.51 U        | 0.51 U        | 0.51 U                         | <b>0.72</b> J | 3.1E+01         |
| 4-Methyl-2-pentanone (MIBK) | 1.4 U         | 1.4 U         | <b>1.6</b> J  | 3.3                            | <b>2.0</b> J  | 3.1E+03         |
| Acetone                     | 8.2           | 11            | 21            | 33                             | 21            | 3.2E+04         |
| Acrolein                    | <u>0.29</u> U | <u>0.40</u> J | <u>0.46</u> J | <u>0.46</u> J                  | <u>0.37</u> J | 2.1E-02         |
| Benzene                     | 0.40 U        | 0.40 U        | 0.40 U        | 0.50 J                         | <b>0.45</b> J | 3.6E+00         |
| Carbon Disulfide            | <b>0.44</b> J | 2.3           | 0.39 U        | 0.39 U                         | 0.39 U        | 7.3E+02         |
| Chloromethane               | 0.99          | 0.99          | 1.1           | 1.0                            | 1.1           | 9.4E+01         |
| Dichlorodifluoromethane     | 2.3 J         | <b>2.2</b> J  | 2.2 J         | 2.2 J                          | <b>2.1</b> J  | 1.0E+02         |
| Ethanol                     | 3.2           | 1.6           | 5.6           | 7.6                            | 5.1           | na              |
| Hexane                      | <b>0.49</b> J | 0.59 Ј        | 0.58 J        | <b>0.74</b> J                  | <b>0.72</b> J | 1.4E+02         |
| Isopropyl alcohol           | <b>0.55</b> J | <b>1.0</b> J  | 3.2           | 5.0                            | <b>1.1</b> J  | 2.1E+02         |
| m+p-Xylenes                 | 0.54 U        | 0.54 U        | 0.54 U        | 0.69 J                         | <b>0.84</b> J | 1.0E+02         |
| Methylene chloride          | 1.2 J         | <b>1.4</b> J  | 1.3 J         | 2.0 J                          | <b>1.5</b> J  | 6.3E+02         |
| Naphthalene                 | <u>1.1</u> J  | <u>1.2</u> J  | <u>1.2</u> J  | <u>1.9</u>                     | <u>1.2</u> J  | 8.3E-01         |
| n-Pentane (C5)              | 1.1           | 1.3           | 1.4           | 1.4                            | 1.5           | 1.0E+03         |
| Propylene                   | 0.22 U        | 1.1           | <b>0.34</b> J | 0.60                           | 0.54          | 3.1E+03         |
| tert-Butyl alcohol (TBA)    | 0.38 U        | 0.38 U        | 14            | 41                             | <b>100</b> D  | na              |
| Toluene                     | 0.88 J        | <b>0.83</b> J | <b>0.86</b> J | 1.2                            | 1.2           | 5.2E+03         |
| Trichlorofluoromethane      | 1.2 J         | <b>1.2</b> J  | <b>1.2</b> J  | 1.2 J                          | <b>1.1</b> J  | na              |

#### **Table Notes:**

VOC Analytical Method: EPA TO-15 Low Level

[Sample ID] - Incorrect Sample Identification as shown on the COC and in the Lab Report.

ug/m³ - micrograms per cubic meter

- U Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Limit of Quantitation (LOQ); therefore, result is an estimated concentration.
- $\boldsymbol{D}$  Sample analyzed at a higher dilution factor to allow calibration of this analyte. na - not applicable

**Bold** - Detected analyte concentration

#### **Residential Screening Levels (SLs):**

EPA Residential Indoor Air Regional Screening Levels (RSLs) (May 2020) (at  $CR = 1 \times 10^{-5}$  or HI = 1)

#### **Screening Evaluation Notes:**

Red, bold, and underline - Detected analyte concentration exceeds the respective SL. Underline - MDL exceeds the respective SL.

#### Additional Screening Level Notes

Analyte EPA RSLs
m+p-Xylenes Total Xylenes
o-Xylene o-Xylene

# ATTACHMENT A CASCADE HRSC DATA REPORT



10/19/2020

# **FINAL DATA REPORT**

**High Resolution Site Characterization** 

Membrane Interface Probe – Hydraulic Profiling Tool (MIHPT)

Montgomery Brothers Dump North East, Maryland 202201119

#### **Prepared for:**

Chesapeake Geosciences, Inc. Nancy Love 5405 Twin Knolls Road, Suite 1 Columbia, Maryland 21045

# TABLE OF CONTENTS

| <b>Program Narrative</b>           | 1  |
|------------------------------------|----|
| QA/QC Summary Table                | 2  |
| Project Details                    | 4  |
| Cascade Personnel                  | 4  |
| Cascade Equipment                  | 4  |
| Interpretation and Recommendations | 5  |
| Data Interpretation                | 5  |
| Recommendations                    | 5  |
| Reference Material                 | 6  |
| HPT System Overview                | 6  |
| HPT Data Interpretation            | 7  |
| EC Data Interpretation             | 8  |
| MIP System Overview                | 8  |
| MIP Data Interpretation            | 11 |
| Site Plan                          |    |
| Investigation Data Plots           |    |

**Investigation Data Plots – Common Scale** 

#### **PROGRAM NARRATIVE**

Cascade Technical Services (Cascade) is pleased to present this data report to CGS for the Membrane Interface Probe – Hydraulic Profiling Tool (MIHPT) services provided between September 08 and September 11, 2020 at the site in North East, Maryland.

In total, Cascade advanced 50 MIHPT investigation borings to depths up to approximately 20 feet below ground surface (bgs). The locations are shown on the attached site plan. For each of these locations, Cascade generated a continuous log of the electrical conductivity (EC), and relative (semi-quantitative) concentration of volatile organic compounds versus depth. Those logs are attached to this report.

All field work, including the operation of the MIP, HPT, and EC probes, was conducted by trained professionals and all quality assurance/quality control (QA/QC) measurements associated with these data were found to be within the tolerances set forth in the Standard Operating Procedures with no exceptions.

Additional information regarding the MIP, HPT, and EC systems is provided in the reference material included in this report.

I certify that the data package is in compliance with the terms and conditions of the contract and meets Cascade's data quality standards, with the exceptions detailed above (if any). Release of the data contained in this package has been authorized by the data manager or his/her designee, as verified by the following signature.

Brad Carlson Regional Manager, Site Characterization

## **QA/QC SUMMARY TABLE**

Provided below is a summary of QA/QC information and any deviations from the standard operating procedure that occurred during the field activities.

| Location    | Date               | Time     | Total Depth (ft<br>bgs) | Response<br>Test | Comments /<br>Deviations |
|-------------|--------------------|----------|-------------------------|------------------|--------------------------|
| HSI-HRSC-01 | September 8, 2020  | 09:43:57 | 19.15                   | Pass             | None                     |
| HSI-HRSC-02 | September 8, 2020  | 10:12:52 | 20.1                    | Pass             | None                     |
| HSI-HRSC-03 | September 8, 2020  | 10:48:34 | 23.4                    | Pass             | None                     |
| HSI-HRSC-04 | September 8, 2020  | 11:17:54 | 20.85                   | Pass             | None                     |
| HSI-HRSC-05 | September 8, 2020  | 11:41:44 | 20.25                   | Pass             | None                     |
| HSI-HRSC-06 | September 8, 2020  | 12:46:09 | 20.2                    | Pass             | None                     |
| HSI-HRSC-07 | September 8, 2020  | 13:28:08 | 20.1                    | Pass             | None                     |
| HSI-HRSC-08 | September 8, 2020  | 14:10:45 | 20.1                    | Pass             | None                     |
| HSI-HRSC-09 | September 8, 2020  | 14:38:20 | 20.1                    | Pass             | None                     |
| HSI-HRSC-10 | September 8, 2020  | 15:01:53 | 20.25                   | Pass             | None                     |
| HSI-HRSC-11 | September 8, 2020  | 15:23:41 | 20.1                    | Pass             | None                     |
| HSI-HRSC-12 | September 8, 2020  | 15:46:24 | 20.1                    | Pass             | None                     |
| HSI-HRSC-13 | September 9, 2020  | 08:43:49 | 23.5                    | Pass             | None                     |
| HSI-HRSC-14 | September 9, 2020  | 09:04:14 | 20.05                   | Pass             | None                     |
| HSI-HRSC-15 | September 9, 2020  | 09:31:46 | 20.05                   | Pass             | None                     |
| HSI-HRSC-16 | September 9, 2020  | 10:00:30 | 20.05                   | Pass             | None                     |
| HSI-HRSC-17 | September 9, 2020  | 10:31:59 | 20.15                   | Pass             | None                     |
| HSI-HRSC-18 | September 9, 2020  | 11:01:10 | 20.05                   | Pass             | None                     |
| HSI-HRSC-19 | September 9, 2020  | 11:32:45 | 20.1                    | Pass             | None                     |
| HSI-HRSC-20 | September 9, 2020  | 12:01:47 | 20.15                   | Pass             | None                     |
| HSI-HRSC-21 | September 9, 2020  | 13:15:57 | 20.1                    | Pass             | None                     |
| HSI-HRSC-22 | September 9, 2020  | 13:45:30 | 20.05                   | Pass             | None                     |
| HSI-HRSC-23 | September 9, 2020  | 14:13:42 | 20.1                    | Pass             | None                     |
| HSI-HRSC-24 | September 9, 2020  | 14:40:52 | 18.4                    | Pass             | None                     |
| HSI-HRSC-25 | September 9, 2020  | 15:07:26 | 20.25                   | Pass             | None                     |
| HSI-HRSC-26 | September 9, 2020  | 15:34:09 | 20.1                    | Pass             | None                     |
| HSI-HRSC-27 | September 9, 2020  | 15:52:58 | 20.05                   | Pass             | None                     |
| HSI-HRSC-28 | September 10, 2020 | 08:52:30 | 20.1                    | Pass             | None                     |
| HSI-HRSC-29 | September 10, 2020 | 09:33:09 | 22.2                    | Pass             | None                     |
| HSI-HRSC-30 | September 10, 2020 | 10:00:36 | 20.1                    | Pass             | None                     |
| HSI-HRSC-31 | September 10, 2020 | 10:29:13 | 20.05                   | Pass             | None                     |

| HSI-HRSC-32 | September 10, 2020 | 10:54:22 | 20.45 | Pass | None |
|-------------|--------------------|----------|-------|------|------|
| HSI-HRSC-33 | September 10, 2020 | 11:17:18 | 20.05 | Pass | None |
| HSI-HRSC-34 | September 10, 2020 | 11:41:48 | 20.2  | Pass | None |
| HSI-HRSC-35 | September 10, 2020 | 12:52:43 | 20.15 | Pass | None |
| HSI-HRSC-36 | September 10, 2020 | 13:17:17 | 20.1  | Pass | None |
| HSI-HRSC-37 | September 10, 2020 | 13:43:22 | 20.05 | Pass | None |
| HSI-HRSC-38 | September 10, 2020 | 14:50:13 | 17.6  | Pass | None |
| HSI-HRSC-39 | September 10, 2020 | 15:19:52 | 20.05 | Pass | None |
| HSI-HRSC-40 | September 10, 2020 | 15:44:18 | 20.05 | Pass | None |
| HSI-HRSC-41 | September 11, 2020 | 08:42:16 | 20    | Pass | None |
| HSI-HRSC-42 | September 11, 2020 | 09:05:39 | 20.1  | Pass | None |
| HSI-HRSC-43 | September 11, 2020 | 09:29:18 | 20.2  | Pass | None |
| HSI-HRSC-44 | September 11, 2020 | 09:54:26 | 20.1  | Pass | None |
| HSI-HRSC-45 | September 11, 2020 | 10:21:43 | 20.05 | Pass | None |
| HSI-HRSC-46 | September 11, 2020 | 10:48:06 | 20.25 | Pass | None |
| HSI-HRSC-47 | September 11, 2020 | 12:33:29 | 19.45 | Pass | None |
| HSI-HRSC-48 | September 11, 2020 | 12:59:12 | 20.8  | Pass | None |
| HSI-HRSC-49 | September 11, 2020 | 13:23:41 | 20.6  | Pass | None |
| HSI-HRSC-50 | September 11, 2020 | 14:09:01 | 19    | Pass | None |
|             |                    |          |       |      |      |

#### **PROJECT DETAILS**

This section provides information regarding the Cascade and Tidewater personnel present at the site during the field activities and the specific equipment used during field activities.

#### **Cascade Personnel**

The following personnel were present during field activities at the Site:

- Nick King, HRSC Specialist
- Alfredo Garcia and Devin Murdock, Tidewater DPT Rig Operators

#### **Cascade Equipment**

The following HRSC equipment was utilized during field activities at the Site:

- Geoprobe 66 Series direct push drill rig
- 1.75-inch O.D. MH6534 MIHPT probe
- Geoprobe MP6500 MIP Controller (Nitrogen Flow and Heater)
- Geoprobe K6300 HPT Controller
- Geoprobe FI 6000 Computer
- HP 5890 Gas Chromatograph
- Electrical Conductivity
- Electron Capture Detector (ECD)
- Halogen Specific Detector (XSD)
- Photoionization Detector (PID) with 10.6 eV Lamp
- Flame Ionization Detector (FID)
- 150-foot MIHPT trunkline
- 1.75-inch O.D. drive rods
- Ultra-High Purity Nitrogen
- Ultra-High Purity Hydrogen

#### INTERPRETATION AND RECOMMENDATIONS

This section provides a summary of the data collected during this investigation program, Cascade's recommendations for updating the conceptual site model, and suggestions for next steps in the site management process, including remediation, if appropriate.

#### **Data Interpretation**

Interpretation of this data set was not included in the contracted scope of work.

#### Recommendations

Additional recommendations were not included in this scope of work. Please contact the Cascade Project Manager if you would like to discuss further investigation or remediation alternatives. We would be excited to continue to learn about this site and assist you in meeting your site management goals.

#### REFERENCE MATERIAL

This section provides information useful in understanding and interpreting the data logs generated as part of this HRSC investigation.

#### **HPT System Overview**

The hydraulic profiling tool creates a log of the relative formation permeability versus depth in real time as the probe is advanced into the subsurface. It operates by injecting clean water at a constant flow rate from an aboveground reservoir through the direct push rods and out into the surrounding soil via an injection port on the side of the probe. Simultaneously, sensors record the flow rate, the back pressure required by the pump to maintain that flow rate, and the current depth of the probe. These measurements are collected by the onboard software and an estimated hydraulic conductivity (K) value is calculated and plotted alongside the other measurements in real time.



- A) Water Tank
- B) Pump & Flow Meter
- C) Electronics/computer
- D) Trunkline
- E) Pressure Sensor
- F) Screened Injection Port
- G) Elec. Conductivity Array

Generalized schematic of the HPT tool. Source: Geoprobe HPT Standard Operating Procedure

#### **Reference Testing and Dissipation Tests**

Reference testing is conducted to ensure that the HPT pressure transducer is working correctly and to evaluate the condition of the HPT injection screen. The HPT reference test also calculates atmospheric pressure which is required to obtain static water level readings and to determine the estimated K values for the log. The reference test utilizes an apparatus consisting of a tube with a valve located 6 inches above the HPT injection screen and the top of the tube located another 6 inches above the valve. When the tube is filled completely with water, the 12 inches of water will supply an additional 0.433 pounds per square inch (psi) of pressure on the injection screen (in addition to atmospheric pressure). When the valve is opened that additional pressure drops to 0.217 psi at the HPT injection screen. The accuracy of the pressure transducer can be assessed by comparing the pressure readings when the tube is filled and when the tube is filled only to the valve; this is done both with and without the pump running. A tolerance of plus or minus 10 percent is applied for a passing test.

Dissipation tests are conducted to determine the hydrostatic pressure of the water column above the transducer during logging. To conduct a dissipation test, advancement of the tooling is stopped, the HPT pump is stopped, and flow drops to zero. The pressure applied to the HPT pressure transducer by the injection of water into the formation begins to dissipate. This pressure should dissipate to a value equal to atmospheric pressure plus the hydrostatic pressure applied by water in the formation. In post-processing of the HPT log, the dissipation value and the atmospheric pressure determined during reference testing can be used to remove the influence of atmospheric and hydrostatic pressures from the values recorded by the transducer. These adjustments result in the corrected HPT pressure log which is a measure of the properties of the subsurface material.

#### **HPT Data Interpretation**

An HPT log typically includes several types of data, many of which are reduced by the software to generate the estimated K values. The dissipation testing results conducted by the operator during the advancement of the tool are used to adjust the HPT back pressure values to account for the hydrostatic pressure of the water column above the probe during advancement. This adjustment results in the corrected HPT pressure data set. Subsequently, the corrected HPT pressure and the HPT flow data sets are used to calculate the estimated K values.

The most useful measurement from the HPT is the estimated K log, which as noted above, is a measure of the relative permeability of the formation versus depth. Despite the fact that these data are presented in units typical of traditional hydraulic conductivity (feet per day), they are not traditional K values and should not be used in many of the applications where a traditional K value would be appropriate. The accuracy of the estimated K values is typically one to two orders of magnitude, which would clearly generate a significant amount of uncertainty if used for any seepage velocity or risk-based calculations. The estimated K values are, however, extremely useful for understanding what zones of the subsurface are exhibiting higher or lower relative permeability.

As a secondary data set from this tool, the HPT back pressure can be helpful in the design of injected remedies. The back pressure is a measure of the level of difficulty faced injecting the

clean water from the HPT system into the formation; this is analogous to level of success an injection may achieve at the same depths.

#### **EC Data Interpretation**

In a general sense, the electrical conductivity of a soil varies with grain size. This correlation can be utilized to gather an understanding of the subsurface from the EC data. The EC measured in the subsurface can also vary based on changes in mineralogy, groundwater geochemistry, and contamination. It is important, then, to confirm the accuracy of the EC data for this use by collecting confirmatory soil borings from your site.



Relationship between electrical conductivity and grain size. Source: Geoprobe Electrical Conductivity System Standard Operating Procedure

### **MIP System Overview**

The MIP is commonly used for quickly determining the locations of volatile organic compound (VOC) source zones and plumes. The MIP is most valuable in terms of its ability to provide "spatial correspondence", meaning that where the MIP detector responses show peaks, there is likely to be elevated soil and groundwater concentrations. The MIP can also be used to provide extremely valuable data to streamline subsequent investigative tasks and improve the overall efficiency and accuracy of the site investigation. Vertical profiles, cross-sectional views and three-dimensional images of contaminant distribution can all be produced from the electronic data generated by the MIP logs. The capability of providing reliable, real-time information allows for informed and timely decision making in the field. The MIP works by heating the soils and groundwater adjacent to the probe to 120 degrees Celsius. This volatilizes the VOCs and allows them to transfer through a Teflon membrane via a combination of concentration and pressure gradients. These VOC are then swept into a nitrogen gas loop that carries them to a series of detectors housed at ground surface. Continuous chemical profiles are generated from each hole. The electrical conductivity of the soil is also measured, and these logs can be compared to the chemical logs to better understand the relationship between the lithology and the contaminant distribution. The MIP is also commonly deployed with an integrated Hydraulic

Profiling Tool (HPT) which uses an injection logging system to generate a continuous log of relative formation permeability versus depth. The following section discusses the various detection systems that are commonly used with the MIP system.



An MIHPT probe and trunkline. Source: Geoprobe

#### **Halogen Specific Detector**

Responds to halogenated compounds (i.e., chlorinated, fluorinated, brominated) only.

The XSD converts compounds containing halogens to their oxidation products and free halogen atoms by oxidative pyrolysis. These halogen atoms are adsorbed onto the activated platinum surface of the detector probe assembly resulting in an increase thermionic emission. This emission current provides a corresponding voltage that is measured via an electrometer circuit in the detector controller.

#### **Electron Capture Detector**

Responds to halogenated compounds (i.e., chlorinated, fluorinated, brominated) only, and is more sensitive to compounds that a more highly halogenated. This results in a greater response to compounds like tetrachloroethene and trichloroethene versus cis-1,2-dichloroethene and vinyl chloride.

The ECD uses a radioactive beta emitter to ionize some of the carrier gas and produce a current between a biased pair of electrodes. When organic molecules contain electronegative functional groups, such as halogens, phosphorous, and nitro groups pass by the detector, they capture some of the electrons and reduce the current measured between the electrodes.

#### **Photoionization Detector**

Responds to all VOCs, including chlorinated compounds and petroleum hydrocarbons.

The PID sample stream flows through the detector's reaction chamber where it is continuously irradiated with high energy ultraviolet light. When compounds are present that have a lower ionization potential than that of the irradiation energy (10.6 electron volts with standard lamp), they are ionized. The ions formed are collected in an electrical field, producing an ion current that is proportional to compound concentration. The ion current is amplified and output by the gas chromatograph's electrometer.

#### **Flame Ionization Detector**

Responds to combustible VOCs only (i.e., petroleum hydrocarbons).

The FID consists of a hydrogen / air flame and a collector plate. The effluent from the gas chromatograph (trunkline) passes through the flame, which breaks down organic molecules and produces ions. The ions are collected on a biased electrode and produce an electric signal.

#### **Response Testing**

Response testing (RT) is an integral part of ensuring the quality of data from the MIP system. Response testing is conducted before and after each log to ensure the validity of the data and the integrity of the system. The RT provides a traceable indication that the MIP system detectors are adequately responding and allows the carrier gas trip time to be calculated on the physical components of the system.

Cascade uses acceptance criteria to evaluate the RTs as described in the manufacturer's SOP. The acceptable criteria for an RT is defined for specified concentrations of RT solution and a specified carrier gas trunkline flow rate. Documenting the RTs provides a level of quality assurance for each MIP project and allows operators and data reviewers to identify systems in need of maintenance.

The trip time is measured by recording the time between the moment when the testing vial is placed over the membrane and the response of the detectors, as viewed on the MIP data acquisition unit. The baseline and peak response value are also recorded for comparison with other MIP response tests. The trip time is entered manually into the data acquisition system account for the time it takes for compounds in the subsurface to travel the length of the trunkline during the MIP boring, thereby increasing the accuracy of depth measurements.



An example response test for trichloroethene and benzene

#### **MIP Data Interpretation**

Detector responses, measured in microVolts ( $\mu$ V), are a semi-quantitative indication of relative contaminant concentrations. Minimum and maximum detector responses are collected at each depth interval. A comparison of the responses of the four detectors at each interval is necessary to gather the most information about the compounds present. In general, responses on the XSD, ECD, and PID indicate the presence of chlorinated compounds (i.e., no response on the FID). Responses only on the PID and FID indicate that petroleum hydrocarbons are present. In some cases, comparison of the magnitudes of the XSD and ECD responses can indicate whether the mix of chlorinated compounds is more degraded (e.g., lower ECD responses than those on the XSD) or more source-enriched (e.g., higher ECD responses than those on the XSD). Similar comparison can be accomplished with the PID and FID data: higher responses on the FID indicate the presence of a higher percentage of combustible hydrocarbon compounds.

Confirmatory soil borings are recommended following each MIP investigation. The confirmatory program should be designed to include a small number of boring locations advanced in the immediate vicinity of the MIP locations. The design of this confirmatory boring program will be dependent on the goals of the overall investigation and the specific site conditions. Generally, areas with high detector responses should be targeted for soil sample collection, as well as areas on the boundary of the impacted zone where there are important considerations (nearby receptors, property boundaries, important design considerations for future remediation, etc.).



# **SITE PLAN**





# **INVESTIGATION DATA PLOTS**







|             |           | HSI-HRSC-01.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/08/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HSI-HRSC-02.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/08/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | TIOI-TITOO-03.WITH |
|-------------|-----------|--------------------|
| Company:    | Operator: | Date:              |
| Cascade     | Nick K    | 09/08/20           |
| Project ID: | Client:   | Location:          |
| 2022001119  | tidewater | northeast          |







|             |           | H5I-HK5C-U4.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/08/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | TIOI-TII (OC-03.IVII II |
|-------------|-----------|-------------------------|
| Company:    | Operator: | Date:                   |
| Cascade     | Nick K    | 09/08/20                |
| Project ID: | Client:   | Location:               |
| 2022001119  | tidewater | northeast               |







|             |           | TIOI-TITOO-00.IVITII |
|-------------|-----------|----------------------|
| Company:    | Operator: | Date:                |
| Cascade     | Nick K    | 09/08/20             |
| Project ID: | Client:   | Location:            |
| 2022001119  | tidewater | northeast            |







|             |           | H5I-HK5C-U7.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/08/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | 131-1130-00.WITE |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/08/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | H5I-HK5C-09.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/08/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HSI-HKSC-10.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/08/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HSI-HRSC-11.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/08/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | H5I-HK5C-12.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/08/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | H5I-HK5C-13.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/09/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HSI-HRSC-14.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/09/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HSI-HRSC-15.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/09/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | 10.WITE   |
|-------------|-----------|-----------|
| Company:    | Operator: | Date:     |
| Cascade     | Nick K    | 09/09/20  |
| Project ID: | Client:   | Location: |
| 2022001119  | tidewater | northeast |







|             |           | 1101-11100-17.101111 |
|-------------|-----------|----------------------|
| Company:    | Operator: | Date:                |
| Cascade     | Nick K    | 09/09/20             |
| Project ID: | Client:   | Location:            |
| 2022001119  | tidewater | northeast            |







|             |           | HSI-HKSC-18.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/09/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HSI-HRSC-19.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/09/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | 101-110-20.1VITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/09/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | HSI-HKSC-ZT.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/09/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | TIOI-TITOU-ZZ.IVITII |
|-------------|-----------|----------------------|
| Company:    | Operator: | Date:                |
| Cascade     | Nick K    | 09/09/20             |
| Project ID: | Client:   | Location:            |
| 2022001119  | tidewater | northeast            |







|             |           | HSI-HRSC-23.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/09/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HSI-HRSC-24.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/09/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HSI-HRSC-25.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/09/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | 1101-111100-20.1VII II |
|-------------|-----------|------------------------|
| Company:    | Operator: | Date:                  |
| Cascade     | Nick K    | 09/09/20               |
| Project ID: | Client:   | Location:              |
| 2022001119  | tidewater | northeast              |







|             |           | HSI-HRSC-27.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/09/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | TIOI-TITOO-20.IVITII |
|-------------|-----------|----------------------|
| Company:    | Operator: | Date:                |
| Cascade     | Nick K    | 09/10/20             |
| Project ID: | Client:   | Location:            |
| 2022001119  | tidewater | northeast            |







|             |           | HSI-HRSC-29.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/10/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HSI-HRSC-30.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/10/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HSI-HRSC-31.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/10/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | H5I-HK5C-32.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/10/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | H5I-HK5C-33.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/10/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | 101-1100-04.WITE |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/10/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 131-1130-33.WITE |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/10/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | TIOI-TIINOU-30.IVII II |
|-------------|-----------|------------------------|
| Company:    | Operator: | Date:                  |
| Cascade     | Nick K    | 09/10/20               |
| Project ID: | Client:   | Location:              |
| 2022001119  | tidewater | northeast              |







|             |           | HSI-HRSC-37.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/10/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HSI-HKSC-38.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/10/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | 131-1130-39.WITE |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/10/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | H5I-HK5C-40.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/10/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | 1101-111100-41.101111 |
|-------------|-----------|-----------------------|
| Company:    | Operator: | Date:                 |
| Cascade     | Nick K    | 09/11/20              |
| Project ID: | Client:   | Location:             |
| 2022001119  | tidewater | northeast             |







|             |           | H5I-HK5C-42.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/11/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HSI-HRSC-43.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/11/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | 131-1130-44.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/11/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 101-1K3U-40.IVITP |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/11/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | H5I-HK5C-46.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/11/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HSI-HKSC-47.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/11/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | H5I-HK5C-48.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/11/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | 1101-111100-43.181111 |
|-------------|-----------|-----------------------|
| Company:    | Operator: | Date:                 |
| Cascade     | Nick K    | 09/11/20              |
| Project ID: | Client:   | Location:             |
| 2022001119  | tidewater | northeast             |







|             |           | H5I-HK5C-50.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/11/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |



## INVESTIGATION DATA PLOTS COMMON SCALE







|             |           | HSI-HKSC-UT.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/08/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HOI-HROU-UZ.IVIHF |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/08/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | FIIE.           |
|-------------|-----------|-----------------|
|             |           | HSI-HRSC-03.MHP |
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/08/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | 131-1K3C-04.IVITP |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/08/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | riie.           |
|-------------|-----------|-----------------|
|             |           | HSI-HRSC-05.MHP |
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/08/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | 131-1K3C-00.IVITP |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/08/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 101-113U-U7.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/08/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 101-1K0C-00.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/08/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 101-1K0C-09.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/08/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 10.WITP   |
|-------------|-----------|-----------|
| Company:    | Operator: | Date:     |
| Cascade     | Nick K    | 09/08/20  |
| Project ID: | Client:   | Location: |
| 2022001119  | tidewater | northeast |







|             |           | 101-1K3C-11.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/08/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 101-113U-12.1VITP |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/08/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 131-1K3C-13.IVITP |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/09/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 131-1K3C-14.IVITP |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/09/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 101-1K3C-10.IVITP |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/09/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 10.WITP   |
|-------------|-----------|-----------|
| Company:    | Operator: | Date:     |
| Cascade     | Nick K    | 09/09/20  |
| Project ID: | Client:   | Location: |
| 2022001119  | tidewater | northeast |







|             |           | 101-1K3C-17.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/09/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 10.WITP   |
|-------------|-----------|-----------|
| Company:    | Operator: | Date:     |
| Cascade     | Nick K    | 09/09/20  |
| Project ID: | Client:   | Location: |
| 2022001119  | tidewater | northeast |







|             |           | 19.WITP   |
|-------------|-----------|-----------|
| Company:    | Operator: | Date:     |
| Cascade     | Nick K    | 09/09/20  |
| Project ID: | Client:   | Location: |
| 2022001119  | tidewater | northeast |







|             |           | 101-110-20.1VITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/09/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 101-110U-21.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/09/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | HOI-HROU-ZZ.IVIHF |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/09/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 101-110-23.WITP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/09/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | FIIE.           |
|-------------|-----------|-----------------|
|             |           | HSI-HRSC-24.MHP |
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/09/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | 101-1130-20.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/09/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 101-110-20.WITP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/09/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HOI-HNOU-ZI .WITH |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/09/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 101-1100-20.IVI11P |
|-------------|-----------|--------------------|
| Company:    | Operator: | Date:              |
| Cascade     | Nick K    | 09/10/20           |
| Project ID: | Client:   | Location:          |
| 2022001119  | tidewater | northeast          |







|             |           | 101-1100-29.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/10/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 131-1130-30.IVITE |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/10/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | HOI-HNOU-ST.IVIHE |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/10/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 101-1100-32.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/10/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | HOI-HROU-SS.IVIHE |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/10/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 131-1K3U-34.IVITP |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/10/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 101-1K3C-33.IVITP |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/10/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 101-1K3C-30.IVITP |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/10/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 101-1130-37.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/10/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 131-1K3C-30.IVITP |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/10/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 101-1K0C-39.IVITP |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/10/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 101-1130-40.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/10/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | FIIE.           |
|-------------|-----------|-----------------|
|             |           | HSI-HRSC-41.MHP |
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/11/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |







|             |           | HOI-HROU-42.WITE |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/11/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 101-11K0C-43.WITP |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/11/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 131-1130-44.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/11/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 131-1K3C-43.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/11/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 131-1K3C-40.IVITP |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/11/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 131-1K3U-47.IVI1P |
|-------------|-----------|-------------------|
| Company:    | Operator: | Date:             |
| Cascade     | Nick K    | 09/11/20          |
| Project ID: | Client:   | Location:         |
| 2022001119  | tidewater | northeast         |







|             |           | 131-1130-40.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/11/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | 131-1K3C-49.WITP |
|-------------|-----------|------------------|
| Company:    | Operator: | Date:            |
| Cascade     | Nick K    | 09/11/20         |
| Project ID: | Client:   | Location:        |
| 2022001119  | tidewater | northeast        |







|             |           | HSI-HKSC-50.MHP |
|-------------|-----------|-----------------|
| Company:    | Operator: | Date:           |
| Cascade     | Nick K    | 09/11/20        |
| Project ID: | Client:   | Location:       |
| 2022001119  | tidewater | northeast       |

Point To Point Comparison of ECD and XSD Low Scale





















Point To Point Comparison of ECD and XSD High Scale





















## ATTACHMENT B GROUNDWATER SAMPLE SOIL BORING LOGS

| PROJECT CG-09-0423.                                                  | 10 TEMP. WELL CO                                                                                                                                                                                                       | NSTR. LOG HSI-GW-01                                                                                                                                                                     | PAGE                    | 1 OF 2                                                                    |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------|
| PROJECT: Montgomery Brothers Du                                      |                                                                                                                                                                                                                        | DATE STARTED: 9/28/20                                                                                                                                                                   |                         |                                                                           |
| LOCATION: Lakeside Park, North E                                     |                                                                                                                                                                                                                        | DATE/TIME 9/28/20 12:10                                                                                                                                                                 |                         |                                                                           |
| DRILLING COMPANY: Tidewater, In                                      | nc.                                                                                                                                                                                                                    | LOGGED BY: Meg Staines                                                                                                                                                                  |                         | GeoSciences, Inc.                                                         |
| DRILLING METHOD: Geoprobe 662                                        | ODT - DPT                                                                                                                                                                                                              | PROJECT MANAGER: Nancy Love                                                                                                                                                             |                         |                                                                           |
| SAMPLING METHOD: Macrocore                                           |                                                                                                                                                                                                                        | WELL DIAMETER: 2"                                                                                                                                                                       | WELL DEP                | TH: 16.42                                                                 |
| DEPTH TO GW (ft) FROM BG: 12                                         | 2.42 DATE:9/28/20                                                                                                                                                                                                      | BORING DIAMETER: 2"                                                                                                                                                                     | BORING DE               | _ /                                                                       |
| DEPTH (ft) PID READINGS (PPM) RECOVERY (%) SOIL CLASS GRAPHIC LOG    | OVERBL<br>DES                                                                                                                                                                                                          | JRDEN / ROCK<br>CRIPTION                                                                                                                                                                | NOTES                   | WELL<br>COMPLETION<br>LOG                                                 |
| 0 0 0L 0 0L 0 3.3 ML/0 0 93% FILL 0.3 3.7 FILL - 1.5 FILL - 1.5 FILL | Dark brown, mesome Organics Light brownish Medium stiff ( fc. Sand, liftle plastics little plastics brown, Also m Clayey SILT, s little fragenics swamp sedim Clayey SILT, little Organics mosterial, wea schist texti | ryellow, damp, little flet. C. Gravel, neuting, fill.  none Sand, 3,5:  some flet. C. Sand, wel some Wood, ents.  little flet. C. Gravel, sittle flet. C. Gravel, streed bedrock, were. | ery<br>ecovery<br>4-8/8 | Moliom.  PVC  Ciser  O-6.42  FH BG   A  Screened  A    G.42   G.42   G.42 |

| PR           | OJEC                                                                        | T CG         | -09-042    | 23.10          | TEMP. WELL CONSTR. LOG HSI-GW-0                                                                                                                                                                                                                                                                            | PAGE                           | 2 OF                                                            | 2         |
|--------------|-----------------------------------------------------------------------------|--------------|------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------|-----------|
| DEPTH (ft)   | PID<br>READING<br>(ppm)                                                     | RECOVERY (%) | SOIL CLASS | GRAPHIC<br>LOG | OVERBURDEN / ROCK DESCRIPTION                                                                                                                                                                                                                                                                              | NOTES                          | WEL<br>COMPLE<br>LO                                             | L<br>TION |
| 12.0<br>14.0 | 3.8<br>3.6<br>0.6<br>10.9<br>2.7<br>16.3<br>9.7<br>8.8<br>1.9<br>3.6<br>6.2 | 4/4/100%     |            |                | Light gray mottled damp soft Clayer 31/2T, little f-Garavel, fill reworked material; weathered bedrock texture.  Yellow, mottled wet minium, stiff Clayer SILT, some f. Sand weathered bedrock texture.  Yellow, mottled damp medium of iff Clayer SILT, little f. Sand, weathered bedrock schist texture. | WL=<br>12.42'E<br>Wet<br>13-15 |                                                                 |           |
| 18.0<br>20.0 | 4.0                                                                         | 4/4/100%     | ML         |                | Yellow mottled damp stiff<br>Clayer SILT, little f. Sano;<br>weathered bedrock/schist-texture                                                                                                                                                                                                              |                                | Bottom<br>cap.—<br>Bottom<br>3,58<br>of bore-<br>hole<br>caved. | 7         |
| 22.0         |                                                                             |              |            |                | 11:55 Collected groundwater<br>Sample HSI-GW-01.                                                                                                                                                                                                                                                           | 2                              |                                                                 |           |
| 24.0         |                                                                             |              |            |                |                                                                                                                                                                                                                                                                                                            |                                |                                                                 |           |

| PRC         | DJECT: Mon                                                  | tgomery Broth                  | ers Dump       | - Hot Spot Investigation | DATE STARTED: 9/28/                                                                                          | 20   |                          |                                       |
|-------------|-------------------------------------------------------------|--------------------------------|----------------|--------------------------|--------------------------------------------------------------------------------------------------------------|------|--------------------------|---------------------------------------|
| LOC         | CATION: La                                                  | keside Park, I                 | North East,    | MD 21901 (MD-137)        | DATE/TIME 9/28/20 13                                                                                         |      |                          | Chambiles                             |
| DRII        | LLING COMI                                                  | PANY: Tidew                    | ater, Inc.     |                          | LOGGED BY: Meg Staines                                                                                       |      | الناك                    | GeoSciences                           |
| DRIL        | LLING METH                                                  | HOD: Geopro                    | be 6620DT      | - DPT                    | PROJECT MANAGER: Nancy                                                                                       | Love |                          |                                       |
| SAM         | IPLING MET                                                  | HOD: Macro                     | core           |                          | WELL DIAMETER: 2"                                                                                            |      | WELL DEF                 | TH: 18.58                             |
| DEP         | TH TO GW                                                    | (ft) FROM BG                   | 16.2           | 28 DATE:9/28/2           | BORING DIAMETER: 2"                                                                                          |      | BORING D                 | EPTH: 20                              |
| DEPTH (ft)  | PID<br>READINGS<br>(PPM)                                    | (%)                            | GRAPHIC<br>LOG |                          | BURDEN / ROCK<br>ESCRIPTION                                                                                  |      | NOTES                    | WELL<br>COMPLETIO<br>LOG              |
| 0.0         | 1.0                                                         | OL                             | -              | Topooil                  |                                                                                                              |      |                          |                                       |
| -2.0<br>4.0 | 1.9<br>2.5<br>14.7<br>368<br>193<br>117<br>132              | 2.3/<br>47<br>8%<br>ML/<br>Fil | ,              |                          | damp mediums some f-c. San aravel; fill.  ed. damp medium ll. some fc. Sar aravel; weathered st texture-revo |      | dor<br>-4/80             | PVC<br>PIDET<br>PIDET<br>PIDE<br>BG   |
| 6.0         | 39.7<br>51.7 <sup>2</sup><br>17.9 6<br>29.3<br>16.0<br>40.7 | .5<br>97<br>3%<br>04/<br>FILL  | Je ar diverse  | and little               | nottled dama sol<br>Lay little f C.<br>Cravel, some<br>the Brick, little<br>and swamp sedi<br>ist texture.   | -g   | lightly<br>orst<br>-8/BG |                                       |
| 10.0        | 7.4<br>2.7<br>2.7<br>5.0<br>3.7                             | .97<br>17<br>5M<br>ML          |                | , ))                     | ow motted dans                                                                                               |      |                          | screened<br>interval<br>8,58<br>18.58 |

| PRO        | DJEC                                                         | T CG         | -09-042    | 23.10          | TEMP. WELL CONSTR. LOG HOT-GW-02                        | 2 PAGE | 2 OF 2                                       | 2 |
|------------|--------------------------------------------------------------|--------------|------------|----------------|---------------------------------------------------------|--------|----------------------------------------------|---|
| DEPTH (ft) | PID<br>READING<br>(ppm)                                      | RECOVERY (%) | SOIL CLASS | GRAPHIC<br>LOG | OVERBURDEN / ROCK<br>DESCRIPTION                        | NOTES  | WELL<br>COMPLETI<br>LOG                      |   |
| -16.0      | 6.38 1.7.0 4.9.2 5.7 1.9.6 1.1.9.6 1.1.9.6 1.7.9 1.9.9 1.7.9 | 3.6° 47      | ML         |                | BILT, little f. Sand; wea-, thered bedrock. Damp 17-18. |        | Bottom<br>of Well<br>18.58<br>Bottom<br>2012 |   |

| PROJECT CG-09-0423.10 TEM                                                                                                   | MP. WELL CONSTR. LOG HSI-6                                                   | W-03 PAGE                                                                  | 1 OF 2                                            |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------|
| PROJECT: Montgomery Brothers Dump - Hot Spot LOCATION: Lakeside Park, North East, MD 2190 DRILLING COMPANY: Tidewater, Inc. | DATE TIME 1                                                                  | 16:00                                                                      | Chosanvilke<br>GeoSciercus, Inc.                  |
| DRILLING METHOD: Geoprobe 6620DT - DPT                                                                                      | PROJECT MANAGER: Nano                                                        |                                                                            | 10 =117                                           |
| DEPTH TO GW (ft) FROM BG: 14.54                                                                                             | DATE 9/28/20 BORING DIAMETER: 2"                                             | WELL DEPT                                                                  | - /                                               |
| DEPTH (ff) PID READINGS (PPM) RECOVERY (%) SOIL CLASS GRAPHIC LOG                                                           | OVERBURDEN / ROCK DESCRIPTION                                                | NOTES                                                                      | WELL COMPLETION LOG                               |
| 0.3 0 2.6 Sand Sand With Grand Cand Cand Cand Cand Cand Cand Cand C                                                         | brownish yellow mottled with pale brown mottled with a damp dense Clayey for | Slightly<br>moist<br>3-4 BG<br>Neatherd<br>hedrock<br>SAND tex-<br>6-20 BG | Ciam.  NC iser iser iser iser iser iser iser iser |

| PROJECT CG-09-0423                                                     | TEMP. WELL CONSTR. LOGHSI-GW-03                                                                                                                                                                                                                                                                                                     | PAGE                     | 2 OF 2                    |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|
| y y                                                                    | OVERBURDEN / ROCK DESCRIPTION                                                                                                                                                                                                                                                                                                       | NOTES                    | WELL<br>COMPLETION<br>LOG |
| 0 0 ML 0.5 2.0 0.1 0.1 0.1 0.1 0.5 0.2 0.2 0.6 0.9 0.6 0.6 0.2 0.6 0.2 | Grey, nottled, damp, stiff Clayey 814T, little fc. Gravel: weathered bedrock texture.  Yellow, damp, dense Clayey f.  SAND, little fc. Rock trag- ments, little Mica; weathered bedrock.  Weak red + white damp dense Clayey 8AND, little fc. Rock Fraggents, little Mica; weathered bedrock.  Color 19.5-20: deep red to burgundy. | Moist<br>16.75-<br>17.25 | Batton Botton Cap         |
| 22.0                                                                   | 15:50 Collected ground water<br>Sample HSI-GW-03                                                                                                                                                                                                                                                                                    |                          | 2                         |

| PROJECT                                  | CG-09-0423.1           | O TEMP. WELL CO                                                                                                                                                             | NSTR. LOG HSIZ-GW-04                                                                                                                           | PAGE                              | 1 OF 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT: Montgoi                         | mery Brothers Du       | mp - Hot Spot Investigation                                                                                                                                                 | DATE STARTED: 9/28/20                                                                                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LOCATION: Lakes                          | ide Park, North E      | ast, MD 21901 (MD-137)                                                                                                                                                      | DATE/TIME 3/28/20 15:00                                                                                                                        |                                   | Chesapsoka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DRILLING COMPAN                          | Y: Tidewater, In       | c.                                                                                                                                                                          | LOGGED BY: Meg Staines                                                                                                                         |                                   | GeoSciences, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DRILLING METHOD                          | : Geoprobe 662         | ODT - DPT                                                                                                                                                                   | PROJECT MANAGER: Nancy Love                                                                                                                    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLING METHO                           | D: Macrocore           |                                                                                                                                                                             | WELL DIAMETER: 2"                                                                                                                              | WELL DEP                          | TH: 19.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DEPTH TO GW (ft)                         | ROM BG: 8              | .88 DATE:9/28/20                                                                                                                                                            | BORING DIAMETER: 2"                                                                                                                            | BORING D                          | EPTH: 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DEPTH (ft) PID READINGS (PPM) RECOVERY   | SOIL CLASS GRAPHIC LOG | OVERBI<br>DES                                                                                                                                                               | URDEN / ROCK<br>SCRIPTION                                                                                                                      | NOTES                             | WELL<br>COMPLETION<br>LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -2.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | OL<br>SC<br>ML<br>OC   | Light brownish damp stiff C<br>Light brownish damp stiff C<br>Light brownish damp stiff C<br>Clayey V.f. &<br>Gravel, weath<br>Light brownish damp stiff C<br>weathered bed | clayer fc. SAND, rovel.  AND little fc.  n. bedrock texture.  hyellow mottled, layer SILT, some ittle fc. Gravel; colored mottled, layer SILT; | Net<br>2-3/BG<br>Varied<br>Water. | l'aiam. Properties Priser Pris |

| PRO        | OJEC                                    | T CG              | -09-04:    | 23.10          | TEMP. WELL CONSTR. LOGHST-GW-04                                                                       | PAGE  | 2 OF 2                    |
|------------|-----------------------------------------|-------------------|------------|----------------|-------------------------------------------------------------------------------------------------------|-------|---------------------------|
| DEPTH (ft) | PID<br>READING<br>(ppm)                 | RECOVERY (%)      | SOIL CLASS | GRAPHIC<br>LOG | OVERBURDEN / ROCK<br>DESCRIPTION                                                                      | NOTES | WELL<br>COMPLETION<br>LOG |
| -12.0      | 0.9                                     | 4/                | ML         |                | Brownish Hed, damp, stiff vellow, mothed, damp, stiff Clayey SILT, some fm., SAND, Weathered bedrock. |       |                           |
| -14.0      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 100%              | ,          |                | Readish vellow molled damp                                                                            |       |                           |
| -18.0      | 0.9<br>9.5<br>8.9<br>5.3<br>4.0         | 3.2/<br>41<br>80% | ML         | 1              | Red + yellows mottled damps, Stiff, plastic Sitty CLAY.                                               |       | Bottom of Well 19.58 BG.  |
| -20.0      | 1.2                                     |                   | CL         |                | 9) iff, plastic Sitty CLAY.  14:50 Collected groundwater  Sample HSI-GW-04                            |       | Bottom 9                  |
| -22.0      |                                         |                   |            |                |                                                                                                       |       | -                         |
| -24.0      |                                         |                   |            |                |                                                                                                       |       | -                         |

## ATTACHMENT C SOIL SAMPLE SOIL BORING LOGS

| PROJECT                       | CG-0         | PAGE 1 OF 2       |                |                          |                                                  |                   |  |
|-------------------------------|--------------|-------------------|----------------|--------------------------|--------------------------------------------------|-------------------|--|
| PROJECT:                      | Montgom      | ery Broth         | ers Dum        | DATE STARTED: 09/29/2020 |                                                  |                   |  |
| LOCATION: I                   | _akeside     | Chesapeake        |                |                          |                                                  |                   |  |
| DRILLING COM                  | PANY: 1      | GeoSciences, Inc. |                |                          |                                                  |                   |  |
| DRILLING METH                 | IOD: (       | Geoprobe          | e 6620D        | T - DPT                  | PROJECT MANAGER: Nancy Love                      |                   |  |
| SAMPLING MET                  | HOD: N       | Macrocor          | е              |                          | BORING DIAMETER: 2"                              | BORING DEPTH: 20' |  |
| DEPTH TO GW                   | (ft) FROM    | 1 BG: N           | IA             | DATE: 09/29/2020         | NOTES: On the West side of HSI-HRSC-45, in AOC-3 |                   |  |
| DEPTH (ft) PID READINGS (ppm) | RECOVERY (%) | SOIL              | GRAPHIC<br>LOG |                          | DEN / ROCK<br>RIPTION                            | NOTES             |  |

| <b>⊢</b> 0.0 |        |      |             |                                        | ,                                      |                                                                                                                |                                                                              | <b>¬ ¬</b> 0 |
|--------------|--------|------|-------------|----------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------|
| 0.0          | 7.8    |      | OL          |                                        |                                        | Topsoil.                                                                                                       |                                                                              |              |
| -<br>1.0     | 33.2   |      |             | <u>X</u>                               |                                        | Brownish yellow, mottled, damp, medium stiff Clayey SILT; fill.                                                | Collected 2 Macrocores 0-4' for                                              | -1           |
| _            | 55.4   |      |             | <u>//</u>                              |                                        | Greyish brown and white, mottled, damp, soft Clayey SILT, some black and brown discoloration and debris; fill. | adequate sample volume.                                                      |              |
| 2.0          | 86.2   | 81%  |             | <u>/</u>                               |                                        |                                                                                                                |                                                                              | -2           |
| _            | 64.8   | 0.70 | ML/<br>FILL | ).<br>(                                | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                                                                                                | 13:30<br>Top of Impact Sample 2.5-3' BG.                                     |              |
| -3.0         | 344    |      |             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                        |                                                                                                                | Metals, SVOCs, & VOCs.                                                       | -3           |
|              | 615    |      |             | 7                                      |                                        |                                                                                                                | Odor 0-4' BG                                                                 |              |
| -4.0         | 221    |      |             | <u></u>                                |                                        |                                                                                                                | Odol 0-4 BG                                                                  | -4           |
| -4.0         | 4,450  |      |             |                                        |                                        | White and pale yellow, multicolored, mottled, damp, medium stiff SILT, little Clay.                            |                                                                              |              |
| -5.0         | 11,266 |      |             |                                        |                                        |                                                                                                                |                                                                              | -5           |
| 0.0          | 10,257 |      |             |                                        |                                        |                                                                                                                | Collected 2 Macrocores 4-8' for adequate sample volume.                      |              |
| -6.0         | 9,792  | =00/ |             |                                        |                                        |                                                                                                                | 14:30                                                                        | -6           |
| -            | 12,950 | 50%  |             |                                        |                                        |                                                                                                                | High PID Sample and Duplicate<br>HSI-SB-D1 6-6.5'.<br>Metals, SVOCs, & VOCs. |              |
| 7.0          | 7,234  |      |             |                                        |                                        |                                                                                                                | Establish Charles Oden 4 01 DO                                               | -7           |
|              | 4,779  |      | ML          |                                        |                                        | Brown, mottled, slightly moist, medium stiff Clayey SILT, little Sand, little fine to coarse Gravel.           | Extremely Strong Odor 4-8' BG                                                |              |
| -8.0         | 6,102  |      |             |                                        |                                        |                                                                                                                | Ton 4 5' of Magrapara (9.0.5') :-                                            | -8           |
| -            | 15,000 |      |             |                                        |                                        |                                                                                                                | Top 1.5' of Macrocore (8-9.5') is run-up.                                    |              |
| -9.0         | 11,116 |      |             |                                        |                                        |                                                                                                                | Callastad O Massacasa O 4015                                                 | <br> 9       |
| _            | 9,750  | 100% |             |                                        |                                        | Light grey, mottled with yellow and weak red, damp, stiff Clayey SILT, little Sand, trace Gravel.              | Collected 2 Macrocores 8-12' for adequate sample volume.                     |              |
| -10.0        | 4,500  |      |             |                                        |                                        |                                                                                                                | 15:30<br>Bottom of Impact 1 Sample                                           | -10          |
|              | 306    |      |             |                                        |                                        |                                                                                                                | 10-10.5' BG. VOCs Only.                                                      |              |

| PRC         | JECT                 | CG-09    | 9-0423.1      | 0 <b>S</b> (   | OIL BORING LOG HSI-SB-01                                                                                                                                          | PAGE 2 OF 2                                                                   |              |
|-------------|----------------------|----------|---------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------|
| DEPTH (ft)  | PID READING<br>(ppm) | RECOVERY | SOIL<br>CLASS | GRAPHIC<br>LOG | OVERBURDEN / ROCK<br>DESCRIPTION                                                                                                                                  | NOTES                                                                         |              |
| 11.0<br>-   | 116<br>62.3          | 100%     |               |                | Light grey, mottled with yellow and weak red, damp, stiff Clayey SILT, some Sand, some Gravel.                                                                    | Extremely Strong Odor 8-12' BG                                                | - <b>1</b> 1 |
| -12.0       | 73.4<br>12,260       |          |               |                |                                                                                                                                                                   | Top 2.5' of Macrocore (12-14.5') is run-up.                                   | -12          |
| -<br>13.0   | 4,794<br>1,397       |          |               |                | Light grey, mottled with dark grey, weak red, and yellow, damp, stiff Clayey SILT.                                                                                |                                                                               | -1:          |
| <b>14.0</b> | 448<br>1,005         | 95%      |               |                |                                                                                                                                                                   | 15:40                                                                         | -14          |
| 15.0        | 132<br>19.2          |          | ML            |                | Light grey, brownish yellow, and weak red, mottled, damp, stiff Clayey SILT, little fine to coarse Sand, little fine to coarse Gravel. Weathered bedrock texture. | Bottom of Impact 2 Sample 14.5-15' BG. VOCs Only.  Very Strong Odor 12-16' BG | -18          |
| <b>16.0</b> | 1,860                |          |               |                |                                                                                                                                                                   | Top 3' of Macrocore (16-19') is run-<br>up.                                   | -16          |
| 17.0        | 996<br>587           |          |               |                |                                                                                                                                                                   |                                                                               | -17          |
| 18.0        | 254<br>761           | 100%     |               |                |                                                                                                                                                                   |                                                                               | -18          |
| -<br>19.0   | 136                  |          |               |                |                                                                                                                                                                   |                                                                               | -15          |
| -19.0       | 42.7                 |          |               |                | Light grey, very pale yellow, and weak red, mottled, damp, stiff<br>Clayey SILT, little fine to coarse Sand. Weathered bedrock<br>texture.                        | Strong Odor 16-20' BG                                                         | -18          |
| -20.0       | 31.0                 |          |               |                | tondio.                                                                                                                                                           |                                                                               | -2(          |

| PROJECT CG-(                               | PROJECT CG-09-0423.10 SOIL BORING LOG HSI-SB-02 |                          |                                   |                   |  |  |  |  |  |
|--------------------------------------------|-------------------------------------------------|--------------------------|-----------------------------------|-------------------|--|--|--|--|--|
| PROJECT: Montgom                           | ery Brothers Dur                                | DATE STARTED: 09/28/2020 |                                   |                   |  |  |  |  |  |
| LOCATION: Lakeside                         | Chesapeake                                      |                          |                                   |                   |  |  |  |  |  |
| DRILLING COMPANY:                          | GeoSciences, Inc.                               |                          |                                   |                   |  |  |  |  |  |
| DRILLING METHOD:                           | Geoprobe 6620D                                  | T - DPT                  | PROJECT MANAGER: Nancy Love       |                   |  |  |  |  |  |
| SAMPLING METHOD:                           | Macrocore                                       |                          | BORING DIAMETER: 2"               | BORING DEPTH: 20' |  |  |  |  |  |
| DEPTH TO GW (ft) FROM                      | 1 BG: NA                                        | DATE: 09/28/2020         | NOTES: East-northeast of HSI-HRS0 | C-10, in AOC-1    |  |  |  |  |  |
| DEPTH (ft) PID READINGS (ppm) RECOVERY (%) | SOIL<br>CLASS<br>GRAPHIC<br>LOG                 | OVERBUR<br>DESCR         | NOTES                             |                   |  |  |  |  |  |



| PRC            | JECT                 | CG-09    | 9-0423.     | 10      | SC  | DIL BORING LOG HSI-SB-02                                                                                                   | PAGE 2 OF 2                                                                  |   | ]            |   |    |  |  |  |                |   |    |  |  |                                                                                                              |  |   |    |
|----------------|----------------------|----------|-------------|---------|-----|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---|--------------|---|----|--|--|--|----------------|---|----|--|--|--------------------------------------------------------------------------------------------------------------|--|---|----|
| DEPTH (ft)     | PID READING<br>(ppm) | RECOVERY | SOIL        | GRAPHIC | POO | OVERBURDEN / ROCK<br>DESCRIPTION                                                                                           | NOTES                                                                        |   |              |   |    |  |  |  |                |   |    |  |  |                                                                                                              |  |   |    |
| - <b>-11.0</b> | 124<br>44.9          | 100%     |             |         |     | Pale yellow, mottled, damp, dense Clayey SAND, little plastic debris; weathered bedrock texture (reworked material); fill. | 18:30<br>Bottom of Impact Sample<br>11-11.5' BG. VOCs Only.<br>Odor 8-12' BG |   | - <b>1</b>   |   |    |  |  |  |                |   |    |  |  |                                                                                                              |  |   |    |
| <b>12.0</b>    | 11.0                 |          | SC/<br>FILL |         |     |                                                                                                                            | Top 1.5' of Macrocore (12-13.5') is run-up.                                  | - | -1           |   |    |  |  |  |                |   |    |  |  |                                                                                                              |  |   |    |
| _<br>— -13.0   | 95.7<br>293<br>141   |          |             |         |     | Yellow, weak red, and white, damp, stiff Clayey SILT; weathered bedrock texture.                                           | 1.2 3p.                                                                      | _ | -<br>-<br>-1 |   |    |  |  |  |                |   |    |  |  |                                                                                                              |  |   |    |
| -<br>14.0      | 17.9<br>15.4         | 100%     |             |         |     |                                                                                                                            |                                                                              |   |              | _ | -1 |  |  |  |                |   |    |  |  |                                                                                                              |  |   |    |
| 15.0<br>-      | 10.0<br>6.5          |          |             |         |     |                                                                                                                            |                                                                              |   |              |   |    |  |  |  | Odor 12-16' BG | - | -1 |  |  |                                                                                                              |  |   |    |
| <b>16.0</b>    | 10.6<br>55.0         |          |             |         |     |                                                                                                                            | Top 2' of Macrocore (16-18') is run-<br>up.                                  | _ | -1           |   |    |  |  |  |                |   |    |  |  |                                                                                                              |  |   |    |
| -<br>17.0<br>- | 85.8<br>199          | 100%     |             |         |     |                                                                                                                            |                                                                              |   |              |   |    |  |  |  |                |   | ML |  |  | Yellow, weak red, white, and grey, damp, stiff Clayey SILT, trace rock fragments; weathered bedrock texture. |  | _ | -1 |
| <b>18.0</b>    | 186<br>43.7          |          |             |         |     |                                                                                                                            |                                                                              | _ | -1           |   |    |  |  |  |                |   |    |  |  |                                                                                                              |  |   |    |
| - 40.0         | 22.3                 |          |             |         |     |                                                                                                                            |                                                                              | - | †<br> <br>   |   |    |  |  |  |                |   |    |  |  |                                                                                                              |  |   |    |
| 19.0<br>-      | 13.0                 |          |             |         |     |                                                                                                                            |                                                                              | - | <b>-1</b>    |   |    |  |  |  |                |   |    |  |  |                                                                                                              |  |   |    |
| <b>20.0</b>    | 14.7                 |          |             |         |     |                                                                                                                            |                                                                              |   | 2            |   |    |  |  |  |                |   |    |  |  |                                                                                                              |  |   |    |

| PRO                                                    | DJECT     | CG-       | PAGE 1 OF 2 |           |                             |                                          |                   |  |
|--------------------------------------------------------|-----------|-----------|-------------|-----------|-----------------------------|------------------------------------------|-------------------|--|
| PROJ                                                   | ECT:      | Montgon   | nery Broth  | ners Dum  | np - Hot Spot Investigation | DATE STARTED: 09/29/2020                 |                   |  |
| LOCA                                                   | TION:     | Lakeside  | Park, No    | rth East, | MD 21901 (MD-137)           | DATE/TIME<br>COMPLETED: 09/29/2020 12:55 | Chesapeake        |  |
| DRILL                                                  | ING COM   | PANY:     | Tidewate    | r, Inc.   |                             | LOGGED BY: Meg Staines                   | GeoSciences, Inc. |  |
| DRILL                                                  | ING METH  | HOD:      | Geoprobe    | e 6620D   | T - DPT                     | PROJECT MANAGER: Nancy Love              |                   |  |
| SAMF                                                   | PLING MET | ΓHOD:     | Macrocor    | e         |                             | BORING DIAMETER: 2"                      | BORING DEPTH: 20' |  |
| DEPT                                                   | H TO GW   | (ft) FROI | M BG: N     | IA        | DATE: 09/29/2020            | NOTES: Southeast of HSI-HRSC-50,         | in AOC-3          |  |
| PID READINGS (ppm) RECOVERY (%) SOIL CLASS GRAPHIC LOG |           |           |             |           |                             | DEN / ROCK<br>RIPTION                    | NOTES             |  |



| PRC         | JECT                 | CG-09    | 9-0423.1 | 10 <b>S</b> (  | OIL BORING LOG HSI-SB-03                                                                                                 | PAGE 2 OF 2                                                 |                      |     |
|-------------|----------------------|----------|----------|----------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------|-----|
| DEPTH (ft)  | PID READING<br>(ppm) | RECOVERY | SOIL     | GRAPHIC<br>LOG | OVERBURDEN / ROCK<br>DESCRIPTION                                                                                         | NOTES                                                       |                      |     |
| 11.0        | 73.0<br>43.1         | 55%      |          |                | Light grey, mottled, damp, stiff Clayey SILT, little fine to coarse Sand, little fine to coarse Gravel.                  | 12:10<br>Bottom of Impact Sample<br>11-11.5' BG. VOCs Only. |                      | -1′ |
| <b>12.0</b> | 24.1<br>15.8         |          |          |                | Pale yellow, white, and weak red, mottled, moist, stiff Clayey<br>SILT, little Sand; weathered bedrock texture.          | Moist at 12' BG.                                            | -                    | -12 |
| -<br>13.0   | 19.3<br>22.0         |          |          |                | Damp 12.25-16'.                                                                                                          |                                                             | -<br>  -<br>  -      | -13 |
| -<br>14.0   | 10.7                 | 100%     | ML       |                |                                                                                                                          |                                                             | <del>-</del>   -   . | -14 |
| -<br>15.0   | 17.3<br>8.7          |          |          |                |                                                                                                                          |                                                             | -<br>  -<br>  -      | -14 |
| -<br>16.0   | 2.4                  |          |          |                |                                                                                                                          | Top 1' of Macrocore (16-17') is run-up.                     | -<br>  -<br>  -      | -10 |
| -<br>17.0   | 33.5                 |          |          |                | Yellow and white, mottled with weak red, damp, stiff Clayey                                                              | Moisture 16-17.5' - likely carried down from above.         | -<br>  -<br>  -      | -17 |
| _<br>18.0   | 5.5<br>6.5           | 100%     |          |                | SILT, little Sand, trace Gravel, trace weak red Silty Clay lenses; weathered bedrock texture.  Slightly moist at 18' BG. | Slightly moist at 18' BG.                                   |                      | -18 |
| _<br>19.0   | 5.6<br>3.8           |          |          |                |                                                                                                                          |                                                             |                      | -19 |
| -20.0       | 4.7<br>6.2           |          |          |                |                                                                                                                          |                                                             |                      | -20 |

| <b>PROJECT</b> CG-09-0423.10                                      | PAGE 1 OF 2                 |                                           |                   |  |
|-------------------------------------------------------------------|-----------------------------|-------------------------------------------|-------------------|--|
| PROJECT: Montgomery Brothers Du                                   | mp - Hot Spot Investigation | DATE STARTED: 09/29/2020                  |                   |  |
| LOCATION: Lakeside Park, North Eas                                | t, MD 21901 (MD-137)        | DATE/TIME<br>COMPLETED: 09/29/2020 10:22  | Chesapeake        |  |
| DRILLING COMPANY: Tidewater, Inc.                                 |                             | LOGGED BY: Meg Staines                    | GeoSciences, Inc. |  |
| DRILLING METHOD: Geoprobe 6620                                    | DT - DPT                    | PROJECT MANAGER: Nancy Love               |                   |  |
| SAMPLING METHOD: Macrocore                                        |                             | BORING DIAMETER: 2"                       | BORING DEPTH: 20' |  |
| DEPTH TO GW (ft) FROM BG: NA                                      | DATE: 09/29/2020            | NOTES: Northeast of HSI-HRSC-39, in AOC-3 |                   |  |
| DEPTH (ft) PID READINGS (ppm) RECOVERY (%) SOIL CLASS GRAPHIC LOG |                             | DEN / ROCK<br>RIPTION                     | NOTES             |  |





| PRO                                            | DJECT     | CG-       | PAGE 1 OF 2 |           |                             |                                          |                   |  |  |
|------------------------------------------------|-----------|-----------|-------------|-----------|-----------------------------|------------------------------------------|-------------------|--|--|
| PROJ                                           | ECT:      | Montgon   | nery Broth  | ners Dum  | np - Hot Spot Investigation | DATE STARTED: 09/30/2020                 |                   |  |  |
| LOCA                                           | TION:     | Lakeside  | Park, No    | rth East, | MD 21901 (MD-137)           | DATE/TIME<br>COMPLETED: 09/30/2020 12:20 | Chesapeake        |  |  |
| DRILL                                          | ING COM   | PANY:     | Tidewate    | r, Inc.   |                             | LOGGED BY: Meg Staines                   | GeoSciences, Inc. |  |  |
| DRILL                                          | ING METH  | HOD:      | Geoprobe    | e 6620D   | T - DPT                     | PROJECT MANAGER: Nancy Love              |                   |  |  |
| SAMF                                           | PLING MET | THOD:     | Macrocor    | е         |                             | BORING DIAMETER: 2"                      | BORING DEPTH: 20' |  |  |
| DEPT                                           | H TO GW   | (ft) FROI | M BG: N     | IA        | DATE: 09/30/2020            | NOTES: Southwest of HSI-HRSC-47          | , in AOC-3        |  |  |
| OVERBUS (# (# (# (# (# (# (# (# (# (# (# (# (# |           |           |             |           |                             | DEN / ROCK<br>RIPTION                    | NOTES             |  |  |



| PRC            | JECT                 | CG-09    | 9-0423.1      | 10      | S   | DIL BORING LOG HSI-SB-05                                                                                                                                       | PAGE 2 OF 2                                                  | ]                                                                                                                                               |  |   |
|----------------|----------------------|----------|---------------|---------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|---|
| DEPTH (ft)     | PID READING<br>(ppm) | RECOVERY | SOIL<br>CLASS | GRAPHIC | FOG | OVERBURDEN / ROCK<br>DESCRIPTION                                                                                                                               | NOTES                                                        |                                                                                                                                                 |  |   |
| 11.0<br>-      | 1.8<br>6.1           | 100%     |               |         |     | White, damp, stiff Clayey SILT, some very fine Sand, trace coarse Gravel; weathered bedrock texture.                                                           |                                                              | 1                                                                                                                                               |  |   |
| <b>12.0</b>    | 2.1                  |          |               |         |     |                                                                                                                                                                | Used Discrete/ Closed-Piston                                 | -                                                                                                                                               |  |   |
| -<br>13.0      | <br>6.8<br>1.9       |          | ML            |         |     |                                                                                                                                                                | Macrocore Sampler 12-16' BG.                                 | -<br>-<br>-1                                                                                                                                    |  |   |
| -<br>14.0<br>- | 3.2<br>4.0           | 83%      |               |         | CD  |                                                                                                                                                                |                                                              | Very light brownish yellow and weak red, mottled, damp, stiff Clayey SILT, some very fine Sand, trace coarse Gravel; weathered bedrock texture. |  | 1 |
| 15.0<br>-      | 5.2<br>6.8           |          | GP            | ⊠.      |     | GRAVEL layer.  Very light brownish yellow and weak red, mottled, damp, stiff Clayey SILT, some very fine Sand, trace coarse Gravel; weathered bedrock texture. |                                                              | 1                                                                                                                                               |  |   |
| <b>16.0</b>    | 0.2                  |          |               |         |     | Very light brownish yellow and weak red, mottled, damp, stiff<br>Clayey SILT, some very fine Sand; weathered bedrock texture.                                  | Used Discrete/ Closed-Piston<br>Macrocore Sampler 16-20' BG. | -                                                                                                                                               |  |   |
| - <b>-17.0</b> | 0.8                  |          | ML            |         |     |                                                                                                                                                                | _                                                            | -1                                                                                                                                              |  |   |
| -<br>18.0      | 0.3<br>4.2           | 100%     |               |         |     |                                                                                                                                                                |                                                              | -1                                                                                                                                              |  |   |
| -<br>19.0      | 4.4                  |          |               |         |     | Weak red, mottled, damp, stiff Clayey SILT, some very fine                                                                                                     | -                                                            | -<br>-<br>-                                                                                                                                     |  |   |
| -<br>20.0      | 1.1                  |          |               |         |     | Sand; weathered bedrock texture.                                                                                                                               |                                                              | _<br>                                                                                                                                           |  |   |

| PROJECT CG-09-0423.10                                         | PAGE 1 OF 2                   |                                           |                   |  |  |
|---------------------------------------------------------------|-------------------------------|-------------------------------------------|-------------------|--|--|
| PROJECT: Montgomery Brothers                                  | Dump - Hot Spot Investigation | DATE STARTED: 09/30/2020                  |                   |  |  |
| LOCATION: Lakeside Park, North I                              | ast, MD 21901 (MD-137)        | DATE/TIME<br>COMPLETED: 09/30/2020 14:00  | Chesapeake        |  |  |
| DRILLING COMPANY: Tidewater, In                               | LOGGED BY: Meg Staines        | GeoSciences, Inc.                         |                   |  |  |
| DRILLING METHOD: Geoprobe 66                                  | ODT - DPT                     | PROJECT MANAGER: Nancy Love               |                   |  |  |
| SAMPLING METHOD: Macrocore                                    |                               | BORING DIAMETER: 2"                       | BORING DEPTH: 20' |  |  |
| DEPTH TO GW (ft) FROM BG: NA                                  | DATE: 09/30/2020              | NOTES: Southeast of HSI-HRSC-48, in AOC-3 |                   |  |  |
| DEPTH (ft) PID READINGS (ppm) RECOVERY (%) SOIL CLASS GRAPHIC | 4.                            | OVERBURDEN / ROCK DESCRIPTION             |                   |  |  |



| PRC                 | JECT                 | CG-09    | 9-0423.1 | 0 <b>S</b>     | OIL BORING LOG HSI-SB-06                                                                                                         | PAGE 2 OF 2                                                  |   | l   |                                    |  |   |     |     |  |   |                                                                                                 |                             |   |     |  |  |  |  |                                                              |   |     |
|---------------------|----------------------|----------|----------|----------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---|-----|------------------------------------|--|---|-----|-----|--|---|-------------------------------------------------------------------------------------------------|-----------------------------|---|-----|--|--|--|--|--------------------------------------------------------------|---|-----|
| DEРТН (ft)          | PID READING<br>(ppm) | RECOVERY | SOIL     | GRAPHIC<br>LOG | OVERBURDEN / ROCK<br>DESCRIPTION                                                                                                 | NOTES                                                        |   |     |                                    |  |   |     |     |  |   |                                                                                                 |                             |   |     |  |  |  |  |                                                              |   |     |
| — -11.0<br>–        | 1.1<br>0.6           | 100%     |          |                | Light grey, mottled, damp, stiff Clayey SILT, some fine to coarse Sand, some fine to coarse Gravel; weathered bedrock texture.   |                                                              |   | -1′ |                                    |  |   |     |     |  |   |                                                                                                 |                             |   |     |  |  |  |  |                                                              |   |     |
| 12.0<br>-           | 3.3<br>1.7           |          |          |                | Grey, mottled, damp, stiff Clayey SILT, little fine to coarse Sand, little fine Gravel lenses; weathered bedrock texture.        | Used Discrete/ Closed-Piston<br>Macrocore Sampler 12-16' BG. | - | -12 |                                    |  |   |     |     |  |   |                                                                                                 |                             |   |     |  |  |  |  |                                                              |   |     |
| 13.0<br>-           | 0.2<br>1.3           |          |          |                | Wet at 13' BG.                                                                                                                   | Wet at 13'.                                                  | - | -1: |                                    |  |   |     |     |  |   |                                                                                                 |                             |   |     |  |  |  |  |                                                              |   |     |
| - <b>-14.0</b><br>- | 2.0<br>4.0           | 98%      |          |                | Very pale yellow, mottled, damp, stiff Clayey SILT, little very fine SAND, little fine Gravel lenses; weathered bedrock texture. |                                                              | - | -14 |                                    |  |   |     |     |  |   |                                                                                                 |                             |   |     |  |  |  |  |                                                              |   |     |
| 15.0<br>-           | 3.3<br>2.1           |          | 95%      |                |                                                                                                                                  |                                                              |   | ML  |                                    |  |   | -   | -1  |  |   |                                                                                                 |                             |   |     |  |  |  |  |                                                              |   |     |
| <b>16.0</b>         | 0.8                  |          |          |                |                                                                                                                                  |                                                              |   |     |                                    |  |   |     |     |  | ı |                                                                                                 |                             |   |     |  |  |  |  | Used Discrete/ Closed-Piston<br>Macrocore Sampler 16-20' BG. | - | -10 |
| -<br>17.0           | 0.8                  |          |          |                |                                                                                                                                  |                                                              |   |     |                                    |  |   |     |     |  |   | Very pale yellow, weak red, and yellow, mottled, damp, stiff Clayey SILT, little fine to coarse | Macrocore Gampler 10-20 BG. | - | -17 |  |  |  |  |                                                              |   |     |
| -<br>18.0           | 1.1                  | 95%      |          |                |                                                                                                                                  |                                                              |   |     | Gravel; weathered bedrock texture. |  | - | -18 |     |  |   |                                                                                                 |                             |   |     |  |  |  |  |                                                              |   |     |
| -<br>19.0           | 2.5<br>3.8           |          |          |                |                                                                                                                                  |                                                              |   |     |                                    |  |   | -   | -1! |  |   |                                                                                                 |                             |   |     |  |  |  |  |                                                              |   |     |
| -<br>20.0           | 1.4<br>0.3           |          |          |                |                                                                                                                                  |                                                              | - |     |                                    |  |   |     |     |  |   |                                                                                                 |                             |   |     |  |  |  |  |                                                              |   |     |

| PRO           | JECT     | CG-      | PAGE 1 OF 2 |           |                             |                                           |                   |  |
|---------------|----------|----------|-------------|-----------|-----------------------------|-------------------------------------------|-------------------|--|
| PROJE         | ECT:     | Montgom  | nery Broth  | ers Dun   | np - Hot Spot Investigation | DATE STARTED: 09/30/2020                  |                   |  |
| LOCA          | TION:    | Lakeside | Park, No    | rth East, | MD 21901 (MD-137)           | DATE/TIME<br>COMPLETED: 09/30/2020 15:00  | Chesapeake        |  |
| DRILLI        | ING COM  | PANY:    | Tidewate    | r, Inc.   |                             | LOGGED BY: Meg Staines                    | GeoSciences, Inc. |  |
| DRILLI        | ING METH | HOD:     | Geoprobe    | e 6620D   | T - DPT                     | PROJECT MANAGER: Nancy Love               | 1                 |  |
| SAMPI         | LING MET | THOD:    | Macrocor    | е         |                             | BORING DIAMETER: 2" BORING DEPTH: 20'     |                   |  |
| DEPTH         | H TO GW  | (ft) FRO | ИBG: N      | IA        | DATE: 09/30/2020            | NOTES: Northwest of HSI-HRSC-04, in AOC-3 |                   |  |
| +   Z @   5 C |          |          |             |           |                             | DEN / ROCK<br>RIPTION                     | NOTES             |  |



| PRC               | JECT                 | CG-09    | 9-0423.1      | 0 <b>S</b> (                                 | OIL BORING LOG HSI-SB-07                                                                     | PAGE 2 OF 2                                                                         |   |     |
|-------------------|----------------------|----------|---------------|----------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---|-----|
| <b>DEPTH (ft)</b> | PID READING<br>(ppm) | RECOVERY | SOIL<br>CLASS | GRAPHIC<br>LOG                               | OVERBURDEN / ROCK<br>DESCRIPTION                                                             | NOTES                                                                               |   |     |
| 11.0              | 4.5<br>2.8           | 100%     |               |                                              | Very light brownish yellow, damp, stiff Clayey SILT, some very fine Sand, trace fine Gravel. |                                                                                     |   | -11 |
| <b>12.0</b>       | 1.6<br>0.7           |          | ML            |                                              |                                                                                              | Used Discrete/ Closed-Piston<br>Macrocore Sampler 12-16' BG.                        | - | -12 |
| _<br>13.0         | 2.7                  |          |               |                                              | Very pale yellow, damp, stiff Clayey SILT; weathered bedrock texture.                        | ·                                                                                   | - | -1: |
| -<br>14.0         |                      | 83%      |               | <u>                                     </u> | Very pale yellow, light grey, yellow, and weak red, mottled,                                 |                                                                                     | - | -14 |
| _<br>15.0         | 3.7                  |          | CL/<br>ML     |                                              | damp, stiff CLAY & SILT; weathered bedrock texture.                                          |                                                                                     | _ | -18 |
| _<br>16.0         | 0.7                  |          |               |                                              | Yellow and light grey, mottled, damp, stiff Clayey SILT, little fine                         | Top 0.5' of Macrocore                                                               | - | -16 |
| _<br>17.0         | 0.8<br>1.4<br>2.5    |          |               |                                              | to coarse Sand; weathered bedrock texture.                                                   | (16-16.5' BG) is run-up.  Used Discrete/ Closed-Piston Macrocore Sampler 16-20' BG. | - | -17 |
| _<br>18.0         | 1.5                  | 100%     | ML            |                                              |                                                                                              | ·                                                                                   | - | -18 |
| _                 | 2.9<br>5.0           |          |               |                                              |                                                                                              |                                                                                     |   |     |
| 19.0<br>-         | 2.9                  |          |               |                                              |                                                                                              |                                                                                     |   | -19 |
| -20.0             | 3.2                  |          |               |                                              |                                                                                              |                                                                                     |   | -2( |

| PROJECT CG-09-0423.10                                 | PAGE 1 OF 2                              |                                                 |       |  |
|-------------------------------------------------------|------------------------------------------|-------------------------------------------------|-------|--|
| PROJECT: Montgomery Brothers                          | Dump - Hot Spot Investigation            | DATE STARTED: 10/01/2020                        |       |  |
| LOCATION: Lakeside Park, North E                      | DATE/TIME<br>COMPLETED: 10/01/2020 11:45 | Chesapeake                                      |       |  |
| DRILLING COMPANY: Tidewater, Inc                      | GeoSciences, Inc.                        |                                                 |       |  |
| DRILLING METHOD: Geoprobe 66                          | 0DT - DPT                                | PROJECT MANAGER: Nancy Love                     |       |  |
| SAMPLING METHOD: Macrocore                            |                                          | BORING DIAMETER: 2" BORING DEPTH: 20'           |       |  |
| DEPTH TO GW (ft) FROM BG: NA                          | DATE: 10/01/2020                         | NOTES: In between HSI-HRSC-10 and -12, in AOC-1 |       |  |
| DEPTH (ft) PID READINGS (ppm) RECOVERY (%) SOIL CLASS | 4.                                       | DEN / ROCK<br>RIPTION                           | NOTES |  |

| 0.0   |       |     |             |                 |                                                                                                                                       |                                                         |      |
|-------|-------|-----|-------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------|
| -     |       |     | OL          |                 | Topsoil.                                                                                                                              | _                                                       |      |
|       | 0.2   |     | GW/         |                 | Light grey and white, dry, loose, fine to coarse GRAVEL, fill.                                                                        |                                                         |      |
|       | 0.8   |     | FILL        |                 |                                                                                                                                       |                                                         |      |
| -1.0  |       |     |             | <u> </u>        | Yellowish brown, mottled, damp, medium stiff Clayey SILT,                                                                             | Collected 2 Macrocores 0-4' for                         | -    |
|       | 0.5   |     |             |                 | some fine to coarse Sand, some fine to coarse Gravel; fill.                                                                           | adequate sample volume.                                 |      |
|       | 0.1   |     | NAL /       |                 | Some black discoloration.                                                                                                             |                                                         |      |
| -2.0  | 0.1   | 80% | ML/<br>FILL |                 |                                                                                                                                       |                                                         |      |
| L     | 3.9   |     |             |                 |                                                                                                                                       |                                                         |      |
|       | 5.5   |     |             |                 |                                                                                                                                       |                                                         |      |
| -3.0  | 5.5   |     | GM/         |                 |                                                                                                                                       | -                                                       | - -; |
|       | 28.73 |     | FILL        |                 | White and yellowish brown, dry, loose, coarse GRAVEL and Clayey SILT; fill.                                                           | 1.0.40                                                  |      |
|       |       |     |             | <u> </u>        | Greyish brown, damp, stiff Clayey SILT, little fine to coarse                                                                         | - 10:40<br>Top of Impact 1 Sample 3.5-4' BG.            |      |
| -4.0  | 69.80 |     |             |                 | Sand, trace fine to coarse Gravel; fill. Some black discoloration.                                                                    | Metals, SVOCs, & VOCs.                                  |      |
|       | 37.84 |     |             |                 | Grey and white, multicolored, damp, stiff Clayey SILT, little fine to coarse Sand, little fine to coarse Gravel, little Trash (mostly |                                                         |      |
| -     |       |     |             |                 | glass); fill.                                                                                                                         |                                                         | -    |
| -5.0  | 85.5  |     |             |                 |                                                                                                                                       |                                                         |      |
|       | 45.3  |     |             |                 |                                                                                                                                       | Collected 2 Macrocores 4-8' for adequate sample volume. |      |
| -     | 40.0  |     | ML/         | <u> </u>        |                                                                                                                                       |                                                         | -    |
| -6.0  | 22.36 | 40% | FILL        |                 |                                                                                                                                       |                                                         |      |
| -6.0  | 04.5  | 40% |             | × 0×            |                                                                                                                                       |                                                         |      |
| -     | 31.5  |     |             |                 |                                                                                                                                       | Slightly moist 6.5-12' BG.                              |      |
|       | 16.2  |     |             | \(\frac{1}{2}\) | Grey and light brownish grey, mottled, slightly moist, medium stiff Clayey SILT, little glass debris; fill.                           | Clightly moist 0.0 12 BC.                               |      |
| -7.0  |       |     |             |                 | , , , , , , , , , , , , , , , , , , ,                                                                                                 |                                                         | -    |
|       | 16.3  |     |             |                 |                                                                                                                                       |                                                         |      |
|       | 18.7  |     |             |                 |                                                                                                                                       |                                                         |      |
| -8.0  | ,     |     |             |                 | Grey and greyish brown, mottled, slightly moist, medium stiff                                                                         | 10:50<br>Top of Impact 2 Sample 8-8.5' BG.              | -    |
|       | 128.0 |     |             |                 | Clayey SILT, little fine to coarse Sand, trace fine to coarse                                                                         | VOCs Only.                                              |      |
|       | 42.4  |     |             |                 | Gravel.                                                                                                                               |                                                         |      |
| -9.0  | 74.4  |     | ML          |                 |                                                                                                                                       | Collected 2 Macrocores 8-12' for                        |      |
|       | 12.3  | 98% |             |                 |                                                                                                                                       | adequate sample volume.                                 |      |
|       | 074 - |     |             |                 |                                                                                                                                       |                                                         |      |
| -10.0 | 271.7 |     |             |                 |                                                                                                                                       | -                                                       | - -  |
|       | 144.9 |     | SC          |                 | Light grey, mottled, slightly moist, medium dense, Clayey fine SAND.                                                                  |                                                         |      |

| PRC         | JECT                 | CG-09    | 9-0423. | 10           | S        | OIL BORING LOG HSI-SB-08                                                                                                                           | PAGE 2 OF 2                                        |    |
|-------------|----------------------|----------|---------|--------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----|
| ОЕРТН (#)   | PID READING<br>(ppm) | RECOVERY | SOIL    | GRAPHIC      | POO      | OVERBURDEN / ROCK<br>DESCRIPTION                                                                                                                   | NOTES                                              |    |
|             | F26                  |          | CL/     | <b>-</b> .:. | <u> </u> | White, slightly moist, medium stiff CLAY & SILT.                                                                                                   | Slightly moist 6.5-12' BG.                         |    |
| <b>11.0</b> | 536<br>449           | 98%      | ML      |              |          | Grey, yellowish brown, and greyish brown, slightly moist,<br>medium stiff Clayey SILT, little fine to coarse Sand, little fine to                  | 1  -                                               | -1 |
| _           | 434                  |          |         |              |          | coarse Gravel; weathered bedrock texture.                                                                                                          |                                                    |    |
| 12.0<br>-   | 582                  |          |         |              |          | Very pale brown and yellow, mottled, damp, stiff Clayey SILT, little fine to coarse Sand, little fine to coarse Gravel; weathered bedrock texture. | High PID Sample 12-13' BG and Duplicate HSI-SB-D2. | -1 |
| <b>13.0</b> | 571                  |          |         |              |          |                                                                                                                                                    | 11:10                                              | -1 |
| _           | 104                  |          |         |              |          |                                                                                                                                                    | Bottom of Impact Sample<br>13-13.5' BG. VOCs Only. |    |
| 14.0        | 35.5                 | 83%      |         |              |          | Vollage and light grow mottled, down at # Clayov Cl. T.                                                                                            | Used Discrete/ Closed-Piston                       | -1 |
| _           | 22.8                 |          |         |              |          | Yellow and light grey, mottled, damp, stiff Clayey SILT; weathered bedrock texture.                                                                | Macrocore Sampler 12-16' BG.                       |    |
| 15.0        | 21.5                 |          |         |              |          |                                                                                                                                                    |                                                    | -1 |
| _           | 15.3                 |          | ML      |              |          |                                                                                                                                                    |                                                    |    |
| 16.0        | 5.2                  |          | -       |              |          |                                                                                                                                                    |                                                    | -1 |
| _           | 1.0                  |          |         |              |          |                                                                                                                                                    |                                                    |    |
| 17.0        | 10.2                 |          |         |              |          |                                                                                                                                                    |                                                    | -1 |
| _           | 15.0                 |          |         |              |          |                                                                                                                                                    |                                                    |    |
| <b>18.0</b> | 12.8                 | 98%      |         |              |          | Yellow and light grey, mottled, damp, stiff Clayey SILT, trace                                                                                     | Used Discrete/ Closed-Piston                       | -1 |
| _           | 2.1                  |          |         |              |          | fine Gravel lenses; weathered bedrock texture.                                                                                                     | Macrocore Sampler 16-20' BG.                       |    |
| <b>19.0</b> | 2.0                  |          |         |              |          |                                                                                                                                                    |                                                    | -1 |
| _           | 5.6                  |          |         |              |          |                                                                                                                                                    |                                                    |    |
| 20.0        | 8.9                  |          |         |              |          |                                                                                                                                                    |                                                    | -2 |

| PROJECT CG-09-0423.10                                  | PAGE 1 OF 2      |                                  |                   |
|--------------------------------------------------------|------------------|----------------------------------|-------------------|
| PROJECT: Montgomery Brothers Du                        |                  |                                  |                   |
| LOCATION: Lakeside Park, North Eas                     | Chesapeake       |                                  |                   |
| DRILLING COMPANY: Tidewater, Inc.                      |                  | LOGGED BY: Meg Staines           | GeoSciences, Inc. |
| DRILLING METHOD: Geoprobe 6620                         | OT - DPT         | PROJECT MANAGER: Nancy Love      |                   |
| SAMPLING METHOD: Macrocore                             |                  | BORING DIAMETER: 2"              | BORING DEPTH: 20' |
| DEPTH TO GW (ft) FROM BG: NA                           | DATE: 10/01/2020 | NOTES: In between HSI-HRSC-07 ar | nd -10, in AOC-1  |
| PID READINGS (ppm) RECOVERY (%) SOIL CLASS GRAPHIC LOG |                  | DEN / ROCK<br>RIPTION            | NOTES             |



| PRC               | JECT                 | CG-09    | 9-0423.1  | 10 <b>S</b> (  | OIL BORING LOG HSI-SB-09                                                                                                                                                | PAGE 2 OF 2                                                  |   | ]           |  |  |  |                             |   |     |
|-------------------|----------------------|----------|-----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---|-------------|--|--|--|-----------------------------|---|-----|
| <b>DEPTH (ft)</b> | PID READING<br>(ppm) | RECOVERY | SOIL      | GRAPHIC<br>LOG | OVERBURDEN / ROCK<br>DESCRIPTION                                                                                                                                        | NOTES                                                        |   |             |  |  |  |                             |   |     |
| 11.0<br>-         | 8.6<br>4.4           | 100%     |           |                | White and pale yellow, mottled, damp, stiff Clayey SILT; weathered bedrock texture.                                                                                     |                                                              | - | <b>-1</b> 1 |  |  |  |                             |   |     |
| 12.0<br>-         | 7.5<br>3.6           |          |           |                | White, yellow, and pale yellow, damp, stiff Clayey SILT, little fine Gravel seams; weathered bedrock texture.                                                           | Used Discrete/ Closed-Piston<br>Macrocore Sampler 12-16' BG. | - | -12         |  |  |  |                             |   |     |
| 13.0<br>-         | 3.6<br>9.3           |          | ML        |                |                                                                                                                                                                         | No Top of Impact Sample.                                     | - | -1:         |  |  |  |                             |   |     |
| 14.0<br>-         | 13.5<br>39.9         | 83%      |           |                | Weak red, yellow, pale yellow, and white, damp, stiff Clayey SILT; weathered bedrock texture.                                                                           | 13:25<br>High PID Sample 14-14.5' BG.<br>VOCs Only.          | - | -14         |  |  |  |                             |   |     |
| 15.0<br>-         | 7.9<br>29.2          |          |           |                |                                                                                                                                                                         |                                                              |   |             |  |  |  | No Bottom of Impact Sample. | - | -18 |
| 16.0<br>-         | 10.1                 |          |           |                | Weak red, mottled, damp, stiff Clayey SILT; weathered bedrock texture.  Weak red, mottled with yellow and light grey, wet, soft SILT & CLAY; weathered bedrock texture. | Wet 16-17' BG.                                               | - | -16         |  |  |  |                             |   |     |
| 17.0<br>-         | 0.9<br>21.1          |          | ML/<br>CL |                | Damp 17-18' BG.                                                                                                                                                         | Used Discrete/ Closed-Piston<br>Macrocore Sampler 16-20' BG. | - | -17         |  |  |  |                             |   |     |
| -18.0             | 4.2                  | 100%     |           |                | Yellow, grey, and weak red, damp, stiff Clayey SILT, trace fine                                                                                                         | _                                                            | - | -18         |  |  |  |                             |   |     |
| _                 | 21.5<br>19.0         |          |           |                | to coarse Sand, trace fine to coarse rock fragments; weathered bedrock texture.                                                                                         |                                                              | - |             |  |  |  |                             |   |     |
| -19.0             | 17.7                 |          | ML        |                |                                                                                                                                                                         |                                                              | - | -19         |  |  |  |                             |   |     |
| -20.0             | 14.4                 |          |           |                |                                                                                                                                                                         |                                                              |   |             |  |  |  |                             |   |     |

| PROJECT CG-09                              | PAGE 1 OF 2                     |                  |                                  |                   |
|--------------------------------------------|---------------------------------|------------------|----------------------------------|-------------------|
| PROJECT: Montgomer                         |                                 |                  |                                  |                   |
| LOCATION: Lakeside Pa                      | Chesapeake                      |                  |                                  |                   |
| DRILLING COMPANY: Tid                      | dewater, Inc.                   |                  | LOGGED BY: Meg Staines           | GeoSciences, Inc. |
| DRILLING METHOD: Ge                        | eoprobe 6620D                   | T - DPT          | PROJECT MANAGER: Nancy Love      |                   |
| SAMPLING METHOD: Ma                        | acrocore                        |                  | BORING DIAMETER: 2"              | BORING DEPTH: 20' |
| DEPTH TO GW (ft) FROM E                    | BG: NA                          | DATE: 10/01/2020 | NOTES: Southeast of HSI-HRSC-49, | in AOC-3          |
| DEPTH (ft) PID READINGS (ppm) RECOVERY (%) | SOIL<br>CLASS<br>GRAPHIC<br>LOG |                  | DEN / ROCK<br>RIPTION            | NOTES             |

| - <b>0.0</b> | 1.6          |      | OL/                | 1 1 1 1 1   | Brown, multicolored, damp, soft Clayey SILT, some Organics.                                                                                                                       |                                                              |       |             |  |                                                                                                                    |                                  |               |                                                   |   |
|--------------|--------------|------|--------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------|-------------|--|--------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|---------------------------------------------------|---|
| 1.0          | 0.1          |      | FILL               |             |                                                                                                                                                                                   | Collected 2 Macrocores 0-4' for                              | -     |             |  |                                                                                                                    |                                  |               |                                                   |   |
|              | 1.2          |      |                    |             | Very light brownish yellow, mottled, damp, stiff Clayey SILT, little fine to coarse Gravel, little Trash, trace Sand; fill.                                                       | adequate sample volume.                                      |       |             |  |                                                                                                                    |                                  |               |                                                   |   |
| 2.0          | 0.4          | 88%  |                    |             | Very light brownish yellow, mottled, dry, medium stiff Clayey SILT, some fine to coarse SAND, some fine to coarse Gravel, some Trash (mainly rubber, but also plastic, glass, and |                                                              | -     |             |  |                                                                                                                    |                                  |               |                                                   |   |
|              | 1.1          |      | ML/                |             | ceramics); fill.                                                                                                                                                                  |                                                              |       |             |  |                                                                                                                    |                                  |               |                                                   |   |
| -3.0         | 4.1          |      | FILL               |             | No Trash 2.5-4' BG.                                                                                                                                                               |                                                              | -     |             |  |                                                                                                                    |                                  |               |                                                   |   |
|              | 11.9         |      |                    |             |                                                                                                                                                                                   |                                                              |       |             |  |                                                                                                                    |                                  |               |                                                   |   |
| 4.0          | 12.5         |      |                    |             |                                                                                                                                                                                   |                                                              | -     |             |  |                                                                                                                    |                                  |               |                                                   |   |
|              | 24.5         |      | SC/<br>FILL        |             | Brownish yellow, mottled, damp, dense, Clayey fine to medium SAND; fill.                                                                                                          |                                                              |       |             |  |                                                                                                                    |                                  |               |                                                   |   |
| -5.0         | 7.9          |      |                    |             |                                                                                                                                                                                   | Collected 2 Macrocores 4-8' for                              | -     |             |  |                                                                                                                    |                                  |               |                                                   |   |
|              | 15.3         |      |                    |             |                                                                                                                                                                                   |                                                              |       | ML/<br>FILL |  | Brownish yellow, mottled, damp, stiff Clayey SILT, little fine to coarse Sand, little fine to coarse Gravel; fill. | adequate sample volume.<br>15:55 |               |                                                   |   |
| 6.0          | 27.8<br>19.4 | 100% | ML/<br>CL/<br>FILL | ±:±:        | Mica layer (2" diameter). Greyish brown, mottled, damp, stiff SILT & CLAY, some dark grey discoloration; fill.                                                                    | Top of Impact 1 Sample 5.5-6' BG. Metals, SVOCs, & VOCs.     | -     |             |  |                                                                                                                    |                                  |               |                                                   |   |
|              | 58.8         |      |                    |             |                                                                                                                                                                                   | Grey, mottled, damp, dense, Clayey very fine SAND, some fine | -     |             |  |                                                                                                                    |                                  |               |                                                   |   |
| 7.0          | 105.3        |      |                    |             |                                                                                                                                                                                   |                                                              |       |             |  |                                                                                                                    |                                  | Gravel; fill. | 16:05<br>High PID Sample 7-7.5' BG.<br>VOCs Only. | - |
| 8.0          | 39.5         |      |                    | SC/<br>FILL |                                                                                                                                                                                   |                                                              | 16:15 | -           |  |                                                                                                                    |                                  |               |                                                   |   |
|              | 25.7         |      |                    |             |                                                                                                                                                                                   | Bottom of Impact Sample<br>8-8.5' BG. VOCs Only.             |       |             |  |                                                                                                                    |                                  |               |                                                   |   |
| 9.0          | 1.5          | 100% |                    |             |                                                                                                                                                                                   | Collected 2 Macrocores 8-12' for                             | -     |             |  |                                                                                                                    |                                  |               |                                                   |   |
|              | 0.9          |      |                    |             | Light grey, mottled, damp, stiff Clayey SILT; may be fill/reworked material.  Lens of weak red Clayey SAND at 9.5' BG.                                                            | adequate sample volume.                                      |       |             |  |                                                                                                                    |                                  |               |                                                   |   |
| 10.0         | 2.1          |      | ML                 |             |                                                                                                                                                                                   |                                                              | -     |             |  |                                                                                                                    |                                  |               |                                                   |   |
|              | 4.7          |      |                    |             |                                                                                                                                                                                   |                                                              |       |             |  |                                                                                                                    |                                  |               |                                                   |   |

| PRC         | JECT                 | CG-09    | 9-0423.1 | 10      | sc   | DIL BORING LOG HSI-SB-10                                        | PAGE 2 OF 2                                                                                                                                                  |           | 1      |               |                                                              |    |    |                                                                                                                                                                       |    |    |    |    |    |    |    |    |    |    |    |  |
|-------------|----------------------|----------|----------|---------|------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|---------------|--------------------------------------------------------------|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|--|
| DЕРТН (ft)  | PID READING<br>(ppm) | RECOVERY | SOIL     | GRAPHIC | POO  | OVERBURDEN / ROCK<br>DESCRIPTION                                | NOTES                                                                                                                                                        |           |        |               |                                                              |    |    |                                                                                                                                                                       |    |    |    |    |    |    |    |    |    |    |    |  |
| 11.0<br>-   | 16.3<br>7.7          | 100%     | GC       |         |      |                                                                 | Light grey, mottled, damp, dense, Clayey fine to coarse GRAVEL, and fine to coarse SAND, some Silt, some Clayey SILT lenses; may be fill/ reworked material. |           | <br> - | _<br> <br> -1 |                                                              |    |    |                                                                                                                                                                       |    |    |    |    |    |    |    |    |    |    |    |  |
| <b>12.0</b> | 13.5                 |          |          |         | GC   | GC                                                              | GC                                                                                                                                                           |           |        |               | Used Discrete/ Closed-Piston<br>Macrocore Sampler 12-16' BG. | -  | -1 |                                                                                                                                                                       |    |    |    |    |    |    |    |    |    |    |    |  |
| -<br>13.0   | 12.5                 | 83%      |          |         |      | Light grey and very pale brown, damp, stiff Clayey SILT, little |                                                                                                                                                              | -         | -1     |               |                                                              |    |    |                                                                                                                                                                       |    |    |    |    |    |    |    |    |    |    |    |  |
| -<br>14.0   | 9.3                  |          | 83%      |         |      |                                                                 | fine to coarse Sand, little fine Rock Fragment lenses; weathered bedrock texture.                                                                            |           | -      | -1            |                                                              |    |    |                                                                                                                                                                       |    |    |    |    |    |    |    |    |    |    |    |  |
| -<br>15.0   | 7.2<br>7.5           |          |          |         |      |                                                                 | ı                                                                                                                                                            |           |        |               |                                                              |    |    |                                                                                                                                                                       | 1  |    |    |    |    |    |    |    |    |    |    |  |
| _           | 3.4<br>1.5           |          | ML       | ML      | ML   | ML                                                              | ML                                                                                                                                                           | ML        | ML     | ML            | ML                                                           | ML | ML | ML                                                                                                                                                                    | ML | ML | ML | ML | ML | ML |    |    |    |    | -  |  |
| 16.0<br>-   | 5.5                  |          |          |         |      |                                                                 |                                                                                                                                                              |           |        |               |                                                              |    |    |                                                                                                                                                                       |    |    |    |    |    |    | ML | ML | ML | ML | ML |  |
| 17.0<br>-   | 1.0                  | 100%     | 100%     | 100%    | 100% | 100%                                                            | 100%                                                                                                                                                         | 100%      |        |               |                                                              |    |    | Very pale yellow, light grey, and weak red, damp, stiff Clayey<br>SILT, trace fine to coarse Sand, trace fine to coarse Rock<br>Fragments; weathered bedrock texture. |    | -  | -1 |    |    |    |    |    |    |    |    |  |
| 18.0<br>-   | 2.9<br>4.1           |          |          |         |      |                                                                 |                                                                                                                                                              |           |        |               |                                                              |    | -1 |                                                                                                                                                                       |    |    |    |    |    |    |    |    |    |    |    |  |
| <b>19.0</b> | 9.0<br>10.5          |          |          |         |      |                                                                 |                                                                                                                                                              | -         | -1     |               |                                                              |    |    |                                                                                                                                                                       |    |    |    |    |    |    |    |    |    |    |    |  |
| -<br>20.0   | 6.9                  |          |          |         |      |                                                                 |                                                                                                                                                              | ] -<br>]_ |        |               |                                                              |    |    |                                                                                                                                                                       |    |    |    |    |    |    |    |    |    |    |    |  |

### ATTACHMENT D

IDW DISPOSAL DOCUMENTS



| A                   | NON-HAZARDOUS                                                    | 1. Generator ID Number                                                                   |                                                        | 2. Page 1 of                    | 3. Emergency Resp                                 | nse Phone                                                       | 4. Waste Tr       | acking Nu        | mber                                  |                |            |
|---------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|---------------------------------------------------|-----------------------------------------------------------------|-------------------|------------------|---------------------------------------|----------------|------------|
| T                   | WASTE MANIFEST                                                   | MDR0005278                                                                               |                                                        | 1                               |                                                   | 932-6723                                                        |                   | 214              | 305                                   |                | _          |
|                     | 1800 WA                                                          | ng Address<br>4D DEPARTMENT OF THE EMMR<br>IMMINISTON BLVD, SUITE 625(AG<br>RE, MD 21230 | owent<br>Ent of an link Gi                             | EMERATOR)                       | 300                                               | ress (if different:<br>NTGDWERY  <br>ERNESS DRIV<br>RTH EAST, M | eroders st<br>E   | ess)<br>E        |                                       |                |            |
|                     | Generator's Phone: 10 Sept. 587.<br>6. Transporter 1 Company Nar |                                                                                          |                                                        |                                 |                                                   |                                                                 | U.S. EPA ID I     | Number           | - 10                                  |                |            |
| H                   | o. Transjoner I Company Na                                       | ECOFLO, INC.                                                                             |                                                        |                                 |                                                   |                                                                 |                   |                  | 0842132                               |                | - 1        |
| 11                  | 7. Transporter 2 Company Nar                                     |                                                                                          |                                                        |                                 |                                                   |                                                                 | U.S. EPA ID       | Number           | e e e e e e e e e e e e e e e e e e e |                |            |
|                     |                                                                  |                                                                                          |                                                        |                                 |                                                   |                                                                 |                   |                  |                                       |                |            |
|                     | 8. Designated Facility Name a                                    | nd Site Address                                                                          |                                                        |                                 |                                                   |                                                                 | U.S. EPA ID I     | Vumber           |                                       |                | 1          |
| -                   | 2750                                                             | lo, inc.<br>Patierson Street, Greensbo<br>See-198-7905                                   | IRO, NC 27407                                          |                                 |                                                   |                                                                 | 1                 | NCD98            | 10842192                              |                |            |
|                     | Facility's Phone:                                                |                                                                                          |                                                        |                                 | 10, 0                                             | ontainers                                                       | 11. Total         | 12. Unit         |                                       |                |            |
|                     | 9. Waste Shipping Nam                                            | ne and Description                                                                       |                                                        |                                 | No.                                               | Type                                                            | Quantity          | VILNot.          |                                       |                |            |
| GENERATOR -         | 1 NON RE                                                         | GULATED MATERIAL                                                                         | 292ABE-002                                             |                                 | XX                                                | 2 DM                                                            | X1,00             | P                |                                       |                |            |
| - GENE              | 2 NON RE                                                         | GULATED SOLID MATE                                                                       |                                                        |                                 | V                                                 | DM                                                              | X X 460           | p                |                                       |                |            |
|                     | 3.                                                               |                                                                                          | 292ABE-003                                             |                                 | 12                                                |                                                                 | 14.400            |                  |                                       | 111/11         |            |
|                     |                                                                  |                                                                                          |                                                        |                                 |                                                   |                                                                 |                   |                  |                                       |                | -          |
|                     |                                                                  |                                                                                          |                                                        |                                 |                                                   |                                                                 |                   |                  |                                       |                |            |
|                     | 4.                                                               |                                                                                          |                                                        |                                 |                                                   |                                                                 |                   |                  |                                       |                |            |
| Ш                   |                                                                  |                                                                                          |                                                        |                                 |                                                   |                                                                 |                   |                  |                                       |                |            |
| Ш                   | 13. Special Handling Instruction                                 | ons and Additional Information                                                           |                                                        | 14.                             |                                                   |                                                                 |                   |                  |                                       |                |            |
| Ш                   | 1)5572                                                           |                                                                                          |                                                        | 2) 5                            | 572                                               |                                                                 |                   |                  |                                       |                |            |
| П                   | 7.0M                                                             | 55945                                                                                    |                                                        | 16                              | sna<br>)MSSgls                                    |                                                                 |                   | WOH              | 211683                                | B              |            |
| П                   | 2.5.                                                             |                                                                                          |                                                        |                                 |                                                   |                                                                 |                   |                  | 24306                                 | ,              |            |
| M.                  |                                                                  |                                                                                          |                                                        |                                 |                                                   |                                                                 | - b. B            |                  |                                       |                | d          |
| II.                 | 14. GENERATOR'S/OFFERO                                           | OR'S CERTIFICATION: I hereby declare<br>irded, and are in all respects in proper co      | that the contents of this<br>andition for transport ac | s consignment<br>cording to app | ere fully and accurate<br>icable international an | y described and<br>I national govern                            | mental regulation | nggang nun<br>B. | ire, dilu ere Ciaso                   | meo, parmage   | "          |
| П                   | Generator's/Offeror's Printed/                                   | Typed Name                                                                               |                                                        |                                 | ignature n                                        | . (1)                                                           | -                 |                  | Monti                                 |                | Year<br>2/ |
| ٧                   | Brian !                                                          | Dietz                                                                                    |                                                        |                                 | OMAN                                              | o the                                                           | h                 |                  |                                       | 101            | 4          |
| INT                 | 15. International Shipments                                      | Import to U.S.                                                                           |                                                        | Export from                     |                                                   | of entry/exit:                                                  |                   | _                |                                       |                |            |
| 4.5                 | Transporter Signature (for ex                                    | ports only):                                                                             |                                                        |                                 | Date                                              | leaving U.S.:                                                   |                   |                  |                                       |                | . 1        |
| TRANSPORTER         | 16. Transporter Acknowledge<br>Transporter 1 Printed/Typed       | Name                                                                                     |                                                        | S                               | ignature                                          | 1                                                               | 1.7               |                  | Monti                                 |                | Year       |
| POR                 | Shanahan                                                         | 11 (1                                                                                    |                                                        |                                 | manuf 3                                           | n Ja                                                            | John and          |                  |                                       |                | 21         |
| ANS                 | Transporter 2 Printed/Typed                                      | Name                                                                                     |                                                        |                                 | ignature                                          |                                                                 |                   |                  | Mont                                  | h Day          | Year       |
| E                   |                                                                  | 4                                                                                        |                                                        |                                 |                                                   |                                                                 |                   |                  |                                       | 1              |            |
| A                   | 17. Discrepancy 17a. Discrepancy Indication 5                    | Sacon (T)                                                                                |                                                        |                                 |                                                   |                                                                 |                   |                  | Г                                     | 7              |            |
| Ш                   | 178. Discrepancy mulcanon                                        | Quantity                                                                                 | Туре                                                   |                                 | Residue                                           |                                                                 | Partial R         | ejection         | L                                     | Full Rejection | on.        |
| Ш                   |                                                                  |                                                                                          |                                                        |                                 | Manifest Refer                                    | ence Number:                                                    |                   |                  |                                       |                |            |
| Z                   | 17b. Alternate Facility (or Ge                                   | nerator)                                                                                 |                                                        |                                 |                                                   |                                                                 | U.S. EPA II       | ) Number         |                                       |                |            |
| 믕                   |                                                                  |                                                                                          |                                                        |                                 |                                                   |                                                                 | 1                 |                  |                                       |                |            |
| 25                  | Facility's Phone:<br>17c. Signature of Alternate P               | incilibe for Concentral                                                                  | 112                                                    |                                 |                                                   | _                                                               | 1                 | _                | Mont                                  | h Day          | Year       |
| ATTE                | 17C. Signature of Alternate P                                    | actiny for detectory                                                                     |                                                        | -1                              |                                                   |                                                                 |                   |                  | 1                                     | 1 1            |            |
| DESIGNATED FACILITY |                                                                  | E TEST AND DESCRIPTION                                                                   |                                                        |                                 | THE STATE OF                                      | SUST                                                            | 181 S T 115       |                  |                                       | - 7            | 196        |
| DES                 | Sum Indias                                                       |                                                                                          |                                                        |                                 |                                                   |                                                                 |                   |                  |                                       |                | N. W.      |
|                     |                                                                  |                                                                                          | 5 66 N 1 1 1 1                                         | MALTE                           |                                                   | WILL S                                                          | 2 10              |                  |                                       |                | -540       |
|                     |                                                                  | er or Operator: Certification of receipt of                                              | materials covered by th                                |                                 |                                                   | 7a                                                              |                   |                  | Mon                                   | th Day         | Year       |
|                     | Printed/Typed Name                                               | elann Uhla                                                                               | -                                                      | 3                               | Signature 2                                       |                                                                 |                   |                  | 11                                    | 1181           | 27         |
| V                   | 1                                                                | eranne Unite                                                                             |                                                        |                                 |                                                   |                                                                 |                   |                  |                                       | OWNER          | a media    |

#### ECOFLO LAND DISPOSAL NOTIFICATION AND CERTIFICATION FORM



Generator Name: MARYLAND DEPARTMENT OF THEENVIRONMENT

Manifest Tracking 001108625WAS

Identify ALL USEPA hazardous waste codes that apply to this waste shipment, as defined by 40 CFR 261, For each waste code, Identify the corresponding subcategory, or write NONE if the waste code has no subcategory. Spent solvent treatment standards are listed on the following page. If F039, multi-source applies, those constituents must be listed and attached by generator. If D001-D043 requires treatment of the characteristic and meet 268.48 standards, then the underlying hazardous constituent(s) present in the waste must be listed and attached.

To identify F039 or D001-D043, underlying hazardous constituent(s), use the "F039/Underlying Hazardous Constituent Form" provided. To list additional USEPA waste code(s) and subcategory(s), use the supplemental sheet provided HOW MUST THE WASTE BE MANAGED? In column 5 enter the letter (A, B1, B3, B4, B5, B6, C, D or E) below that describes how the waste must be managed to comply with the land disposal regulations (40 CFR 268.7) Please understand that if you enter the latter B1, B3, B4, B5, B6, or D you are making the appropriate certification as provided below. States authorized by EPA to manage the LDR program may have regulatory citations different from the 40 CFR citations listed below. Where these regulatory citations differ your certification will be deemed to refer to those state citations instead of the 40 CFR citations.

USA EPA Line Item / Profile Number

EPA Code(s) WW or NWW Subcategory Description or None

Waste Management A 81, 83, G. D. E. F

1 292ABE-001

D040

NWW

NONE

I hereby certify that all information submitted in this and all associated documents is complete and accurate, to the best of my knowledge and information.

Signature

Title Division Chief Date 1/24/20

#### ECOFLO LAND DISPOSAL NOTIFICATION AND CERTIFICATION FORM

#### A. RESTRICTED WASTE REQUIRES TREATMENT

This waste must be treated to the applicable treatment standards set forth in 40 CFR 268.40.For Hazardous Debris: "This hazardous debris is subject to the alternative treatment standards of 40 CFR 268.45.

B.1 RESTRICTED WASTE TREATED TO PERFORMANCE STANDARDS

"I certify under penalty of law that I have personally examined and am familiar with the treatment technology and operation of the treatment process used to support this certification. Based on my inquiry of those individuals immediately responsible for obtaining this information, I believe that treatment process has been operated and maintained properly so as to comply with standards specified in 40 CFR 268.40 without impermissible dilution of the prohibited waste. I am aware the treatment there are significant penalties for submitting a false certification, including the possibility of fine and imprisonment."

B.3 GOOD FAITH ANALYTICAL CERTIFICATION FOR INCINERATED ORGANICS

"I certify under penalty of law that I have personally examined and am familiar with the treatment technology and operation of the treatment process used to support this certification. Based on my inquiry of those individuals immediately responsible for obtaining this information, I believe that the nonwastewater organic constituents have been treated by combustion in units as specified in 268.42 Table 1. I have been unable to detect the nonwastewater organic constituents despite having used best good faith efforts to analyze for such constituents. I am aware that there are significant penalties for submitting a false certification, including the possibility of fine and imprisonment."

B.4 DECHARACTERIZED WASTE REQUIRES TREATMENT FOR UNDERLYING HAZARDOUS CONSTITUENTS
"I certify under penalty of law that the waste has been treated in accordance with the requirements of 40 CFR 268.40 or 268.49, to remove the hazardous characteristic. This decharacterized waste contains underlying hazardous constituents that require further treatment standards. I am aware that are significant penalties for submitting a false certification, including the possibility of fine and imprisonment."

B.6 RESTRICTED DEBRIS TREATED TO ALTERNATED PERFORMANCE STANDARDS

"I certify under penalty of law that I have personally examined and am familiar with the treatment technology and operation of the treatment process used to support this certification and believe that it has been maintained and operated properly so as to comply with treatment standards specified in 40 CFR 268.45 without impermissible dilution of the prohibited waste. I am aware that there are significant penalties for submitting a false certification, including the possibility of fine and imprisonment."

C. RESTRICTED WASTE SUBJECT TO A VARIANCE

This waste is subject to a national capacity variance, a treatability variance, or a case-by- case extension, Enter the effective date of prohibition I column 5 above.

For Hazardous Debris: "This hazardous debris is subject to the alternative treatment standards of 40 CFR Part 268.45." D. RESTRICTED WASTE CAN BE LAND DISPOSED WITHOUT FURTHER TREATMENT

"I certify under penalty of law that I have personally examined and am familiar with the waste through analysis and testing or through knowledge of the waste to support this certification that the waste complies with the treatment standards specified in 40 CFR Part 268 Subpart D. I believe that the information I submitted is true, accurate and complete. I am aware that there are significant penalties for submitting a false certification, including the possibility of fine and imprisonment."

E. WASTE IS NOT CURRENTLY SUBJECT TO PART 268 RESTRICTIONS

This waste is a newly identified waste that is not currently subject to any 40 CFR Part 268 restrictions.

F. THIS RESTRICTED WASTE HAS BEEN TREATED ON-SITE TO REMOVE THE HAZARDOUS CHARACTERISTIC

AND TO TREAT UNDERLYING HAZARDOUS CONSTITUENTS TO LEVELS IN 40 CFR 268.48

I certify under penalty of law that the waste has been treated in accordance with the requirements of 40 CFR 268.40 to remove the hazardous characteristic, and that the underlying hazardous constituents, as defined in 40 CFR 268.2, have been treated to meet the 40 CFR 268.48 Universal Treatment Standards.

I am aware that there are significant penalties for submitting a false certification, including the possibility of fine and Imprisonment.

#### Inbound Manifest Containers by Line

January 18, 2021 Page 1 kshadrick

| Manifest No. | Work   | Generator<br>No. | Generator Name               | Transporter<br>Code | Designated<br>Facility Code | Recieved<br>Date |
|--------------|--------|------------------|------------------------------|---------------------|-----------------------------|------------------|
| 214305       | 214306 | 292A8E           | MARYLAND DEPARTMENT OF THEEN | ECOFLO              | ECO                         | 01/18/21         |

| Profile    | Description                      |                                  | Approval<br>Code | Expected<br>Containers | Actual<br>Container | Doc Line<br>No. |
|------------|----------------------------------|----------------------------------|------------------|------------------------|---------------------|-----------------|
| 292ABE-002 | NON REGULATE                     | D MATERIAL                       | 5572             | 1                      | 2                   | 10              |
| Cont       | lainer No.<br>2572277<br>2572278 | Container Type<br>55 DM<br>55 DM |                  |                        |                     |                 |
| 292ABE-003 | NON REGULATE                     | D SOLID MATERIAL                 | 5572             | 1                      | 1                   | 2               |
| Cont       | ziner No.<br>2572279             | Container Type<br>55 DM          |                  |                        |                     |                 |
|            |                                  |                                  |                  |                        |                     |                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112 11                                                 |                                                 | MI III                        | 1110                                      | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|-------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| ase print or type.  UNIFORM HAZARDOUS 1. Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IO Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2. Page 1 of   3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Emergency Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Phone                                                | 4. Manifest                                     |                               | n Approved<br>umber                       | . OMB No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2050      |
| WASTE MANIFEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MDR000527800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-866-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | (7                                              | 0110                          | 1                                         | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IA        |
| 5. Generalor's Name and Mailing Address MARYLAND DEPART 1800 AWASH INGTON BALTIMERE, IVID 212 Generalor's Phone: 410 537 3183 BINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BLVD, SUITE 625(AGENT OF A<br>130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        | ERCOTHERS ST<br>VE                              |                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 6. Transporter 1 Company Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X 04:04%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | U.S. EPAID 9                                    | Kumber                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _         |
| 7. Transporter 2 Company Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .O. INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                 |                               | 084213                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | U.S. EPAID N                                    | umoer                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 8. Designated Facility Name and Site Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | U.S. EPAID N                                    | lumber                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i street, greensboro, NC 2<br>55-7925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | ĭ                                               | NCD98                         | 084213                                    | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 9a. 9b. U.S. DOT Description (Including Pr<br>and Packing Group (if any))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | roper Shipping Name, Hazard Class, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D Number,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10. Contain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                      | 11. Total                                       | 12. Unit                      | 13.                                       | Waste Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OUS WASTE LIQUID, N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Туре                                                   | Quantity                                        | VILIVE.                       | - United                                  | Chorage C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -         |
| M.I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LENE), 9, III, ERG#171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DM                                                     | X 4 200                                         | p                             | D040                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                 |                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _         |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                 |                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 38-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                 |                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                 |                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                 |                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                 | 1                             | 7                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 14. Special Handling Instructions and Additiona 1)4326-283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | al Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                 |                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 1)4326-285  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATION: I hereby declare that the cont<br>all respects in proper condition for ter<br>consignment conform to the terms of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ensport according to applicable<br>the attached EPA Acknowledon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | international and nation<br>tent of Consent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onal governm                                           | ental regulations.                              | nnion name                    | 214306<br>, and are clas<br>prient and la | sgified nack:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ged,      |
| 1)4326-285  15. GENERATOR'S/OFFEROR'S CERTIFIC. marked and labeled/placarded, and are in Exporter, I cartify that the contents of this I certify that the waste minimization staten Generator's/Offeror's Printed/Typed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATION: I hereby declare that the cont<br>all respects in proper condition for tra<br>consignment conform to the terms of t<br>nent identified in 40 CFR 262.27(a) (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ensport according to applicable<br>the attached EPA Acknowledon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | international and nation<br>tent of Consent.<br>r) or (b) (iil am a smal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | onal governm<br>il quantity <b>ge</b> r                | ental regulations. I<br>nerator) is true.       | nnion name                    | and are class                             | ssified, packa<br>am the Prima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iry       |
| 1) 4326 285  15. GENERATOR'SIOFFEROR'S CERTIFIC. marked and labeled/placarded, and are in Exporter, I cartify that the contents of this I certify that the waste minimization staten Generator's/Offeror's Printed/Typed Name  BY 18. (International Shipments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATION: I hereby declare that the cont<br>all respects in proper condition for tre<br>consignment conform to the terms of<br>nent identified in 40 CFR 262.27(a) (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ansport according to applicable the attached EPA Acknowledgn I am a large quantity generato Signaturi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | international and national and national of Consent.  (f) or (b) (iil am a small)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onal governm<br>Il quantity ger                        | ental regulations. I<br>nerator) is true.       | nnion name                    | , and are clas<br>prient and I a          | ssified, packs<br>am the Prima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iry       |
| 1)4326-285  1. M 5-55  15. GENERATOR'S/OFFEROR'S CERTIFIC. marked and labeled/placarded, and are in Exporter, I cartify that the contents of this in Lordify that the wester minimization staten Generator's/Offeror's Printed/Typed Name  Drid to Dietz  16. International Shipmenis Impo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATION: I hereby declare that the contable respects in proper condition for tracensignment conform to the terms of the her tracensignment conform to the terms of the her tracensignment (in 40 CFR 262.27(a) (if the tracens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ensport according to applicable<br>the attached EPA Acknowledgn<br>I am a large quantity generato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | international and nation<br>tent of Consent.<br>r) or (b) (iil am a smal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | onal governm                                           | ental regulations. I<br>nerator) is true.       | nnion name                    | , and are clas<br>prient and I a          | ssified, packs<br>am the Prima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iry       |
| 1)4326-285  1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATION: I hereby declare that the contable respects in proper condition for tracensignment conform to the terms of the her tracensignment conform to the terms of the her tracensignment (in 40 CFR 262.27(a) (if the tracens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ansport according to applicable the attached EPA Acknowledgn I am a large quantity generated Signatur  Export from U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | international and matic<br>nent of Consent.<br>1) or (b) (iil am a smal<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onal governm                                           | ental regulations. I<br>nerator) is true.       | nnion name                    | , and are clas<br>prient and I a          | ssified, packs<br>am the Prima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12        |
| 1) 4326 285  15. GENERATOR'S/OFFEROR'S CERTIFIC. marked and labeled/placarded, and are in Exporter, I cartify that the contents of this I certify that the seste minimization staten Generator's Offeror's Printed/Typed Name  BY I A N I i et Z  16. International Shipments I Impo Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of N Transporter I Printed Typed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATION: I hereby declare that the contable respects in proper condition for tracensignment conform to the terms of the her tracensignment conform to the terms of the her tracensignment (in 40 CFR 262.27(a) (if the tracens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ansport according to applicable the attached EPA Acknowledgn I am a large quantity generato Signaturi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | international and matic<br>nent of Consent.<br>1) or (b) (iil am a smal<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onal governm                                           | ental regulations. I<br>nerator) is true.       | nnion name                    | , and are clas<br>prient and I a          | seified, packs<br>am the Prims                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12        |
| 1).4326-285  15. GENERATOR'SIOFFEROR'S CERTIFIC. marked and labeled/placarded, and are in Exporter, Leartily that the contents of this Leartily that the waste minimization staten Generator's/Offeror's Printed/Typed Name  BY A V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATION: I hereby declare that the cont all respects in proper condition for the consignment conform to the terms of nent identified in 40 CFR 262.27(a) (if or to U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ansport according to applicable the attached EPA Acknowledgn I am a large quantity generated Signatur  Export from U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | international and malicipant of Consent.  of or (b) (if I am a small)  Port of epit Date leavin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onal governm                                           | ental regulations. I<br>nerator) is true.       | nnion name                    | , and are clas<br>prient and I a          | asified, packar the Prima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12        |
| 1) 4326 285  15. GENERATOR'SIOFFEROR'S CERTIFIC. marked and labeled/placarded, and are in Exporter, I cartify that the contents of this I certify that the waste minimization staten Generator's/Offeror's Printed/Typed Name BYAN DIETZ 16. International Shipments Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Name Transporter Printed/Typed Name Transporter 2 Printed/Typed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATION: I hereby declare that the cont all respects in proper condition for the consignment conform to the terms of nent identified in 40 CFR 262.27(a) (if or to U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sysport according to applicable has attached EPA Acknowledgin I am a large quantity generato Signatur  Export from U.S.  Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | international and malicipant of Consent.  of or (b) (if I am a small)  Port of epit Date leavin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onal governm                                           | ental regulations. I<br>nerator) is true.       | nnion name                    | , and are class<br>priment and I a        | asified, packar the Prima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12<br>12  |
| 1) 4326 286  1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATION: I hereby declare that the contable respects in proper condition for tracensing ment conform to the terms of the thing of the conformation of the terms of the conformation of  | sysport according to applicable has attached EPA Acknowledgin I am a large quantity generato Signatur  Export from U.S.  Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | international and malicipant of Consent.  of or (b) (if I am a small)  Port of epit Date leavin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onal governm                                           | ental regulations. I<br>nerator) is true.       | pping name<br>If export ship  | , and are class<br>priment and I a        | asified, packar the Prima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A I S     |
| 1) 4326 286  1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATION: I hereby declare that the contable respects in proper condition for tracensing ment conform to the terms of the thing of the conformation of the terms of the conformation of  | srsport according to applicable has attached EPA Acknowledgin I am a large quantity generato Signatur Export from U.S.  Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | international and natal enter of Consent.  c) or (b) (iil am a small and a sma | onal governm                                           | entel regulations. Interactory is true.         | pping name,<br>if export shij | , and are class<br>priment and I a        | saified, packs<br>am the Prima<br>th Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A I S     |
| 1) 4326 285  1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATION: I hereby declare that the contable respects in proper condition for tracensing ment conform to the terms of the thing of the conformation of the terms of the conformation of  | srsport according to applicable has attached EPA Acknowledgin I am a large quantity generato Signatur Export from U.S.  Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | international and natal entrol Consent. c) or (b) (iil am a small and a small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | onal governm                                           | ental regulations. Inerator) is true.           | pping name,<br>if export shij | , and are class<br>priment and I a        | saified, packs<br>am the Prima<br>th Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 1) 4326 285  1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATION: I hereby declare that the contail respects in proper condition for traconsignment conform to the terms of the terms of the contained of the terms of the contained of the | srsport according to applicable has attached EPA Acknowledgin I am a large quantity generato Signatur Export from U.S.  Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | international and natal entrol Consent. c) or (b) (iil am a small pour | onal governm                                           | ental regulations. Inerator) is true.           | pping name,<br>if export shij | , and are class<br>priment and I a        | saified, packs am the Prinse the | Y Y       |
| 1). GENERATOR'S/OFFEROR'S CERTIFIC. marked and labele/diplacarded, and are in Exporter, I cartify that the contents of this I certify that certify the certification of the certification of this I certify that the contents of this I certify that t | ATION: I hereby declare that the contail respects in proper condition for traconsignment conform to the terms of the terms of the contained of | sisport according to applicable he attached EPA Acknowledging I am a large quantity generato Signature  Export from U.S.  Signature  Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | international and natal entrol Consent. c) or (b) (iil am a small and a small  | onal governm                                           | ental regulations. Inerator) is true.           | pping name,<br>if export shij | , and are class pment and I a             | ssified, packsom the Prinsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y Y       |
| 19. GENERATOR'S/OFFEROR'S CERTIFIC. marked and labele/diplacarded, and are in Exporter, I cartify that the contents of this I certify that contents of this I certify that the | ATION: I hereby declare that the contail respects in proper condition for traconsignment conform to the terms of the terms of the contained of | sisport according to applicable he attached EPA Acknowledge   I am a large quantity generato   Signature   Export from U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | international and natal entrol Consent. c) or (b) (iil am a small and a small  | onal governm                                           | ental regulations. Inerator) is true.           | pping name,<br>if export shij | , and are class pment and I a             | ssified, packsom the Prinsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y Y       |
| 1) 4326 286  1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATION: I hereby declare that the contable respects in proper condition for traconsignment conform to the terms of the term | sasport according to applicable he attached EPA Acknowledging I am a large quantity generato Signatur Export from U.S.  Signatur | international and natal entrol of Consent.  or (b) (if I am a small and a smal | nal governm<br>Il quantity ger<br>ryfexit:<br>ng U.S.: | ental regulations.  Partial Reje  U.S. EPA D N. | pping name,<br>if export shij | , and are class pment and I a             | ssified, packsom the Prinsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A I S     |
| 1) 4326 285  1. In 19 295  15. GENERATOR'S/OFFEROR'S CERTIFIC.  marked and labeled/placarded, and are in Exporter, I cartify that the contents of this.  I certify that the waste minimization staten Generator's/Offeror's Printed/Typed Name  Drian Diel Z  16. International Shipmenis Importance of this printed only:  17. Transporter Adxnowledgment of Receipt of Name  Transporter 1 Printed/Typed Name  18. Discrepancy  18a. Discrepancy Indication Space  18b. Alternate Facility (or Generator)  Facility's Phone:  18c. Signature of Alternate Facility (or Generator)  19. Hazardous Waste Report Management Meti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATION: I hereby declare that the contable respects in proper condition for traconsignment conform to the terms of the term | sasport according to applicable he attached EPA Acknowledging I am a large quantity generato Signatur Export from U.S.  Signatur | international and natal entrol of Consent.  c) or (b) (iil am a small and a sm | nal governm<br>Il quantity ger<br>ryfexit:<br>ng U.S.: | ental regulations.  Partial Reje  U.S. EPA D N. | pping name,<br>if export shij | , and are class pment and I a             | saified, packs am the Primit Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | To action |

# ATTACHMENT E FULL LABORATORY ANALYTICAL DATA TABLES

#### Surface/Near Surface Soil Sample Analytical Results September 25, 2020 Volatile Organic Compounds (VOCs)

| Sample ID                             | HSI-SS-01<br>(0.5-1') | HSI-SS-02<br>(0.5-1') | HSI-SS-03<br>(0.5-1')  | HSI-SS-04<br>(0.5-1') | HSI-SS-05<br>(0.5-1') | HSI-SS-06<br>(0.5-1') | HSI-SS-07<br>(0.5-1')  | HSI-SS-07<br>(0.5-1')<br>[HSI-SS-D<br>(0.5-1')] | HSI-SS-08<br>(0.5-1') | HSI-SS-09<br>(0.5-1') | MDE Residential<br>Soil Standards |
|---------------------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|------------------------|-------------------------------------------------|-----------------------|-----------------------|-----------------------------------|
| Dilution Factor                       | 0.752                 | 0.74                  | 0.883                  | 0.824                 | 0.723                 | 0.919                 | 0.816                  | 0.74                                            | 0.766                 | 1.03                  |                                   |
| Analyte Name                          |                       |                       |                        |                       | •                     | Concentration (m      | ng/kg)                 |                                                 |                       | •                     |                                   |
| 1,1,1-Trichloroethane                 | 0.00075 U             | 0.00075 U             | 0.0010 U               | 0.00083 U             | 0.00074 U             | 0.00093 U             | 0.0011 U               | 0.00086 U                                       | 0.00079 U             | 0.0010 U              | 8.1E+02                           |
| 1,1,2,2-Tetrachloroethane             | 0.0018                | 0.012                 | 0.0065                 | 0.00041 U             | 0.011                 | 0.0039                | 0.00052 U              | 0.00042 U                                       | 0.0015 J              | 0.00050 U             | 6.0E-01                           |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.0011 U              | 0.0011 U              | 0.0015 U               | 0.0013 U              | 0.0011 U              | 0.0014 U              | 0.0016 U               | 0.0013 U                                        | 0.0012 U              | 0.0015 U              | na                                |
| 1,1,2-Trichloroethane                 | 0.00038 U             | <b>0.0014</b> J       | 0.00050 U              | 0.00042 U             | 0.00037 U             | 0.00046 U             | 0.00053 U              | 0.00043 U                                       | 0.00066 J             | 0.00051 U             | 1.5E-01                           |
| 1,1-Dichloroethane                    | 0.00071 U             | 0.00071 U             | 0.00095 U              | 0.00079 U             | 0.00070 U             | 0.00088 U             | 0.0010 U               | 0.00081 U                                       | 0.00075 U             | 0.00096 U             | 3.6E+00                           |
| 1,1-Dichloroethene                    | 0.00094 U             | 0.00093 U             | 0.0013 U               | 0.0010 U              | 0.00092 U             | 0.0012 U              | 0.0013 U               | 0.0011 U                                        | 0.00099 U             | 0.0013 U              | 2.3E+01                           |
| 1,2,3-Trichlorobenzene                | 0.00045 U             | 0.00045 U             | 0.00060 U              | 0.00050 U             | 0.00044 U             | 0.00056 U             | 0.00063 U              | 0.00051 U                                       | 0.00047 U             | 0.00061 U             | na                                |
| 1,2,4-Trichlorobenzene                | 0.00051 U             | 0.00051 U             | 0.00069 U              | 0.00057 U             | 0.00051 U             | 0.00064 U             | 0.00072 U              | 0.00059 U                                       | 0.00054 U             | 0.00070 U             | 5.8E+00                           |
| 1,2-Dibromo-3-chloropropane           | 0.00045 U             | 0.00045 U             | 0.00060 U              | 0.00050 U             | 0.00044 U             | 0.00056 U             | 0.00063 U              | 0.00051 U                                       | 0.00047 U             | 0.00061 U             | 5.3E-03                           |
| 1,2-Dibromoethane                     | 0.00040 U             | 0.00040 U             | 0.00053 U              | 0.00044 U             | 0.00039 U             | 0.00049 U             | 0.00056 U              | 0.00046 U                                       | 0.00042 U             | 0.00054 U             | 3.6E-02                           |
| 1,2-Dichlorobenzene                   | 0.00042 U             | 0.00041 U             | 0.00056 U              | 0.00046 U             | 0.00041 U             | 0.00052 U             | 0.00059 U              | 0.00048 U                                       | 0.00044 U             | 0.00057 U             | 1.8E+02                           |
| 1,2-Dichloroethane                    | 0.00034 U             | 0.00033 U             | 0.00045 U              | 0.00037 U             | 0.00033 U             | 0.00041 U             | 0.00047 U              | 0.00038 U                                       | 0.00035 U             | 0.00045 U             | 4.6E-01                           |
| 1,2-Dichloropropane                   | 0.00067 U             | 0.00067 U             | 0.00089 U              | 0.00074 U             | 0.00066 U             | 0.00083 U             | 0.00094 U              | 0.00077 U                                       | 0.00071 U             | 0.00091 U             | 1.6E+00                           |
| 1,3-Dichlorobenzene                   | 0.00045 U             | 0.00045 U             | 0.00060 U              | 0.00050 U             | 0.00044 U             | 0.00056 U             | 0.00063 U              | 0.00051 U                                       | 0.00047 U             | 0.00061 U             | na                                |
| 1,4-Dichlorobenzene                   | 0.00043 U             | 0.00043 U             | 0.00058 U              | 0.00048 U             | 0.00043 U             | 0.00054 U             | 0.00061 U              | 0.00050 U                                       | 0.00046 U             | 0.00059 U             | 2.6E+00                           |
| 1,4-Dioxane                           | 0.040 U               | 0.039 U               | 0.053 U                | 0.044 U               | 0.039 U               | 0.049 U               | 0.056 U                | 0.045 U                                         | 0.042 U               | 0.054 U               | na                                |
| 2-Butanone                            | 0.00098 U             | 0.0010 J              | 0.0013 U               | 0.0011 U              | 0.00096 U             | 0.0035                | 0.14                   | 0.0011 U                                        | 0.0010 U              | 0.0013 U              | 2.7E+03                           |
| 2-Hexanone                            | 0.00069 U             | 0.00069 U             | 0.00093 U              | 0.00077 U             | 0.00068 U             | 0.00086 U             | 0.00098 U              | 0.00080 U                                       | 0.00073 U             | 0.00094 U             | na                                |
| 4-Methyl-2-pentanone                  | 0.00047 U             | 0.00047 U             | 0.00063 U              | 0.00053 U             | 0.00047 U             | 0.00059 U             | 0.00067 U              | 0.00054 U                                       | 0.00050 U             | 0.00064 U             | 3.3E+03                           |
| Acetone                               | 0.0055 U              | 0.044                 | 0.0074 U               | 0.011                 | 0.0069 J              | 0.064                 | 0.74                   | 0.0063 U                                        | <b>0.0074</b> J       | 0.020                 | 6.1E+03                           |
| Benzene                               | 0.00060 U             | 0.00059 U             | 0.00080 U              | 0.00066 U             | 0.00059 U             | 0.00074 U             | 0.00084 U              | 0.00068 U                                       | 0.00063 U             | 0.00081 U             | 1.2E+00                           |
| Bromochloromethane                    | 0.00057 U             | 0.00057 U             | 0.00076 U              | 0.00063 U             | 0.00055 U             | 0.00071 U             | 0.00080 U              | 0.00066 U                                       | 0.00060 U             | 0.00078 U             | na                                |
| Bromodichloromethane                  | 0.00037 U             | 0.00037 U             | 0.00051 U              | 0.00043 U             | 0.00038 U             | 0.00047 U             | 0.00054 U              | 0.00044 U                                       | 0.00040 U             | 0.00052 U             | 2.9E-01                           |
| Bromoform                             | 0.00037 U             | 0.00027 U             | 0.00031 U              | 0.00030 U             | 0.00036 U             | 0.00033 U             | 0.00031 U              | 0.00031 U                                       | 0.00028 U             | 0.00032 U             | 1.9E+01                           |
| Bromomethane                          | 0.0013 U              | 0.0013 U              | 0.0017 U               | 0.0014 U              | 0.0013 U              | 0.0016 U              | 0.0018 U               | 0.0015 U                                        | 0.0014 U              | 0.0017 U              | 6.8E-01                           |
| Carbon disulfide                      | 0.0018 U              | 0.0028 U              | 0.0037 U               | 0.0031 U              | 0.0027 U              | 0.0034 U              | 0.0039 U               | 0.0032 U                                        | 0.0029 U              | 0.0038 U              | 7.7E+01                           |
| Carbon tetrachloride                  | 0.0028 U              | 0.00079 U             | 0.0037 U               | 0.00088 U             | 0.00078 U             | 0.00098 U             | 0.0037 U               | 0.00091 U                                       | 0.00083 U             | 0.0036 U              | 6.5E-01                           |
| Chlorobenzene                         | 0.00051 U             | 0.00050 U             | 0.00068 U              | 0.00056 U             | 0.00050 J             | 0.00063 U             | 0.00071 U              | 0.00051 U                                       | 0.00053 U             | 0.00069 U             | 2.8E+01                           |
| Chloroethane                          | 0.0016 U              | 0.0016 U              | 0.0021 U               | 0.0018 U              | 0.0016 U              | 0.0020 U              | 0.0022 U               | 0.0018 U                                        | 0.0017 U              | 0.0022 U              | 1.4E+03                           |
| Chloroform                            | 0.0010 U              | 0.0010 U              | 0.0021 U               | 0.0018 U              | 0.0010 U              | 0.0014 U              | 0.0016 U               | 0.0013 U                                        | 0.0017 U              | 0.0015 U              | 3.2E-01                           |
| Chloromethane                         | 0.0011 U              | 0.0011 U              | 0.0013 U               | 0.0012 U              | 0.00099 U             | 0.0011 U              | 0.0014 U               | 0.0013 U                                        | 0.0012 U              | 0.0013 U              | 1.1E+01                           |
| cis-1,2-Dichloroethene                | 0.00066 U             | 0.00066 U             | 0.00088 U              | 0.00073 U             | 0.00065 U             | 0.00082 U             | 0.00093 U              | 0.00076 U                                       | 0.00070 U             | 0.00090 U             | 1.6E+01                           |
| cis-1,3-Dichloropropene               | 0.00043 U             | 0.00043 U             | 0.00058 U              | 0.00048 U             | 0.00043 U             | 0.00054 U             | 0.00093 U              | 0.00070 U                                       | 0.00076 U             | 0.00050 U             | na                                |
| Cyclohexane                           | 0.00098 U             | 0.00098 U             | 0.0013 U               | 0.0011 U              | 0.00096 U             | 0.0012 U              | 0.0014 U               | 0.0011 U                                        | 0.0010 U              | 0.0013 U              | na                                |
| Dibromochloromethane                  | 0.00035 U             | 0.00035 U             | 0.00047 U              | 0.00039 U             | 0.00035 U             | 0.00043 U             | 0.00049 U              | 0.00040 U                                       | 0.00037 U             | 0.00048 U             | 8.3E+00                           |
| Dichlorodifluoromethane               | 0.00033 U             | 0.00033 U             | 0.00047 U              | 0.00039 U             | 0.00033 U             | 0.00043 U             | 0.0016 U               | 0.00040 U                                       | 0.00037 U             | 0.0016 U              | na                                |
| Ethylbenzene                          | 0.00056 U             | 0.00011 U             | 0.00075 U              | 0.00013 U             | 0.00011 U             | 0.00070 U             | 0.00079 U              | 0.00015 U                                       | 0.0012 U              | 0.0076 U              | 5.8E+00                           |
| Isopropylbenzene                      | 0.00036 U             | 0.00036 U             | 0.00073 U              | 0.00002 U             | 0.00033 U             | 0.00070 U             | 0.00079 U              | 0.00078 U                                       | 0.00039 U             | 0.00076 U             | 1.9E+02                           |
| m&p-Xylene                            | 0.00098 U             | 0.00098 U             | 0.00031 U              | 0.00073 U             | 0.00096 U             | 0.00034 U             | 0.00093 U              | 0.00078 U                                       | 0.0010 U              | 0.0014                | 5.8E+01                           |
| Methyl Acetate                        | 0.00078 U             | 0.00078 U             | 0.0013 U               | 0.00011 U             | 0.00090 U             | 0.0012 U              | 0.0014 U               | 0.00011 U                                       | 0.00010 U             | 0.0014<br>0.0011 U    | na                                |
| Methylcyclohexane                     | 0.00074 U             | 0.00078 U             | 0.0010 U               | 0.00087 U             | 0.00077 U             | 0.00097 0             | 0.0011 U               | 0.00090 U                                       | 0.00083 U             | 0.0011 U              | na                                |
| Methylene chloride                    | 0.00074 0             | 0.0024                | 0.0057                 | 0.0049                | 0.00072 0             | 0.0024                | 0.0010 U               | 0.00070 U                                       | 0.0077                | 0.0010                | 3.5E+01                           |
| Methyl-t-butyl ether                  | 0.00044 U             | 0.0024<br>0.00044 U   | 0.0057<br>0.00059 U    | 0.0049 U              | 0.0017<br>0.00043 U   | 0.00055 U             | 0.00022 J<br>0.00062 U | 0.00070 U                                       | 0.0071<br>0.00046 U   | 0.0040<br>0.00060 U   | 4.7E+01                           |
|                                       | 0.00044 U             |                       | 0.00039 U<br>0.00077 U | 0.00049 U             | 0.00043 U             | 0.00033 U             | 0.00082 U              |                                                 |                       | 0.00060 U             |                                   |
| o-Xylene                              | 0.00058 0             | 0.00058 U             | 0.00077 U              | U.UUU04 U             | 0.0005 / U            | 0.00072 U             | 0.00082 U              | 0.00066 U                                       | 0.00061 U             | 0.00079 U             | 5.8E+01                           |

Page 1 of 2

#### Surface/Near Surface Soil Sample Analytical Results September 25, 2020 Volatile Organic Compounds (VOCs)

| Sample ID                 | HSI-SS-01<br>(0.5-1') | HSI-SS-02<br>(0.5-1') | HSI-SS-03<br>(0.5-1') | HSI-SS-04<br>(0.5-1') | HSI-SS-05<br>(0.5-1') | HSI-SS-06<br>(0.5-1') | HSI-SS-07<br>(0.5-1') | HSI-SS-07<br>(0.5-1')<br>[HSI-SS-D<br>(0.5-1')] | HSI-SS-08<br>(0.5-1') | HSI-SS-09<br>(0.5-1') | MDE Residential<br>Soil Standards |
|---------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------------------------|-----------------------|-----------------------|-----------------------------------|
| <b>Dilution Factor</b>    | 0.752                 | 0.74                  | 0.883                 | 0.824                 | 0.723                 | 0.919                 | 0.816                 | 0.74                                            | 0.766                 | 1.03                  |                                   |
| Analyte Name              |                       | •                     |                       |                       | •                     | Concentration (m      | ng/kg)                | •                                               |                       |                       |                                   |
| Styrene                   | 0.00045 U             | 0.00045 U             | 0.00060 U             | 0.00050 U             | 0.00044 U             | 0.36                  | 0.00063 U             | 0.00051 U                                       | 0.00047 U             | 0.00061 U             | 6.0E+02                           |
| Tetrachloroethene         | 0.00080 U             | 0.0045                | 0.024                 | 0.00089 U             | 0.00079 U             | 0.0035                | 0.0011 U              | 0.00092 U                                       | 0.0011 J              | <b>0.0011</b> J       | 8.1E+00                           |
| Toluene                   | 0.00054 U             | 0.00054 U             | 0.00072 U             | 0.00060 U             | 0.00073 J             | 0.00067 U             | 0.070                 | 0.00062 U                                       | 0.00057 U             | 0.00073 U             | 4.9E+02                           |
| trans-1,2-Dichloroethene  | 0.00098 U             | 0.00098 U             | 0.0013 U              | 0.0011 U              | 0.00096 U             | 0.0012 U              | 0.0014 U              | 0.0011 U                                        | 0.0010 U              | 0.0013 U              | 1.6E+02                           |
| trans-1,3-Dichloropropene | 0.00038 U             | 0.00038 U             | 0.00051 U             | 0.00043 U             | 0.00038 U             | 0.00047 U             | 0.00054 U             | 0.00044 U                                       | 0.00040 U             | 0.00052 U             | na                                |
| Trichloroethene           | 0.00067 U             | 0.0021                | 0.0072                | 0.00074 U             | 0.00066 U             | 0.00083 U             | 0.00094 U             | 0.00077 U                                       | 0.00071 U             | 0.00091 U             | 4.1E-01                           |
| Trichlorofluoromethane    | 0.00096 U             | 0.00096 U             | 0.0013 U              | 0.0011 U              | 0.00095 U             | 0.0012 U              | 0.0092                | 0.0034                                          | 0.0010 U              | 0.0013 U              | na                                |
| Vinyl chloride            | 0.0010 U              | 0.00099 U             | 0.0013 U              | 0.0011 U              | 0.00098 U             | 0.0012 U              | 0.0014 U              | 0.0011 U                                        | 0.0010 U              | 0.0014 U              | 5.9E-02                           |
| Xylenes (Total)           | 0.00058 U             | 0.00058 U             | 0.00077 U             | 0.00064 U             | 0.00057 U             | 0.00072 U             | 0.00082 U             | 0.00066 U                                       | 0.00061 U             | 0.0014                | 5.8E+01                           |

#### **Table Notes:**

VOCs Analytical Method: EPA Method 8260C

[Sample ID] - Sample Identification as shown on the COC and in the Lab Report for the duplicate sample. mg/kg - milligrams per kilogram or parts per million (ppm)

- U Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Reporting Limit (RL); therefore, result is an estimated concentration. na not applicable

**Bold** - Detected analyte concentration

#### **Screening Levels (SLs):**

MDE Residential Soil Clean-up Standards (October 2018)

#### **Screening Evaluation Notes:**

No detected analyte concentrations exceed the respective SL.

No MDLs exceed the respective SLs

#### **Additional Screening Level Notes:**

Analyte MDE Residential Soil Standard

m+p-Xylenes Total Xylenes o-Xylene Total Xylenes

#### Surface/Near Surface Soil Sample Analytical Results September 25, 2020 Semi-Volatile Organic Compounds (SVOCs) and Metals

| Analytical<br>Suite | Sample ID                       | HSI-SS-01<br>(0-0.5') | HSI-SS-02<br>(0-0.5') | HSI-SS-02<br>(0-0.5')<br>[HSI-SS-D<br>(0-0.5')] | HSI-SS-03<br>(0-0.5') | HSI-SS-04<br>(0-0.5') | HSI-SS-05<br>(0-0.5') | HSI-SS-06<br>(0-0.5') | HSI-SS-07<br>(0-0.5') | HSI-SS-08<br>(0-0.5') | HSI-SS-09<br>(0-0.5') | MDE<br>Residential | MDE ATC |
|---------------------|---------------------------------|-----------------------|-----------------------|-------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------|---------|
| 54100               | Dilution Factor (SVOCs)         | 1                     | 1                     | 1                                               | 1                     | 1                     | 1                     | 1                     | 1                     | 3                     | 1                     |                    |         |
|                     | Dilution Factor (Metals)        | 1                     | 1                     | 1                                               | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     |                    |         |
|                     | Analyte Name                    |                       |                       |                                                 |                       |                       | Concentration         | n (mg/kg)             |                       |                       |                       |                    |         |
|                     | 1,1'-Biphenyl                   | 0.011 U               | 0.011 U               | 0.010 U                                         | 0.012 U               | 0.011 U               | 0.011 U               | 0.010 U               | 0.012 U               | 0.031 U               | 0.010 U               | na                 | na      |
|                     | 1,2,4,5-Tetrachlorobenzene      | 0.012 U               | 0.012 U               | 0.012 U                                         | 0.014 U               | 0.012 U               | 0.013 U               | 0.012 U               | 0.014 U               | 0.036 U               | 0.012 U               | na                 | na      |
|                     | 1,4-Dioxane                     | 0.019 U               | 0.018 U               | 0.018 U                                         | 0.020 U               | 0.019 U               | 0.019 U               | 0.018 U               | 0.020 U               | 0.054 U               | 0.018 U               | na                 | na      |
|                     | 2,3,4,6-Tetrachlorophenol       | 0.014 U               | 0.014 U               | 0.014 U                                         | 0.015 U               | 0.014 U               | 0.014 U               | 0.014 U               | 0.015 U               | 0.040 U               | 0.013 U               | na                 | na      |
|                     | 2,4,5-Trichlorophenol           | 0.011 U               | 0.010 U               | 0.010 U                                         | 0.012 U               | 0.011 U               | 0.011 U               | 0.010 U               | 0.012 U               | 0.030 U               | 0.010 U               | 6.3E+02            | na      |
|                     | 2,4,6-Trichlorophenol           | 0.029 U               | 0.028 U               | 0.028 U                                         | 0.032 U               | 0.029 U               | 0.030 U               | 0.028 U               | 0.032 U               | 0.083 U               | 0.028 U               | 6.3E+00            | na      |
|                     | 2,4-Dichlorophenol              | 0.014 U               | 0.014 U               | 0.014 U                                         | 0.015 U               | 0.014 U               | 0.014 U               | 0.014 U               | 0.015 U               | 0.040 U               | 0.013 U               | 1.9E+01            | na      |
|                     | 2,4-Dimethylphenol              | 0.018 U               | 0.018 U               | 0.018 U                                         | 0.020 U               | 0.018 U               | 0.019 U               | 0.018 U               | 0.020 U               | 0.052 U               | 0.017 U               | 1.3E+02            | na      |
|                     | 2,4-Dinitrophenol               | 0.16 U                | 0.16 U                | 0.16 U                                          | 0.18 U                | 0.16 U                | 0.17 U                | 0.16 U                | 0.18 U                | 0.46 U                | 0.16 U                | 1.3E+01            | na      |
|                     | 2,4-Dinitrotoluene              | 0.012 U               | 0.011 U               | 0.011 U                                         | 0.013 U               | 0.012 U               | 0.012 U               | 0.011 U               | 0.013 U               | 0.033 U               | 0.011 U               | 1.7E+00            | na      |
|                     | 2,6-Dinitrotoluene              | 0.019 U               | 0.019 U               | 0.018 U                                         | 0.021 U               | 0.019 U               | 0.020 U               | 0.018 U               | 0.021 U               | 0.054 U               | 0.018 U               | 3.6E-01            | na      |
|                     | 2-Chloronaphthalene             | 0.016 U               | 0.016 U               | 0.016 U                                         | 0.018 U               | 0.016 U               | 0.017 U               | 0.016 U               | 0.018 U               | 0.047 U               | 0.016 U               | 4.8E+02            | na      |
|                     | 2-Chlorophenol                  | 0.012 U               | 0.012 U               | 0.012 U                                         | 0.013 U               | 0.012 U               | 0.013 U               | 0.012 U               | 0.013 U               | 0.035 U               | 0.012 U               | 3.9E+01            | na      |
|                     | 2-Methylnaphthalene             | 0.011 U               | 0.011 U               | 0.011 U                                         | 0.013 U               | 0.011 U               | 0.012 U               | 0.011 U               | 0.013 U               | 0.033 U               | 0.011 U               | 2.4E+01            | na      |
|                     | 2-Methylphenol                  | 0.011 U               | 0.011 U               | 0.010 U                                         | 0.012 U               | 0.011 U               | 0.011 U               | 0.010 U               | 0.012 U               | 0.031 U               | 0.010 U               | 3.2E+02            | na      |
|                     | 2-Nitroaniline                  | 0.017 U               | 0.017 U               | 0.017 U                                         | 0.019 U               | 0.017 U               | 0.018 U               | 0.017 U               | 0.019 U               | 0.050 U               | 0.017 U               | na                 | na      |
|                     | 2-Nitrophenol                   | 0.017 U               | 0.017 U               | 0.016 U                                         | 0.018 U               | 0.017 U               | 0.017 U               | 0.016 U               | 0.018 U               | 0.048 U               | 0.016 U               | na                 | na      |
|                     | 3&4-Methylphenol                | 0.011 U               | 0.011 U               | 0.011 U                                         | 0.012 U               | 0.011 U               | 0.011 U               | 0.011 U               | 0.012 U               | 0.031 U               | 0.010 U               | 6.3E+02            | na      |
|                     | 3,3'-Dichlorobenzidine          | 0.030 U               | 0.030 U               | 0.029 U                                         | 0.033 U               | 0.030 U               | 0.031 U               | 0.029 U               | 0.033 U               | 0.086 U               | 0.029 U               | 1.2E+00            | na      |
|                     | 3-Nitroaniline                  | 0.014 U               | 0.014 U               | 0.014 U                                         | 0.016 U               | 0.014 U               | 0.015 U               | 0.014 U               | 0.016 U               | 0.041 U               | 0.014 U               | na                 | na      |
|                     | 4,6-Dinitro-2-methylphenol      | 0.13 U                | 0.13 U                | 0.13 U                                          | 0.14 U                | 0.13 U                | 0.13 U                | 0.13 U                | 0.14 U                | 0.37 U                | 0.12 U                | na                 | na      |
|                     | 4-Bromophenyl-phenylether       | 0.010 U               | 0.010 U               | 0.010 U                                         | 0.011 U               | 0.010 U               | 0.011 U               | 0.010 U               | 0.011 U               | 0.030 U               | 0.010 U               | na                 | na      |
|                     | 4-Chloro-3-methylphenol         | 0.0089 U              | 0.0088 U              | 0.0087 U                                        | 0.0098 U              | 0.0089 U              | 0.0092 U              | 0.0087 U              | 0.0098 U              | 0.026 U               | 0.0086 U              | na                 | na      |
|                     | 4-Chloroaniline                 | 0.016 U               | 0.016 U               | 0.016 U                                         | 0.018 U               | 0.016 U               | 0.017 U               | 0.016 U               | 0.018 U               | 0.047 U               | 0.016 U               | 2.7E+00            | na      |
|                     | 4-Chlorophenyl-phenylether      | 0.011 U               | 0.011 U               | 0.011 U                                         | 0.012 U               | 0.011 U               | 0.012 U               | 0.011 U               | 0.012 U               | 0.033 U               | 0.011 U               | na                 | na      |
|                     | 4-Nitroaniline                  | 0.014 U               | 0.014 U               | 0.014 U                                         | 0.016 U               | 0.014 U               | 0.015 U               | 0.014 U               | 0.016 U               | 0.041 U               | 0.014 U               | na                 | na      |
|                     | 4-Nitrophenol                   | 0.028 U               | 0.028 U               | 0.028 U                                         | 0.031 U               | 0.028 U               | 0.029 U               | 0.028 U               | 0.031 U               | 0.081 U               | 0.027 U               | na                 | na      |
| SVOCs               | Acenaphthene                    | 0.011 U               | 0.010 U               | 0.010 U                                         | 0.012 U               | 0.011 U               | 0.011 U               | 0.010 U               | 0.012 U               | 0.030 U               | 0.010 U               | 3.6E+02            | na      |
|                     | Acenaphthylene                  | 0.011 U               | 0.011 U               | 0.011 U                                         | 0.012 U               | 0.011 U               | 0.011 U               | 0.010 U               | 0.012 U               | 0.032 U               | 0.011 U               | na                 | na      |
|                     | Acetophenone                    | 0.011 C               | 0.023 J               | 0.013 U                                         | 0.015 U               | 0.011 U               | 0.011 U               | 0.011 U               | 0.015 U               | 0.038 U               | 0.011 U               | na                 | na      |
|                     | Anthracene                      | 0.019 J               | 0.010 U               | 0.010 U                                         | 0.013 U               | 0.010 U               | 0.014 U               | 0.013 U               | 0.013 U               | 0.029 U               | 0.0099 U              | 1.8E+03            | na      |
|                     | Atrazine                        | 0.016 U               | 0.015 U               | 0.016 U                                         | 0.011 U               | 0.015 U               | 0.011 U               | 0.015 U               | 0.011 U               | 0.043 U               | 0.0055 U              | 2.4E+00            | na      |
|                     | Benzaldehyde                    | 0.40 U                | 0.40 U                | 0.39 U                                          | 0.44 U                | 0.40 U                | 0.42 U                | 0.39 U                | 0.44 U                | 1.2 U                 | 0.39 U                | na                 | na      |
|                     | Benzo[a]anthracene              | 0.012 U               | 0.012 U               | 0.012 U                                         | 0.014 U               | 0.012 U               | 0.013 U               | 0.012 U               | 0.014 U               | 0.035 U               | 0.012 U               | 1.1E+00            | na      |
|                     | Benzo[a]pyrene                  | 0.012 U               | 0.012 U               | 0.012 U                                         | 0.014 U               | 0.012 U               | 0.013 U               | 0.012 U               | 0.014 U               | 0.035 U               | 0.012 U               | 1.1E+00            | na      |
|                     | Benzo[b]fluoranthene            | 0.014 J               | 0.012 U               | 0.012 U                                         | 0.014 U               | 0.018 J               | 0.013 U               | 0.012 U               | 0.014 U               | 0.038 U               | 0.015 J               | 1.1E+00            | na      |
|                     | Benzo[g,h,i]perylene            | 0.0092 J              | 0.00025 U             | 0.00025 U                                       | 0.00028 U             | 0.00026 U             | 0.00026 U             | 0.00025 U             | 0.00028 U             | 0.033 J               | 0.00025 U             | na                 | na      |
|                     | Benzo[k]fluoranthene            | 0.0092 J              | 0.00023 U             | 0.00023 U                                       | 0.0028 U              | 0.00020 U             | 0.0020 U              | 0.00023 U             | 0.0028 U              | 0.033 J               | 0.00023 U             | 1.1E+01            | na      |
|                     | bis(2-Chloroethoxy)methane      | 0.014 U               | 0.013 U               | 0.013 U                                         | 0.013 U               | 0.014 U               | 0.014 U               | 0.013 U               | 0.013 U               | 0.039 U               | 0.013 U               | na                 | na      |
|                     | bis(2-Chloroethyl)ether         | 0.0090 U              | 0.010 U               | 0.0088 U                                        | 0.0099 U              | 0.000 U               | 0.0093 U              | 0.0088 U              | 0.0099 U              | 0.036 U               | 0.0087 U              | 2.3E-01            | na      |
|                     | bis(2-Chloroisopropyl)ether     | 0.0090 U              | 0.0089 U              | 0.014 U                                         | 0.016 U               | 0.0090 U              | 0.0093 U              | 0.0088 U              | 0.016 U               | 0.020 U               | 0.0087 U              |                    | na      |
|                     | bis(2-Ethylhexyl)phthalate      | 0.013 0               | 0.44                  | 0.38                                            | 0.036 J               | 0.15                  | 0.28                  | 0.34                  | 0.42                  | 0.043 U<br>0.094 U    | 0.12                  | na<br>3.9E+01      | na na   |
|                     | Butylbenzylphthalate            | 0.028 U               | 0.028 U               | 0.028 U                                         | 0.030 J               | 0.028 U               | 0.28<br>0.033 J       | 0.028 U               | 0.031 U               | 0.094 U<br>0.082 U    | 0.027 U               |                    |         |
|                     | * **                            | 0.028 U               | 0.028 U<br>0.029 U    | 0.028 U                                         | 0.031 U               | 0.028 U<br>0.030 U    | 0.033 J<br>0.031 U    | 0.028 U<br>0.029 U    | 0.031 U<br>0.033 U    | 0.082 U               | 0.027 U               | na                 | na      |
|                     | Caprolactam Carbazole           | 0.030 U<br>0.012 U    | 0.029 U<br>0.011 U    | 0.029 U<br>0.011 U                              | 0.033 U<br>0.013 U    | 0.030 U<br>0.012 U    | 0.031 U<br>0.012 U    | 0.029 U<br>0.011 U    | 0.033 U<br>0.013 U    | 0.085 U<br>0.033 U    | 0.029 U<br>0.011 U    | na                 | na      |
|                     |                                 | 0.012 U               | 0.011 U<br>0.012 U    | 0.011 U<br>0.012 U                              | 0.013 U<br>0.014 U    | 0.012 U<br>0.013 U    | 0.012 U<br>0.013 U    | 0.011 U<br>0.012 U    | 0.013 U<br>0.014 U    | 0.033 U<br>0.036 U    | 0.011 U<br>0.012 U    | na<br>1.1E+02      | na      |
|                     | Chrysene Dibenzo[a,h]anthracene |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       |                    | na      |
|                     | ,                               | 0.014 U               | 0.013 U               | 0.013 U                                         | 0.015 U               | 0.014 U               | 0.014 U               | 0.013 U               | 0.015 U               | 0.039 U               | 0.013 U               | 1.1E-01            | na      |
|                     | Dibenzofuran Diothylphtholoto   | 0.0094 U              | 0.0093 U              | 0.0092 U                                        | 0.010 U               | 0.0094 U              | 0.0097 U              | 0.0092 U              | 0.010 U               | 0.027 U               | 0.0091 U              | 7.3E+00            | na      |
|                     | Diethylphthalate                | 0.024 U               | 0.024 U               | 0.023 U                                         | 0.026 U               | 0.024 U               | 0.025 U               | 0.023 U               | 0.026 U               | 0.069 U               | 0.023 U               | 5.1E+03            | na      |
|                     | Dimethylphthalate               | 0.010 U               | 0.010 U               | 0.010 U                                         | 0.011 U               | 0.010 U               | 0.011 U               | 0.010 U               | 0.011 U               | 0.030 U               | 0.066                 | na                 | na      |
|                     | Di-n-butylphthalate             | 0.12                  | 0.16                  | 0.17                                            | 0.047 U               | 0.042 U               | 0.067                 | 0.077                 | 0.061                 | 0.12 U                | 0.058                 | na                 | na      |
|                     | Di-n-octylphthalate             | 0.025 U               | 0.024 U               | 0.024 J                                         | 0.027 U               | 0.025 U               | 0.025 U               | 0.024 U               | 0.027 U               | 0.070 U               | 0.024 U               | na<br>2.4F+02      | na      |
|                     | Fluoranthene                    | 0.014 U               | 0.014 U               | 0.014 U                                         | 0.016 U               | 0.014 U               | 0.015 U               | 0.014 U               | 0.016 U               | 0.041 U               | 0.014 U               | 2.4E+02            | na      |
|                     | Fluorene                        | 0.010 U               | 0.010 U               | 0.0099 U                                        | <b>0.012</b> J        | 0.010 U               | 0.010 U               | 0.0099 U              | 0.011 U               | 0.029 U               | 0.0098 U              | 2.4E+02            | na      |

Page 1 of 2

#### Surface/Near Surface Soil Sample Analytical Results September 25, 2020 Semi-Volatile Organic Compounds (SVOCs) and Metals

| Dilution Factor (Metals)   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analytical<br>Suite | Sample ID                  | HSI-SS-01<br>(0-0.5') | HSI-SS-02<br>(0-0.5') | HSI-SS-02<br>(0-0.5')<br>[HSI-SS-D<br>(0-0.5')] | HSI-SS-03<br>(0-0.5') | HSI-SS-04<br>(0-0.5') | HSI-SS-05<br>(0-0.5') | HSI-SS-06<br>(0-0.5') | HSI-SS-07<br>(0-0.5') | HSI-SS-08<br>(0-0.5') | HSI-SS-09<br>(0-0.5') | MDE<br>Residential<br>Soil Standards | MDE ATC            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|-----------------------|-----------------------|-------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------------------------|--------------------|
| Dilution Factor (Metals)   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Suite               | Dilution Factor (SVOCs)    | 1                     | 1                     | 1                                               | 1                     | 1                     | 1                     | 1                     | 1                     | 3                     | 1                     | Son Standards                        |                    |
| Analyte Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | Dilution Factor (Metals)   | 1                     | 1                     | 1                                               | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     |                                      |                    |
| Hexachirorobeneure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | ` /                        |                       |                       |                                                 |                       | <u>.</u>              | Concentration         | (mg/kg)               |                       |                       |                       |                                      |                    |
| Hexachtorexpependation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | Hexachlorobenzene          | 0.015 U               | 0.015 U               | 0.015 U                                         | 0.017 U               | 0.015 U               |                       | T                     | 0.017 U               | 0.044 U               | 0.015 U               | 2.1E-01                              | na                 |
| Hexachtorothane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Hexachlorobutadiene        | 0.017 U               | 0.016 U               | 0.016 U                                         | 0.018 U               | 0.017 U               | 0.017 U               | 0.016 U               | 0.018 U               | 0.047 U               | 0.016 U               | 1.2E+00                              | na                 |
| Indexed   1.2.3-cd pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | Hexachlorocyclopentadiene  | 0.12 U                | 0.12 U                | 0.12 U                                          | 0.13 U                | 0.12 U                | 0.12 U                | 0.12 U                | 0.13 U                | <u>0.35</u> U         | 0.12 U                | 1.8E-01                              | na                 |
| South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | Hexachloroethane           | 0.016 U               | 0.016 U               | 0.016 U                                         | 0.018 U               | 0.016 U               | 0.017 U               | 0.016 U               | 0.018 U               | 0.047 U               | 0.016 U               | 1.8E+00                              | na                 |
| SVOCS   Saphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | Indeno[1,2,3-cd]pyrene     | 0.017 U               | 0.017 U               | 0.016 U                                         | 0.018 U               | 0.017 U               | 0.017 U               | 0.016 U               | 0.018 U               | 0.048 U               | 0.016 U               | 1.1E+00                              | na                 |
| Cont'd    Nitrobenzee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | Isophorone                 | 0.012 U               | 0.012 U               | 0.012 U                                         | 0.013 U               | 0.012 U               | 0.012 U               | 0.012 U               | 0.013 U               | 0.034 U               | 0.012 U               | 5.7E+02                              | na                 |
| N-Nitrosodi-p-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SVOCs               | Naphthalene                | 0.011 U               | 0.011 U               | 0.010 U                                         | 0.012 U               | 0.011 U               | 0.011 U               | 0.010 U               | 0.012 U               | 0.031 U               | 0.010 U               | 3.8E+00                              | na                 |
| N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (cont'd)            | Nitrobenzene               | 0.0015 U              | 0.0015 U              | 0.0015 U                                        | 0.0016 U              | 0.0015 U              | 0.0016 U              | 0.0015 U              | 0.0016 U              | 0.0043 U              | 0.0015 U              | 5.1E+00                              | na                 |
| Pentachforophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | N-Nitroso-di-n-propylamine | 0.014 U               | 0.014 U               | 0.014 U                                         | 0.015 U               | 0.014 U               | 0.014 U               | 0.014 U               | 0.015 U               | 0.040 U               | 0.013 U               | 7.8E-02                              | na                 |
| Phenalmence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | N-Nitrosodiphenylamine     | 0.13 U                | 0.12 U                | 0.12 U                                          | 0.14 U                | 0.13 U                | 0.13 U                | 0.12 U                | 0.14 U                | 0.36 U                | 0.12 U                | 1.1E+02                              | na                 |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | Pentachlorophenol          | 0.18 U                | 0.18 U                | 0.17 U                                          | 0.20 U                | 0.18 U                | 0.18 U                | 0.17 U                | 0.20 U                | 0.51 U                | 0.17 U                | 1.0E+00                              | na                 |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | Phenanthrene               | 0.012 U               | 0.012 U               | 0.012 U                                         | 0.013 U               | 0.012 U               | 0.012 U               | 0.012 U               | 0.013 U               | 0.034 U               | 0.011 U               | 1.8E+02                              | na                 |
| Aluminum   3,200   3,800   3,700   4,000   6,700   3,300   5,000   3,200   3,900   5,000   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | Phenol                     | 0.010 U               | 0.010 U               | 0.010 U                                         | 0.011 U               | 0.010 U               | 0.011 U               | 0.010 U               | 0.011 U               | 0.029 U               | 0.0099 U              | 1.9E+03                              | na                 |
| Antimony 0.13 J 0.11 J 0.063 J 0.027 U 0.031 J 0.058 J 0.053 J 0.084 J 0.024 U 0.031 J 3  Arsenic 3.9 B 3.2 B 3.0 B 3.6 B 7.1 B 3.0 B 3.2 B 2.2 B 2.2 B 3.5 B 6  Barium 2 21 20 20 20 22 22 15 5 24 21 29 37 1  Beryllium 0.18 J 0.18 J 0.17 J 0.19 J 0.20 J 0.20 J 0.18 J 0.14 J 0.14 J 0.19 J 1  Cadmium 0.38 J 0.49 0.39 J 0.17 J 0.15 J 0.50 0.18 J 0.48 J 0.15 J 0.26 J 7  Calcium 1.700 1.600 1.400 1.700 210 J 190 J 290 J 410 J 19,000 1.400 1.400 1.700 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | Pyrene                     |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 1.8E+02                              | na                 |
| Arsenic 3.9 B 3.2 B 3.0 B 3.6 B 7.1 B 3.0 B 3.2 B 2.2 B 2.2 B 3.5 B 6 Barium 21 20 20 22 22 15 24 21 29 37 1 20 37 1 20 20 22 22 15 24 21 29 37 1 20 37 1 20 20 20 22 22 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | Aluminum                   | -,                    | ,                     | 3,700                                           | 4,000                 |                       |                       | ,                     |                       | 3,900                 |                       | 7.7E+03                              | 1.9E+04            |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 3.1E+00                              | 6.8E+00            |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 6.8E-01                              | 4.9E+00            |
| Cadmium         0.38 J         0.49         0.39 J         0.17 J         0.15 J         0.50         0.18 J         0.48 J         0.15 J         0.26 J         7           Calcium         1,700         1,600         1,400         1,700         210 J         190 J         290 J         410 J         19,000         1,400           Chromium         19 B         20 B         17 B         23 B         24 B         20 B         21 B         18 B         15 B         17 B           Cobalt         0.95 J         1,4 J         1.5 J         1.2 J         1.5 J         0.94 J         1.5 J         1.6 J         3.1         4.0           Copper         14 B         18 B         16 B         9.2 B         7.3 B         13 B         8.9 B         12 B         11 B         27 B         3           Ion         6,500 B         6,500 B         6,500 B         7,100 B         11,000 B         7,000 B         9,900 B         14,000 B         8,100 B         11,000 B         5           Magnesium         450 J         540 J         550         560 J         680         340 J         510 J         300 J         7,900         2,200           Magnesium         450 J                                                                                                                                                                    |                     |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 1.5E+03                              | 9.9E+01            |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 1.6E+01                              | 1.6E+00            |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 7.1E+00                              | 1.1E+00            |
| Metals         Cobalt         0.95 J         1.4 J         1.5 J         1.2 J         1.5 J         0.94 J         1.5 J         1.6 J         3.1         4.0           Metals         14 B         18 B         16 B         9.2 B         7.3 B         13 B         8.9 B         12 B         11 B         27 B         3           Metals         16 G         6,500 B         6,500 B         7,100 B         11,000 B         7,000 B         9,900 B         14,000 B         8,100 B         11,000 B         5           Magnesium         450 J         540 J         550         560 J         680         340 J         510 J         300 J         7,900         2,200           Manganese         50         61         56         54         31         28         37         68         150         210         1           Nickel         3.5 J         4.5 J         3.8 J         3.0 J         4.2 J         4.7 J         3.8 J         0.013 U         0.014 U         0.014 U         0.038 J         0.013 U         0.014 U         1           Nickel         3.5 J         4.5 J         3.8 J         3.0 J         4.2 J         4.7 J         3.8 J         4.6 J         9.1                                                                                                                                                                 |                     |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       | ·                     | na                                   | 1.2E+04            |
| Metals         14 B         18 B         16 B         9.2 B         7.3 B         13 B         8.9 B         12 B         11 B         27 B         3           Iron         6,500 B         6,700 B         6,500 B         7,100 B         11,000 B         7,000 B         9,900 B         14,000 B         8,100 B         11,000 B         5           Lead         17         23         140         3.9 J         7.1         22         15         22         6.6         9.8         2           Magnesium         450 J         540 J         550         560 J         680         340 J         510 J         300 J         7,900         2,200           Margenesium         50         61         56         54         31         28         37         68         150         210         1           Mercury         0.014 U         0.020 J         0.014 J         0.015 U         0.014 U         0.038 J         0.013 U         0.014 U         1           Nickel         3.5 J         4.5 J         3.8 J         3.0 J         4.2 J         4.7 J         3.8 J         4.6 J         9.1         9.8         1           Potassium         150 J         160 J                                                                                                                                                                                     |                     |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | na                                   | 3.0E+01            |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | na                                   | 3.3E+01            |
| Metals         Lead         17         23         140         3.9 J         7.1         22         15         22         6.6         9.8         2           Magnesium         450 J         540 J         550         560 J         680         340 J         510 J         300 J         7,900         2,200           Manganese         50         61         56         54         31         28         37         68         150         210         1           Mercury         0.014 U         0.020 J         0.014 J         0.015 U         0.014 U         0.014 U         0.038 J         0.013 U         0.014 U         1           Nickel         3.5 J         4.5 J         3.8 J         3.0 J         4.2 J         4.7 J         3.8 J         4.6 J         9.1         9.8         1           Potassium         150 J         160 J         160 J         180 J         220 J         140 J         150 J         150 J         540         550           Selenium         1.2 JB         1.4 JB         1.3 JB         1.2 JB         0.88 JB         4.0 B         1.1 JB         1.4 JB         0.87 JB         0.99 JB         3           Silver         0.067 JB                                                                                                                                                                                 |                     | **                         |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 3.1E+02                              | 4.2E+01            |
| Magnesium         450 J         540 J         550         560 J         680         340 J         510 J         300 J         7,900         2,200           Manganese         50         61         56         54         31         28         37         68         150         210         1           Mercury         0.014 U         0.020 J         0.014 J         0.015 U         0.014 U         0.015 U         0.014 U         0.038 J         0.013 U         0.014 U         1           Nickel         3.5 J         4.5 J         3.8 J         3.0 J         4.2 J         4.7 J         3.8 J         4.6 J         9.1         9.8         1           Potassium         150 J         160 J         160 J         180 J         220 J         140 J         150 J         150 J         540         550           Selenium         1.2 JB         1.4 JB         1.3 JB         1.2 JB         0.88 JB         4.0 B         1.1 JB         1.4 JB         0.87 JB         0.99 JB         3           Silver         0.067 JB         0.048 JB         0.041 JB         0.050 JB         0.037 JB         0.061 JB         0.047 JB         0.049 JB         0.050 JB         3           Sodium <td></td> <td>5.5E+03</td> <td>2.6E+04</td> |                     |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 5.5E+03                              | 2.6E+04            |
| Manganese         50         61         56         54         31         28         37         68         150         210         1           Mercury         0.014 U         0.020 J         0.014 J         0.015 U         0.014 U         0.014 U         0.038 J         0.013 U         0.014 U         1           Nickel         3.5 J         4.5 J         3.8 J         3.0 J         4.2 J         4.7 J         3.8 J         4.6 J         9.1         9.8         1           Potassium         150 J         160 J         160 J         180 J         220 J         140 J         150 J         150 J         540         550           Selenium         1.2 JB         1.4 JB         1.3 JB         1.2 JB         0.88 JB         4.0 B         1.1 JB         1.4 JB         0.99 JB         3           Silver         0.067 JB         0.048 JB         0.041 JB         0.050 JB         0.037 JB         0.061 JB         0.047 JB         0.084 JB         0.049 JB         0.050 JB         3           Sodium         140 U         150 U         150 U         130 U         140 U                                                                                                                                                | Metals              |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 2.0E+02                              | 6.1E+01            |
| Mercury         0.014 U         0.020 J         0.014 J         0.015 U         0.014 U         0.015 U         0.014 U         0.038 J         0.013 U         0.014 U         1           Nickel         3.5 J         4.5 J         3.8 J         3.0 J         4.2 J         4.7 J         3.8 J         4.6 J         9.1         9.8         1           Potassium         150 J         160 J         160 J         180 J         220 J         140 J         150 J         150 J         540         550           Selenium         1.2 JB         1.4 JB         1.3 JB         1.2 JB         0.88 JB         4.0 B         1.1 JB         1.4 JB         0.87 JB         0.99 JB         3           Silver         0.067 JB         0.048 JB         0.041 JB         0.050 JB         0.037 JB         0.061 JB         0.047 JB         0.084 JB         0.049 JB         0.050 JB         3           Sodium         140 U         150 U         130 U         140 U                                                                                                                                                                                                                                                                            |                     | C                          |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | na                                   | 3.7E+03            |
| Nickel         3.5 J         4.5 J         3.8 J         3.0 J         4.2 J         4.7 J         3.8 J         4.6 J         9.1         9.8         1           Potassium         150 J         160 J         160 J         180 J         220 J         140 J         150 J         150 J         540         550           Selenium         1.2 JB         1.4 JB         1.3 JB         1.2 JB         0.88 JB         4.0 B         1.1 JB         1.4 JB         0.87 JB         0.99 JB         3           Silver         0.067 JB         0.048 JB         0.041 JB         0.050 JB         0.037 JB         0.061 JB         0.047 JB         0.084 JB         0.049 JB         0.050 JB         3           Sodium         140 U         140 U         140 U         140 U         140 U         140 U         150 U         150 U         130 U         140 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | U                          |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 1.8E+02                              | 1.4E+03            |
| Potassium         150 J         160 J         160 J         180 J         220 J         140 J         150 J         150 J         540         550           Selenium         1.2 JB         1.4 JB         1.3 JB         1.2 JB         0.88 JB         4.0 B         1.1 JB         1.4 JB         0.87 JB         0.99 JB         3           Silver         0.067 JB         0.048 JB         0.041 JB         0.050 JB         0.037 JB         0.061 JB         0.047 JB         0.084 JB         0.049 JB         0.050 JB         3           Sodium         140 U         140 U         150 U         140 U         140 U         140 U         150 U         130 U         140 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | · ·                        |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 1.1E+00                              | 1.4E-01            |
| Selenium         1.2 JB         1.4 JB         1.3 JB         1.2 JB         0.88 JB         4.0 B         1.1 JB         1.4 JB         0.87 JB         0.99 JB         3           Silver         0.067 JB         0.048 JB         0.041 JB         0.050 JB         0.037 JB         0.061 JB         0.047 JB         0.084 JB         0.049 JB         0.050 JB         3           Sodium         140 U         140 U         150 U         140 U         140 U         140 U         140 U         140 U         150 U         130 U         140 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 1.5E+02                              | 2.2E+01            |
| Silver         0.067 JB         0.048 JB         0.041 JB         0.050 JB         0.037 JB         0.061 JB         0.047 JB         0.084 JB         0.049 JB         0.050 JB         3           Sodium         140 U         140 U         140 U         150 U         140 U         140 U         140 U         140 U         140 U         150 U         130 U         140 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                            |                       |                       |                                                 |                       |                       |                       |                       | 4                     |                       |                       | na<br>2 oF - 01                      | 2.6E+03            |
| Sodium         140 U         140 U         140 U         150 U         140 U         140 U         140 U         140 U         140 U         150 U         130 U         140 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 3.9E+01                              | 1.0E+00            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 3.9E+01                              | 1.0E+00            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | na<br>7 SE O2                        | 2.3E+02            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Thallium                   | <u>0.10</u> J         | 0.020 J               | 0.019 U                                         | 0.026 J               | 0.039 J               | 0.061 U               | 0.035 J               | 0.022 J               | 0.028 J               | 0.037 J               | 7.8E-02                              | 1.5E+00            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                            |                       |                       |                                                 |                       |                       |                       |                       |                       |                       |                       | 3.9E+01<br>2.3E+03                   | 3.5E+01<br>7.3E+01 |

#### **Table Notes:**

SVOCs Analytical Method: EPA Method 8270D

Target Analyte List (TAL) Metals Analytical Methods: EPA Method 6010D, 6020B, and 7471B

[Sample ID] - Sample Identification as shown on the COC and in the Lab Report for the duplicate sample. mg/kg - milligrams per kilogram or parts per million (ppm)

- U Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Reporting Limit (RL); therefore, result is an estimated concentration.
- B Indicates analyte was present in the Method Blank and sample.

na - not applicable

**Bold** - Detected analyte concentration

#### Screening Levels (SLs):

MDE Residential Soil Clean-up Standards (October 2018)

MDE Anticipated Typical Concentration (ATC) for Central Maryland (October 2018)

#### **Screening Evaluation Notes:**

SVOCs: No detected analyte concentrations exceed the respective MDE Residential Soil Clean-up Standard.

<u>Underline</u> - MDL exceeds the respective MDE Residential Soil Clean-up Standard. Metals:

Bold and underline - Detected analyte concentration exceeds the respective MDE Residential Soil Clean-up Standard.

Red, bold, and underline - Detected analyte concentration exceeds the MDE Residential Soil Clean-up Standard and the ATC for Central

No MDLs exceed the respective MDE Residential Soil Clean-up Standard.

#### **Additional Screening Level Notes:**

MDE Residential Soil Standard

Total Mercury Mercury (elemental)

#### Grab Groundwater Sample Analytical Results September 28, 2020 Volatile Organic Compounds (VOCs)

| Sample ID                             | HSI-GW-01    | HSI-GW-02    | HSI-GW-03    | HSI-GW-04     | HSI-TB-01 | EPA Residential    |
|---------------------------------------|--------------|--------------|--------------|---------------|-----------|--------------------|
| Dilution Factor                       | 5            | 5            | 5            | 5             | 1         | Groundwater VISLs  |
| Sample Type                           |              | Groun        | dwater       |               | Blank     |                    |
| Analyte Name                          |              |              |              | ration (ug/L) |           |                    |
| 1,1,1-Trichloroethane                 | 1.8 U        | 1.8 U        | 1.8 U        | 1.8 U         | 0.36 U    | 7.4E+03            |
| 1,1,2,2-Tetrachloroethane             | 2.2 U        | 7.5          | <b>2.4</b> J | 12            | 0.45 U    | 3.2E+01            |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 3.6 U        | 3.6 U        | 3.6 U        | 3.6 U         | 0.73 U    | 2.4E+02            |
| 1,1,2-Trichloroethane                 | 1.6 U        | 1.6 U        | 1.6 U        | 1.6 U         | 0.32 U    | 6.2E+00            |
| 1,1-Dichloroethane                    | 6.9          | <b>3.6</b> J | <b>2.7</b> J | <b>4.5</b> J  | 0.43 U    | 7.6E+01            |
| 1,1-Dichloroethene                    | 2.7 U        | 2.7 U        | 2.7 U        | 2.7 U         | 0.53 U    | 2.0E+02            |
| 1,2,3-Trichlorobenzene                | 3.9 U        | 3.9 U        | 3.9 U        | 3.9 U         | 0.79 U    | na                 |
| 1,2,4-Trichlorobenzene                | 3.6 U        | 3.6 U        | 3.6 U        | 3.6 U         | 0.73 U    | 3.6E+01            |
| 1,2-Dibromo-3-chloropropane           | 4.2 U        | 4.2 U        | 4.2 U        | 4.2 U         | 0.83 U    | 2.8E-01            |
| 1,2-Dibromoethane                     | 1.7 U        | 1.7 U        | 1.7 U        | 1.7 U         | 0.34 U    | 1.8E+00            |
| 1,2-Dichlorobenzene                   | 1.6 U        | 1.6 U        | 1.6 U        | 1.6 U         | 0.32 U    | 2.7E+03            |
| 1,2-Dichloroethane                    | 35           | 24           | 3.2 U        | 20            | 0.64 U    | 2.2E+01            |
| 1,2-Dichloropropane                   | 1.5 U        | 1.5 U        | 1.5 U        | 1.5 U         | 0.30 U    | 3.6E+01            |
| 1.3-Dichlorobenzene                   | 1.9 U        | 1.9 U        | 1.9 U        | 1.9 U         | 0.38 U    | na                 |
| 1,4-Dichlorobenzene                   | 1.8 U        | 1.8 U        | 1.8 U        | 1.8 U         | 0.37 U    | 2.6E+01            |
| 1,4-Dioxane                           | 200 U        | 200 U        | 200 U        | 200 U         | 39 U      | 2.9E+04            |
| 2-Butanone                            | 3.7 U        | 3.7 U        | 3.7 U        | 3.7 U         | 0.75 U    | 2.9E+04<br>2.2E+06 |
| 2-Hexanone                            | 3.0 U        | 3.0 U        | 3.0 U        | 3.0 U         | 0.60 U    | 8.2E+03            |
| 4-Methyl-2-pentanone                  | 2.4 U        | 2.4 U        | 2.4 U        | 2.4 U         | 0.49 U    | 5.6E+05            |
| Acetone                               | 2.4 U        | 23 U         | 23 U         | 2.4 U         | 4.6 U     | 2.3E+07            |
| Benzene                               | 40           | 36           | 13           | 28            | 0.30 U    | 1.6E+01            |
| Bromochloromethane                    | 3.9 U        | 3.9 U        | 3.9 U        | 3.9 U         | 0.30 U    | 7.0E+02            |
|                                       | 1.7 U        | 1.7 U        | 1.7 U        | 1.7 U         | 0.79 U    | 8.8E+00            |
| Bromodichloromethane                  |              | 2.7 U        |              |               |           |                    |
| Bromoform                             | 2.7 U        |              | 2.7 U        | 2.7 U         | 0.54 U    | 1.2E+03            |
| Bromomethane                          | 2.5 U        | 2.5 U        | 2.5 U        | 2.5 U         | 0.50 U    | 1.7E+01            |
| Carbon disulfide                      | 2.1 U        | 2.1 U        | 2.1 U        | 2.1 U         | 0.42 U    | 1.2E+03            |
| Carbon tetrachloride                  | 1.6 U        | 1.6 U        | 1.6 U        | 1.6 U         | 0.32 U    | 4.2E+00            |
| Chlorobenzene                         | <u>510</u>   | <u>550</u>   | 320          | 460           | 0.33 U    | 4.1E+02            |
| Chloroethane                          | 2.9 U        | 2.9 U        | <b>4.5</b> J | 3.6 J         | 0.58 U    | na<br>0.1F. 00     |
| Chloroform                            | 9.8 U        | 9.8 U        | 9.8 U        | 9.8 U         | 2.0 U     | 8.1E+00            |
| Chloromethane                         | 2.6 U        | 2.6 U        | 2.6 U        | 2.6 U         | 0.52 U    | 2.6E+02            |
| cis-1,2-Dichloroethene                | 360          | 97           | <b>4.7</b> J | 120           | 0.64 U    | na                 |
| cis-1,3-Dichloropropene               | 1.6 U        | 1.6 U        | 1.6 U        | 1.6 U         | 0.32 U    | na                 |
| Cyclohexane                           | 2.4 U        | 2.4 U        | 2.4 U        | 2.4 U         | 0.49 U    | 1.0E+03            |
| Dibromochloromethane                  | 1.2 U        | 1.2 U        | 1.2 U        | 1.2 U         | 0.24 U    | na                 |
| Dichlorodifluoromethane               | 3.1 U        | 3.1 U        | 3.1 U        | 3.1 U         | 0.62 U    | 7.4E+00            |
| Ethylbenzene                          | <b>3.6</b> J | 17           | 2.3 U        | 2.3 U         | 0.47 U    | 3.5E+01            |
| Isopropylbenzene                      | 2.5 U        | <b>2.9</b> J | 2.5 U        | 2.5 U         | 0.49 U    | 8.9E+02            |
| m&p-Xylene                            | 6.6          | 39           | 4.2 U        | 4.2 U         | 0.85 U    | 3.9E+02            |
| Methyl Acetate                        | 11 B         | <b>13</b> B  | <b>15</b> B  | <b>14</b> B   | 0.70 U    | na                 |
| Methylcyclohexane                     | 3.1 U        | 3.1 U        | 3.1 U        | 3.1 U         | 0.61 U    | na                 |
| Methylene chloride                    | 1.5 U        | 1.5 U        | 1.5 U        | <b>1.9</b> J  | 0.29 U    | 4.7E+03            |
| Methyl-t-butyl ether                  | 18           | 4.1          | <b>1.9</b> J | 9.6           | 0.31 U    | 4.5E+03            |
| o-Xylene                              | <b>3.6</b> J | 13           | 3.4 U        | 3.4 U         | 0.68 U    | 4.9E+02            |
| Styrene                               | 2.7 U        | 2.7 U        | 2.7 U        | 2.7 U         | 0.54 U    | 9.3E+03            |
| Tetrachloroethene                     | 1.8 U        | 1.8 U        | 1.8 U        | 1.8 U         | 0.36 U    | 5.8E+01            |
| Toluene                               | <b>2.1</b> J | 120          | 1.6 U        | <b>4.3</b> J  | 0.33 U    | 1.9E+04            |
| trans-1,2-Dichloroethene              | 91           | 15           | <b>1.9</b> J | 32            | 0.31 U    | na                 |
| trans-1,3-Dichloropropene             | 1.5 U        | 1.5 U        | 1.5 U        | 1.5 U         | 0.31 U    | na                 |
| Trichloroethene                       | <u>10</u>    | <u>16</u>    | 1.7 U        | <u>26</u>     | 0.35 U    | 5.2E+00            |
| Trichlorofluoromethane                | 1.5 U        | 1.5 U        | 1.5 U        | 1.5 U         | 0.31 U    | na                 |
| Vinyl chloride                        | <u>65</u>    | 45           | 9.0          | <u>48</u>     | 0.71 U    | 1.5E+00            |
| Xylenes (Total)                       | 10           | 52           | 3.4 U        | 3.4 U         | 0.68 U    | 3.9E+02            |

#### **Table Notes:**

VOCs Analytical Method: EPA Method 8260D

ug/L - micrograms per liter or parts per billion (ppb)

- U Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Reporting Limit (RL); therefore, result is an estimated concentration.
- $\boldsymbol{B}$  Indicates analyte was present in the Method Blank and sample.

na - not applicable

**Bold** - Detected analyte concentration

#### Residential Screening Levels (SLs):

EPA Residential Groundwater Vapor Intrusion Screening Levels (VISLs) (May 2020) (at  $CR = 1x10^{-5}$  or HI = 1)

#### **Screening Evaluation Notes:**

Red, bold, and underline - Detected analyte concentration exceeds the respective SL. Underline - MDL exceeds the respective SL.

#### **Additional Screening Level Notes**

AnalyteEPA VISLsm+p-XylenesTotal Xyleneso-Xyleneo-Xylene

#### Subsurface Soil Sample Analytical Results September 28 - October 1, 2020 Volatile Organic Compounds (VOCs)

| Sample ID                             | HSI-SB-01<br>(2.5-3) | HSI-SB-01<br>(6-6.5) | HSI-SB-01<br>(6-6.5)<br>[HSI-SB-D1] | HSI-SB-01<br>(10-10.5) | HSI-SB-01<br>(14.5-15) | HSI-SB-02<br>(3.5-4) | HSI-SB-02<br>(10-10.5) | HSI-SB-02<br>(11-11.5) | HSI-SB-03<br>(3.5-4) | HSI-SB-03<br>(10-10.5) | HSI-SB-03<br>(11-11.5) | HSI-SB-04<br>(9.5-10) | HSI-SB-05<br>(4.5-5) |
|---------------------------------------|----------------------|----------------------|-------------------------------------|------------------------|------------------------|----------------------|------------------------|------------------------|----------------------|------------------------|------------------------|-----------------------|----------------------|
| Dilution Factor                       | 63.5                 | 1220                 | 6590                                | 0.616                  | 0.71                   | 74.5                 | 0.687                  | 56.9                   | 65.2                 | 65.2                   | 69.1                   | 0.665                 | 68.8                 |
| Sample Collection Date                | 09/29/20             | 09/29/20             | 09/29/20                            | 09/29/20               | 09/29/20               | 09/28/20             | 09/28/20               | 09/28/20               | 09/29/20             | 09/29/20               | 09/29/20               | 09/29/20              | 09/30/20             |
| Analyte Name                          |                      |                      | •                                   |                        | •                      | Co                   | oncentration (mg/      | kg)                    | •                    | •                      |                        | •                     |                      |
| 1,1,1-Trichloroethane                 | 0.026 U              | 0.53 U               | 2.8 U                               | 0.00069 U              | 0.00082 U              | 0.032 U              | 0.00079 Ù              | 0.026 U                | 0.027 U              | 0.028 U                | 0.031 U                | 0.00076 U             | 0.029 U              |
| 1,1,2,2-Tetrachloroethane             | 2.7                  | <u>58</u>            | 200                                 | 0.0011 J               | 0.0024                 | 0.040 U              | 0.0063                 | 0.032 U                | 0.43                 | 0.035 U                | 0.039 U                | 0.00037 U             | 0.036 U              |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.053 U              | 1.1 U                | 5.7 U                               | 0.0010 U               | 0.0012 U               | 0.065 U              | 0.0012 U               | 0.052 U                | 0.055 U              | 0.056 U                | 0.063 U                | 0.0011 U              | 0.058 U              |
| 1,1,2-Trichloroethane                 | <b>0.031</b> J       | <u>0.47</u> U        | <u>2.5</u> U                        | 0.00035 U              | 0.00041 U              | 0.029 U              | 0.00039 U              | 0.023 U                | 0.025 J              | 0.025 U                | 0.028 U                | 0.00038 U             | 0.026 U              |
| 1,1-Dichloroethane                    | 0.031 U              | 0.63 U               | 3.4 U                               | 0.00097 J              | 0.00077 U              | 0.038 U              | 0.0011 J               | 0.031 U                | 0.032 U              | 0.033 U                | 0.037 U                | <b>0.0014</b> J       | 0.034 U              |
| 1,1-Dichloroethene                    | 0.039 U              | 0.78 U               | 4.2 U                               | 0.0016                 | 0.0010 U               | 0.048 U              | 0.00099 U              | 0.038 U                | 0.040 U              | 0.041 U                | 0.046 U                | 0.00094 U             | 0.043 U              |
| 1,2,3-Trichlorobenzene                | 0.057 U              | 1.2 U                | 6.2 U                               | 0.00041 U              | 0.00049 U              | 0.071 U              | 0.00047 U              | 0.057 U                | 0.060 U              | 0.061 U                | 0.068 U                | 0.00045 U             | 0.063 U              |
| 1,2,4-Trichlorobenzene                | 0.053 U              | 1.1 U                | 5.7 U                               | 0.00047 U              | 0.00056 U              | 0.065 U              | 0.00054 U              | 0.052 U                | 0.055 U              | 0.056 U                | 0.063 U                | 0.00052 U             | 0.058 U              |
| 1,2-Dibromo-3-chloropropane           | <u>0.061</u> U       | <u>1.2</u> U         | <u>6.5</u> U                        | 0.00041 U              | 0.00049 U              | <u>0.075</u> U       | 0.00047 U              | <u>0.060</u> U         | <u>0.063</u> U       | <u>0.065</u> U         | <u>0.072</u> U         | 0.00045 U             | <u>0.067</u> U       |
| 1,2-Dibromoethane                     | 0.025 U              | <u>0.50</u> U        | <u>2.7</u> U                        | 0.00037 U              | 0.00044 U              | 0.031 U              | 0.00042 U              | 0.025 U                | 0.026 U              | 0.027 U                | 0.030 U                | 0.00040 U             | 0.027 U              |
| 1,2-Dichlorobenzene                   | 0.024 U              | 0.48 U               | 2.5 U                               | 0.00038 U              | 0.00045 U              | 0.029 U              | 0.0016 J               | 0.023 U                | 0.025 U              | 0.025 U                | 0.028 U                | 0.00042 U             | 0.026 U              |
| 1,2-Dichloroethane                    | <u>1.8</u>           | <u>19</u>            | <u>74</u>                           | 0.0073                 | 0.010                  | 0.057 U              | 0.00035 U              | 0.046 U                | 0.39                 | 0.050 U                | 0.055 U                | 0.0028                | 0.10                 |
| 1,2-Dichloropropane                   | 0.022 U              | 0.44 U               | <u>2.3</u> U                        | 0.00062 U              | 0.00073 U              | 0.027 U              | 0.00070 U              | 0.022 U                | 0.023 U              | 0.023 U                | 0.026 U                | 0.00067 U             | 0.024 U              |
| 1,3-Dichlorobenzene                   | 0.028 U              | 0.55 U               | 3.0 U                               | 0.00041 U              | 0.00049 U              | 0.034 U              | 0.00047 U              | 0.027 U                | 0.029 U              | 0.029 U                | 0.033 U                | 0.00045 U             | 0.030 U              |
| 1,4-Dichlorobenzene                   | 0.027 U              | 0.54 U               | <u>2.9</u> U                        | 0.00040 U              | 0.00047 U              | 0.033 U              | <b>0.00075</b> J       | 0.026 U                | 0.028 U              | 0.028 U                | 0.032 U                | 0.00044 U             | 0.029 U              |
| 1,4-Dioxane                           | 2.9 U                | 58 U                 | 310 U                               | 0.036 U                | 0.043 U                | 3.5 U                | 0.042 U                | 2.8 U                  | 3.0 U                | 3.1 U                  | 3.4 U                  | 0.040 U               | 3.1 U                |
| 2-Butanone                            | 0.055 U              | 1.1 U                | 5.9 U                               | 0.00090 U              | 0.0011 U               | 0.067 U              | 0.0093                 | 0.054 U                | 0.057 U              | 0.058 U                | 0.065 U                | 0.00099 U             | 0.060 U              |
| 2-Hexanone                            | 0.044 U              | 0.88 U               | 4.7 U                               | 0.00064 U              | 0.00075 U              | 0.054 U              | 0.00073 U              | 0.043 U                | 0.046 U              | 0.047 U                | 0.052 U                | 0.00070 U             | 0.048 U              |
| 4-Methyl-2-pentanone                  | 0.59                 | 14                   | 76                                  | 0.0040                 | 0.00081 J              | 0.044 U              | 0.0042                 | 0.035 U                | 0.037 U              | 0.038 U                | 0.042 U                | 0.00048 U             | 0.039 U              |
| Acetone                               | 0.33 U               | 6.7 U                | 36 U                                | 0.0080                 | 0.012                  | 0.41 U               | 0.034                  | 0.33 U                 | 0.35 U               | 0.36 U                 | 0.40 U                 | 0.0056 U              | 0.37 U               |
| Benzene                               | <b>0.034</b> J       | <u>2.4</u>           | <u>9.7</u>                          | 0.0086                 | 0.0030                 | 0.027 U              | 0.083                  | 0.098                  | 0.022 U              | 0.023 U                | 0.026 U                | 0.0072                | 0.024 U              |
| Bromochloromethane                    | 0.057 U              | 1.2 U                | 6.2 U                               | 0.00053 U              | 0.00062 U              | 0.071 U              | 0.00060 U              | 0.057 U                | 0.060 U              | 0.061 U                | 0.068 U                | 0.00057 U             | 0.063 U              |
| Bromodichloromethane                  | 0.025 U              | <u>0.51</u> U        | <u>2.7</u> U                        | 0.00035 U              | 0.00042 U              | 0.031 U              | 0.00040 U              | 0.025 U                | 0.026 U              | 0.027 U                | 0.030 U                | 0.00039 U             | 0.028 U              |
| Bromoform                             | 0.039 U              | 0.80 U               | 4.2 U                               | 0.00025 U              | 0.00029 U              | 0.049 U              | 0.00028 U              | 0.039 U                | 0.041 U              | 0.042 U                | 0.047 U                | 0.00027 U             | 0.043 U              |
| Bromomethane                          | 0.037 U              | <u>0.74</u> U        | <u>3.9</u> U                        | 0.0012 U               | 0.0014 U               | 0.045 U              | 0.0013 U               | 0.036 U                | 0.038 U              | 0.039 U                | 0.043 U                | 0.0013 U              | 0.040 U              |
| Carbon disulfide                      | 0.031 U              | 0.62 U               | 3.3 U                               | 0.0026 U               | 0.0030 U               | 0.038 U              | 0.0029 U               | 0.031 U                | 0.032 U              | 0.033 U                | 0.037 U                | 0.0028 U              | 0.034 U              |
| Carbon tetrachloride                  | 0.024 U              | 0.48 U               | <u>2.5</u> U                        | 0.00073 U              | 0.00086 U              | 0.029 U              | 0.00083 U              | 0.023 U                | 0.024 U              | 0.025 U                | 0.028 U                | 0.00080 U             | 0.026 U              |
| Chlorobenzene                         | 1.5                  | <u>320</u>           | <u>1,200</u>                        | 0.18                   | 0.065                  | 9.1                  | 0.00053 U              | 2.7                    | <b>0.057</b> J       | 0.33                   | 0.19                   | 0.097                 | 0.050 J              |
| Chloroethane                          | 0.042 U              | 0.85 U               | 4.5 U                               | 0.0015 U               | 0.0017 U               | 0.052 U              | 0.0017 U               | 0.042 U                | 0.044 U              | 0.045 U                | 0.050 U                | 0.0016 U              | 0.046 U              |
| Chloroform                            | 0.14 U               | <u>2.9</u> U         | <u>15</u> U                         | 0.0010 U               | 0.0012 U               | 0.18 U               | 0.0012 U               | 0.14 U                 | 0.15 U               | 0.15 U                 | 0.17 U                 | 0.0011 U              | 0.16 U               |
| Chloromethane                         | 0.038 U              | 0.76 U               | 4.0 U                               | 0.00092 U              | 0.0011 U               | 0.046 U              | 0.0011 U               | 0.037 U                | 0.039 U              | 0.040 U                | 0.045 U                | 0.0010 U              | 0.041 U              |
| cis-1,2-Dichloroethene                | 0.35                 | 9.9                  | <u>33</u>                           | 0.052                  | 0.014                  | 0.057 U              | 0.00070 U              | 0.046 U                | 0.18                 | 0.049 U                | <b>0.079</b> J         | 0.030                 | 0.34                 |
| cis-1,3-Dichloropropene               | 0.023 U              | 0.47 U               | 2.5 U                               | 0.00040 U              | 0.00047 U              | 0.029 U              | 0.00046 U              | 0.023 U                | 0.024 U              | 0.025 U                | 0.028 U                | 0.00044 U             | 0.026 U              |
| Cyclohexane                           | 0.036 U              | 0.72 U               | 3.8 U                               | 0.00090 U              | 0.0011 U               | 0.044 U              | 0.0010 U               | 0.035 U                | 0.037 U              | 0.038 U                | 0.042 U                | 0.00099 U             | 0.039 U              |
| Dibromochloromethane                  | 0.017 U              | 0.35 U               | 1.9 U                               | 0.00032 U              | 0.00038 U              | 0.021 U              | 0.00037 U              | 0.017 U                | 0.018 U              | 0.019 U                | 0.021 U                | 0.00035 U             | 0.019 U              |
| Dichlorodifluoromethane               | 0.045 U              | 0.91 U               | 4.9 U                               | 0.0011 U               | 0.0013 U               | 0.056 U              | 0.0012 U               | 0.045 U                | 0.047 U              | 0.048 U                | 0.053 U                | 0.0012 U              | 0.050 U              |
| Ethylbenzene                          | 0.034 U              | <u>12</u>            | <u>44</u>                           | 0.0028                 | <b>0.00070</b> J       | 0.78                 | 0.074                  | <b>0.046</b> J         | 0.035 U              | 0.036 U                | 0.040 U                | 0.00057 U             | 0.037 U              |
| Isopropylbenzene                      | 0.036 U              | <b>1.2</b> J         | <b>5.0</b> J                        | 0.00062 U              | 0.00074 U              | 0.044 U              | 0.035                  | 0.035 U                | 0.037 U              | 0.038 U                | 0.042 U                | 0.00068 U             | 0.039 U              |
| m&p-Xylene                            | 0.11                 | 57                   | <u>200</u>                          | 0.0024                 | 0.0013                 | 4.1                  | 0.29                   | 0.14                   | 0.064 U              | 0.066 U                | 0.073 U                | 0.0010                | 0.068 U              |
| Methyl Acetate                        | 0.051 U              | 1.0 U                | 5.5 U                               | 0.00072 U              | 0.00085 U              | 0.063 U              | 0.00082 U              | 0.051 U                | 0.053 U              | 0.055 U                | 0.061 U                | 0.00079 U             | 0.056 U              |
| Methylcyclohexane                     | 0.045 U              | 1.8                  | 4.8 U                               | 0.00093 J              | 0.00080 U              | 0.055 U              | 0.0025                 | 0.044 U                | 0.047 U              | 0.048 U                | 0.053 U                | 0.00074 U             | 0.049 U              |
| Methylene chloride                    | 2.3                  | <u>49</u>            | <u>160</u>                          | 0.0031                 | 0.022                  | 0.026 U              | 0.0024                 | 0.021 U                | 0.022 U              | 0.023 U                | 0.025 U                | 0.0022                | 0.024 U              |
| Methyl-t-butyl ether                  | 0.023 U              | 0.46 U               | 2.4 U                               | 0.00041 U              | 0.0012                 | 0.028 U              | 0.00046 U              | 0.022 U                | 0.024 U              | 0.024 U                | 0.027 U                | <b>0.00070</b> J      | 0.025 U              |
| o-Xylene                              | 0.050 U              | 13                   | 46                                  | 0.0019                 | 0.00063 U              | 1.3                  | 0.12                   | 0.049 U                | 0.052 U              | 0.053 U                | 0.059 U                | 0.0014                | 0.055 U              |

Subsurface Soil Sample Analytical Results September 28 - October 1, 2020 Volatile Organic Compounds (VOCs)

| Sample ID                 | HSI-SB-01<br>(2.5-3) | HSI-SB-01<br>(6-6.5) | HSI-SB-01<br>(6-6.5)<br>[HSI-SB-D1] | HSI-SB-01<br>(10-10.5) | HSI-SB-01<br>(14.5-15) | HSI-SB-02<br>(3.5-4) | HSI-SB-02<br>(10-10.5) | HSI-SB-02<br>(11-11.5) | HSI-SB-03<br>(3.5-4) | HSI-SB-03<br>(10-10.5) | HSI-SB-03<br>(11-11.5) | HSI-SB-04<br>(9.5-10) | HSI-SB-05<br>(4.5-5) |
|---------------------------|----------------------|----------------------|-------------------------------------|------------------------|------------------------|----------------------|------------------------|------------------------|----------------------|------------------------|------------------------|-----------------------|----------------------|
| Dilution Factor           | 63.5                 | 1220                 | 6590                                | 0.616                  | 0.71                   | 74.5                 | 0.687                  | 56.9                   | 65.2                 | 65.2                   | 69.1                   | 0.665                 | 68.8                 |
| Sample Collection Date    | 09/29/20             | 09/29/20             | 09/29/20                            | 09/29/20               | 09/29/20               | 09/28/20             | 09/28/20               | 09/28/20               | 09/29/20             | 09/29/20               | 09/29/20               | 09/29/20              | 09/30/20             |
| Analyte Name              |                      |                      |                                     |                        |                        | Co                   | oncentration (mg/      | kg)                    |                      |                        |                        |                       |                      |
| Styrene                   | 0.040 U              | 0.80 U               | 4.3 U                               | 0.00041 U              | 0.00049 U              | 0.049 U              | 0.00047 U              | 0.039 U                | 0.041 U              | 0.042 U                | 0.047 U                | 0.00045 U             | 0.043 U              |
| Tetrachloroethene         | 0.21                 | <u>29</u>            | <u>95</u>                           | 0.00074 U              | 0.00087 U              | 0.032 U              | 0.00084 U              | 0.026 U                | 0.17                 | 0.028 U                | 0.031 U                | 0.00080 U             | 0.059 J              |
| Toluene                   | 0.75                 | <u>570</u>           | <u>2,200</u>                        | 0.0094                 | 0.035                  | 0.31                 | 0.17                   | 1.2                    | <b>0.042</b> J       | 0.37                   | 0.082 J                | 0.0049                | 0.026 U              |
| trans-1,2-Dichloroethene  | 0.088                | 3.4                  | 12                                  | 0.0027                 | 0.0027                 | 0.028 U              | 0.0010 U               | 0.022 U                | 0.023 U              | 0.024 U                | 0.027 U                | 0.0033                | <b>0.076</b> J       |
| trans-1,3-Dichloropropene | 0.022 U              | 0.45 U               | 2.4 U                               | 0.00035 U              | 0.00042 U              | 0.028 U              | 0.00040 U              | 0.022 U                | 0.023 U              | 0.024 U                | 0.026 U                | 0.00039 U             | 0.025 U              |
| Trichloroethene           | <u>4.4</u>           | <u>460</u>           | <u>1,700</u>                        | 0.030                  | 0.040                  | 0.031 U              | 0.00070 U              | 0.025 U                | <u>2.3</u>           | 0.027 U                | <b>0.032</b> J         | 0.0012 J              | <u>0.85</u>          |
| Trichlorofluoromethane    | 0.022 U              | 0.45 U               | 2.4 U                               | 0.00089 U              | 0.0010 U               | 0.028 U              | 0.0010 U               | 0.022 U                | 0.023 U              | 0.024 U                | 0.027 U                | 0.00097 U             | 0.025 U              |
| Vinyl chloride            | 0.052 U              | <u>1.0</u> U         | <u>5.5</u> U                        | <u>0.084</u>           | 0.0075                 | <u>0.063</u> U       | 0.0010 U               | 0.051 U                | 0.054 U              | 0.055 U                | <u>0.061</u> U         | <u>0.14</u>           | 0.056 U              |
| Xylenes (Total)           | 0.11                 | <u>70</u>            | <u>250</u>                          | 0.0043                 | 0.0013                 | 5.4                  | 0.41                   | 0.14                   | 0.052 U              | 0.053 U                | 0.059 U                | 0.0024                | 0.055 U              |

#### **Table Notes:**

VOCs Analytical Method: EPA Method 8260D

[Sample ID] - Sample Identification as shown on the COC and in the Lab Report for the duplicate sample. mg/kg - milligrams per kilogram or parts per million (ppm)

- U Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Reporting Limit (RL); therefore, result is an estimated concentration. na not applicable

**Bold** - Detected analyte concentration

#### **Screening Levels (SLs):**

MDE Residential Soil Clean-up Standards (October 2018)

#### **Screening Evaluation Notes:**

Red, bold, and underline - Detected analyte concentration exceeds the respective SL. Underline - MDL exceeds the respective SL.

#### **Additional Screening Level Notes:**

Analyte MDE Residential Soil Standard

m+p-Xylenes Total Xylenes o-Xylene Total Xylenes

#### Subsurface Soil Sample Analytical Results September 28 - October 1, 2020 Volatile Organic Compounds (VOCs)

| Sample ID                             | HSI-SB-06<br>(4.5-5) | HSI-SB-07<br>(4.5-5) | HSI-SB-08<br>(3.5-4) | HSI-SB-08<br>(8-8.5) | HSI-SB-08<br>(12-13) | HSI-SB-08<br>(12-13)<br>[HSI-SB-D2] | HSI-SB-08<br>(13-13.5) | HSI-SB-09<br>(14-14.5) | HSI-SB-10<br>(5.5-6) | HSI-SB-10<br>(7-7.5) | HSI-SB-10<br>(8-8.5) | MDE<br>Residential |
|---------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------------------|------------------------|------------------------|----------------------|----------------------|----------------------|--------------------|
| Dilution Factor                       | 67.5                 | 70.8                 | 64.7                 | 66.2                 | 69.4                 | 70.7                                | 0.681                  | 0.697                  | 63.2                 | 61.7                 | 0.679                | Soil Standards     |
| Sample Collection Date                | 09/30/20             | 09/30/20             | 10/01/20             | 10/01/20             | 10/01/20             | 10/01/20                            | 10/01/20               | 10/01/20               | 10/01/20             | 10/01/20             | 10/01/20             | 1                  |
| Analyte Name                          |                      | •                    |                      |                      |                      | Concentrati                         | ion (mg/kg)            |                        |                      | •                    |                      | •                  |
| 1,1,1-Trichloroethane                 | 0.028 U              | 0.029 U              | 0.027 U              | 0.029 U              | 0.033 U              | 0.033 U                             | 0.00081 U              | 0.00080 U              | 0.025 U              | 0.027 U              | 0.00076 U            | 8.1E+02            |
| 1,1,2,2-Tetrachloroethane             | 0.036 U              | 0.17                 | 0.033 U              | 0.036 U              | 0.041 U              | 0.042 U                             | 0.00040 U              | 0.00039 U              | 0.052 J              | 0.033 U              | 0.028                | 6.0E-01            |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.058 U              | 0.060 U              | 0.054 U              | 0.059 U              | 0.066 U              | 0.068 U                             | 0.0012 U               | 0.0012 U               | 0.052 U              | 0.054 U              | 0.0012 U             | na                 |
| 1,1,2-Trichloroethane                 | 0.025 U              | 0.026 U              | 0.024 U              | 0.026 U              | 0.029 U              | 0.030 U                             | 0.00041 U              | 0.00040 U              | 0.023 U              | 0.024 U              | 0.0043               | 1.5E-01            |
| 1,1-Dichloroethane                    | 0.034 U              | 0.035 U              | 0.032 U              | 0.035 U              | 0.039 U              | 0.040 U                             | 0.00077 U              | 0.00076 U              | 0.030 U              | 0.032 U              | 0.00072 U            | 3.6E+00            |
| 1,1-Dichloroethene                    | 0.042 U              | 0.044 U              | 0.040 U              | 0.043 U              | 0.049 U              | 0.050 U                             | 0.0010 U               | 0.0010 U               | 0.038 U              | 0.040 U              | 0.00095 U            | 2.3E+01            |
| 1,2,3-Trichlorobenzene                | 0.062 U              | 0.065 U              | 0.058 U              | 0.064 U              | 0.072 U              | 0.073 U                             | 0.00049 U              | 0.00048 U              | 0.056 U              | 0.059 U              | 0.00046 U            | na                 |
| 1,2,4-Trichlorobenzene                | 0.058 U              | 0.060 U              | 0.054 U              | 0.059 U              | 0.067 U              | 0.068 U                             | 0.00056 U              | 0.00055 U              | 0.052 U              | 0.054 U              | 0.00052 U            | 5.8E+00            |
| 1,2-Dibromo-3-chloropropane           | 0.066 U              | 0.069 U              | 0.062 U              | 0.067 U              | 0.076 U              | 0.078 U                             | 0.00049 U              | 0.00048 U              | 0.059 U              | 0.062 U              | 0.00046 U            | 5.3E-03            |
| 1,2-Dibromoethane                     | 0.027 U              | 0.028 U              | 0.025 U              | 0.028 U              | 0.031 U              | 0.032 U                             | 0.00043 U              | 0.00043 U              | 0.024 U              | 0.025 U              | 0.00041 U            | 3.6E-02            |
| 1,2-Dichlorobenzene                   | 0.026 U              | 0.027 U              | 0.029 J              | 0.026 U              | 0.030 U              | 0.030 U                             | 0.00045 U              | 0.00044 U              | 0.023 U              | 0.024 U              | 0.00042 U            | 1.8E+02            |
| 1,2-Dichloroethane                    | 0.051 U              | 0.087                | 0.047 U              | 0.052 U              | 0.058 U              | 0.059 U                             | 0.00036 U              | 0.0047                 | 0.070                | 0.047 U              | 0.018                | 4.6E-01            |
| 1,2-Dichloropropane                   | 0.024 U              | 0.025 U              | 0.022 U              | 0.024 U              | 0.027 U              | 0.028 U                             | 0.00073 U              | 0.00071 U              | 0.021 U              | 0.022 U              | 0.00068 U            | 1.6E+00            |
| 1,3-Dichlorobenzene                   | 0.030 U              | 0.031 U              | 0.028 U              | 0.030 U              | 0.034 U              | 0.035 U                             | 0.00049 U              | 0.00048 U              | 0.027 U              | 0.028 U              | 0.00046 U            | na                 |
| 1,4-Dichlorobenzene                   | 0.029 U              | 0.030 U              | 0.027 U              | 0.030 U              | 0.033 U              | 0.034 U                             | 0.00047 U              | 0.00046 U              | 0.026 U              | 0.027 U              | 0.00044 U            | 2.6E+00            |
| 1,4-Dioxane                           | 3.1 U                | 3.2 U                | 2.9 U                | 3.2 U                | 3.6 U                | 3.7 U                               | 0.043 U                | 0.042 U                | 2.8 U                | 2.9 U                | 0.040 U              | na                 |
| 2-Butanone                            | 0.059 U              | 0.062 U              | 0.056 U              | 0.060 U              | 0.068 U              | 0.070 U                             | 0.0011 U               | 0.0010 U               | 0.053 U              | 0.056 U              | 0.00099 U            | 2.7E+03            |
| 2-Hexanone                            | 0.048 U              | 0.049 U              | 0.045 U              | 0.048 U              | 0.055 U              | 0.056 U                             | 0.00075 U              | 0.00074 U              | 0.043 U              | 0.045 U              | 0.00070 U            | na                 |
| 4-Methyl-2-pentanone                  | 0.039 U              | 0.040 U              | 0.036 U              | 0.039 U              | 0.044 U              | 4.1                                 | 0.00051 U              | 0.00051 U              | 0.035 U              | 0.036 U              | 0.00048 U            | 3.3E+03            |
| Acetone                               | 0.36 U               | 0.38 U               | 0.34 U               | 0.37 U               | 0.42 U               | 0.43 U                              | 0.0060 U               | 0.0059 U               | 0.33 U               | 0.34 U               | 0.019                | 6.1E+03            |
| Benzene                               | 0.023 U              | 0.024 U              | 0.022 U              | <b>0.040</b> J       | 0.13                 | 0.12                                | 0.0086                 | 0.0039                 | 0.021 U              | 0.031 J              | 0.0018               | 1.2E+00            |
| Bromochloromethane                    | 0.062 U              | 0.065 U              | 0.058 U              | 0.063 U              | 0.072 U              | 0.073 U                             | 0.00062 U              | 0.00061 U              | 0.056 U              | 0.058 U              | 0.00058 U            | na                 |
| Bromodichloromethane                  | 0.027 U              | 0.028 U              | 0.026 U              | 0.028 U              | 0.032 U              | 0.032 U                             | 0.00042 U              | 0.00041 U              | 0.025 U              | 0.026 U              | 0.00039 U            | 2.9E-01            |
| Bromoform                             | 0.043 U              | 0.045 U              | 0.040 U              | 0.044 U              | 0.049 U              | 0.050 U                             | 0.00029 U              | 0.00029 U              | 0.038 U              | 0.040 U              | 0.00027 U            | 1.9E+01            |
| Bromomethane                          | 0.040 U              | 0.041 U              | 0.037 U              | 0.041 U              | 0.046 U              | 0.047 U                             | 0.0014 U               | 0.0014 U               | 0.036 U              | 0.037 U              | 0.0013 U             | 6.8E-01            |
| Carbon disulfide                      | 0.034 U              | 0.035 U              | 0.031 U              | 0.034 U              | 0.039 U              | 0.039 U                             | 0.0030 U               | 0.0030 U               | 0.030 U              | 0.031 U              | 0.0028 U             | 7.7E+01            |
| Carbon tetrachloride                  | 0.026 U              | 0.027 U              | 0.024 U              | 0.026 U              | 0.029 U              | 0.030 U                             | 0.00086 U              | 0.00085 U              | 0.023 U              | 0.024 U              | 0.00080 U            | 6.5E-01            |
| Chlorobenzene                         | 1.4                  | 0.027 U              | 1.3                  | 1.0                  | 3.7                  | 3.7                                 | 0.20                   | 0.064                  | 0.17                 | 0.81                 | 0.052                | 2.8E+01            |
| Chloroethane                          | 0.046 U              | 0.048 U              | 0.043 U              | 0.047 U              | 0.053 U              | 0.054 U                             | 0.0017 U               | 0.0017 U               | 0.041 U              | 0.043 U              | 0.0016 U             | 1.4E+03            |
| Chloroform                            | 0.16 U               | 0.16 U               | 0.15 U               | 0.16 U               | 0.18 U               | 0.18 U                              | 0.0012 U               | 0.0012 U               | 0.14 U               | 0.15 U               | 0.0011 U             | 3.2E-01            |
| Chloromethane                         | 0.041 U              | 0.042 U              | 0.038 U              | 0.042 U              | 0.047 U              | 0.048 U                             | 0.0011 U               | 0.0011 U               | 0.037 U              | 0.038 U              | 0.0011 U             | 1.1E+01            |
| cis-1,2-Dichloroethene                | 0.17                 | 0.052 U              | 0.047 U              | 0.051 U              | 0.058 U              | 0.40                                | 0.00072 U              | 0.040                  | 0.40                 | 0.81                 | 0.059                | 1.6E+01            |
| cis-1,3-Dichloropropene               | 0.025 U              | 0.026 U              | 0.024 U              | 0.026 U              | 0.029 U              | 0.030 U                             | 0.00047 U              | 0.00046 U              | 0.023 U              | 0.024 U              | 0.00044 U            | na                 |
| Cyclohexane                           | 0.039 U              | 0.040 U              | 0.036 U              | 0.039 U              | 0.044 U              | 0.045 U                             | 0.0011 U               | 0.0010 U               | 0.035 U              | 0.036 U              | 0.00099 U            | na                 |
| Dibromochloromethane                  | 0.019 U              | 0.020 U              | 0.018 U              | 0.019 U              | 0.022 U              | 0.022 U                             | 0.00038 U              | 0.00037 U              | 0.017 U              | 0.018 U              | 0.00036 U            | 8.3E+00            |
| Dichlorodifluoromethane               | 0.049 U              | 0.051 U              | 0.046 U              | 0.050 U              | 0.057 U              | 0.058 U                             | 0.0012 U               | 0.0012 U               | 0.044 U              | 0.046 U              | 0.0012 U             | na                 |
| Ethylbenzene Ethylbenzene             | 0.044 J              | 0.031 U              | 0.11                 | 0.15                 | 0.065 J              | 0.069 J                             | 0.0012                 | 0.00060 U              | 0.053 J              | 0.045 J              | 0.00012 U            | 5.8E+00            |
| Isopropylbenzene                      | 0.039 U              | 0.041 U              | 0.037 U              | 0.040 U              | 0.045 U              | 0.046 U                             | 0.00073 U              | 0.00072 U              | 0.035 U              | 0.037 U              | 0.00069 U            | 1.9E+02            |
| m&p-Xylene                            | 0.16                 | 0.070 U              | 0.47                 | 0.56                 | 0.27                 | 0.25                                | 0.0073                 | 0.00072 U              | 0.099                | 0.063 U              | 0.00099 U            | 5.8E+01            |
| Methyl Acetate                        | 0.056 U              | 0.058 U              | 0.052 U              | 0.057 U              | 0.064 U              | 0.065 U                             | 0.00085 U              | 0.00084 U              | 0.050 U              | 0.052 U              | 0.00099 U            | na                 |
| Methylcyclohexane                     | 0.049 U              | 0.051 U              | 0.046 U              | 0.050 U              | 0.056 U              | 0.063 U                             | 0.00089 U              | 0.00034 U              | 0.044 U              | 0.046 U              | 0.00075 U            | na                 |
| Methylene chloride                    | 0.023 U              | 0.031 U              | 0.022 U              | 0.034 U              | 0.036 U              | 0.037 U                             | 0.00066 U              | 0.00078 U              | 0.021 U              | 0.022 U              | 0.00073 U            | 3.5E+01            |
| Methyl-t-butyl ether                  | 0.025 U              | 0.024 U              | 0.022 U              | 0.025 U              | 0.027 U              | 0.027 U                             | 0.0016                 | 0.0022                 | 0.021 U              | 0.023 U              | 0.00045 U            | 4.7E+01            |
| o-Xylene                              | <b>0.067</b> J       | 0.026 U              | 0.023 0              | 0.18                 | 0.068 J              | 0.029 U                             | 0.0010                 | 0.0022<br>0.00062 U    | 0.054 J              | 0.023 U              | 0.00043 U            | 5.8E+01            |
| O-AVICIIC                             | 1 0.00/J             | 0.050 0              | A•14                 | 1 0.10               | U.UUO J              | U.U/U J                             | 1 0.0017               | 0.00002 U              | U.U.J+ J             | U.UJI U              | 0.000J9 U            | J.0L:⊤U1           |

#### Subsurface Soil Sample Analytical Results September 28 - October 1, 2020 Volatile Organic Compounds (VOCs)

| Sample ID                 | HSI-SB-06<br>(4.5-5) | HSI-SB-07<br>(4.5-5) | HSI-SB-08<br>(3.5-4) | HSI-SB-08<br>(8-8.5) | HSI-SB-08<br>(12-13) | HSI-SB-08<br>(12-13)<br>[HSI-SB-D2] | HSI-SB-08<br>(13-13.5) | HSI-SB-09<br>(14-14.5) | HSI-SB-10<br>(5.5-6) | HSI-SB-10<br>(7-7.5) | HSI-SB-10<br>(8-8.5) | MDE<br>Residential |
|---------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------------------|------------------------|------------------------|----------------------|----------------------|----------------------|--------------------|
| Dilution Factor           | 67.5                 | 70.8                 | 64.7                 | 66.2                 | 69.4                 | 70.7                                | 0.681                  | 0.697                  | 63.2                 | 61.7                 | 0.679                | Soil Standards     |
| Sample Collection Date    | 09/30/20             | 09/30/20             | 10/01/20             | 10/01/20             | 10/01/20             | 10/01/20                            | 10/01/20               | 10/01/20               | 10/01/20             | 10/01/20             | 10/01/20             |                    |
| Analyte Name              |                      |                      |                      |                      |                      | Concentrati                         | on (mg/kg)             |                        |                      |                      |                      |                    |
| Styrene                   | 0.043 U              | 0.045 U              | 0.040 U              | 0.044 U              | 0.050 U              | 0.051 U                             | 0.00049 U              | 0.00048 U              | 0.039 U              | 0.040 U              | 0.00046 U            | 6.0E+02            |
| Tetrachloroethene         | <b>0.028</b> J       | 0.029 U              | 0.027 U              | 0.029 U              | 0.033 U              | 0.033 U                             | 0.00087 U              | 0.00085 U              | <b>0.028</b> J       | 0.027 U              | 0.0035               | 8.1E+00            |
| Toluene                   | 0.39                 | 0.027 U              | 0.49                 | 0.053 J              | 1.1                  | 5.4                                 | 0.0035                 | 0.0038                 | <b>0.040</b> J       | 0.063 J              | 0.0030               | 4.9E+02            |
| trans-1,2-Dichloroethene  | 0.025 U              | 0.025 U              | 0.023 U              | 0.025 U              | 0.028 U              | <b>0.068</b> J                      | 0.0011 U               | 0.010                  | 0.022 U              | 0.023 U              | 0.0019               | 1.6E+02            |
| trans-1,3-Dichloropropene | 0.024 U              | 0.025 U              | 0.023 U              | 0.025 U              | 0.028 U              | 0.029 U                             | 0.00042 U              | 0.00041 U              | 0.022 U              | 0.023 U              | 0.00039 U            | na                 |
| Trichloroethene           | <u>0.54</u>          | 0.11                 | 0.030 J              | 0.028 U              | 0.032 U              | 0.032 U                             | 0.0033                 | 0.0062                 | 0.24                 | 0.026 U              | 0.061                | 4.1E-01            |
| Trichlorofluoromethane    | 0.024 U              | 0.025 U              | 0.023 U              | 0.025 U              | 0.028 U              | 0.029 U                             | 0.0010 U               | 0.0010 U               | 0.022 U              | 0.023 U              | 0.00098 U            | na                 |
| Vinyl chloride            | 0.056 U              | 0.058 U              | 0.053 U              | 0.057 U              | <u>0.065</u> U       | <u>1.1</u>                          | 0.0011 U               | 0.0057                 | 0.050 U              | <u>0.75</u>          | 0.010                | 5.9E-02            |
| Xylenes (Total)           | 0.23                 | 0.056 U              | 0.61                 | 0.74                 | 0.34                 | 0.33                                | 0.0090                 | 0.00062 U              | 0.15                 | 0.051 U              | 0.00059 U            | 5.8E+01            |

#### **Table Notes:**

VOCs Analytical Method: EPA Method 8260D

[Sample ID] - Sample Identification as shown on the COC and in the Lab Report for the duplicate sample. mg/kg - milligrams per kilogram or parts per million (ppm)

- U Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Reporting Limit (RL); therefore, result is an estimated concentration. na not applicable

**Bold** - Detected analyte concentration

#### **Screening Levels (SLs):**

MDE Residential Soil Clean-up Standards (October 2018)

#### **Screening Evaluation Notes:**

Red, bold, and underline - Detected analyte concentration exceeds the respective SL. Underline - MDL exceeds the respective SL.

#### **Additional Screening Level Notes:**

Analyte MDE Residential Soil Standard

m+p-Xylenes Total Xylenes o-Xylene Total Xylenes

#### Subsurface Soil Sample Analytical Results September 28 - October 1, 2020 Semi-Volatile Organic Compounds (SVOCs) and Metals

|            | Sample ID                   | HSI-SB-01<br>(2.5-3) | HSI-SB-01<br>(6-6.5) | HSI-SB-01<br>(6-6.5)<br>[HSI-SB-D1] | HSI-SB-02<br>(10-10.5) | HSI-SB-03<br>(10-10.5) | HSI-SB-08<br>(3.5-4) | HSI-SB-10<br>(5.5-6) | MDE Residential |          |
|------------|-----------------------------|----------------------|----------------------|-------------------------------------|------------------------|------------------------|----------------------|----------------------|-----------------|----------|
| Analytical | Dilution Factor (SVOCs)     | 1                    | 200                  | 400                                 | 1                      | 1                      | 1                    | 1                    | Soil Standards  | MDE ATO  |
| Suite      | Dilution Factor (Metals)    | 1                    | 1                    | 1                                   | 1/3                    | 1                      | 1                    | 1                    |                 |          |
|            | Sample Collection Date      | 09/29/20             | 09/29/20             | 09/29/20                            | 09/28/20               | 09/29/20               | 10/01/20             | 10/01/20             | 7               |          |
|            | Analyte Name                |                      |                      |                                     |                        | oncentration (mg/kg    |                      | <u>.</u>             |                 |          |
|            | 1,1'-Biphenyl               | 0.011 U              | 2.3 U                | 4.6 U                               | 0.012 U                | 0.011 Ù                | 0.10                 | 0.011 U              | na              | na       |
|            | 1,2,4,5-Tetrachlorobenzene  | 0.013 U              | 2.7 U                | 5.3 U                               | 0.014 U                | 0.013 U                | 0.013 U              | 0.013 U              | na              | na       |
|            | 1,4-Dioxane                 | 0.019 U              | 4.0 U                | 8.0 U                               | 0.021 U                | 0.020 U                | 0.019 U              | 0.019 U              | na              | na       |
|            | 2,3,4,6-Tetrachlorophenol   | 0.014 U              | 3.0 U                | 6.0 U                               | 0.016 U                | 0.015 U                | 0.014 U              | 0.014 U              | na              | na       |
|            | 2,4,5-Trichlorophenol       | 0.011 U              | 2.3 U                | 4.5 U                               | 0.012 U                | 0.011 U                | 0.011 U              | 0.011 U              | 6.3E+02         | na       |
|            | 2,4,6-Trichlorophenol       | 0.030 U              | 6.2 U                | <u>12</u> U                         | 0.032 U                | 0.031 U                | 0.030 U              | 0.029 U              | 6.3E+00         | na       |
|            | 2,4-Dichlorophenol          | 0.014 U              | 3.0 U                | 6.0 U                               | 0.016 U                | 0.015 U                | 0.014 U              | 0.014 U              | 1.9E+01         | na       |
|            | 2,4-Dimethylphenol          | 0.019 U              | 3.9 U                | 7.7 U                               | 0.020 U                | 0.019 U                | 0.019 U              | 0.018 U              | 1.3E+02         | na       |
|            | 2,4-Dinitrophenol           | 0.17 U               | <u>35</u> U          | <u>69</u> U                         | 0.18 U                 | 0.17 U                 | 0.17 U               | 0.16 U               | 1.3E+01         | na       |
|            | 2,4-Dinitrotoluene          | 0.012 U              | <u>2.5</u> U         | <u>4.9</u> U                        | 0.013 U                | 0.012 U                | 0.012 U              | 0.012 U              | 1.7E+00         | na       |
|            | 2,6-Dinitrotoluene          | 0.020 U              | 4.1 U                | <u>8.1</u> U                        | 0.021 U                | 0.020 U                | 0.020 U              | 0.019 U              | 3.6E-01         | na       |
|            | 2-Chloronaphthalene         | 0.017 U              | 3.6 U                | 7.1 U                               | 0.019 U                | 0.018 U                | 0.017 U              | 0.017 U              | 4.8E+02         | na       |
|            | 2-Chlorophenol              | 0.35                 | 13                   | 24                                  | 0.014 U                | 0.013 U                | 0.013 U              | 0.012 U              | 3.9E+01         | na       |
|            | 2-Methylnaphthalene         | 0.012 U              | 2.5 U                | 4.9 U                               | 0.013 U                | 0.012 U                | 0.12                 | 0.012 U              | 2.4E+01         | na       |
|            | 2-Methylphenol              | 0.013                | 2.3 U                | 4.6 U                               | 0.012 U                | 0.011 U                | 0.011 U              | 0.011 U              | 3.2E+02         | na       |
|            | 2-Nitroaniline              | 0.018 U              | 3.8 U                | 7.5 U                               | 0.020 U                | 0.019 U                | 0.018 U              | 0.018 U              | na              | na       |
|            | 2-Nitrophenol               | 0.017 U              | 3.6 U                | 7.2 U                               | 0.019 U                | 0.018 U                | 0.017 U              | 0.017 U              | na              | na       |
|            | 3&4-Methylphenol            | 0.011 U              | 2.3 U                | 4.6 U                               | 0.012 U                | 0.012 U                | 0.021                | 0.011 U              | 6.3E+02         | na       |
|            | 3,3'-Dichlorobenzidine      | 0.031 U              | <u>6.5</u> U         | <u>13</u> U                         | 0.034 U                | 0.032 U                | 0.031 U              | 0.030 U              | 1.2E+00         | na       |
|            | 3-Nitroaniline              | 0.015 U              | 3.1 U                | 6.2 U                               | 0.016 U                | 0.015 U                | 0.015 U              | 0.015 U              | na              | na       |
|            | 4,6-Dinitro-2-methylphenol  | 0.13 U               | 28 U                 | 55 U                                | 0.15 U                 | 0.14 U                 | 0.13 U               | 0.13 U               | na              | na       |
|            | 4-Bromophenyl-phenylether   | 0.011 U              | 2.2 U                | 4.4 U                               | 0.012 U                | 0.011 U                | 0.011 U              | 0.010 U              | na              | na       |
|            | 4-Chloro-3-methylphenol     | 0.0092 U             | 1.9 U                | 3.8 U                               | 0.010 U                | 0.0096 U               | 0.0092 U             | 0.0090 U             | na              | na       |
|            | 4-Chloroaniline             | 0.017 U              | 3.5 U                | 7.0 U                               | 0.018 U                | 0.017 U                | 0.017 U              | 0.016 U              | 2.7E+00         | na       |
|            | 4-Chlorophenyl-phenylether  | 0.012 U              | 2.5 U                | 4.9 U                               | 0.013 U                | 0.012 U                | 0.012 U              | 0.011 U              | na              | na       |
|            | 4-Nitroaniline              | 0.015 U              | 3.1 U                | 6.1 U                               | 0.016 U                | 0.015 U                | 0.015 U              | 0.014 U              | na              | na       |
| CVOC-      | 4-Nitrophenol               | 0.029 U              | 6.1 U                | 12 U                                | 0.032 U<br>0.012 U     | 0.030 U                | 0.029 U              | 0.028 U              | na<br>2 CF - 02 | na       |
| SVOCs      | Acenaphthene                | 0.011 U              | 2.3 U                | 4.5 U                               |                        | 0.011 U                | 0.011 U              | 0.011 U              | 3.6E+02         | na       |
|            | Acenaphthylene              | 0.011 U<br>0.014 U   | 2.4 U<br>2.9 U       | 4.7 U<br>5.7 U                      | 0.012 U<br>0.015 U     | 0.012 U<br>0.014 U     | 0.011 U<br>0.014 U   | 0.011 U              | na              | na       |
|            | Acetophenone                | 0.014 U              | 2.9 U                | 4.4 U                               | 0.013 U                | 0.014 U                | 0.014 U              | 0.013 U<br>0.010 U   | na<br>1.8E+03   | na       |
|            | Anthracene<br>Atrazine      | 0.011 U              | 3.2 U                | 6.4 U                               | 0.011 U                | 0.011 U                | 0.011 U              | 0.010 U              | 2.4E+00         | na       |
|            | Benzaldehyde                | 0.42 U               | 3.2 U<br>87 U        | 170 U                               | 0.45 U                 | 0.43 U                 | 0.42 U               | 0.013 U              |                 | na<br>na |
|            | Benzo[a]anthracene          | 0.42 U               | 2.7 U                | 5.3 U                               | 0.43 U                 | 0.43 U                 | 0.42 U               | 0.41 U               | na<br>1.1E+00   | na       |
|            | Benzo[a]pyrene              | 0.013 U              | 2.7 U                | 5.4 U                               | 0.014 U                | 0.013 U                | 0.013 U              | 0.012 U              | 1.1E-01         | na       |
|            | Benzo[b]fluoranthene        | 0.013 U              | 2.9 U                | 5.7 U                               | 0.014 U                | 0.014 U                | 0.013 U              | 0.013 U              | 1.1E+00         | na       |
|            | Benzo[g,h,i]perylene        | 0.00026 U            | 0.055 U              | 0.11 U                              | 0.00029 U              | 0.00027 U              | 0.00026 U            | 0.00026 U            | na              | na       |
|            | Benzo[k]fluoranthene        | 0.014 U              | 3.0 U                | 5.8 U                               | 0.00025 U              | 0.015 U                | 0.014 U              | 0.014 U              | 1.1E+01         | na       |
|            | bis(2-Chloroethoxy)methane  | 0.014 U              | 2.3 U                | 4.5 U                               | 0.013 U                | 0.013 U                | 0.014 U              | 0.014 U              | na              | na       |
|            | bis(2-Chloroethyl)ether     | 0.0093 U             | 1.9 U                | 3.9 U                               | 0.012 U                | 0.0096 U               | 0.0093 U             | 0.0091 U             | 2.3E-01         | na       |
|            | bis(2-Chloroisopropyl)ether | 0.015 U              | 3.2 U                | 6.3 U                               | 0.017 U                | 0.016 U                | 0.015 U              | 0.015 U              | na              | na       |
|            | bis(2-Ethylhexyl)phthalate  | 0.25                 | 50                   | 58                                  | 0.34                   | 0.035 U                | 0.38                 | 0.033 U              | 3.9E+01         | na       |
|            | Butylbenzylphthalate        | 0.029 U              | 6.2 U                | 12 U                                | 0.032 U                | 0.030 U                | 0.029 U              | 0.029 U              | na              | na       |
|            | Caprolactam                 | 0.031 U              | 6.4 U                | 13 U                                | 0.033 U                | 0.032 U                | 0.031 U              | 0.030 U              | na              | na       |
|            | Carbazole                   | 0.012 U              | 2.5 U                | 4.9 U                               | 0.013 U                | 0.012 U                | 0.012 U              | 0.012 U              | na              | na       |
|            | Chrysene                    | 0.013 U              | 2.7 U                | 5.4 U                               | 0.014 U                | 0.013 U                | 0.013 U              | 0.013 U              | 1.1E+02         | na       |
|            | Dibenzo[a,h]anthracene      | 0.014 U              | <u>2.9</u> U         | <u>5.8</u> U                        | 0.015 U                | 0.015 U                | 0.014 U              | 0.014 U              | 1.1E-01         | na       |
|            | Dibenzofuran                | 0.0097 U             | 2.0 U                | 4.0 U                               | 0.011 U                | 0.010 U                | 0.0097 U             | 0.0095 U             | 7.3E+00         | na       |
|            | Diethylphthalate            | 0.025 U              | 5.2 U                | 10 U                                | 0.027 U                | 0.026 U                | 0.025 U              | 0.024 U              | 5.1E+03         | na       |
|            | Dimethylphthalate           | 0.011 U              | 2.3 U                | 4.5 U                               | 0.012 U                | 0.011 U                | 0.011 U              | 0.011 U              | na              | na       |
|            | Di-n-butylphthalate         | 0.25                 | 720                  | 1,200                               | 1.6                    | 0.046 U                | 0.064                | 0.043 U              | na              | na       |
|            | Di-n-octylphthalate         | 0.025 U              | 5.3 U                | 11 U                                | 0.028 U                | 0.026 U                | 0.025 U              | 0.025 U              | na              | na       |
|            | Fluoranthene                | 0.015 U              | 3.1 U                | 6.1 U                               | 0.016 U                | 0.015 U                | 0.015 U              | 0.014 U              | 2.4E+02         | na       |
|            | Fluorene                    | 0.010 U              | 2.2 U                | 4.3 U                               | 0.011 U                | 0.011 U                | 0.010 U              | 0.010 U              | 2.4E+02         | na       |
|            | Hexachlorobenzene           | 0.016 U              | 3.4 U                | 6.6 U                               | 0.017 U                | 0.017 U                | 0.016 U              | 0.016 U              | 2.1E-01         | na       |

Page 1 of 2

#### **Subsurface Soil Sample Analytical Results** September 28 - October 1, 2020 Semi-Volatile Organic Compounds (SVOCs) and Metals

| Amalastical | Sample ID                  | HSI-SB-01<br>(2.5-3) | HSI-SB-01<br>(6-6.5) | HSI-SB-01<br>(6-6.5)<br>[HSI-SB-D1] | HSI-SB-02<br>(10-10.5) | HSI-SB-03<br>(10-10.5) | HSI-SB-08<br>(3.5-4) | HSI-SB-10<br>(5.5-6) | MDE Residential | MDE ATO |
|-------------|----------------------------|----------------------|----------------------|-------------------------------------|------------------------|------------------------|----------------------|----------------------|-----------------|---------|
| Analytical  | Dilution Factor (SVOCs)    | 1                    | 200                  | 400                                 | 1                      | 1                      | 1                    | 1                    | Soil Standards  | MDE ATC |
| Suite       | Dilution Factor (Metals)   | 1                    | 1                    | 1                                   | 1/3                    | 1                      | 1                    | 1                    |                 |         |
|             | Sample Collection Date     | 09/29/20             | 09/29/20             | 09/29/20                            | 09/28/20               | 09/29/20               | 10/01/20             | 10/01/20             | 1               |         |
|             | Analyte Name               |                      |                      |                                     | Co                     | oncentration (mg/ks    | g)                   |                      | - L             |         |
|             | Hexachlorobutadiene        | 0.017 U              | 3.6 U                | 7.1 U                               | 0.019 U                | 0.018 U                | 0.017 U              | 0.017 U              | 1.2E+00         | na      |
|             | Hexachlorocyclopentadiene  | 0.12 U               | 26 U                 | 52 U                                | 0.14 U                 | 0.13 U                 | 0.12 U               | 0.12 U               | 1.8E-01         | na      |
|             | Hexachloroethane           | 0.017 U              | 3.5 U                | 7.0 U                               | 0.018 U                | 0.018 U                | 0.017 U              | 0.017 U              | 1.8E+00         | na      |
|             | Indeno[1,2,3-cd]pyrene     | 0.017 U              | 3.6 U                | 7.2 U                               | 0.019 U                | 0.018 U                | 0.017 U              | 0.017 U              | 1.1E+00         | na      |
|             | Isophorone                 | 0.012 U              | 2.6 U                | 5.1 U                               | 0.013 U                | 0.013 U                | 0.012 U              | 0.012 U              | 5.7E+02         | na      |
| SVOCs       | Naphthalene                | 0.063                | <u>16</u>            | <u>26</u>                           | 0.058                  | 0.011 U                | 0.10                 | 0.011 U              | 3.8E+00         | na      |
|             | Nitrobenzene               | 0.0016 U             | 0.33 U               | 0.64 U                              | 0.0017 U               | 0.0016 U               | 0.0016 U             | 0.0015 U             | 5.1E+00         | na      |
| (cont'd)    | N-Nitroso-di-n-propylamine | 0.014 U              | 3.0 U                | <u>6.0</u> U                        | 0.016 U                | 0.015 U                | 0.014 U              | 0.014 U              | 7.8E-02         | na      |
|             | N-Nitrosodiphenylamine     | 0.13 U               | 27 U                 | 54 U                                | 0.14 U                 | 0.13 U                 | 0.13 U               | 0.13 U               | 1.1E+02         | na      |
|             | Pentachlorophenol          | 0.18 U               | 39 U                 | <u>76</u> U                         | 0.20 U                 | 0.19 U                 | 0.18 U               | 0.18 U               | 1.0E+00         | na      |
|             | Phenanthrene               | 0.012 U              | 2.6 U                | 5.1 U                               | 0.013 U                | 0.013 U                | 0.019 J              | 0.012 U              | 1.8E+02         | na      |
|             | Phenol                     | 0.011 U              | 2.2 U                | 4.4 U                               | 0.012 U                | 0.011 U                | 0.011 U              | 0.010 U              | 1.9E+03         | na      |
|             | Pyrene                     | 0.013 U              | 2.7 U                | 5.4 U                               | 0.014 U                | 0.014 U                | 0.013 U              | 0.013 U              | 1.8E+02         | na      |
|             | Aluminum                   | 4,200                | 4,200                | 5,000                               | 2,200                  | 570                    | 4,000                | 5,900                | 7.7E+03         | 1.9E+04 |
|             | Antimony                   | 0.045 J              | 0.84 J               | 1.3                                 | 0.053 J                | 0.027 U                | 0.026 U              | 0.025 U              | 3.1E+00         | 6.8E+00 |
|             | Arsenic                    | 1.8                  | 2.3                  | 2.3                                 | <u>1.9</u>             | 0.30                   | 3.7                  | <u>1.5</u>           | 6.8E-01         | 4.9E+00 |
|             | Barium                     | <b>9.1</b> J         | 75                   | 37                                  | 15                     | 0.80 U                 | 20                   | 28                   | 1.5E+03         | 9.9E+01 |
|             | Beryllium                  | 0.059 J              | 0.20 J               | <b>0.17</b> J                       | <b>0.12</b> JD         | <b>0.040</b> J         | <b>0.18</b> J        | <b>0.22</b> J        | 1.6E+01         | 1.6E+00 |
|             | Cadmium                    | <b>0.40</b> J        | <u>11</u>            | 6.2                                 | <b>0.24</b> J          | 0.017 U                | 0.21 J               | 0.020 J              | 7.1E+00         | 1.1E+00 |
|             | Calcium                    | 120 U                | 290 J                | 1,300                               | 200 J                  | 120 U                  | 120 U                | 120 J                | na              | 1.2E+04 |
|             | Chromium                   | 20                   | 60                   | 49                                  | 21                     | 1.0 J                  | 19                   | 21                   | na              | 3.0E+01 |
|             | Cobalt                     | 0.82 U               | 1.3 J                | <b>1.4</b> J                        | 0.89 U                 | 0.85 U                 | 0.82 U               | <b>2.1</b> J         | na              | 3.3E+01 |
|             | Copper                     | 7.0                  | 12                   | 12                                  | 8.0                    | <b>1.0</b> J           | 10                   | 8.1                  | 3.1E+02         | 4.2E+01 |
|             | Iron                       | 7,600                | 8,200                | <u>9,700</u>                        | 5,300                  | 1,400                  | 8,200                | 6,900                | 5.5E+03         | 2.6E+04 |
| Metals      | Lead                       | 9.8                  | 160                  | 140                                 | 13                     | 1.2 J                  | 7.1                  | <b>4.4</b> J         | 2.0E+02         | 6.1E+01 |
|             | Magnesium                  | 350 J                | <b>420</b> J         | <b>440</b> J                        | 160 J                  | 23 U                   | 390 JB               | <b>940</b> B         | na              | 3.7E+03 |
|             | Manganese                  | 13                   | 27                   | 27                                  | 12 J                   | <b>1.4</b> J           | 16                   | 36                   | 1.8E+02         | 1.4E+03 |
|             | Mercury                    | 0.015 U              | 0.063 J              | 0.14                                | 0.016 U                | 0.015 U                | 0.015 U              | 0.014 U              | 1.1E+00         | 1.4E-01 |
|             | Nickel                     | <b>3.5</b> J         | 8.1                  | 9.0                                 | <b>2.5</b> J           | 1.3 U                  | <b>3.3</b> J         | 7.6                  | 1.5E+02         | 2.2E+01 |
|             | Potassium                  | 160 J                | 160 J                | 190 J                               | 120 U                  | 120 U                  | 150 J                | 280 J                | na              | 2.6E+03 |
|             | Selenium                   | <b>0.80</b> J        | 3.3                  | 2.8                                 | 3.1                    | <b>1.1</b> J           | 2.6                  | 1.3 J                | 3.9E+01         | 1.0E+00 |
|             | Silver                     | 0.054 J              | 0.062 J              | 0.064 J                             | <b>0.12</b> J          | <b>0.077</b> J         | <b>0.045</b> JB      | <b>0.042</b> JB      | 3.9E+01         | 1.0E+00 |
|             | Sodium                     | 140 U                | 150 U                | 150 U                               | 160 U                  | 150 U                  | 140 U                | 140 U                | na              | 2.3E+02 |
|             | Thallium                   | 0.020 U              | 0.021 U              | 0.021 U                             | 0.066 UD               | 0.021 U                | 0.021 J              | 0.021 J              | 7.8E-02         | 1.5E+00 |
|             | Vanadium                   | 14                   | 18                   | 19                                  | 32                     | 7.5                    | <b>20</b> B          | <b>20</b> B          | 3.9E+01         | 3.5E+01 |
|             | Zinc                       | 9.0 J                | 33                   | 31                                  | 23                     | 1.8 U                  | <b>7.7</b> J         | 12                   | 2.3E+03         | 7.3E+01 |

#### **Table Notes:**

SVOCs Analytical Method: EPA Method 8270E

Target Analyte List (TAL) Metals Analytical Methods: EPA Method 6010D, 6020B, and 7471B

[Sample ID] - Sample Identification as shown on the COC and in the Lab Report for the duplicate

mg/kg - milligrams per kilogram or parts per million (ppm)

- U Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Reporting Limit (RL); therefore, result is an estimated
- B Indicates analyte was present in the Method Blank and sample.
- D Sample analyzed at a higher dilution factor to allow calibration of this analyte.

na - not applicable

**Bold** - Detected analyte concentration

#### Screening Levels (SLs):

MDE Residential Soil Clean-up Standards (October 2018)

MDE Anticipated Typical Concentration (ATC) for Central Maryland (October 2018)

Screening Evaluation Notes:

SVOCs: Red, bold, and underline - Detected analyte concentration exceeds the respective MDE Residential Soil

<u>Underline</u> - MDL exceeds the respective MDE Residential Soil Clean-up Standard.

Bold and underline - Detected analyte concentration exceeds the respective MDE Residential Soil Clean-

up Standard.

Red, bold, and underline - Detected analyte concentration exceeds the MDE Residential Soil Clean-up Standard and the ATC for Central Maryland.

No MDLs exceed the respective MDE Residential Soil Clean-up Standard.

#### Additional Screening Level Notes:

**Analyte** MDE Residential Soil Standard

Total Mercury Mercury (elemental)

#### Soil Vapor Sample Analytical Results October 7, 2020 **Volatile Organic Compounds (VOCs)**

| Sample ID                              | SMP-VMP-10           | SMP-VMP-11           | SMP-VMP-11<br>[SMP-VMP-D] | SMP-VMP-12          | SMP-VMP-13                            | MDE Residential<br>Soil Gas | MDE Residential Soil Gas |
|----------------------------------------|----------------------|----------------------|---------------------------|---------------------|---------------------------------------|-----------------------------|--------------------------|
| Dilution Factor                        | 2/20                 | 2/20                 | 2/20                      | 6.67                | 2/20                                  | Tier 1 RGs                  | Tier 2 RGs               |
| Analyte Name                           |                      |                      |                           | Concentration (     | · · · · · · · · · · · · · · · · · · · |                             |                          |
| 1,1,1,2-Tetrachloroethane              | 1.4 U                | 1.4 U                | 1.4 U                     | 4.6 U               | 1.4 U                                 | 6.6E+01                     | 3.3E+02                  |
| 1,1,1-Trichloroethane                  | 1.1 U                | 1.1 U                | 1.1 U                     | 3.6 U               | 1.1 U                                 | 1.1E+05                     | 5.3E+05                  |
| 1,1,2,2-Tetrachloroethane              | <u>120</u> *         | <u>28</u>            | <u>31</u>                 | 4.6 U               | <u>400</u> D *                        | 8.4E+00                     | 4.2E+01                  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | 1.5 U                | 1.5 U                | 1.5 U                     | 5.1 U               | 1.5 U                                 | 1.1E+05                     | 5.2E+05                  |
| 1,1,2-Trichloroethane                  | 3.2                  | 1.5 J                | <b>1.4</b> J              | 3.6 U               | <u>17</u>                             | 4.2E+00                     | 2.1E+01                  |
| 1,1-Dichloroethane                     | 0.81 U               | 0.81 U               | 0.81 U                    | 2.7 U               | 0.81 U                                | 3.1E+02                     | 1.5E+03                  |
| 1,1-Dichloroethylene                   | 0.79 U               | 0.79 U               | 0.79 U                    | 2.6 U               | 0.79 U                                | 4.2E+03                     | 2.1E+04                  |
| 1,2,4-Trichlorobenzene                 | 1.5 U                | 1.5 U                | 1.9 J                     | 4.9 U               | 1.5 U                                 | 4.2E+01                     | 2.1E+02                  |
| 1,2,4-Trimethylbenzene                 | 4.0                  | 7.8                  | 7.9                       | 6.3 J               | <b>1.7</b> J                          | 1.3E+03                     | 6.3E+03                  |
| 1,2-Dibromoethane (EDB)                | <u>1.5</u> U         | 1.5 U                | 1.5 U                     | 5.1 U               | 1.5 U                                 | 8.2E-01                     | 4.1E+00                  |
| 1,2-Dichlorobenzene                    | 1.2 U                | 1.2 U                | 1.2 U                     | 4.0 U               | 1.2 U                                 | 4.2E+03                     | 2.1E+04                  |
| 1,2-Dichloroethane                     | 0.81 U               | 0.81 U               | 0.81 U                    | 4.6 J               | 1.3 J                                 | 1.9E+01                     | 9.4E+01                  |
| 1,2-Dichloropropane                    | 0.92 U               | 0.92 U               | 0.92 U                    | 3.1 U               | 0.92 U                                | 8.4E+01                     | 4.2E+02                  |
| 1,2-Dichlorotetrafluoroethane          | <b>2.4</b> J         | 2.2 J                | 2.3 J                     | 4.7 U               | 1.4 U                                 | na<br>1 2F, 02              | na<br>6 2F, 02           |
| 1,3,5-Trimethylbenzene                 | 0.98 U               | 3.5                  | 3.3                       | 3.3 U               | 0.98 U                                | 1.3E+03                     | 6.3E+03                  |
| 1,3-Butadiene                          | 0.44 U               | 0.44 U               | 0.44 U                    | 1.5 U               | 0.44 U                                | 1.6E+01                     | 8.2E+01                  |
| 1,3-Dichlorobenzene                    | 1.2 U                | 1.2 U                | 1.2 U                     | 4.0 U               | 1.2 U                                 | na<br>4 CE : O1             | na<br>2.2F+02            |
| 1,4-Dichlorobenzene                    | 1.2 U                | 1.2 J                | 2.9                       | 4.0 U               | <b>1.7</b> J                          | 4.6E+01                     | 2.3E+02                  |
| 1,4-Dioxane                            | 0.72 U               | 0.72 U               | 0.72 U                    | 2.4 U               | 0.72 U                                | 9.8E+01                     | 4.9E+02                  |
| 1-Ethyl-4-methyl benzene               | 0.98 U<br><b>1.5</b> | 0.98 U               | 0.98 U                    | 12                  | 0.98 U                                | na<br>1 1E+05               | na<br>5 2E : 05          |
| 2-Butanone (MEK)                       |                      | 1.1 J                | 2.3                       | 2.8 J               | 2.2                                   | 1.1E+05                     | 5.3E+05                  |
| 2-Chlorotoluene                        | 1.0 U<br>0.82 U      | 1.0 U                | 1.0 U<br>0.82 U           | 3.5 U               | 1.0 U<br>0.82 U                       | na<br>6.4E+02               | na<br>2 2F + 02          |
| 2-Hexanone (MBK)                       |                      | 0.82 U               |                           | 2.7 U               |                                       |                             | 3.2E+03                  |
| 4-Methyl-2-pentanone (MIBK)            | 2.3 U                | 2.3 U                | 4.1 J                     | 17                  | 3.1 J                                 | 6.4E+04                     | 3.2E+05                  |
| Acetone<br>Acrolein                    | <b>6.9</b><br>0.46 U | <b>7.3</b><br>0.46 U | 12<br>0.58 J              | 1.6 U<br>1.5 U      | 44<br>0.87 J                          | 6.6E+05<br>4.2E-01          | 3.3E+06<br>2.1E+00       |
|                                        |                      |                      |                           |                     | 0.87 J<br>0.63 U                      | 4.2E-01<br>2.1E+01          |                          |
| Allyl chloride                         | 0.63 U<br>0.64 U     | 0.63 U<br>0.64 U     | 0.63 U<br>0.64 U          | 2.1 U<br><b>7.6</b> | 3.1                                   | 6.4E+01                     | 1.1E+02<br>3.2E+02       |
| Benzene<br>Benzyl Chloride             | 1.0 U                | 1.0 U                |                           | 3.5 U               | 1.0 U                                 | 1.0E+01                     | 5.0E+01                  |
| Bromodichloromethane                   | 5.8                  | 21                   | 1.0 U<br>21               | 4.5 J               | 1.0 U                                 | 1.3E+01                     | 6.6E+01                  |
| Bromoform                              | 2.1 U                | 2.1 U                | 2.1 U                     | 6.9 U               | 2.1 U                                 | 4.6E+02                     | 2.3E+03                  |
| Bromomethane                           | 0.78 U               | 0.78 U               | 0.78 U                    | 2.6 U               | 0.78 U                                | 1.1E+02                     | 5.3E+03                  |
| Carbon Disulfide                       | 4.7                  | 6.4                  | 6.2                       | 5.3 J               | 6.2                                   | 1.1E+02<br>1.5E+04          | 7.3E+04                  |
| Carbon Distillide Carbon Tetrachloride | 1.3 U                | 1.3 U                | 1.3 U                     | 4.2 U               | 1.3 U                                 | 8.2E+01                     | 4.1E+02                  |
| Chlorobenzene                          | 0.92 U               | 2.3                  | 2.3                       | 3.9 J               | 0.92 U                                | 1.1E+03                     | 5.3E+03                  |
| Chloroethane                           | 0.53 U               | 0.53 U               | 0.53 U                    | 1.8 U               | 0.53 U                                | 2.1E+05                     | 1.1E+06                  |
| Chloroform                             | 31                   | 140 *                | 140 *                     | 120 *               | 120 *                                 | 2.1E+03<br>2.2E+01          | 1.1E+00<br>1.1E+02       |
| Chloromethane                          | 0.41 U               | 0.41 U               | 0.41 U                    | 1.4 U               | 0.41 U                                | 1.9E+03                     | 9.4E+03                  |
| cis-1,2-Dichloroethylene               | 0.79 U               | 0.79 U               | 0.41 U                    | 35                  | 24                                    | 7.4E+02                     | 3.7E+03                  |
| cis-1,3-Dichloropropene                | 0.75 U               | 0.91 U               | 0.91 U                    | 3.0 U               | 0.91 U                                | na                          | na                       |
| Cyclohexane                            | 0.69 U               | 0.69 U               | 0.69 U                    | 2.3 U               | 0.69 U                                | 1.3E+05                     | 6.3E+05                  |
| Dibromochloromethane                   | 1.7 U                | 1.9 J                | 2.0 J                     | 5.7 U               | 1.7 U                                 | 1.8E+01                     | 9.1E+01                  |
| Dichlorodifluoromethane                | 1.5 J                | 1.5 J                | 1.7 J                     | 3.3 U               | 1.9 J                                 | 2.1E+03                     | 1.1E+04                  |
| Ethanol                                | 2.5                  | 1.4 J                | 2.4                       | 2.1 J               | 2.6                                   | na                          | na                       |
| Ethyl acetate                          | 0.72 U               | 0.72 U               | 0.72 U                    | 2.4 U               | 0.72 U                                | 1.5E+03                     | 7.4E+03                  |
| Ethylbenzene                           | <b>1.2</b> J         | 4.7                  | 6.0                       | 18                  | 2.5                                   | 2.0E+02                     | 1.0E+03                  |
| Heptane                                | 0.82 U               | 0.82 U               | 0.82 U                    | <b>3.9</b> J        | 0.82 U                                | 8.4E+03                     | 4.2E+04                  |
| Hexachlorobutadiene                    | 2.1 U                | 2.1 U                | 2.1 U                     | 7.1 U               | 2.1 U                                 | 2.3E+01                     | 1.1E+02                  |
| Hexane                                 | 0.70 U               | 0.70 U               | 0.70 U                    | 17                  | 0.70 U                                | 1.5E+04                     | 7.3E+04                  |
| Isooctane                              | 0.93 U               | 0.93 U               | 0.93 U                    | <b>3.6</b> J        | 0.93 U                                | na                          | na                       |
| Isopropyl alcohol                      | 0.49 U               | <b>0.80</b> J        | <b>2.1</b> J              | 1.6 U               | <b>1.6</b> J                          | 4.2E+03                     | 2.1E+04                  |
| Isopropylbenzene                       | 0.98 U               | <b>1.6</b> J         | <b>1.9</b> J              | 3.3 U               | 0.98 U                                | 8.4E+03                     | 4.2E+04                  |
| m+p-Xylenes                            | 4.0                  | 22                   | 25                        | 42                  | 6.9                                   | 2.1E+03                     | 1.1E+04                  |
| Methyl methacrylate                    | 0.82 U               | 0.82 U               | 0.82 U                    | 2.7 U               | 0.82 U                                | 1.5E+04                     | 7.3E+04                  |
| Methylene chloride                     | 0.69 U               | <b>1.1</b> J         | <b>1.1</b> J              | <b>12</b> J         | <b>1.4</b> J                          | 1.3E+04                     | 6.3E+04                  |
| Methyl-t-butyl ether (MTBE)            | 0.72 U               | 0.72 U               | 0.72 U                    | 12                  | 0.72 U                                | 1.9E+03                     | 9.4E+03                  |
| Naphthalene                            | 2.3                  | 3.9                  | 5.2                       | 8.3                 | 2.9                                   | 1.4E+01                     | 7.2E+01                  |
| n-Nonane (C9)                          | 1.0 U                | 1.0 U                | 1.0 U                     | 3.5 U               | 1.0 U                                 | 4.2E+02                     | 2.1E+03                  |
| n-Pentane (C5)                         | <b>0.89</b> J        | 1.7                  | 1.8                       | 44                  | 3.2                                   | 2.1E+04                     | 1.1E+05                  |
| n-Propylbenzene                        | 0.98 U               | <b>1.1</b> J         | 1.5 J                     | 3.3 U               | 0.98 U                                | 2.1E+04                     | 1.1E+05                  |
| o-Xylene                               | 3.7                  | 9.1                  | 10                        | 11                  | 2.6                                   | 2.1E+03                     | 1.1E+04                  |
| Propylene                              | 0.34 U               | 0.90                 | 1.0                       | 71                  | 3.5                                   | 6.4E+04                     | 3.2E+05                  |
| Styrene                                | 0.85 U               | 0.85 U               | 0.85 U                    | 2.8 U               | 0.85 U                                | 2.1E+04                     | 1.1E+05                  |
| tert-Butyl alcohol (TBA)               | 1.9 J                | 0.67 J               | 0.73 J                    | 2.0 U               | 16                                    | na                          | na                       |
| Tetrachloroethylene (PCE)              | <b>590</b> D         | 500 D                | 530 D                     | 6.2 J               | 120                                   | 8.4E+02                     | 4.2E+03                  |
| Tetrahydrofuran                        | 2.4                  | 9.8                  | 8.5                       | 3.1 J               | 12                                    | 4.2E+04                     | 2.1E+05                  |
| Toluene                                | 2.0                  | 5.1                  | 6.8                       | 25                  | 8.6                                   | 1.1E+05                     | 5.3E+05                  |
| trans-1,2-Dichloroethylene             | 0.79 U               | 0.79 U               | 0.79 U                    | 3.0 J               | 27                                    | 1.5E+03                     | 7.4E+03                  |
| trans-1,3-Dichloropropene              | 0.91 U               | 0.91 U               | 0.91 U                    | 3.0 U               | 0.91 U                                | na                          | na                       |
| Trichloroethylene                      | 19                   | 12                   | 15                        | 7.0 J               | <u>250</u> D *                        | 4.2E+01                     | 2.1E+02                  |
| Trichlorofluoromethane                 | 1.2 J                | <b>1.8</b> J         | 1.8 J                     | 3.7 U               | <b>1.2</b> J                          | 1.5E+04                     | 7.3E+04                  |
| Vinyl acetate                          | 0.70 U               | 0.70 U               | 0.70 U                    | 2.3 U               | 0.70 U                                | 4.2E+03                     | 2.1E+04                  |
| Vinyl bromide                          | 0.87 U               | 0.87 U               | 0.87 U                    | 2.9 U               | 0.87 U                                | 1.5E+01                     | 7.7E+01                  |
| Vinyl chloride                         | 0.51 U               | 0.51 U               | 0.51 U                    | 2.9 J               | 0.51 U                                | 3.4E+01                     | 1.7E+02                  |
| Xylenes, Total                         | 7.7                  | 31                   | 35                        | 53                  | 9.5                                   | 2.1E+03                     | 1.1E+04                  |

#### **Table Notes:**

VOC Analytical Method: EPA TO-15 Low Level

[Sample ID] - Sample Identification as shown on the COC and in the Lab Report for the duplicate sample.

ug/m³ - micrograms per cubic meter

RG - Remediation Goal

CR - Cancer Risk

HI - Hazard Index

AF - Attenuation Factor

- $\ensuremath{\mathrm{U}}$  Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Limit of Quantitation (LOQ); therefore, result is an estimated concentration.
- D Sample analyzed at a higher dilution factor to allow calibration of this analyte. na - not applicable

**Bold** - Detected analyte concentration

#### Residential Screening Levels (SLs):

MDE Residential Soil Gas Tier 1 RGs (Sept 2019) (at  $CR = 1 \times 10^{-5}$  or HI = 1 and AF of 20) Primary SL: Secondary SL: MDE Residential Soil Gas Tier 2 RGs (Sept 2019) (at  $CR = 1 \times 10^{-5}$  or HI = 1 and AF of 100)

### **Screening Evaluation Notes:**

<u>Red, bold, and underline</u> - Detected analyte concentration exceeds the respective Primary SL.

\* - Detected analyte concentration exceeds the respective Secondary SL.

### <u>Underline</u> - MDL exceeds the respective Primary SL.

**Additional Screening Level Notes** MDE RGs

**Analyte** m+p-Xylenes Total Xylenes o-Xylene o-Xylene

#### Crawl Space Air and Outdoor Air Sample Analytical Results October 6 - 7, 2020 Volatile Organic Compounds (VOCs)

| State   Page    | Sample ID                               | HSI-105M-CSA  | HSI-105R-CSA  | HSI-107M-CSA  | HSI-107R-CSA<br>[HIS-107R-CSA] | HSI-OAA       | EPA Residential |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|---------------|---------------|--------------------------------|---------------|-----------------|
| Sumber Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | 1.25          |               |               |                                |               | Indoor Air RSLs |
| 1.1.1.2 Third-forwest-mare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |               | Crawl S       | <u> </u>      | ( ( 2)                         | Outdoor Air   |                 |
| ILL-12-Intentocentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 0.86 U        | 0.86 U        | 1             |                                | 0.86 U        | 3.8E+00         |
| Injectification   2.2-difference   0.06 U   0. | , , ,                                   |               |               |               |                                |               | 5.2E+03         |
| 11.2 Findisconducture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1,2,2-Tetrachloroethane               | <u>0.86</u> U | <u>0.86</u> U | <u>0.86</u> U | <u>0.86</u> U                  | <u>0.86</u> U | 4.8E-01         |
| D. Dickhinsenburker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |               |               |               |                                |               | 5.2E+03         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -,-,                                    |               |               |               |                                |               |                 |
| 12-4-Trinchybenzers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                       |               |               |               |                                |               |                 |
| 12.4-Princetis phenomene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                |               |               |               |                                |               |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , ,                                     |               |               |               |                                |               | 6.3E+01         |
| 1.2-DehAborecepane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2-Dibromoethane (EDB)                 | <u>0.96</u> U | <u>0.96</u> U | <u>0.96</u> U | <u>0.96</u> U                  | <u>0.96</u> U | 4.7E-02         |
| 1,2-10-febrorepopue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                       |               |               |               |                                |               | 2.1E+02         |
| 12-Dechameteraliumentanee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |               |               |               |                                |               |                 |
| 13.5-Timedybenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |               |               |               |                                |               |                 |
| 1.3-Brandenbewrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -,                                      | 0.0.          |               |               |                                |               |                 |
| 1.3-Dehtbrochenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |               |               |               |                                |               |                 |
| 14-10   Color   14-10   Colo | , - · · · · · · · · · · · · · · · · · · |               |               |               |                                |               |                 |
| LFAby4-methyl bearzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |               |               |               |                                |               | 2.6E+00         |
| 2. Rationos (MFK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |               |               |               |                                |               | 5.6E+00         |
| 22-Chorostourene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                                       |               |               |               |                                |               |                 |
| 2-Hoxanone (MBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ` /                                     |               |               |               |                                |               |                 |
| Heffely-2-pentamone (MIBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |               |               |               |                                |               |                 |
| Accrole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ` ′                                     |               |               |               |                                |               | 3.1E+03         |
| Allylichoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 8.2           |               | 21            | 33                             | 21            | 3.2E+04         |
| Betzeale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |               |               |               |                                |               | 2.1E-02         |
| Bernayl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                |               |               |               |                                |               | 1.0E+00         |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |               |               |               |                                |               |                 |
| Bromomemane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |               |               |               |                                |               |                 |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |               |               |               |                                |               |                 |
| Carbon Fetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |               |               |               |                                |               | 5.2E+00         |
| Chloroebrane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carbon Disulfide                        | <b>0.44</b> J | 2.3           | 0.39 U        | 0.39 U                         | 0.39 U        | 7.3E+02         |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carbon Tetrachloride                    | 0.79 U        | 0.79 U        | 0.79 U        |                                | 0.79 U        | 4.7E+00         |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |               |               |               |                                |               |                 |
| Chloromethame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |               |               |                                |               |                 |
| list-12-Dichloroethylene         0.50 U         0.43 U         0.45 U         0.45 U         0.45 U         0.45 U         0.45 U         0.54 U         0.51 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |               |               |               | 1                              |               |                 |
| Cyclobxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |               |               |               |                                |               |                 |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cis-1,3-Dichloropropene                 |               |               |               |                                |               |                 |
| Dichlorodifluoromethane   2.3 J   2.2 J   2.2 J   2.2 J   2.1 J   1.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |               |               |               |                                |               | 6.3E+03         |
| Ethalo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |               |               |               |                                |               |                 |
| Ethyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |               |               |                                |               |                 |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |               |               |               |                                |               |                 |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |               |               |               |                                |               | 1.1E+01         |
| Hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Heptane                                 |               |               |               |                                |               | 4.2E+02         |
| Isopropyl alcohol   0.58 U   0.55 U   0.55 U   0.55 U   0.61 U   0.51 U   0.61 U   0.45 U   0.66 U   |                                         |               |               |               | 1                              |               | 1.3E+00         |
| Isopropyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |               |               |               |                                |               |                 |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |               |               |               |                                |               |                 |
| m+p-Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |               |               |               |                                |               |                 |
| Methyl methacrylate         0.51 U         0.51 U         0.51 U         0.51 U         0.51 U         0.51 U         7.3E+02           Methylene chloride         1.2 J         1.4 J         1.3 J         2.0 J         1.5 J         6.3E+02           Methyl-t-butyl ether (MTBE)         0.45 U         0.1E+02           Naphthalene         1.1 J         1.2 J         1.2 J         1.9         1.2 J         8.3E-01           n-Nonane (C9)         0.66 U         0.60 U         0.61 U         0.64 U         0.54 U         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |               |               |               |                                |               | 1.0E+02         |
| Methyl-t-butyl ether (MTBE)         0.45 U         1.1E+02           Naphthalene         1.1         1.2 J         1.2 J         1.9 J         1.2 J         8.3E-01           n-Nonane (C9)         0.66 U         0.61 U         0.64 U         0.54 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |               |               |               |                                |               | 7.3E+02         |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                       |               |               |               | 1                              |               | 6.3E+02         |
| n-Nonane (C9)         0.66 U         0.66 U         0.66 U         0.66 U         0.66 U         2.1E+01           n-Pentane (C5)         1.1         1.3         1.4         1.4         1.5         1.0E+02           n-Propylbenzene         0.61 U         1.0E+02           o-Xylene         0.54 U         0.53 U         0.55 U         0.85 U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |               |               |               |                                |               |                 |
| n-Pentane (C5)         1.1         1.3         1.4         1.4         1.5         1.0E+03           n-Propylbenzene         0.61 U         1.0E+03           o-Xylene         0.54 U         1.0E+03           Propylene         0.22 U         1.1         0.34 J         0.60         0.54 U         1.0E+03           Styrene         0.53 U         0.85 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |               |               |               |                                |               |                 |
| n-Propylbenzene         0.61 U         0.61 U         0.61 U         0.61 U         0.61 U         0.61 U         1.0E+03           o-Xylene         0.54 U         1.0E+03           Propylene         0.22 U         1.1         0.34 J         0.60         0.54 U         3.1E+03           Styrene         0.53 U         0.85 U <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |               |               |               | 1                              |               |                 |
| o-Xylene         0.54 U         1.0E+02           Propylene         0.22 U         1.1         0.34 J         0.60         0.54         3.1E+03           Styrene         0.53 U         1.0E+03           tert-Butyl alcohol (TBA)         0.38 U         0.38 U         14         41         100 D         na           Tetrachloroethylene (PCE)         0.85 U         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |               |               |               |                                |               | 1.0E+03         |
| Styrene         0.53 U         0.53 U         0.53 U         0.53 U         0.53 U         0.53 U         1.0E+03 U           tert-Butyl alcohol (TBA)         0.38 U         0.38 U         14         41         100 D         na           Tetrachloroethylene (PCE)         0.85 U         4.2E+01           Tetrahydrofuran         0.37 U         0.50 U         0.57 U         0.67 U </td <td>1.0</td> <td>0.54 U</td> <td></td> <td></td> <td>0.54 U</td> <td></td> <td>1.0E+02</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                     | 0.54 U        |               |               | 0.54 U                         |               | 1.0E+02         |
| tert-Butyl alcohol (TBA)         0.38 U         0.38 U         14         41         100 D         na           Tetrachloroethylene (PCE)         0.85 U         0.85 U         0.85 U         0.85 U         0.85 U         0.85 U         4.2E+01           Tetrahydrofuran         0.37 U         0.30 U         0.50 U<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |               |               |               | <u> </u>                       |               | 3.1E+03         |
| Tetrachloroethylene (PCE)         0.85 U         0.85 U         0.85 U         0.85 U         0.85 U         0.85 U         4.2E+01           Tetrahydrofuran         0.37 U         0.50 U         0.57 U         0.57 U         0.57 U         0.57 U         0.57 U         0.67 U         0.44 U<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |               |               |               |                                |               | 1.0E+03         |
| Tetrahydrofuran         0.37 U         0.50 U         0.57 U         0.57 U         0.57 U         0.67 U         0.11 J         0.11 J         0.12 U         0.44 U <t< td=""><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |               |               |               | <u> </u>                       |               |                 |
| Toluene         0.88 J         0.83 J         0.86 J         1.2         1.2         5.2E+03           trans-1,2-Dichloroethylene         0.50 U         0.57 U         0.57 U         0.57 U         0.57 U         0.57 U         0.57 U         0.67 U         0.44 U         0.44 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                       |               |               |               |                                |               |                 |
| trans-1,2-Dichloroethylene         0.50 U         0.50 U         0.50 U         0.50 U         0.50 U         0.50 U         na           trans-1,3-Dichloropropene         0.57 U         0.67 U         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·                                       |               |               |               | 1                              |               | 5.2E+03         |
| trans-1,3-Dichloropropene         0.57 U         0.57 U         0.57 U         0.57 U         0.57 U         0.57 U         na           Trichloroethylene         0.67 U         0.67 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |               |               |               |                                |               |                 |
| Trichlorofluoromethane         1.2 J         1.2 J         1.2 J         1.2 J         1.1 J         na           Vinyl acetate         0.44 U         0.55 U         0.32 U <t< td=""><td>trans-1,3-Dichloropropene</td><td>0.57 U</td><td>0.57 U</td><td>0.57 U</td><td>0.57 U</td><td>0.57 U</td><td>na</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trans-1,3-Dichloropropene               | 0.57 U        | 0.57 U        | 0.57 U        | 0.57 U                         | 0.57 U        | na              |
| Vinyl acetate         0.44 U         0.55 U         0.32 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>·</u>                                |               |               |               |                                |               | 2.1E+00         |
| Vinyl bromide         0.55 U         0.55 U         0.55 U         0.55 U         0.55 U         8.8E-01           Vinyl chloride         0.32 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |               |               |               | 1                              |               |                 |
| Vinyl chloride 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 1.7E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |               |               |               |                                |               |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · ·                                     |               |               |               |                                |               |                 |
| [Xylenes, Total] 0.54 U   0.54 U   0.54 U   0.54 U   0.54 U   1.0E+0?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Xylenes, Total                          | 0.54 U        | 0.54 U        | 0.54 U        | 0.54 U                         | 0.54 U        | 1.0E+00         |

#### **Table Notes:**

VOC Analytical Method: EPA TO-15 Low Level

[Sample ID] - Incorrect Sample Identification as shown on the COC and in the Lab Report.

ug/m³ - micrograms per cubic meter

- U Analyte not detected above specified Method Detection Limit (MDL) (shown as a gray tone).
- J Detected above the MDL but below the Limit of Quantitation (LOQ); therefore, result is an estimated concentration.
- D Sample analyzed at a higher dilution factor to allow calibration of this analyte. na - not applicable

**Bold** - Detected analyte concentration

#### Residential Screening Levels (SLs):

EPA Residential Indoor Air Regional Screening Levels (RSLs) (May 2020) (at CR =  $1x10^{-5}$  or HI = 1)

#### **Screening Evaluation Notes:**

**<u>Red, bold, and underline</u>** - Detected analyte concentration exceeds the respective SL. <u>Underline</u> - MDL exceeds the respective SL.

Additional Screening Level Notes
Analyte EPA RSLs Total Xylenes m+p-Xylenes o-Xylene o-Xylene

| ATTACHMENT F SURFACE/NEAR SURFACE SOIL SAMPLE LABORATORY ANALYTICAL REPORT |
|----------------------------------------------------------------------------|
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |



WWW.HCVLAB.COM



**Analytical & Field Services** 

### **Project:** Hot Spot Investigation

Client PO: CG09042310MS

Report To: Chesapeake Geosciences Inc

5405 Twin Knolls Rd.

Suite 1

Columbia, MD 21045 Attn: Nancy Love

Received Date: 9/28/2020

Report Date: 10/19/2020

Deliverables: MDE-R

Lab ID: AD19479

Lab Project No: 0092806

This report is a true report of results obtained from our tests of this material. The report relates only to those samples received and analyzed by the laboratory. All results meet the requirements of the NELAC Institute standards. Laboratory reports may not be reproduced, except in full, without the written approval of the laboratory.

In lieu of a formal contract document, the total aggregate liability of Hampton-Clarke to all parties shall not exceed Hampton-Clarke's total fee for analytical services rendered.

Sean Berls - Quality Assurance Officer

OR

Jean Revolus - Laboratory Director

NJ (07071) PA (68-00463) NY (ELAP11408) KY (90124) CT (PH-0671)





### **Table of Contents - 0092806**

| Sample Summary                                   | 1   |
|--------------------------------------------------|-----|
| Case Narrative                                   | 2   |
| Executive Summary                                | 3   |
| Report of Analysis                               | 13  |
| Reporting Definitions / Data Qualifiers          | 43  |
| Laboratory Chronicles                            | 44  |
| Chain of Custody Forms                           | 49  |
| Chain of Custody                                 |     |
| Condition Upon Receipt Forms                     |     |
| Preservation Documentation Forms (If Applicable) |     |
| Internal Chain Of Custody Records                |     |
| Volatile Data                                    | 55  |
|                                                  | 55  |
| Form 1 Sample and Blank Results                  |     |
| Form 2 Strike Recovery                           |     |
| Form 3 Spike Recovery                            |     |
| Form 4 Method Blank Summary                      |     |
| Form 5 Tune Summary & BFB Spectra                |     |
| Form 6,7 Calibration & RT Summary                |     |
| Form 8 Internal Standard Area Summary            |     |
| Base Neutral/Acid Extractable Data               | 128 |
| Form 1 Sample and Blank Results                  |     |
| Form 2 Surrogate Recovery                        |     |
| Form 3 Spike Recovery                            |     |
| Form 4 Method Blank Summary                      |     |
| Form 5 Tune Summary & DFTPP Spectra              |     |
| Form 6,7 Calibration & RT Summary                |     |
| Form 8 Internal Standard Area Summary            |     |
| Metal Data                                       | 208 |
| Form 1 Sample Results                            |     |
| Form 2 Calibration Summary                       |     |
| Form 3 Blank Summary                             |     |
| Form 4 ICP Interference Check Sample Summary     |     |
| Form 5/7 Spike / LCS Recovery Data               |     |
| Form 6/0 Duplicate / Serial Dilution Sample Data |     |



| Wet Chemistry Data    | 270 |
|-----------------------|-----|
| Form 1 Sample Results |     |

Inorganic Spreadsheet / QC Summary

## **Sample Summary**

Client: Chesapeake Geosciences Inc

**Project:** Hot Spot Investigation

HC Project #: 0092806

| Lab#        | SampleID           | Matrix         | Collection<br>Date | Receipt<br>Date |
|-------------|--------------------|----------------|--------------------|-----------------|
| AD19479-001 | HSI-SS-01 (0-0.5') | Soil           | 9/25/2020          | 9/28/2020       |
| AD19479-002 | HSI-SS-01 (0.5-1') | Soil/Terracore | 9/25/2020          | 9/28/2020       |
| AD19479-003 | HSI-SS-02 (0-0.5') | Soil           | 9/25/2020          | 9/28/2020       |
| AD19479-004 | HSI-SS-02 (0.5-1') | Soil/Terracore | 9/25/2020          | 9/28/2020       |
| AD19479-005 | HSI-SS-03 (0-0.5') | Soil           | 9/25/2020          | 9/28/2020       |
| AD19479-006 | HSI-SS-03 (0.5-1') | Soil/Terracore | 9/25/2020          | 9/28/2020       |
| AD19479-007 | HSI-SS-04 (0-0.5') | Soil           | 9/25/2020          | 9/28/2020       |
| AD19479-008 | HSI-SS-04 (0.5-1') | Soil/Terracore | 9/25/2020          | 9/28/2020       |
| AD19479-009 | HSI-SS-05 (0-0.5') | Soil           | 9/25/2020          | 9/28/2020       |
| AD19479-010 | HSI-SS-05 (0.5-1') | Soil/Terracore | 9/25/2020          | 9/28/2020       |
| AD19479-011 | HSI-SS-06 (0-0.5') | Soil           | 9/25/2020          | 9/28/2020       |
| AD19479-012 | HSI-SS-06 (0.5-1') | Soil/Terracore | 9/25/2020          | 9/28/2020       |
| AD19479-013 | HSI-SS-07 (0-0.5') | Soil           | 9/25/2020          | 9/28/2020       |
| AD19479-014 | HSI-SS-07 (0.5-1') | Soil/Terracore | 9/25/2020          | 9/28/2020       |
| AD19479-015 | HSI-SS-08 (0-0.5') | Soil           | 9/25/2020          | 9/28/2020       |
| AD19479-016 | HSI-SS-08 (0.5-1') | Soil/Terracore | 9/25/2020          | 9/28/2020       |
| AD19479-017 | HSI-SS-09 (0-0.5') | Soil           | 9/25/2020          | 9/28/2020       |
| AD19479-018 | HSI-SS-09 (0.5-1') | Soil/Terracore | 9/25/2020          | 9/28/2020       |
| AD19479-019 | HSI-SS-D (0-0.5')  | Soil           | 9/25/2020          | 9/28/2020       |
| AD19479-020 | HSI-SS-D (0.5-1')  | Soil/Terracore | 9/25/2020          | 9/28/2020       |
|             |                    |                |                    |                 |

#### **HC Case Narrative**

Client: Chesapeake Geosciences Inc. HC Project: 0092806

Project: Hot Spot Investigation

This case narrative is in the form of an exception report. Method specific and/or QA/QC anomalies related to this report only are detailed below.

#### **Volatile Organic Analysis:**

Methylene chloride was recovered in samples AD19479-002, -004, -006, -008, -010, -012, -016 and -018 due to possible laboratory contamination.

Acetone was recovered in sample AD19479-018 due to possible laboratory contamination.

The Method Blank Spike for batch 89405 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

The Matrix Spike and/or Matrix Spike Duplicate for batches 89405 and 89411 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

#### **Base Neutral/Acid Extractable Analysis:**

Sample AD19479-015 was analyzed at a dilution due to the nature of the sample.

The MS/MSD RPD, Matrix Spike and/or Matrix Spike Duplicate for batch 88130 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

#### **Metals Analysis:**

Sample AD19479-009 was reported at a dilution for Be. TI due to internal standard interference.

The Post Spike, Matrix Spike and/or Matrix Spike Duplicate for batch 85347 had recoveries outside QC limits. Please refer to the applicable Form 5/7 for the recoveries.

The RPD between the QC sample and the Method Replicate had recoveries outside QC limits in batches 85347, 85348. Please refer to the applicable Form 6/9 for the recoveries.

The serial dilution for batch 85348 is outside QC limits for one or more analytes. Please refer to the applicable Form 6/9 for the recoveries.

Reported to MDL per client request. When reporting to the MDL, detections are typically found in the blanks. Acceptance criteria for blanks are based on the RL.

#### **Wet Chemistry Analysis:**

Data conforms to method requirements.

| 5                         |    |                     | 10/19/20 |  |
|---------------------------|----|---------------------|----------|--|
| Sean Berls                | Or | Jean Revolus        | Date     |  |
| Quality Assurance Officer |    | Laboratory Director |          |  |

Client: Chesapeake Geosciences Inc

HC Project #: 0092806

**Project:** Hot Spot Investigation

Lab#: AD19479-001

Sample ID: HSI-SS-01 (0-0.5')

| Amalida                    | 11-:4- | D1 (MD1 | D. s. 16 | Analytical<br>Method |
|----------------------------|--------|---------|----------|----------------------|
| Analyte                    | Units  | RL/MDL  | Result   |                      |
| Aluminum                   | mg/kg  | 19      | 3200     | EPA 6010D            |
| Barium                     | mg/kg  | 0.75    | 21       | EPA 6010D            |
| Calcium                    | mg/kg  | 110     | 1700     | EPA 6010D            |
| Chromium                   | mg/kg  | 0.74    | 19B      | EPA 6010D            |
| Cobalt                     | mg/kg  | 0.79    | 0.95J    | EPA 6010D            |
| Copper                     | mg/kg  | 0.68    | 14B      | EPA 6010D            |
| Iron                       | mg/kg  | 15      | 6500B    | EPA 6010D            |
| Lead                       | mg/kg  | 0.68    | 17       | EPA 6010D            |
| Magnesium                  | mg/kg  | 22      | 450J     | EPA 6010D            |
| Manganese                  | mg/kg  | 0.71    | 50       | EPA 6010D            |
| Nickel                     | mg/kg  | 1.2     | 3.5J     | EPA 6010D            |
| Potassium                  | mg/kg  | 110     | 150J     | EPA 6010D            |
| Zinc                       | mg/kg  | 1.7     | 43B      | EPA 6010D            |
| Antimony                   | mg/kg  | 0.025   | 0.13J    | EPA 6020B            |
| Arsenic                    | mg/kg  | 0.019   | 3.9B     | EPA 6020B            |
| Beryllium                  | mg/kg  | 0.017   | 0.18J    | EPA 6020B            |
| Cadmium                    | mg/kg  | 0.016   | 0.38J    | EPA 6020B            |
| Selenium                   | mg/kg  | 0.071   | 1.2JB    | EPA 6020B            |
| Silver                     | mg/kg  | 0.029   | 0.067JB  | EPA 6020B            |
| Thallium                   | mg/kg  | 0.020   | 0.10J    | EPA 6020B            |
| Vanadium                   | mg/kg  | 0.012   | 47B      | EPA 6020B            |
| Acetophenone               | mg/kg  | 0.013   | 0.019J   | EPA 8270D            |
| Benzo[a]pyrene             | mg/kg  | 0.013   | 0.014J   | EPA 8270D            |
| Benzo[g,h,i]perylene       | mg/kg  | 0.00026 | 0.0092J  | EPA 8270D            |
| bis(2-Ethylhexyl)phthalate | mg/kg  | 0.033   | 0.24     | EPA 8270D            |
| Chrysene                   | mg/kg  | 0.013   | 0.016J   | EPA 8270D            |
| Di-n-butylphthalate        | mg/kg  | 0.042   | 0.12     | EPA 8270D            |

Lab#: AD19479-002

Sample ID: HSI-SS-01 (0.5-1')

| Analyte                   | Units | RL/MDL  | Result | Analytical<br>Method |
|---------------------------|-------|---------|--------|----------------------|
| 1,1,2,2-Tetrachloroethane | mg/kg | 0.00037 | 0.0018 | EPA 8260C            |
| Methylene chloride        | ma/ka | 0.00061 | 0.0036 | EPA 8260C            |

Client: Chesapeake Geosciences Inc

HC Project #: 0092806

**Project:** Hot Spot Investigation

Lab#: AD19479-003

Sample ID: HSI-SS-02 (0-0.5')

| Amalida                    | 11    | DI MDI | D       | Analytical<br>Method |
|----------------------------|-------|--------|---------|----------------------|
| Analyte                    | Units | RL/MDL | Result  |                      |
| Aluminum                   | mg/kg | 18     | 3800    | EPA 6010D            |
| Barium                     | mg/kg | 0.74   | 20      | EPA 6010D            |
| Calcium                    | mg/kg | 110    | 1600    | EPA 6010D            |
| Chromium                   | mg/kg | 0.74   | 20B     | EPA 6010D            |
| Cobalt                     | mg/kg | 0.78   | 1.4J    | EPA 6010D            |
| Copper                     | mg/kg | 0.68   | 18B     | EPA 6010D            |
| Iron                       | mg/kg | 15     | 6700B   | EPA 6010D            |
| Lead                       | mg/kg | 0.68   | 23      | EPA 6010D            |
| Magnesium                  | mg/kg | 21     | 540J    | EPA 6010D            |
| Manganese                  | mg/kg | 0.71   | 61      | EPA 6010D            |
| Nickel                     | mg/kg | 1.2    | 4.5J    | EPA 6010D            |
| Potassium                  | mg/kg | 110    | 160J    | EPA 6010D            |
| Zinc                       | mg/kg | 1.7    | 29B     | EPA 6010D            |
| Antimony                   | mg/kg | 0.025  | 0.11J   | EPA 6020B            |
| Arsenic                    | mg/kg | 0.019  | 3.2B    | EPA 6020B            |
| Beryllium                  | mg/kg | 0.017  | 0.18J   | EPA 6020B            |
| Cadmium                    | mg/kg | 0.016  | 0.49    | EPA 6020B            |
| Selenium                   | mg/kg | 0.070  | 1.4JB   | EPA 6020B            |
| Silver                     | mg/kg | 0.029  | 0.048JB | EPA 6020B            |
| Thallium                   | mg/kg | 0.019  | 0.020J  | EPA 6020B            |
| Vanadium                   | mg/kg | 0.012  | 18B     | EPA 6020B            |
| Mercury                    | mg/kg | 0.014  | 0.020J  | EPA 7471B            |
| Acetophenone               | mg/kg | 0.013  | 0.023J  | EPA 8270D            |
| bis(2-Ethylhexyl)phthalate | mg/kg | 0.032  | 0.44    | EPA 8270D            |
| Di-n-butylphthalate        | mg/kg | 0.042  | 0.16    | EPA 8270D            |

Lab#: AD19479-004

Sample ID: HSI-SS-02 (0.5-1')

|                           |       |         |         | Analytical |  |
|---------------------------|-------|---------|---------|------------|--|
| Analyte                   | Units | RL/MDL  | Result  | Method     |  |
| 1,1,2,2-Tetrachloroethane | mg/kg | 0.00037 | 0.012   | EPA 8260C  |  |
| 1,1,2-Trichloroethane     | mg/kg | 0.00037 | 0.0014J | EPA 8260C  |  |
| 2-Butanone                | mg/kg | 0.00098 | 0.0010J | EPA 8260C  |  |
| Acetone                   | mg/kg | 0.0055  | 0.044   | EPA 8260C  |  |
| Methylene chloride        | mg/kg | 0.00061 | 0.0024  | EPA 8260C  |  |
| Tetrachloroethene         | mg/kg | 0.00080 | 0.0045  | EPA 8260C  |  |
| Trichloroethene           | mg/kg | 0.00067 | 0.0021  | EPA 8260C  |  |

Client: Chesapeake Geosciences Inc

HC Project #: 0092806

Project: Hot Spot Investigation

Lab#: AD19479-005

Sample ID: HSI-SS-03 (0-0.5')

| Analyte                    | Units | RL/MDL | Result  | Analytical<br>Method |
|----------------------------|-------|--------|---------|----------------------|
| Aluminum                   | mg/kg | 20     | 4000    | EPA 6010D            |
| Barium                     | mg/kg | 0.82   | 22      | EPA 6010D            |
| Calcium                    | mg/kg | 120    | 1700    | EPA 6010D            |
| Chromium                   | mg/kg | 0.82   | 23B     | EPA 6010D            |
| Cobalt                     | mg/kg | 0.87   | 1.2J    | EPA 6010D            |
| Copper                     | mg/kg | 0.75   | 9.2B    | EPA 6010D            |
| Iron                       | mg/kg | 16     | 7100B   | EPA 6010D            |
| Lead                       | mg/kg | 0.75   | 3.9J    | EPA 6010D            |
| Magnesium                  | mg/kg | 24     | 560J    | EPA 6010D            |
| Manganese                  | mg/kg | 0.78   | 54      | EPA 6010D            |
| Nickel                     | mg/kg | 1.3    | 3.0J    | EPA 6010D            |
| Potassium                  | mg/kg | 120    | 180J    | EPA 6010D            |
| Zinc                       | mg/kg | 1.8    | 22B     | EPA 6010D            |
| Arsenic                    | mg/kg | 0.021  | 3.6B    | EPA 6020B            |
| Beryllium                  | mg/kg | 0.019  | 0.19J   | EPA 6020B            |
| Cadmium                    | mg/kg | 0.017  | 0.17J   | EPA 6020B            |
| Selenium                   | mg/kg | 0.077  | 1.2JB   | EPA 6020B            |
| Silver                     | mg/kg | 0.032  | 0.050JB | EPA 6020B            |
| Thallium                   | mg/kg | 0.022  | 0.026J  | EPA 6020B            |
| Vanadium                   | mg/kg | 0.013  | 19B     | EPA 6020B            |
| bis(2-Ethylhexyl)phthalate | mg/kg | 0.036  | 0.036J  | EPA 8270D            |
| Fluorene                   | mg/kg | 0.011  | 0.012J  | EPA 8270D            |

Lab#: AD19479-006

Sample ID: HSI-SS-03 (0.5-1')

| Analyte                   | Units | RL/MDL  | Result | Analytical<br>Method |
|---------------------------|-------|---------|--------|----------------------|
| 1,1,2,2-Tetrachloroethane | mg/kg | 0.00049 | 0.0065 | EPA 8260C            |
| Methylene chloride        | mg/kg | 0.00082 | 0.0057 | EPA 8260C            |
| Tetrachloroethene         | mg/kg | 0.0011  | 0.024  | EPA 8260C            |
| Trichloroethene           | mg/kg | 0.00089 | 0.0072 | EPA 8260C            |

Client: Chesapeake Geosciences Inc

HC Project #: 0092806

**Project:** Hot Spot Investigation

Lab#: AD19479-007

Sample ID: HSI-SS-04 (0-0.5')

| Analyta                    | Units | RL/MDL | Result  | Analytical<br>Method |
|----------------------------|-------|--------|---------|----------------------|
| Analyte Aluminum           | mg/kg | 19     | 6700    | EPA 6010D            |
| Barium                     | mg/kg | 0.75   | 22      | EPA 6010D            |
| Calcium                    | mg/kg | 110    | 210J    | EPA 6010D            |
| Chromium                   | mg/kg | 0.74   | 24B     | EPA 6010D            |
| Cobalt                     | mg/kg | 0.79   | 1.5J    | EPA 6010D            |
| Copper                     | mg/kg | 0.68   | 7.3B    | EPA 6010D            |
| Iron                       | mg/kg | 15     | 11000B  | EPA 6010D            |
| Lead                       | mg/kg | 0.68   | 7.1     | EPA 6010D            |
| Magnesium                  |       | 22     | 680     | EPA 6010D            |
| Manganese                  | mg/kg | 0.71   | 31      | EPA 6010D            |
| Nickel                     | mg/kg | 1.2    | 4.2J    | EPA 6010D            |
| Potassium                  | mg/kg | 110    | 220J    | EPA 6010D            |
| Zinc                       | mg/kg | 1.7    | 18B     | EPA 6010D            |
| Antimony                   | mg/kg | 0.025  | 0.031J  | EPA 6020B            |
| Arsenic                    | mg/kg | 0.019  | 7.1B    | EPA 6020B            |
| Beryllium                  | mg/kg | 0.017  | 0.20J   | EPA 6020B            |
| Cadmium                    | mg/kg | 0.016  | 0.15J   | EPA 6020B            |
| Selenium                   | mg/kg | 0.071  | 0.88JB  | EPA 6020B            |
| Silver                     | mg/kg | 0.029  | 0.037JB | EPA 6020B            |
| Thallium                   | mg/kg | 0.020  | 0.039J  | EPA 6020B            |
| Vanadium                   | mg/kg | 0.012  | 22B     | EPA 6020B            |
| Benzo[b]fluoranthene       | mg/kg | 0.013  | 0.018J  | EPA 8270D            |
| bis(2-Ethylhexyl)phthalate | mg/kg | 0.033  | 0.15    | EPA 8270D            |

Lab#: AD19479-008

Sample ID: HSI-SS-04 (0.5-1')

| Analyte            | Units | RL/MDL  | Result | Analytical<br>Method |
|--------------------|-------|---------|--------|----------------------|
| Acetone            | mg/kg | 0.0061  | 0.011  | EPA 8260C            |
| Methylene chloride | mg/kg | 0.00068 | 0.0049 | EPA 8260C            |

Client: Chesapeake Geosciences Inc

HC Project #: 0092806

**Project:** Hot Spot Investigation

Lab#: AD19479-009

Sample ID: HSI-SS-05 (0-0.5')

| -                          |       |        |         | Analytical |
|----------------------------|-------|--------|---------|------------|
| Analyte                    | Units | RL/MDL | Result  | Method     |
| Aluminum                   | mg/kg | 19     | 3300    | EPA 6010D  |
| Barium                     | mg/kg | 0.78   | 15      | EPA 6010D  |
| Calcium                    | mg/kg | 120    | 190J    | EPA 6010D  |
| Chromium                   | mg/kg | 0.77   | 20B     | EPA 6010D  |
| Cobalt                     | mg/kg | 0.82   | 0.94J   | EPA 6010D  |
| Copper                     | mg/kg | 0.71   | 13B     | EPA 6010D  |
| Iron                       | mg/kg | 15     | 7000B   | EPA 6010D  |
| Lead                       | mg/kg | 0.71   | 22      | EPA 6010D  |
| Magnesium                  | mg/kg | 22     | 340J    | EPA 6010D  |
| Manganese                  | mg/kg | 0.74   | 28      | EPA 6010D  |
| Nickel                     | mg/kg | 1.3    | 4.7J    | EPA 6010D  |
| Potassium                  | mg/kg | 110    | 140J    | EPA 6010D  |
| Zinc                       | mg/kg | 1.7    | 24B     | EPA 6010D  |
| Antimony                   | mg/kg | 0.026  | 0.058J  | EPA 6020B  |
| Arsenic                    | mg/kg | 0.020  | 3.0B    | EPA 6020B  |
| Beryllium                  | mg/kg | 0.054  | 0.20J   | EPA 6020B  |
| Cadmium                    | mg/kg | 0.016  | 0.50    | EPA 6020B  |
| Selenium                   | mg/kg | 0.073  | 4.0B    | EPA 6020B  |
| Silver                     | mg/kg | 0.030  | 0.061JB | EPA 6020B  |
| Vanadium                   | mg/kg | 0.012  | 21B     | EPA 6020B  |
| bis(2-Ethylhexyl)phthalate | mg/kg | 0.034  | 0.28    | EPA 8270D  |
| Butylbenzylphthalate       | mg/kg | 0.029  | 0.033J  | EPA 8270D  |
| Di-n-butylphthalate        | mg/kg | 0.044  | 0.067   | EPA 8270D  |
| -                          |       |        |         |            |

Lab#: AD19479-010

Sample ID: HSI-SS-05 (0.5-1')

| Analyte                   | Units | RL/MDL  | Result   | Analytical<br>Method |
|---------------------------|-------|---------|----------|----------------------|
| 1,1,2,2-Tetrachloroethane | mg/kg | 0.00036 | 0.011    | EPA 8260C            |
| Acetone                   | mg/kg | 0.0054  | 0.0069J  | EPA 8260C            |
| Chlorobenzene             | mg/kg | 0.00050 | 0.00050J | EPA 8260C            |
| Methylene chloride        | mg/kg | 0.00060 | 0.0017   | EPA 8260C            |
| Toluene                   | ma/ka | 0.00053 | 0.00073J | EPA 8260C            |

Client: Chesapeake Geosciences Inc

HC Project #: 0092806

**Project:** Hot Spot Investigation

Lab#: AD19479-011

Sample ID: HSI-SS-06 (0-0.5')

|                            |       |        |         | Analytical |
|----------------------------|-------|--------|---------|------------|
| Analyte                    | Units | RL/MDL | Result  | Method     |
| Aluminum                   | mg/kg | 18     | 5000    | EPA 6010D  |
| Barium                     | mg/kg | 0.73   | 24      | EPA 6010D  |
| Calcium                    | mg/kg | 110    | 290J    | EPA 6010D  |
| Chromium                   | mg/kg | 0.73   | 21B     | EPA 6010D  |
| Cobalt                     | mg/kg | 0.77   | 1.5J    | EPA 6010D  |
| Copper                     | mg/kg | 0.67   | 8.9B    | EPA 6010D  |
| Iron                       | mg/kg | 14     | 9900B   | EPA 6010D  |
| Lead                       | mg/kg | 0.67   | 15      | EPA 6010D  |
| Magnesium                  | mg/kg | 21     | 510J    | EPA 6010D  |
| Manganese                  | mg/kg | 0.70   | 37      | EPA 6010D  |
| Nickel                     | mg/kg | 1.2    | 3.8J    | EPA 6010D  |
| Potassium                  | mg/kg | 110    | 150J    | EPA 6010D  |
| Zinc                       |       | 1.6    | 25B     | EPA 6010D  |
| Antimony                   | mg/kg | 0.024  | 0.053J  | EPA 6020B  |
| Arsenic                    | mg/kg | 0.019  | 3.2B    | EPA 6020B  |
| Beryllium                  | mg/kg | 0.017  | 0.18J   | EPA 6020B  |
| Cadmium                    | mg/kg | 0.015  | 0.18J   | EPA 6020B  |
| Selenium                   | mg/kg | 0.069  | 1.1JB   | EPA 6020B  |
| Silver                     | mg/kg | 0.028  | 0.047JB | EPA 6020B  |
| Thallium                   | mg/kg | 0.019  | 0.035J  | EPA 6020B  |
| Vanadium                   | mg/kg | 0.012  | 17B     | EPA 6020B  |
| bis(2-Ethylhexyl)phthalate | mg/kg | 0.032  | 0.34    | EPA 8270D  |
| Di-n-butylphthalate        | mg/kg | 0.042  | 0.077   | EPA 8270D  |

Lab#: AD19479-012

Sample ID: HSI-SS-06 (0.5-1')

| Analyte                   |       |         |        | Analytical |
|---------------------------|-------|---------|--------|------------|
|                           | Units | RL/MDL  | Result | Method     |
| 1,1,2,2-Tetrachloroethane | mg/kg | 0.00045 | 0.0039 | EPA 8260C  |
| 2-Butanone                | mg/kg | 0.0012  | 0.0035 | EPA 8260C  |
| Acetone                   | mg/kg | 0.0068  | 0.064  | EPA 8260C  |
| Methylcyclohexane         | mg/kg | 0.00091 | 0.0024 | EPA 8260C  |
| Methylene chloride        | mg/kg | 0.00076 | 0.0035 | EPA 8260C  |
| Styrene                   | mg/kg | 0.00056 | 0.36   | EPA 8260C  |
| Tetrachloroethene         | mg/kg | 0.00099 | 0.0035 | EPA 8260C  |

Client: Chesapeake Geosciences Inc

HC Project #: 0092806

**Project:** Hot Spot Investigation

Lab#: AD19479-013

Sample ID: HSI-SS-07 (0-0.5')

| Analyte                    | Units | RL/MDL | Result  | Analytical<br>Method |
|----------------------------|-------|--------|---------|----------------------|
| Aluminum                   | mg/kg | 20     | 3200    | EPA 6010D            |
| Barium                     | mg/kg | 0.82   | 21      | EPA 6010D            |
| Calcium                    | mg/kg | 120    | 410J    | EPA 6010D            |
| Chromium                   | mg/kg | 0.82   | 18B     | EPA 6010D            |
| Cobalt                     | mg/kg | 0.87   | 1.6J    | EPA 6010D            |
| Copper                     | mg/kg | 0.75   | 12B     | EPA 6010D            |
| Iron                       | mg/kg | 16     | 14000B  | EPA 6010D            |
| Lead                       | mg/kg | 0.75   | 22      | EPA 6010D            |
| Magnesium                  | mg/kg | 24     | 300J    | EPA 6010D            |
| Manganese                  | mg/kg | 0.78   | 68      | EPA 6010D            |
| Nickel                     | mg/kg | 1.3    | 4.6J    | EPA 6010D            |
| Potassium                  | mg/kg | 120    | 150J    | EPA 6010D            |
| Zinc                       | mg/kg | 1.8    | 42B     | EPA 6010D            |
| Antimony                   | mg/kg | 0.027  | 0.084J  | EPA 6020B            |
| Arsenic                    | mg/kg | 0.021  | 2.2B    | EPA 6020B            |
| Beryllium                  | mg/kg | 0.019  | 0.14J   | EPA 6020B            |
| Cadmium                    | mg/kg | 0.017  | 0.48J   | EPA 6020B            |
| Selenium                   | mg/kg | 0.077  | 1.4JB   | EPA 6020B            |
| Silver                     | mg/kg | 0.032  | 0.084JB | EPA 6020B            |
| Thallium                   | mg/kg | 0.022  | 0.022J  | EPA 6020B            |
| Vanadium                   | mg/kg | 0.013  | 16B     | EPA 6020B            |
| Mercury                    | mg/kg | 0.015  | 0.038J  | EPA 7471B            |
| bis(2-Ethylhexyl)phthalate | mg/kg | 0.036  | 0.42    | EPA 8270D            |
| Di-n-butylphthalate        | mg/kg | 0.047  | 0.061   | EPA 8270D            |

Lab#: AD19479-014

Sample ID: HSI-SS-07 (0.5-1')

| Analyte                | Units | RL/MDL  | Result  | Analytical<br>Method |
|------------------------|-------|---------|---------|----------------------|
| 2-Butanone             | mg/kg | 0.0014  | 0.14    | EPA 8260C            |
| Acetone                | mg/kg | 0.0078  | 0.74    | EPA 8260C            |
| Methylene chloride     | mg/kg | 0.00086 | 0.0022J | EPA 8260C            |
| Toluene                | mg/kg | 0.00076 | 0.070   | EPA 8260C            |
| Trichlorofluoromethane | mg/kg | 0.0014  | 0.0092  | EPA 8260C            |

Client: Chesapeake Geosciences Inc

HC Project #: 0092806

**Project:** Hot Spot Investigation

Lab#: AD19479-015

Sample ID: HSI-SS-08 (0-0.5')

| Analyte              | Units | RL/MDL  | Result  | Analytical<br>Method |
|----------------------|-------|---------|---------|----------------------|
| Aluminum             | mg/kg | 18      | 3900    | EPA 6010D            |
| Barium               | mg/kg | 0.72    | 29      | EPA 6010D            |
| Calcium              | mg/kg | 110     | 19000   | EPA 6010D            |
| Chromium             | mg/kg | 0.71    | 15B     | EPA 6010D            |
| Cobalt               | mg/kg | 0.76    | 3.1     | EPA 6010D            |
| Copper               | mg/kg | 0.66    | 11B     | EPA 6010D            |
| Iron                 | mg/kg | 14      | 8100B   | EPA 6010D            |
| Lead                 | mg/kg | 0.66    | 6.6     | EPA 6010D            |
| Magnesium            | mg/kg | 21      | 7900    | EPA 6010D            |
| Manganese            | mg/kg | 0.68    | 150     | EPA 6010D            |
| Nickel               | mg/kg | 1.2     | 9.1     | EPA 6010D            |
| Potassium            | mg/kg | 100     | 540     | EPA 6010D            |
| Zinc                 | mg/kg | 1.6     | 22B     | EPA 6010D            |
| Arsenic              | mg/kg | 0.019   | 2.2B    | EPA 6020B            |
| Beryllium            | mg/kg | 0.017   | 0.14J   | EPA 6020B            |
| Cadmium              | mg/kg | 0.015   | 0.15J   | EPA 6020B            |
| Selenium             | mg/kg | 0.068   | 0.87JB  | EPA 6020B            |
| Silver               | mg/kg | 0.028   | 0.049JB | EPA 6020B            |
| Thallium             | mg/kg | 0.019   | 0.028J  | EPA 6020B            |
| Vanadium             | mg/kg | 0.012   | 15B     | EPA 6020B            |
| Benzo[g,h,i]perylene | mg/kg | 0.00073 | 0.033J  | EPA 8270D            |

Lab#: AD19479-016

Sample ID: HSI-SS-08 (0.5-1')

| Analyte                   | Units | RL/MDL  | Result   | Analytical<br>Method |
|---------------------------|-------|---------|----------|----------------------|
| 1,1,2,2-Tetrachloroethane | mg/kg | 0.00039 | 0.0015J  | EPA 8260C            |
| 1,1,2-Trichloroethane     | mg/kg | 0.00040 | 0.00066J | EPA 8260C            |
| Acetone                   | mg/kg | 0.0058  | 0.0074J  | EPA 8260C            |
| Methylene chloride        | mg/kg | 0.00065 | 0.0071   | EPA 8260C            |
| Tetrachloroethene         | mg/kg | 0.00084 | 0.0011J  | EPA 8260C            |

Client: Chesapeake Geosciences Inc

HC Project #: 0092806

**Project:** Hot Spot Investigation

Lab#: AD19479-017

Sample ID: HSI-SS-09 (0-0.5')

| Analyte                    | Units | RŁ/MDL | Result  | Analytical<br>Method |
|----------------------------|-------|--------|---------|----------------------|
| Aluminum                   | mg/kg | 18     | 5000    | EPA 6010D            |
| Barium                     | mg/kg | 0.73   | 37      | EPA 6010D            |
| Calcium                    | mg/kg | 110    | 1400    | EPA 6010D            |
| Chromium                   | mg/kg | 0.72   | 17B     | EPA 6010D            |
| Cobalt                     | mg/kg | 0.77   | 4.0     | EPA 6010D            |
| Copper                     | mg/kg | 0.66   | 27B     | EPA 6010D            |
| Iron                       | mg/kg | 14     | 11000B  | EPA 6010D            |
| Lead                       | mg/kg | 0.66   | 9.8     | EPA 6010D            |
| Magnesium                  | mg/kg | 21     | 2200    | EPA 6010D            |
| Manganese                  | mg/kg | 0.69   | 210     | EPA 6010D            |
| Nickel                     | mg/kg | 1.2    | 9.8     | EPA 6010D            |
| Potassium                  | mg/kg | 110    | 550     | EPA 6010D            |
| Zinc                       | mg/kg | 1.6    | 38B     | EPA 6010D            |
| Antimony                   | mg/kg | 0.024  | 0.031J  | EPA 6020B            |
| Arsenic                    | mg/kg | 0.019  | 3.5B    | EPA 6020B            |
| Beryllium                  | mg/kg | 0.017  | 0.19J   | EPA 6020B            |
| Cadmium                    | mg/kg | 0.015  | 0.26J   | EPA 6020B            |
| Selenium                   | mg/kg | 0.068  | 0.99JB  | EPA 6020B            |
| Silver                     | mg/kg | 0.028  | 0.050JB | EPA 6020B            |
| Thallium                   | mg/kg | 0.019  | 0.037J  | EPA 6020B            |
| Vanadium                   | mg/kg | 0.012  | 20B     | EPA 6020B            |
| Benzo[b]fluoranthene       | mg/kg | 0.013  | 0.015J  | EPA 8270D            |
| bis(2-Ethylhexyl)phthalate | mg/kg | 0.032  | 0.12    | EPA 8270D            |
| Dimethylphthalate          | mg/kg | 0.010  | 0.066   | EPA 8270D            |
| Di-n-butylphthalate        | mg/kg | 0.041  | 0.058   | EPA 8270D            |
| Pyrene                     | mg/kg | 0.012  | 0.015J  | EPA 8270D            |

Lab#: AD19479-018

Sample ID: HSI-SS-09 (0.5-1')

| Analyte            | Units | RŁ/MDL  | Result  | Analytical<br>Method |
|--------------------|-------|---------|---------|----------------------|
| Acetone            | mg/kg | 0.0075  | 0.020   | EPA 8260C            |
| m&p-Xylenes        | mg/kg | 0.0013  | 0.0014  | EPA 8260C            |
| Methylene chloride | mg/kg | 0.00083 | 0.0046  | EPA 8260C            |
| Tetrachloroethene  | mg/kg | 0.0011  | 0.0011J | EPA 8260C            |
| Xylenes (Total)    | mg/kg | 0.00079 | 0.0014  | EPA 8260C            |

Client: Chesapeake Geosciences Inc

HC Project #: 0092806

**Project:** Hot Spot Investigation

Lab#: AD19479-019

Sample ID: HSI-SS-D (0-0.5')

|                            |       |        |         | Analytical |
|----------------------------|-------|--------|---------|------------|
| Analyte                    | Units | RL/MDL | Result  | Method     |
| Aluminum                   | mg/kg | 18     | 3700    | EPA 6010D  |
| Barium                     | mg/kg | 0.73   | 20      | EPA 6010D  |
| Calcium                    | mg/kg | 110    | 1400    | EPA 6010D  |
| Chromium                   | mg/kg | 0.73   | 17B     | EPA 6010D  |
| Cobalt                     | mg/kg | 0.77   | 1.5J    | EPA 6010D  |
| Copper                     | mg/kg | 0.67   | 16B     | EPA 6010D  |
| Iron                       | mg/kg | 14     | 6500B   | EPA 6010D  |
| Lead                       | mg/kg | 0.67   | 140     | EPA 6010D  |
| Magnesium                  | mg/kg | 21     | 550     | EPA 6010D  |
| Manganese                  | mg/kg | 0.70   | 56      | EPA 6010D  |
| Nickel                     | mg/kg | 1.2    | 3.8J    | EPA 6010D  |
| Potassium                  | mg/kg | 110    | 160J    | EPA 6010D  |
| Zinc                       | mg/kg | 1.6    | 26B     | EPA 6010D  |
| Antimony                   | mg/kg | 0.024  | 0.063J  | EPA 6020B  |
| Arsenic                    | mg/kg | 0.019  | 3.0B    | EPA 6020B  |
| Beryllium                  | mg/kg | 0.017  | 0.17J   | EPA 6020B  |
| Cadmium                    | mg/kg | 0.015  | 0.39J   | EPA 6020B  |
| Selenium                   | mg/kg | 0.069  | 1.3JB   | EPA 6020B  |
| Silver                     | mg/kg | 0.028  | 0.041JB | EPA 6020B  |
| Vanadium                   | mg/kg | 0.012  | 18B     | EPA 6020B  |
| Mercury                    | mg/kg | 0.014  | 0.014J  | EPA 7471B  |
| bis(2-Ethylhexyl)phthalate | mg/kg | 0.032  | 0.38    | EPA 8270D  |
| Di-n-butylphthalate        | mg/kg | 0.042  | 0.17    | EPA 8270D  |
| Di-n-octylphthalate        | mg/kg | 0.024  | 0.024J  | EPA 8270D  |

Lab#: AD19479-020

Sample ID: HSI-SS-D (0.5-1')

| Analyte                | Units | RL/MDL | Result | Analytical<br>Method |
|------------------------|-------|--------|--------|----------------------|
| Trichlorofluoromethane | mg/kg | 0.0011 | 0.0034 | EPA 8260C            |

### **HC Report of Analysis**

Client: Chesapeake Geosciences Inc HC Project #: 0092806

**Project:** Hot Spot Investigation

Sample ID: HSI-SS-01 (0-0.5')

Collection Date: 9/25/2020

Lab#: AD19479-001

Matrix: Soil

Receipt Date: 9/28/2020

| % S | olids | SM | 254 | OG |
|-----|-------|----|-----|----|
|-----|-------|----|-----|----|

| Analyte                    | DF | Units   | RL  |    | Result |  |
|----------------------------|----|---------|-----|----|--------|--|
| % Solids                   |    | percent |     |    | 90     |  |
| Mercury (Soil/Waste) 7471B |    |         |     |    |        |  |
| Analyte                    | DF | Units   | MDL | RL | Result |  |

0.014

| Samiyalatila | Organice In | o search) 8270 |
|--------------|-------------|----------------|
|              |             |                |

| Analyte                     | DF | Units | MDL     | RL     | Result  |
|-----------------------------|----|-------|---------|--------|---------|
| 1,1'-Biphenyl               | 1  | mg/kg | 0.011   | 0.037  | ND      |
| 1,2,4,5-Tetrachlorobenzene  | 1  | mg/kg | 0.012   | 0.037  | ND      |
| 1,4-Dioxane                 | 1  | mg/kg | 0.019   | 0.0093 | ND      |
| 2,3,4,6-Tetrachlorophenol   | 1  | mg/kg | 0.014   | 0.037  | ND      |
| 2,4,5-Trichlorophenol       | 1  | mg/kg | 0.011   | 0.037  | ND      |
| 2,4,6-Trichlorophenol       | 1  | mg/kg | 0.029   | 0.037  | ND      |
| 2,4-Dichlorophenol          | 1  | mg/kg | 0.014   | 0.0093 | ND      |
| 2,4-Dimethylphenol          | 1  | mg/kg | 0.018   | 0.0093 | ND      |
| 2,4-Dinitrophenol           | 1  | mg/kg | 0.16    | 0.19   | ND ND   |
| 2,4-Dinitrotoluene          | 1  | mg/kg | 0.012   | 0.037  | ND      |
| 2,6-Dinitrotoluene          | 1  | mg/kg | 0.019   | 0.037  | ND      |
| 2-Chloronaphthalene         | 1  | mg/kg | 0.016   | 0.037  | ND      |
| 2-Chlorophenol              | 1  | mg/kg | 0.012   | 0.037  | ND      |
| 2-Methylnaphthalene         | 1  | mg/kg | 0.011   | 0.037  | ND      |
| 2-Methylphenol              | 1  | mg/kg | 0.011   | 0.0093 | ND      |
| 2-Nitroaniline              | 1  | mg/kg | 0.017   | 0.037  | ND      |
| 2-Nitrophenol               | 1  | mg/kg | 0.017   | 0.037  | ND      |
| 3&4-Methylphenol            | 1  | mg/kg | 0.011   | 0.0093 | ND      |
| 3,3'-Dichlorobenzidine      | 1  | mg/kg | 0.030   | 0.037  | ND      |
| 3-Nitroaniline              | 1  | mg/kg | 0.014   | 0.037  | ND      |
| 4,6-Dinitro-2-methylphenol  | 1  | mg/kg | 0.13    | 0.19   | ND      |
| 4-Bromophenyl-phenylether   | 1  | mg/kg | 0.010   | 0.037  | ND      |
| 4-Chloro-3-methylphenol     | 1  | mg/kg | 0.0089  | 0.037  | ND      |
| 4-Chloroaniline             | 1  | mg/kg | 0.016   | 0.0093 | ND      |
| 4-Chlorophenyl-phenylether  | 1  | mg/kg | 0.011   | 0.037  | ND      |
| 4-Nitroaniline              | 1  | mg/kg | 0.014   | 0.037  | ND      |
| 4-Nitrophenol               | 1  | mg/kg | 0.028   | 0.037  | ND      |
| Acenaphthene                | 1  | mg/kg | 0.011   | 0.037  | ND      |
| Acenaphthylene              | 1  | mg/kg | 0.011   | 0.037  | ND      |
| Acetophenone                | 1  | mg/kg | 0.013   | 0.037  | 0.019J  |
| Anthracene                  | 1  | mg/kg | 0.010   | 0.037  | ND      |
| Atrazine                    | 1  | mg/kg | 0.015   | 0.037  | ND      |
| Benzaldehyde                |    | mg/kg | 0.40    | 0.037  | ND      |
| Benzo[a]anthracene          | 1  | mg/kg | 0.012   | 0.037  | ND      |
| Benzo[a]pyrene              | 1  | mg/kg | 0.013   | 0.037  | 0.014J  |
| Benzo[b]fluoranthene        | 1  | mg/kg | 0.013   | 0.037  | ND      |
| Benzo[g,h,i]perylene        | 1  | mg/kg | 0.00026 | 0.037  | 0.0092J |
| Benzo[k]fluoranthene        | 1  | mg/kg | 0.014   | 0.037  | ND      |
| bis(2-Chloroethoxy)methane  | 1  | mg/kg | 0.010   | 0.037  | ND      |
| bis(2-Chloroethyl)ether     | 1  | mg/kg | 0.0090  | 0.0093 | ND      |
| bis(2-Chloroisopropyl)ether | 1  | mg/kg | 0.015   | 0.037  | ND ND   |
| bis(2-Ethylhexyl)phthalate  | 1  | mg/kg | 0.033   | 0.037  | 0.24    |
| Butylbenzylphthalate        | 1  | mg/kg | 0.028   | 0.037  | ND      |
| Caprolactam                 | 1  | mg/kg | 0.030   | 0.037  | ND      |
| Carbazole                   |    | mg/kg | 0.012   | 0.037  | ND -    |
| Chrysene                    | 1  | mg/kg | 0.013   | 0.037  | 0.016J  |
| Dibenzo[a,h]anthracene      | 1  | mg/kg | 0.014   | 0.037  | ND      |
| Dibenzofuran                | 1  | mg/kg | 0.0094  | 0.0093 | ND      |
| Diethylphthalate            | 1  | mg/kg | 0.024   | 0.037  | ND      |
| Dimethylphthalate           | 1  | mg/kg | 0.010   | 0.037  | ND      |

NOTE: Soil Results are reported to Dry Weigh

Project #: 0092806

| •           | HSI-SS-01 (0-0.5')<br>AD19479-001                                                            |                                         |                                                        |                                                       | Collection Date: Receipt Date:                         |                                      |
|-------------|----------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------|
| Matrix:     | Soil                                                                                         |                                         |                                                        |                                                       | •                                                      |                                      |
|             | Di-n-butylphthalate                                                                          | 1                                       | mg/kg                                                  | 0.042                                                 | 0.0093                                                 | 0.12                                 |
|             | Di-n-octylphthalate                                                                          | 1                                       | mg/kg                                                  | 0.025                                                 | 0.037                                                  | ND                                   |
|             | Fluoranthene                                                                                 | 1                                       | mg/kg                                                  | 0.014                                                 | 0.037                                                  | ND                                   |
|             | Fluorene                                                                                     | 1                                       | mg/kg                                                  | 0.010                                                 | 0.037                                                  | ND                                   |
|             | Hexachlorobenzene                                                                            | 1                                       | mg/kg                                                  | 0.015                                                 | 0.037                                                  | ND                                   |
|             | Hexachlorobutadiene                                                                          | 1                                       | mg/kg                                                  | 0.017                                                 | 0.037                                                  | ND                                   |
|             | Hexachlorocyclopentadiene                                                                    | 1                                       | mg/kg                                                  | 0.12                                                  | 0.037                                                  | ND                                   |
|             | Hexachloroethane                                                                             | 1                                       | mg/kg                                                  | 0.016                                                 | 0.037                                                  | ND                                   |
| -           | Indeno[1,2,3-cd]pyrene                                                                       | 1                                       | mg/kg                                                  | 0.017                                                 | 0.037                                                  | ND                                   |
|             | Isophorone                                                                                   | 1                                       | mg/kg                                                  | 0.012                                                 | 0.037                                                  | ND                                   |
|             | Naphthalene                                                                                  | 1                                       | mg/kg                                                  | 0.011                                                 | 0.0093                                                 | ND                                   |
|             | Nitrobenzene                                                                                 | 1                                       | mg/kg                                                  | 0.0015                                                | 0.037                                                  | ND                                   |
|             | N-Nitroso-di-n-propylamine                                                                   |                                         | mg/kg                                                  | 0.014                                                 | 0.0093                                                 | ND —                                 |
|             | N-Nitrosodiphenylamine                                                                       | 1                                       | mg/kg                                                  | 0.13                                                  | 0.037                                                  | ND                                   |
|             | Pentachlorophenol                                                                            | 1                                       | mg/kg                                                  | 0.18                                                  | 0.19                                                   | ND                                   |
|             | Phenanthrene                                                                                 | 1                                       | mg/kg                                                  | 0.012                                                 | 0.037                                                  | ND                                   |
|             | Phenol                                                                                       |                                         | mg/kg                                                  | 0.010                                                 | 0.037                                                  | ND                                   |
|             | Pyrene                                                                                       | 1                                       | mg/kg                                                  | 0.013                                                 | 0.037                                                  | ND                                   |
| -<br>1      | AL Metals 6010D                                                                              |                                         |                                                        |                                                       |                                                        |                                      |
| -           | Analyte                                                                                      | DF                                      | Units                                                  | MDL                                                   | RL                                                     | Result                               |
|             | Aluminum                                                                                     | 1                                       | mg/kg                                                  | 19                                                    | 220                                                    | 3200                                 |
|             | Barlum                                                                                       | 1                                       | mg/kg                                                  | 0.75                                                  | 11                                                     | 21                                   |
|             | Calcium                                                                                      | 1                                       | mg/kg                                                  | 110                                                   | 1100                                                   | 1700                                 |
|             | Chromium                                                                                     | 1                                       | mg/kg                                                  | 0.74                                                  | 5.6                                                    | 198                                  |
|             | Cobalt                                                                                       |                                         | mg/kg                                                  | 0.79                                                  | 2.8                                                    | 0.95J                                |
|             | Copper                                                                                       | 1                                       | mg/kg                                                  | 0.68                                                  | 5.6                                                    | 14B                                  |
|             | Iron                                                                                         | 1                                       | mg/kg                                                  | 15                                                    | 220                                                    | 6500B                                |
|             | Lead                                                                                         | 1                                       | mg/kg                                                  | 0.68                                                  | 5.6                                                    | 17                                   |
| -           | Magnesium                                                                                    |                                         | mg/kg                                                  | 22                                                    | 560                                                    | 450J                                 |
|             | Manganese                                                                                    | 1                                       | mg/kg                                                  | 0.71                                                  | 11                                                     | 50                                   |
|             | Nickel                                                                                       | 1                                       | mg/kg                                                  | 1.2                                                   | 5.6                                                    | 3.5J                                 |
|             |                                                                                              |                                         |                                                        | _                                                     |                                                        |                                      |
|             | Potassium                                                                                    | 1                                       |                                                        | 110                                                   | 560                                                    | 150J                                 |
| -           |                                                                                              | •                                       | mg/kg                                                  | 110<br>140                                            |                                                        | ND ND                                |
| -           | Potassium                                                                                    |                                         |                                                        |                                                       |                                                        |                                      |
| -<br>-<br>1 | Potassium Sodium                                                                             |                                         | mg/kg<br>mg/kg                                         | 140                                                   | 280                                                    | ND                                   |
| -<br>-<br>1 | Potassium<br>Sodium<br>Zinc                                                                  |                                         | mg/kg<br>mg/kg                                         | 140                                                   | 280                                                    | ND                                   |
| -<br>1<br>- | Potassium Sodium Zinc  TAL Metals 6020B  Analyte                                             | 1<br>1<br>1<br>DF                       | mg/kg<br>mg/kg<br>mg/kg<br>Units                       | 140<br>1.7<br>MDL                                     | 280<br>11                                              | ND<br>43B<br>Result                  |
| -<br>1<br>- | Potassium Sodium Zinc  TAL Metals 6020B  Analyte Antimony                                    |                                         | mg/kg mg/kg mg/kg Units mg/kg                          | 140<br>1.7<br>MDL<br>0.025                            | 280<br>11<br>RL<br>0.89                                | ND 43B Result                        |
| -<br>1<br>- | Potassium Sodium Zinc  [AL Metals 6020B  Analyte Antimony Arsenic                            |                                         | mg/kg mg/kg mg/kg Units mg/kg mg/kg                    | 140<br>1.7<br>MDL<br>0.025<br>0.019                   | 280<br>11<br><b>RL</b><br>0.89<br>0.22                 | ND<br>43B<br>Result<br>0.13J<br>3.9B |
| -<br>1<br>- | Potassium Sodium Zinc  [AL Metals 6020B  Analyte Antimony Arsenic Beryllium                  | DF                                      | mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg              | 140<br>1.7<br>MDL<br>0.025<br>0.019<br>0.017          | 280<br>11<br>RL<br>0.89<br>0.22<br>0.22                | Result 0.13J 3.98 0.18J              |
| -           | Potassium Sodium Zinc  FAL Metals 6020B  Analyte Antimony Arsenic Beryllium Cadmium          | DF                                      | mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg        | 140<br>1.7<br>MDL<br>0.025<br>0.019<br>0.017<br>0.016 | 280<br>11<br>RL<br>0.89<br>0.22<br>0.22<br>0.44        | Result 0.13J 3.98 0.18J 0.38J        |
|             | Potassium Sodium Zinc  FAL Metals 6020B  Analyte Antimony Arsenic Beryllium Cadmium Selenium | DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | mg/kg mg/kg mg/kg  Units mg/kg mg/kg mg/kg mg/kg mg/kg | 140<br>1.7<br>MDL<br>0.025<br>0.019<br>0.017<br>0.016 | 280<br>11<br>RL<br>0.89<br>0.22<br>0.22<br>0.44<br>2.2 | Result  0.13J 3.9B 0.18J 0.38J 1.2JB |
| - 1         | Potassium Sodium Zinc  FAL Metals 6020B  Analyte Antimony Arsenic Beryllium Cadmium          | DF                                      | mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg        | 140<br>1.7<br>MDL<br>0.025<br>0.019<br>0.017<br>0.016 | 280<br>11<br>RL<br>0.89<br>0.22<br>0.22<br>0.44        | Result 0.13J 3.98 0.18J 0.38J        |

Sample ID: HSI-SS-01 (0.5-1')

Lab#: AD19479-002

Matrix: Soil/Terracore

Collection Date: 9/25/2020

Receipt Date: 9/28/2020

### % Solids SM2540G

| Analyte |          | DF | Units   | RL | Result |
|---------|----------|----|---------|----|--------|
|         | % Solids | 1  | percent |    | 92     |
|         |          |    |         |    |        |

#### Volatile Organics (no search) 8260

| Analyte                               | ÐF    | Units | MDL     | RL      | Result |
|---------------------------------------|-------|-------|---------|---------|--------|
| 1,1,1-Trichloroethane                 | 0.752 | mg/kg | 0.00075 | 0.0016  | ND     |
| 1,1,2,2-Tetrachloroethane             | 0.752 | mg/kg | 0.00037 | 0.0016  | 0.0018 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.752 | mg/kg | 0.0011  | 0.0016  | ND     |
| 1,1,2-Trichloroethane                 | 0.752 | mg/kg | 0.00038 | 0.0016  | ND     |
| 1,1-Dichloroethane                    | 0.752 | mg/kg | 0.00071 | 0.0016  | ND     |
| 1,1-Dichloroethene                    | 0.752 | mg/kg | 0.00094 | 0.0016  | ND     |
| 1,2,3-Trichlorobenzene                | 0.752 | mg/kg | 0.00045 | 0.0016  | ND     |
| 1,2,4-Trichlorobenzene                | 0.752 | mg/kg | 0.00051 | 0.0016  | ND     |
| 1,2-Dibromo-3-chloropropane           | 0.752 | mg/kg | 0.00045 | 0.0016  | ND     |
| 1,2-Dibromoethane                     | 0.752 | mg/kg | 0.00040 | 0.00082 | ND     |
| 1,2-Dichlorobenzene                   | 0.752 | mg/kg | 0.00042 | 0.0016  | ND     |
| 1,2-Dichloroethane                    | 0.752 | mg/kg | 0.00034 | 0.0016  | ND     |
| 1,2-Dichloropropane                   | 0.752 | mg/kg | 0.00067 | 0.0016  | ND     |
| 1,3-Dichlorobenzene                   | 0.752 | mg/kg | 0.00045 | 0.0016  | ND     |
| 1,4-Dichlorobenzene                   | 0.752 | mg/kg | 0.00043 | 0.0016  | ND     |
| 1,4-Dioxane                           | 0.752 | mg/kg | 0.040   | 0.082   | ND     |
| 2-Butarione                           | 0.752 | mg/kg | 0.00098 | 0.0016  | ND -   |
| 2-Hexanone                            | 0.752 | mg/kg | 0.00069 | 0.0016  | ND     |
| 4-Methyl-2-pentanone                  | 0.752 | mg/kg | 0.00047 | 0.0016  | ND     |
| Acetone                               | 0.752 | mg/kg | 0.0055  | 0.0082  | ND     |
| Benzene                               | 0.752 | mg/kg | 0.00060 | 0.00082 | ND ND  |
| Bromochloromethane                    | 0.752 | mg/kg | 0.00057 | 0.0016  | ND     |
| Bromodichloromethane                  | 0.752 | mg/kg | 0.00038 | 0.0016  | ND     |
| Bromoform                             | 0.752 | mg/kg | 0.00027 | 0.0016  | ND     |
| Bromomethane                          | 0.752 | mg/kg | 0.0013  | 0.0016  | ND     |
| Carbon disulfide                      | 0.752 | mg/kg | 0.0028  | 0.0028  | ND     |
| Carbon tetrachloride                  | 0.752 | mg/kg | 0.00079 | 0.0016  | ND     |
| Chloroberizene                        | 0.752 | mg/kg | 0.00051 | 0.0016  | ND     |
| Chloroethane                          | 0.752 | mg/kg | 0.0016  | 0.0016  | ND     |
| Chloroform                            | 0.752 | mg/kg | 0.0011  | 0.0016  | ND     |
| Chloromethane                         | 0.752 | mg/kg | 0.0010  | 0.0016  | ND     |
| cis-1,2-Dichloroethene                | 0.752 | mg/kg | 0.00066 | 0.0016  | ND     |
| cis-1,3-Dichloropropene               | 0.752 | mg/kg | 0.00043 | 0.0016  | ND ND  |
| Cyclohexane                           | 0.752 | mg/kg | 0.00098 | 0.0016  | ND     |
| Dibromochloromethane                  | 0.752 | mg/kg | 0.00035 | 0.0016  | ND     |
| Dichlorodifluoromethane               | 0.752 | mg/kg | 0.0012  | 0.0016  | ND     |
| Ethylbenzene                          | 0.752 | mg/kg | 0.00056 | 0.00082 | ND     |
| Isopropylbenzene                      | 0.752 | mg/kg | 0.00068 | 0.00082 | ND     |
| m&p-Xylenes                           | 0.752 | mg/kg | 0.00098 | 0.00098 | ND     |
| Methyl Acetate                        | 0.752 | mg/kg | 0.00078 | 0.0016  | ND     |
| Methylcyclohexane                     | 0.752 | mg/kg | 0.00074 | 0.0016  | ND     |
| Methylene chloride                    | 0.752 | mg/kg | 0.00061 | 0.0016  | 0.0036 |
| Methyl-t-butyl ether                  | 0.752 | mg/kg | 0.00044 | 0.00082 | ND     |
| o-Xylene                              | 0.752 | mg/kg | 0.00058 | 0.00082 | ND     |
| Styrene                               | 0.752 | mg/kg | 0.00045 | 0.0016  | ND     |
| Tetrachloroethene                     | 0.752 | mg/kg | 0.00080 | 0.0016  | ND     |
| Toluene                               | 0.752 | mg/kg | 0.00054 | 0.00082 | ND     |
| trans-1,2-Dichloroethene              | 0.752 | mg/kg | 0.00098 | 0.0016  | ND     |
| trans-1,3-Dichloropropene             | 0.752 | mg/kg | 0.00038 | 0.0016  | ND ND  |
| Trichloroethene                       | 0.752 | mg/kg | 0.00067 | 0.0016  | ND     |
| Trichlorofluoromethane                | 0.752 | mg/kg | 0.00096 | 0.0016  | ND     |
| Themorenate                           | ***** |       |         |         |        |

Sample ID: HSI-SS-02 (0-0.5') Lab#: AD19479-003

Matrix: Soil

Collection Date: 9/25/2020 Receipt Date: 9/28/2020

#### % Solids SM2540G

| Analyte                              | DF                                       | Units   | RL                     |                              | Result        |
|--------------------------------------|------------------------------------------|---------|------------------------|------------------------------|---------------|
| % Solids                             |                                          | percent |                        |                              | 91            |
| ercury (Soil/Waste) 7471B            |                                          |         |                        |                              |               |
| Analyte                              | DF                                       | Units   | MDL                    | RL                           | Result        |
| Mercury                              | 1                                        | mg/kg   | 0.014                  | 0.092                        | 0.020J        |
| mivolatile Organics (no search) 8270 | 1 When I have 1 have 1                   |         |                        | · · · · · · · · · · ·        |               |
|                                      | DF                                       | Units   | MDL                    | RL.                          | Result        |
| Analyte                              | UF                                       |         |                        |                              |               |
| 1,1'-Biphenyl                        | 1                                        | mg/kg   | 0.011                  | 0.037                        | ND            |
| 1,2,4,5-Tetrachlorobenzene           | 1                                        | mg/kg   | 0.012                  | 0.037                        | ND            |
| 1,4-Dioxane                          | 1                                        | mg/kg   | 0.018                  | 0.0092                       | ND            |
| 2,3,4.6-Tetrachlorophenol            |                                          | mg/kg   | 0.014                  | $-\frac{0.037}{0.037}$ — — - | ND            |
| 2,4,5-Trichlorophenol                | 1                                        | mg/kg   | 0.010                  | 0.037<br>0.037               | ND<br>ND      |
| 2,4,6-Trichlorophenol                | 4                                        | mg/kg   | 0.028<br>0.014         | 0.0092                       | ND<br>ND      |
| 2,4-Dichlorophenol                   | 4                                        | mg/kg   |                        |                              |               |
| 2,4-Dimethylphenol                   |                                          | mg/kg   |                        | 0.0092                       | ND            |
| 2,4-Dinitrophenol                    | 1                                        | mg/kg   | 0.16                   | 0.18                         | ND            |
| 2,4-Dinitrotoluene                   | 1                                        | mg/kg   | 0.011                  | 0.037                        | ND            |
| 2,6-Dinitrotoluene                   | 1                                        | mg/kg   | 0.019                  | 0.037                        | ND            |
| 2-Chloronaphthalene                  | 1                                        | mg/kg   | 0.016                  | 0.037                        | ND            |
| 2-Chlorophenol                       | 1                                        | mg/kg   | 0.012                  | 0.037                        | ND            |
| 2-Methylnaphthalene                  | 1                                        | mg/kg   | 0.011                  | 0.037                        | ND            |
| 2-Methylphenol                       | 1                                        | mg/kg   | 0.011                  | 0.0092                       | ND            |
| 2-Nitroaniline                       | 1                                        | mg/kg   | 0.017                  | 0.037                        | ND            |
| 2-Nitrophenol                        | 1                                        | mg/kg   | 0.017                  | 0.037                        | ND            |
| 3&4-Methylphenol                     | 1                                        | mg/kg   | 0.011                  | 0.0092                       | ND            |
| 3,3'-Dichlorobenzidine               | 1                                        | mg/kg   | 0.030                  | 0.037                        | ND            |
| 3-Nitroaniline                       | 1                                        | mg/kg   | 0.014                  | 0.037                        | ND            |
| 4,6-Dinitro-2-methylphenol           | 1                                        | mg/kg   | 0.13                   | 0.18                         | ND            |
| 4-Bromophenyl-phenylether            | 1                                        | mg/kg   | 0.010                  | 0.037                        | ND            |
| 4-Chloro-3-methylphenol              | 1                                        | mg/kg   | 0.0088                 | 0.037                        | ND            |
| 4-Chloroaniline                      | 1                                        | mg/kg   | 0.016                  | 0.0092                       | ND            |
| 4-Chlorophenyl-phenylether           | 1                                        | mg/kg   | 0.011                  | 0.037                        | ND            |
| 4-Nitroaniline                       | 1                                        | mg/kg   | 0.014                  | 0.037                        | ND            |
| 4-Nitrophenol                        |                                          | mg/kg   | 0.028                  | 0.037                        | ND            |
| Acenaphthene                         |                                          |         | 0.010                  | 0.037                        | ND            |
|                                      |                                          | mg/kg   | 0.010                  | 0.037                        | ND            |
| Acceptable                           | •                                        | mg/kg   |                        |                              |               |
| Acetophenone                         | 1                                        | mg/kg   | 0.013                  | 0.037                        | 0.023J        |
| Anthracene                           | 1                                        | mg/kg   | 0.010                  | 0.037                        | ND            |
| Atrazine                             |                                          | mg/kg   | 0.015                  | 0.037                        | ND            |
| Benzaldehyde                         | 1                                        | mg/kg   | 0.40                   | 0.037                        | ND            |
| Benzo[a]anthracene                   | 1                                        | mg/kg   | 0.012                  | 0.037                        | ND            |
| Benzo[a]pyrene                       | 1                                        | mg/kg   | 0.012                  | 0.037                        | ND            |
| Benzo[b]fluoranthene                 | 1                                        | mg/kg   | 0.013                  | 0.037                        | ND            |
| Benzo[g,h,i]perylene                 | 1                                        | mg/kg   | 0.00025                | 0.037                        | ND            |
| Benzo[k]fluoranthene                 | 1                                        | mg/kg   | 0.013                  | 0.037                        | ND            |
| bis(2-Chloroethoxy)methane           | 1                                        | mg/kg   | 0.010                  | 0.037                        | ND            |
| bis(2-Chloroethyl)ether              | 1                                        | mg/kg   | 0.0089                 | 0.0092                       | ND            |
| bis(2-Chloroisopropyl)ether          | _ 1                                      | mg/kg   | 0.015                  | 0.037                        | ND — —        |
| bis(2-Ethylhexyl)phthalate           | 1                                        | mg/kg   | 0.032                  | 0.037                        | 0.44          |
| Butylbenzylphthalate                 | 1                                        | mg/kg   | 0.028                  | 0.037                        | ND            |
| Caprolactam                          | 1                                        | mg/kg   | 0.029                  | 0.037                        | ND            |
| Carbazole                            | <del>-</del> <del>-</del> <del>-</del> - | mg/kg   | 0.011                  | 0.037                        | ND ND         |
| Chrysene                             | 1                                        | mg/kg   | 0.012                  | 0.037                        | ND            |
| Dibenzo[a,h]anthracene               | 1                                        | mg/kg   | 0.013                  | 0.037                        | ND            |
| Dibenzofuran                         | 1                                        | mg/kg   | 0.0093                 | 0.0092                       | ND            |
| Diethylphthalate                     |                                          | mg/kg   | 0.024                  | 0.037                        | <del>ND</del> |
| Dimethylphthalate                    | 1                                        | mg/kg   | 0.010                  | 0.037                        | ND            |
| Di-n-butylphthalate                  | 1                                        |         | 0.042                  | 0.0092                       | 0.16          |
|                                      | 4                                        | mg/kg   |                        |                              |               |
| Di-n-octylphthalate                  |                                          | mg/kg   | $-\frac{0.024}{0.014}$ | 0.037                        | ND            |
| Fluoranthene                         | 1                                        | mg/kg   | 0.014                  | 0.037                        | ND            |
| Fluorene                             | 1                                        | mg/kg   | 0.010                  | 0.037                        | ND .          |
| Hexachlorobenzene                    | 1                                        | mg/kg   | 0.015                  | 0.037                        | ND            |
| Hexachlorobutadiene                  | 1                                        | mg/kg   | 0.016                  | 0.037                        | ND            |
| Hexachlorocyclopentadiene            | 1                                        | mg/kg   | 0.12                   | 0.037                        | ND            |
| Hexachloroethane                     | 1                                        | mg/kg   | 0.016                  | 0.037                        | ND            |

|            |                            |    |       |        |                  | 0002000 0 |
|------------|----------------------------|----|-------|--------|------------------|-----------|
| Sample ID: | HSI-SS-02 (0-0.5')         |    |       |        | Collection Date: | 9/25/2020 |
| •          | AD19479-003                |    |       |        | Receipt Date:    |           |
| Matrix:    |                            |    |       |        | recorpt Date.    | 3/20/2020 |
|            | Indeno[1,2,3-cd]pyrene     | 1  | mg/kg | 0.017  | 0.037            | ND        |
|            | Isophorone                 | 1  | mg/kg | 0.012  | 0.037            | ND        |
|            | Naphthalene                | 1  | mg/kg | 0.011  | 0.0092           | ND        |
|            | Nitrobenzene               | 1  | mg/kg | 0.0015 | 0.037            | ND        |
| . —        | N-Nitroso-di-n-propylamine | 1  | mg/kg | 0.014  | 0.0092           | ND        |
|            | N-Nitrosodiphenylamine     | 1  | mg/kg | 0.12   | 0.037            | ND        |
|            | Pentachlorophenol          | 1  | mg/kg | 0.18   | 0.18             | ND        |
|            | Phenanthrene               | 1  | mg/kg | 0.012  | 0.037            | ND        |
|            | Phenol                     | 1  | mg/kg | 0.010  | 0.037            | ND        |
| _          | Pyrene                     | 1  | mg/kg | 0.012  | 0.037            | ND        |
| -          | TAL Metals 6010D           |    |       |        |                  |           |
| -          | Analyte                    | DF | Units | MDL    | RL               | Result    |
|            | Aluminum                   | 1  | mg/kg | 18     | 220              | 3800      |
|            | Barlum                     | 1  | mg/kg | 0.74   | 11               | 20        |
|            | Calcium                    | 1  | mg/kg | 110    | 1100             | 1600      |
|            | Chromium                   | 1  | mg/kg | 0.74   | 5.5              | 20B       |
| _          | Cobalt                     | 1  | mg/kg | 0.78   | 2.7              | 1.4J      |
|            | Copper                     | 1  | mg/kg | 0.68   | 5.5              | 18B       |
|            | Iron                       | 1  | mg/kg | 15     | 220              | 6700B     |
|            | Lead                       | 1  | mg/kg | 0.68   | 5.5              | 23        |
| _          | Magnesium                  | 1  | mg/kg | 21     | 550              | 540J      |
|            | Manganese                  | 1  | mg/kg | 0.71   | 11               | 61        |
|            | Nickel                     | 1  | mg/kg | 1.2    | 5.5              | 4.5J      |
|            | Potassium                  | 1  | mg/kg | 110    | 550              | 160J      |
| _          | Sodium                     |    | mg/kg | 140    | 270              | ND        |
| _          | Zinc                       |    | mg/kg | 1.7    | 11               | 298       |
| •          | TAL Metals 6020B           |    |       |        |                  |           |
| •          | Analyte                    | DF | Units | MDL    | RL               | Result    |
|            | Antimony                   | 1  | mg/kg | 0.025  | 0.88             | 0.11J     |
|            | Arsenic                    | 1  | mg/kg | 0.019  | 0.22             | 3.2B      |
|            | Beryllium                  | 1  | mg/kg | 0.017  | 0.22             | 0.18J     |
|            | Cadmium                    | 1  | mg/kg | 0.016  | 0.44             | 0.49      |
| _          | Selenium                   | 1  | mg/kg | 0.070  | 2.2              | 1.4JB     |
|            | Silver                     | 1  | mg/kg | 0.029  | 0.22             | 0.048JB   |
|            | Thallium                   | 1  | mg/kg | 0.019  | 0.44             | 0.020J    |
|            |                            |    | _     |        |                  |           |

Vanadium

0.22

18B

0.012

mg/kg

Sample ID: HSI-SS-02 (0.5-1')

Lab#: AD19479-004 Matrix: Soil/Terracore Collection Date: 9/25/2020 Receipt Date: 9/28/2020

#### % Solids SM2540G

| Analyte                               | DF                        | Units   | RL                 |                  | Result        |
|---------------------------------------|---------------------------|---------|--------------------|------------------|---------------|
| % Solids                              | 1                         | percent |                    |                  | 91            |
| atile Organics (no search) 8260       |                           |         |                    |                  |               |
| Analyte                               | DF                        | Units   | MDL                | RL               | Result        |
| 1,1,1-Trichloroethane                 | 0.74                      | mg/kg   | 0.00075            | 0.0016           | ND            |
| 1,1,2,2-Tetrachloroethane             | 0.74                      | mg/kg   | 0.00037            | 0.0016           | 0.012         |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.74                      | mg/kg   | 0.0011             | 0.0016           | ND            |
| 1,1,2-Trichloroethane                 | 0.74                      | mg/kg   | 0.00037            | 0.0016           | 0.0014J       |
| 1,1-Dichloroethane                    |                           | mg/kg   | 0.00071            | 0.0016           | ND ND         |
| 1,1-Dichloroethene                    | 0.74                      | mg/kg   | 0.00093            | 0.0016           | ND            |
| 1,2,3-Trichlorobenzene                | 0.74                      | mg/kg   | 0.00045            | 0.0016           | ND            |
| 1,2,4-Trichlorobenzene                | 0.74                      | mg/kg   | 0.00051            | 0.0016           | ND            |
| 1,2-Dibromo-3-chloropropane           | 0.74                      | mg/kg   | 0.00045            | 0.0016           | ND            |
| 1,2-Dibromoetharie                    | 0.74                      | mg/kg   | 0.00040            | 0.00081          | ND            |
| 1,2-Dichloroberizene                  | 0.74                      | mg/kg   | 0.00041            | 0.0016           | ND            |
| 1,2-Dichloroethane                    | 0.74                      | mg/kg   | 0.00033            | 0.0016           | ND            |
| 1,2-Dichloropropane                   | 0.74                      | mg/kg   | 0.00067            | 0.0016           | ND ND         |
| 1,3-Dichlorobenzene                   | 0.74                      | mg/kg   | 0.00045            | 0.0016           | ND            |
| 1,4-Dichlorobenzene                   | 0.74                      | mg/kg   | 0.00043            | 0.0016           | ND            |
| 1,4-Dioxane                           | 0.74                      | mg/kg   | 0.039              | 0.081            | ND            |
| 2-Butanone                            | 0.74                      | mg/kg   | 0.00098            |                  | 0.0010J       |
| 2-Hexanone                            | 0.74                      | mg/kg   | 0.00069            | 0.0016           | ND            |
| 4-Methyl-2-pentanone                  | 0.74                      | mg/kg   | 0.00047            | 0.0016           | ND            |
| Acetone                               | 0.74                      | mg/kg   | 0.0055             | 0.0081           | 0.044         |
| Benzene                               | 0.74                      | mg/kg   | 0.00059            | 0.0001           | ND            |
| Bromochloromethane                    | 0.74                      | mg/kg   | 0.00057            | 0.00061          | ND            |
| Bromodichloromethane                  | 0.74                      |         | 0.00038            | 0.0016           | ND            |
|                                       | 0.74                      | mg/kg   | 0.00038            | 0.0016           | ND            |
| Bromoform                             | 0.74                      |         |                    | 0.0016           | ND            |
| Bromomethane                          | 0.74                      | mg/kg   | 0.0013<br>0.0028   | 0.0018           | ND            |
| Carbon disulfide                      | 0.74                      | mg/kg   | 0.0028             | 0.0026           | ND            |
| Carbon tetrachloride                  |                           | mg/kg   | 0.00079            | 0.0016           | ND            |
| Chlorobenzene                         | $  \frac{0.74}{0.74}$ $-$ | mg/kg   | 0.0016             | 0.0016           | <del>ND</del> |
| Chloroethane                          | 0.74                      | mg/kg   | 0.0016             | 0.0016           | ND<br>ND      |
| Chloroform                            | 0.74                      | mg/kg   |                    | 0.0016           | ND<br>ND      |
| Chloromethane                         | 0.74                      | mg/kg   | 0.0010<br>0.00066  | 0.0016           | ND<br>ND      |
| cis-1,2-Dichloroethene                | 0.74                      | mg/kg   |                    | 0.0016           | ND ND         |
| cis-1,3-Dichloropropene               |                           | mg/kg   | 0.00043            |                  | ND<br>ND      |
| Cyclohexane Dibromochloromethane      | 0.74                      | mg/kg   | 0.00098<br>0.00035 | 0.0016<br>0.0016 | ND<br>ND      |
|                                       | 0.74                      | mg/kg   |                    |                  | ND<br>ND      |
| Dichlorodifluoromethane               | 0.74                      | mg/kg   | 0.0011             | 0.0016           |               |
| Ethylbenzene                          | 0.74                      | mg/kg   | 0.00056<br>0.00067 | 0.00081          | ND<br>ND      |
| Isopropylbenzene                      | 0.74                      | mg/kg   |                    |                  |               |
| m&p-Xylenes                           | 0.74                      | mg/kg   | 0.00098            | 0.00098          | ND            |
| Methyl Acetate                        | 0.74                      | mg/kg   | 0.00078            | 0.0016           | ND ND         |
| Methylcyclohexane                     | 0.74                      | mg/kg   | 0.00073            | 0.0016           |               |
| Methylene chloride                    | 0.74                      | mg/kg   | 0.00061            | 0.0016           | 0.0024        |
| Methyl-t-butyl ether                  | 0.74                      | mg/kg   | 0.00044            | 0.00081          | ND<br>ND      |
| o-Xylene                              |                           | mg/kg   | 0.00058            | 0.00081          | ND            |
| Styrene                               | 0.74                      | mg/kg   | 0.00045            | 0.0016           | ND            |
| Tetrachloroethene                     | 0.74                      | mg/kg   | 0.00080            | 0.0016           | 0.0045        |
| Toluene                               | 0.74                      | mg/kg   | 0.00054            | 0.00081          | ND            |
| trans-1,2-Dichloroethene              | 0.74                      | mg/kg   | 0.00098            |                  | ND            |
| trans-1,3-Dichloropropene             | 0.74                      | mg/kg   | 0.00038            | 0.0016           | ND            |
| Trichloroethene                       | 0.74                      | mg/kg   | 0.00067            | 0.0016           | 0.0021        |
| Trichlorofluoromethane                | 0.74                      | mg/kg   | 0.00096            | 0.0016           | ND            |

Vinyl chloride

Xylenes (Total)

0.00058

0.00081

Sample ID: HSI-SS-03 (0-0.5') Lab#: AD19479-005

Matrix: Soil

Collection Date: 9/25/2020 Receipt Date: 9/28/2020

|      | Analyte                                             | DF       | Units          | RL                    |                | Result        |
|------|-----------------------------------------------------|----------|----------------|-----------------------|----------------|---------------|
| _    | % Solids                                            | 11       | percent        |                       |                | 82            |
| ercı | ury (Soil/Waste) 7471B                              |          |                |                       |                |               |
|      | Analyte                                             | DF       | Units          | MDL                   | RL             | Result        |
|      | Mercury                                             |          | mg/kg          | 0.015                 | 0.10           | ND            |
|      |                                                     |          | - Ingrag       |                       |                |               |
| emi  | volatile Organics (no search) 8270                  |          |                |                       |                |               |
|      | Analyte                                             | DF       | Units          | MDL                   | RL             | Result        |
|      | 1,1'-Biphenyl                                       | 1        | mg/kg          | 0.012                 | 0.041          | ND            |
|      | 1,2,4,5-Tetrachlorobenzene                          | 1        | mg/kg          | 0.014                 | 0.041          | ND<br>ND      |
|      | 1,4-Dioxane 2,3,4,6-Tetrachlorophenol               | 1        | mg/kg<br>mg/kg | 0.020<br>0.015        | 0.010<br>0.041 | ND<br>ND      |
|      | 2,4,5-Trichlorophenol                               |          | mg/kg          | 0.012                 | 0.041          | <del>ND</del> |
|      | 2,4,6-Trichlorophenol                               | 1        | mg/kg          | 0.032                 | 0.041          | ND            |
|      | 2,4-Dichlorophenol                                  | 1        | mg/kg          | 0.015                 | 0.010          | ND            |
|      | 2,4-Dimethylphenol                                  | 1        | mg/kg          | 0.020                 | 0.010          | ND            |
|      | 2,4-Dinitrophenol                                   | 1        | mg/kg          | 0.18                  | 0.20           | ND            |
|      | 2,4-Dinitrotoluene                                  | 1        | mg/kg          | 0.013                 | 0.041          | ND            |
|      | 2,6-Dinitrotoluene                                  | 1        | mg/kg<br>ma/ka | 0.021                 | 0.041          | ND<br>ND      |
|      | 2-Chlorophenol                                      | 1        | mg/kg<br>mg/kg | 0.018                 | 0.041          | ND ND         |
|      | 2-Methylnaphthalene                                 | 1        | mg/kg          | 0.013                 | 0.041          | ND            |
|      | 2-Methylphenol                                      | 1        | mg/kg          | 0.012                 | 0.010          | ND            |
|      | 2-Nitroaniline                                      | 1        | mg/kg          | 0.019                 | 0.041          | ND            |
|      | 2-Nitrophenol                                       |          | mg/kg          | 0.018                 | 0.041          | ND ND         |
|      | 3&4-Methylphenol                                    | 1        | mg/kg          | 0.012                 | 0.010          | ND            |
|      | 3,3'-Dichlorobenzidine                              | 1        | mg/kg          | 0.033                 | 0.041          | ND            |
|      | 3-Nitroaniline 4,6-Dinitro-2-methylphenol           |          | mg/kg<br>mg/kg | $-\frac{0.016}{0.14}$ | 0.041          | ND ND         |
|      | 4-Bromophenyl-phenylether                           | 1        | mg/kg          | 0.011                 | 0.041          | ND            |
|      | 4-Chloro-3-methylphenol                             | 1        | mg/kg          | 0.0098                | 0.041          | ND            |
|      | 4-Chloroaniline                                     | 1        | mg/kg          | 0.018                 | 0.010          | ND            |
|      | 4-Chlorophenyl-phenylether                          | 1        | mg/kg          | 0.012                 | 0.041          | ND            |
|      | 4-Nitroaniline                                      | 1        | mg/kg          | 0.016                 | 0.041          | ND            |
|      | 4-Nitrophenol                                       | 1        | mg/kg          | 0.031                 | 0.041          | ND            |
|      | Acenaphthene                                        |          |                | 0.012                 | 0.041          | ND            |
|      | Acenaphthylene<br>Acetophenone                      | 1        | mg/kg<br>mg/kg | 0.012<br>0.015        | 0.041<br>0.041 | ND<br>ND      |
|      | Anthracene                                          | 1        | mg/kg<br>mg/kg | 0.015                 | 0.041          | ND            |
|      | Atrazine                                            | 1        | mg/kg          | 0.016                 | 0.041          | ND            |
|      | Benzaldehyde                                        |          | mg/kg          | 0.44                  | 0.041          | ND            |
|      | Benzo[a]anthracene                                  | 1        | mg/kg          | 0.014                 | 0.041          | ND            |
|      | Benzo[a]pyrene                                      | 1        | mg/kg          | 0.014                 | 0.041          | ND            |
|      | Benzo[b]fluoranthene                                | <u> </u> | mg/kg          | 0.015                 | 0.041          | ND            |
|      | Benzo[g,h,i]perylene                                | 1        | mg/kg          | 0.00028               | 0.041<br>0.041 | ND<br>ND      |
|      | Benzo[k]fluoranthene<br>bis(2-Chloroethoxy)methane  | 1        | mg/kg<br>mg/kg | 0.015<br>0.012        | 0.041          | ND<br>ND      |
|      | bis(2-Chloroethyl)ether                             | 1        | mg/kg          | 0.0099                | 0.041          | ND            |
|      | bis(2-Chloroisopropyl)ether                         |          | mg/kg          | 0.016                 | 0.041          | ND            |
|      | bis(2-Ethylhexyl)phthalate                          | 1        | mg/kg          | 0.036                 | 0.041          | 0.036J        |
|      | Butylbenzylphthalate                                | 1        | mg/kg          | 0.031                 | 0.041          | ND            |
|      | Caprolactam                                         |          | mg/kg          | 0.033                 | 0.041          | ND            |
|      | Carbazole                                           | 1        | mg/kg          | 0.013                 | 0.041          | ND<br>ND      |
|      | Chrysene Dibenzola blanthracene                     | 1<br>1   | mg/kg<br>mg/kg | 0.014                 | 0.041<br>0.041 | ND<br>ND      |
|      | Dibenzo[a,h]anthracene Dibenzofuran                 | 1        | mg/kg<br>mg/kg | 0.015<br>0.010        | 0.041          | ND<br>ND      |
|      | Diethylphthalate                                    |          | mg/kg          | 0.026                 | 0.041          | <del>ND</del> |
|      | Dimethylphthalate                                   | 1        | mg/kg          | 0.011                 | 0.041          | ND            |
|      | Di-n-butylphthalate                                 | 1        | mg/kg          | 0.047                 | 0.010          | ND            |
|      | Di-n-octylphthalate                                 | 1        | mg/kg          | 0.027                 | 0.041          | ND            |
| _    | Fluoranthene                                        | 1        | mg/kg          | 0.016                 | 0.041          | ND ND         |
|      | Fluorene                                            | 1        | mg/kg          | 0.011                 | 0.041          | 0.012J        |
|      | Hexachlorobenzene                                   | 1        | mg/kg<br>mg/kg | 0.017                 | 0.041          | ND<br>ND      |
|      | Hexachlorocyclopentadiene Hexachlorocyclopentadiene |          | mg/kg<br>mg/kg | - <del>0.018</del>    | 0.041          | - ND          |
|      | Hexachloroethane                                    |          | mg/kg          | 0.018                 | 0.041          | ND            |

| mple ID: | HSI-SS-03 (0-0.5')         |    |       | <u>.</u> | Collection Date: | 9/25/2020 |
|----------|----------------------------|----|-------|----------|------------------|-----------|
| •        | AD19479-005                |    |       |          | Receipt Date:    |           |
| Matrix:  |                            |    |       |          | receipt Date.    | 3/20/2020 |
|          | Indeno[1,2,3-cd]pyrene     |    | mg/kg | 0.018    | 0.041            | ND        |
|          | Isophorone                 | 1  | mg/kg | 0.013    | 0.041            | ND        |
|          | Naphthalene                | 1  | mg/kg | 0.012    | 0.010            | ND        |
|          | Nitrobenzene               | 1  | mg/kg | 0.0016   | 0.041            | ND        |
|          | N-Nitroso-di-n-propylamine |    | mg/kg | 0.015    | 0.010            | ND        |
|          | N-Nitrosodiphenylamine     | 1  | mg/kg | 0.14     | 0.041            | ND        |
|          | Pentachlorophenol          | 1  | mg/kg | 0.20     | 0.20             | ND        |
|          | Phenanthrene               | 1  | mg/kg | 0.013    | 0.041            | ND        |
| _        | Phenol                     | 1  | mg/kg | 0.011    | 0.041            | ND        |
|          | Pyrene                     | 1  | mg/kg | 0.014    | 0.041            | ND        |
| 7        | TAL Metals 6010D           |    |       |          |                  |           |
| -        | Analyte                    | DF | Units | MDL      | RL               | Result    |
|          | Aluminum                   | 1  | mg/kg | 20       | 240              | 4000      |
|          | Barlum                     | 1  | mg/kg | 0.82     | 12               | 22        |
|          | Calcium                    | 1  | mg/kg | 120      | 1200             | 1700      |
|          | Chromium                   | 1  | mg/kg | 0.82     | 6.1              | 23B       |
| _        | Cobalt                     |    | mg/kg | 0.87     | 3.0              | 1.2J      |
|          | Copper                     | 1  | mg/kg | 0.75     | 6.1              | 9.2B      |
|          | Iron                       | 1  | mg/kg | 16       | 240              | 7100B     |
|          | Lead                       | 1  | mg/kg | 0.75     | 6.1              | 3.9J      |
| _        | Magnesium                  | 1  | mg/kg | 24       | 610              | 560J      |
|          | Manganese                  | 1  | mg/kg | 0.78     | 12               | 54        |
|          | Nickel                     | 1  | mg/kg | 1.3      | 6.1              | 3.0J      |
|          | Potassium                  | 11 | mg/kg | 120      | 610              | 180J      |
|          | Sodium                     | 1  | mg/kg | 150      | 300              | ND        |
| _        | Zinc                       |    | mg/kg | 1.8      | 12               | 22B       |
| ٦        | 「AL Metals 6020B           |    |       |          |                  |           |
| -        | Analyte                    | DF | Units | MDL      | RL               | Result    |
|          | Antimony                   | 1  | mg/kg | 0.027    | 0.98             | ND        |
|          | Arsenic                    | 1  | mg/kg | 0.021    | 0.24             | 3.6B      |
|          | Beryllium                  | 1  | mg/kg | 0.019    | 0.24             | 0.19J     |
|          | Cadmium                    | 11 | mg/kg | 0.017    | 0.49             | 0.17J     |
|          | Selenium                   | 1  | mg/kg | 0.077    | 2.4              | 1.2JB     |
|          | Silver                     | 1  | mg/kg | 0.032    | 0.24             | 0.050JB   |
|          | Thallium                   | 1  | mg/kg | 0.022    | 0.49             | 0.026J    |
|          | Vanadium                   | 4  | malka | 0.042    | 0.24             | 400       |

mg/kg

0.013

Vanadium

0.24

Sample ID: HSI-SS-03 (0.5-1') Lab#: AD19479-006

Matrix: Soil/Terracore

Collection Date: 9/25/2020

Receipt Date: 9/28/2020

### % Solids SM2540G

| Analyte                               | DF    | Units   | RL      |        | Result        |
|---------------------------------------|-------|---------|---------|--------|---------------|
| % Solids                              | 1     | percent |         |        | 81            |
| latile Organics (no search) 8260      |       |         |         |        |               |
| Analyte                               | DF    | Units   | MDL     | RL     | Result        |
| 1,1,1-Trichloroethane                 | 0.883 | mg/kg   | 0.0010  | 0.0022 | ND ND         |
| 1,1,2,2-Tetrachloroethane             | 0.883 | mg/kg   | 0.00049 | 0.0022 | 0.0065        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.883 | mg/kg   | 0.0015  | 0.0022 | ND            |
| 1,1,2-Trichloroethane                 | 0.883 | mg/kg   | 0.00050 | 0.0022 | ND            |
| 1,1-Dichloroethane                    | 0.883 | mg/kg   | 0.00095 | 0.0022 | ND            |
| 1,1-Dichloroethene                    | 0.883 | mg/kg   | 0.0013  | 0.0022 | ND            |
| 1,2,3-Trichlorobenzene                | 0.883 | mg/kg   | 0.00060 | 0.0022 | ND            |
| 1,2,4-Trichlorobenzene                | 0.883 | mg/kg   | 0.00069 | 0.0022 | ND            |
| 1,2-Dibromo-3-chloropropane           | 0.883 | mg/kg   | 0.00060 | 0.0022 | ND            |
| 1,2-Dibromoethane                     | 0.883 | mg/kg   | 0.00053 | 0.0011 | ND            |
| 1,2-Dichlorobenzene                   | 0.883 | mg/kg   | 0.00056 | 0.0022 | ND            |
| 1,2-Dichloroethane                    | 0.883 | mg/kg   | 0.00045 | 0.0022 | ND            |
| 1,2-Dichloropropane                   | 0.883 |         | 0.00089 | 0.0022 | ND -          |
| 1,3-Dichlorobenzene                   | 0.883 | mg/kg   | 0.00060 | 0.0022 | ND            |
| 1,4-Dichlorobenzene                   | 0.883 | mg/kg   | 0.00058 | 0.0022 | ND            |
| 1,4-Dioxane                           | 0.883 | mg/kg   | 0.053   | 0.11   | ND            |
| 2-Butanone                            | 0.883 | mg/kg   | 0.0013  | 0.0022 |               |
| 2-Hexanone                            | 0.883 | mg/kg   | 0.00093 | 0.0022 | ND            |
| 4-Methyl-2-pentanone                  | 0.883 | mg/kg   | 0.00063 | 0.0022 | ND            |
| Acetone                               | 0.883 | mg/kg   | 0.0074  | 0.011  | ND            |
| Benzene                               | 0.883 | mg/kg   | 0.00080 | 0.0011 | ND            |
| Bromochloromethane                    | 0.883 | mg/kg   | 0.00076 | 0.0022 | ND            |
| Bromodichloromethane                  | 0.883 | mg/kg   | 0.00051 | 0.0022 | ND            |
| Bromoform                             | 0.883 | mg/kg   | 0.00036 | 0.0022 | ND            |
| Bromomethane                          | 0.883 | mg/kg   | 0.0017  | 0.0022 | ND            |
| Carbon disulfide                      | 0.883 | mg/kg   | 0.0037  | 0.0037 | ND            |
| Carbon tetrachloride                  | 0.883 | mg/kg   | 0.0011  | 0.0022 | ND            |
| Chlorobenzene                         | 0.883 | mg/kg   | 0.00068 | 0.0022 | ND            |
| Chloroethane                          | 0.883 | mg/kg   | 0.0021  | 0.0022 | ND ND         |
| Chloroform                            | 0.883 | mg/kg   | 0.0015  | 0.0022 | ND            |
| Chloromethane                         | 0.883 | mg/kg   | 0.0013  | 0.0022 | ND            |
| cis-1,2-Dichloroethene                | 0.883 | mg/kg   | 0.00088 | 0.0022 | ND            |
| cis-1,3-Dichloropropene               | 0.883 | mg/kg   | 0.00058 | 0.0022 | ND -          |
| Cyclohexane                           | 0.883 | mg/kg   | 0.0013  | 0.0022 | ND            |
| Dibromochloromethane                  | 0.883 | mg/kg   | 0.00047 | 0.0022 | ND            |
| Dichlorodifluoromethane               | 0.883 | mg/kg   | 0.0015  | 0.0022 | ND            |
| Ethylbenzene                          | 0.883 | mg/kg   | 0.00075 | 0.0011 | ND ND         |
| Isopropylbenzene                      | 0.883 | mg/kg   | 0.00091 | 0.0011 | ND            |
| m&p-Xylenes                           | 0.883 | mg/kg   | 0.0013  | 0.0013 | ND            |
| Methyl Acetate                        | 0.883 | mg/kg   | 0.0010  | 0.0022 | ND            |
| Methylcyclohexane                     | 0.883 | mg/kg   | 0.00098 | 0.0022 | ND ND         |
| Methylene chloride                    | 0.883 | mg/kg   | 0.00082 | 0.0022 | 0.0057        |
| Methyl-t-butyl ether                  | 0.883 | mg/kg   | 0.00059 | 0.0011 | ND            |
| o-Xylene                              | 0.883 | mg/kg   | 0.00077 | 0.0011 | ND            |
| Styrene                               | 0.883 | mg/kg   | 0.00060 | 0.0022 | ND -          |
| Tetrachloroethene                     | 0.883 | mg/kg   | 0.0011  | 0.0022 | 0.024         |
| Toluene                               | 0.883 | mg/kg   | 0.00072 | 0.0011 | ND            |
| trans-1,2-Dichloroethene              | 0.883 | mg/kg   | 0.0013  | 0.0022 | ND            |
| trans-1,3-Dichloropropene             | 0.883 | mg/kg   | 0.00051 | 0.0022 | <del>ND</del> |
| Trichloroethene                       | 0.883 | mg/kg   | 0.00089 | 0.0022 | 0.0072        |
| Trichlorofluoromethane                | 0.883 | mg/kg   | 0.0013  | 0.0022 | ND            |
| Vinyl chloride                        | 0.883 | mg/kg   | 0.0013  | 0.0022 | ND            |
| THIS CHICKS                           | 0.003 | 9.49    | 0.0010  | 0.0022 |               |

Sample ID: HSI-SS-04 (0-0.5') Lab#: AD19479-007

Matrix: Soil

Collection Date: 9/25/2020

Receipt Date: 9/28/2020

| % | Sol | lids | SM | 254 | 0G |
|---|-----|------|----|-----|----|
|---|-----|------|----|-----|----|

| Analyte                                              | DF       | Units          | RL            |                | Result   |
|------------------------------------------------------|----------|----------------|---------------|----------------|----------|
| % Solids                                             | 1        | percent        |               |                | 90       |
| ercury (Soil/Waste) 7471B                            |          |                |               |                |          |
| Analyte                                              | DF       | Units          | MDL           | RL             | Result   |
|                                                      |          |                |               |                |          |
| Mercury                                              |          | mg/kg          | 0.014         | 0.093          | ND       |
| emivolatile Organics (no search) 8270                |          |                |               |                |          |
| Analyte                                              | DF       | Units          | MDL           | RL             | Result   |
| 1,1'-Biphenyl                                        | 1        | mg/kg          | 0.011         | 0.037          | ND       |
| 1,2,4,5-Tetrachlorobenzene                           | 1        | mg/kg          | 0.012         | 0.037          | ND       |
| 1,4-Dioxane                                          | 1        | mg/kg          | 0.019         | 0.0093         | ND       |
| 2.3,4,6-Tetrachlorophenol                            | 1        | mg/kg          | 0.014         | 0.037          | ND       |
| 2,4,5-Trichlorophenol                                | 1        | mg/kg          | 0.011         | 0.037          | ND       |
| 2,4,6-Trichlorophenol                                | 1        | mg/kg          | 0.029         | 0.037          | ND       |
| 2.4-Dichlorophenol                                   | 1        | mg/kg          | 0.014         | 0.0093         | ND       |
| 2,4-Dimethylphenol                                   |          | mg/kg          | 0.018         | 0.0093         | ND       |
| 2,4-Dinitrophenol                                    | 1        | mg/kg          | 0.16          | 0.19           | ND       |
| 2,4-Dinitrotoluene                                   | 1        | mg/kg          | 0.012         | 0.037          | ND       |
| 2,6-Dinitrotoluene                                   | 1        | mg/kg          | 0.019         | 0.037          | ND       |
| 2-Chloronaphthalene                                  | 1        | mg/kg          | 0.016         | 0.037          | ND       |
| 2-Chlorophenol                                       | 1        | mg/kg          | 0.012         | 0.037          | ND       |
| 2-Methylnaphthalene                                  | 1        | mg/kg          | 0.011         | 0.037          | ND<br>ND |
| 2-Methylphenol                                       | 1        | mg/kg          | 0.011         | 0.0093         | ND<br>ND |
| 2-Nitroaniline                                       |          | mg/kg          | 0.017         | 0.037          | ND       |
| 2-Nitrophenol                                        | 1        | mg/kg          | 0.017         | 0.037          | ND<br>ND |
| 3&4-Methylphenol                                     | 1        | mg/kg          | 0.011         | 0.0093         | ND       |
| 3,3'-Dichlorobenzidine                               | 1        | mg/kg          | 0.030         | 0.037<br>0.037 | ND<br>ND |
| 3-Nitroaniline                                       | 1        | mg/kg          | 0.014         |                | ND       |
| 4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether | 1        | mg/kg<br>mg/kg | 0.13<br>0.010 | 0.19<br>0.037  | ND       |
| 4-Chloro-3-methylphenol                              | 1        | mg/kg          | 0.0089        | 0.037          | ND       |
| 4-Chloroaniline                                      | ,<br>1   | mg/kg          | 0.016         | 0.0093         | ND       |
| 4-Chlorophenyl-phenylether                           | <u> </u> | mg/kg          | 0.011         | 0.037          | ND ND    |
| 4-Nitroaniline                                       | 1        | mg/kg          | 0.014         | 0.037          | ND       |
| 4-Nitrophenol                                        | 1        | mg/kg          | 0.028         | 0.037          | ND       |
| Acenaphthene                                         | 1        | mg/kg          | 0.011         | 0.037          | ND       |
| Acenaphthylene                                       |          | mg/kg          | 0.011         | 0.037          |          |
| Acetophenone                                         | 1        | mg/kg          | 0.013         | 0.037          | ND       |
| Anthracene                                           | 1        | mg/kg          | 0.010         | 0.037          | ND       |
| Atrazine                                             | 1        | mg/kg          | 0.015         | 0.037          | ND       |
| Benzaldehyde                                         | 1        | mg/kg          | 0.40          | 0.037          | ND       |
| Benzo[a]anthracene                                   | 1        | mg/kg          | 0.012         | 0.037          | ND       |
| Benzo[a]pyrene                                       | 1        | mg/kg          | 0.013         | 0.037          | ND       |
| Benzo[b]fluoranthene                                 | 1        | mg/kg          | 0.013         | 0.037          | 0.018J   |
| Benzo[g,h,i]perylene                                 | 1        | mg/kg          | 0.00026       | 0.037          | ND -     |
| Benzo[k]fluoranthene                                 | 1        | mg/kg          | 0.014         | 0.037          | ND       |
| bis(2-Chloroethoxy)methane                           | 1        | mg/kg          | 0.010         | 0.037          | ND       |
| bis(2-Chloroethyl)ether                              | 1        | mg/kg          | 0.0090        | 0.0093         | ND       |
| bis(2-Chloroisopropyl)ether                          |          | mg/kg          | 0.015         | 0.037          | ND       |
| bis(2-Ethylhexyl)phthalate                           | 1        | mg/kg          | 0.033         | 0.037          | 0.15     |
| Butylbenzylphthalate                                 | 1        | mg/kg          | 0.028         | 0.037          | ND       |
| Caprolactam                                          | 1        | mg/kg          | 0.030         | 0.037          | ND       |
| Carbazole                                            | 1        | mg/kg          | 0.012         | 0.037          | ND       |
| Chrysene                                             | 1        | mg/kg          | 0.013         | 0.037          | ND       |
| Dibenzo[a,h]anthracene                               | 1        | mg/kg          | 0.014         | 0.037          | ND       |
| Dibenzofuran                                         | 1        | mg/kg          | 0.0094        | 0.0093         | ND       |
| Diethylphthalate                                     | 1        | mg/kg          | 0.024         | 0.037          | ND       |
| Dimethylphthalate                                    | 1        | mg/kg          | 0.010         | 0.037          | ND       |
| Di-n-butylphthalate                                  | 1        | mg/kg          | 0.042         | 0.0093         | ND       |
| Di-n-octylphthalate                                  | <u> </u> | mg/kg          | 0.025         | 0.037          | ND       |
| Fluoranthene                                         | 1        | mg/kg          | 0.014         | 0.037          | ND       |
| Fluorene                                             | 1        | mg/kg          | 0.010         | 0.037          | ND       |
| Hexachlorobenzene                                    | 1        | mg/kg          | 0.015         | 0.037          | ND       |
| Hexachlorobutadiene                                  |          | mg/kg          | 0.017         | 0.037          | ND       |
| Hexachlorocyclopentadiene                            | 1        | mg/kg          | 0.12          | 0.037          | ND<br>ND |
| Hexachloroethane                                     | 1        | mg/kg          | 0.016         | 0.037          | ND       |

| •              | HSI-SS-04 (0-0.5')         |                 |       |        | Collection Date: |           |
|----------------|----------------------------|-----------------|-------|--------|------------------|-----------|
| Lab#:          | AD19479-007                |                 |       |        | Receipt Date:    | 9/28/2020 |
| <u>Matrix:</u> | Soil                       |                 |       |        |                  |           |
|                | Indeno[1,2,3-cd]pyrene     | 1               | mg/kg | 0.017  | 0.037            | ND        |
|                | Isophorone                 | 1               | mg/kg | 0.012  | 0.037            | ND        |
|                | Naphthalene                | 1               | mg/kg | 0.011  | 0.0093           | ND        |
|                | Nitrobenzene               | 1               | mg/kg | 0.0015 | 0.037            | ND        |
|                | N-Nitroso-di-n-propylamine | 1               | mg/kg | 0.014  | 0.0093           | ND        |
|                | N-Nitrosodiphenylamine     | 1               | mg/kg | 0.13   | 0.037            | ND        |
|                | Pentachlorophenol          | 1               | mg/kg | 0.18   | 0.19             | ND        |
|                | Phenanthrene               | 1               | mg/kg | 0.012  | 0.037            | ND        |
| _              | Phenol                     | 1               | mg/kg | 0.010  | 0.037            | ND        |
| _              | Pyrene                     | 11              | mg/kg | 0.013  | 0.037            | ND        |
| 1              | AL Metals 6010D            |                 |       |        |                  |           |
| -              | Analyte                    | DF              | Units | MDL    | RL               | Result    |
|                | Aluminum                   | 1               | mg/kg | 19     | 220              | 6700      |
|                | Barlum                     | 1               | mg/kg | 0.75   | 11               | 22        |
|                | Calcium                    | 1               | mg/kg | 110    | 1100             | 210J      |
|                | Chromium                   | 1               | mg/kg | 0.74   | 5.6              | 24B       |
| _              | Cobalt                     | - · <del></del> | mg/kg | 0.79   | 2.8              | 1.5J      |
|                | Copper                     | 1               | mg/kg | 0.68   | 5.6              | 7.3B      |
|                | iron                       | 1               | mg/kg | 15     | 220              | 11000B    |
|                | Lead                       | 1               | mg/kg | 0.68   | 5.6              | 7.1       |
| _              | Magnesium                  |                 | mg/kg | 22     | 560              | 680       |
|                | Manganese                  | 1               | mg/kg | 0.71   | 11               | 31        |
|                | Nickel                     | 1               | mg/kg | 1.2    | 5.6              | 4.2J      |
|                | Potassium                  | 1               | mg/kg | 110    | 560              | 220J      |
| _              | Sodium                     |                 | mg/kg | 140    | 280              | ND        |
|                | Zinc                       | 1               | mg/kg | 1.7    | 11               | 18B       |
| 1              | AL Metals 6020B            |                 |       |        |                  |           |
| -              | Analyte                    | DF              | Units | MDL    | RL               | Result    |
|                | Antimony                   | 1               | mg/kg | 0.025  | 0.89             | 0.031J    |
|                | Arsenic                    | 1               | mg/kg | 0.019  | 0.22             | 7.1B      |
|                | Beryllium                  | 1               | mg/kg | 0.017  | 0.22             | 0.20J     |
|                | Cadmium                    | 1               | mg/kg | 0.016  | 0.44             | 0.15J     |
| _              | Selenium                   |                 | mg/kg | 0.071  | 2.2              | 0.88JB    |
|                | Silver                     | 1               | mg/kg | 0.029  | 0.22             | 0.037JB   |
|                | Thallium                   | 1               | mg/kg | 0.020  | 0.44             | 0.039J    |
|                | Vanadium                   | 1               | mg/kg | 0.012  | 0.22             | 22B       |

Sample ID: HSI-SS-04 (0.5-1') Lab#: AD19479-008 Collection Date: 9/25/2020 Receipt Date: 9/28/2020

Matrix: Soil/Terracore

| Analyte                               | DF    | Units   | RL      |         | Result       |
|---------------------------------------|-------|---------|---------|---------|--------------|
| % Solids                              | 1     | percent |         |         | 91           |
| le Organics (no search) 8260          |       |         |         |         |              |
| Analyte                               | DF    | Units   | MDL     | RL      | Result       |
| 1,1,1-Trichloroethane                 | 0.824 | mg/kg   | 0.00083 | 0.0018  | ND           |
| 1,1,2,2-Tetrachloroethane             | 0.824 | mg/kg   | 0.00041 | 0.0018  | ND           |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.824 | mg/kg   | 0.0013  | 0.0018  | ND           |
| 1,1,2-Trichloroethane                 | 0.824 | mg/kg   | 0.00042 | 0.0018  | ND           |
| 1,1-Dichloroethane                    | 0.824 | mg/kg   | 0.00079 | 0.0018  | ND           |
| 1,1-Dichloroethene                    | 0.824 | mg/kg   | 0.0010  | 0.0018  | ND           |
| 1,2,3-Trichlorobenzene                | 0.824 | mg/kg   | 0.00050 | 0.0018  | ND           |
| 1,2,4-Trichlorobenzene                | 0.824 | mg/kg   | 0.00057 | 0.0018  | ND           |
| 1,2-Dibromo-3-chloropropane           | 0.824 | mg/kg   | 0.00050 | 0.0018  | ND           |
| 1,2-Dibromoethane                     | 0.824 | mg/kg   | 0.00044 | 0.00091 | ND           |
| 1,2-Dichlorobenzene                   | 0.824 | mg/kg   | 0.00046 | 0.0018  | ND           |
| 1,2-Dichloroethane                    | 0.824 | mg/kg   | 0.00037 | 0.0018  | ND           |
| 1,2-Dichloropropane                   | 0.824 | mg/kg   | 0.00074 | 0.0018  | ND ND        |
| 1,3-Dichtorobenzene                   | 0.824 | mg/kg   | 0.00050 | 0.0018  | ND           |
| 1,4-Dichlorobenzene                   | 0.824 | mg/kg   | 0.00048 | 0.0018  | ND           |
| 1,4-Dioxane                           | 0.824 | mg/kg   | 0.044   | 0.091   | ND           |
| 2-Butanone                            | 0.824 | mg/kg   | 0.0011  | 0.0018  | ND ND        |
| 2-Hexanone                            | 0.824 | mg/kg   | 0.00077 | 0.0018  | ND           |
| 4-Methyl-2-pentanone                  | 0.824 | mg/kg   | 0.00053 | 0.0018  | ND           |
| Acetone                               | 0.824 | mg/kg   | 0.0061  | 0.0091  | 0.011        |
| Benzene                               | 0.824 | mg/kg   | 0.00066 | 0.00091 | ND           |
| Bromochloromethane                    | 0.824 | mg/kg   | 0.00063 | 0.0018  | ND           |
| Bromodichloromethane                  | 0.824 | mg/kg   | 0.00043 | 0.0018  | ND           |
| Bromoform                             | 0.824 | mg/kg   | 0.00030 | 0.0018  | ND           |
| Bromomethane                          | 0.824 | mg/kg   | 0.0014  | 0.0018  | ND           |
| Carbon disulfide                      | 0.824 | mg/kg   | 0.0031  | 0.0031  | ND           |
| Carbon tetrachloride                  | 0.824 | mg/kg   | 0.00088 | 0.0018  | ND           |
| Chlorobenzene                         | 0.824 | mg/kg   | 0.00056 | 0.0018  | ND ND        |
| Chloroethane                          | 0.824 | mg/kg   | 0.0018  | 0.0018  | ND           |
| Chloroform                            | 0.824 | mg/kg   | 0.0012  | 0.0018  | ND           |
| Chioromethane                         | 0.824 | mg/kg   | 0.0011  | 0.0018  | ND           |
| cis-1,2-Dichloroethene                | 0.824 | mg/kg   | 0.00073 | 0.0018  | ND           |
| cis-1,3-Dichloropropene               | 0.824 | mg/kg   | 0.00048 | 0.0018  | ND           |
| Cyclohexane                           | 0.824 | mg/kg   | 0.0011  | 0.0018  | ND           |
| Dibromochloromethane                  | 0.824 | mg/kg   | 0.00039 | 0.0018  | ND           |
| Dichlorodifluoromethane               | 0.824 | mg/kg   | 0.0013  | 0.0018  | ND           |
| Ethylbenzene                          | 0.824 | mg/kg   | 0.00062 | 0.00091 | ND           |
| Isopropylbenzene                      | 0.824 | mg/kg   | 0.00075 | 0.00091 | ND           |
| m&p-Xylenes                           | 0.824 | mg/kg   | 0.0011  | 0.0011  | ND           |
| Methyl Acetate                        | 0.824 | mg/kg   | 0.00087 | 0.0018  | ND           |
| Methylcyclohexane                     | 0.824 | mg/kg   | 0.00081 | 0.0018  | ND<br>0.0040 |
| Methylene chloride                    | 0.824 | mg/kg   | 0.00068 | 0.0018  | 0.0049       |
| Methyl-t-butyl ether                  | 0.824 | mg/kg   | 0.00049 | 0.00091 | ND           |
| o-Xylene                              | 0.824 | mg/kg   | 0.00064 | 0.00091 | <u>ND</u>    |
| Styrene                               | 0.824 | mg/kg   | 0.00050 | 0.0018  | ND           |
| Tetrachloroethene                     | 0.824 | mg/kg   | 0.00089 | 0.0018  | ND           |
| Toluene                               | 0.824 | mg/kg   | 0.00060 | 0.00091 | ND           |
| trans-1,2-Dichloroethene              |       | mg/kg   | 0.0011  | 0.0018  | ND           |
| trans-1,3-Dichloropropene             | 0.824 | mg/kg   | 0.00043 | 0.0018  | ND           |
| Trichloroethene                       | 0.824 | mg/kg   | 0.00074 | 0.0018  | ND           |
| Trichlorofluoromethane                | 0.824 | mg/kg   | 0.0011  | 0.0018  | ND           |
| Vinyl chloride                        | 0.824 | mg/kg   | 0.0011  | 0.0018  | ND           |

Sample ID: HSI-SS-05 (0-0.5')

Lab#: AD19479-009

Collection Date: 9/25/2020 Receipt Date: 9/28/2020

Matrix: Soil

| DF            | Units                                    | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | Result   |
|---------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|
|               |                                          | _ <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 87       |
| <b> ' -</b> - | percent                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |          |
|               | 11-4-                                    | 1401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | Decate   |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Result   |
| 1             | mg/kg                                    | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.096          | ND       |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |          |
| DF            | Units                                    | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RL             | Result   |
| 1             | mg/kg                                    | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0096         | ND       |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND       |
| ,             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND       |
| •             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND<br>ND |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND       |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND       |
| 1             |                                          | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0096         | ND       |
| 1             | mg/kg                                    | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0096         | ND       |
| 1             | mg/kg                                    | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND ND    |
| •             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND<br>ND |
| •             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND<br>ND |
| •             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND<br>ND |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND ND    |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND<br>ND |
| 1             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND       |
| 1             |                                          | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
|               | mg/kg                                    | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND ND    |
| 1             | mg/kg                                    | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.038          | ND       |
| 1             | mg/kg                                    | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.00026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | ND       |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND<br>ND |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND<br>ND |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ND ND    |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | 0.28     |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | 0.033J   |
| 1             |                                          | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
|               | mg/kg                                    | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.0097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0096         | ND       |
| 1             | mg/kg                                    | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND ND    |
| 1             | mg/kg                                    | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1             | mg/kg                                    | 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0096         | 0.067    |
| 1             | mg/kg                                    | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |          |
|               | mg/kg                                    | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
|               | mg/kg                                    | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
| 1<br>1<br>1   | mg/kg<br>mg/kg                           | 0.010<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.038<br>0.038 | ND<br>ND |
|               | mg/kg                                    | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038          | ND       |
|               | DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | DF Units  1 mg/kg  1 | DF             | DF       |

| •       | HSI-SS-05 (0-0.5')         |    |       |        | Collection Date: |           |
|---------|----------------------------|----|-------|--------|------------------|-----------|
|         | AD19479-009                |    |       |        | Receipt Date:    | 9/28/2020 |
| Matrix: | Soil                       |    |       |        |                  |           |
|         | Indeno[1,2,3-cd]pyrene     | 1  | mg/kg | 0.017  | 0.038            | ND        |
|         | Isophorone                 | 1  | mg/kg | 0.012  | 0.038            | ND        |
|         | Naphthalene                | 1  | mg/kg | 0.011  | 0.0096           | ND        |
|         | Nitrobenzene               | 1  | mg/kg | 0.0016 | 0.038            | ND        |
| -       | N-Nitroso-di-n-propylamine | 1  | mg/kg | 0.014  | 0.0096           | ND        |
|         | N-Nitrosodiphenylamine     | 1  | mg/kg | 0.13   | 0.038            | ND        |
|         | Pentachlorophenol          | 1  | mg/kg | 0.18   | 0.19             | ND        |
|         | Phenanthrene               | 1  | mg/kg | 0.012  | 0.038            | ND        |
|         | Phenol                     | 1  | mg/kg | 0.011  | 0.038            | ND        |
| _       | Pyrene                     | 11 | mg/kg | 0.013  | 0.038            | ND ND     |
| 7       | 「AL Metals 6010D           |    |       |        |                  |           |
| -       | Analyte                    | DF | Units | MDL    | RL               | Result    |
|         | Aluminum                   | 1  | mg/kg | 19     | 230              | 3300      |
|         | Barlum                     | 1  | mg/kg | 0.78   | 11               | 15        |
|         | Calcium                    | 1  | mg/kg | 120    | 1100             | 190J      |
|         | Chromium                   | 1  | mg/kg | 0.77   | 5.7              | 20B       |
| _       | Cobalt                     |    | mg/kg | 0.82   | 2.9              | 0.94J     |
|         | Copper                     | 1  | mg/kg | 0.71   | 5.7              | 13B       |
|         | Iron                       | 1  | mg/kg | 15     | 230              | 7000B     |
|         | Lead                       | 1  | mg/kg | 0.71   | 5.7              | 22        |
| _       | Magnesium                  | 1  | mg/kg | 22     | 570              | 340J      |
|         | Manganese                  | 1  | mg/kg | 0.74   | 11               | 28        |
|         | Nickel                     | 1  | mg/kg | 1.3    | 5.7              | 4.7J      |
|         | Potassium                  | 11 | mg/kg | 110    | 570              | 140J      |
|         | Sodium                     |    | mg/kg | 140    | 290              | ND        |
| _       | Zinc                       | 11 | mg/kg | 1.7    | 11               | 248       |
| 7       | AL Metals 6020B            |    |       |        |                  |           |
| -       | Analyte                    | DF | Units | MDL    | RL               | Result    |
|         | Antimony                   | 1  | mg/kg | 0.026  | 0.92             | 0.058J    |
|         | Arsenic                    | 1  | mg/kg | 0.020  | 0.23             | 3.0B      |
|         | Beryllium                  | 3  | mg/kg | 0.054  | 0.69             | 0.20J     |
|         | Cadmium                    | 1  | mg/kg | 0.016  | 0.46             | 0.50      |
|         | Selenium                   | 1  | mg/kg | 0.073  | 2.3              | 4.0B      |
|         | Silver                     | 1  | mg/kg | 0.030  | 0.23             | 0.061JB   |
|         | Thallium                   | 3  | mg/kg | 0.061  | 1.4              | ND        |
|         |                            |    | -     |        | 0.00             |           |

mg/kg

0.012

Vanadium

21B

0.23

Sample ID: HSI-SS-05 (0.5-1')

Lab#: AD19479-010

Matrix: Soil/Terracore

Collection Date: 9/25/2020

Receipt Date: 9/28/2020

#### % Solids SM2540G

| Analyte       | DF | Units   | RL | Result |
|---------------|----|---------|----|--------|
| % Solids      | 1  | percent |    | 90     |
| Val-415- O1 ( |    |         |    |        |

| Volatile Organics (no search) 8260 | ) |  |
|------------------------------------|---|--|
|------------------------------------|---|--|

| Analyte                               | DF    | Units | MDL     | RL      | Result   |
|---------------------------------------|-------|-------|---------|---------|----------|
| 1,1,1-Trichloroethane                 | 0.723 | mg/kg | 0.00074 | 0.0016  | ND       |
| 1,1,2,2-Tetrachloroethane             | 0.723 | mg/kg | 0.00036 | 0.0016  | 0.011    |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.723 | mg/kg | 0.0011  | 0.0016  | ND       |
| 1,1,2-Trichloroethane                 | 0.723 | mg/kg | 0.00037 | 0.0016  | ND       |
| 1,1-Dichloroethane                    | 0.723 | mg/kg | 0.00070 | 0.0016  | ND       |
| 1,1-Dichloroethene                    | 0.723 | mg/kg | 0.00092 | 0.0016  | ND       |
| 1,2,3-Trichlorobenzene                | 0.723 | mg/kg | 0.00044 | 0.0016  | ND       |
| 1,2,4-Trichlorobenzene                | 0.723 | mg/kg | 0.00051 | 0.0016  | ND       |
| 1,2-Dibromo-3-chloropropane           | 0.723 | mg/kg | 0.00044 | 0.0016  | ND       |
| 1,2-Dibromoethane                     | 0.723 | mg/kg | 0.00039 | 0.00080 | ND       |
| 1,2-Dichlorobenzene                   | 0.723 | mg/kg | 0.00041 | 0.0016  | ND       |
| 1,2-Dichloroethane                    | 0.723 | mg/kg | 0.00033 | 0.0016  | ND       |
| 1,2-Dichloropropane                   | 0.723 | mg/kg | 0.00066 | 0.0016  | ND       |
| 1,3-Dichlorobenzene                   | 0.723 | mg/kg | 0.00044 | 0.0016  | ND       |
| 1,4-Dichlorobenzene                   | 0.723 | mg/kg | 0.00043 | 0.0016  | ND       |
| 1,4-Dioxane                           | 0.723 | mg/kg | 0.039   | 0.080   | ND       |
| 2-Butanone                            | 0.723 | mg/kg | 0.00096 | 0.0016  | ND ND    |
| 2-Hexanone                            | 0.723 | mg/kg | 0.00068 | 0.0016  | ND       |
| 4-Methyl-2-pentanone                  | 0.723 | mg/kg | 0.00047 | 0.0016  | ND       |
| Acetone                               | 0.723 | mg/kg | 0.0054  | 0.0080  | 0.0069J  |
| Benzene                               | 0.723 | mg/kg | 0.00059 | 0.00080 | ND       |
| Bromochloromethane                    | 0.723 | mg/kg | 0.00056 | 0.0016  | ND       |
| Bromodichloromethane                  | 0.723 | mg/kg | 0.00038 | 0.0016  | ND       |
| Bromoform                             | 0.723 | mg/kg | 0.00026 | 0.0016  | ND       |
| Bromomethane                          | 0.723 | mg/kg | 0.0013  | 0.0016  | ND       |
| Carbon disulfide                      | 0.723 | mg/kg | 0.0027  | 0.0027  | ND       |
| Carbon tetrachloride                  | 0.723 | mg/kg | 0.00078 | 0.0016  | ND       |
| Chlorobenzene                         | 0.723 | mg/kg | 0.00050 | 0.0016  | 0.00050J |
| Chloroethane                          | 0.723 | mg/kg | 0.0016  | 0.0016  | ND       |
| Chloroform                            | 0.723 | mg/kg | 0.0011  | 0.0016  | ND       |
| Chloromethane                         | 0.723 | mg/kg | 0.00099 | 0.0016  | ND       |
| cis-1,2-Dichloroethene                | 0.723 | mg/kg | 0.00065 | 0.0016  | ND       |
| cis-1,3-Dichloropropene               | 0.723 | mg/kg | 0.00043 | 0.0016  | ND       |
| Cyclohexane                           | 0.723 | mg/kg | 0.00096 | 0.0016  | ND       |
| Dibromochloromethane                  | 0.723 | mg/kg | 0.00035 | 0.0016  | ND       |
| Dichlorodifluoromethane               | 0.723 | mg/kg | 0.0011  | 0.0016  | ND       |
| Ethylbenzene                          | 0.723 | mg/kg | 0.00055 | 0.00080 | ND       |
| Isopropylbenzene                      | 0.723 | mg/kg | 0.00067 | 0.00080 | ND       |
| m&p-Xylenes                           | 0.723 | mg/kg | 0.00096 | 0.00096 | ND       |
| Methyl Acetate                        | 0.723 | mg/kg | 0.00077 | 0.0016  | ND       |
| Methylcyclohexane                     | 0.723 | mg/kg | 0.00072 | 0.0016  | ND       |
| Methylene chloride                    | 0.723 | mg/kg | 0.00060 | 0.0016  | 0.0017   |
| Methyl-t-butyl ether                  | 0.723 | mg/kg | 0.00043 | 0.00080 | ND       |
| o-Xylene                              | 0.723 | mg/kg | 0.00057 | 0.00080 | ND       |
| Styrene                               | 0.723 | mg/kg | 0.00044 | 0.0016  | ND<br>   |
| Tetrachloroethene                     | 0.723 | mg/kg | 0.00079 | 0.0016  | ND       |
| Toluene                               | 0.723 | mg/kg | 0.00053 | 0.00080 | 0.00073J |
| trans-1,2-Dichloroethene              | 0.723 | mg/kg | 0.00096 | 0.0016  | ND       |
| trans-1,3-Dichloropropene             | 0.723 | mg/kg | 0.00038 | 0.0016  | ND       |
| Trichloroethene                       | 0.723 | mg/kg | 0.00066 | 0.0016  | ND<br>   |
| Trichlorofluoromethane                | 0.723 | mg/kg | 0.00095 | 0.0016  | ND       |
| Vinyl chloride                        | 0.723 | mg/kg | 0.00098 | 0.0016  | ND       |

Sample ID: HSI-SS-06 (0-0.5')

Lab#: AD19479-011 Matrix: Soil Collection Date: 9/25/2020 Receipt Date: 9/28/2020

| Analyte                                              | DF           | Units          | RL              | _              | Result    |
|------------------------------------------------------|--------------|----------------|-----------------|----------------|-----------|
| % Solids                                             |              |                |                 |                |           |
|                                                      |              | percent        |                 |                | 92        |
| ercury (Soil/Waste) 7471B                            |              |                |                 |                |           |
| Analyte                                              | DF           | Units          | MDL             | RL             | Result    |
| Mercury                                              | 1            | mg/kg          | 0.014           | 0.091          | ND        |
| emivolatile Organics (no search) 8270                |              |                |                 |                |           |
| Analyte                                              | DF           | Units          | MDL             | RL             | Result    |
| 1,1*-Biphenyl                                        | 1            | mg/kg          | 0.010           | 0.036          | ND ND     |
| 1,2,4,5-Tetrachlorobenzene                           | 1            | mg/kg          | 0.012           | 0.036          | ND        |
| 1,4-Dioxane                                          | 1            | mg/kg          | 0.018           | 0.0091         | ND        |
| 2,3,4,6-Tetrachlorophenol                            |              | mg/kg          | 0.014           | 0.036          | ND        |
| 2,4,5-Trichlorophenol                                | 1            | mg/kg          | 0.010           | 0.036          | ND        |
| 2,4,6-Trichlorophenol                                | 1            | mg/kg          | 0.028           | 0.036          | ND        |
| 2,4-Dichlorophenol                                   | 1            | mg/kg          | 0.014           | 0.0091         | ND        |
| 2,4-Dinitrophonol                                    |              | mg/kg          | 0.018<br>- 0.16 | 0.0091         | <u>ND</u> |
| 2,4-Dinitrophenol 2,4-Dinitrotoluene                 | 1            | mg/kg<br>mg/kg | 0.16            | 0.18           | ND<br>ND  |
| 2,6-Dinitrotoluene                                   | 1            | mg/kg          | 0.018           | 0.036          | ND        |
| 2-Chloronaphthalene                                  | 1            | mg/kg          | 0.016           | 0.036          | ND        |
| 2-Chlorophenol                                       | 1            | mg/kg          | 0.012           | 0.036          | ND        |
| 2-Methylnaphthalene                                  | 1            | mg/kg          | 0.011           | 0.036          | ND        |
| 2-Methylphenol                                       | 1            | mg/kg          | 0.010           | 0.0091         | ND        |
| 2-Nitroaniline                                       | 11           | mg/kg          | 0.017           | 0.036          | ND        |
| 2-Nitrophenol                                        | 1            | mg/kg          | 0.016           | 0.036          | ND        |
| 3&4-Methylphenol                                     | 1            | mg/kg          | 0.011           | 0.0091         | ND        |
| 3,3'-Dichlorobenzidine                               | 1            | mg/kg          | 0.029           | 0.036          | ND<br>    |
| 3-Nitroaniline                                       |              | mg/kg          | 0.014           | 0.036          | ND        |
| 4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether | 1            | mg/kg<br>mg/kg | 0.13<br>0.010   | 0.18<br>0.036  | ND<br>ND  |
| 4-Chloro-3-methylphenol                              | ,            | mg/kg          | 0.0087          | 0.036          | ND<br>ND  |
| 4-Chloroaniline                                      | ·<br>1       | mg/kg          | 0.016           | 0.0091         | ND        |
| 4-Chlorophenyl-phenylether                           | <del></del>  | mg/kg          | 0.011           | 0.036          | ND        |
| 4-Nitroaniline                                       | 1            | mg/kg          | 0.014           | 0.036          | ND        |
| 4-Nitrophenol                                        | 1            | mg/kg          | 0.028           | 0.036          | ND        |
| Acenaphthene                                         | 1            | mg/kg          | 0.010           | 0.036          | ND        |
| Acenaphthylene                                       |              | mg/kg          | 0.011           | 0.036          | ND        |
| Acetophenone                                         | 1            | mg/kg          | 0.013           | 0.036          | ND        |
| Anthracene                                           | 1            | mg/kg          | 0.010           | 0.036          | ND        |
| Atrazine                                             |              | mg/kg          | 0.015           | 0.036          | ND        |
| Benzaldehyde                                         | 1            | mg/kg          | 0.39            | 0.036          | ND        |
| Benzo[a]anthracene                                   | 1            | mg/kg          | 0.012           | 0.036          | ND        |
| Benzo[a]pyrene<br>Benzo[b]fluoranthene               | 1            | mg/kg<br>mg/kg | 0.012<br>0.013  | 0.036<br>0.036 | ND<br>ND  |
| Benzo[g,h,i]perylene                                 |              | mg/kg          | 0.00025         | 0.036          | ND ND     |
| Benzo[k]fluoranthene                                 | 1            | mg/kg          | 0.013           | 0.036          | ND        |
| bis(2-Chloroethoxy)methane                           | 1            | mg/kg          | 0.010           | 0.036          | ND        |
| bis(2-Chloroethyl)ether                              | 1            | mg/kg          | 0.0088          | 0.0091         | ND        |
| bis(2-Chloroisopropyl)ether                          |              | mg/kg          | 0.014           | 0.036          | ND        |
| bis(2-Ethylhexyl)phthalate                           | 1            | mg/kg          | 0.032           | 0.036          | 0.34      |
| Butylbenzylphthalate                                 | 1            | mg/kg          | 0.028           | 0.036          | ND        |
| Caprolactam                                          | 11           | mg/kg          | 0.029           | 0.036          | ND        |
| Carbazole                                            | 1            | mg/kg          | 0.011           | 0.036          | ND        |
| Chrysene                                             | 1            | mg/kg          | 0.012           | 0.036          | ND        |
| Dibenzo[a,h]anthracene                               | 1            | mg/kg          | 0.013           | 0.036          | ND        |
| Dibenzofuran                                         |              | mg/kg          | 0.0092          | 0.0091         | ND        |
| Diethylphthalate                                     | 1            | mg/kg          | 0.023           | 0.036          | ND<br>ND  |
| Dimethylphthalate                                    | 1            | mg/kg          | 0.010           | 0.036          | ND        |
| Di-n-butylphthalate                                  | 1            | mg/kg          | 0.042           | 0.0091         | 0.077     |
| Di-n-octylphthalate Fluoranthene                     |              | mg/kg          | <u> 0.024</u>   | 0.036          | ND        |
| Fluorantiene Fluorene                                | 1            | mg/kg<br>mg/kg | 0.014           | 0.036          | ND<br>ND  |
| Hexachlorobenzene                                    | 1            | mg/kg          | 0.0099          | 0.036          | ND<br>ND  |
| Hexachlorobutadiene                                  | 1            | mg/kg          | 0.016           | 0.036          | ND        |
| Hexachlorocyclopentadiene                            | <del>-</del> | mg/kg          | 0.12            | 0.036          | ND        |
| Heyachloroethane                                     |              | ma/ka          | 0.016           | 0.000          | ND        |

Hexachloroethane

mg/kg

0.016

0.036

ND

| Lab#:   | HSI-SS-06 (0-0.5')<br>AD19479-011 |          |       |        | Collection Date:<br>Receipt Date: |           |
|---------|-----------------------------------|----------|-------|--------|-----------------------------------|-----------|
| Matrix: |                                   |          |       |        |                                   |           |
|         | Indeno[1,2,3-cd]pyrene            | 1        | mg/kg | 0.016  | 0.036                             | ND        |
|         | Isophorone                        | 1        | mg/kg | 0.012  | 0.036                             | ND        |
|         | Naphthalene                       | 1        | mg/kg | 0.010  | 0.0091                            | ND        |
|         | Nitrobenzene                      |          | mg/kg | 0.0015 | 0.036                             | <u>ND</u> |
|         | N-Nitroso-di-n-propylamine        | 1        | mg/kg | 0.014  | 0.0091                            | ND        |
|         | N-Nitrosodiphenylamine            | 1        | mg/kg | 0.12   | 0.036                             | ND        |
|         | Pentachlorophenol                 | 1        | mg/kg | 0.17   | 0.18                              | ND        |
|         | Phenanthrene                      |          | mg/kg |        | 0.036                             | ND        |
|         | Phenol                            | 1        | mg/kg | 0.010  | 0.036                             | ND        |
| _       | Pyrene                            |          | mg/kg | 0.012  | 0.036                             | <u>ND</u> |
| ٦       | 'AL Metais 6010D                  |          |       |        |                                   |           |
| -       | Analyte                           | DF       | Units | MDL    | RL                                | Result    |
|         | Aluminum                          | 1        | mg/kg | 18     | 220                               | 5000      |
|         | Barlum                            | 1        | mg/kg | 0.73   | 11                                | 24        |
|         | Calcium                           | 1        | mg/kg | 110    | 1100                              | 290J      |
|         | Chromium                          | 1        | mg/kg | 0.73   | 5.4                               | 21B       |
|         | Cobalt                            |          | mg/kg | 0.77   | 2.7                               | 1.5J      |
|         | Copper                            | 1        | mg/kg | 0.67   | 5.4                               | 8.9B      |
|         | Iron                              | 1        | mg/kg | 14     | 220                               | 9900B     |
|         | Lead                              | 1        | mg/kg | 0.67   | 5.4                               | 15        |
| •       | Magnesium                         | 1        | mg/kg | 21     | 540                               | 510J      |
|         | Manganese                         | 1        | mg/kg | 0.70   | 11                                | 37        |
|         | Nickel                            | 1        | mg/kg | 1.2    | 5.4                               | 3.8J      |
|         | Potassium                         | 1        | mg/kg | 110    | 540                               | 150J      |
|         | Sodium                            |          | mg/kg | 140    | 270                               | ND        |
|         | Zinc                              | 1        | mg/kg | 1.6    | 11                                | 25B       |
| 1       | AL Metals 6020B                   |          |       |        |                                   |           |
| -       | Analyte                           | DF       | Units | MDL    | RL                                | Result    |
|         | Antimony                          | 1        | mg/kg | 0.024  | 0.87                              | 0.053J    |
|         | Arsenic                           | ·<br>1   | mg/kg | 0.019  | 0.22                              | 3.2B      |
|         | Beryllium                         | 1        | mg/kg | 0.017  | 0.22                              | 0.18J     |
|         | Cadmium                           | 1        | mg/kg | 0.015  | 0.43                              | 0.18J     |
|         | Selenium                          | <u>i</u> | mg/kg | 0.069  | 2.2                               | 1.1JB     |
|         | Silver                            | 1        | mg/kg | 0.028  | 0.22                              | 0.047JB   |
|         | Thallium                          | 1        | mg/kg | 0.019  | 0.43                              | 0.035J    |
|         | Manadhii                          | á        |       | 0.040  | 0.00                              | 400       |

mg/kg

0.012

0.22

Vanadium

Sample ID: HSI-SS-06 (0.5-1') Lab#: AD19479-012

Matrix: Soil/Terracore

Collection Date: 9/25/2020 Receipt Date: 9/28/2020

% Solids SM2540G

| % 3011US 3M2340G |    |          |        |
|------------------|----|----------|--------|
| Analyte          | DF | Units RL | Result |
| % Solids         |    | percent  | 91     |

#### Volatile Organics (no search) 8260

| Analyte                               | DF    | Units      | MDL     | RL     | Result |
|---------------------------------------|-------|------------|---------|--------|--------|
| 1,1,1-Trichloroethane                 | 0.919 | mg/kg      | 0.00093 | 0.0020 | ND ND  |
| 1,1,2,2-Tetrachloroethane             | 0.919 | mg/kg      | 0.00045 | 0.0020 | 0.0039 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.919 | mg/kg      | 0.0014  | 0.0020 | ND     |
| 1,1,2-Trichloroethane                 | 0.919 | mg/kg      | 0.00046 | 0.0020 | ND     |
| 1,1-Dichloroethane                    | 0.919 | mg/kg      | 0.00088 | 0.0020 | ND     |
| 1,1-Dichloroethene                    | 0.919 | mg/kg      | 0.0012  | 0.0020 | ND     |
| 1,2,3-Trichlorobenzene                | 0.919 | mg/kg      | 0.00056 | 0.0020 | ND     |
| 1,2,4-Trichlorobenzene                | 0.919 | mg/kg      | 0.00064 | 0.0020 | ND     |
| 1,2-Dibromo-3-chloropropane           | 0.919 | mg/kg      | 0.00056 | 0.0020 | ND     |
| 1,2-Dibromoethane                     | 0.919 | mg/kg      | 0.00049 | 0.0010 | ND     |
| 1,2-Dichlorobenzene                   | 0.919 | mg/kg      | 0.00052 | 0.0020 | ND     |
| 1,2-Dichloroethane                    | 0.919 | mg/kg      | 0.00041 | 0.0020 | ND     |
| 1,2-Dichloropropane                   | 0.919 | mg/kg      | 0.00083 | 0.0020 | ND     |
| 1,3-Dichlorobenzene                   | 0.919 | mg/kg      | 0.00056 | 0.0020 | ND     |
| 1,4-Dichlorobenzene                   | 0.919 | mg/kg      | 0.00054 | 0.0020 | ND     |
| 1,4-Dioxane                           | 0.919 | mg/kg      | 0.049   | 0.10   | ND     |
| 2-Butanone                            | 0.919 | mg/kg      | 0.0012  | 0.0020 | 0.0035 |
| 2-Hexanone                            | 0.919 | mg/kg      | 0.00086 | 0.0020 | ND     |
| 4-Methyl-2-pentanone                  | 0.919 | mg/kg      | 0.00059 | 0.0020 | ND     |
| Acetone                               | 0.919 | mg/kg      | 0.0068  | 0.010  | 0.064  |
| Benzene                               | 0.919 | mg/kg      | 0.00074 | 0.0010 | ND     |
| Bromochloromethane                    | 0.919 | mg/kg      | 0.00071 | 0.0020 | ND     |
| Bromodichloromethane                  | 0.919 | mg/kg      | 0.00047 | 0.0020 | ND     |
| Bromoform                             | 0.919 | mg/kg      | 0.00033 | 0.0020 | ND     |
| Bromomethane                          | 0.919 | mg/kg      | 0.0016  | 0.0020 | ND     |
| Carbon disulfide                      | 0.919 | mg/kg      | 0.0034  | 0.0034 | ND     |
| Carbon tetrachloride                  | 0.919 | mg/kg      | 0.00098 | 0.0020 | ND     |
| Chlorobenzene                         |       | mg/kg      | 0.00063 | 0.0020 | ND     |
| Chloroethane                          | 0.919 | mg/kg      | 0.0020  | 0.0020 | ND     |
| Chloroform                            | 0.919 | mg/kg      | 0.0014  | 0.0020 | ND     |
| Chloromethane                         | 0.919 | mg/kg      | 0.0012  | 0.0020 | ND     |
| cis-1,2-Dichloroethene                | 0.919 | mg/kg      | 0.00082 | 0.0020 | ND     |
| cis-1,3-Dichloropropene               | 0.919 | mg/kg      | 0.00054 | 0.0020 | ND     |
| Cyclohexane                           | 0.919 | mg/kg      | 0.0012  | 0.0020 | ND     |
| Dibromochloromethane                  | 0.919 | mg/kg      | 0.00043 | 0.0020 | ND     |
| Dichlorodifluoromethane               |       | mg/kg      | 0.0014  | 0.0020 | ND ND  |
| Ethylbenzene<br>                      | 0.919 | mg/kg<br>" | 0.00070 | 0.0010 | ND     |
| sopropylbenzene                       | 0.919 | mg/kg      | 0.00084 | 0.0010 | ND     |
| m&p-Xylenes                           | 0.919 | mg/kg      | 0.0012  | 0.0012 | ND     |
| Methyl Acetate                        | 0.919 | mg/kg      | 0.00097 | 0.0020 | ND     |
| Methylcyclohexane                     | 0.919 | mg/kg      | 0.00091 | 0.0020 | 0.0024 |
| Methylene chloride                    | 0.919 | mg/kg      | 0.00076 | 0.0020 | 0.0035 |
| Methyl-t-butyl ether                  | 0.919 | mg/kg      | 0.00055 | 0.0010 | ND     |
| o-Xylene                              | 0.919 | mg/kg      | 0.00072 | 0.0010 | ND -   |
| Styrene                               | 0.919 | mg/kg      | 0.00056 | 0.0020 | 0.36   |
| Tetrachloroethene                     | 0.919 | mg/kg      | 0.00099 | 0.0020 | 0.0035 |
| Toluene                               | 0.919 | mg/kg<br>" | 0.00067 | 0.0010 | ND     |
| trans-1,2-Dichloroethene              |       | mg/kg      | 0.0012  | 0.0020 | ND ND  |
| trans-1,3-Dichloropropene             | 0.919 | mg/kg      | 0.00047 | 0.0020 | ND     |
| Trichloroethene                       | 0.919 | mg/kg      | 0.00083 | 0.0020 | ND     |
| Trichloroffuoromethane                | 0.919 | mg/kg      | 0.0012  | 0.0020 | ND     |
| Vinyl chloride                        | 0.919 | mg/kg      | 0.0012  | 0.0020 | ND     |

Sample ID: HSI-SS-07 (0-0.5')

Lab#: AD19479-013

Matrix: Soil

Collection Date: 9/25/2020 Receipt Date: 9/28/2020

Soil \_\_\_\_\_\_\_

|       | Analyte                                   | DF            | Units                 | RL             |                | Result      |
|-------|-------------------------------------------|---------------|-----------------------|----------------|----------------|-------------|
|       | % Solids                                  | 1             | percent               |                |                | 82          |
| Mercu | ury (Soil/Waste) 7471B                    |               |                       |                |                |             |
|       | Analyte                                   | DF            | Units                 | MDL            | RL             | Result      |
|       | Mercury                                   |               | mg/kg                 | 0.015          | 0.10           | 0.038J      |
| Semi  | volatile Organics (no search) 8270        |               |                       |                |                |             |
|       |                                           | DE            | Heite                 | MDI            |                | Danulé      |
|       | Analyte                                   | DF            | Units                 | MDL            | RL             | Result      |
|       | 1,1'-Biphenyl                             | 1             | mg/kg                 | 0.012          | 0.041          | ND          |
|       | 1,2,4,5-Tetrachlorobenzene<br>1,4-Dioxane | 1             | mg/kg<br>mg/kg        | 0.014<br>0.020 | 0.041<br>0.010 | ND<br>ND    |
|       | 2,3,4,6-Tetrachlorophenol                 | 1             | mg/kg                 | 0.020          | 0.041          | ND          |
|       | 2,4,5-Trichlorophenol                     |               | mg/kg                 | 0.012          | 0.041          |             |
|       | 2,4,6-Trichlorophenol                     | 1             | mg/kg                 | 0.032          | 0.041          | ND          |
|       | 2,4-Dichlorophenol                        | 1             | mg/kg                 | 0.015          | 0.010          | ND          |
|       | 2,4-Dimethylphenol                        | 1             | mg/kg                 | 0.020          | 0.010          | ND          |
|       | 2,4-Dinitrophenol                         | 1             | mg/kg                 | 0.18           | 0.20           | ND          |
|       | 2,4-Dinitrotoluene                        | 1             | mg/kg                 | 0.013          | 0.041          | ND          |
|       | 2,6-Dinitrotoluene                        | 1             | mg/kg                 | 0.021          | 0.041          | ND          |
|       | 2-Chloronaphthalene                       | 1             | mg/kg                 | 0.018          | 0.041          | ND          |
|       | 2-Chlorophenol                            | 1             | mg/kg                 | 0.013          | 0.041          | ND          |
|       | 2-Methylnaphthalene                       | 1             | mg/kg                 | 0.013          | 0.041          | ND          |
|       | 2-Methylphenol                            | 1             | mg/kg                 | 0.012          | 0.010          | ND          |
|       | 2-Nitroaniline                            | 1             | mg/kg                 | 0.019          | 0.041          | ND          |
|       | 2-Nitrophenol                             | 1             | mg/kg                 | 0.018          | 0.041          | ND          |
|       | 3&4-Methylphenol                          | 1             | mg/kg<br>"            | 0.012          | 0.010          | ND          |
|       | 3,3'-Dichlorobenzidine                    | 1             | mg/kg                 | 0.033          | 0.041          | ND          |
|       | 3-Nitroaniline                            | 1 _           | mg/kg                 | 0.016          | 0.041          | ND ND       |
|       | 4,6-Dinitro-2-methylphenol                | 1<br>1        | mg/kg                 | 0.14<br>0.011  | 0.20           | ND          |
|       | 4-Bromophenyl-phenylether                 | 1             | mg/kg                 |                | 0.041          | ND<br>ND    |
|       | 4-Chloro-3-methylphenol                   | 1             | mg/kg                 | 0.0098         | 0.041<br>0.010 | ND<br>ND    |
|       | 4-Chlorophenyl-phenylether                | 1             | mg/kg<br>mg/kg        | 0.018          | 0.010          | ND<br>ND    |
|       | 4-Nitroaniline                            | 1             | mg/kg                 | 0.012          | 0.041          | ND          |
|       | 4-Nitrophenol                             | 1             | mg/kg                 | 0.031          | 0.041          | ND          |
|       | Acenaphthene                              | 1             | mg/kg                 | 0.012          | 0.041          | ND          |
|       | Acenaphthylene                            | - <del></del> | mg/kg                 | 0.012          | 0.041          |             |
|       | Acetophenone                              | 1             | mg/kg                 | 0.015          | 0.041          | ND          |
|       | Anthracene                                | 1             | mg/kg                 | 0.011          | 0.041          | ND          |
|       | Atrazine                                  | 1             | mg/kg                 | 0.016          | 0.041          | ND          |
|       | Benzaldehyde                              | 1             | mg/kg                 | 0.44           | 0.041          | ND          |
|       | Benzo[a]anthracene                        | 1             | mg/kg                 | 0.014          | 0.041          | ND          |
|       | Benzo[a]pyrene                            | 1             | mg/kg                 | 0.014          | 0.041          | ND          |
|       | Benzo[b]fluoranthene                      | 1             | mg/kg                 | 0.015          | 0.041          | ND          |
|       | Benzo(g,h,i)perylene                      | 1             | mg/kg                 | 0.00028        | 0.041          | ND          |
|       | Benzo[k]fluoranthene                      | 1             | mg/kg                 | 0.015          | 0.041          | ND          |
|       | bis(2-Chloroethoxy)methane                | 1             | mg/kg                 | 0.012          | 0.041          | ND          |
|       | bis(2-Chloroethyl)ether                   | 1             | mg/kg                 | 0.0099         | 0.010          | ND          |
| -     | bis(2-Chloroisopropyl)ether               | 1             | mg/kg                 | 0.016          | 0.041          | ND          |
|       | bis(2-Ethylhexyl)phthalate                | 1             | mg/kg                 | 0.036          | 0.041          | 0.42        |
|       | Butylbenzylphthalate                      | 1             | mg/kg                 | 0.031          | 0.041          | ND          |
|       | Caprolactam                               | <u> </u>      | mg/kg                 | 0.033          | 0.041          | ND          |
|       | Carbazole                                 | 1             | mg/kg                 | 0.013          | 0.041          | ND          |
|       | Chrysene                                  | 1             | mg/kg                 | 0.014          | 0.041          | ND<br>ND    |
|       | Dibenzo[a,h]anthracene                    | 1             | mg/kg                 | 0.015          | 0.041          | ND<br>ND    |
|       | Diethylphthalate                          | 1             | mg/kg                 | 0.010          | 0.010          | ND ND       |
|       |                                           | 1             | mg/kg<br>mg/kg        | 0.026<br>0.011 | 0.041          | ND<br>ND    |
|       | Dimethylphthalate Di-n-butylphthalate     | 4             | mg/kg<br><b>mg/kg</b> | 0.011          | 0.041          | 0.061       |
|       | Di-n-octylphthalate                       | 1             | mg/kg<br>mg/kg        | 0.047          | 0.010          | 0.061<br>ND |
|       | Fluoranthene                              | 1             | mg/kg                 | 0.016          | 0.041          |             |
|       | Fluorene                                  | 1             | mg/kg                 | 0.010          | 0.041          | ND          |
|       | Hexachlorobenzene                         | 1             | mg/kg                 | 0.017          | 0.041          | ND<br>ND    |
|       | Hexachlorobutadiene                       | 1             | mg/kg                 | 0.018          | 0.041          | ND          |
|       | Hexachlorocyclopentadiene                 | <del>-</del>  | mg/kg                 | 0.13           | 0.041          | ND ND       |
|       | Hexachloroethane                          | 1             | mg/kg                 | 0.018          | 0.041          | ND          |

|            |                            |    |       |        |                  | 0032000   | 883 |
|------------|----------------------------|----|-------|--------|------------------|-----------|-----|
| Sample ID: | HSI-SS-07 (0-0.5')         |    |       |        | Collection Date: | 9/25/2020 |     |
|            | AD19479-013                |    |       |        | Receipt Date:    |           | 1   |
| Matrix     |                            |    |       |        | Neceipi Date.    | 9/20/2020 |     |
| Mauix      |                            |    |       |        |                  |           |     |
|            | Indeno[1,2,3-cd]pyrene     | 1  | mg/kg | 0.018  | 0.041            | ND        |     |
|            | Isophorone                 | 1  | mg/kg | 0.013  | 0.041            | ND        |     |
|            | Naphthalene                | 1  | mg/kg | 0.012  | 0.010            | ND        |     |
| ¥          | Nitrobenzene               |    | mg/kg | 0.0016 | 0.041            | ND        |     |
|            | N-Nitroso-di-n-propylamine | 1  | mg/kg | 0.015  | 0.010            | ND        |     |
|            | N-Nitrosodiphenylamine     | 1  | mg/kg | 0.14   | 0.041            | ND        |     |
|            | Pentachlorophenol          | 1  | mg/kg | 0.20   | 0.20             | ND        |     |
|            | Phenanthrene               | 1  | mg/kg | 0.013  | 0.041            | ND        |     |
|            | Phenol                     | 1  | mg/kg | 0.011  | 0.041            | ND        |     |
|            | Pyrene                     | 1  | mg/kg | 0.014  | 0.041            | ND        |     |
|            | TAL Metals 6010D           |    |       |        |                  |           |     |
| •          | Analyte                    | DF | Units | MDL    | RL               | Result    |     |
|            | Aluminum                   | 1  | mg/kg | 20     | 240              | 3200      |     |
|            | Barlum                     | 1  | mg/kg | 0.82   | 12               | 21        |     |
|            | Calcium                    | 1  | mg/kg | 120    | 1200             | 410J      |     |
|            | Chromium                   | 1  | mg/kg | 0.82   | 6.1              | 18B       |     |
| -          | Cobalt                     |    | mg/kg | 0.87   | 3.0              | 1.6J      | -   |
|            | Copper                     | 1  | mg/kg | 0.75   | 6.1              | 12B       |     |
|            | Iron                       | 1  | mg/kg | 16     | 240              | 14000B    |     |
|            | Lead                       | 1  | mg/kg | 0.75   | 6.1              | 22        |     |
| -          | Magnesium                  | 1  | mg/kg | 24     | 610              | 300J      | -   |
|            | Manganese                  | 1  | mg/kg | 0.78   | 12               | 68        |     |
|            | Nickel                     | 1  | mg/kg | 1.3    | 6.1              | 4.6J      |     |
|            | Potassium                  | 1  | mg/kg | 120    | 610              | 150J      |     |
|            | Sodium                     |    | mg/kg | 150    | 300              | ND        |     |
|            | Zinc                       | 1  | mg/kg | 1.8    | 12               | 42B       |     |
|            | TAL Metals 6020B           |    |       |        |                  |           |     |
| •          | Analyte                    | DF | Units | MDL    | RL               | Result    |     |
|            | Antimony                   | 1  | mg/kg | 0.027  | 0.98             | 0.084J    |     |
|            | Arsenic                    | 1  | mg/kg | 0.021  | 0.24             | 2.2B      |     |
|            | Beryllium                  | 1  | mg/kg | 0.019  | 0.24             | 0.14J     |     |
|            | Cadmium                    | 1  | mg/kg | 0.017  | 0.49             | 0.48J     |     |
|            | Selenium                   |    | mg/kg | 0.077  | 2.4              | 1.4JB     | -   |
|            | 011                        | _  |       | 0.000  | 0.04             |           |     |

mg/kg

mg/kg

mg/kg

0.032

0.022

0.013

0.24

0.49

0.24

Silver

Thallium

Vanadium

0.084JB

0.022J

Sample ID: HSI-SS-07 (0.5-1')

Collection Date: 9/25/2020

Lab#: AD19479-014
Matrix: Soil/Terracore

Receipt Date: 9/28/2020

#### % Solids SM2540G

| Analyte                            | DF | Units   | RL | Result |
|------------------------------------|----|---------|----|--------|
| % Solids                           | 1  | percent |    | 71     |
| Volatile Organics (no search) 8260 |    |         |    |        |

| Analyte                               | DF             | Units          | MDL     | RL     | Result        |
|---------------------------------------|----------------|----------------|---------|--------|---------------|
| 1,1,1-Trichloroethane                 | 0.816          | mg/kg          | 0.0011  | 0.0023 | ND            |
| 1,1,2,2-Tetrachloroethane             | 0.816          | mg/kg          | 0.00052 | 0.0023 | ND            |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.816          | mg/kg          | 0.0016  | 0.0023 | ND            |
| 1,1,2-Trichloroethane                 | 0.816          | mg/kg          | 0.00053 | 0.0023 | ND            |
| 1,1-Dichloroethane                    | 0.816          | mg/kg          | 0.0010  | 0.0023 | ND            |
| 1,1-Dichloroethene                    | 0.816          | mg/kg          | 0.0013  | 0.0023 | ND            |
| 1,2,3-Trichlorobenzene                | 0.816          | mg/kg          | 0.00063 | 0.0023 | ND            |
| 1,2,4-Trichlorobenzene                | 0.816          | mg/kg          | 0.00072 | 0.0023 | ND            |
| 1,2-Dibromo-3-chloropropane           | 0.816          | mg/kg          | 0.00063 | 0.0023 | ND            |
| 1,2-Dibromoethane                     | 0.816          | mg/kg          | 0.00056 | 0.0011 | ND            |
| 1,2-Dichlorobenzene                   | 0.816          | mg/kg          | 0.00059 | 0.0023 | ND            |
| 1,2-Dichloroethane                    | 0.816          | mg/kg          | 0.00047 | 0.0023 | ND            |
| 1,2-Dichloropropane                   | 0.816          | mg/kg          | 0.00094 | 0.0023 | ND -          |
| 1,3-Dichlorobenzene                   | 0.816          | mg/kg          | 0.00063 | 0.0023 | ND            |
| 1,4-Dichlorobenzene                   | 0.816          | mg/kg          | 0.00061 | 0.0023 | ND            |
| 1,4-Dioxane                           | 0.816          | mg/kg          | 0.056   | 0.11   | ND            |
| 2-Butanone                            | 0.816          | mg/kg          | 0.0014  | 0.0023 | 0.14          |
| 2-Hexanone                            | 0.816          | mg/kg          | 0.00098 | 0.0023 | ND            |
| 4-Methyl-2-pentanone                  | 0.816          | mg/kg          | 0.00067 | 0.0023 | ND            |
| Acetone                               | 0.816          | mg/kg          | 0.0078  | 0.011  | 0.74          |
| Benzene                               | 0.816          | mg/kg          | 0.00084 | 0.0011 |               |
| Bromochloromethane                    | 0.816          | mg/kg          | 0.00080 | 0.0023 | ND            |
| Bromodichloromethane                  | 0.816          | mg/kg          | 0.00054 | 0.0023 | ND            |
| Bromoform                             | 0.816          | mg/kg          | 0.00038 | 0.0023 | ND            |
| Bromomethane                          | 0.816          | mg/kg          | 0.0018  | 0.0023 | ND            |
| Carbon disulfide                      | 0.816          | mg/kg          | 0.0039  | 0.0039 | ND            |
| Carbon tetrachloride                  | 0.816          | mg/kg          | 0.0011  | 0.0023 | ND            |
| Chlorobenzene                         | 0.816          | mg/kg          | 0.00071 | 0.0023 | ND            |
| Chloroethane                          | 0.816          | mg/kg          | 0.0022  | 0.0023 | ND            |
| Chloroform                            | 0.816          | mg/kg          | 0.0016  | 0.0023 | ND            |
| Chloromethane                         | 0.816          | mg/kg          | 0.0014  | 0.0023 | ND            |
| cis-1,2-Dichloroethene                | 0.816          | mg/kg          | 0.00093 | 0.0023 | ND            |
| cis-1,3-Dichloropropene               | 0.816          | mg/kg          | 0.00061 | 0.0023 | ND -          |
| Cyclohexane                           | 0.816          | mg/kg          | 0.0014  | 0.0023 | ND            |
| Dibromochloromethane                  | 0.816          | mg/kg          | 0.00049 | 0.0023 | ND            |
| Dichlorodifluoromethane               | 0.816          | mg/kg          | 0.0016  | 0.0023 | ND            |
| Ethylbenzene                          | 0.816          | mg/kg          | 0.00079 | 0.0011 | <del>ND</del> |
| Isopropylbenzene                      | 0.816          | mg/kg          | 0.00079 | 0.0011 | ND            |
| m&p-Xylenes                           | 0.816          | mg/kg          | 0.00093 | 0.0011 | ND            |
| Methyl Acetate                        | 0.816          | mg/kg          | 0.0014  | 0.0014 | ND            |
| Methylcyclohexane                     | 0.816          | mg/kg          | 0.0011  | 0.0023 |               |
| • •                                   | 0.816          |                | 0.0010  | 0.0023 | 0.0022J       |
| Methylene chloride                    |                | mg/kg<br>mg/kg | 0.00062 | 0.0023 | 0.00223<br>ND |
| Methyl-t-butyl ether                  | 0.816<br>0.816 | mg/kg<br>mg/kg | 0.00082 | 0.0011 | ND<br>ND      |
| 0-Xylene                              |                | mg/kg          |         |        | ND            |
| Styrene                               | 0.816          | mg/kg          | 0.00063 | 0.0023 |               |
| Tetrachloroethene                     | 0.816          | mg/kg          | 0.0011  | 0.0023 | ND<br>0.070   |
| Toluene                               | 0.816          | mg/kg          | 0.00076 | 0.0011 | 0.070         |
| trans-1,2-Dichloroethene              |                | mg/kg          | 0.0014  | 0.0023 | ND            |
| trans-1,3-Dichloropropene             | 0.816          | mg/kg          | 0.00054 | 0.0023 | ND            |
| Trichloroethene                       | 0.816          | mg/kg          | 0.00094 | 0.0023 | ND            |
| Trichlorofluoromethane                | 0.816          | mg/kg          | 0.0014  | 0.0023 | 0.0092        |
| Vinyl chloride                        | 0.816          | mg/kg          | 0.0014  | 0.0023 | ND            |

Sample ID: HSI-SS-08 (0-0.5')

Lab#: AD19479-015

Matrix: Soil

Collection Date: 9/25/2020 Receipt Date: 9/28/2020

| Analyte                                   | DF                       | Units                 | RL             |               | Result       |
|-------------------------------------------|--------------------------|-----------------------|----------------|---------------|--------------|
| % Solids                                  | 1                        | percent               |                |               | 94           |
| ercury (Soil/Waste) 7471B                 |                          |                       |                |               |              |
| Analyte                                   | DF                       | Units                 | MDL            | RL            | Result       |
| Mercury                                   | 1                        | mg/kg                 | 0.013          | 0.089         | ND           |
| mivolatile Organics (no search) 8270      |                          | mg/kg                 | 0.013          | 0.003         |              |
|                                           |                          | 11.11                 |                |               | <b>5</b> #   |
| Analyte                                   | DF                       | Units                 | MDL            | RL            | Result       |
| 1,1'-Biphenyl                             | 3                        | mg/kg                 | 0.031          | 0.11          | ND<br>ND     |
| 1,2,4,5-Tetrachlorobenzene<br>1,4-Dioxane | 3<br>3                   | mg/kg<br>mg/kg        | 0.036<br>0.054 | 0.11<br>0.027 | ND<br>ND     |
| 2,3,4,6-Tetrachlorophenol                 | 3                        | mg/kg                 | 0.040          | 0.11          | ND           |
| 2,4,5-Trichlorophenol                     | 3                        | mg/kg                 | 0.030          | 0.11          | ND           |
| 2,4,6-Trichlorophenol                     | 3                        | mg/kg                 | 0.083          | 0.11          | ND           |
| 2,4-Dichlorophenol                        | 3                        | mg/kg                 | 0.040          | 0.027         | ND           |
| 2,4-Dimethylphenol                        | 3                        | mg/kg                 | 0.052          | 0.027         | ND           |
| 2,4-Dinitrophenol                         | 3                        | mg/kg                 | 0.46           | 0.53          | ND           |
| 2,4-Dinitrotoluene                        | 3                        | mg/kg                 | 0.033          | 0.11          | ND           |
| 2,6-Dinitrotoluene                        | 3                        | mg/kg                 | 0.054          | 0.11          | ND           |
| 2-Chloronaphthalene                       | 3                        | mg/kg                 | 0.047          | 0.11          | ND           |
| 2-Chlorophenol                            | 3                        | mg/kg                 | 0.035          | 0.11          | ND           |
| 2-Methylnaphthalene                       | 3                        | mg/kg                 | 0.033          | 0.11          | ND           |
| 2-Methylphenol                            | 3                        | mg/kg                 | 0.031          | 0.027         | ND           |
| 2-Nitroaniline                            | 3                        | mg/kg                 | 0.050          | 0.11          | ND           |
| 2-Nitrophenol                             | 3                        | mg/kg                 | 0.048          | 0.11          | ND           |
| 3&4-Methylphenol                          | 3                        | mg/kg                 | 0.031          | 0.027         | ND           |
| 3,3'-Dichlorobenzidine                    | 3                        | mg/kg                 | 0.086          | 0.11          | ND           |
| 3-Nitroaniline                            | 3                        | mg/kg                 | 0.041          | 0.11          | ND           |
| 4,6-Dinitro-2-methylphenol                | 3                        | mg/kg                 | 0.37           | 0.53          | ND           |
| 4-Bromophenyl-phenylether                 | 3                        | mg/kg                 | 0.030          | 0.11          | ND           |
| 4-Chloro-3-methylphenol                   | 3                        | mg/kg                 | 0.026          | 0.11          | ND           |
| 4-Chloroaniline                           | 3                        | mg/kg                 | 0.047          | 0.027         | ND           |
| 4-Chlorophenyl-phenylether                | 3                        | mg/kg                 | 0.033          | 0.11          | ND           |
| 4-Nitroaniline                            | 3                        | mg/kg                 | 0.041          | 0.11          | ND           |
| 4-Nitrophenol                             | 3                        | mg/kg                 | 0.081          | 0.11          | ND           |
| Acenaphthene                              | 3                        | mg/kg                 | 0.030          | 0.11          | ND           |
| Acenaphthylene                            | 3                        | mg/kg                 | 0.032          | 0.11          | ND<br>ND     |
| Acetophenone Anthracene                   | 3<br>3                   | mg/kg                 | 0.038<br>0.029 | 0.11<br>0.11  | ND<br>ND     |
| Atrazine                                  | 3                        | mg/kg                 |                |               | ND<br>ND     |
| Benzaldehyde                              | $-\frac{3}{3}$           | mg/kg                 | 1.2            | 0.11          | ND           |
| ·                                         | 3                        | mg/kg<br>mg/kg        | 0.035          | 0.11          | ND<br>ND     |
| Benzo[a]anthracene<br>Benzo[a]pyrene      | 3                        | mg/kg<br>mg/kg        | 0.036          | 0.11          | ND           |
| Benzo[b]fluoranthene                      | 3                        | mg/kg<br>mg/kg        | 0.038          | 0.11          | ND           |
| Benzo(g,h,i)perylene                      | - · - · <del>3</del> · · | · — · — · · — ·       | 0.00073        | - 0.11        | 0.033J       |
| Benzo[g,n,t]perylene Benzo[k]fluoranthene | 3                        | <b>mg/kg</b><br>mg/kg | 0.00073        | 0.11          | 0.0333<br>ND |
| bis(2-Chloroethoxy)methane                | 3                        | mg/kg<br>mg/kg        | 0.039          | 0.11          | ND           |
| bis(2-Chloroethyl)ether                   | 3                        | mg/kg<br>mg/kg        | 0.026          | 0.027         | ND           |
| bis(2-Chloroisopropyl)ether               | $-\frac{3}{3}$           | mg/kg                 | 0.026          | 0.027         | ND           |
| bis(2-Ethylhexyl)phthalate                | 3                        | mg/kg<br>mg/kg        | 0.043          | 0.11          | ND           |
| Butylbenzylphthalate                      | 3                        | mg/kg                 | 0.082          | 0.11          | ND           |
| Caprolactam                               | 3                        | mg/kg                 | 0.085          | 0.11          | ND           |
| Carbazole                                 | <sub>3</sub> _           | mg/kg                 | 0.033          | 0.11          | ND           |
| Chrysene                                  | 3                        | mg/kg                 | 0.036          | 0.11          | ND           |
| Dibenzo[a,h]anthracene                    | 3                        | mg/kg                 | 0.039          | 0.11          | ND           |
| Dibenzofuran                              | 3                        | mg/kg                 | 0.027          | 0.027         | ND           |
| Diethylphthalate                          | 3                        | mg/kg                 | 0.069          | 0.11          | ND           |
| Dimethylphthalate                         | 3                        | mg/kg                 | 0.030          | 0.11          | ND           |
| Di-n-butylphthalate                       | 3                        | mg/kg                 | 0.12           | 0.027         | ND           |
| Di-n-octylphthalate                       | 3                        | mg/kg                 | 0.070          | 0.11          | ND           |
| Fluoranthene                              | 3                        | mg/kg                 | 0.041          | 0.11          | ND           |
| Fluorene                                  | 3                        | mg/kg                 | 0.029          | 0.11          | ND           |
| Hexachlorobenzene                         | 3                        | mg/kg                 | 0.044          | 0.11          | ND           |
| Hexachlorobutadiene                       | 3                        | mg/kg                 | 0.047          | 0.11          | ND           |
| Hexachlorocyclopentadiene                 |                          | mg/kg                 | 0.35           | 0.11          | ND           |
| nexacillorocyclopentadiene                |                          |                       |                |               |              |

| mpie iu: | HSI-SS-08 (0-0.5')         |    |       |        | Collection Date: | 9/25/2020 |
|----------|----------------------------|----|-------|--------|------------------|-----------|
| Lab#:    | AD19479-015                |    |       |        | Receipt Date:    | 9/28/2020 |
| Matrix:  | Soil                       |    |       |        |                  | 0,20,202  |
|          | Indeno[1,2,3-cd]pyrene     | 3  | mg/kg | 0.048  | 0.11             | ND        |
|          | Isophorone                 | 3  | mg/kg | 0.034  | 0.11             | ND        |
|          | Naphthalene                | 3  | mg/kg | 0.031  | 0.027            | ND        |
|          | Nitrobenzene               | 3  | mg/kg | 0.0043 | 0.11             | ND        |
|          | N-Nitroso-di-n-propylamine |    | mg/kg | 0.040  | 0.027            | ND        |
|          | N-Nitrosodiphenylamine     | 3  | mg/kg | 0.36   | 0.11             | ND        |
|          | Pentachlorophenol          | 3  | mg/kg | 0.51   | 0.53             | ND        |
|          | Phenanthrene               | 3  | mg/kg | 0.034  | 0.11             | ND        |
|          | Phenol                     | 3  | mg/kg | 0.029  | 0.11             | ND        |
| _        | Pyrene                     | 3  | mg/kg | 0.036  | 0.11             | ND        |
| Т        | AL Metals 6010D            |    |       |        |                  |           |
| _        | Analyte                    | DF | Units | MDL    | RL               | Result    |
|          | Aluminum                   | 1  | mg/kg | 18     | 210              | 3900      |
|          | Barlum                     | 1  | mg/kg | 0.72   | 11               | 29        |
|          | Calcium                    | 1  | mg/kg | 110    | 1100             | 19000     |
|          | Chromium                   | 1  | mg/kg | 0.71   | 5.3              | 15B       |
| _        | Cobalt                     |    | mg/kg | 0.76   | 2.7              | 3.1       |
|          | Copper                     | 1  | mg/kg | 0.66   | 5.3              | 118       |
|          | Iron                       | 1  | mg/kg | 14     | 210              | 8100B     |
|          | Lead                       | 1  | mg/kg | 0.66   | 5.3              | 6.6       |
|          | Magnesium                  | 1  | mg/kg | 21     | 530              | 7900      |
|          | Manganese                  | 1  | mg/kg | 0.68   | 11               | 150       |
|          | Nickel                     | 1  | mg/kg | 1.2    | 5.3              | 9.1       |
| _        | Potassium                  | 1  | mg/kg | 100    | 530              | 540       |
|          | Sodium                     | 1  | mg/kg | 130    | 270              | ND        |
| _        | Zinc                       | 11 | mg/kg | 1.6    | 11               | 228       |
| Т        | AL Metals 6020B            |    |       |        |                  |           |
| _        | Analyte                    | DF | Units | MDL    | RL               | Result    |
|          | Antimony                   | 1  | mg/kg | 0.024  | 0.85             | ND        |
|          | Arsenic                    | 1  | mg/kg | 0.019  | 0.21             | 2.2B      |
|          | Beryllium                  | 1  | mg/kg | 0.017  | 0.21             | 0.14J     |
| _        | Cadmium                    | 1  | mg/kg | 0.015  | 0.43             | 0.15J     |
|          | Selenium                   | 1  | mg/kg | 0.068  | 2.1              | 0.87JB    |
|          | Silver                     | 1  | mg/kg | 0.028  | 0.21             | 0.049JB   |
|          | Thallium                   |    | mg/kg | 0.019  | 0.43             | 0.028J    |

Sample ID: HSI-SS-08 (0.5-1') Lab#: AD19479-016

Matrix: Soil/Terracore

Collection Date: 9/25/2020 Receipt Date: 9/28/2020

### % Solids SM2540G

| Analyte                            | DF | Units   | RL | Result |
|------------------------------------|----|---------|----|--------|
| % Solids                           | 1  | percent |    |        |
| Volatile Organics (no search) 8260 |    |         |    |        |

| Analyte                               | DF    | Units | MDL     | RL      | Result   |
|---------------------------------------|-------|-------|---------|---------|----------|
| 1,1,1-Trichloroethane                 | 0.766 | mg/kg | 0.00079 | 0.0017  | ND       |
| 1,1,2,2-Tetrachloroethane             | 0.766 | mg/kg | 0.00039 | 0.0017  | 0.0015J  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.766 | mg/kg | 0.0012  | 0.0017  | ND       |
| 1,1,2-Trichloroethane                 | 0.766 | mg/kg | 0.00040 | 0.0017  | 0.00066J |
| 1,1-Dichloroethane                    | 0.766 | mg/kg | 0.00075 | 0.0017  | ND       |
| 1,1-Dichloroethene                    | 0.766 | mg/kg | 0.00099 | 0.0017  | ND       |
| 1,2,3-Trichlorobenzene                | 0.766 | mg/kg | 0.00047 | 0.0017  | ND       |
| 1,2,4-Trichlorobenzene                | 0.766 | mg/kg | 0.00054 | 0.0017  | ND       |
| 1,2-Dibromo-3-chloropropane           | 0.766 | mg/kg | 0.00047 | 0.0017  | ND       |
| 1,2-Dibromoethane                     | 0.766 | mg/kg | 0.00042 | 0.00086 | ND       |
| 1,2-Dichlorobenzene                   | 0.766 | mg/kg | 0.00044 | 0.0017  | ND       |
| 1,2-Dichloroethane                    | 0.766 | mg/kg | 0.00035 | 0.0017  | ND       |
| 1,2-Dichloropropane                   | 0.766 | mg/kg | 0.00071 | 0.0017  | ND       |
| 1,3-Dichlorobenzene                   | 0.766 | mg/kg | 0.00047 | 0.0017  | ND       |
| 1,4-Dichlorobenzene                   | 0.766 | mg/kg | 0.00046 | 0.0017  | ND       |
| 1,4-Dioxane                           | 0.766 | mg/kg | 0.042   | 0.086   | ND       |
| 2-Butanone                            | 0.766 | mg/kg | 0.0010  | 0.0017  | ND I     |
| 2-Hexanone                            | 0.766 | mg/kg | 0.00073 | 0.0017  | ND       |
| 4-Methyl-2-pentanone                  | 0.766 | mg/kg | 0.00050 | 0.0017  | ND       |
| Acetone                               | 0.766 | mg/kg | 0.0058  | 0.0086  | 0.0074J  |
| Benzene                               | 0.766 | mg/kg | 0.00063 | 0.00086 | ND       |
| Bromochloromethane                    | 0.766 | mg/kg | 0.00060 | 0.0017  | ND       |
| Bromodichloromethane                  | 0.766 | mg/kg | 0.00040 | 0.0017  | ND       |
| Bromoform                             | 0.766 | mg/kg | 0.00028 | 0.0017  | ND       |
| Bromomethane                          | 0.766 | mg/kg | 0.0014  | 0.0017  | ND       |
| Carbon disulfide                      | 0.766 | mg/kg | 0.0029  | 0.0029  | ND       |
| Carbon tetrachloride                  | 0.766 | mg/kg | 0.00083 | 0.0017  | ND       |
| Chlorobenzene                         | 0.766 | mg/kg | 0.00053 | 0.0017  | ND       |
| Chloroethane                          | 0.766 | mg/kg | 0.0017  | 0.0017  | ND       |
| Chloroform                            | 0.766 | mg/kg | 0.0012  | 0.0017  | ND       |
| Chloromethane                         | 0.766 | mg/kg | 0.0011  | 0.0017  | ND       |
| cis-1,2-Dichloroethene                | 0.766 | mg/kg | 0.00070 | 0.0017  | ND       |
| cis-1,3-Dichloropropene               | 0.766 | mg/kg | 0.00046 | 0.0017  | ND       |
| Cyclohexane                           | 0.766 | mg/kg | 0.0010  | 0.0017  | ND       |
| Dibromochloromethane                  | 0.766 | mg/kg | 0.00037 | 0.0017  | ND       |
| Dichlorodifluoromethane               | 0.766 | mg/kg | 0.0012  | 0.0017  | ND       |
| Ethylbenzene                          | 0.766 | mg/kg | 0.00059 | 0.00086 | ND       |
| Isopropylbenzene                      | 0.766 | mg/kg | 0.00071 | 0.00086 | ND       |
| m&p-Xylenes                           | 0.766 | mg/kg | 0.0010  | 0.0010  | ND       |
| Methyl Acetate                        | 0.766 | mg/kg | 0.00083 | 0.0017  | ND       |
| Methylcyclohexane                     | 0.766 | mg/kg | 0.00077 | 0.0017  | ND       |
| Methylene chloride                    | 0.766 | mg/kg | 0.00065 | 0.0017  | 0.0071   |
| Methyl-t-butyl ether                  | 0.766 | mg/kg | 0.00046 | 0.00086 | ND       |
| o-Xylene                              | 0.766 | mg/kg | 0.00061 | 0.00086 | ND       |
| Styrene                               | 0.766 | mg/kg | 0.00047 | 0.0017  | ND       |
| Tetrachloroethene                     | 0.766 | mg/kg | 0.00084 | 0.0017  | 0.0011J  |
| Toluene                               | 0.766 | mg/kg | 0.00057 | 0.00086 | ND       |
| trans-1,2-Dichloroethene              |       | mg/kg | 0.0010  | 0.0017  | ND       |
| trans-1,3-Dichloropropene             | 0.766 | mg/kg | 0.00040 | 0.0017  | ND       |
| Trichloroethene                       | 0.766 | mg/kg | 0.00071 | 0.0017  | ND       |
| Trichlorofluoromethane                | 0.766 | mg/kg | 0.0010  | 0.0017  | ND       |
| Vinyl chloride                        | 0.766 | mg/kg | 0.0010  | 0.0017  | ND       |

Sample ID: HSI-SS-09 (0-0.5') Lab#: AD19479-017

SS-09 (0-0.5') Collection Date: 9/25/2020 9479-017 Receipt Date: 9/28/2020

Matrix: Soil

| Analyte                              | DF      | Units          | RL                    |                 | Result     |
|--------------------------------------|---------|----------------|-----------------------|-----------------|------------|
| % Solids                             | 1       | percent        |                       |                 | 93         |
| ercury (Soil/Waste) 7471B            |         |                |                       |                 |            |
| Analyte                              | DF      | Units          | MDL                   | RL              | Result     |
| Mercury                              | 1       | mg/kg          | 0.014                 | 0.090           | ND         |
| mivolatile Organics (no search) 8270 |         |                |                       |                 |            |
| Analyte                              | DF      | Units          | MDL                   | RL              | Result     |
| 1,1'-Biphenyl                        | 1       | mg/kg          | 0.010                 | 0.036           | ND ND      |
| 1,2,4,5-Tetrachlorobenzene           | 1       | mg/kg          | 0.012                 | 0.036           | ND         |
| 1,4-Dioxane                          | 1       | mg/kg          | 0.018                 | 0.0090          | ND         |
| 2,3,4,6-Tetrachlorophenol            | 1       | mg/kg          | 0.013                 | 0.036           | ND         |
| 2,4,5-Trichlorophenol                | 1       | mg/kg          | 0.010                 | 0.036           | ND         |
| 2,4,6-Trichlorophenol                | 1       | mg/kg          | 0.028                 | 0.036           | ND         |
| 2,4-Dichtorophenol                   | 1       | mg/kg          | 0.013                 | 0.0090          | ND         |
| 2,4-Dimethylphenol                   | 11      | mg/kg          | 0.017                 | 0.0090          | ND         |
| 2,4-Dinitrophenol                    | 1       | mg/kg          | 0.16                  | 0.18            | ND         |
| 2,4-Dinitrotoluene                   | 1       | mg/kg          | 0.011                 | 0.036           | ND         |
| 2,6-Dinitrotoluene                   | 1       | mg/kg          | 0.018                 | 0.036           | ND         |
| 2-Chloronaphthalene                  | 1       | mg/kg          | 0.016                 | 0.036           | ND NO      |
| 2-Chlorophenol                       | 1       | mg/kg          | 0.012                 | 0.036           | ND<br>NO   |
| 2-Methylnaphthalene                  | 1       | mg/kg          | 0.011                 | 0.036           | ND<br>ND   |
| 2-Methylphenol                       | 1       | mg/kg          | 0.010<br>0.017        | 0.0090<br>0.036 | ND<br>ND   |
| 2-Nitrophopal                        |         | mg/kg          | 0.017                 | 0.036           | ND ND      |
| 2-Nitrophenol<br>3&4-Methylphenol    | 1       | mg/kg<br>mg/kg | 0.010                 | 0.0090          | ND         |
| 3,3'-Dichlorobenzidine               | 1       | mg/kg          | 0.029                 | 0.036           | ND         |
| 3-Nitroaniline                       | 1       | mg/kg          | 0.029                 | 0.036           | ND         |
| 4,6-Dinitro-2-methylphenol           | <u></u> | mg/kg          | 0.12                  | 0.18            | ND         |
| 4-Bromophenyl-phenylether            | 1       | mg/kg          | 0.010                 | 0.036           | ND         |
| 4-Chloro-3-methylphenol              | 1       | mg/kg          | 0.0086                | 0.036           | ND         |
| 4-Chloroaniline                      | 1       | mg/kg          | 0.016                 | 0.0090          | ND         |
| 4-Chlorophenyl-phenylether           | 1       | mg/kg          | 0.011                 | 0.036           | ND         |
| 4-Nitroaniline                       | 1       | mg/kg          | 0.014                 | 0.036           | ND         |
| 4-Nitrophenol                        | 1       | mg/kg          | 0.027                 | 0.036           | ND         |
| Acenaphthene                         | 1       | mg/kg          | 0.010                 | 0.036           | ND         |
| Acenaphthylene                       | 1       | mg/kg          | 0.011                 | 0.036           | ND         |
| Acetophenone                         | 1       | mg/kg          | 0.013                 | 0.036           | ND         |
| Anthracene                           | 1       | mg/kg          | 0.0099                | 0.036           | ND         |
| Atrazine                             | 1       | mg/kg          | 0.014                 | 0.036           | ND         |
| Benzaldehyde                         | 1       | mg/kg          | 0.39                  | 0.036           | ND         |
| Benzo[a]anthracene                   | 1       | mg/kg          | 0.012                 | 0.036           | ND         |
| Benzo[a]pyrene                       | 1       | mg/kg          | 0.012                 | 0.036           | ND         |
| Benzo(b)fluoranthene                 | 1       | mg/kg          | 0.013                 | 0.036           | 0.015J     |
| Benzo[g,h,i]perylene                 | 1       | mg/kg          | 0.00025               | 0.036           | ND         |
| Benzo[k]fluoranthene                 | 1       | mg/kg          | 0.013                 | 0.036           | ND         |
| bis(2-Chloroethoxy)methane           | 1       | mg/kg          | 0.010                 | 0.036           | ND         |
| bis(2-Chloroethyl)ether              |         | mg/kg          | 0.0087                | 0.0090          | ND         |
| bis(2-Chloroisopropyl)ether          | 1       | mg/kg          | 0.014                 | 0.036           | ND         |
| bis(2-Ethylhexyl)phthalate           | 1       | mg/kg          | <b>0.032</b><br>0.027 | 0.036           | 0.12<br>ND |
| Butylbenzylphthalate<br>Caprolactam  | 1       | mg/kg<br>mg/kg | 0.027                 | 0.036<br>0.036  | ND<br>ND   |
| Carbazole                            |         | mg/kg _        | 0.029                 | 0.036           | ND         |
| Chrysene                             | 1       | mg/kg          | 0.011                 | 0.036           | ND         |
| Dibenzo[a,h]anthracene               | 1       | mg/kg          | 0.012                 | 0.036           | ND         |
| Dibenzofuran                         | 1       | mg/kg          | 0.0091                | 0.0090          | ND         |
| Diethylphthalate                     |         | mg/kg          | 0.023                 | 0.036           | ND ND      |
| Dimethylphthalate                    | 1       | mg/kg          | 0.010                 | 0.036           | 0.066      |
| Di-n-butylphthalate                  | 1       | mg/kg          | 0.041                 | 0.0090          | 0.058      |
| Di-n-octylphthalate                  | 1       | mg/kg          | 0.024                 | 0.036           | ND         |
| Fluoranthene                         | 1       | mg/kg          | 0.014                 | 0.036           | ND         |
| Fluorene                             | 1       | mg/kg          | 0.0098                | 0.036           | ND         |
| Hexachlorobenzene                    | 1       | mg/kg          | 0.015                 | 0.036           | ND         |
| Hexachlorobutadiene                  | 1       | mg/kg          | 0.016                 | 0.036           | ND         |
| Hexachlorocyclopentadiene            |         | mg/kg          | 0.12                  | 0.036           | ND         |
| Hexachloroethane                     | 1       | mg/kg          | 0.016                 | 0.036           | ND         |

|            |                            |      |       |        |                  | 0002000   | - |
|------------|----------------------------|------|-------|--------|------------------|-----------|---|
| Sample ID: | HSI-SS-09 (0-0.5')         |      |       |        | Collection Date: | 9/25/2020 |   |
| •          | AD19479-017                |      |       |        | Receipt Date:    | 9/28/2020 |   |
| Matrix:    |                            |      |       |        |                  | 3/20/2020 |   |
|            | Indeno[1,2,3-cd]pyrene     | 1    | mg/kg | 0.016  | 0.036            | ND        |   |
|            | Isophorone                 | 1    | mg/kg | 0.012  | 0.036            | ND        |   |
|            | Naphthalene                | 1    | mg/kg | 0.010  | 0.0090           | ND        |   |
|            | Nitrobenzene               | 1    | mg/kg | 0.0015 | 0.036            | ND        |   |
| _          | N-Nitroso-di-n-propylamine | 1    | mg/kg | 0.013  | 0.0090           | ND        |   |
|            | N-Nitrosodiphenylamine     | 1    | mg/kg | 0.12   | 0.036            | ND        |   |
|            | Pentachlorophenol          | 1    | mg/kg | 0.17   | 0.18             | ND        |   |
|            | Phenanthrene               | 1    | mg/kg | 0.011  | 0.036            | ND        |   |
|            | Phenol                     | 1    | mg/kg | 0.0099 | 0.036            | ND        |   |
| _          | Pyrene                     | 1111 | mg/kg | 0.012  | 0.036            | 0.015J    |   |
| ٦          | TAL Metals 6010D           |      |       |        |                  |           |   |
| -          | Analyte                    | DF   | Units | MDL    | RL               | Result    |   |
|            | Aluminum                   | 1    | mg/kg | 18     | 220              | 5000      |   |
|            | Barlum                     | 1    | mg/kg | 0.73   | 11               | 37        |   |
|            | Calcium                    | 1    | mg/kg | 110    | 1100             | 1400      |   |
|            | Chromium                   | 1    | mg/kg | 0.72   | 5.4              | 17B       |   |
| _          | Cobalt                     | 1    | mg/kg | 0.77   | 2.7              | 4.0       |   |
|            | Copper                     | 1    | mg/kg | 0.66   | 5.4              | 27B       |   |
|            | Iron                       | 1    | mg/kg | 14     | 220              | 11000B    |   |
|            | Lead                       | 1    | mg/kg | 0.66   | 5.4              | 9.8       |   |
|            | Magnesium                  | 1    | mg/kg | 21     | 540              | 2200      |   |
|            | Manganese                  | 1    | mg/kg | 0.69   | 11               | 210       |   |
|            | Nickel                     | 1    | mg/kg | 1.2    | 5.4              | 9.8       |   |
|            | Potassium                  | 1    | mg/kg | 110    | 540              | 550       |   |
| _          | Sodium                     | 1    | mg/kg | 140    | 270              | ND        |   |
| _          | Zinc                       | 1    | mg/kg | 1.6    | 11               | 38B       |   |
| 7          | TAL Metals 6020B           |      |       |        |                  |           |   |
| -          | Analyte                    | DF   | Units | MDL    | RL               | Result    |   |
|            | Antimony                   | 1    | mg/kg | 0.024  | 0.86             | 0.031J    |   |
|            | Arsenic                    | 1    | mg/kg | 0.019  | 0.22             | 3.5B      |   |
|            | Beryllium                  | 1    | mg/kg | 0.017  | 0.22             | 0.19J     |   |
|            | Cadmium                    | 1    | mg/kg | 0.015  | 0.43             | 0.26J     |   |
| _          | Selenium                   | 1    | mg/kg | 0.068  | 2.2              | 0.99JB    |   |
|            | Silver                     | 1    | mg/kg | 0.028  | 0.22             | 0.050JB   |   |
|            | Thallium                   | 1    | mg/kg | 0.019  | 0.43             | 0.037J    |   |
|            | \$4 41 ····                | 4    |       | 0.040  | 0.00             | 000       |   |

mg/kg

0.012

0.22

Vanadium

Sample ID: HSI-SS-09 (0.5-1') Lab#: AD19479-018

Matrix: Soil/Terracore

Collection Date: 9/25/2020 Receipt Date: 9/28/2020

% Solids SM2540G

| Analyte  | DF | Units   | RL | Result |
|----------|----|---------|----|--------|
| % Solids | 1  | percent |    | 93     |

#### Volatile Organics (no search) 8260

| Analyte                               | DF   | Units | MDL     | RL     | Result  |
|---------------------------------------|------|-------|---------|--------|---------|
| 1,1,1-Trichloroethane                 | 1.03 | mg/kg | 0.0010  | 0.0022 | ND      |
| 1,1,2,2-Tetrachloroethane             | 1.03 | mg/kg | 0.00050 | 0.0022 | ND      |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.03 | mg/kg | 0.0015  | 0.0022 | ND      |
| 1,1,2-Trichloroethane                 | 1.03 | mg/kg | 0.00051 | 0.0022 | ND      |
| 1,1-Dichloroethane                    | 1.03 | mg/kg | 0.00096 | 0.0022 | ND      |
| 1,1-Dichloroethene                    | 1.03 | mg/kg | 0.0013  | 0.0022 | ND      |
| 1,2,3-Trichlorobenzene                | 1.03 | mg/kg | 0.00061 | 0.0022 | ND      |
| 1,2,4-Trichlorobenzene                | 1.03 | mg/kg | 0.00070 | 0.0022 | ND      |
| 1,2-Dibromo-3-chloropropane           | 1.03 | mg/kg | 0.00061 | 0.0022 | ND      |
| 1,2-Dibromoethane                     | 1.03 | mg/kg | 0.00054 | 0.0011 | ND      |
| 1,2-Dichlorobenzene                   | 1.03 | mg/kg | 0.00057 | 0.0022 | ND      |
| 1,2-Dichloroethane                    | 1.03 | mg/kg | 0.00045 | 0.0022 | ND      |
| 1,2-Dichloropropane                   | 1.03 | mg/kg | 0.00091 | 0.0022 | ND      |
| 1,3-Dichlorobenzene                   | 1.03 | mg/kg | 0.00061 | 0.0022 | ND      |
| 1,4-Dichlorobenzene                   | 1.03 | mg/kg | 0.00059 | 0.0022 | ND      |
| 1,4-Dioxane                           | 1.03 | mg/kg | 0.054   | 0.11   | ND      |
| 2-Butanone                            | 1,03 | mg/kg | 0.0013  | 0.0022 | ND      |
| 2-Hexanone                            | 1.03 | mg/kg | 0.00094 | 0.0022 | ND      |
| 4-Methyl-2-pentanone                  | 1.03 | mg/kg | 0.00064 | 0.0022 | ND      |
| Acetone                               | 1.03 | mg/kg | 0.0075  | 0.011  | 0.020   |
| Benzene                               | 1.03 | mg/kg | 0.00081 | 0.0011 | ND ND   |
| Bromochloromethane                    | 1.03 | mg/kg | 0.00078 | 0.0022 | ND      |
| Bromodichloromethane                  | 1.03 | mg/kg | 0.00052 | 0.0022 | ND      |
| Bromoform                             | 1.03 | mg/kg | 0.00037 | 0.0022 | ND      |
| Bromomethane                          | 1.03 | mg/kg | 0.0017  | 0.0022 | ND ND   |
| Carbon disulfide                      | 1.03 | mg/kg | 0.0038  | 0.0038 | ND      |
| Carbon tetrachloride                  | 1.03 | mg/kg | 0.0011  | 0.0022 | ND      |
| Chlorobenzene                         | 1.03 | mg/kg | 0.00069 | 0.0022 | ND      |
| Chloroethane                          | 1.03 | mg/kg | 0.0022  | 0.0022 | ND      |
| Chloroform                            | 1.03 | mg/kg | 0.0015  | 0.0022 | ND      |
| Chloromethane                         | 1.03 | mg/kg | 0.0014  | 0.0022 | ND      |
| cis-1,2-Dichloroethene                | 1.03 | mg/kg | 0.00090 | 0.0022 | ND      |
| cis-1,3-Dichloropropene               | 1.03 | mg/kg | 0.00059 | 0.0022 | ND      |
| Cyclohexane                           | 1.03 | mg/kg | 0.0013  | 0.0022 | ND      |
| Dibromochloromethane                  | 1.03 | mg/kg | 0.00048 | 0.0022 | ND      |
| Dichlorodifluoromethane               | 1.03 | mg/kg | 0.0016  | 0.0022 | ND      |
| Ethylbenzene                          | 1.03 | mg/kg | 0.00076 | 0.0011 | ND      |
| Isopropylbenzene                      | 1.03 | mg/kg | 0.00092 | 0.0011 | ND      |
| m&p-Xylenes                           | 1.03 | mg/kg | 0.0013  | 0.0013 | 0.0014  |
| Methyl Acetate                        | 1.03 | mg/kg | 0.0011  | 0.0022 | ND      |
| Methylcyclohexane                     | 1.03 | mg/kg | 0.0010  | 0.0022 | ND      |
| Methylene chloride                    | 1.03 | mg/kg | 0.00083 | 0.0022 | 0.0046  |
| Methyl-t-butyl ether                  | 1.03 | mg/kg | 0.00060 | 0.0011 | ND      |
| o-Xylene                              | 1.03 | mg/kg | 0.00079 | 0.0011 | ND      |
| Styrene                               | 1.03 | mg/kg | 0.00061 | 0.0022 | ND      |
| Tetrachloroethene                     | 1.03 | mg/kg | 0.0011  | 0.0022 | 0.0011J |
| Toluene                               | 1.03 | mg/kg | 0.00073 | 0.0011 | ND      |
| trans-1,2-Dichloroethene              | 1.03 | mg/kg | 0.0013  | 0.0022 | ND      |
| trans-1,3-Dichloropropene             | 1.03 | mg/kg | 0.00052 | 0.0022 | ND      |
| Trichloroethene                       | 1.03 | mg/kg | 0.00091 | 0.0022 | ND      |
| Trichlorofluoromethane                | 1.03 | mg/kg | 0.0013  | 0.0022 | ND      |
| Vinyl chloride                        | 1.03 | mg/kg | 0.0014  | 0.0022 | ND      |
| Xylenes (Total)                       | 1.03 | mg/kg | 0.00079 | 0.0011 | 0.0014  |

Sample ID: HSI-SS-D (0-0.5') Lab#: AD19479-019

Matrix: Soil

Collection Date: 9/25/2020 Receipt Date: 9/28/2020

| Amalida                                 | 65            | 11-24-         | D!              |                             | Panult    |
|-----------------------------------------|---------------|----------------|-----------------|-----------------------------|-----------|
| Analyte                                 | DF            | Units          | RL              |                             | Result    |
| % Solids                                | 1             | percent        |                 |                             | 92        |
| ercury (Soil/Waste) 7471B               |               |                |                 |                             |           |
| Analyte                                 | DF            | Units          | MDL             | RL                          | Result    |
| Mercury                                 | 1             | mg/kg          | 0.014           | 0.091                       | 0.014J    |
| emivolatile Organics (no search) 8270   |               |                |                 |                             |           |
|                                         | DF            | Units          | MDL             | RL                          | Pagult    |
| Analyte                                 | DF            |                |                 |                             | Result    |
| 1,1'-Biphenyl                           | 1             | mg/kg          | 0.010           | 0.036                       | ND        |
| 1,2,4,5-Tetrachlorobenzene              | 1             | mg/kg          | 0.012           | 0.03 <del>6</del><br>0.0091 | ND<br>ND  |
| 1,4-Dioxane 2,3,4,6-Tetrachlorophenol   | 1             | mg/kg<br>mg/kg | 0.018<br>0.014  | 0.0091                      | ND<br>ND  |
| 2,4,5-Trichlorophenol                   |               | mg/kg          | 0.010           | 0.036                       | ND        |
| 2,4,6-Trichlorophenol                   | 1             | mg/kg          | 0.028           | 0.036                       | ND        |
| 2,4-Dichlorophenol                      | 1             | mg/kg          | 0.014           | 0.0091                      | ND        |
| 2,4-Dimethylphenol                      | 1             | mg/kg          | 0.018           | 0.0091                      | ND        |
| 2,4-Dinitrophenol                       | 1             | mg/kg          | 0.16            | 0.18                        | ND        |
| 2,4-Dinitrotoluene                      | 1             | mg/kg          | 0.011           | 0.036                       | ND        |
| 2,6-Dinitrotoluene                      | 1             | mg/kg          | 0.018           | 0.036                       | ND        |
| 2-Chloronaphthalene                     | 1             | mg/kg          | 0.016           | 0.036                       | ND        |
| 2-Chlorophenol                          | 1             | mg/kg          | 0.012           | 0.036                       | ND        |
| 2-Methylnaphthalene                     | 1             | mg/kg          | 0.011           | 0.036                       | ND        |
| 2-Methylphenol                          | 1             | mg/kg          | 0.010           | 0.0091                      | ND        |
| 2-Nitroaniline                          | 1             | mg/kg          | 0.017           | 0.036                       | ND        |
| 2-Nitrophenol                           | 1             | mg/kg          | 0.016           | 0.036                       | ND        |
| 3&4-Methylpheriol                       | 1             | mg/kg          | 0.011           | 0.0091                      | ND        |
| 3,3'-Dichlorobenzidine                  | 1             | mg/kg          | 0.029           | 0.036                       | ND        |
| 3-Nitroaniline                          | 1             | mg/kg          | 0.014           | 0.036                       | ND        |
| 4,6-Dinitro-2-methylphenol              | 1             | mg/kg          | 0.13            | 0.18                        | ND        |
| 4-Bromophenyl-phenylether               | 1             | mg/kg          | 0.010           | 0.036                       | ND<br>ND  |
| 4-Chloro-3-methylphenol 4-Chloroaniline | 1             | mg/kg<br>mg/kg | 0.0087<br>0.016 | 0.036<br>0.0091             | ND        |
| 4-Chlorophenyl-phenylether              | 1             | mg/kg          | 0.010           | 0.036                       | ND ND     |
| 4-Nitroaniline                          | 1             | mg/kg          | 0.014           | 0.036                       | ND        |
| 4-Nitrophenol                           | 1             | mg/kg          | 0.028           | 0.036                       | ND        |
| Acenaphthene                            | 1             | mg/kg          | 0.010           | 0.036                       | ND        |
| Acenaphthylene                          | 1             | mg/kg          | 0.011           | 0.036                       | ND        |
| Acetophenone                            | 1             | mg/kg          | 0.013           | 0.036                       | ND        |
| Anthracene                              | 1             | mg/kg          | 0.010           | 0.036                       | ND        |
| Atrazine                                | 1             | mg/kg          | 0.015           | 0.036                       | ND        |
| Benzaldehyde                            | 1             | mg/kg          | 0.39            | 0.036                       | ND        |
| Benzo(a)anthracene                      | 1             | mg/kg          | 0.012           | 0.036                       | ND        |
| Benzo[a]pyrene                          | 1             | mg/kg          | 0.012           | 0.036                       | ND        |
| Benzo[b]fluoranthene                    | 1             | mg/kg          | 0.013           | 0.036                       | <u>ND</u> |
| Benzo[g,h,i]perylene                    | 1             | mg/kg          | 0.00025         | 0.036                       | ND        |
| Benzo[k]fluoranthene                    | 1             | mg/kg          | 0.013           | 0.036                       | ND        |
| bis(2-Chloroethoxy)methane              | 1             | mg/kg          | 0.010           | 0.036                       | ND        |
| bis(2-Chloroethyl)ether                 | 1             | mg/kg          | 0.0088          | 0.0091                      | ND        |
| bis(2-Chloroisopropyl)ether             | 1             | mg/kg          | 0.014           | 0.036                       | ND        |
| bis(2-Ethylhexyl)phthalate              | 1             | mg/kg          | 0.032           | 0.036                       | 0.38      |
| Butylbenzylphthalate                    | 1             | mg/kg          | 0.028           | 0.036                       | ND<br>ND  |
| Caprolactam                             | !             | mg/kg          | 0.029           | 0.036                       | ND ND     |
| Carbazole                               | 1             | mg/kg<br>mg/kg | 0.011<br>0.012  | 0.036<br>0.036              | ND<br>ND  |
| Chrysene Dibenzo[a,h]anthracene         | 1             | mg/kg<br>mg/kg | 0.012           | 0.036                       | ND<br>ND  |
| Dibenzofuran  Dibenzofuran              | 1             | mg/kg<br>mg/kg | 0.0092          | 0.0091                      | ND        |
| Diethylphthalate                        | <del></del> i | mg/kg          | 0.0092          | 0.036                       | ND        |
| Dimethylphthalate                       | 1             | mg/kg          | 0.023           | 0.036                       | ND        |
| Di-n-butylphthalate                     | 1             | mg/kg          | 0.042           | 0.0091                      | 0.17      |
| Di-n-octylphthalate                     | 1             | mg/kg          | 0.024           | 0.036                       | 0.024J    |
| Fluoranthene                            | i             | mg/kg          | 0.014           | 0.036                       | ND        |
| Fluorene                                | 1             | mg/kg          | 0.0099          | 0.036                       | ND        |
| Hexachlorobenzene                       | 1             | mg/kg          | 0.015           | 0.036                       | ND        |
| Hexachlorobutadierie                    | 1             | mg/kg          | 0.016           | 0.036                       | ND        |
| Hexachlorocyclopentadiene               | 1             | mg/kg          | 0.12            | 0.036                       | ND ND     |
| Hexachloroethane                        | 1             | mg/kg          | 0.016           | 0.036                       | ND        |

|            |                            |    |       |        |                  | 0032000   | 992 |
|------------|----------------------------|----|-------|--------|------------------|-----------|-----|
| Sample ID: | HSI-SS-D (0-0.5')          |    |       |        | Collection Date: | 9/25/2020 |     |
| •          | AD19479-019                |    |       |        | Receipt Date:    | -         |     |
| Matrix:    |                            |    |       |        |                  | 0/20/2020 |     |
|            | Indeno[1,2,3-cd]pyrene     | 1  | mg/kg | 0.016  | 0.036            | ND        |     |
|            | Isophorone                 | 1  | mg/kg | 0.012  | 0.036            | ND        |     |
|            | Naphthalene                | 1  | mg/kg | 0.010  | 0.0091           | ND        |     |
|            | Nitrobenzene               | 1  | mg/kg | 0.0015 | 0.036            | ND        |     |
| _          | N-Nitroso-di-n-propylamine |    | mg/kg | 0.014  | 0.0091           | ND        | -   |
|            | N-Nitrosodiphenylamine     | 1  | mg/kg | 0.12   | 0.036            | ND        |     |
|            | Pentachlorophenol          | 1  | mg/kg | 0.17   | 0.18             | ND        |     |
|            | Phenanthrene               | 1  | mg/kg | 0.012  | 0.036            | ND        |     |
|            | Phenol                     | 1  | mg/kg | 0.010  | 0.036            | ND        | •   |
| _          | Pyrene                     |    | mg/kg | 0.012  | 0.036            | ND        |     |
| 1          | ΓAL Metals 6010D           |    |       |        |                  |           |     |
| -          | Analyte                    | DF | Units | MDL    | RL               | Result    |     |
|            | Aluminum                   | 1  | mg/kg | 18     | 220              | 3700      |     |
|            | Barlum                     | 1  | mg/kg | 0.73   | 11               | 20        |     |
|            | Calcium                    | 1  | mg/kg | 110    | 1100             | 1400      |     |
|            | Chromium                   | 1  | mg/kg | 0.73   | 5.4              | 17B       |     |
| ****       | Cobalt                     | 1  | mg/kg | 0.77   | 2.7              | 1.5J      |     |
|            | Copper                     | 1  | mg/kg | 0.67   | 5.4              | 16B       |     |
|            | Iron                       | 1  | mg/kg | 14     | 220              | 6500B     |     |
|            | Lead                       | 1  | mg/kg | 0.67   | 5.4              | 140       |     |
|            | Magnesium                  | 1  | mg/kg | 21     | 540              | 550       | -   |
|            | Manganese                  | 1  | mg/kg | 0.70   | 11               | 56        |     |
|            | Nickel                     | 1  | mg/kg | 1.2    | 5.4              | 3.8J      |     |
|            | Potassium                  | 1  | mg/kg | 110    | 540              | 160J      |     |
|            | Sodium                     | 1  | mg/kg | 140    | 270              | ND        |     |
| _          | Zinc                       | 11 | mg/kg | 1.6    | !1               | 26B       |     |
| •          | TAL Metals 6020B           |    |       |        |                  |           |     |
| -          | Analyte                    | DF | Units | MDL    | RL               | Result    |     |
|            | Antimony                   | 1  | mg/kg | 0.024  | 0.87             | 0.063J    |     |
|            | Arsenic                    | 1  | mg/kg | 0.019  | 0.22             | 3.0B      |     |
|            | Beryllium                  | 1  | mg/kg | 0.017  | 0.22             | 0.17J     |     |
|            | Cadmium                    | 1  | mg/kg | 0.015  | 0.43             | 0.39J     | _   |
| _          | Selenium                   | 1  | mg/kg | 0.069  | 2.2              | 1.3JB     |     |
|            | Silver                     | 1  | mg/kg | 0.028  | 0.22             | 0.041JB   |     |
|            | Thellium                   | 4  |       | 0.010  | 0.42             | ND.       |     |

mg/kg

mg/kg

0.019

0.012

0.43

0.22

Thallium

Vanadium

ND

Sample ID: HSI-SS-D (0.5-1')

Lab#: AD19479-020

Matrix: Soil/Terracore

Collection Date: 9/25/2020

Receipt Date: 9/28/2020

#### % Solids SM2540G

| Analyte                                    | DF                   | Units          | RL      |         | Result    |
|--------------------------------------------|----------------------|----------------|---------|---------|-----------|
| % Solids                                   | 1                    | percent        |         |         | 79        |
| atile Organics (no search) 8260            |                      |                |         |         |           |
| Analyte                                    | DF                   | Units          | MDL     | RL      | Result    |
| 1,1,1-Trichloroethane                      | 0.74                 | mg/kg          | 0.00086 | 0.0019  | ND        |
| 1,1,2,2-Tetrachloroethane                  | 0.74                 | mg/kg          | 0.00042 | 0.0019  | ND        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane      | 0.74                 | mg/kg          | 0.0013  | 0.0019  | ND        |
| 1,1,2-Trichloroethane                      | 0.74                 | mg/kg          | 0.00043 | 0.0019  | ND        |
| 1,1-Dichloroethane                         | 0.74                 | mg/kg          | 0.00081 | 0.0019  | - ND      |
| 1,1-Dichloroethene                         | 0.74                 | mg/kg          | 0.0011  | 0.0019  | ND        |
| 1,2,3-Trichlorobenzene                     | 0.74                 | mg/kg          | 0.00051 | 0.0019  | ND        |
| 1,2,4-Trichlorobenzene                     | 0.74                 | mg/kg          | 0.00059 | 0.0019  | ND        |
| 1,2-Dibromo-3-chloropropane                | 0.74                 | mg/kg          | 0.00051 | 0.0019  | ND        |
| 1,2-Dibromoethane                          | 0.74                 | mg/kg          | 0.00046 | 0.00094 | ND        |
| 1,2-Dichlorobenzene                        | 0.74                 | mg/kg          | 0.00048 | 0.0019  | ND        |
| 1,2-Dichloroethane                         | 0.74                 | mg/kg          | 0.00038 | 0.0019  | ND        |
| 1,2-Dichloropropane                        | $-\frac{0.74}{0.74}$ |                | 0.00038 | 0.0019  |           |
|                                            | 0.74                 | mg/kg<br>mg/kg | 0.00077 | 0.0019  | ND<br>ND  |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene | 0.74                 | mg/kg<br>ma/ka | 0.00050 | 0.0019  | ND<br>ND  |
|                                            |                      | mg/kg          |         |         |           |
| 1,4-Dioxane                                | 0.74                 | mg/kg          | 0.045   | 0.094   | ND        |
| 2-Butanone                                 | 0.74                 | mg/kg          | 0.0011  | 0.0019  | ND        |
| 2-Hexanone                                 | 0.74                 | mg/kg          | 0.00080 | 0.0019  | ND        |
| 4-Methyl-2-pentanone                       | 0.74                 | mg/kg          | 0.00054 | 0.0019  | ND        |
| Acetone                                    |                      | mg/kg          | 0.0063  | 0.0094  | <u>ND</u> |
| Benzene                                    | 0.74                 | mg/kg          | 0.00068 | 0.00094 | ND        |
| Bromochloromethane                         | 0.74                 | mg/kg          | 0.00066 | 0.0019  | ND        |
| Bromodichloromethane                       | 0.74                 | mg/kg          | 0.00044 | 0.0019  | ND        |
| Bromoform                                  | 0.74                 | mg/kg          | 0.00031 | 0.0019  | ND        |
| Bromomethane                               | 0.74                 | mg/kg          | 0.0015  | 0.0019  | ND        |
| Carbon disulfide                           | 0.74                 | mg/kg          | 0.0032  | 0.0032  | ND        |
| Carbon tetrachloride                       | 0.74                 | mg/kg          | 0.00091 | 0.0019  | ND        |
| Chlorobenzene                              | 0.74                 | mg/kg          | 0.00058 | 0.0019  | ND ND     |
| Chloroethane                               | 0.74                 | mg/kg          | 0.0018  | 0.0019  | ND        |
| Chloroform                                 | 0.74                 | mg/kg          | 0.0013  | 0.0019  | ND        |
| Chloromethane                              | 0.74                 | mg/kg          | 0.0012  | 0.0019  | ND        |
| cis-1,2-Dichloroethene                     | 0.74                 | mg/kg          | 0.00076 | 0.0019  | ND        |
| cis-1,3-Dichloropropene                    | 0.74                 | mg/kg          | 0.00050 | 0.0019  | ND        |
| Cyclohexane                                | 0.74                 | mg/kg          | 0.0011  | 0.0019  | ND        |
| Dibromochloromethane                       | 0.74                 | mg/kg          | 0.00040 | 0.0019  | ND        |
| Dichlorodifluoromethane                    | 0.74                 | mg/kg          | 0.0013  | 0.0019  | ND        |
| Ethylbenzene                               | 0.74                 | mg/kg          | 0.00065 | 0.00094 | ND        |
| Isopropylbenzene                           | 0.74                 | mg/kg          | 0.00078 | 0.00094 | ND        |
| m&p-Xylenes                                | 0.74                 | mg/kg          | 0.0011  | 0.0011  | ND        |
| Methyl Acetate                             | 0.74                 | mg/kg          | 0.00090 | 0.0019  | ND        |
| Methylcyclohexane                          | 0.74                 | mg/kg          | 0.00084 | 0.0019  | ND ND     |
| Methylene chloride                         | 0.74                 | mg/kg          | 0.00070 | 0.0019  | ND        |
| Methyl-t-butyl ether                       | 0.74                 | mg/kg          | 0.00051 | 0.00094 | ND        |
| o-Xylene                                   | 0.74                 | mg/kg          | 0.00066 | 0.00094 | ND        |
| Styrene                                    | 0.74                 | mg/kg          | 0.00051 | 0.0019  | ND        |
| Tetrachloroethene                          | 0.74                 | mg/kg          | 0.00092 | 0.0019  | ND        |
| Toluene                                    | 0.74                 | mg/kg          | 0.00062 | 0.00094 | ND        |
| trans-1,2-Dichloroethene                   | 0.74                 | mg/kg          | 0.0011  | 0.0019  | ND        |
| trans-1,3-Dichloropropene                  | 0.74                 | mg/kg          | 0.00044 | 0.0019  | ND        |
| Trichloroethene                            | 0.74                 | mg/kg          | 0.00077 | 0.0019  | ND        |
| Trichlorofluoromethane                     | 0.74                 | mg/kg          | 0.0011  | 0.0019  | 0.0034    |
| Vinyl chloride                             | 0.74                 | mg/kg          | 0.0011  | 0.0019  | ND        |
| Xylenes (Total)                            | $-\frac{0.74}{0.74}$ | mg/kg          | 0.00066 | 0.00094 | ND        |

### **HC Reporting Limit Definitions/Data Qualifiers**

#### REPORTING DEFINITIONS

**DF** = Dilution Factor **NA** = Not Applicable

LCS = Laboratory Control Spike ND = Not Detected

MBS = Method Blank Spike PS = Post Digestion Spike

MS = Matrix Spike RL\* = Reporting Limit

**MSD** = Matrix Spike Duplicate **RT** = Retention Time

**MDL** = Method Detection Limit

#### **DATA QUALIFIERS**

- A- Indicates that the Tentatively Identified Compound (TIC) is suspected to be an aldolcondensation product. These compounds are by-products of acetone and methylene chloride used in the extraction process.
- **B** Indicates analyte was present in the Method Blank and sample.
- d- For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- E- Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the value is estimated because it is either a Tentatively Identified Compound (TIC) or the reported concentration is greater than the MDL but less than the RL. For samples results between the MDL and RL there is a possibility of false positives or misidentification at the quantitation levels. Additionally, the acceptance criteria for QC samples may not be met.
- R- Retention Time is out.
- Y- Indicates a contaminant found in the blank at less than 10% of the concentration of a contaminant found in the sample.

<sup>\*</sup>Samples with elevated Reporting Limits (RLs) as a result of a dilution may not achieve client reporting limits in some cases. The elevated RLs are unavoidable consequences of sample dilution required to quantitate target analytes that exceed the calibration range of the instrument.

Client: Chesapeake Geosciences Inc

**Project:** Hot Spot Investigation

| j | Lab#: AD19479-001 | Sample ID: HSI-SS-01 (0-0.5') |
|---|-------------------|-------------------------------|
| į |                   |                               |

|                                        | Prep         | Prep           |           | Analytical | Analysis      |           |
|----------------------------------------|--------------|----------------|-----------|------------|---------------|-----------|
| Test Code                              | Method       | Date           | Ву        | Method     | Date          | Ву        |
| % Solids SM2540G                       |              |                |           | SM 2540G   | 9/28/20 00:00 | jessica   |
| Mercury (Soil/Waste) 7471B             | EPA 7471B    | 09/29/20 09:00 | asilva    | EPA 7471B  | 9/30/20 11:21 | OA        |
| Semivolatile Organics (no search) 8270 | 3510C/3550C  | 10/05/20       | jprevilon | EPA 8270D  | 10/5/20 22:35 | AH/JKR/JB |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 13:34 | OA        |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 16:12 | OA        |
| TAL Metals 6020B                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6020B  | 10/1/20 11:19 | PC        |

| Lab#: AD19479-002 | Sample ID: HSI-SS-01 (0.5-1') |
|-------------------|-------------------------------|
|-------------------|-------------------------------|

| Test Code                          | Prep<br>Method | Prep<br>Date | Ву | Analytical<br>Method | Analysis<br>Date | Ву      |
|------------------------------------|----------------|--------------|----|----------------------|------------------|---------|
| % Solids SM2540G                   |                |              |    | SM 2540G             | 9/28/20 00:00    | jessica |
| Volatile Organics (no search) 8260 | EPA5030/5035   |              |    | EPA 8260C            | 9/30/20 23:40    | WP      |

| Lab#: | AD19479-003 | Sample ID: HSI-SS-02 (0-0.5') |
|-------|-------------|-------------------------------|
|       |             |                               |

|                                        | Prep         | Prep           |           | Analytical | Analysis      |           |
|----------------------------------------|--------------|----------------|-----------|------------|---------------|-----------|
| Test Code                              | Method       | Date           | Ву        | Method     | Date          | Ву        |
| % Solids SM2540G                       |              |                |           | SM 2540G   | 9/28/20 00:00 | jessica   |
| Mercury (Soil/Waste) 7471B             | EPA 7471B    | 09/29/20 09:00 | asilva    | EPA 7471B  | 9/30/20 11:35 | OA        |
| Semivolatile Organics (no search) 8270 | 3510C/3550C  | 10/05/20       | jprevilon | EPA 8270D  | 10/5/20 22:58 | AH/JKR/JB |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:10 | OA        |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:00 | OA        |
| TAL Metals 6020B                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6020B  | 10/1/20 12:17 | PC        |

| í | Lab#: AD19479-004 | Sample ID: HSI-SS-02 (0.5-1') |  |
|---|-------------------|-------------------------------|--|
|   |                   |                               |  |

|                                    | Prep         | Prep |    | Analytical | Analysis      |         |
|------------------------------------|--------------|------|----|------------|---------------|---------|
| Test Code                          | Method       | Date | Ву | Method     | Date          | Ву      |
| % Solids SM2540G                   |              |      |    | SM 2540G   | 9/28/20 00:00 | jessica |
| Volatile Organics (no search) 8260 | EPA5030/5035 |      |    | EPA 8260C  | 10/1/20 19:51 | WP      |

Client: Chesapeake Geosciences Inc

HC Project #: 0092806

**Project:** Hot Spot Investigation

| Lab#: AD19479-005 | Sample ID: HSI-SS-03 (0-0.5') |
|-------------------|-------------------------------|
|-------------------|-------------------------------|

|                                        | Prep         | Prep           |           | Analytical | Analysis      |           |  |
|----------------------------------------|--------------|----------------|-----------|------------|---------------|-----------|--|
| Test Code                              | Method       | Date           | Ву        | Method     | Date          | Ву        |  |
| % Solids SM2540G                       |              |                |           | SM 2540G   | 9/28/20 00:00 | jessica   |  |
| Mercury (Soil/Waste) 7471B             | EPA 7471B    | 09/29/20 09:00 | asilva    | EPA 7471B  | 9/30/20 11:37 | OA        |  |
| Semivolatile Organics (no search) 8270 | 3510C/3550C  | 10/05/20       | jprevilon | EPA 8270D  | 10/5/20 23:21 | AH/JKR/JB |  |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:12 | OA        |  |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:14 | OA        |  |
| TAL Metals 6020B                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6020B  | 10/1/20 12:21 | PC        |  |

| Lab#: AD19479-006 Sample II | D: | HSI-SS-03 ( | (0.5-1') |
|-----------------------------|----|-------------|----------|
|-----------------------------|----|-------------|----------|

|                                    | Prep         | Prep |    | Analytical | Analysis      |         |
|------------------------------------|--------------|------|----|------------|---------------|---------|
| Test Code                          | Method       | Date | Ву | Method     | Date          | Ву      |
| % Solids SM2540G                   |              |      |    | SM 2540G   | 9/28/20 00:00 | jessica |
| Volatile Organics (no search) 8260 | EPA5030/5035 |      |    | EPA 8260C  | 10/1/20 19:32 | WP      |

| Sample ID: HSI-SS-04 (0-0.5') |
|-------------------------------|
|                               |

|                                        | Prep         | Prep           |           | Analytical | Analysis      |           |
|----------------------------------------|--------------|----------------|-----------|------------|---------------|-----------|
| Test Code                              | Method       | Date           | Ву        | Method     | Date          | Ву        |
| % Solids SM2540G                       |              |                |           | SM 2540G   | 9/28/20 00:00 | jessica   |
| Mercury (Soil/Waste) 7471B             | EPA 7471B    | 09/29/20 09:00 | asilva    | EPA 7471B  | 9/30/20 11:38 | OA        |
| Semivolatile Organics (no search) 8270 | 3510C/3550C  | 10/05/20       | jprevilon | EPA 8270D  | 10/5/20 23:45 | AH/JKR/JB |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:18 | OA        |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:23 | OA        |
| TAL Metals 6020B                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6020B  | 10/1/20 12:26 | PC        |

|  | - | Lab#: AD19479-008 | Sample ID: HSI-SS-04 (0.5-1') |
|--|---|-------------------|-------------------------------|
|--|---|-------------------|-------------------------------|

| Test Code                          | Prep<br>Method | Prep<br>Date | Ву | Analytical<br>Method | Analysis<br>Date | Ву      |
|------------------------------------|----------------|--------------|----|----------------------|------------------|---------|
| % Solids SM2540G                   |                |              |    | SM 2540G             | 9/28/20 00:00    | jessica |
| Volatile Organics (no search) 8260 | EPA5030/5035   |              |    | EPA 8260C            | 10/1/20 00:20    | WP      |

Client: Chesapeake Geosciences Inc

**Project:** Hot Spot Investigation

|   | Lab#: AD19479-009 | Sample ID: HSI-SS-05 (0-0.5') |
|---|-------------------|-------------------------------|
| ļ |                   |                               |

|                                        | Prep         | Prep           |           | Analytical | Analysis      |           |
|----------------------------------------|--------------|----------------|-----------|------------|---------------|-----------|
| Test Code                              | Method       | Date           | Ву        | Method     | Date          | Ву        |
| % Solids SM2540G                       |              |                |           | SM 2540G   | 9/28/20 00:00 | jessica   |
| Mercury (Soil/Waste) 7471B             | EPA 7471B    | 09/29/20 09:00 | asilva    | EPA 7471B  | 9/30/20 11:39 | OA        |
| Semivolatile Organics (no search) 8270 | 3510C/3550C  | 10/05/20       | jprevilon | EPA 8270D  | 10/6/20 00:08 | AH/JKR/JB |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:23 | OA        |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:27 | OA        |
| TAL Metals 6020B                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6020B  | 10/1/20 12:30 | PC        |
| TAL Metals 6020B                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6020B  | 10/1/20 13:11 | PC        |

|  | Lab#: AD19479-010 | Sample ID: HSI-SS-05 (0.5-1') |
|--|-------------------|-------------------------------|
|  |                   |                               |

|                                    | Prep         | Prep |    | Analytical | Analysis      |         |
|------------------------------------|--------------|------|----|------------|---------------|---------|
| Test Code                          | Method       | Date | Ву | Method     | Date          | Ву      |
| % Solids SM2540G                   |              |      |    | SM 2540G   | 9/28/20 00:00 | jessica |
| Volatile Organics (no search) 8260 | EPA5030/5035 |      |    | EPA 8260C  | 10/1/20 00:39 | WP      |

| Lab#: AD19479-011 | Sample ID: HSI-SS-06 (0-0.5') | ļ |
|-------------------|-------------------------------|---|
|                   |                               |   |

|                                        | Prep         | Prep           |           | Analytical | Analysis      |           |  |
|----------------------------------------|--------------|----------------|-----------|------------|---------------|-----------|--|
| Test Code                              | Method Date  |                | Ву        | Method     | Date          | Ву        |  |
| % Solids SM2540G                       |              |                |           | SM 2540G   | 9/28/20 00:00 | jessica   |  |
| Mercury (Soil/Waste) 7471B             | EPA 7471B    | 09/29/20 09:00 | asilva    | EPA 7471B  | 9/30/20 11:41 | OA        |  |
| Semivolatile Organics (no search) 8270 | 3510C/3550C  | 10/05/20       | jprevilon | EPA 8270D  | 10/6/20 00:32 | AH/JKR/JB |  |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:27 | OA        |  |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:31 | OA        |  |
| TAL Metals 6020B                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6020B  | 10/1/20 12:35 | PC        |  |

| Lab#: AD19479-012 | Sample ID: HSI-SS-06 (0.5-1') |
|-------------------|-------------------------------|
|                   |                               |

|                                    | Prep         | Prep Prep |    | Analytical | Analysis      |         |  |
|------------------------------------|--------------|-----------|----|------------|---------------|---------|--|
| Test Code                          | Method       | Date      | Ву | Method     | Date          | Ву      |  |
| % Solids SM2540G                   |              |           |    | SM 2540G   | 9/28/20 00:00 | jessica |  |
| Volatile Organics (no search) 8260 | EPA5030/5035 |           |    | EPA 8260C  | 10/1/20 20:11 | WP      |  |

Client: Chesapeake Geosciences Inc

**Project:** Hot Spot Investigation

| Lab#: | AD19479-013 | Sample ID: HSI-SS-07 (0-0.5') |
|-------|-------------|-------------------------------|
|       |             |                               |

|                                        | Prep         | Ргер           |           | Analytical | Analysis      |           |  |
|----------------------------------------|--------------|----------------|-----------|------------|---------------|-----------|--|
| Test Code                              | Method Date  |                | Ву        | Method     | Date          | Ву        |  |
| % Solids SM2540G                       |              |                |           | SM 2540G   | 9/28/20 00:00 | jessica   |  |
| Mercury (Soil/Waste) 7471B             | EPA 7471B    | 09/29/20 09:00 | asilva    | EPA 7471B  | 9/30/20 11:42 | OA        |  |
| Semivolatile Organics (no search) 8270 | 3510C/3550C  | 10/05/20       | jprevilon | EPA 8270D  | 10/6/20 00:55 | AH/JKR/JB |  |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:35 | OA        |  |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:45 | OA        |  |
| TAL Metals 6020B                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6020B  | 10/1/20 12:53 | PC        |  |

| D: | HSI-SS-07 (0.5-1') |                       |
|----|--------------------|-----------------------|
|    | D:                 | D: HSI-SS-07 (0.5-1') |

| Test Code                          | Prep<br>Method | Prep<br>Date | D., | Analytical<br>Method | Analysis      | Ву      |
|------------------------------------|----------------|--------------|-----|----------------------|---------------|---------|
| Test Code                          | method         | Date         | Ву  | Metilod              | Date          |         |
| % Solids SM2540G                   |                |              |     | SM 2540G             | 9/28/20 00:00 | jessica |
| Volatile Organics (no search) 8260 | EPA5030/5035   |              |     | EPA 8260C            | 10/1/20 18:52 | WP      |

| Sample ID: HSI-SS-08 (0-0.5') |
|-------------------------------|
|                               |

|                                        | Prep         | Prep           |           | Analytical | Analysis      |           |  |
|----------------------------------------|--------------|----------------|-----------|------------|---------------|-----------|--|
| Test Code                              | Method       | Date           | Ву        | Method     | Date          | Ву        |  |
| % Solids SM2540G                       |              |                |           | SM 2540G   | 9/28/20 00:00 | jessica   |  |
| Mercury (Soil/Waste) 7471B             | EPA 7471B    | 09/29/20 09:00 | asilva    | EPA 7471B  | 9/30/20 11:43 | OA        |  |
| Semivolatile Organics (no search) 8270 | 3510C/3550C  | 10/05/20       | jprevilon | EPA 8270D  | 10/6/20 10:02 | AH/JKR/JB |  |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:49 | OA        |  |
| FAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:39 | OA        |  |
| TAL Metals 6020B                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6020B  | 10/1/20 12:57 | PC        |  |

| Lab#: AD19479-016 | Sample ID: HSI-SS-08 (0.5-1') |
|-------------------|-------------------------------|
| 1                 |                               |

| Test Code                          | Prep<br>Method                        | Prep<br>Date | Ву | Analytical<br>Method | Analysis<br>Date | Bv      |
|------------------------------------|---------------------------------------|--------------|----|----------------------|------------------|---------|
| % Solids SM2540G                   | · · · · · · · · · · · · · · · · · · · | · · · ·      |    | SM 2540G             | 9/28/20 00:00    | jessica |
| Volatile Organics (no search) 8260 | EPA5030/5035                          |              |    | EPA 8260C            | 10/1/20 19:12    | WP      |

Client: Chesapeake Geosciences Inc

**Project:** Hot Spot Investigation

| Lab#: AD19479-017 | Sample ID: HSI-SS-09 (0-0.5') |  |
|-------------------|-------------------------------|--|
|                   |                               |  |

|                                        | Prep         | Prep           | Ву        | Analytical<br>Method | Analysis<br>Date | Ву        |
|----------------------------------------|--------------|----------------|-----------|----------------------|------------------|-----------|
| Test Code                              | Method       | Date           |           |                      |                  |           |
| % Solids SM2540G                       |              |                |           | SM 2540G             | 9/28/20 00:00    | jessica   |
| Mercury (Soil/Waste) 7471B             | EPA 7471B    | 09/29/20 09:00 | asilva    | EPA 7471B            | 9/30/20 11:48    | OA        |
| Semivolatile Organics (no search) 8270 | 3510C/3550C  | 10/05/20       | jprevilon | EPA 8270D            | 10/6/20 01:42    | AH/JKR/JB |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D            | 9/29/20 17:53    | OA        |
| FAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D            | 9/29/20 17:43    | OA        |
| ΓAL Metals 6020B                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6020B            | 10/1/20 13:02    | PC        |

| Lab#: AD | 19479-018 | Sample ID: HSI-SS-09 (0.5-1') |
|----------|-----------|-------------------------------|
|----------|-----------|-------------------------------|

| Test Code                          | Prep<br>Method | Prep<br>Date | Ву | Analytical<br>Method | Analysis<br>Date | Ву      |
|------------------------------------|----------------|--------------|----|----------------------|------------------|---------|
| % Solids SM2540G                   |                |              |    | SM 2540G             | 9/28/20 00:00    | jessica |
| Volatile Organics (no search) 8260 | EPA5030/5035   |              |    | EPA 8260C            | 10/1/20 01:59    | WP      |

| Lab#: AD19479-019 | Sample ID: HSI-SS-D (0-0.5') |
|-------------------|------------------------------|
|                   |                              |

|                                        | Prep         | Prep           |           | Analytical | Analysis      |           |  |
|----------------------------------------|--------------|----------------|-----------|------------|---------------|-----------|--|
| Test Code                              | Method       | Date           | Ву        | Method     | Date          | Ву        |  |
| % Solids SM2540G                       |              |                |           | SM 2540G   | 9/28/20 00:00 | jessica   |  |
| Mercury (Soil/Waste) 7471B             | EPA 7471B    | 09/29/20 09:00 | asilva    | EPA 7471B  | 9/30/20 11:49 | OA        |  |
| Semivolatile Organics (no search) 8270 | 3510C/3550C  | 10/05/20       | jprevilon | EPA 8270D  | 10/6/20 09:39 | AH/JKR/JB |  |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:47 | OA        |  |
| TAL Metals 6010D                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6010D  | 9/29/20 17:57 | OA        |  |
| TAL Metals 6020B                       | 3005&10/3050 | 09/29/20 09:00 | asilva    | EPA 6020B  | 10/1/20 13:06 | PC        |  |

| Lab#: AD19479-020 | Sample ID: HSI-SS-D (0.5-1') |  |
|-------------------|------------------------------|--|
|                   |                              |  |

| Test Code                          | Prep<br>Method | Prep<br>Date | Ву | Analytical<br>Method | Analysis<br>Date | Ву      |
|------------------------------------|----------------|--------------|----|----------------------|------------------|---------|
| % Solids SM2540G                   |                |              |    | SM 2540G             | 9/28/20 00:00    | jessica |
| Volatile Organics (no search) 8260 | EPA5030/5035   |              |    | EPA 8260C            | 10/1/20 02:19    | WP      |

**Chain of Custody** 

|                                                         |                                                                                                                                                                                      |                                                |                                                                   | _                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                               |                                                |                    |                    |                   |                   |                  |                |                    |                 |                  |               |                       |            |                                                    |                 |                                                            | _             |                               |                                |                                                           |                                 |                          |                                    |                      |                        |                        | 06                     |                                                                                         | 00                                                      | 50                                                               | <u> </u>                                                          |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------|--------------------|--------------------|-------------------|-------------------|------------------|----------------|--------------------|-----------------|------------------|---------------|-----------------------|------------|----------------------------------------------------|-----------------|------------------------------------------------------------|---------------|-------------------------------|--------------------------------|-----------------------------------------------------------|---------------------------------|--------------------------|------------------------------------|----------------------|------------------------|------------------------|------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|
| MDE K                                                   | Dample                                                                                                                                                                               | Additional Notes                               | 11) Sampler (print name):                                         | March 1                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | $\mathcal{I}$                                                                                 |                                                | 00                 | 200                | 800               | 007               | 00 6             | 005            | 00 H               | 003             | 200              | 00 -          | Lab Sample #          |            | ADIA47a                                            | Batch #         | <b>←</b>                                                   | ONLY          | USE                           | FOR LAB                        |                                                           | 1d) Send Report to              | 1c) Send Invoice to:     | 1b) Email/Cell/Fax/Ph:             |                      | Address:               | 1a) Customer:          |                        |                                                                                         | Ph                                                      | Ph: 800-42                                                       | 175 Route                                                         |
| MDE RMS Contract Kates                                  | 5 trasson 09/25/                                                                                                                                                                     | ר                                              | rint name): MeaStaines + VevinGlaucey                             | "<br>———————————————————————————————————— | Sul Marie Constitution of the Constitution of |                       | いり、イイグ                                                                                        | shed by:                                       | HSI -55-05 (0.5-2) | HEI -SS -05(0-0.5) | HSI-SS-04 (0.5-1) | HSI-SS-O4 (0-0.5) | HSI-55-03(0.5-1) | HSI-5-03(0-05) | H5I-55 -02 (05-4") | HSI-SS-02 (0-05 | HT-55-01 (0.5-T) | 181-8-01(0-03 | 4) Customer Sample ID |            | OT - Other (please specify under item 9, Comments) |                 | <b>DW</b> - Drinking Water S - <b>GW</b> - Ground Water SL | <u>Matrix</u> |                               |                                |                                                           | ا۔                              | raju_                    | (410)                              | olumbia              | ادا                    | Chesapeake Gersienes   | Customer Information   | NELAC/NJ #07071   PA #68-00463   NY #11408   CT #PH-0671   KY #90124   DE HSCA Approved | Ph (Service Center): 856-780-6057 Fax: 856-780-6056     | Ph: 800-426-9992   973-244-9770 Fax: 973-244-9787   973-439-1458 | 175 Roule 46 West and 2 Madison Road, Fairfield, New Jersey 07004 |
| Kates                                                   | 3020                                                                                                                                                                                 | `                                              | 3+2                                                               | ``                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A A                   |                                                                                               |                                                | 15                 | 5                  | 5                 | 5                 | )<br> S          | 5              | 5                  | 5               | 5                | 5             | Matrix                | 5)         | under item 9,                                      | <b>OL</b> - Oil | SL - Sludge                                                | les           | ===> C                        |                                |                                                           | 5.45,6                          | 2, uS, C                 | 740-1911 (ext. 106)                | h                    | ſ                      | ines                   | tion                   | PA #68-00463                                                                            | ax: 856-780-6                                           | 244-9787   97                                                    | field, New Jer                                                    |
| 3                                                       | F.8                                                                                                                                                                                  |                                                | DAINS                                                             |                                           | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                                                               | Acce                                           | <b>X</b> = .       | <br>               | ລ                 | ,                 | 3:               | a.             | 13:                | 13:10           | 13               | 9/25/2013.30  | Date   Ti             | 6) Sample  | Comments)                                          |                 | A - Air                                                    | :             | Check If Contingent ===>      |                                |                                                           | 3                               | ž,                       | 106)                               |                      | 54.12                  |                        |                        | NY #11408   C                                                                           | 3056                                                    | 3-439-1458                                                       | rsey 07004                                                        |
| ·                                                       |                                                                                                                                                                                      |                                                | Janes                                                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                               | Accepted by                                    | N. S.              | 45.1               | ନ୍ଦ: <del>ବ</del> | 1:35              | (3:œ             | la:55          | 13:15              | ā               | (3:35            | 3             | <u> </u>              | npos       | ite (C)                                            |                 | 1906                                                       | Sample        | tingent ==:                   |                                |                                                           | 2d) ₀                           |                          | 2c) P                              | 2b) P                |                        | 2a) Project:           | _                      | CT #PH-0671                                                                             | A                                                       | Į.                                                               |                                                                   |
|                                                         |                                                                                                                                                                                      |                                                |                                                                   |                                           | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                               | 14                                             |                    | メ                  |                   | メ                 |                  | <b>×</b>       |                    | ×               |                  | ×             |                       | 1043       | 5 82                                               | 70              | L                                                          | <b>⊕</b>      | <u>"</u>                      |                                |                                                           | 2d) Quote/PO # (If Applicable): |                          | 2c) Project Location (City/State): | 2b) Project Mgr.     |                        | roject:                |                        | KY #901                                                                                 | Women-                                                  | lampton-Cla                                                      | ļ                                                                 |
|                                                         |                                                                                                                                                                                      |                                                | Date: 09/                                                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                               |                                                |                    | X                  |                   | ×                 |                  | ×              |                    | X               |                  | ×             |                       |            | Meta                                               |                 | 60d                                                        | ЮД            | ]                             | 7) An                          |                                                           | # (If Applic                    | S<br>S                   | ation (City                        |                      | ٧٥ز                    | Het                    | וסו                    | 24   DE H                                                                               | Owned, D                                                | Clarke                                                           |                                                                   |
|                                                         |                                                                                                                                                                                      |                                                | 105                                                               |                                           | 1/28/2<br>9/28/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | 3                                                                                             | ,Date                                          | ×                  |                    | ×                 |                   | ×                |                | X                  | ,               | ×                |               | ٧                     | O(5<br>    | 820                                                | 60              |                                                            |               | <u> </u>                      | alysis (                       |                                                           | able):                          | G-9-0423,10              | //State):                          | Nancy Lave           | 496.2                  | 5007                   | Project Information    | SCA App                                                                                 | isadvanta                                               | . •                                                              | •                                                                 |
|                                                         |                                                                                                                                                                                      |                                                | 12020                                                             | <b>'</b>                                  | 0<br>0<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 6                   | 2,                                                                                            | _                                              | -                  |                    | _                 |                   |                  |                |                    |                 |                  |               |                       |            |                                                    |                 |                                                            |               | ┥.                            | specify                        |                                                           | छ                               | 25                       | _<br>≱                             | الأولا               | reiv (                 | 4                      | nforma                 | roved                                                                                   | ged, Sma                                                |                                                                  | CHAI                                                              |
|                                                         |                                                                                                                                                                                      |                                                | )                                                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | <u>၂</u>                                                                                      | Time                                           |                    |                    |                   |                   |                  |                |                    |                 |                  |               |                       |            |                                                    |                 |                                                            |               |                               | 7) Analysis (specify methods & |                                                           | CAGIO423IOMS                    | 3/10                     | North East MD                      | C                    | Montal mery Brothers   | Hat Spot trueskaphion  |                        |                                                                                         | A Women-Owned, Disadvantaged, Small Business Enterprise | RECC                                                             | CHAIN OF CUSTODY                                                  |
| Internal u                                              | <u>.</u>                                                                                                                                                                             | Į,                                             | <br>도 각                                                           | Check if 2                                | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B 8                   | ndicate it                                                                                    |                                                | di .               |                    |                   |                   | <u>.</u>         |                |                    |                 |                  |               |                       |            |                                                    |                 |                                                            | -             |                               |                                |                                                           | 082                             |                          | ast                                |                      | rs D                   | 35.00<br>25.00         |                        |                                                                                         | ss Enterp                                               | RD                                                               | CUSTO                                                             |
| ise: sam                                                | ease note<br>A fee of                                                                                                                                                                | LSRP I                                         | oject-Sp<br>ah Cont                                               | if applicable:                            | C (826)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or BN                 | low-leve                                                                                      | Ē                                              |                    |                    |                   |                   |                  |                |                    |                 |                  |               | -                     |            |                                                    |                 |                                                            |               |                               | parameter lists)               |                                                           | S                               |                          | 8                                  | _                    | Dump                   |                        |                        |                                                                                         | rise                                                    |                                                                  | YdC                                                               |
| nal use: sampling plan (check box) HC [ ] or client [ ] | \$5/samp                                                                                                                                                                             | NJ LSRP Project (also check boxes above/right) | Project-Specific Reporting Limits High Contaminant Concentrations | <u>e</u> a                                | VOC (8260C SIM or 8011)<br>SPLP (BN, BNA, Metals)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BN or BNA (8270D SIM) | Indicate if low-level methods required to meet current groundwater standards (SPLP for soil): | Comr                                           | <u> </u>           |                    |                   |                   |                  |                |                    |                 |                  |               |                       |            |                                                    |                 |                                                            |               |                               | lists)                         |                                                           | Officer:                        | 8 Busir                  | 5 Busir                            | 4 Busir              | 3 Busir                | 2 Busir                | 1 Busir                | *                                                                                       |                                                         |                                                                  | _                                                                 |
| n (check                                                | RED ite                                                                                                                                                                              | (also ch                                       | Reportir                                                          |                                           | or 8011)<br>Metals)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D SIM)                | requirec                                                                                      | nents,                                         |                    | -                  |                   |                   |                  |                | _                  |                 |                  |               | Noi                   | ne         |                                                    |                 |                                                            |               | î                             | $\dashv$                       | ,<br>EXP                                                  | }                               | 8 Business Days (Stand.) | Business Days (25%)                | Business Days (35%)* | 3 Business Days (50%)* | 2 Business Days (75%)* | 1 Business Day (100%)* | When Available:                                                                         | Turnaround                                              |                                                                  | $\tilde{Z}_{i}$                                                   |
| ьох) нс                                                 | ns. If no                                                                                                                                                                            | eck bo                                         | ig Limit                                                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 901)                  | to meet                                                                                       | Notes,                                         |                    | _                  |                   |                   |                  |                |                    |                 |                  |               | Me                    |            |                                                    |                 |                                                            |               | <=== Check If Contingent <=== |                                | edited T/                                                 |                                 | s (Stand                 | s (25%)                            | s (35%)*             | s (50%)*               | s (75%)*               | (100%)*                | lable:                                                                                  | und                                                     | 3) Re                                                            | 72806                                                             |
| [] or o                                                 | ot comple<br>or storage                                                                                                                                                              | xes abo                                        | ns s                                                              | _                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                               | Special                                        | X                  |                    | X                 |                   | ×                |                | ×                  |                 | ×                |               | En<br>Na              | Core<br>OH | 8)<br># of Bottles                                 | <u>!</u>        |                                                            |               | ck If Co                      |                                | T Not Al                                                  | _                               | _                        | <br>~                              | <u> </u>             |                        |                        |                        | Sr S                                                                                    |                                                         | porting                                                          | 30%                                                               |
| lient []                                                | eted you<br>should sa                                                                                                                                                                | ve/righ                                        |                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Teed to               | For NJ                                                                                        | Requir                                         |                    |                    | _                 | _                 |                  |                |                    |                 |                  |               | HC                    | 504        | tles                                               |                 |                                                            |               | ntinger                       |                                | ways Ava                                                  |                                 | NY ASP CatA              | Full / N                           | ∏ Ad[]               |                        | Reduced:               | sults + C              | Summary                                                                                 | Report Type                                             | Requir                                                           | <b>,</b>                                                          |
| FS                                                      | r analyti                                                                                                                                                                            | ٥                                              |                                                                   | Otner (                                   | NJDEP SRS<br>NJDEP SPLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NJDEP GWQS            | LSRP pro                                                                                      | ements                                         |                    |                    |                   |                   |                  |                |                    |                 |                  |               | HN                    |            | ٠, ٩                                               | <b>.</b> .      |                                                            |               | ¥ <===                        |                                | silable. F                                                |                                 | ₹                        | NJ Full / NY ASP CatB              | Cther                | YNI                    |                        | Results + QC (Waste)   |                                                                                         | t Type                                                  | ements                                                           |                                                                   |
| FSP#                                                    | cal work                                                                                                                                                                             |                                                | 7                                                                 | Otner (specify):                          | SRS<br>SPLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GWQS                  | yjects, inc                                                                                   | Comments, Notes, Special Requirements, HAZARDS | þ                  | X                  |                   | X                 |                  | ×              | _                  | X               |                  | ×             | Oth                   | er:        | 4                                                  | C               | <u> </u>                                                   |               |                               |                                | lease Ch                                                  | _                               |                          | <u></u>                            | É                    | <u></u>                |                        | $\overline{}$          |                                                                                         | m                                                       | ; (Pleas                                                         | Page                                                              |
|                                                         | Please note NUMBERED items. If not completed your analytical work may be delayed.  A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis. | 73                                             | Cooler                                                            | •                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | dicate wh                                                                                     | RDS                                            |                    |                    | Ī                 |                   |                  |                |                    |                 |                  |               | 9) Co                 |            |                                                    |                 |                                                            |               |                               |                                | Expedited TAT Not Always Available. Please Check with Lab | Other:                          |                          |                                    | [ ] 4-File           | EQuIS:                 | EnviroData             | Excel Reg.             | NJ Hazsite                                                                              | lectronic                                               | 3) Reporting Requirements (Please Circle)                        | 9                                                                 |
|                                                         | delayed.<br>lalysis.                                                                                                                                                                 | 2-3                                            | emperatu                                                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | For NJ LSRP projects, indicate which standards need to be met:                                |                                                |                    |                    |                   |                   |                  |                |                    |                 |                  |               | 9) Comments           |            |                                                    |                 |                                                            |               |                               |                                | Lab.                                                      |                                 | ] Region 2 or 5          | ] NYDEC                            | -File [ ]EZ          |                        | )                      | NJ/NY/PA               |                                                                                         | Electronic Data Deliv.                                  | ت                                                                | Į,                                                                |
|                                                         |                                                                                                                                                                                      |                                                | ē                                                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | ards                                                                                          |                                                |                    |                    |                   |                   |                  |                |                    |                 |                  |               | <u> </u>              |            |                                                    | _               |                                                            |               |                               |                                |                                                           |                                 | 3                        |                                    | Ę                    |                        | _(                     | <u>§</u>               |                                                                                         | <u>e</u> v                                              |                                                                  | 1                                                                 |

|                                                   |                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                   |                         |                    |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | יסוני.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|-------------------------|--------------------|-----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30 Jamples                                        | Additional Not                                                                                                                                    | 11) Sampler (pr                                                                                                                                                                                                                                                                     | 1/1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TO THE PERSON NAMED IN                                                                                                                                                                                                                                                                                                                                                   | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 17                                                   | 0 [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 510                | h 0               | 013                     | 0 /2               | 0                     | Lab Sample #          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D19479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Batch #                                                | <b>←</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ONLY     | FOR LAB<br>USE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1d) Send Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1C) Send Invoice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1b) Email/Cell/Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1a) Customer: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Service Cer<br>Ph (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ph: 800-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hamp<br>175 Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| /136/13 UDEON-18                                  |                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                          | Town to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           | 585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ned by:                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HI-SS-D (0-0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HI-50-09 (05-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HSI-55-09 (0-0:                                        | HSI-85-086,5-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HSI-8-08(0-0.      | -50/to 25-ISH     | 155-07(0-0.5            | HSI-SS -06/0.5-    | HSI-55-06(0-0         | 4) Customer Sample II |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OT - Other (please speci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WW - Waste Water                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mati     |                | That the state of | þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | olumbia,         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Customer Infor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NELAC/NJ #0707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iter: 137-D Gaither Drive, Mour<br>Service Center): 856-780-605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6-9992   973-244-9770 Fax: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hampton-Clarke, Inc. (WBE/DBE/SBE) 175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <del>元</del>                                      |                                                                                                                                                   | 1+20n                                                                                                                                                                                                                                                                               | 7                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Willes                                                                                                                                                                                                                                                                                                                                    | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                          | 15 (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5)                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5) S               | <del>!)</del>     | ${\color{gray}{\circ}}$ |                    | 5                     | Matrix                | 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fy under item 9, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OL-Oil                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ix Codes | ===> Ch        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .V.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \                | rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ssignes       | nation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I I PA #68-00463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t Laurel, New Jers ' Fax: 856-780-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73-244-9787   973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>VBE/DBE/</b> (airfield, New Jers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8                                                 | X 10 1 0                                                                                                                                          | 0 TV (KIV)                                                                                                                                                                                                                                                                          |                          | $\int$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S. B.                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aecepte                                                                                                                                                                                                                                                                                                                                                                  | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.15                                                  | 10:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.40              | 1).05             | 8                       | 11:30              | 135 ha 11:25          | Date Time             | 6) Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comments)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        | - Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | eck If Conting |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | xt. 106)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 七大が                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NY #11408   CT #P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ey 08054<br><b>)56</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -439-1458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>SBE)</b><br>ey 07004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \                                                 |                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                   |                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uncl                                                                                                                                                                                                                                                                                                                                      | K,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | yby:                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×<br>o                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | × 9                | v                 | ×                       | 2                  | ×<br>6                | Gra                   | ab (G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample   | ent ===>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2d) Quote/PO#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2c) Project Loca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2b) Project Mgr  | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2a) Project:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H-0671   KY #9012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A Women-(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                   | *                                                                                                                                                 | 09/22                                                                                                                                                                                                                                                                               | , ,                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 9/2                                                                                                                                                                                                                                                                                                                                     | , / Plz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ֶּם                                                                                                                                                                                                                                                                                                                                                                      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                  | <b>×</b>          | ×                       | X                  | ×                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | Oùl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A        | 7) Analysi     | A SHEET OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (If Applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ation (City/State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , «              | last dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lot Soct-     | Proje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4   DE HSCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Owned, Disadv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                   |                                                                                                                                                   |                                                                                                                                                                                                                                                                                     | //                       | 27.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chowist                                                                                                                                                                                                                                                                                                                                   | 12010;4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                   |                         |                    |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | s (specify met | (I) (A) (A) (A) (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ٠,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tovestiactic  | ct Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | antaged, Small Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHAIN O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Please<br>A fe                                    | NJ LS<br>High C                                                                                                                                   | Projec                                                                                                                                                                                                                                                                              | Check if appl            | SPLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                   |                         |                    |                       |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | _              | , (Aller 7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2423101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Duppo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5             | ((6-09-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | siness Enterprise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| note NUMBERED ite<br>e of \$5/sample will be      | contaminant Conc<br>RP Project (also c                                                                                                            | t-Specific Reporti                                                                                                                                                                                                                                                                  | cable:                   | (BN, BNA, Metals)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BNA (8270D SIM)<br>3260C SIM or 8011                                                                                                                                                                                                                                                                                                      | level methods require<br>water standards (SPL                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comments.                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                   |                         |                    |                       | No                    | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\overline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 Business Da    | 3 Business Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 33. Dausiness Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | When Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Turnar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| e assessed for stora                              | heck boxes al                                                                                                                                     | ng Limits                                                                                                                                                                                                                                                                           | _                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>=</i><br>                                                                                                                                                                                                                                                                                                                              | ed to meet<br>P for soil):                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Notes, Specia                                                                                                                                                                                                                                                                                                                                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | X                 | _                       | ×                  |                       | Me<br>En              | OH<br>Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | # of B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | === Check If C | Jenned 1911 Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pedited TAT Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3) Reportin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project # (Lab Use Only) $0042806$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| pleted your analytical ge should sample not be ac | bove/right)                                                                                                                                       |                                                                                                                                                                                                                                                                                     | Other (spe               | NJDEP SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NJDEP GV                                                                                                                                                                                                                                                                                                                                  | For NJ LSRP projection need to be met:                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al Requirements, H                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                  |                   | ×                       |                    | ×                     | HC:                   | SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | ontingent <=== | Cimays Available: Fied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Always Available Blea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NY ASP CatA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NJ Full / NY ASP CatB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | ANI I INI ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reduced:      | Results + QC (Waste)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cummon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Report Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Requirements (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | only) Page_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| work may be delayed.                              | Cooler Jemperature                                                                                                                                | Cooler Temperature                                                                                                                                                                                                                                                                  | city):                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v QS                                                                                                                                                                                                                                                                                                                                      | ts, indicate which standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AZARDS                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                   |                         |                    |                       | 9) Comments           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                | See Creek and Cap.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [ ] Region 2 or 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [ ] NYDEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [ ] 4-File [ ]EZ | EQuIS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N I Lloudin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   | Please note NUMBERED items. If not completed your analytical work  A fee of \$5/sample will be assessed for storage should sample not be activate | Ingli Containmant Concentrations  NJ LSRP Project (also check boxes above/right)  NJ LSRP Project (also check boxes above/right)  Please note NUMBERED items. If not completed your analytical work  A fee of \$5/sample will be assessed for storage should sample not be activate | 15 ancy Date: 09/25/2020 | Check if applicable:  Other (specify)  Project-Specific Reporting Limits  High Contaminant Concentrations  NJ LSRP Project (also check boxes above/right)  Please note NUMBERED items. If not completed your analytical work  A fee of \$5/sample will be assessed for storage should sample not be activate | SPLP (BN, BNA, Metals)  Check if applicable:  Check if applicable:  Project-Specific Reporting Limits  High Contaminant Concentrations  NJ LSRP Project (also check boxes above/right)  Please note NUMBERED items. If not completed your analytical work  A fee of \$5/sample will be assessed for storage should sample not be activate | BN or BNA (8270D SIM)  VOC (8260C SIM or 8011)  NJDEP SRS  SPLP (BN, BNA, Metals)  1,4 Dioxane  Check if applicable:  Project-Specific Reporting Limits  High Contaminant Concentrations  NJ LSRP Project (also check boxes above/right)  Please note NUMBERED items. If not completed your analytical work  A fee of \$5/sample will be assessed for storage should sample not be activate | Indicate if low-level methods required to meet current groundwater standards (SPLP for soil):  BN or BNA (8270D SIM)  VOC (8260C SIM or 8011)  SPLP (BN, BNA, Metals)  1,4 Dioxane  Check if applicable:  Project-Specific Reporting Limits  High Contaminant Concentrations  NJ LSRP Project (also check boxes above A fee of \$5/sample will be assessed for storage s | Date Time Comments, Notes, Special Requirements, HAZI Indicate if low-level methods required to meet current groundwater standards (SPLP for soil):  NOC (8260C SIM or 8011)  NOC (8260C SIM or 8011)  Project-Specific Reporting Limits  High Contaminant Concentrations  NJ LSRP Project (also check boxes above/right)  Please note NUMBERED items. If not completed your analytical work a fee of \$5/sample will be assessed for storage should sample not be activate | Date Time Indicate if low-level methods required to meet current groundwater standards (SPLP for soil):    Comments, Notes, Special For soil   Current groundwater standards (SPLP for soil):   Comments, Notes, Special For soil   Current groundwater standards (SPLP for soil):   Comments   Current groundwater standards (SPLP for soil):   Comments   Current groundwater standards (SPLP for soil):   Comments, Notes, Special For soil   Current groundwater standards (SPLP for soil):   Comments, Notes, Special For soil   Current groundwater standards (SPLP for soil):   Comments, Notes, Special For soil   Current groundwater standards (SPLP for soil):   Comments, Notes, Special For soil   Current groundwater standards (SPLP for soil):   Comments, Notes, Special For soil   Current groundwater standards (SPLP for soil):   Comments, Notes, Special For soil   Current groundwater standards (SPLP for soil):   Comments, Notes, Special For soil   Current groundwater standards (SPLP for soil):   Comments, Notes, Special For soil   Current groundwater standards (SPLP for soil):   Comments, Notes, Special For soil   Current groundwater standards (SPLP for soil):   Comments, Notes, Special For soil   Current groundwater standards (SPLP for soil):   Comments, Notes, Special For soil   Current groundwater standards (SPLP for soil):   Comments   Current groundwater standards (SPLP for soi | Date Time   Comments, Notes, Special F   Comments   Com | Descriptory   Date   Time   Comments, Notes, Special F | Date   Time   Comments, Notes, Special F   Comments   Comments | Io: 15   G   X   X | 10:45   G   X   X | 10.46   6               | I) vyo   G   X   X | 17:30   6   X   X   X |                       | III   III | Time Comments. Notes. Special Functionals of the Core Nacionals of the Core Nacional of the Core Naci | Imple ositite (c) 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | A   Customer Sample   D   Matrix   Date   Time   Comments   C   A   A   Customer Sample   D   Matrix   Date   Time   Comments   C   A   A   Customer Sample   D   Matrix   Date   Time   C   Gab   A   A   Customer Sample   D   Matrix   Date   Time   C   Gab   A   A   Customer Sample   D   Matrix   Date   Time   C   Gab   A   A   Customer Sample   D   Matrix   Date   Time   C   Gab   A   A   Customer Sample   D   Matrix   Date   Time   C   Gab   A   A   Customer Sample   D   Matrix   Date   Time   C   Gab   A   A   Customer Sample   D   Matrix   Date   Date | A - Ni   | Matrix Codes   | Matrix Codes   Sample   Samp  | Matrix Codes   Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if Contingent ===>   The Analysis (specify methods & parameter lists)   C=== Check if The Analysis (specify methods & parameter lists)   C=== Check if The Analysis (specify methods & parameter lists)   C=== Check if The Analysis (specify methods & parameter lists)   C=== Check if The Analysis (specify methods & parameter lists)   C=== Check if The Analysis (specify methods & parameter lists)   C=== Check if The Analysis (specify methods & parameter lists)   C=== Check if The Analysis (specify methods & parameter lists)   C=== Check if The Analysis (specify methods & parameter lists)   C=== Check if The Analysis (specify methods & parameter lists)   C=== Check if The Analysis (specify methods & parameter lists)   C=== Check if The Analysis (specify methods & parameter lists) | Matrix Codes   Contingent ===>   Analysis (specify methods & parameter lists)   Analysis (specify methods & parameter lists)   Contingent ===>   Analysis (spec | Condition   Color   Color | 10               | The invalcation of the properties   Columbia   Alla 2 (Dec.   Columbia   Alla 2 (Dec.   Columbia   Alla 2 (Dec.   Columbia   Columbia   Alla 2 (Dec.   Columbia   C | Authorization | 1   October   October | Customer Information   Customer   Information   Customer   Information   Customer   Information   Customer   Information   Customer   Information   Customer   Information   Customer   Information   Customer   Information   Customer   Information   Customer   Information   Informa | 10   Colorest   Charlest   Entering   Cardinate   Entering   Cardinate   Car | Column   170 Colline Circus Marial Land Rose   180 Colling   170 Colling   180 Col | Proceedings   15th 24st 7th   15th 24st 10th   15th 24s |

## **CONDITION UPON RECEIPT**

Batch Number AD19479

Entered By: Ricardo

Date Entered 9/28/2020 3:26:00 PM

| 1  | Yes   | Is there a corresponding COC included with the samples?                                                                                                                                           |
|----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Yes   | Are the samples in a container such as a cooler or Ice chest?                                                                                                                                     |
| 3  | No    | Are the COC seals intact?                                                                                                                                                                         |
| 4  | T-461 | < Thermometer ID. Please specify the Temperature inside the container (in degC). 2.3                                                                                                              |
| 5  | Yes   | Are the samples refrigerated (where required)/have they arrived on ice?                                                                                                                           |
| 6  | No    | Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:  TERRA CORE SAMPLES COLLECTED ON 9/25/20  EMAIL STATES CLIENT FROZE TERRA CORE |
| 7  | Yes   | SMAPLE WERE RECEIVED IN PORTABLE FREEZER  Are all of the sample bottles intact? If no, specify sample numbers broken/leaking                                                                      |
| 8  | Yes   | Are all of the sample labels or numbers legible? If no specify:                                                                                                                                   |
| 9  | Yes   | Do the contents match the COC? If no, specify                                                                                                                                                     |
| 10 | Yes   | Is there enough sample sent for the analyses listed on the COC? If no, specify:                                                                                                                   |
| 11 | Yes   | Are samples preserved correctly?                                                                                                                                                                  |
| 12 | Yes   | Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?                                                                                           |
| 13 | NA    | Other commentsSpecify (TB date, sample matrix, any missing info, etc.)                                                                                                                            |
| 14 | NA    | Corrective actions (Specify item number and corrective action taken).                                                                                                                             |
| 15 | No    | Were any samples for ortho-phosphate or dissolved ferrous iron field filtered?                                                                                                                    |

|             |                | Loc                    | T      |                   |                            |                                  | Loc       | -           | Ţ    |                  |
|-------------|----------------|------------------------|--------|-------------------|----------------------------|----------------------------------|-----------|-------------|------|------------------|
|             |                | or Bo                  | t A/   |                   |                            |                                  | or        | Bot         | A    |                  |
| Lab#:       | DateTime:      | User Nu                | M      | Analysis          | Lab#:                      | <u>DateTime:</u>                 | User      | Nu_         | M    | Analysis         |
| AD19479-001 | 09/28/20 14:50 | RICAR 0                | M      | Received          | AD19479-007                | 10/06/20 07:19                   | R12       | 2           | Α    | NONE             |
| AD19479-001 | 09/28/20 15:25 | RICAR 0                | М      | Login             | AD19479-008                | 09/28/20 14:50                   | RICAR     | 0           | M    | Received         |
| AD19479-001 | 09/28/20 16:20 | JMP 1                  | Α      | SOLIDS            | AD19479-008                | 09/28/20 15:25                   | RICAR     | 0           | M    | Login            |
| AD19479-001 | 09/28/20 17:06 | R12 1                  | A      | NONE              | AD19479-008                | 09/28/20 15:54                   | R31       | 1           | Α    | NONE             |
| AD19479-001 | 09/28/20 18:01 | R12 1                  | Α      | NONE              | AD19479-008                | 09/29/20 07:19                   | SG        | 1           | A    | VOA              |
| AD19479-001 | 09/29/20 08:45 | ANS 1                  | Α      | TDSI/Hg           | AD19479-008                | 09/29/20 07:20                   | R31       | 1           | Α    | NONE             |
| AD19479-001 | 09/29/20 13:47 | R12 1                  | Α      | NONE              | AD19479-008                | 09/28/20 15:55                   | F18       | 2           | Α    | NONE             |
| AD19479-001 | 10/05/20 07:17 | JP 1                   | Α      | bna-soil          | AD19479-008                | 09/30/20 16:49                   | WP        | 2           | Α    | VOA              |
| AD19479-001 | 10/05/20 07:19 | R12 1                  | Α      | NONE              | AD19479-008                | 09/28/20 15:55                   | F18       | 3           | A    | NONE             |
| AD19479-001 | 09/28/20 18:01 | R12 2                  | Α      | NONE              | AD19479-008                | 09/28/20 16:20                   | JMP       | 4           | Α    | SOLIDS           |
| AD19479-002 | 09/28/20 14:50 | RICAR 0                | М      | Received          | AD19479-008                | 09/28/20 17:06                   | R12       | 4           | Α    | NONE             |
| AD19479-002 | 09/28/20 15:25 | RICAR 0                | М      | Login             | AD19479-008                | 09/28/20 18:01                   | R12       | 4           | Α    | NONE             |
| AD19479-002 | 09/28/20 15:54 | R31 1                  | A      | NONE              | AD19479-009                | 09/28/20 14:50                   | RICAR     |             | M    | Received         |
| AD19479-002 | 09/29/20 07:19 | SG 1                   | Α      | VOA               | AD19479-009                | 09/28/20 15:25                   | RICAR     | <del></del> | M    | Login            |
| AD19479-002 | 09/29/20 07:20 | R31 1                  | A      | NONE              | AD19479-009                | 09/28/20 16:20                   | 1         | 1           | Α    | SOLIDS           |
| AD19479-002 | 09/28/20 15:55 | F18 2                  | A      | NONE              | AD19479-009                | 09/28/20 17:06                   | R12       | 1           | A    | NONE             |
| AD19479-002 | 09/30/20 16:49 | WP 2                   | Α      | VOA               | AD19479-009                | 09/28/20 18:01                   | R12       | 1           | Α    | NONE             |
| AD19479-002 | 09/28/20 15:55 | F18 3                  | A      | NONE              | AD19479-009                | 09/29/20 08:45                   | ANS       | 1           | Α    | TDSI/Hg          |
| AD19479-002 | 09/28/20 16:20 | JMP 4                  | A      | SOLIDS            | AD19479-009                | 09/29/20 13:47                   | R12       | 1           | Α    | NONE             |
| AD19479-002 | 09/28/20 17:06 | R12 4                  | Α      | NONE              | AD19479-009                | 10/05/20 07:17                   | i         | 1           | A    | bna-soil         |
| AD19479-002 | 09/28/20 18:01 | R12 4                  | Α      | NONE              | AD19479-009                | 10/05/20 07:19                   | 1         | 1           | A    | NONE             |
| AD19479-003 | 09/28/20 14:50 | RICAR 0                | М      | Received          | AD19479-009                | 09/28/20 18:01                   | R12       | 2           | Α    | NONE             |
| AD19479-003 | 09/28/20 15:25 | RICAR 0                | М      | Login             | AD19479-010                | 09/28/20 14:50                   | RICAR     |             | М    | Received         |
| AD19479-003 | 09/28/20 18:01 | R12 1                  | Α      | NONE              | AD19479-010                | 09/28/20 15:25                   | RICAR     | 0           | М    | Login            |
| AD19479-003 | 09/28/20 16:20 | JMP 2                  | A      | SOLIDS            | AD19479-010                | 09/28/20 15:54                   | 1         | 1           | A    | NONE             |
| AD19479-003 | 09/28/20 17:06 | R12 2                  | Α      | NONE              | AD19479-010                | 09/29/20 07:19                   | SG        | 1           | Α    | VOA              |
| AD19479-003 | 09/28/20 18:01 | R12 2                  | Α      | NONE              | AD19479-010                | 09/29/20 07:20                   | R31       | 1           | A    | NONE             |
| AD19479-003 | 09/29/20 08:45 | ANS 2                  | Α      | TDSI/Hg           | AD19479-010                | 09/28/20 15:55                   | F18       | 2           | Α    | NONE             |
| AD19479-003 | 09/29/20 13:47 | R12 2                  | Α      | NONE              | AD19479-010                | 09/30/20 16:49                   | WP        | 2           | Α    | VOA              |
| AD19479-003 | 10/05/20 07:17 | JP 2                   | Α      | bna-soil          | AD19479-010                | 09/28/20 15:55                   | F18       | 3           | Α    | NONE             |
| AD19479-003 | 10/05/20 07:19 | R12 2                  | Α      | NONE              | AD19479-010                | 09/28/20 16:20                   | JMP       | 4           | Α    | SOLIDS           |
| AD19479-004 | 09/28/20 14:50 | RICAR 0                | М      | Received          | AD19479-010                | 09/28/20 17:06                   | R12       | 4           | Α    | NONE             |
| AD19479-004 | 09/28/20 15:25 | RICAR 0                | M      | Login             | AD19479-010                | 09/28/20 18:01                   | R12       | 4           | A    | NONE             |
| AD19479-004 | 09/28/20 15:54 | R31   1                | Α      | NONE              | AD19479-011                | 09/28/20 14:50                   | RICAR     | 0           | М    | Received         |
| AD19479-004 | 09/29/20 07:19 | SG 1                   | Α      | VOA               | AD19479-011                | 09/28/20 15:25                   | RICAR     | 0           | М    | Login            |
| AD19479-004 | 09/29/20 07:20 | R31 1                  | Α      | NONE              | AD19479-011                | 09/28/20 16:20                   | JMP       | 1           | Α    | SOLIDS           |
| AD19479-004 | 09/28/20 15:55 | F18 2                  | Α      | NONE              | AD19479-011                | 09/28/20 17:06                   | R12       | 1           | A    | NONE             |
| AD19479-004 | 09/30/20 16:49 | WP 2                   | Α      | VOA               | AD19479-011                | 09/28/20 18:01                   | R12       | 1           | Α    | NONE             |
| AD19479-004 | 09/28/20 15:55 | F18   3                | Α      | NONE              | AD19479-011                | 09/29/20 08:45                   | ANS       | 1           | Α    | TDSI/Hg          |
| AD19479-004 | 10/01/20 16:57 | WP 3                   | Α      | VOA               | AD19479-011                | 09/29/20 13:47                   | R12       | 1           | Α    | NONE             |
| AD19479-004 | 09/28/20 16:20 | JMP 4                  | Α      | SOLIDS            | AD19479-011                | 10/05/20 07:17                   | JP        | 1           | A    | bna-soil         |
| AD19479-004 | 09/28/20 17:06 | R12 4                  | A      | NONE              | AD19479-011                | 10/05/20 07:19                   | R12       | 1           | Α    | NONE             |
| AD19479-004 | 09/28/20 18:01 | R12 4                  | Α      | NONE              | AD19479-011                | 09/28/20 18:01                   | R12       | 2           | Α    | NONE             |
| AD19479-005 | 09/28/20 14:50 | RICAR 0                | М      | Received          | AD19479-012                | 09/28/20 14:50                   | RICAR     | 0           | М    | Received         |
| AD19479-005 | 09/28/20 15:25 | RICAR 0                | M      | Login             | AD19479-012                | 09/28/20 15:25                   | RICAR     | 0           | М    | Login            |
| AD19479-005 | 09/28/20 16:20 | JMP 1                  | Α      | SOLIDS            | AD19479-012                | 09/28/20 15:54                   | R31       | 1           | Α    | NONE             |
| AD19479-005 | 09/28/20 17:06 | R12 1                  | Α      | NONE              | AD19479-012                | 09/29/20 07:19                   | SG        | 1           | Α    | VOA              |
| AD19479-005 | 09/28/20 18:01 | R12 1                  | A      | NONE              | AD19479-012                | 09/29/20 07:20                   | R31       | 1           | A    | NONE             |
| AD19479-005 | 09/29/20 08:45 | ANS 1                  | A      | TDSI/Hg           | AD19479-012                | 09/28/20 15:55                   | F18       | 2           | A    | NONE             |
| AD19479-005 | 09/29/20 13:47 | R12 1                  | Α      | NONE              | AD19479-012                | 09/30/20 16:49                   | WP        | 2           | Α    | VOA              |
| AD19479-005 | 10/05/20 07:17 | JP 1                   | A      | bna-soil          | AD19479-012                | 09/28/20 15:55                   | F18       | 3           | A    | NONE             |
| AD19479-005 | 10/05/20 07:19 | R12 1                  | Α      | NONE              | AD19479-012                | 10/01/20 16:57                   | WP        | 3           | A    | VOA              |
| AD19479-006 | 09/28/20 14:50 | RICAR 0                | м      | Received          | AD19479-012                | 09/28/20 16:20                   | JMP       | 4           | Α    | SOLIDS           |
| AD19479-006 | 09/28/20 15:25 | RICAR 0                | М      | Login             | AD19479-012                | 09/28/20 17:06                   | R12       | 4           | Α    | NONE             |
| AD19479-006 | 09/28/20 15:54 | R31 1                  | A      | NONE              | AD19479-012                | 09/28/20 18:01                   | R12       | 4           | A    | NONE             |
| AD19479-006 | 09/29/20 07:19 | SG 1                   | Α      | VOA               | AD19479-013                | 09/28/20 14:50                   | RICAR     |             | М    | Received         |
| AD19479-006 | 09/29/20 07:20 | R31 1                  | A      | NONE              | AD19479-013                | 09/28/20 15:25                   | RICAR     | i           | м    | Login            |
| AD19479-006 | 09/28/20 15:55 | F18 2                  | A      | NONE              | AD19479-013                | 09/28/20 16:20                   | JMP       | 1           | A    | SOLIDS           |
| AD19479-006 | 09/30/20 16:49 | WP 2                   | A      | VOA               | AD19479-013                | 09/28/20 17:06                   | R12       | 1           | Α    | NONE             |
| AD19479-006 | 09/28/20 15:55 | F18 3                  | Α      | NONE              | AD19479-013                | 09/29/20 08:45                   | ANS       | 1           | A    | TDSI/Hg          |
| AD19479-006 | 10/01/20 16:57 | WP 3                   | Α      | VOA               | AD19479-013                | 09/29/20 13:47                   | R12       | 1           | A    | NONE             |
| AD19479-006 | 09/28/20 16:20 | JMP 4                  | Α      | SOLIDS            | AD19479-013                | 10/05/20 07:17                   | JP        | 1           | Α    | bna-soil         |
| AD19479-006 | 09/28/20 17:06 | R12 4                  | A      | NONE              | AD19479-013                | 10/05/20 07:19                   | R12       | 1           | A    | NONE             |
| AD19479-006 | 09/28/20 18:01 | R12 4                  | A      | NONE              | AD19479-014                | 09/28/20 14:50                   | RICAR     |             | м    | Received         |
| AD19479-007 | 09/28/20 14:50 | RICAR 0                | М      | Received          | AD19479-014                | 09/28/20 15:25                   | RICAR     |             | М    | Login            |
| AD19479-007 | 09/28/20 15:25 | RICAR 0                | M      | Login             | AD19479-014                | 09/28/20 15:54                   | R31       | 1           | A    | NONE             |
| AD19479-007 | 09/28/20 16:20 | JMP 1                  | A      | SOLIDS            | AD19479-014                | 09/29/20 07:19                   | SG        | 1           | A    | VOA              |
| AD19479-007 | 09/28/20 17:06 | R12 1                  | A      | NONE              | AD19479-014                | 09/29/20 07:20                   | R31       | 1           | A    | NONE             |
| AD19479-007 | 09/28/20 18:01 | R12 1                  | Ā      | NONE              | AD19479-014                | 09/28/20 15:55                   | F18       | 2           | A    | NONE             |
| AD19479-007 | 09/29/20 08:45 | ANS 1                  | A      | TDSI/Hg           | AD19479-014                | 09/30/20 16:49                   | WP        | 2           | A    | VOA              |
| AD19479-007 | 09/29/20 13:47 | R12 1                  | A      | NONE              | AD19479-014                | 09/28/20 15:55                   | F18       | 3           | A    | NONE             |
| 70194184001 | 10/05/20 07:17 | JP 1                   | A      | i i               | i                          |                                  | - ;       | :           |      | 1                |
| AD10470 007 | 10/03/20 07:17 | JP 1                   | 1      | bna-soil          | AD19479-014<br>AD19479-014 | 10/01/20 16:57<br>09/28/20 16:20 | WP<br>JMP | 3           | A    | VOA<br>SOLIDS    |
| AD19479-007 |                | D10 14                 |        |                   |                            |                                  |           |             | 1.44 |                  |
| AD19479-007 | 10/05/20 07:19 | R12 1                  | A      | NONE              | •                          | ;                                |           | 1           | ,    |                  |
| :           |                | R12 1<br>R12 2<br>JP 2 | A<br>A | NONE<br> bna-soil | AD19479-014<br>AD19479-015 | 09/28/20 17:06<br>09/28/20 14:50 | R12       | 4           | A    | NONE<br>Received |

|                            |                                  |           |     |    |             | Internal Chain of |
|----------------------------|----------------------------------|-----------|-----|----|-------------|-------------------|
|                            |                                  | Loc       | _   |    | T           |                   |
|                            |                                  | or        | Bot |    |             | !                 |
| Lab#:                      | DateTime:                        | User      | Nu  | М  | Analysis    |                   |
| AD19479-015                | 09/28/20 15:25                   | RICAR     | 0   | М  | Login       |                   |
| AD19479-015                | 09/28/20 16:20                   | JMP       | 1   | Α  | SOLIDS      |                   |
| AD19479-015                | 09/28/20 17:06                   | R12       | 1   | Α  | NONE        |                   |
| AD19479-015                | 09/28/20 18:01                   | R12       | 1   | Α  | NONE        |                   |
| AD19479-015                | 09/29/20 08:45                   | ANS       | 1   | Α  | TDSI/Hg     |                   |
| AD19479-015                | 09/29/20 13:47                   | R12       | 1   | Α  | NONE        |                   |
| AD19479-015                | 10/05/20 07:17                   | JP        | 1   | Α  | bna-soil    |                   |
| AD19479-015                | 10/05/20 07:19                   | R12       | 1   | Α  | NONE        |                   |
| AD19479-015                | 09/28/20 18:01                   | R12       | 2   | A  | NONE        |                   |
| AD19479-016                | 09/28/20 14:50                   | RICAR     | i   | M  | Received    |                   |
| AD19479-016                | 09/28/20 15:25                   | RICAR     |     | M  | Login       |                   |
| AD19479-016                | 09/28/20 15:54                   | R31       | 1   | Α  | NONE        |                   |
| AD19479-016                | 09/29/20 07:19                   | SG        | 1   | A  | VOA         | i                 |
| AD19479-016                | 09/29/20 07:20                   | R31       | 1 2 | A  | NONE        |                   |
| AD19479-016                | 09/28/20 15:55                   | F18       | 2   | A  | NONE<br>VOA |                   |
| AD19479-016<br>AD19479-016 | 09/30/20 16:49<br>09/28/20 15:55 | F18       | 3   | Ā  | NONE        |                   |
| AD19479-016                | 10/01/20 16:57                   | WP        | 3   | Ā  | VOA         |                   |
| AD19479-016                | 09/28/20 16:20                   | JMP       | · 4 | A  | SOLIDS      |                   |
| AD19479-016                | 09/28/20 17:06                   | R12       | i 4 | Ā  | NONE        |                   |
| AD19479-016                | 09/28/20 18:01                   | R12       | 4   | Â  | NONE        |                   |
| AD19479-017                | 09/28/20 14:50                   | RICAR     |     | м  | Received    |                   |
| AD19479-017                | 09/28/20 15:25                   | RICAR     |     | м  | Login       |                   |
| AD19479-017                | 09/28/20 16:20                   | JMP       | 1   | A  | SOLIDS      | :                 |
| AD19479-017                | 09/28/20 17:06                   | R12       |     | A  | NONE        |                   |
| AD19479-017                | 09/28/20 18:01                   | R12       | 1   | A  | NONE        |                   |
| AD19479-017                | 09/29/20 08:45                   | ANS       | 1   | A  | TDSI/Hg     |                   |
| AD19479-017                | 09/29/20 13:47                   | R12       | 1   | A  | NONE        |                   |
| AD19479-017                | 10/05/20 07:17                   | JP        | 1   | A  | bna-soil    | i                 |
| AD19479-017                | 10/05/20 07:19                   | R12       | 1   | Α  | NONE        | 1                 |
| AD19479-017                | 09/28/20 18:01                   | R12       | 2   | A  | NONE        | į                 |
| AD19479-018                | 09/28/20 14:50                   | RICAR     | 0   | М  | Received    |                   |
| AD19479-018                | 09/28/20 15:25                   | RICAR     | 0   | M  | Login       | i                 |
| AD19479-018                | 09/28/20 15:54                   | R31       | 1   | Α  | NONE        |                   |
| AD19479-018                | 09/29/20 07:19                   | SG        | 1   | Α  | VOA         |                   |
| AD19479-018                | 09/29/20 07:20                   | R31       | 1   | Α  | NONE        |                   |
| AD19479-018                | 09/28/20 15:55                   | F18       | 2   | Α  | NONE        |                   |
| AD19479-018                | 09/30/20 16:49                   | WP        | 2   | Α  | VOA         |                   |
| AD19479-018                | 09/28/20 15:55                   | F18       | 3   | Α  | NONE        |                   |
| AD19479-018                | 09/28/20 16:20                   | JMP       | 4   | Α  | SOLIDS      |                   |
| AD19479-018                | 09/28/20 17:06                   | R12       | 4   | A  | NONE        |                   |
| AD19479-019                | 09/28/20 14:50                   | RICAR     | ì   | M  | Received    |                   |
| AD19479-019                | 09/28/20 15:25                   | RICAR     | 1   | М  | Login       |                   |
| AD19479-019                | 09/28/20 18:01                   | R12       | 1   | Α  | NONE        |                   |
| AD19479-019                | 09/28/20 16:20                   | JMP       | 2   | Α  | SOLIDS      |                   |
| AD19479-019                | 09/28/20 17:06                   | R12       | 2   | Α  | NONE        |                   |
| AD19479-019                | 09/29/20 08:45                   | ANS       | 2   | Α  | TDSI/Hg     |                   |
| AD19479-019                | 09/29/20 13:47                   | R12       | 2   | A  | NONE        |                   |
| AD19479-019                | 10/05/20 07:17                   | JP        | 2   | Α  | bna-soil    |                   |
| AD19479-019                | 10/05/20 07:19                   | R12       | 2   | A. | NONE        |                   |
| AD19479-020                | 09/28/20 14:50                   | RICAR     | +   | M  | Received    |                   |
| AD19479-020                | 09/28/20 15:25                   | RICAR     | i   | M  | Login       |                   |
| AD19479-020                | 09/28/20 15:54                   | R31       | 1   | A  | NONE        |                   |
| AD19479-020                | 09/29/20 07:19                   | SG        | 1   | A  | VOA         |                   |
| AD19479-020                | 09/29/20 07:20                   | R31       | 1   | A  | NONE        | I                 |
| AD19479-020<br>AD19479-020 | 09/28/20 15:55<br>09/30/20 16:49 | F18<br>WP | 2   | A  | NONE        |                   |
| AD19479-020<br>AD19479-020 | 09/30/20 15:49                   | F18       | 3   | A  | NONE        |                   |
| AD19479-020                | 09/28/20 15:55                   | JMP       | 4   | A  | SOLIDS      |                   |
| AD19479-020                | 09/28/20 17:06                   | i         | 4   | A  | NONE        |                   |
| IUD 19418-050              | USIZOIZU 17.00                   | 11/12     | 1 * | 1~ | 1.10115     | L                 |

|                            |                                  | Loc              | r        | Τ | Т             |
|----------------------------|----------------------------------|------------------|----------|---|---------------|
|                            |                                  | or               | Bot      | A | ļ             |
| Lab#:                      | DateTime:                        | User             | 1        | 1 | Analysis      |
| AD19479-015                | 09/28/20 15:25                   | RICAR            | o        | M | Login         |
| AD19479-015                | 09/28/20 16:20                   | JMP              | 1        | A | SOLIDS        |
| AD19479-015                | 09/28/20 17:06                   | <sup>!</sup> R12 | 1        | Α | NONE          |
| AD19479-015                | 09/28/20 18:01                   | R12              | 1        | A | NONE          |
| AD19479-015                | 09/29/20 08:45                   | ANS              | 1        | Α | TDSI/Hg       |
| AD19479-015                | 09/29/20 13:47                   | R12              | 1        | Α | NONE          |
| AD19479-015                | 10/05/20 07:17                   | JP               | 1        | Α | bna-soil      |
| AD19479-015                | 10/05/20 07:19                   | R12              | 1        | Α | NONE          |
| AD19479-015                | 09/28/20 18:01                   | R12              | 2        | Α | NONE          |
| AD19479-016                | 09/28/20 14:50                   | RICAR            | :        | М | Received      |
| AD19479-016                | 09/28/20 15:25                   | RICAR            |          | M | Login         |
| AD19479-016                | 09/28/20 15:54                   | R31              | 1        | Α | NONE          |
| AD19479-016                | 09/29/20 07:19                   | SG               | . 1      | A | VOA           |
| AD19479-016                | 09/29/20 07:20                   | R31              | 1        | Α | NONE          |
| AD19479-016                | 09/28/20 15:55                   | F18              | 2        | Α | NONE          |
| AD19479-016                | 09/30/20 16:49                   | WP               | 2        | A | VOA           |
| AD19479-016                | 09/28/20 15:55                   | i                | 3        | A | NONE          |
| AD19479-016<br>AD19479-016 | 10/01/20 16:57<br>09/28/20 16:20 | JMP              | ¦3<br>∙4 | A | VOA<br>SOLIDS |
| :                          |                                  | 1                |          |   |               |
| AD19479-016<br>AD19479-016 | 09/28/20 17:06<br>09/28/20 18:01 | R12              | 4        | A | NONE          |
| AD19479-016<br>AD19479-017 | 09/28/20 14:50                   | RICAR            |          | м | Received      |
| AD19479-017<br>AD19479-017 | 09/28/20 15:25                   | RICAR            |          | М | Login         |
| AD19479-017<br>AD19479-017 | 09/28/20 16:20                   | JMP              | 1        | A | SOLIDS        |
| AD19479-017                | 09/28/20 17:06                   | R12              |          | Â | NONE          |
| AD19479-017                | 09/28/20 18:01                   | R12              | 1        | A | NONE          |
| AD19479-017                | 09/29/20 08:45                   | ANS              | 1        | A | TDSI/Hg       |
| AD19479-017                | 09/29/20 13:47                   | R12              | 1        | A | NONE          |
| AD19479-017                | 10/05/20 07:17                   | JP               | 1        | A | bna-soil      |
| AD19479-017                | 10/05/20 07:17                   | R12              | 1        | A | NONE          |
| AD19479-017                | 09/28/20 18:01                   | R12              | 2        | A | NONE          |
| AD19479-018                | 09/28/20 14:50                   | RICAR            |          | м | Received      |
| AD19479-018                | 09/28/20 15:25                   | RICAR            | 1        | М | Login         |
| AD19479-018                | 09/28/20 15:54                   | R31              | 1        | Α | NONE          |
| AD19479-018                | 09/29/20 07:19                   | SG               | 1        | Α | VOA           |
| AD19479-018                | 09/29/20 07:20                   | R31              | 1        | Α | NONE          |
| AD19479-018                | 09/28/20 15:55                   | F18              | 2        | Α | NONE          |
| AD19479-018                | 09/30/20 16:49                   | WP               | 2        | Α | VOA           |
| AD19479-018                | 09/28/20 15:55                   | F18              | 3        | A | NONE          |
| AD19479-018                | 09/28/20 16:20                   | JMP              | 4        | Α | SOLIDS        |
| AD19479-018                | 09/28/20 17:06                   | R12              | 4        | A | NONE          |
| AD19479-019                | 09/28/20 14:50                   | RICAR            | 0        | М | Received      |
| AD19479-019                | 09/28/20 15:25                   | RICAR            | 0        | M | Login         |
| AD19479-019                | 09/28/20 18:01                   | R12              | 1        | A | NONE          |
| AD19479-019                | 09/28/20 16:20                   | JMP              | 2        | A | SOLIDS        |
| AD19479-019                | 09/28/20 17:06                   | R12              | 2        | Α | NONE          |
| AD19479-019                | 09/29/20 08:45                   | ANS              | 2        | Α | TDSI/Hg       |
| AD19479-019                | 09/29/20 13:47                   | R12              | 2        | A | NONE          |
| AD19479-019                | 10/05/20 07:17                   | JP               | 2        | Α | bna-soil      |
| AD19479-019                | 10/05/20 07:19                   |                  | 2        | A | NONE          |
| AD19479-020                | 09/28/20 14:50                   | RICAR            |          | М | Received      |
| AD19479-020                | 09/28/20 15:25                   | RICAR            | 0        | М | Login         |
| AD19479-020                | 09/28/20 15:54                   | R31              | 1        | Α | NONE          |
| AD19479-020                | 09/29/20 07:19                   | sG               | 1        | A | VOA           |
| AD19479-020                | 09/29/20 07:20                   | R31              | 1        | A | NONE          |
| AD19479-020                | 09/28/20 15:55                   | F18              | 2        | Α | NONE          |
| AD19479-020                | 09/30/20 16:49                   | WP               | 2        | A | VOA           |
| AD19479-020                | 09/28/20 15:55                   | F18              | 3        | A | NONE          |
| AD19479-020                | 09/28/20 16:20                   | JMP              | 4        | A | SOLIDS        |
| AD19479-020                | 09/28/20 17:06                   | R12              | 4        | Α | NONE          |
|                            |                                  |                  |          | ' | ,             |

**Volatile Data** 

#### ORGANICS VOLATILE REPORT

Sample Number: AD19479-002

Client Id: HSI-SS-01 (0.5-1')

Data File: 11M83392.D

Analysis Date: 09/30/20 23:40 Date Rec/Extracted: 09/28/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 6.65g

Final Vol: NA

Dilution: 0.752

Solids: 92

Units: mg/Kg

| Cas # Compound MDL RL Conc Cas # Compound MDL RL Conc |                                |         |         |        |                   |                           |         |         |        |  |  |  |  |
|-------------------------------------------------------|--------------------------------|---------|---------|--------|-------------------|---------------------------|---------|---------|--------|--|--|--|--|
| Cas #                                                 | Compound                       | MDL     | RL      | Conc   | Cas #             | Compound                  | MDL     | RL      | Conc   |  |  |  |  |
| 71-55-6                                               | 1,1,1-Trichloroethane          | 0.00075 | 0.0016  | U      | 56-23-5           | Carbon Tetrachloride      | 0.00079 | 0.0016  | U      |  |  |  |  |
| 79-34-5                                               | 1,1,2,2-Tetrachloroethane      | 0.00037 | 0.0016  | 0.0018 | 108-90-7          | Chlorobenzene             | 0.00051 | 0.0016  | U      |  |  |  |  |
| 76-13-1                                               | 1,1,2-Trichloro-1,2,2-trifluor | 0.0011  | 0.0016  | U      | 75-00-3           | Chloroethane              | 0.0016  | 0.0016  | U      |  |  |  |  |
| 79-00-5                                               | 1,1,2-Trichloroethane          | 0.00038 | 0.0016  | U      | 67-66-3           | Chloroform                | 0.0011  | 0.0016  | U      |  |  |  |  |
| 75-34-3                                               | 1,1-Dichloroethane             | 0.00071 | 0.0016  | U      | 74-87-3           | Chloromethane             | 0.0010  | 0.0016  | U      |  |  |  |  |
| 75-35-4                                               | 1,1-Dichloroethene             | 0.00094 | 0.0016  | U      | 1 <b>5</b> 6-59-2 | cis-1,2-Dichloroethene    | 0.00066 | 0.0016  | U      |  |  |  |  |
| 87-61-6                                               | 1,2,3-Trichlorobenzene         | 0.00045 | 0.0016  | U      | 10061-01-5        | cis-1,3-Dichloropropene   | 0.00043 | 0.0016  | U      |  |  |  |  |
| 120-82-1                                              | 1,2,4-Trichlorobenzene         | 0.00051 | 0.0016  | U      | 110-82-7          | Cyclohexane               | 0.00098 | 0.0016  | U      |  |  |  |  |
| 96-12-8                                               | 1,2-Dibromo-3-Chloropropa      | 0.00045 | 0.0016  | U      | 124-48-1          | Dibromochloromethane      | 0.00035 | 0.0016  | U      |  |  |  |  |
| 106-93-4                                              | 1.2-Dibromoethane              | 0.00040 | 0.00082 | U      | 75-71-8           | Dichlorodifluoromethane   | 0.0012  | 0.0016  | U      |  |  |  |  |
| 95-50-1                                               | 1,2-Dichlorobenzene            | 0.00042 | 0.0016  | U      | 100-41-4          | Ethylbenzene              | 0.00056 | 0.00082 | U      |  |  |  |  |
| 107-06-2                                              | 1,2-Dichloroethane             | 0.00034 | 0.0016  | U      | 98-82-8           | Isopropylbenzene          | 0.00068 | 0.00082 | U      |  |  |  |  |
| 78-87-5                                               | 1,2-Dichloropropane            | 0.00067 | 0.0016  | U      | 179601-23-1       | m&p-Xylenes               | 0.00098 | 0.00098 | U      |  |  |  |  |
| 541-73-1                                              | 1,3-Dichlorobenzene            | 0.00045 | 0.0016  | U      | 79-20-9           | Methyl Acetate            | 0.00078 | 0.0016  | U      |  |  |  |  |
| 106-46-7                                              | 1,4-Dichlorobenzene            | 0.00043 | 0.0016  | U      | 108-87-2          | Methylcyclohexane         | 0.00074 | 0.0016  | U      |  |  |  |  |
| 123-91-1                                              | 1,4-Dioxane                    | 0.040   | 0.082   | U      | 75-09-2           | Methylene Chloride        | 0.00061 | 0.0016  | 0.0036 |  |  |  |  |
| 78-93-3                                               | 2-Butanone                     | 0.00098 | 0.0016  | U      | 1634-04-4         | Methyl-t-butyl ether      | 0.00044 | 0.00082 | U      |  |  |  |  |
| 591-78-6                                              | 2-Hexanone                     | 0.00069 | 0.0016  | U      | 95-47-6           | o-Xylene                  | 0.00058 | 0.00082 | U      |  |  |  |  |
| 108-10-1                                              | 4-Methyl-2-Pentanone           | 0.00047 | 0.0016  | U      | 100-42-5          | Styrene                   | 0.00045 | 0.0016  | U      |  |  |  |  |
| 67-64-1                                               | Acetone                        | 0.0055  | 0.0082  | U      | 127-18-4          | Tetrachloroethene         | 0.00080 | 0.0016  | U      |  |  |  |  |
| 71-43-2                                               | Benzene                        | 0.00060 | 0.00082 | U ,    | 108-88-3          | Toluene                   | 0.00054 | 0.00082 | U      |  |  |  |  |
| 74-97-5                                               | Bromochloromethane             | 0.00057 | 0.0016  | U      | 156-60-5          | trans-1,2-Dichloroethene  | 0.00098 | 0.0016  | U      |  |  |  |  |
| 75-27-4                                               | Bromodichloromethane           | 0.00038 | 0.0016  | U      | 10061-02-6        | trans-1,3-Dichloropropene | 0.00038 | 0.0016  | U      |  |  |  |  |
| 75-25-2                                               | Bromoform                      | 0.00027 | 0.0016  | U      | 79-01-6           | Trichloroethene           | 0.00067 | 0.0016  | U      |  |  |  |  |
| 74-83-9                                               | Bromomethane                   | 0.0013  | 0.0016  | U      | 75-69-4           | Trichlorofluoromethane    | 0.00096 | 0.0016  | U      |  |  |  |  |
| 75-15-0                                               | Carbon Disulfide               | 0.0028  | 0.0028  | U      | 75-01-4           | Vinyl Chloride            | 0.0010  | 0.0016  | U      |  |  |  |  |
| 1330-20-7                                             | Xylenes (Total)                | 0.00058 | 0.00082 | U      |                   |                           |         |         |        |  |  |  |  |
|                                                       |                                |         |         |        |                   |                           |         |         |        |  |  |  |  |

Worksheet #: 569452

Total Target Concentration

0.0054

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

J - Indicates an estimated value when a compound is detected at less than the

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $<sup>{\</sup>it E}$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Quantitation Report (QT Reviewed) 0092806 0057

Operator : WP Sam Mult : 1 Vial# : 55 Misc : S,5G!2 Qt Meth : 11M\_S0805.M Qt On : 10/12/20 11:08 SampleID : AD19479-002 Data File: 11M83392.D Acq On : 09/30/20 23:40 Qt Upd On: 08/06/20 07:18

Data Path : G:\GcMsData\2020\GCMS\_11\Data\09-3020\
QL Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                      | R.T.  | QIon | Response | Conc U | nits Dev | (Min)  |
|-------------------------------|-------|------|----------|--------|----------|--------|
| Internal Standards            |       |      |          |        |          |        |
| 4) Fluorobenzene              | 4.958 | 96   | 237392   | 30.00  | ug/l     | 0.00   |
| 52) Chlorobenzene-d5          | 6.546 | 117  | 203075   | 30.00  | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4    | 7.816 | 152  | 93906    | 30.00  | ug/l     | 0.00   |
| System Monitoring Compounds   |       |      |          |        |          |        |
| 37) Dibromofluoromethane      | 4.582 | 111  | 65327    | 30.52  | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry =   | 101.73%  |        |
| 39) 1,2-Dichloroethane-d4     | 4.778 | 67   | 31618    | 33.69  | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry =   | 112.30%  |        |
| 66) Toluene-d8                | 5.787 | 98   | 248200   | 31.16  | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry =   | 103.87%  |        |
| 76) Bromofluorobenzene        | 7.167 | 174  | 76778    | 31.88  | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry =   | 106.27%  |        |
| Target Compounds              |       |      |          |        |          | Qvalue |
| 15) Methylene Chloride        | 3.373 | 84   | 8811     | 4.36   | 78 ug/:  | 1 81   |
| 75) 1,1,2,2-Tetrachloroethane | 7.215 | 83   | 3769     | 2.15   | 58 ug/   | 1 92   |
|                               |       |      |          |        |          |        |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed



### ORGANICS VOLATILE REPORT

Sample Number: AD19479-004

Client Id: HSI-SS-02 (0.5-1')

Data File: 11M83439.D

Analysis Date: 10/01/20 19:51 Date Rec/Extracted: 09/28/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 6.76g

Final Vol: NA

Dilution: 0.740

Solids: 91

Units: mg/Kg

| Cas # Compound MDL RL Conc Cas # Compound MDL RL Conc |                                |         |         |         |                  |                           |         |                 |        |  |  |  |  |
|-------------------------------------------------------|--------------------------------|---------|---------|---------|------------------|---------------------------|---------|-----------------|--------|--|--|--|--|
| Cas #                                                 | Compound                       | MDL     | RL      | Conc    | Cas #            | Compound                  | MDL     |                 | Conc   |  |  |  |  |
| 71-55 <b>-6</b>                                       | 1,1,1-Trichloroethane          | 0.00075 | 0.0016  | U       | 56-23-5          | Carbon Tetrachloride      | 0.00079 | 0.0016          | U      |  |  |  |  |
| 79-34-5                                               | 1,1,2,2-Tetrachloroethane      | 0.00037 | 0.0016  | 0.012   | 108-90-7         | Chlorobenzene             | 0.00050 | 0.0016          | U      |  |  |  |  |
| 76-13-1                                               | 1,1,2-Trichloro-1,2,2-trifluor | 0.0011  | 0.0016  | U       | 75-00-3          | Chloroethane              | 0.0016  | 0.0016          | U      |  |  |  |  |
| 79-00-5                                               | 1,1,2-Trichloroethane          | 0.00037 | 0.0016  | 0.0014J | 67 <b>-</b> 66-3 | Chloroform                | 0.0011  | 0.0016          | U      |  |  |  |  |
| 75 34-3                                               | 1,1-Dichloroethane             | 0.00071 | 0.0016  | U       | 74-87-3          | Chloromethane             | 0.0010  | 0.0 <b>0</b> 16 | U      |  |  |  |  |
| 75-35-4                                               | 1,1-Dichloroethene             | 0.00093 | 0.0016  | U       | 156-59-2         | cis-1,2-Dichloroethene    | 0.00066 | 0.0016          | U      |  |  |  |  |
| 87-61 <b>-6</b>                                       | 1,2,3-Trichlorobenzene         | 0.00045 | 0.0016  | U       | 10061-01-5       | cis-1,3-Dichloropropene   | 0.00043 | 0.0016          | U      |  |  |  |  |
| 120-82-1                                              | 1,2,4-Trichlorobenzene         | 0.00051 | 0.0016  | U       | 110-82-7         | Cyclohexane               | 0.00098 | 0.0016          | U      |  |  |  |  |
| 96-12-8                                               | 1,2-Dibromo-3-Chloropropa      | 0.00045 | 0.0016  | U       | 124-48-1         | Dibromochloromethane      | 0.00035 | 0.0016          | U      |  |  |  |  |
| 106-93-4                                              | 1,2-Dibromoethane              | 0.00040 | 0.00081 | U       | 75-71-8          | Dichlorodifluoromethane   | 0.0011  | 0.0016          | U      |  |  |  |  |
| 95- <b>50-</b> 1                                      | 1,2-Dichlorobenzene            | 0.00041 | 0.0016  | U       | 100-41-4         | Ethylbenzene              | 0.00056 | 0.00081         | U      |  |  |  |  |
| 107-06-2                                              | 1,2-Dichloroethane             | 0.00033 | 0.0016  | U       | 98-82-8          | Isopropylbenzene          | 0.00067 | 0.00081         | U      |  |  |  |  |
| 78- <b>87</b> -5                                      | 1.2-Dichloropropane            | 0.00067 | 0.0016  | U       | 179601-23-1      | m&p-Xylenes               | 0.00098 | 0.00098         | U      |  |  |  |  |
| 541-73-1                                              | 1,3-Dichlorobenzene            | 0.00045 | 0.0016  | U       | 79-2 <b>0-</b> 9 | Methyl Acetate            | 0.00078 | 0.0016          | U      |  |  |  |  |
| 106-46-7                                              | 1,4-Dichlorobenzene            | 0.00043 | 0.0016  | U       | 108-87-2         | Methylcyclohexane         | 0.00073 | 0.0016          | U      |  |  |  |  |
| 123-91-1                                              | 1,4-Dioxane                    | 0.039   | 0.081   | U       | 75-09-2          | Methylene Chloride        | 0.00061 | 0.0016          | 0.0024 |  |  |  |  |
| 78-93-3                                               | 2-Butanone                     | 0.00098 | 0.0016  | 0.0010J | 1634-04-4        | Methyl-t-butyl ether      | 0.00044 | 0.00081         | U      |  |  |  |  |
| 5 <b>91-</b> 7 <b>8-6</b>                             | 2-Hexanone                     | 0.00069 | 0.0016  | U       | 95-47-6          | o-Xylene                  | 0.00058 | 0.00081         | U      |  |  |  |  |
| 108-10-1                                              | 4-Methyl-2-Pentanone           | 0.00047 | 0.0016  | U       | 100-42-5         | Styrene                   | 0.00045 | 0.0016          | U      |  |  |  |  |
| 67 <b>-64-1</b>                                       | Acetone                        | 0.0055  | 0.0081  | 0.044   | 127-18-4         | Tetrachloroethene         | 0.00080 | 0.0016          | 0.0045 |  |  |  |  |
| 71 43-2                                               | Benzene                        | 0.00059 | 0.00081 | U       | 108-88-3         | Toluene                   | 0.00054 | 0.00081         | U      |  |  |  |  |
| 74-97-5                                               | Bromochloromethane             | 0.00057 | 0.0016  | U       | 156-60-5         | trans-1,2-Dichloroethene  | 0.00098 | 0.0016          | U      |  |  |  |  |
| 75-27-4                                               | Bromodichloromethane           | 0.00038 | 0.0016  | U       | 10061-02-6       | trans-1,3-Dichloropropene | 0.00038 | 0.0016          | U      |  |  |  |  |
| 75-25-2                                               | Bromoform                      | 0.00027 | 0.0016  | U       | 79-01-6          | Trichloroethene           | 0.00067 | 0.0016          | 0.0021 |  |  |  |  |
| 74-83-9                                               | Bromomethane                   | 0.0013  | 0.0016  | U       | 75-69-4          | Trichlorofluoromethane    | 0 00096 | 0.0016          | U      |  |  |  |  |
| 75·15- <b>0</b>                                       | Carbon Disulfide               | 0.0028  | 0.0028  | U       | 75-01-4          | Vinyl Chloride            | 0.00099 | 0.0016          | U      |  |  |  |  |
| 1330-20-7                                             | Xylenes (Total)                | 0.00058 | 0.00081 | U       |                  |                           |         |                 |        |  |  |  |  |
|                                                       |                                |         |         |         |                  |                           |         |                 |        |  |  |  |  |

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 11M\_S0805.M
Qt On : 10/12/20 11:08 SampleID : AD19479-004 Operator : WP Sam Mult : 1 Vial# : 28 Misc : S,5G!3 Sam . Misc Data File: 11M83439.D Acq On : 10/ 1/20 19:51 Qt Upd On: 08/06/20 07:18

Data Path : G:\GcMsData\2020\GCMS\_11\Data\10-01-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                      | R.T.  | QIon | Response | Conc Units | Dev(Min) |
|-------------------------------|-------|------|----------|------------|----------|
| Internal Standards            |       |      |          |            |          |
|                               | 4.958 | 96   | 255865   | 30.00 ug/  | 1 0.00   |
|                               | 6.546 |      |          | <b>J</b> . |          |
| 70) 1,4-Dichlorobenzene-d4    |       |      | 96325    |            |          |
| System Monitoring Compounds   |       |      |          |            |          |
| 37) Dibromofluoromethane      | 4.582 | 111  | 71030    | 30.79 ug/  | 1 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 102   | 2.63%    |
| 39) 1,2-Dichloroethane-d4     | 4.778 | 67   | 32485    | 32.12 ug/  | 1 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 107   | 7.07%    |
| 66) Toluene-d8                | 5.787 | 98   | 264701   | 31.41 ug/  | 1 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 104   | .70%     |
| 76) Bromofluorobenzene        | 7.167 | 174  | 81700    | 33.07 ug/  | 1 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 110   | 0.23%    |
|                               |       |      | * ·      |            |          |
| Target Compounds              |       |      |          |            | Qvalue   |
| 15) Methylene Chloride        | 3.366 | 84   | 6472     | 2.9767     | ug/l 89  |
| 19) Acetone                   | 3.006 | 43   | 24869    | 53.9473    | ug/l 99  |
| 41) 2-Butanone                | 4.302 | 43   | 1193     | 1.2364     | ug/l 100 |
| 49) Trichloroethene           | 5.157 | 130  | 7122     | 2.5344     | ug/l 89  |
| 60) 1,1,2-Trichloroethane     | 6.022 | 97   | 3146     | 1.6703     | ug/l 77  |
| 65) Tetrachloroethene         | 6.115 | 164  | 12527    | 5.4883     | ug/l 94  |
| 75) 1,1,2,2-Tetrachloroethane | 7.218 | 83   | 26617    | 14.8422    | ug/1 97  |
|                               |       |      |          |            |          |

(#) = qualifier out of range (m) = manual integration (+) = signals summed





RL

MDL

Conc

U

## Form1

ORGANICS VOLATILE REPORT

Sample Number: AD19479-006

Client Id: HSI-SS-03 (0.5-1') Data File: 11M83438.D

Analysis Date: 10/01/20 19:32 Date Rec/Extracted: 09/28/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 5.66g Final Vol: NA

Dilution: 0.883

Solids: 81

Compound

Cas#

|        |                           |         |        | Units: m | g/Kg |
|--------|---------------------------|---------|--------|----------|------|
| Cas #  | Compound                  | MDL     | RL     | Conc     |      |
| 1-55-6 | 1,1,1-Trichloroethane     | 0.0010  | 0.0022 | U        | 56-2 |
| 9-34-5 | 1,1,2,2-Tetrachloroethane | 0.00049 | 0.0022 | 0.0065   | 108  |
|        |                           |         |        |          |      |

0.0037

0.00077

0.0037

0.0011

| Cas m                    | Compound                       |         |        |        |             |                           |         |        |        |
|--------------------------|--------------------------------|---------|--------|--------|-------------|---------------------------|---------|--------|--------|
| 71-55-6                  | 1,1,1-Trichloroethane          | 0.0010  | 0.0022 | U      | 56-23-5     | Carbon Tetrachloride      | 0.0011  | 0.0022 | U      |
| 7 <b>9</b> -3 <b>4-5</b> | 1,1,2,2-Tetrachloroethane      | 0.00049 | 0.0022 | 0.0065 | 108-90-7    | Chlorobenzene             | 0.00068 | 0.0022 | U      |
| 76-13-1                  | 1,1,2-Trichloro-1,2,2-trifluor | 0.0015  | 0.0022 | U      | 75-00-3     | Chloroethane              | 0.0021  | 0.0022 | U      |
| 79- <b>00</b> -5         | 1,1,2-Trichloroethane          | 0.00050 | 0.0022 | U      | 67-66-3     | Chloroform                | 0.0015  | 0.0022 | U      |
| 75-34-3                  | 1,1-Dichloroethane             | 0.00095 | 0.0022 | U      | 74-87-3     | Chloromethane             | 0.0013  | 0.0022 | U      |
| 75-35-4                  | 1,1-Dichloroethene             | 0.0013  | 0.0022 | U      | 156-59-2    | cis-1,2-Dichloroethene    | 0.00088 | 0.0022 | U      |
| 87-61-6                  | 1,2,3-Trichlorobenzene         | 0.00060 | 0.0022 | U      | 10061-01-5  | cis-1,3-Dichloropropene   | 0.00058 | 0.0022 | U      |
| 120-82-1                 | 1,2,4-Trichlorobenzene         | 0.00069 | 0.0022 | U      | 110-82-7    | Cyclohexane               | 0.0013  | 0.0022 | U      |
| 96-12-8                  | 1,2-Dibromo-3-Chloropropa      | 0.00060 | 0.0022 | U      | 124-48-1    | Dibromochloromethane      | 0.00047 | 0.0022 | U      |
| 106-93-4                 | 1,2-Dibromoethane              | 0.00053 | 0.0011 | U      | 75-71-8     | Dichlorodifluoromethane   | 0.0015  | 0.0022 | U      |
| 95-50-1                  | 1,2-Dichlorobenzene            | 0.00056 | 0.0022 | U      | 100-41-4    | Ethylbenzene              | 0.00075 | 0.0011 | U      |
| 107-06-2                 | 1,2-Dichloroethane             | 0.00045 | 0.0022 | U      | 98-82-8     | Isopropylbenzene          | 0.00091 | 0.0011 | U      |
| 78-87-5                  | 1,2-Dichloropropane            | 0.00089 | 0.0022 | U      | 179601-23-1 | m&p-Xylenes               | 0.0013  | 0.0013 | U      |
| 541-73-1                 | 1,3-Dichlorobenzene            | 0.00060 | 0.0022 | U      | 79-20-9     | Methyl Acetate            | 0.0010  | 0.0022 | U      |
| 106-46-7                 | 1,4-Dichlorobenzene            | 0.00058 | 0.0022 | U      | 108-87-2    | Methylcyclohexane         | 0.00098 | 0.0022 | U      |
| 123-91-1                 | 1,4-Dioxane                    | 0.053   | 0.11   | U      | 75-09-2     | Methylene Chloride        | 0.00082 | 0.0022 | 0.0057 |
| 78-93-3                  | 2-Butanone                     | 0.0013  | 0.0022 | U      | 1634-04-4   | Methyl-t-butyl ether      | 0.00059 | 0.0011 | U      |
| 591-78-6                 | 2-Hexanone                     | 0.00093 | 0.0022 | U      | 95-47-6     | o-Xylene                  | 0.00077 | 0.0011 | U      |
| 108-10-1                 | 4-Methyl-2-Pentanone           | 0.00063 | 0.0022 | U      | 100-42-5    | Styrene                   | 0.00060 | 0.0022 | U      |
| 67-64-1                  | Acetone                        | 0.0074  | 0.011  | U      | 127-18-4    | Tetrachioroethene         | 0.0011  | 0.0022 | 0.024  |
| 71-43-2                  | Benzene                        | 0.00080 | 0.0011 | U      | 108-88-3    | Toluene                   | 0.00072 | 0.0011 | U      |
| 74-97-5                  | Bromochloromethane             | 0.00076 | 0.0022 | U      | 156-60-5    | trans-1,2-Dichloroethene  | 0.0013  | 0.0022 | U      |
| 75-27-4                  | Bromodichloromethane           | 0.00051 | 0.0022 | U      | 10061-02-6  | trans-1,3-Dichloropropene | 0.00051 | 0.0022 | U      |
| 75-25-2                  | Bromoform                      | 0.00036 | 0.0022 | U      | 79-01-6     | Trichloroethene           | 0.00089 | 0.0022 | 0.0072 |
| 74-83-9                  | Bromomethane                   | 0.0017  | 0.0022 | U      | 75-69-4     | Trichlorofluoromethane    | 0.0013  | 0.0022 | U      |

U

U

75-01-4

Vinyl Chloride

Worksheet #: 569452

Carbon Disulfide

Xylenes (Total)

75-1**5-0** 

1330-20-7

Total Target Concentration

0.043

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

0.0013

0.0022

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Quantitation Report (QT Reviewed) 0092806 0063

 

 SampleID :
 AD19479-006
 Operator :
 WP

 Data File:
 11M83438.D
 Sam Mult :
 1 Vial# :
 27

 Acq On :
 10/ 1/20 19:32
 Misc :
 \$5,56!3

 Qt Meth : 11M\_S0805.M Qt On : 10/12/20 11:08 Qt Upd On: 08/06/20 07:18

| Compound                                          | R.T.           | QIon | Response         | Conc Ur         | nits Dev        | (Min)        |
|---------------------------------------------------|----------------|------|------------------|-----------------|-----------------|--------------|
| .,                                                | 4.958          |      | 239355<br>177603 |                 | ug/l<br>ug/l    | 0.00         |
| 70) 1,4-Dichlorobenzene-d4                        | _              |      | 60306            |                 | ug/l            | 0.00         |
| System Monitoring Compounds                       |                |      |                  |                 |                 |              |
| 37) Dibromofluoromethane<br>Spiked Amount 30.000  | 4.582          | 111  | 67524<br>Recove  |                 | ug/l<br>104.30% | 0.00         |
| 39) 1,2-Dichloroethane-d4<br>Spiked Amount 30.000 | 4.778          | 67   |                  | 31.40           | ug/l<br>104.67% | 0.00         |
| 66) Toluene-d8 Spiked Amount 30.000               | 5.787          | 98   | 239223           | 34.34           |                 | 0.00         |
| 76) Bromofluorobenzene Spiked Amount 30.000       | 7.170          | 174  | 60826            | 39.33           |                 | 0.00         |
| Target Compounds                                  |                |      | Recove           | -7              | 131.100         | Ovalue       |
| 15) Methylene Chloride                            | 3.373          |      |                  |                 | J.              | L 89         |
| · · · · · · · · · · · · · · · · · · ·             | 5.157<br>6.112 |      |                  | 6.607<br>21.616 | J.              | l 91<br>l 99 |
| 75) 1,1,2,2-Tetrachloroethane                     | 7.215          | 83   | 6650             | 5.923           | 30 ug/          | L 88         |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





#### ORGANICS VOLATILE REPORT

Sample Number: AD19479-008

Client Id: HSI-SS-04 (0.5-1')

Data File: 11M83394.D

Analysis Date: 10/01/20 00:20 Date Rec/Extracted: 09/28/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 6.07g

Final Vol: NA

Dilution: 0.824

Solids: 91

Units: mg/Kg

| _                | Unite, Ing/kg                  |         |         |       |                  |                           |         |         |        |  |  |  |
|------------------|--------------------------------|---------|---------|-------|------------------|---------------------------|---------|---------|--------|--|--|--|
| Cas #            | Compound                       | MDL     | RL      | Conc  | Cas #            | Compound                  | MDL     | RL      | Conc   |  |  |  |
| 71-55-6          | 1,1,1-Trichloroethane          | 0.00083 | 0.0018  | U     | 56-23-5          | Carbon Tetrachloride      | 0.00088 | 0.0018  | U      |  |  |  |
| 79-34-5          | 1,1,2,2-Tetrachioroethane      | 0.00041 | 0.0018  | U     | 108-90-7         | Chlorobenzene             | 0.00056 | 0.0018  | U      |  |  |  |
| 76-13-1          | 1,1,2-Trichloro-1,2,2-trifluor | 0.0013  | 0.0018  | U     | 75-00-3          | Chloroethane              | 0.0018  | 0.0018  | U      |  |  |  |
| 79- <b>0</b> 0-5 | 1,1,2-Trichloroethane          | 0.00042 | 0.0018  | U     | 67 <b>-66</b> -3 | Chloroform                | 0.0012  | 0.0018  | U      |  |  |  |
| 75-34-3          | 1,1-Dichloroethane             | 0.00079 | 0.0018  | U     | 74-87-3          | Chloromethane             | 0.0011  | 0.0018  | U      |  |  |  |
| 75-35-4          | 1,1-Dichloroethene             | 0.0010  | 0.0018  | U     | 156-59-2         | cis-1,2-Dichloroethene    | 0.00073 | 0.0018  | U      |  |  |  |
| 87-61- <b>6</b>  | 1,2,3-Trichlorobenzene         | 0.00050 | 0.0018  | U     | 10061-01-5       | cis-1,3-Dichloropropene   | 0.00048 | 0.0018  | U      |  |  |  |
| 120-82-1         | 1,2,4-Trichlorobenzene         | 0.00057 | 0.0018  | U ;   | 110-82-7         | Cyclohexane               | 0.0011  | 0.0018  | U      |  |  |  |
| 96-12-8          | 1,2-Dibromo-3-Chloropropa      | 0.00050 | 0.0018  | U     | 124-48-1         | Dibromochloromethane      | 0.00039 | 0.0018  | U      |  |  |  |
| 106-93-4         | 1,2-Dibromoethane              | 0.00044 | 0.00091 | U     | 75-71 <b>-</b> 8 | Dichlorodifluoromethane   | 0.0013  | 0.0018  | U      |  |  |  |
| 95-5 <b>0-</b> 1 | 1.2-Dichlorobenzene            | 0.00046 | 0.0018  | U     | 100-41-4         | Ethylbenzene              | 0.00062 | 0.00091 | U      |  |  |  |
| 107-06-2         | 1,2-Dichloroethane             | 0.00037 | 0.0018  | U     | 98-82-8          | Isopropylbenzene          | 0.00075 | 0.00091 | U      |  |  |  |
| 78-87-5          | 1,2-Dichloropropane            | 0.00074 | 0.0018  | U     | 179601-23-1      | m&p-Xylenes               | 0.0011  | 0.0011  | U      |  |  |  |
| 541-73-1         | 1,3-Dichlorobenzene            | 0.00050 | 0.0018  | U     | 79-20-9          | Methyl Acetate            | 0.00087 | 0.0018  | U      |  |  |  |
| 106-46-7         | 1,4-Dichlorobenzene            | 0.00048 | 0.0018  | U     | 108-87-2         | Methylcyclohexane         | 0.00081 | 0.0018  | U      |  |  |  |
| 123-91-1         | 1.4-Dioxane                    | 0.044   | 0.091   | U     | 75-09-2          | Methylene Chloride        | 0.00068 | 0.0018  | 0.0049 |  |  |  |
| 78-93-3          | 2-Butanone                     | 0.0011  | 0.0018  | U     | 1634-04-4        | Methyl-t-butyl ether      | 0.00049 | 0.00091 | U      |  |  |  |
| 591-78-6         | 2-Hexanone                     | 0.00077 | 0.0018  | U     | 95-47-6          | o-Xylene                  | 0.00064 | 0.00091 | U      |  |  |  |
| 108-10-1         | 4-Methyl-2-Pentanone           | 0.00053 | 0.0018  | U     | 100-42-5         | Styrene                   | 0.00050 | 0.0018  | U      |  |  |  |
| 67-64-1          | Acetone                        | 0.0061  | 0.0091  | 0.011 | 127-18-4         | Tetrachloroethene         | 0.00089 | 0.0018  | U      |  |  |  |
| 71-43-2          | Benzene                        | 0.00066 | 0.00091 | U     | 108-88-3         | Toluene                   | 0.00060 | 0.00091 | U      |  |  |  |
| 74-97-5          | Bromochloromethane             | 0.00063 | 0.0018  | U     | 156-60-5         | trans-1,2-Dicreloroethene | 0.0011  | 0.0018  | U      |  |  |  |
| 75 27-4          | Bromodichloromethane           | 0.00043 | 0.0018  | U     | 10061-02-6       | trans-1,3-Dichioropropene | 0.00043 | 0.0018  | U      |  |  |  |
| 75-25-2          | Bromoform                      | 0.00030 | 0.0018  | U     | 79-01-6          | Trichloroethene           | 0.00074 | 0.0018  | U      |  |  |  |
| 74-83-9          | Bromomethane                   | 0.0014  | 0.0018  | U     | 75-69-4          | Trichlorofluoromethane    | 0.0011  | 0.0018  | U      |  |  |  |
| 75-15-0          | Carbon Disulfide               | 0.0031  | 0.0031  | U     | 75-01-4          | Vinyl Chloride            | 0.0011  | 0.0018  | U      |  |  |  |
| 1330-20-7        | Xylenes (Total)                | 0.00064 | 0.00091 | U     |                  |                           |         |         |        |  |  |  |
|                  |                                |         |         |       |                  |                           |         |         |        |  |  |  |

0.016

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

0092806 0066

SampleID : AD19479-008 Data File: 11M83394.D Acq On : 10/ 1/20 00:20 Qt Meth : 11M\_S0805.M Qt On : 10/12/20 11:09 Qt Upd On: 08/06/20 07:18 Operator : WP Sam Mult : 1 Vial# : 57 Misc : S,5G!2

Data Path : G:\GcMsData\2020\GCMS\_11\Data\09-3020\Qt Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc U | nits Dev | (Min)  |
|-----------------------------|-------|------|----------|--------|----------|--------|
| Internal Standards          |       |      |          |        |          |        |
| 4) Fluorobenzene            | 4.961 | 96   | 233785   | 30.00  | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.549 | 117  | 203430   | 30.00  | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 7.816 | 152  | 95982    | 30.00  | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |          |        |          |        |
| 37) Dibromofluoromethane    | 4.582 | 111  | 65880    | 31.25  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery =  | 104.17%  |        |
| 39) 1,2-Dichloroethane-d4   | 4.778 | 67   | 30527    | 33.03  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery =  | 110.10%  |        |
| 66) Toluene-d8              | 5.787 | 98   | 246457   | 30.89  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery =  | 102.97%  |        |
| 76) Bromofluorobenzene      | 7.170 | 174  | 77844    | 31.63  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery =  | 105.43%  |        |
| Target Compounds            |       |      |          |        |          | Qvalue |
| 15) Methylene Chloride      | 3.376 | 84   | 10732    | 5.40   | 22 ug/:  | l 88   |
| 19) Acetone                 | 3.012 | 43   | 5056     | 12.00  | 36 ug/:  | l 93   |

<sup>(</sup>#) = qualifier out of range (m) = manual integration (+) = signals summed





ORGANICS VOLATILE REPORT

Sample Number: AD19479-010

Client Id: HSI-SS-05 (0.5-1')

Data File: 11M83395.D Analysis Date: 10/01/20 00:39

Date Rec/Extracted: 09/28/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 6.92g

Final Vol: NA

Dilution: 0.723

Solids: 90

Units: mg/Kg

|                            | Units: mg/Kg                   |         |         |         |                          |                           |         |         |          |  |  |  |  |
|----------------------------|--------------------------------|---------|---------|---------|--------------------------|---------------------------|---------|---------|----------|--|--|--|--|
| Cas#                       | Compound                       | MDL     | RL      | Conc    | Cas #                    | Compound                  | MDL     | RL      | Conc     |  |  |  |  |
| 71-55-6                    | 1,1,1-Trichloroethane          | 0.00074 | 0.0016  | U       | 56-23-5                  | Carbon Tetrachlonde       | 0.00078 | 0.0016  | U        |  |  |  |  |
| 79-34-5                    | 1,1,2,2-Tetrachloroethane      | 0.00036 | 0.0016  | 0.011   | 108-90-7                 | Chlorobenzene             | 0.00050 | 0.0016  | 0.00050J |  |  |  |  |
| 76-13-1                    | 1,1,2-Trichloro-1,2,2-trifluor | 0.0011  | 0.0016  | U       | 75-00-3                  | Chioroethane              | 0.0016  | 0.0016  | U        |  |  |  |  |
| 79-00-5                    | 1,1,2-Trichloroethane          | 0.00037 | 0.0016  | U       | 67 <b>-</b> 66- <b>3</b> | Chloroform                | 0.0011  | 0.0016  | U        |  |  |  |  |
| 75-34- <b>3</b>            | 1,1-Dichloroethane             | 0.00070 | 0.0016  | U       | 74-87-3                  | Chloromethane             | 0.00099 | 0.0016  | U        |  |  |  |  |
| 75 35 4                    | 1.1-Dichloroethene             | 0.00092 | 0.0016  | U       | 156-59-2                 | cis-1,2-Dichloroethene    | 0.00065 | 0.0016  | U        |  |  |  |  |
| 87-61-6                    | 1,2,3-Trichlorobenzene         | 0.00044 | 0.0016  | U       | 10061-01-5               | cis-1,3-Dichloropropene   | 0.00043 | 0.0016  | U        |  |  |  |  |
| 12 <b>0-82-1</b>           | 1,2,4-Trichlorobenzene         | 0.00051 | 0.0016  | U       | 110-82-7                 | Cyclohexane               | 0.00096 | 0.0016  | U        |  |  |  |  |
| 96-12-8                    | 1,2-Dibromo-3-Chloropropa      | 0.00044 | 0.0016  | U       | 124-48-1                 | Dibromochloromethane      | 0.00035 | 0.0016  | U        |  |  |  |  |
| 106-93-4                   | 1,2-Dibromoethane              | 0.00039 | 0.00080 | U       | 75-71-8                  | Dichlorodifluoromethane   | 0.0011  | 0.0016  | U        |  |  |  |  |
| 95-50-1                    | 1,2-Dichlorobenzene            | 0.00041 | 0.0016  | U       | 100-41-4                 | Ethylbenzene              | 0.00055 | 0.00080 | U        |  |  |  |  |
| 107-06-2                   | 1,2-Dichloroethane             | 0.00033 | 0.0016  | U       | 98-82-8                  | Isopropylbenzene          | 0.00067 | 0.00080 | U        |  |  |  |  |
| 78-87- <b>5</b>            | 1,2-Dichloropropane            | 0.00066 | 0.0016  | U       | 179601-23-1              | m&p-Xylenes               | 0.00096 | 0.00096 | U        |  |  |  |  |
| 541-7 <b>3</b> -1          | 1,3-Dichlorobenzene            | 0.00044 | 0.0016  | U       | 79-20-9                  | Methyl Acetate            | 0.00077 | 0.0016  | U        |  |  |  |  |
| 1 <b>0</b> 6- <b>4</b> 6-7 | 1,4-Dichlorobenzene            | 0.00043 | 0.0016  | U       | 108-87-2                 | Methylcyclohexane         | 0.00072 | 0.0016  | U        |  |  |  |  |
| 123-91-1                   | 1.4-Dioxane                    | 0.039   | 0.080   | U       | 75-09-2                  | Methylene Chloride        | 0.00060 | 0.0016  | 0.0017   |  |  |  |  |
| 78-93-3                    | 2-Butanone                     | 0.00096 | 0.0016  | U       | 1634-04-4                | Methyl-t-butyl ether      | 0.00043 | 0.00080 | U        |  |  |  |  |
| 591-78-6                   | 2-Hexanone                     | 0 00068 | 0.0016  | U       | 95-47-6                  | o-Xylene                  | 0.00057 | 0.00080 | U        |  |  |  |  |
| 108-10-1                   | 4-Methyl-2-Pentanone           | 0.00047 | 0.0016  | U       | 100-42-5                 | Styrene                   | 0.00044 | 0.0016  | U        |  |  |  |  |
| 67-64-1                    | Acetone                        | 0.0054  | 0.0080  | 0.0069J | 127-18-4                 | Tetrachloroethene         | 0.00079 | 0.0016  | U        |  |  |  |  |
| 71 43-2                    | Benzene                        | 0.00059 | 0.00080 | U       | 108-88-3                 | Toluene                   | 0.00053 | 0.00080 | 0.00073J |  |  |  |  |
| 74-97-5                    | Bromochloromethane             | 0.00056 | 0.0016  | U       | 156-60-5                 | trans-1,2-Dichloroethene  | 0.00096 | 0.0016  | U        |  |  |  |  |
| 75-27-4                    | Bromodichloromethane           | 0.00038 | 0.0016  | U       | 10061-02-6               | trans-1,3-Dichloropropene | 0.00038 | 0.0016  | U        |  |  |  |  |
| 75-25-2                    | Bromoform                      | 0.00026 | 0.0016  | U       | 79-01-6                  | Trichloroethene           | 0.00066 | 0.0016  | U        |  |  |  |  |
| 74-83-9                    | Bromomethane                   | 0.0013  | 0.0016  | U       | 75-69-4                  | Trichlorofluoromethane    | 0.00095 | 0.0016  | U        |  |  |  |  |
| 75-15-0                    | Carbon Disulfide               | 0.0027  | 0.0027  | U       | 75-01-4                  | Vinyl Chloride            | 0.00098 | 0.0016  | U        |  |  |  |  |
|                            |                                |         |         |         |                          |                           |         |         |          |  |  |  |  |

Xylenes (Total)

1330-20-7

0.00080

0.00057

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Data File: 11M83395.D Acq On : 10/ 1/20 00:39 Operator : WP Sam Mult : 1 Vial# : 58 Misc : S,5G!2 Qt Meth : 11M\_S0805.M Qt On : 10/12/20 11:09 Qt Upd On: 08/06/20 07:18

Data Path : G:\GcMsData\2020\GCMS\_11\Data\09-3020\Qt Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\Qt Resp Via : Initial Calibration

| Compound                      | R.T.  | QIon | Response | Conc Uni | ts Dev( | Min)   |
|-------------------------------|-------|------|----------|----------|---------|--------|
| Internal Standards            |       |      |          |          |         |        |
| 4) Fluorobenzene              | 4.961 | 96   | 282735   | 30.00 t  | ıg/1    | 0.00   |
| 52) Chlorobenzene-d5          | 6.550 | 117  | 206570   | 30.00 t  | ig/1    | 0.00   |
| 70) 1,4-Dichlorobenzene-d4    | 7.816 | 152  | 109114   | 30.00 u  | ıg/l    | 0.00   |
| System Monitoring Compounds   |       |      |          |          |         |        |
| 37) Dibromofluoromethane      | 4.582 | 111  | 79833    | 31.31 u  | ıg/l    | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 1   | .04.37% |        |
| 39) 1,2-Dichloroethane-d4     | 4.778 | 67   | 34456    | 30.83 u  | ıg/l    | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 1   | .02.77% |        |
| 66) Toluene-d8                | 5.788 | 98   | 256842   | 31.70 u  | ıg/l    | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 1   | .05.67% |        |
| 76) Bromofluorobenzene        | 7.167 | 174  | 83537    | 29.85 u  | ıg/l    | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry =     | 99.50%  |        |
| Target Compounds              |       |      |          |          |         | Qvalue |
| 15) Methylene Chloride        | 3.370 | 84   | 5111     | 2.1273   | ug/1    | 82     |
| 19) Acetone                   | 3.013 | 43   | 4361     | 8.5611   | . ug/1  | 76     |
| 67) Toluene                   | 5.826 | 92   | 5109     | 0.9100   | ug/1    | 96     |
| 69) Chlorobenzene             | 6.566 | 112  | 3988     | 0.6221   | . ug/l  | 100    |
| 75) 1,1,2,2-Tetrachloroethane | 7.218 | 83   | 27601    | 13.5870  | ug/l    | 98     |
|                               |       |      |          |          |         |        |

<sup>(#)</sup> = qualifier out of range (m) = manual integration (+) = signals summed





#### ORGANICS VOLATILE REPORT

Sample Number: AD19479-012

Client Id: HSI-SS-06 (0.5-1')

Data File: 11M83440.D

Analysis Date: 10/01/20 20:11

Date Rec/Extracted: 09/28/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol. 5.44g

Final Vol: NA

Dilution: 0.919

Solids: 91

Units: mg/Kg

| Cas #           | Compound                       | MDL     | RL     | Conc   | Cas#             | Compound                  | MDL             | RL     | Conc   |
|-----------------|--------------------------------|---------|--------|--------|------------------|---------------------------|-----------------|--------|--------|
| 71.55 <b>-6</b> | 1,1,1-Trichloroethane          | 0.00093 | 0.0020 | U      | 56-23-5          | Carbon Tetrachloride      | 0.00098         | 0.0020 | U      |
| 79-34-5         | 1,1,2,2-Tetrachloroethane      | 0.00045 | 0.0020 | 0.0039 | 108-90-7         | Chlorobenzene             | 0.00063         | 0.0020 | U      |
| 76-1 <b>3-1</b> | 1,1,2-Trichloro-1,2,2-trifluor | 0.0014  | 0.0020 | U ,    | 75 <b>-0</b> 0-3 | Chloroethane              | 0.0 <b>0</b> 20 | 0.0020 | U      |
| 79-00-5         | 1,1,2-Trichloroethane          | 0.00046 | 0.0020 | U      | 67-66-3          | Chloroform                | 0.0014          | 0.0020 | U      |
| 75- <b>34-3</b> | 1,1-Dichloroethane             | 0.00088 | 0.0020 | U      | 74-87-3          | Chloromethane             | 0.0012          | 0.0020 | U      |
| 75-35-4         | 1,1-Dichloroethene             | 0.0012  | 0.0020 | U      | 156-59-2         | cis-1,2-Dichloroethene    | 0.00082         | 0.0020 | U      |
| 87-61-6         | 1,2,3-Trichlorobenzene         | 0.00056 | 0.0020 | U      | 10061-01-5       | cis-1,3-Dichloropropene   | 0.00054         | 0.0020 | U      |
| 120-82-1        | 1,2,4-Trichlorobenzene         | 0.00064 | 0.0020 | U      | 110-82-7         | Cyclohexane               | 0.0012          | 0.0020 | U      |
| 96 12-8         | 1,2-Dibromo-3-Chloropropa      | 0.00056 | 0.0020 | U      | 124-48-1         | Dibromochloromethane      | 0.00043         | 0.0020 | U      |
| 106-93-4        | 1,2-Dibromoethane              | 0.00049 | 0.0010 | U      | 75-71-8          | Dichlorodifluoromethane   | 0.0014          | 0.0020 | U      |
| 95-50-1         | 1.2-Dichlorobenzene            | 0.00052 | 0.0020 | U      | 100-41-4         | Ethylbenzene              | 0.00070         | 0.0010 | U      |
| 107-06-2        | 1,2-Dichloroethane             | 0.00041 | 0.0020 | U      | 98-82-8          | Isopropylbenzene          | 0.00084         | 0.0010 | U      |
| 78 87-5         | 1,2-Dichloropropane            | 0.00083 | 0.0020 | U ·    | 179601-23-1      | m&p-Xylenes               | 0.0012          | 0.0012 | U      |
| 541-73-1        | 1,3-Dichlorobenzene            | 0.00056 | 0.0020 | U      | 79-20-9          | Methyl Acetate            | 0.00097         | 0.0020 | U      |
| 106-46-7        | 1.4-Dichlorobenzene            | 0.00054 | 0.0020 | U      | 108-87-2         | Methylcyclohexane         | 0.00091         | 0.0020 | 0.0024 |
| 123-91-1        | 1.4-Dioxane                    | 0.049   | 0.10   | U      | 75-09-2          | Methylene Chloride        | 0.00076         | 0.0020 | 0.0035 |
| 78-93-3         | 2-Butanone                     | 0.0012  | 0.0020 | 0.0035 | 1634-04-4        | Methyl-t-butyl ether      | 0.00055         | 0.0010 | U      |
| 591-78-6        | 2-Hexanone                     | 0.00086 | 0.0020 | U      | 95-47-6          | o-Xylene                  | 0.00072         | 0.0010 | U      |
| 108-10-1        | 4-Methyl-2-Pentanone           | 0.00059 | 0.0020 | U      | 100-42-5         | Styrene                   | 0.00056         | 0.0020 | 0.36   |
| 67-64-1         | Acetone                        | 0.0068  | 0.010  | 0.064  | 127-18-4         | Tetrachloroethene         | 0.00099         | 0.0020 | 0.0035 |
| 71-43-2         | Benzene                        | 0.00074 | 0.0010 | U      | 108-88-3         | Toluene                   | 0.00067         | 0.0010 | U      |
| 74 97- <b>5</b> | Bromochloromethane             | 0.00071 | 0.0020 | U      | 156-60-5         | trans-1,2-Dichloroethene  | 0.0012          | 0.0020 | U      |
| 75-2 <b>7-4</b> | Bromodichloromethane           | 0.00047 | 0.0020 | U      | 10061-02-6       | trans-1,3-Dichloropropene | 0.00047         | 0.0020 | U      |
| 75-25-2         | Bromoform                      | 0.00033 | 0.0020 | U      | 79-01-6          | Trichloroethene           | 0.00083         | 0.0020 | U      |
| 74 83-9         | Bromomethane                   | 0.0016  | 0.0020 | U      | 75-69-4          | Trichlorofluoromethane    | 0.0012          | 0.0020 | U      |
| 75-15 <b>-0</b> | Carbon Disulfide               | 0.0034  | 0.0034 | U      | 75-01-4          | Vinyl Chloride            | 0.0012          | 0.0020 | U      |
| 1330-20-7       | Xylenes (Total)                | 0.00072 | 0.0010 | U      |                  |                           |                 |        |        |
|                 |                                |         |        |        |                  |                           |                 |        |        |

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

<sup>0.44</sup> 

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $<sup>{\</sup>it E}$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 11M\_S0805.M Qt On : 10/12/20 11:09 Qt Upd On: 08/06/20 07:18 SampleID : AD19479-012 Data File: 11M83440.D Acq On : 10/ 1/20 20:11 Operator : WP Sam Mult : 1 Vial# : 29 Misc : S,5G!3

Data Path : G:\GcMsData\2020\GCMS\_11\Data\10-01-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                      | R.T.  | QIon | Response | Conc Units | Dev(Min) |
|-------------------------------|-------|------|----------|------------|----------|
| Internal Standards            |       |      |          |            |          |
| 4) Fluorobenzene              | 4.958 | 96   | 254918   | 30.00 ug/  | 1 0.00   |
| 52) Chlorobenzene-d5          | 6.550 | 117  | 207117   | 30.00 ug/  | 1 0.00   |
| 70) 1,4-Dichlorobenzene-d4    | 7.816 | 152  | 89536    | 30.00 ug/  | 0.00     |
| System Monitoring Compounds   |       |      |          |            |          |
| 37) Dibromofluoromethane      | 4.582 | 111  | 70854    | 30.83 ug/  | 1 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 102   | .77%     |
| 39) 1,2-Dichloroethane-d4     | 4.778 | 67   | 32783    | 32.53 ug/  | 1 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ery = 108  | .43%     |
| 66) Toluene-d8                | 5.788 | 98   | 263422   | 32.43 ug/  | 1 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 108   | .10%     |
| 76) Bromofluorobenzene        | 7.167 | 174  | 86212    | 37.55 ug/  | 1 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 125   | .17%     |
| Target Compounds              |       |      |          |            | Qvalue   |
| 15) Methylene Chloride        | 3.366 | 84   | 7515     | 3.4692     | ug/l 94  |
| 19) Acetone                   | 3.006 | 43   | 29092    | 63.3425    | ug/l 93  |
| 41) 2-Butanone                | 4.299 | 43   | 3300     | 3.4373     | ug/l 87  |
| 46) Methylcyclohexane         | 5.267 | 83   | 7679     | 2.3338     | ug/l 93  |
| 65) Tetrachloroethene         | 6.112 | 164  | 7581     | 3.4450     | ug/l 92  |
| 75) 1,1,2,2-Tetrachloroethane | 7.215 | 83   | 6496     | 3.8970     | ug/l 95  |
| 77) Styrene                   | 6.881 | 104  | 1622792  |            | ug/l 88  |
|                               |       |      |          |            |          |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





# Form1 ORGANICS VOLATILE REPORT

Sample Number: AD19479-014

Client Id: HSI-SS-07 (0.5-1')
Data File: 11M83436.D

Analysis Date: 10/01/20 18:52 Date Rec/Extracted: 09/28/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil Initial Vol: 6:13g

Final Vol: NA

Dilution: 0.816

Solids: 71

|                          |                                |         |        | Units: mg | ı/Kg              |                           |         |        |         |
|--------------------------|--------------------------------|---------|--------|-----------|-------------------|---------------------------|---------|--------|---------|
| Cas #                    | Compound                       | MDL     | RL     | Conc      | Cas #             | Compound                  | MDL     | RL     | Conc    |
| 71-55- <b>6</b>          | 1,1,1-Trichloroethane          | 0.0011  | 0.0023 | U         | 56-23-5           | Carbon Tetrachloride      | 0.0011  | 0.0023 | U       |
| 79- <b>34-</b> 5         | 1,1,2,2-Tetrachloroethane      | 0.00052 | 0.0023 | U         | 108-90-7          | Chlorobenzene             | 0.00071 | 0.0023 | U       |
| 76-13-1                  | 1,1,2-Trichloro-1,2,2-trifluor | 0.0016  | 0.0023 | U         | 75-00-3           | Chloroethane              | 0.0022  | 0.0023 | U       |
| 79-0 <b>0-5</b>          | 1,1,2-Trichloroethane          | 0.00053 | 0.0023 | U         | 67-66-3           | Chloroform                | 0.0016  | 0.0023 | U       |
| 75-34-3                  | 1,1-Dichloroethane             | 0.0010  | 0.0023 | U         | 74-87-3           | Chloromethane             | 0.0014  | 0.0023 | U       |
| 75-35-4                  | 1,1-Dichloroethene             | 0.0013  | 0.0023 | U         | 156-59-2          | cis-1,2-Dichloroethene    | 0.00093 | 0.0023 | U       |
| 87-61 <b>-6</b>          | 1,2,3-Trichlorobenzene         | 0.00063 | 0.0023 | U         | 10061-01-5        | cis-1,3-Dichloropropene   | 0.00061 | 0.0023 | U       |
| 120-82-1                 | 1,2,4-Trichlorobenzene         | 0.00072 | 0.0023 | U         | 110-82-7          | Cyclohexane               | 0.0014  | 0.0023 | U       |
| 96-12-8                  | 1,2-Dibromo-3-Chloropropa      | 0.00063 | 0.0023 | U         | 124-48-1          | Dibromochloromethane      | 0.00049 | 0.0023 | U       |
| 106-93-4                 | 1,2-Dibromoethane              | 0.00056 | 0.0011 | U         | 75-71-8           | Dichlorodifluoromethane   | 0.0016  | 0.0023 | U       |
| 95-50-1                  | 1,2-Dichlorobenzene            | 0.00059 | 0.0023 | U         | 100-41-4          | Ethylbenzene              | 0.00079 | 0.0011 | U       |
| 107-06-2                 | 1,2-Dichloroethane             | 0.00047 | 0.0023 | U         | 98-82-8           | Isopropylbenzene          | 0.00095 | 0.0011 | U       |
| 78-87-5                  | 1,2-Dichloropropane            | 0.00094 | 0.0023 | U         | 179601-23-1       | m&p-Xylenes               | 0.0014  | 0.0014 | U       |
| 541-73-1                 | 1,3-Dichlorobenzene            | 0.00063 | 0.0023 | U         | 79-20-9           | Methyl Acetate            | 0.0011  | 0.0023 | U       |
| 106-46-7                 | 1,4-Dichlorobenzene            | 0.00061 | 0.0023 | U         | 108-87-2          | Methylcyclohexane         | 0.0010  | 0.0023 | U       |
| 123-91-1                 | 1,4-Dioxane                    | 0.056   | 0.11   | U         | 75-09-2           | Methylene Chloride        | 0.00086 | 0.0023 | 0.0022J |
| 78 <b>-9</b> 3 <b>-3</b> | 2-Butanone                     | 0.0014  | 0.0023 | 0.14      | 1634-04-4         | Methyl-t-butyl ether      | 0.00062 | 0.0011 | U       |
| 591-78-6                 | 2-Hexanone                     | 0.00098 | 0.0023 | U         | 95-47-6           | o-Xylene                  | 0.00082 | 0.0011 | U       |
| 108-10-1                 | 4-Methyl-2-Pentanone           | 0.00067 | 0.0023 | U         | 100-42-5          | Styrene                   | 0.00063 | 0.0023 | U       |
| 67-64-1                  | Acetone                        | 0.0078  | 0.011  | 0.74      | 127-18-4          | Tetrachloroethene         | 0.0011  | 0.0023 | U       |
| 71-43-2                  | Benzene                        | 0.00084 | 0.0011 | U         | 108 <b>-</b> 88-3 | Toluene                   | 0.00076 | 0.0011 | 0.070   |
| 74-97-5                  | Bromochloromethane             | 0.00080 | 0.0023 | U         | 1 <b>56-60</b> -5 | trans-1,2-Dichloroethene  | 0.0014  | 0.0023 | U       |
| 75-27-4                  | Bromodichloromethane           | 0.00054 | 0.0023 | U         | 10061-02-6        | trans-1,3-Dichloropropene | 0.00054 | 0.0023 | U       |
| /5 25-2                  | Bromoform                      | 0.00038 | 0.0023 | U         | 79-01-6           | Trichloroethene           | 0.00094 | 0.0023 | U       |
| 74-83-9                  | Bromomethane                   | 0.0018  | 0.0023 | U         | 75-69-4           | Trichlorofluoromethane    | 0.0014  | 0.0023 | 0.0092  |
| 75-15 <b>-0</b>          | Carbon Disulfide               | 0.0039  | 0.0039 | U         | 75-01-4           | Vinyl Chloride            | 0.0014  | 0.0023 | U       |

1330-20-7

Xylenes (Total)

0.00082

0.0011

Worksheet #: 569452

<sup>0.96</sup> 

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 11M\_S0805.M Qt On : 10/12/20 11:09 Qt Upd On: 08/06/20 07:18 SampleID : AD19479-014 Data File: 11M83436.D Operator : WP Sam Mult : 1 Vial# : 25 Misc : S,5G!3 Acq On : 1.0/ 1/20 18:52

Data Path : G:\GcMsData\2020\GCMS\_11\Data\10-01-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Units | Dev(Min) |
|-----------------------------|-------|------|----------|------------|----------|
| Internal Standards          |       |      |          |            |          |
| 4) Fluorobenzene            | 4.961 | 96   | 219691   | 30.00 ug/  | 1 0.00   |
| 52) Chlorobenzene-d5        | 6.546 | 117  | 174839   | 30.00 ug/  | 1 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 7.816 | 152  | 73113    | 30.00 ug/  | 1 0.00   |
| System Monitoring Compounds |       |      |          |            |          |
| 37) Dibromofluoromethane    | 4.582 | 111  | 61029    | 30.81 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery = 102  | 2.70%    |
| 39) 1,2-Dichloroethane-d4   | 4.778 | 67   | 28278    | 32.56 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery = 108  | 1.53∜    |
| 66) Toluene-d8              | 5.787 | 98   | 217240   | 31.68 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery = 105  | 1.60%    |
| 76) Bromofluorobenzene      | 7.167 | 174  | 65756    | 35.07 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery = 116  | 5.90%    |
| Target Compounds            |       |      | • :      |            | Qvalue   |
| 11) Trichlorofluoromethane  | 2.543 | 101  | 27222    | 8.0385     | ug/l 95  |
| 15) Methylene Chloride      | 3.369 | 84   | 3570     | 1.9123     | ug/l 71  |
| 19) Acetone                 | 3.009 | 43   | 255014   | 644.2792   | ug/l 98  |
| 41) 2-Butanone              | 4.299 | 43   | 93269    | 121.1500   | ug/l 97  |
| 67) Toluene                 | 5.823 | 92   | 290628   | 61.1577    | ug/l 99  |
|                             |       |      |          |            |          |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





11M S0805.M Mon Oct 12 11:17:36 2020 RPT1

# Form1 ORGANICS VOLATILE REPORT

ONGANIOS VOLATICE I

Sample Number: AD19479-016 Client Id: HSI-SS-08 (0.5-1') Data File: 11M83437.D

Analysis Date: 10/01/20 19:12 Date Rec/Extracted: 09/28/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 6.53g

Final Vol: NA Dilution: 0.766

Solids: 89

|                  |                                |         |         | Units: mg | g/Kg        |                           |         |         |         |
|------------------|--------------------------------|---------|---------|-----------|-------------|---------------------------|---------|---------|---------|
| Cas #            | Compound                       | MDL     | RL      | Conc      | Cas #       | Compound                  | MDL     | RL      | Conc    |
| 71-5 <b>5-6</b>  | 1,1,1-Trichloroethane          | 0.00079 | 0.0017  | U :       | 56-23-5     | Carbon Tetrachloride      | 0.00083 | 0.0017  | U       |
| 79-34-5          | 1,1,2,2-Tetrachloroethane      | 0.00039 | 0.0017  | 0.0015J   | 108-90-7    | Chlorobenzene             | 0.00053 | 0.0017  | U       |
| 76-13-1          | 1,1,2-Trichloro-1,2,2-trifluor | 0.0012  | 0.0017  | U         | 75-00-3     | Chloroethane              | 0.0017  | 0.0017  | U       |
| 79-0 <b>0-5</b>  | 1,1,2-Trichloroethane          | 0.00040 | 0.0017  | 0.00066J  | 67-66-3     | Chloroform                | 0.0012  | 0.0017  | U       |
| 75-34-3          | 1,1-Dichloroethane             | 0.00075 | 0.0017  | U         | 74-87-3     | Chloromethane             | 0.0011  | 0.0017  | U       |
| 75-35-4          | 1,1-Dichloroethene             | 0.00099 | 0.0017  | U         | 156-59-2    | cis-1,2-Dichloroethene    | 0.00070 | 0.0017  | U       |
| 87-61-6          | 1.2,3-Trichlorobenzene         | 0.00047 | 0.0017  | U         | 10061-01-5  | cis-1,3-Dichloropropene   | 0.00046 | 0.0017  | U       |
| 120-82-1         | 1,2,4-Trichlorobenzene         | 0.00054 | 0.0017  | U         | 110-82-7    | Cyclohexane               | 0.0010  | 0.0017  | U       |
| 96 12-8          | 1,2-Dibromo-3-Chloropropa      | 0.00047 | 0.0017  | U         | 124-48-1    | Dibromochloromethane      | 0.00037 | 0.0017  | U       |
| 106-93-4         | 1,2-Dibromoethane              | 0.00042 | 0.00086 | U         | 75-71-8     | Dichlorodifluoromethane   | 0.0012  | 0.0017  | U       |
| 95-50-1          | 1,2-Dichlorobenzene            | 0.00044 | 0.0017  | U         | 100-41-4    | Ethylbenzene              | 0.00059 | 0.00086 | U       |
| 107-06-2         | 1,2-Dichloroethane             | 0.00035 | 0.0017  | U         | 98-82-8     | Isopropylbenzene          | 0.00071 | 0.00086 | U       |
| 78-87-5          | 1,2-Dichloropropane            | 0.00071 | 0.0017  | U         | 179601-23-1 | m&p-Xylenes               | 0.0010  | 0.0010  | U       |
| 541-7 <b>3-1</b> | 1,3-Dichlorobenzene            | 0.00047 | 0.0017  | U         | 79-20-9     | Methyl Acetate            | 0.00083 | 0.0017  | U       |
| 106-46-7         | 1.4-Dichlorobenzene            | 0.00046 | 0.0017  | U         | 108-87-2    | Methylcyclohexane         | 0.00077 | 0.0017  | U       |
| 123-91-1         | 1,4-Dioxane                    | 0.042   | 0.086   | U         | 75-09-2     | Methylene Chloride        | 0.00065 | 0.0017  | 0.0071  |
| 78-93-3          | 2-Butanone                     | 0.0010  | 0.0017  | U         | 1634-04-4   | Methyl-t-butyl ether      | 0.00046 | 0.00086 | U       |
| 591-78-6         | 2-Hexanone                     | 0.00073 | 0.0017  | U         | 95-47-6     | o-Xylene                  | 0.00061 | 0.00086 | U       |
| 108-10-1         | 4-Methyl-2-Pentanone           | 0.00050 | 0.0017  | U         | 100-42-5    | Styrene                   | 0.00047 | 0.0017  | U       |
| 67-64-1          | Acetone                        | 0.0058  | 0.0086  | 0.0074J   | 127-18-4    | Tetrachloroethene         | 0.00084 | 0.0017  | 0.0011J |
| 71-43-2          | Benzene                        | 0.00063 | 0.00086 | U         | 108-88-3    | Toluene                   | 0.00057 | 0.00086 | U       |
| 74-97-5          | Bromochloromethane             | 0.00060 | 0.0017  | U         | 156-60-5    | trans-1,2-Dichloroethene  | 0.0010  | 0.0017  | U       |
| 75-27-4          | Bromodichloromethane           | 0.00040 | 0.0017  | U         | 10061-02-6  | trans-1,3-Dichloropropene | 0.00040 | 0.0017  | U       |
| 75-25 <b>-2</b>  | Bromoform                      | 0.00028 | 0.0017  | U         | 79-01-6     | Trichloroethene           | 0.00071 | 0.0017  | U       |
| 74-83-9          | Bromomethane                   | 0.0014  | 0.0017  | U         | 75-69-4     | Trichlorofluoromethane    | 0.0010  | 0.0017  | U       |
| 75-15 <b>-0</b>  | Carbon Disulfide               | 0.0029  | 0.0029  | U         | 75-01-4     | Vinyl Chloride            | 0.0010  | 0.0017  | U       |
|                  |                                |         |         |           |             |                           |         |         |         |

1330-20-7

Xylenes (Total)

R - Retention Time Out

0.00061

0.00086

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

Explicates the analyte concentration exceeds the calibration range of the

 $<sup>{\</sup>it E}$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 11M\_S0805.M Qt On : 10/12/20 11:09 SampleID : AD19479-016 Operator : WP Sam Mult : 1 Vial# : 26 Misc : S,5G!3 Data File: 11M83437.D Acq On : 10/ 1/20 19:12 Qt Upd On: 08/06/20 07:18

Data Path : G:\GcMsData\2020\GCMS\_11\Data\10-01-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Units Dev | (Min)  |
|-----------------------------|-------|------|----------|----------------|--------|
| Internal Standards          |       |      |          |                |        |
| 4) Fluorobenzene            | 4.958 | 96   | 240067   | 30.00 ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.546 | 117  | 212004   | 30.00 ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 7.816 | 152  | 101352   | 30.00 ug/l     | 0.00   |
| System Monitoring Compounds |       |      |          |                |        |
| 37) Dibromofluoromethane    | 4.582 | 111  | 66664    | 30.80 ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 102.67%   |        |
| 39) 1,2 Dichloroethane-d4   | 4.778 | 67   | 30126    | 31.75  ug/l    | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 105.83%   |        |
| 66) Toluene-d8              | 5.787 | 98   | 252407   | 30.35 ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 101.17%   |        |
| 76) Bromofluorobenzene      | 7.167 | 174  | 82433    | 31.72 ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 105.73%   |        |
| Target Compounds            |       |      |          |                | Qvalue |
| 15) Methylene Chloride      | 3.373 | 84   | 16804    | 8.2373 ug/]    | 91     |
| 19) Acetone                 | 3.012 | 43   | 3735     | 8.6354 ug/l    | 83     |
| 60) 1,1,2-Trichloroethane   | 6.012 | 97   | 1427     | 0.7677 ug/]    | 65     |
| 65) Tetrachloroethene       | 6.115 | 164  | 2945     | 1.3074 ug/l    | 95     |
|                             | 7.218 |      | 3367     |                | 86     |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





11M\_S0805.M Mon Oct 12 11:17:39 2020 RPT1

# Form1 ORGANICS VOLATILE REPORT

Sample Number: AD19479-018

Client Id: HSI-SS-09 (0.5-1') Data File: 11M83399.D

Analysis Date: 10/01/20 01:59 Date Rec/Extracted: 09/28/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 4.85g

Final Vol: NA

Dilution: 1.03

Solids: 93

|           |                                |         |        | Units: mg | g/Kg              |                           |         |        |         |
|-----------|--------------------------------|---------|--------|-----------|-------------------|---------------------------|---------|--------|---------|
| Cas #     | Compound                       | MDL     | RL     | Conc      | Cas#              | Compound                  | MDL     | RL     | Conc    |
| 71-55-6   | 1,1,1-Trichloroethane          | 0.0010  | 0.0022 | U         | 56-23-5           | Carbon Tetrachloride      | 0.0011  | 0.0022 | U       |
| 79-34-5   | 1,1,2,2-Tetrachloroethane      | 0.00050 | 0.0022 | U         | 108-90-7          | Chlorobenzene             | 0.00069 | 0.0022 | U       |
| 76-13-1   | 1,1,2-Trichloro-1,2,2-trifluor | 0.0015  | 0.0022 | U         | 75-00-3           | Chloroethane              | 0.0022  | 0.0022 | U       |
| 79-00-5   | 1.1.2-Trichloroethane          | 0.00051 | 0.0022 | U         | 67-66-3           | Chloroform                | 0.0015  | 0.0022 | U       |
| 75-34-3   | 1 1-Dichloroethane             | 0.00096 | 0.0022 | U         | 74-87-3           | Chloromethane             | 0.0014  | 0.0022 | U       |
| 75-35-4   | 1.1-Dichloroethene             | 0.0013  | 0.0022 | U         | 156-59-2          | cis-1,2-Dichloroethene    | 0.00090 | 0.0022 | U       |
| 87-61-6   | 1,2,3-Trichlorobenzene         | 0.00061 | 0.0022 | U         | 10061-01-5        | cis-1,3-Dichloropropene   | 0.00059 | 0.0022 | U       |
| 120-82-1  | 1,2,4-Trichlorobenzene         | 0.00070 | 0.0022 | U         | 110-82-7          | Cyclohexane               | 0.0013  | 0.0022 | U       |
| 96-12-8   | 1,2-Dibromo-3-Chloropropa      | 0.00061 | 0.0022 | U         | 124-48-1          | Dibromochloromethane      | 0.00048 | 0.0022 | U       |
| 106-93-4  | 1,2-Dibromoethane              | 0.00054 | 0.0011 | U j       | 75-71 <b>-</b> 8  | Dichlorodifluoromethane   | 0.0016  | 0.0022 | U       |
| 95-50-1   | 1,2-Dichlorobenzene            | 0.00057 | 0.0022 | U         | 100-41-4          | Ethylbenzene              | 0.00076 | 0.0011 | U       |
| 107-06-2  | 1,2-Dichloroethane             | 0.00045 | 0.0022 | U         | 98-82-8           | Isopropylbenzene          | 0.00092 | 0.0011 | U       |
| 78-87-5   | 1,2-Dichloropropane            | 0.00091 | 0.0022 | U         | 179601-23-1       | m&p-Xylenes               | 0.0013  | 0.0013 | 0.0014  |
| 541-73-1  | 1,3-Dichlorobenzene            | 0.00061 | 0.0022 | U         | 79-20-9           | Methyl Acetate            | 0.0011  | 0.0022 | U       |
| 106-46-7  | 1,4-Dichlorobenzene            | 0.00059 | 0.0022 | U         | 108-87-2          | Methylcyclohexane         | 0.0010  | 0.0022 | U       |
| 123-91-1  | 1.4-Dioxane                    | 0.054   | 0.11   | U         | 75-09-2           | Methylene Chloride        | 0.00083 | 0.0022 | 0.0046  |
| 78-93-3   | 2-Butanone                     | 0.0013  | 0.0022 | U         | 1634-04-4         | Methyl-t-butyl ether      | 0.00060 | 0.0011 | U       |
| 591-78-6  | 2-Hexanone                     | 0.00094 | 0.0022 | U         | 95-47-6           | o-Xylene                  | 0.00079 | 0.0011 | U       |
| 108-10-1  | 4-Methyl-2-Pentanone           | 0.00064 | 0.0022 | U         | 100-42-5          | Styrene                   | 0.00061 | 0.0022 | U       |
| 67-64-1   | Acetone                        | 0.0075  | 0.011  | 0.020     | 127-18-4          | Tetrachloroethene         | 0.0011  | 0.0022 | 0.0011J |
| 71-43-2   | Benzene                        | 0.00081 | 0.0011 | U         | 108 <b>-8</b> 8-3 | Toluene                   | 0.00073 | 0.0011 | U       |
| 74-97-5   | Bromochloromethane             | 0.00078 | 0.0022 | U :       | 156-60-5          | trans-1,2-Dichloroethene  | 0.0013  | 0.0022 | U       |
| 75-27-4   | Bromodichloromethane           | 0.00052 | 0.0022 | U         | 10061-02-6        | trans-1,3-Dichloropropene | 0.00052 | 0.0022 | U       |
| 75-25-2   | Bromoform                      | 0.00037 | 0.0022 | U         | 79-01-6           | Trichloroethene           | 0.00091 | 0.0022 | U       |
| 74-83-9   | Bromomethane                   | 0.0017  | 0.0022 | U         | 75-69-4           | Trichlorofluoromethane    | 0.0013  | 0.0022 | U       |
| 75-15-0   | Carbon Disulfide               | 0.0038  | 0.0038 | U         | 75-01-4           | Vinyl Chloride            | 0.0014  | 0.0022 | U       |
| 1330-20-7 | Xylenes (Total)                | 0.00079 | 0.0011 | 0.0014    |                   |                           |         |        |         |

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19479-018 Operator : WP Sam Mult : 1 Vial# : 62 Misc : S,5G!2 Qt Meth : 11M\_S0805.M Qt On : 10/12/20 11:10 Qt Upd On: 08/06/20 07:18 Data File: 11M83399.D Acq On : 10/ 1/20 01:59

Data Path : G:\GcMsData\2020\GCMS\_11\Data\09-3020\Qt Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\Qt Resp Via : Initial Calibration

| Compound                            | R.T.  | QIon | Response | Conc | Units Dev | (Min)  |
|-------------------------------------|-------|------|----------|------|-----------|--------|
| Internal Standards 4) Fluorobenzene | 4.958 | 96   | 253918   | 30.0 | 0 ug/l    | 0.00   |
| 52) Chlorobenzene-d5                | 6.549 | 117  | 227098   | 30.0 | 0 ug/l    | 0.00   |
| 70) 1,4-Dichlorobenzene-d4          | 7.816 | 152  | 117248   | 30.0 | 0 ug/l    | 0.00   |
| System Monitoring Compounds         |       |      |          |      |           |        |
| 37) Dibromofluoromethane            | 4.582 | 111  | 70258    | 30.6 | 9 ug/l    | 0.00   |
| Spiked Amount 30.000                |       |      | Recove   | ry = | 102.30%   |        |
| 39) 1,2-Dichloroethane-d4           | 4.778 | 67   | 34629    | 34.5 | 0 ug/l    | 0.00   |
| Spiked Amount 30.000                |       |      | Recove   | ry = | 115.00%   |        |
| 66) Toluene-d8                      | 5.787 | 98   | 265689   | 29.8 | 3 ug/l    | 0.00   |
| Spiked Amount 30.000                |       |      | Recove   | ry = | 99.43%    |        |
| 76) Bromofluorobenzene              | 7.167 | 174  | 90371    | 30.0 | 6 ug/l    | 0.00   |
| Spiked Amount 30.000                |       |      | Recove   | ry = | 100.20%   |        |
| Target Compounds                    |       |      |          |      |           | Qvalue |
| 15) Methylene Chloride              | 3.376 | ,8'4 | 8980     | 4.1  | 619 ug/   | 1 85   |
| 19) Acetone                         | 3.009 |      | 8284     | 18.1 | 079 ug/   | 1 88   |
| 65) Tetrachloroethene               | 6.112 | 164  | 2499     | 1.0  | 357 ug/   | 1 93   |
| 78) m&p-Xylenes                     | 6.662 | 106  | 4996     | 1.2  | 593 ug/   | 1 88   |

<sup>(#) -</sup> qualifier out of range (m) = manual integration (+) = signals summed





#### ORGANICS VOLATILE REPORT

Units: mg/Kg

Conc

Sample Number: AD19479-020

Client Id: HSI-SS-D (0.5-1') Data File: 11M83400.D

Analysis Date: 10/01/20 02:19 Date Rec/Extracted: 09/28/20-NA

Compound

2-Hexanone

Acetone

Benzene

Bromoform

Bromomethane

Carbon Disulfide

Xylenes (Total)

4-Methyl-2-Pentanone

Bromochloromethane

Bromodichloromethane

Cas#

591-78-6

108-10-1

67-64-1

71-43-2

74-97-5

75-27-4

75-25-2

74-83-9

75-15-0

1330-20-7

Column: DB-624 25M 0.200mm ID 1.12um film

RL

MDL

0.00080

0.00054

0.0063

0.00068

0.00066

0.00044

0.00031

0.0015

0.0032

0.00066

0.0019

0.0019

0.0094

0.00094

0.0019

0.0019

0.0019

0.0019

0.0032

0.00094

Method: EPA 8260D

MDL

0.00066

0.00051

0.00092

0.00062

0.0011

0.00044

0.00077

0.0011

0.0011

0.00094

0.0019

0.0019

0.00094

0.0019

0.0019

0.0019

0.0019

0.0019

RL

Conc

U

U

U

U

U

U

U

U

0.0034

Matrix: Soil

Initial Vol: 6.76g

Final Vol: NA

Dilution: 0.740

Solids: 79

Compound

Cas#

| 71- <b>55-6</b>  | 1,1,1-Trichloroethane          | 0.00086 | 0.0019  | U   | 56-23-5     | Carbon Tetrachloride    | 0.00091 | 0.0019  | U |
|------------------|--------------------------------|---------|---------|-----|-------------|-------------------------|---------|---------|---|
| 79-34-5          | 1,1,2,2-Tetrachloroethane      | 0.00042 | 0.0019  | U   | 108-90-7    | Chlorobenzene           | 0.00058 | 0.0019  | U |
| 76-13-1          | 1,1,2-Trichloro-1,2,2-trifluor | 0.0013  | 0.0019  | U   | 75-00-3     | Chloroethane            | 0.0018  | 0.0019  | U |
| 7 <b>9-00</b> -5 | 1,1,2-Trichloroethane          | 0.00043 | 0.0019  | U   | 67-66-3     | Chloroform              | 0.0013  | 0.0019  | U |
| 75-34-3          | 1,1-Dichloroethane             | 0.00081 | 0.0019  | U   | 74-87-3     | Chloromethane           | 0.0012  | 0.0019  | U |
| 75-35-4          | 1,1-Dichloroethene             | 0.0011  | 0.0019  | U . | 156-59-2    | cis-1,2-Dichloroethene  | 0.00076 | 0.0019  | U |
| 87-61-6          | 1,2,3-Trichlorobenzene         | 0.00051 | 0.0019  | U   | 10061-01-5  | cis-1,3-Dichloropropene | 0.00050 | 0.0019  | U |
| 120-82-1         | 1,2,4-Trichlorobenzene         | 0.00059 | 0.0019  | U   | 110-82-7    | Cyclohexane             | 0.0011  | 0.0019  | U |
| 96-12-8          | 1,2-Dibromo-3-Chloropropa      | 0.00051 | 0.0019  | U : | 124-48-1    | Dibromochloromethane    | 0.00040 | 0.0019  | U |
| 106-93-4         | 1,2-Dibromoethane              | 0.00046 | 0.00094 | U   | 75-71-8     | Dichlorodifluoromethane | 0.0013  | 0.0019  | U |
| 95-50-1          | 1,2-Dichlorobenzene            | 0.00048 | 0.0019  | U   | 100-41-4    | Ethylbenzene            | 0.00065 | 0.00094 | U |
| 107-06-2         | 1,2-Dichloroethane             | 0.00038 | 0.0019  | U   | 98-82-8     | Isopropylbenzene        | 0.00078 | 0.00094 | U |
| 78-87-5          | 1,2-Dichloropropane            | 0.00077 | 0.0019  | U   | 179601-23-1 | m&p-Xylenes             | 0.0011  | 0.0011  | U |
| 541-73-1         | 1,3-Dichlorobenzene            | 0.00051 | 0.0019  | U   | 79-20-9     | Methyl Acetate          | 0.00090 | 0.0019  | U |
| 106-46-7         | 1.4-Dichlorobenzene            | 0.00050 | 0.0019  | U   | 108-87-2    | Methylcyclohexane       | 0.00084 | 0.0019  | U |
| 123-91-1         | 1,4-Dioxane                    | 0.045   | 0.094   | U   | 75-09-2     | Methylene Chloride      | 0.00070 | 0.0019  | U |
| 78-93-3          | 2-Butanone                     | 0.0011  | 0.0019  | U   | 1634-04-4   | Methyl-t-butyl ether    | 0.00051 | 0.00094 | U |
|                  |                                |         |         |     |             |                         |         |         |   |

U

U

U

U

U

u

U

U

U

u

95-47-6

100-42-5

127-18-4

108-88-3

156-60-5

79-01-6

75-69-4

75-01-4

10061-02-6

o-Xylene

Styrene

Toluene

Tetrachioroethene

Trichloroethene

Vinyl Chloride

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Worksheet #: 569452

Total Target Concentration

0.0034

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

J - Indicates an estimated value when a compound is detected at less than the

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Quantitation Report (QT Reviewed) 0092806 0084

SampleID : AD19479-020 Data File: 11M83400.D Acq On : 10/ 1/20 02:19 Qt Meth : 11M\_S0805.M
Qt On : 10/12/20 11:10 Operator : WP Sam Mult : 1 Vial# : 63 Misc : S,5G!2 Qt Upd On: 08/06/20 07:18

Data Path : C:\GcMsData\2020\GCMS\_11\Data\09-3020\
Qt Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response           | Conc U | nits Dev | (Min)  |
|-----------------------------|-------|------|--------------------|--------|----------|--------|
| Internal Standards          |       |      |                    |        |          |        |
| 4) Fluorobenzene            | 4.961 | 96   | 244529             | 30.00  | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.546 | 117  | 219104             | 30.00  | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 7.816 | 152  | 115090             | 30.00  | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |                    |        |          |        |
| 37) Dibromofluoromethane    | 4.582 | 111  | 68916              | 31.26  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove             | cy =   | 104.20%  |        |
| 39) 1,2-Dichloroethane-d4   | 4.775 | 67   | 32836              | 33.97  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recovery = 113.23% |        |          |        |
| 66) Toluene-d8              | 5.787 | 98   | 256589             | 29.86  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recover            | cy =   | 99.53%   |        |
| 76) Bromofluorobenzene      | 7.167 | 174  | 87556              | 29.67  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recover            | :y =   | 98.90%   |        |
| Target Compounds            |       |      |                    |        |          | Qvalue |
| 11) Trichlorofluoromethane  | 2.543 | 101  | 13817              | 3.669  | 57 ug/:  | 1 96   |

(#) = qualifier out of range (m) = manual integration (+) = signals summed



#### Form1

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 11M83376.D

Analysis Date: 09/30/20 18:24

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 5g

Final Vol: NA

Dilution: 1.00

Solids: 100

Units: mg/Kg

| Cas #            | Compound                       | MDL     | RL     | Conc | Cas#        | Compound                  | MDL     | RL     | Conc |
|------------------|--------------------------------|---------|--------|------|-------------|---------------------------|---------|--------|------|
| 71-55-6          | 1,1,1-Trichloroethane          | 0.00092 | 0.0020 | U    | 56-23-5     | Carbon Tetrachloride      | 0.00097 | 0.0020 | U    |
| 79-34-5          | 1.1.2.2-Tetrachloroethane      | 0.00045 | 0.0020 | U    | 108-90-7    | Chlorobenzene             | 0.00062 | 0.0020 | U    |
| 76-13-1          | 1,1,2-Trichloro-1,2,2-trifluor | 0.0014  | 0.0020 | U    | 75-00-3     | Chloroethane              | 0.0020  | 0.0020 | U    |
| 79-00-5          | 1,1,2-Trichloroethane          | 0.00046 | 0.0020 | U    | 67-66-3     | Chloroform                | 0.0014  | 0.0020 | U    |
| 75-34-3          | 1,1-Dichloroethane             | 0.00087 | 0.0020 | U    | 74-87-3     | Chloromethane             | 0.0012  | 0.0020 | U    |
| 75-35-4          | 1,1-Dichloroethene             | 0.0012  | 0.0020 | U    | 156-59-2    | cis-1,2-Dichloroethene    | 0.00081 | 0.0020 | U    |
| 87-61 <b>-6</b>  | 1,2,3-Trichlorobenzene         | 0.00055 | 0.0020 | U    | 10061-01-5  | cis-1,3-Dichloropropene   | 0.00053 | 0.0020 | U    |
| 120-82-1         | 1,2,4-Trichlorobenzene         | 0.00063 | 0.0020 | U    | 110-82-7    | Cyclohexane               | 0.0012  | 0.0020 | U    |
| 96-12-8          | 1,2-Dibromo-3-Chloropropa      | 0.00055 | 0.0020 | U    | 124-48-1    | Dibromochloromethane      | 0.00043 | 0.0020 | U    |
| 106-93-4         | 1,2-Dibromoethane              | 0.00049 | 0.0010 | U    | 75-71-8     | Dichlorodifluoromethane   | 0.0014  | 0.0020 | U    |
| 95-50-1          | 1,2-Dichlorobenzene            | 0.00051 | 0.0020 | U    | 100-41-4    | Ethylbenzene              | 0.00069 | 0.0010 | U    |
| 107-06-2         | 1,2-Dichloroethane             | 0.00041 | 0.0020 | U    | 98-82-8     | Isopropylbenzene          | 0.00083 | 0.0010 | U    |
| 78- <b>8</b> 7-5 | 1.2-Dichloropropane            | 0.00082 | 0.0020 | U    | 179601-23-1 | m&p-Xylenes               | 0.0012  | 0.0012 | U    |
| 541-73-1         | 1,3-Dichlorobenzene            | 0.00055 | 0.0020 | U    | 79-20-9     | Methyl Acetate            | 0.00096 | 0.0020 | U    |
| 106-46-7         | 1,4-Dichlorobenzene            | 0.00053 | 0.0020 | U    | 108-87-2    | Methylcyclohexane         | 0.00090 | 0.0020 | U    |
| 123-91-1         | 1,4-Dioxane                    | 0.049   | 0.10   | U    | 75-09-2     | Methylene Chloride        | 0.00075 | 0.0020 | U    |
| 78-93-3          | 2-Butanone                     | 0.0012  | 0.0020 | U    | 1634-04-4   | Methyl-t-butyl ether      | 0.00054 | 0.0010 | U    |
| 591-78-6         | 2-Hexanone                     | 0.00085 | 0.0020 | U    | 95-47-6     | o-Xylene                  | 0.00071 | 0.0010 | U    |
| 108-10-1         | 4-Methyl-2-Pentanone           | 0.00058 | 0.0020 | U    | 100-42-5    | Styrene                   | 0.00055 | 0.0020 | U    |
| 67-64-1          | Acetone                        | 0.0068  | 0.010  | U    | 127-18-4    | Tetrachloroethene         | 0.00098 | 0.0020 | U    |
| 71-43-2          | Benzene                        | 0.00073 | 0.0010 | U    | 108-88-3    | Toluene                   | 0.00066 | 0.0010 | U    |
| 74-97-5          | Bromochloromethane             | 0.00070 | 0.0020 | U    | 156-60-5    | trans-1,2-Dichloroethene  | 0.0012  | 0.0020 | U    |
| 75-27-4          | Bromodichloromethane           | 0.00047 | 0.0020 | U    | 10061-02-6  | trans-1,3-Dichloropropene | 0.00047 | 0.0020 | U    |
| 75-25-2          | Bromoform                      | 0.00033 | 0.0020 | U    | 79-01-6     | Trichloroethene           | 0.00082 | 0.0020 | U    |
| 74-83-9          | Bromomethane                   | 0.0016  | 0.0020 | U    | 75-69-4     | Trichlorofluoromethane    | 0.0012  | 0.0020 | U    |
| 75-1 <b>5</b> -0 | Carbon Disulfide               | 0.0034  | 0.0034 | U    | 75-01-4     | Vinyl Chloride            | 0.0012  | 0.0020 | U    |
|                  |                                |         |        |      |             |                           |         |        |      |

 $<sup>\</sup>ell'$  - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $<sup>{\</sup>it E}$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Quantitation Report (QT Reviewed) 0092806 0087

Qt Meth : 11M\_S0805.M Qt On : 10/01/20 08:34 Qt Upd On: 08/06/20 07:18 Operator : WP Sam Mult : 1 Vial# : 39 Misc : S,5G SampleID : DAILY BLANK Data File: 11M83376.D Acq On : 09/30/20 18:24

Data Path : G:\GcMsData\2020\GCMS\_11\Data\09-3020\
Qt Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\
Qt Resp Via : Initial Calibration

| Compound            |           | R.T.  | QIon | Response | Conc U | nits Dev | (Min)  |
|---------------------|-----------|-------|------|----------|--------|----------|--------|
| Internal Standards  |           |       |      |          |        |          |        |
| 4) Fluorobenzene    |           | 4.961 | 96   | 273164   | 30.00  | ug/l     | 0.00   |
| 52) Chlorobenzene-  | -d5       | 6.546 | 117  | 242304   | 30.00  | ug/l     | 0.00   |
| 70) 1,4-Dichlorobe  | enzene-d4 | 7.816 | 152  | 130603   | 30.00  | ug/l     | 0.00   |
| System Monitoring ( | Compounds |       |      |          |        |          |        |
| 37) Dibromofluorom  | nethane   | 4.582 | 111  | 73304    | 29.76  | ug/l     | 0.00   |
| Spiked Amount       | 30.000    |       |      | Recove   | ry =   | 99.20%   |        |
| 39) 1,2-Dichloroet  | hane-d4   | 4.778 | 67   | 31341    | 29.02  | ug/l     | 0.00   |
| Spiked Amount       | 30.000    |       |      | Recove   | ry =   | 96.73%   |        |
| 66) Toluene-d8      |           | 5.787 | 98   | 294738   | 31.01  | ug/l     | 0.00   |
| Spiked Amount       | 30.000    |       |      | Recove   | ry =   | 103.37%  |        |
| 76) Bromofluorober  | nzene     | 7.167 | 174  | 99098    | 29.59  | ug/l     | 0.00   |
| Spiked Amount       | 30.000    |       |      | Recove   | ry =   | 98.63%   |        |
| Target Compounds    |           |       |      |          |        |          | Qvalue |

<sup>(#)</sup> = qualifier out of range (m) = manual integration (+) = signals summed



U

U

U

U

U

#### Form1

**ORGANICS VOLATILE REPORT** 

Sample Number: DAILY BLANK

Client Id:

Data File: 11M83418.D Analysis Date: 10/01/20 11:57

Date Rec/Extracted:

Bromochloromethane

Bromoform

Bromomethane

Carbon Disulfide

Bromodichloromethane

0.00070

0.00047

0.00033

0.0016

0.0034

0.0020 0.0020

0.0020

0.0020

0.0034

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 5g

Final Vol: NA

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

Dilution: 1.00

Solids: 100

|                           |                                |         |        | Units: mg | ı/Kg        |                         |         |        |      |
|---------------------------|--------------------------------|---------|--------|-----------|-------------|-------------------------|---------|--------|------|
| Cas#                      | Compound                       | MDL     | RL     | Conc      | Cas#        | Compound                | MDL     | RL     | Conc |
| 71-55 <b>-6</b>           | 1,1.1-Trichloroethane          | 0.00092 | 0.0020 | U         | 56-23-5     | Carbon Tetrachloride    | 0.00097 | 0.0020 | U    |
| 79-34-5                   | 1,1,2,2-Tetrachloroethane      | 0.00045 | 0.0020 | U         | 108-90-7    | Chlorobenzene           | 0.00062 | 0.0020 | U    |
| 76-1 <b>3-1</b>           | 1,1,2-Trichloro-1,2,2-trifluor | 0.0014  | 0.0020 | U         | 75-00-3     | Chloroethane            | 0.0020  | 0.0020 | U    |
| 7 <b>9</b> -0 <b>0</b> -5 | 1,1,2-Trichloroethane          | 0.00046 | 0.0020 | U         | 67-66-3     | Chloroform              | 0.0014  | 0.0020 | U    |
| 75-34-3                   | 1,1-Dichloroethane             | 0.00087 | 0.0020 | U         | 74-87-3     | Chloromethane           | 0.0012  | 0.0020 | U    |
| 75- <b>35-4</b>           | 1,1-Dichloroethene             | 0.0012  | 0.0020 | U         | 156-59-2    | cis-1,2-Dichloroethene  | 0.00081 | 0.0020 | U    |
| 87-61-6                   | 1,2,3-Trichlorobenzene         | 0.00055 | 0.0020 | U         | 10061-01-5  | cis-1,3-Dichloropropene | 0.00053 | 0.0020 | U    |
| 120-82-1                  | 1,2,4-Trichlorobenzene         | 0.00063 | 0.0020 | U         | 110-82-7    | Cyclohexane             | 0.0012  | 0.0020 | U    |
| 96-12-8                   | 1,2-Dibromo-3-Chloropropa      | 0.00055 | 0.0020 | U :       | 124-48-1    | Dibromochloromethane    | 0.00043 | 0.0020 | U    |
| 106-93-4                  | 1,2-Dibromoethane              | 0.00049 | 0.0010 | U         | 75-71-8     | Dichlorodifluoromethane | 0.0014  | 0.0020 | U    |
| 95-50-1                   | 1,2-Dichlorobenzene            | 0.00051 | 0.0020 | U         | 100-41-4    | Ethylbenzene            | 0.00069 | 0.0010 | U    |
| 107- <b>06-</b> 2         | 1,2-Dichloroethane             | 0.00041 | 0.0020 | U ·       | 98-82-8     | Isopropylbenzene        | 0.00083 | 0.0010 | U    |
| 78- <b>87-5</b>           | 1,2-Dichloropropane            | 0.00082 | 0.0020 | U         | 179601-23-1 | m&p-Xylenes             | 0.0012  | 0.0012 | U    |
| 541-73-1                  | 1,3-Dichlorobenzene            | 0.00055 | 0.0020 | U         | 79-20-9     | Methyl Acetate          | 0.00096 | 0.0020 | U    |
| 106-46-7                  | 1,4-Dichlorobenzene            | 0.00053 | 0.0020 | U         | 108-87-2    | Methylcyclohexane       | 0.00090 | 0.0020 | U    |
| 123-91-1                  | 1,4-Dioxane                    | 0.049   | 0.10   | U         | 75-09-2     | Methylene Chloride      | 0.00075 | 0.0020 | U    |
| 78 9 <b>3-3</b>           | 2-Butanone                     | 0.0012  | 0.0020 | U         | 1634-04-4   | Methyl-t-butyl ether    | 0.00054 | 0.0010 | U    |
| 591-78-6                  | 2-Hexanone                     | 0.00085 | 0.0020 | U         | 95-47-6     | o-Xylene                | 0.00071 | 0.0010 | U    |
| 108-10-1                  | 4-Methyl-2-Pentanone           | 0.00058 | 0.0020 | U         | 100-42-5    | Styrene                 | 0.00055 | 0.0020 | U    |
| 67-64-1                   | Acetone                        | 0.0068  | 0.010  | U         | 127-18-4    | Tetrachloroethene       | 0.00098 | 0.0020 | U    |
| 71-43-2                   | Benzene                        | 0.00073 | 0.0010 | U         | 108-88-3    | Toluene                 | 0.00066 | 0.0010 | U    |

U

U

U

U

U

156-60-5

79-01-6

75-69-4

75-01-4

R - Retention Time Out

10061-02-6

Worksheet #: 569452

74-97-5

75-27-4

75-2**5-**2

74-83-9

75-15-0

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

0.0012

0.00047

0.00082

0.0012

0.0012

0.0020

0.0020

0.0020

0.0020

0.0020

J - Indicates an estimated value when a compound is detected at less than the

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $<sup>{\</sup>it E}$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Quantitation Report (QT Reviewed) 0092806 0090

 

 SampleID :
 DAILY BLANK
 Operator :
 WP

 Data File:
 11M83418.D
 Sam Mult :
 1 Vial# :
 7

 Acq On :
 10/1/20 11:57
 Misc :
 S,5G

 Qt Meth : 11M\_S0805.M Qt On : 10/01/20 12:12 Qt Upd On: 08/06/20 07:18

Data Path : G:\GcMsData\2020\GCMS\_11\Data\10-01-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Ur | nits Dev | (Min)  |
|-----------------------------|-------|------|----------|---------|----------|--------|
| Internal Standards          |       |      |          |         |          |        |
| 4) Fluorobenzene            | 4.958 | 96   | 268434   | 30.00   | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.546 | 117  | 241584   | 30.00   | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 7.816 | 152  | 128645   | 30.00   | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |          |         |          |        |
| 37) Dibromofluoromethane    | 4.579 | 111  | 73802    | 30.49   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 101.63%  |        |
| 39) 1,2-Dichloroethane-d4   | 4.778 | 67   | 33439    | 31.51   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery =   | 105.03%  |        |
| 66) Toluene-d8              | 5.788 | 98   | 284586   | 30.03   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 100.10%  |        |
| 76) Bromofluorobenzene      | 7.164 | 174  | 96736    | 29.32   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 97.73%   |        |
| Target Compounds            |       |      |          |         |          | Qvalue |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





#### FORM2

Surrogate Recovery

Method: EPA 8260D

| Dfile  | Sample#              | Matrix      | Date/Time      | Surr | Dilute<br>Out | Column1<br>S1 | Column1<br>S2 | Column1<br>S3 | Column1<br>S4 | Column0<br>S5 | Column0<br>S6 |
|--------|----------------------|-------------|----------------|------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|        |                      | <del></del> |                | Dil  | Flag          | Recov         | Recov         | Recov         | Recov         | Recov         | Recov         |
|        | 76.D DAILY BLANK     | S           | 09/30/20 18:24 | 1    |               | 99            | 97            | 103           | 99            |               |               |
| 11M834 | 18.D DAILY BLANK     | S           | 10/01/20 11:57 | 1    |               | 102           | 105           | 100           | 98            |               |               |
| 11M833 | 92.DAD19479-002      | S           | 09/30/20 23:40 | 1    |               | 102           | 112           | 104           | 106           |               |               |
| 11M834 | 39.DAD19479-004      | s           | 10/01/20 19:51 | 1    |               | 103           | 107           | 105           | 110           |               |               |
| 11M834 | 38.DAD19479-006      | S           | 10/01/20 19:32 | 1    |               | 104           | 105           | 114           | 129           |               |               |
| 11M833 | 94.DAD19479-008      | S           | 10/01/20 00:20 | 1    |               | 104           | 110           | 103           | 105           |               |               |
| 11M833 | 95.DAD19479-010      | s           | 10/01/20 00:39 | 1    |               | 104           | 103           | 106           | 100           |               |               |
| 11M834 | 40.DAD19479-012      | S           | 10/01/20 20:11 | 1    |               | 103           | 108           | 108           | 125           |               |               |
| 11M834 | 36.DAD19479-014      | s           | 10/01/20 18:52 | 1    |               | 103           | 109           | 106           | 117           |               |               |
| 11M834 | 37.DAD19479-016      | S           | 10/01/20 19:12 | 1    |               | 103           | 106           | 101           | 106           |               |               |
| 11M833 | 99.DAD19479-018      | S           | 10/01/20 01:59 | 1    |               | 102           | 115           | 99            | 100           |               |               |
| 11M834 | 00.DAD19479-020      | S           | 10/01/20 02:19 | 1    |               | 104           | 113           | 100           | 99            |               |               |
| 11M833 | 77.DAD19504-001      | S           | 09/30/20 18:43 | 1    |               | 103           | 111           | 100           | 96            |               |               |
| 11M833 | 79.DMBS89405         | S           | 09/30/20 19:23 | 1    |               | 98            | 103           | 103           | 100           |               |               |
| 11M833 | 80.DAD19504-001(MS)  | S           | 09/30/20 19:43 | 1    |               | 100           | 105           | 102           | 96            |               |               |
| 11M833 | 81.DAD19504-001(MSD) | S           | 09/30/20 20:03 | 1    |               | 102           | 102           | 101           | 98            |               |               |
| 11M834 | 19.DMBS89411         | S           | 10/01/20 12:17 | 1    |               | 98            | 104           | 102           | 97            |               |               |
| 11M834 | 20.DAD19504-005      | S           | 10/01/20 12:37 | 1    |               | 103           | 112           | 100           | 99            |               |               |
| 11M834 | 26.DAD19504-005(MS)  | S           | 10/01/20 15:35 | 1    |               | 104           | 105           | 100           | 97            |               |               |
| 11M834 | 27.DAD19504-005(MSD) | S           | 10/01/20 15:54 | 1    |               | 102           | 102           | 98            | 97            |               |               |

Flags: SD=Surrogate diluted out

\*=Surrogate out

Method: EPA 8260D

#### **Soil Laboratory Limits**

|                          | Spike | • • •  |
|--------------------------|-------|--------|
| Compound                 | Amt   | Limits |
| S1=Dibromofluoromethane  | 30    | 63-140 |
| S2=1,2-Dichloroethane-d4 | 30    | 63-143 |
| S3=Toluene-d8            | 30    | 68-122 |
| S4=Bromofluorobenzene    | 30    | 64-129 |

Data File

Sample ID:

Analysis Date

Spike or Dup: 11M83379.D

MBS89405

9/30/2020 7:23:00 PM

Non Spike(If applicable)

Inst Blank(If applicable): Method: 8260D Matrix: Soil QC Type: MBS Spike Sample **Expected** Lower Upper Col Limit Analyte: Conc Conc Conc Recovery Limit Chlorodifluoromethane 54.0547 0 50 108 20 130 <u>50</u> <u>20</u> <u>130</u> Dichlorodifluoromethane 1 47.0532 0 <u>94</u> Chloromethane 0 <u>50</u> <u>88</u> <u> 20</u> <u>130</u> 1 <u>43.7766</u> 0 <u>50</u> <u>20</u> 130 **Bromomethane** 1 52.4311 **105** <u>50</u> 20 130 Vinyl Chloride 1 51.7061 0 <u> 103</u> 0 20 <u>50</u> 130 Chloroethane 55.8784 <u>112</u> 000 20 130 **Trichlorofluoromethane** 59.2189 <u>50</u> 118 50 Ethyl ether 60.1305 50 120 130 57.9766 0 50 116 50 130 **Furan** 130 1,1,2-Trichloro-1,2,2-trifluoroethane 73.5087 0 50 147\* <u>50</u> 1 <u>50</u> Methylene Chloride 57.8689 0 50 <u>116</u> <u>130</u> 296.0368 ō 20 130 200 1481 Acrolein 20 130 Acrylonitrile 57.2397 0 50 114 Iodomethane 41.8926 0 50 84 50 130 200 0 148\* <u>20</u> <u>130</u> Acetone <u>295.7653</u> 0 64.8027 <u>130</u> <u>50</u> 130 Carbon Disulfide 50 t-Butyl Alcohol 189.825 200 95 20 130 0 50 50 130 n-Hexane 61,7931 124 0 50 111 50 130 Di-isopropyl-ether 55.3971 0 50 50 130 1.1-Dichloroethene 1 65.6644 131\* <u>50</u> Methyl Acetate 1 <u>54.0584</u> <u>0</u> <u>50</u> <u>108</u> <u>130</u> Q <u>50</u> <u>50</u> 112 <u>130</u> Methyl-t-butyl ether <u>55.8617</u> 1.1-Dichloroethane 1 57.887 0 50 116 50 130 <u>50</u> trans-1,2-Dichloroethene 57.48 0 <u>50</u> <u>115</u> <u>130</u> 1 ō 50 50 130 Ethyl-t-butyl ether 46.2963 93 0 50 <u>50</u> 130 cis-1,2-Dichloroethene 56.033 112 1 **Bromochloromethane** <u>54.7818</u> 0 <u>50</u> 110 <u>50</u> <u>130</u> 0 50 50 130 2,2-Dichloropropane 55.2022 110 50 99 50 130 Ethyl acetate 49.5595 0 1,4-Dioxane Q <u> 2500</u> <u>102</u> <u>50</u> <u>130</u> 1 2541.481 ō 50 130 58.0407 50 116 1,1-Dichloropropene 1 58.7816 0 50 118 <u>50</u> 130 Chloroform Cyclohexane 1 58.7672 Q <u>50</u> 118 <u>50</u> 130 ō <u>50</u> <u>50</u> <u>130</u> 1,2-Dichloroethane 1 <u>53.49</u> <u> 107</u> Q <u>20</u> 2-Butanone 48.6095 <u>50</u> <u>97</u> 130 <u>50</u> 1,1,1-Trichloroethane 1 56.6183 0 <u>50</u> 113 130 0 <u>50</u> <u>50</u> <u>130</u> Carbon Tetrachloride 56.2717 <u>113</u> ō 50 50 130 53.9744 108 Vinyl Acetate 0 <u>50</u> <u> 108</u> <u>50</u> <u>130</u> Bromodichloromethane 1 53.953 **Methylcyclohexane** 60.337 0 <u>50</u> 121 <u>50</u> <u>130</u> ō 50 50 130 46.2842 93 Dibromomethane <u>50</u> 130 1,2-Dichloropropane 56.1626 Q <u>50</u> 112 <u>50</u> <u>0</u> <u>50</u> **Trichloroethene** 53.4971 107 <u>130</u> 57.0991 0 <u>50</u> <u>50</u> 130 **Benzene** 114 ō tert-Amyl methyl ether 50.7572 50 102 50 130 50 0 50 130 Iso-propylacetate 48.4063 97 47.8583 0 50 96 50 130 Methyl methacrylate 130 **Dibromochloromethane** 51.8333 <u>0</u> <u>50</u> 104 50 1 50 0 50 2-Chloroethylvinylether 53.7816 108 130 Q 54.7063 <u>50</u> 109 <u>50</u> <u>130</u> cis-1,3-Dichloropropene trans-1,3-Dichloropropene 0 <u>50</u> <u>50</u> 130 55.3334 111 Ethyl methacrylate 47.2296 0 50 94 50 130 0 <u>50</u> 112 <u>50</u> <u>130</u> 1,1,2-Trichloroethane 1 <u>55.8173</u> <u>50</u> 50 <u>0</u> <u>50</u> <u>130</u> 1,2-Dibromoethane 56.0326 112 0 50 1,3-Dichloropropane 56.5612 113 130 0 <u>20</u> <u>130</u> <u>50</u> <u>93</u> 4-Methyl-2-Pentanone <u>46.3526</u> 48.0209 0 <u>50</u> 96 <u>20</u> <u>130</u> 2-Hexanone 0 <u>50</u> 100 <u>50</u> <u>130</u> Tetrachloroethene <u>50.1441</u> <u>50</u> <u>50</u> <u>130</u> 0 <u> 108</u> Toluene <u>54.1319</u> 130 1,1,1,2-Tetrachloroethane 52.0522 0 50 104 108 <u>130</u> Chlorobenzene 53.9176 0 <u>50</u> 1

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               |               | Matrix: Soil     |                | QC Type: MBS     |            |                |               |  |
|-----------------------------|---------------|------------------|----------------|------------------|------------|----------------|---------------|--|
| Analyte:                    | Col           | Spike<br>Conc    | Sample<br>Conc | Expected<br>Conc | Recovery   | Lower<br>Limit | Uppe<br>Limit |  |
| n-Butyl acrylate            | 1             | 57.0542          | 0              | 50               | 114        | 50             | 130           |  |
| n-Amyl acetate              | 1             | 54.4234          | 0              | 50               | 109        | 50             | 130           |  |
| Bromoform                   | 1             | 55.0943          | <u>o</u>       | <u>50</u>        | <u>110</u> | <u>20</u>      | <u>130</u>    |  |
| Ethylbenzene                |               | 60.2017          | <u>o</u>       | <u>50</u>        | 120        | 50             | 130           |  |
| 1,1,2,2-Tetrachloroethane   | <u>1</u><br>1 | 63.0966          | Q              | 50               | 126        | 50             | 130           |  |
| Styrene                     | 1             | 62.416           | <u>o</u>       | 50               | 125        | 50             | 130           |  |
| m&p-Xylenes                 | 1             | 114.1571         | <u>0</u>       | 100              | 114        | 50             | 130           |  |
| o-Xylene                    | <u>1</u>      | 61.1409          | <u>0</u>       | 50               | 122        | 50             | 130           |  |
| trans-1,4-Dichloro-2-butene | 1             | 55.4859          | ō              | 50               | 111        | 20             | 130           |  |
| 1,3-Dichtorobenzene         | 1             | 57.5686          | <u>o</u>       | 50               | <u>115</u> | <u>50</u>      | 130           |  |
| 1,4-Dichlorobenzene         | <u>1</u>      | 57.2702          | <u>0</u>       | 50               | 115        | 50             | 130           |  |
| 1,2-Dichlorobenzene         | 1<br>1<br>1   | 56.9084          | <u>o</u>       | 50               | 114        | 50             | 130           |  |
| Isopropylbenzene            | 1             | 61.3289          | <u> </u>       | <u>50</u>        | 123        | 50             | 130           |  |
| Cyclohexanone               | 1             | 280.0373         | ō              | 250              | 112        | 50             | 130           |  |
| Camphene                    | 1             | 61.361           | 0              | 50               | 123        | 50             | 130           |  |
| 1,2,3-Trichloropropane      | 1             | 58.6804          | 0              | 50               | 117        | 50             | 130           |  |
| 2-Chlorotoluene             | 1             | 59.569           | 0              | 50               | 119        | 50             | 130           |  |
| p-Ethyltoluene              | 1             | 61.1236          | 0              | 50               | 122        | 50             | 130           |  |
| 4-Chlorotoluene             | 1             | 60.0225          | 0              | 50               | 120        | 50             | 130           |  |
| n-Propylbenzene             | 1             | 61.2229          | 0              | 50               | 122        | 50             | 130           |  |
| Bromobenzene                | 1             | 65.4231          | 0              | 50               | 131*       | 50             | 130           |  |
| 1,3,5-Trimethylbenzene      | 1             | 59.262           | 0              | 50               | 119        | 50             | 130           |  |
| Butyl methacrylate          | 1             | 47.3536          | 0              | 50               | 95         | 50             | 130           |  |
| t-Butylbenzene              | 1             | 57.54 <b>7</b> 9 | 0              | 50               | 115        | 50             | 130           |  |
| 1,2,4-Trimethylbenzene      | 1             | 59.1817          | 0              | 50               | 118        | 50             | 130           |  |
| sec-Butylbenzene            | 1             | 61.7666          | 0              | 50               | 124        | 50             | 130           |  |
| 4-Isopropyltoluene          | 1             | 60.7761          | 0              | 50               | 122        | 50             | 130           |  |
| n-Butylbenzene              | 1             | 62.2038          | 0              | 50               | 124        | 50             | 130           |  |
| p-Diethylbenzene            | 1             | 59.2846          | 0              | 50               | 119        | 50             | 130           |  |
| 1,2,4,5-Tetramethylbenzene  | 1             | 62.7196          | 0              | 50               | 125        | 50             | 130           |  |
| 1,2-Dibromo-3-Chloropropane | 1             | 54.1544          | <u>0</u>       | <u>50</u>        | <u>108</u> | <u>50</u>      | 130           |  |
| Camphor                     | 1             | 554.1275         | ō              | 500              | 111        | 50             | 130           |  |
| Hexachlorobutadiene         | 1             | 48.601           | 0              | 50               | 97         | 50             | 130           |  |
| 1,2,4-Trichlorobenzene      | <u>1</u>      | 53.6783          | Q              | 50               | 107        | <u>50</u>      | 130           |  |
| 1,2,3-Trichlorobenzene      | 1             | 52.4507          | Ō              | 50               | 105        | 50             | 130           |  |
| Naphthalene                 | 1             | 56.154           | ō              | 50               | 112        | 50             | 130           |  |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Data File Sample ID:

Spike or Dup: 11M83380.D

Non Spike(If applicable): 11M83377.D

AD19504-001(MS) AD19504-001 Analysis Date 9/30/2020 7:43:00 PM 9/30/2020 6:43:00 PM

Inst Blank(If applicable):

Method: 8260D Matrix: Soil QC Type: MS Spike Expected Lower Upper Sample Recovery Col Conc Limit Limit Analyte: Conc Conc 130 Chlorodifluoromethane 49.3834 0 50 20 <u>20</u> <u>130</u> 45.1029 0 <u>50</u> 90 **Dichlorodifluoromethane** 1 **Chloromethane** 1 42.4041 0 <u>50</u> <u>85</u> <u>20</u> <u>130</u> 0 <u>50</u> <u>97</u> <u>20</u> 130 **Bromomethane** 1 48.2669 0 <u>50</u> <u>20</u> 130 Vinyl Chloride 48.1748 <u>96</u> 20 52.4263 0 <u>50</u> 105 130 **Chloroethane** <u>0</u> 50 110 20 130 **Trichlorofluoromethane** 55.2079 50 50 Ethyl ether 56.7066 113 130 52.8128 0 50 106 50 130 **Furan** 137\* 50 130 1,1,2-Trichloro-1,2,2-trifluoroethane 68.2773 0 50 <u>50</u> Methylene Chloride 60.3684 0 50 121 <u>130</u> 0 200 20 130 197.9851 99 Acrolein 0 115 20 130 Acrylonitrile 57.3255 50 lodomethane 41.5194 0 50 83 50 130 <u>200</u> <u>20</u> 130 0 136\* Acetone 1 <u>271.6498</u> <u>50</u> <u>130</u> Carbon Disulfide 58.6526 <u>0</u> 50 117 t-Butyl Alcohol 200.0451 0 200 100 20 130 0 50 130 n-Hexane 57.5244 50 115 52.6531 0 50 105 50 130 Di-isopropyl-ether 1 0 50 119 50 130 1.1-Dichloroethene 1 59.4733 <u>0</u> <u>50</u> <u>50</u> Methyl Acetate <u>92.0199</u> <u> 184</u> <u>130</u> <u>0</u> <u>50</u> 123 <u>50</u> 130 61.253 Methyl-t-butyl ether 1,1-Dichloroethane 1 54.1483 0 50 108 <u>50</u> 130 Q <u>50</u> <u>50</u> 130 trans-1,2-Dichloroethene 1 60.1975 <u>120</u> ō 50 50 45.8039 92 130 Ethyl-t-butyl ether 0 <u>50</u> 100 <u>50</u> **130** cis-1,2-Dichloroethene 1 49.9986 **Bromochloromethane** 51.0953 <u>0</u> 50 102 <u>50</u> 130 50 0 50 101 130 2,2-Dichloropropane 50.5774 50 Ethyl acetate 27.4282 0 50 55 130 1,4-Dioxane 2424.08 2500 97 <u>50</u> <u>130</u> 1 ō 50 54.2808 50 109 130 1,1-Dichloropropene 0 50 130 Chloroform 54.3015 50 109 1 Cyclohexane 1 55.2518 0 <u>50</u> 111 <u>50</u> <u>130</u> <u>50</u> 0 <u>50</u> 51.8448 104 <u>130</u> 1,2-Dichloroethane 2-Butanone 1 35.964 0 <u>50</u> 72 <u>20</u> 130 <u>50</u> 1,1,1-Trichloroethane 1 53.5241 <u>50</u> <u>107</u> 130 0 <u>50</u> 54.3406 <u>50</u> 109 130 Carbon Tetrachloride 0 50 50 130 32.0165 64 Vinyl Acetate <u>50</u> 51,284 0 <u>50</u> 103 130 **Bromodichloromethane** 1 **Methylcyclohexane** 56.8858 0 <u>50</u> 114 <u>50</u> 130 0 50 46.2226 92 50 130 Dibromomethane 0 <u>50</u> <u>50</u> <u>130</u> 1,2-Dichloropropane 53.6112 107 1 Q <u>50</u> <u>50</u> **Trichloroethene** 51.1711 <u>102</u> <u>130</u> 53.7386 <u>0</u> <u>50</u> 107 <u>50</u> 130 1 <u>Benzene</u> tert-Amyl methyl ether 0 50 98 50 130 50 32.4675 0 50 65 130 Iso-propylacetate Methyl methacrylate 57.3175 0 50 115 50 130 1 130 **Dibromochloromethane** 50.1711 0 50 100 <u>50</u> 1 50 50 2-Chloroethylvinylether 49.5575 0 99 130 130 cis-1,3-Dichloropropene 1 51.0948 0 <u>50</u> 102 <u>50</u> trans-1,3-Dichloropropene 51.569 0 50 103 <u>50</u> 130 1 Ethyl methacrylate 34.1662 0 50 68 50 130 1,1,2-Trichloroethane 53.4934 <u>0</u> <u>50</u> 107 <u>50</u> 130 1,2-Dibromoethane 52.7115 0 <u>50</u> 105 <u>50</u> 130 50 0 50 1,3-Dichloropropane 52.6395 105 130 0 <u>20</u> <u>130</u> 43.4495 <u>50</u> <u>87</u> 4-Methyl-2-Pentanone 42.9325 0 <u>50</u> <u>86</u> <u>20</u> 130 2-Hexanone <u>50</u> <u>50</u> 48.8927 0 <u>98</u> 130 **Tetrachioroethene** 0 <u>50</u> <u>100</u> <u>50</u> 130 49.7691 **Toluene** 130 1,1,1,2-Tetrachloroethane 49.8389 100 50.3359 <u>50</u> 101 <u>130</u> Chlorobenzene 0 1

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits
Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | 1        | Matrix: Soil   |          | QC Type:MS |                                       |           |            |
|-----------------------------|----------|----------------|----------|------------|---------------------------------------|-----------|------------|
|                             |          | Spike          | Sample   | Expected   | · · · · · · · · · · · · · · · · · · · | Lower     | Uppe       |
| Analyte:                    | Col      | Conc           | Conc     | Conc       | Recovery                              | Limit     | Limit      |
| n-Butyl acrylate            | 1        | 30.0449        | 0        | 50         | 60                                    | 50        | 130        |
| n-Amyl acetate              | 1        | 21.0249        | 0        | 50         | 42 *                                  | 50        | 130        |
| <u>Bromoform</u>            | <u>1</u> | <u>50.74</u>   | <u>o</u> | <u>50</u>  | <u>101</u>                            | <u>20</u> | <u>130</u> |
| Ethylbenzene                | 1        | <u>55.3331</u> | <u>o</u> | <u>50</u>  | <u>111</u>                            | <u>50</u> | 130        |
| 1,1,2,2-Tetrachloroethane   | 1        | <u>57.9072</u> | <u>o</u> | <u>50</u>  | <u>116</u>                            | <u>50</u> | <u>130</u> |
| Styrene                     | 1        | <u>56.3304</u> | <u>o</u> | <u>50</u>  | <u>113</u>                            | <u>50</u> | <u>130</u> |
| m&p-Xylenes                 | 1        | 105.4878       | Ō        | <u>100</u> | <u>105</u>                            | <u>50</u> | <u>130</u> |
| o-Xylene                    | 1        | 56.6291        | <u>o</u> | <u>50</u>  | 113                                   | <u>50</u> | <u>130</u> |
| trans-1,4-Dichloro-2-butene | 1        | 48.9266        | 0        | 50         | 98                                    | 20        | 130        |
| 1,3-Dichlorobenzene         | <u>1</u> | <u>51.0956</u> | <u>o</u> | <u>50</u>  | <u>102</u>                            | <u>50</u> | <u>130</u> |
| 1,4-Dichlorobenzene         | 1        | 51.2007        | <u>o</u> | <u>50</u>  | <u>102</u>                            | <u>50</u> | <u>130</u> |
| 1,2-Dichlorobenzene         | 1        | <u>51.313</u>  | Q        | <u>50</u>  | <u>103</u>                            | <u>50</u> | <u>130</u> |
| Isopropylbenzene            | 1        | <u>55.8428</u> | <u>o</u> | <u>50</u>  | 112                                   | <u>50</u> | <u>130</u> |
| Cyclohexanone               | 1        | 220.8445       | 0        | 250        | 88                                    | 50        | 130        |
| Camphene                    | 1        | 54.1708        | 0        | 50         | 108                                   | 50        | 130        |
| 1,2,3-Trichloropropane      | 1        | 53.6347        | 0        | 50         | 107                                   | 50        | 130        |
| 2-Chlorotoluene             | 1        | 55.464         | 0        | 50         | 111                                   | 50        | 130        |
| p-Ethyltoluene              | 1        | 55.742         | 0        | 50         | 111                                   | 50        | 130        |
| 4-Chlorotoluene             | 1        | 52.6698        | 0        | 50         | 105                                   | 50        | 130        |
| n-Propylbenzene             | 1        | 55.9609        | 0        | 50         | 112                                   | 50        | 130        |
| Bromobenzene                | 1        | 58.7041        | 0        | 50         | 117                                   | 50        | 130        |
| 1,3,5-Trimethylbenzene      | 1        | 53.2883        | 0        | 50         | 107                                   | 50        | 130        |
| Butyl methacrylate          | 1        | 33.1586        | 0        | 50         | 66                                    | 50        | 130        |
| t-Butylbenzene              | 1        | 52.6223        | 0        | 50         | 105                                   | 50        | 130        |
| 1,2,4-Trimethylbenzene      | 1        | 53.8755        | 0        | 50         | 108                                   | 50        | 130        |
| sec-Butylbenzene            | 1        | 55.1733        | 0        | 50         | 110                                   | 50        | 130        |
| 4-Isopropyltoluene          | 1        | 54.1024        | 0        | 50         | 108                                   | 50        | 130        |
| n-Butylbenzene              | 1        | 54.3632        | 0        | 50         | 109                                   | 50        | 130        |
| p-Diethylbenzene            | 1        | 52.7181        | 0        | 50         | 105                                   | 50        | 130        |
| 1,2,4,5-Tetramethylbenzene  | 1        | 55.5307        | 0        | 50         | 111                                   | 50        | 130        |
| 1,2-Dibromo-3-Chloropropane | <u>1</u> | <u>47.3189</u> | <u>0</u> | <u>50</u>  | <u>95</u>                             | <u>50</u> | <u>130</u> |
| Camphor                     | 1        | 514.0376       | Ō        | 500        | 103                                   | 50        | 130        |
| Hexachlorobutadiene         | 1        | 40.3288        | 0        | 50         | 81                                    | 50        | 130        |
| 1,2,4-Trichlorobenzene      | 1        | 45.9681        | 0        | 50         | 92                                    | 50        | 130        |
| 1,2,3-Trichlorobenzene      | 1        | 46.272         | Õ        | <u>50</u>  | <del>93</del>                         | <u>50</u> | 130        |
| Naphthalene                 | 1        | 50.6254        | Õ        | 50         | 101                                   | 50        | 130        |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Data File

Non Spike(If applicable): 11M83377.D AD19504-001

Sample ID:

Analysis Date

Spike or Dup: 11M83381.D

AD19504-001(MSD)

9/30/2020 8:03:00 PM 9/30/2020 6:43:00 PM

Inst Blank(If applicable):

| Method: 8260D                                          |               | Matrix: Soil              |               |                   | QC Type: MSE      | )                      |                   |
|--------------------------------------------------------|---------------|---------------------------|---------------|-------------------|-------------------|------------------------|-------------------|
| ·                                                      | ***           | Spike                     | Sample        | Expected          |                   | Lower                  | Upper             |
| Analyte:                                               | Col           | Conc                      | Conc          | Conc              | Recovery          | Limit                  | Limit             |
| Chlorodifluoromethane                                  | 1             | 55.2                      | 0             | 50                | 110               | 20                     | 130               |
| <u>Dichlorodifluoromethane</u>                         | 1             | <u>45.4062</u>            | <u>0</u>      | <u>50</u>         | <u>91</u>         | <u>20</u>              | <u>130</u>        |
| Chloromethane                                          | 1             | 40.8663                   | <u>0</u>      | <u>50</u>         | <u>82</u>         | <u>20</u>              | <u>130</u>        |
| Bromomethane                                           | 1             | <u>50.6812</u>            | <u>0</u>      | <u>50</u>         | <u>101</u>        | <u>20</u>              | <u>130</u>        |
| Vinyl Chloride                                         | 1             | <u>47.2869</u>            | <u>o</u>      | <u>50</u>         | <u>95</u>         | <u>20</u>              | <u>130</u>        |
| Chloroethane                                           | 1             | <u>52.1277</u>            | Õ             | <u>50</u><br>50   | <u>104</u><br>110 | <u>20</u>              | <u>130</u><br>130 |
| Trichlorofluoromethane Ethyl ether                     | 1             | <u>54.7862</u><br>57.1927 | <u>o</u><br>o | <u>50</u><br>50   | 110<br>114        | <u>20</u><br>50        | 130               |
| Furan                                                  | 1             | 52.5864                   | Ö             | 50                | 105               | 50                     | 130               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane                  | •             | 66.5824                   | Q             | <u>50</u>         | 133 <u>*</u>      | <u>50</u>              | <u>130</u>        |
| Methylene Chloride                                     | 1             | 52.7189                   | <u>0</u>      | <u>50</u>         | 105               | <u>50</u>              | 130<br>130        |
| Acrolein                                               | 1             | 184.9577                  | Ŏ             | 200               | 92                | 20                     | 130               |
| Acrylonitrile                                          | 1             | 54.9436                   | Ŏ             | 50                | 110               | 20                     | 130               |
| Iodomethane                                            | 1             | 33.7163                   | Ō             | 50                | 67                | 50                     | 130               |
| Acetone                                                | 1             | 268.6494                  | <u>o</u>      | <u>200</u>        | 134*              | <u>20</u>              | <u>130</u>        |
| Carbon Disulfide                                       | 1             | 51.6417                   | <u>0</u>      | 50                | 103               | <u>50</u>              | 130               |
| t-Butyl Alcohol                                        | 1             | 189.3886                  | Ō             | 200               | 95                | 20                     | 130               |
| n-Hexane                                               | 1             | 54.7128                   | 0             | 50                | 109               | 50                     | 130               |
| Di-isopropyl-ether                                     | 1             | 53.2575                   | 0             | 50                | 107               | 50                     | 130               |
| 1,1-Dichloroethene                                     | 1             | <u>57.0345</u>            | <u>0</u>      | <u>50</u>         | <u>114</u>        | <u>50</u>              | <u>130</u>        |
| Methyl Acetate                                         | <u>1</u>      | <u>85.1852</u>            | <u>0</u>      | <u>50</u>         | <u> 170 *</u>     | <u>50</u>              | <u>130</u>        |
| Methyl-t-butyl ether                                   | 1             | <u>57.7279</u>            | <u>0</u>      | <u>50</u>         | <u>115</u>        | <u>50</u>              | <u>130</u>        |
| 1,1-Dichloroethane                                     | 1             | <u>53.0478</u>            | <u>0</u>      | <u>50</u>         | <u>106</u>        | <u>50</u>              | <u>130</u>        |
| trans-1,2-Dichloroethene                               | 1             | <u>55.117</u>             | <u>0</u>      | <u>50</u>         | <u>110</u>        | <u>50</u>              | <u>130</u>        |
| Ethyl-t-butyl ether                                    | 1             | 46.7966                   | 0             | 50                | 94                | 50                     | 130               |
| cis-1,2-Dichloroethene                                 | 1             | 49.1227                   | <u>0</u>      | <u>50</u>         | 98                | <u>50</u>              | <u>130</u>        |
| Bromochloromethane                                     | <u>1</u><br>1 | <u>52.4483</u>            | <u>0</u>      | <u>50</u>         | <u>105</u>        | <u>50</u>              | <u>130</u><br>130 |
| 2.2-Dichloropropane                                    | 1             | 49.8642<br>24.3761        | 0             | 50<br>50          | 100<br>49*        | 50<br>50               | 130               |
| Ethyl acetate  1,4-Dioxane                             | 1             | 2623.831                  | <u>0</u>      | <u>2500</u>       | 105               | 50<br>50               | 130<br>130        |
| 1,1-Dickloropropene                                    | 1             | 52.8053                   | 0             | <u>2500</u><br>50 | 106               | <u>50</u>              | 130               |
| Chloroform                                             | 1             | 54.2009                   | Q             | <u>50</u>         | 108               | <u>50</u>              | <u>130</u>        |
| Cyclohexane                                            | 1             | 53.0606                   | <u>v</u>      | <u>50</u>         | 106               | <u>50</u>              | <u>130</u>        |
| 1,2-Dichloroethane                                     | <u> </u>      | <u>50.9951</u>            | <u>0</u>      | <u>50</u>         | 102               | <u>50</u>              | 130               |
| 2-Butanone                                             | 1             | 41.3825                   | <u>o</u>      | <u>50</u>         | 83                | <del>20</del>          | 130               |
| 1,1,1-Trichloroethane                                  | 1             | 52.9884                   | Ō             | <u>50</u>         | 106               | <u>50</u>              | 130               |
| Carbon Tetrachloride                                   | 1             | <del>53.1832</del>        | Ō             | <u>50</u>         | 106               | 50                     | 130               |
| Vinyl Acetate                                          | 1             | 31.5439                   | ō             | 50                | 63                | 50                     | 130               |
| <b>Bromodichloromethane</b>                            | 1             | <u>50.8</u>               | <u>0</u>      | <u>50</u>         | <u>102</u>        | <u>50</u>              | <u>130</u>        |
| <u>Methylcyclohexane</u>                               | 1             | <u>53.2486</u>            | <u>0</u>      | <u>50</u>         | <u>106</u>        | <u>50</u>              | <u>130</u>        |
| Dibromomethane                                         | 1             | 45.7686                   | 0             | 50                | 92                | 50                     | 130               |
| 1,2-Dichloropropane                                    | <u>1</u>      | <u>53.1149</u>            | <u>0</u>      | <u>50</u>         | <u>106</u>        | <u>50</u>              | <u>130</u>        |
| <u>Trichloroethene</u>                                 | 1             | 50.0574                   | <u>0</u>      | <u>50</u>         | <u>100</u>        | <u>50</u>              | <u>130</u>        |
| Benzene                                                | 1             | <u>52.4594</u>            | <u>0</u>      | <u>50</u>         | <u>105</u>        | <u>50</u>              | <u>130</u>        |
| tert-Amyl methyl ether                                 | 1             | 50.6192                   | 0             | 50<br>50          | 101               | 50                     | 130               |
| Iso-propylacetate                                      | 1             | 31.7519                   | 0             | 50<br>50          | 64<br>116         | 50                     | 130<br>130        |
| Methyl methacrylate                                    | 1             | 58.0339                   | 0             | 50                |                   | 50                     |                   |
| <u>Dibromochloromethane</u><br>2-Chloroethylvinylether | <u>1</u><br>1 | <u>49.6381</u><br>48.3552 | <u>o</u><br>0 | <b>50</b><br>50   | <b>99</b><br>97   | <u><b>50</b></u><br>50 | <u>130</u><br>130 |
| cis-1,3-Dichloropropene                                | 1             | 49.1477                   | <u>0</u>      | <u>50</u>         | 98                | <u>50</u>              | 130               |
| trans-1,3-Dichloropropene                              | 1             | 49.6715                   | Õ             | <u>50</u><br>50   | 99                | <u>50</u>              | 130<br>130        |
| Ethyl methacrylate                                     | 1             | 31.9898                   | Õ             | <u>50</u><br>50   | 64                | <u>50</u>              | 130               |
| 1,1,2-Trichloroethane                                  | 1             | 52.7332                   | <u>0</u>      | <u>50</u>         | 105               | <u>50</u>              | 130               |
| 1,2-Dibromoethane                                      | 1             | 52.6569                   | <u>o</u>      | <u>50</u>         | 105               | <u>50</u>              | 130               |
| 1,3-Dichloropropane                                    | 1             | 52.5799                   | Ŏ             | <u>50</u><br>50   | 105               | <u>50</u>              | 130               |
| 4-Methyl-2-Pentanone                                   | <u>1</u>      | 44.0688                   | <u>o</u>      | <u>50</u>         | 88                | <u>20</u>              | 130               |
| 2-Hexanone                                             | 1             | 41.2465                   | Ō             | <u>50</u>         | <u>82</u>         | 20                     | 130               |
| <u>Tetrachloroethene</u>                               | 1             | 47.1151                   | <u>o</u>      | <u>50</u>         | 94                | 50                     | 130               |
| Toluene                                                | <u>1</u>      | 48.7928                   | Ō             | <u>50</u>         | 98                | <u>50</u>              | 130               |
| 1,1,1,2-Tetrachloroethane                              | 1             | 48.7395                   | 0             | 50                | 97                | 50                     | 130               |
| Chlorobenzene                                          | . 1           | 48.7386                   | <u>0</u>      | <u>50</u>         | <u>97</u>         | <u>50</u>              | 130               |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits
Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               |               | Matrix: Soil     |                      | QC Type: MSD |               |                |            |  |
|-----------------------------|---------------|------------------|----------------------|--------------|---------------|----------------|------------|--|
|                             |               | Spike            | Sample               | Expected     |               | Lower          | Upper      |  |
| Analyte:                    | Col           | Conc             | Conc                 | Conc         | Recovery      | Limit          | Limit      |  |
| n-Butyl acrylate            | 1             | 28.9927          | 0                    | 50           | 58            | 50             | 130        |  |
| n-Amyl acetate              | 1             | 19.899           | 0                    | 50           | 40*           | 50             | 130        |  |
| Bromoform                   | 1             | <u>51.493</u>    | <u>0</u>             | <u>50</u>    | <u>103</u>    | <u>20</u>      | <u>130</u> |  |
| Ethylbenzene                | 1             | <u>54.9114</u>   | Ō                    | <u>50</u>    | <u>110</u>    | <u>50</u>      | <u>130</u> |  |
| 1,1,2,2-Tetrachloroethane   | <u>1</u><br>1 | <u>58.2647</u>   | <u>0</u>             | <u>50</u>    | <u>117</u>    | <u>50</u>      | <u>130</u> |  |
| Styrene                     |               | <u>55.9455</u>   | Ō                    | <u>50</u>    | <u>112</u>    | <u>50</u>      | <u>130</u> |  |
| m&p-Xylenes                 | <u>1</u>      | <u>103.946</u>   | <u>o</u>             | <u>100</u>   | <u>104</u>    | <u>50</u>      | <u>130</u> |  |
| o-Xylene                    | 1             | <u>56.0587</u>   | <u>0</u>             | <u>50</u>    | <u>112</u>    | <u>50</u>      | <u>130</u> |  |
| trans-1,4-Dichloro-2-butene | 1             | 48.0211          | 0                    | 50           | 96            | 20             | 130        |  |
| 1,3-Dichlorobenzene         | 1             | <u>49.7085</u>   | Ō                    | <u>50</u>    | <u>99</u>     | <u>50</u>      | <u>130</u> |  |
| 1,4-Dichlorobenzene         | <u>1</u>      | 49.7774          | 0                    | <u>50</u>    | <u>100</u>    | <u>50</u>      | <u>130</u> |  |
| 1,2-Dichlorobenzene         | 1             | <u>50.4913</u>   | <u>0</u><br><u>0</u> | <u>50</u>    | <u>101</u>    | <u>50</u>      | <u>130</u> |  |
| Isopropylbenzene            | 1             | <u>55.5281</u>   | <u>0</u>             | <u>50</u>    | <u>111</u>    | <u>50</u>      | <u>130</u> |  |
| Cyclohexanone               | 1             | 236.2084         | 0                    | 250          | 94            | 50             | 130        |  |
| Camphene                    | 1             | 52.9361          | 0                    | 50           | 106           | 50             | 130        |  |
| 1,2,3-Trichloropropane      | 1             | 53.3945          | 0                    | 50           | 107           | 50             | 130        |  |
| 2-Chlorotoluene             | 1             | 53.8171          | 0                    | 50           | 108           | 50             | 130        |  |
| p-Ethyltoluene              | 1             | 54.6961          | 0                    | 50           | 109           | 50             | 130        |  |
| 4-Chlorotoluene             | 1             | 52.3223          | 0                    | 50           | 105           | 50             | 130        |  |
| n-Propylbenzene             | 1             | 54. <b>4</b> 878 | 0                    | 50           | 109           | 50             | 130        |  |
| Bromobenzene                | 1             | 58.0235          | 0                    | 50           | 116           | 50             | 130        |  |
| 1,3,5-Trimethylbenzene      | 1             | 52.2482          | 0                    | 50           | 104           | 50             | 130        |  |
| Butyl methacrylate          | 1             | 33.114           | 0                    | 50           | 66            | 50             | 130        |  |
| t-Butylbenzene              | 1             | 51.4056          | 0                    | 50           | 103           | 50             | 130        |  |
| 1,2,4-Trimethylbenzene      | 1             | 53.1216          | 0                    | 50           | 106           | 50             | 130        |  |
| sec-Butylbenzene            | 1             | 54.0346          | 0                    | 50           | 108           | 50             | 130        |  |
| 4-Isopropyltoluene          | 1             | 52.4139          | 0                    | 50           | 105           | 50             | 130        |  |
| n-Butylbenzene              | 1             | 52.1473          | 0                    | 50           | 104           | 50             | 130        |  |
| p-Diethylbenzene            | 1             | 50.8365          | 0                    | 50           | 102           | 50             | 130        |  |
| 1,2,4,5-Tetramethylbenzene  | 1             | 53.7745          | 0                    | 50           | 108           | 50             | 130        |  |
| 1,2-Dibromo-3-Chloropropane | 1             | 48.2055          | <u>0</u>             | 50           | <u>96</u>     | <u>50</u>      | <u>130</u> |  |
| Camphor                     | <u>1</u>      | 546.7788         | ō                    | 500          | 109           | <del>5</del> 0 | 130        |  |
| Hexachlorobutadiene         | 1             | 38.2279          | 0                    | 50           | 76            | 50             | 130        |  |
| 1,2,4-Trichlorobenzene      | <u>1</u>      | 43.7605          | <u>o</u>             | <u>50</u>    | <u>88</u>     | <u>50</u>      | <u>130</u> |  |
| 1,2,3-Trichlorobenzene      | <u>1</u>      | 44.6621          | <u> </u>             | <u>50</u>    | <del>89</del> | <u>50</u>      | <u>130</u> |  |
| Naphthalene                 | 1             | 49.291           | ō                    | 50           | 99            | 50             | 130        |  |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

# Form3 RPD Data Laboratory Limits

QC Batch: MBS89405

Data File

Sample ID:

Analysis Date

Spike or Dup: 11M83381.D

Duplicate(If applicable): 11M83380.D

AD19504-001(MSD) AD19504-001(MS) 9/30/2020 8:03:00 PM 9/30/2020 7:43:00 PM

Inst Blank(If applicable):

Method: 8260D Matrix: Soil

QC Type: MSD

| Method: 8260D                                   | Matr          | ix: Soil                  | QC I                             | ype: MSD           |                        |
|-------------------------------------------------|---------------|---------------------------|----------------------------------|--------------------|------------------------|
| · · · · · · · · · · · · · · · · · · ·           |               | Dup/MSD/MBSD              | Sample/MS/MB                     | S                  |                        |
| Analyte:                                        | Column        | Conc                      | Conc                             | RPD                | Limit                  |
| Chlorodifluoromethane                           | 1             | 55.2                      | 49.3834                          | 11                 | 30                     |
| Dichlorodifluoromethane                         | 1             | <u>45.4062</u>            | <u>45.1029</u>                   | <u>0.67</u>        | <u>30</u>              |
| Chloromethane                                   | 1             | 40.8663                   | 42.4041                          | 3.7                | <u>30</u>              |
| Bromomethane                                    | <u>1</u><br>1 | <u>50.6812</u>            | 48.2669                          | <u>4.9</u>         | <u>30</u>              |
| Vinyl Chloride                                  | <u>1</u>      | <u>47.2869</u>            | <u>48.1748</u>                   | <u>1.9</u>         | <u>40</u>              |
| Chloroethane                                    | 1             | <u>52.1277</u>            | <u>52.4263</u>                   | <u>0.57</u>        | <u>30</u>              |
| <u>Trichlorofluoromethane</u>                   | <u>1</u>      | <u>54.7862</u>            | <u>55.2079</u>                   | <u>0.77</u>        | <u>30</u>              |
| Ethyl ether                                     | 1             | 57.1927                   | 56.7066                          | 0.85               | 30                     |
| Furan                                           | 1             | 52.5864                   | 52.8128                          | 0.43               | 30                     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane           | 1             | <u>66.5824</u>            | 68.2773                          | <u>2.5</u>         | <u>30</u>              |
| Methylene Chloride                              | <u>1</u>      | <u>52.7189</u>            | 60.3684                          | <u>14</u>          | <u><b>30</b></u><br>30 |
| Acrolein                                        | 1             | 184.9577                  | 197.9851                         | 6.8<br>4.2         | 30                     |
| Acrylonitrile                                   | 1             | 54.9436<br>33.7163        | 57.3255<br>41.5194               | 4.2<br>21          | 30                     |
| Iodomethane Acetone                             | 1             | 268.6494                  | 271.6498                         | 1.1                | <u>30</u>              |
| Carbon Disulfide                                | 1             | 51.6417                   | 58.6526                          | 1.1<br>13          | <u>30</u><br>30        |
| t-Butyl Alcohol                                 | 1             | 189.3886                  | 200.0451                         | 5.5                | <u>30</u><br>30        |
| n-Hexane                                        | i             | 54.7128                   | 57.5244                          | 5                  | 30                     |
| Di-isopropyl-ether                              | i             | 53.2575                   | 52.6531                          | 1.1                | 30                     |
| 1,1-Dichloroethene                              | 1             | 57.0345                   | 59.4733                          | 4.2                | 40                     |
| Methyl Acetate                                  | 1             | 85.1852                   | 92.0199                          | 7.7                | <u>30</u>              |
| Methyl-t-butyl ether                            | 1             | 57.7279                   | 61.253                           | <u>5.9</u>         | 30                     |
| 1,1-Dichloroethane                              | <u>1</u>      | <u>53.0478</u>            | <u>54.1483</u>                   | <u>2.1</u>         | <u>40</u>              |
| trans-1,2-Dichloroethene                        | <u>1</u>      | <u>55.117</u>             | <u>60.1975</u>                   | <u>8.8</u>         | <u>30</u>              |
| Ethyl-t-butyl ether                             | 1             | 46.7966                   | <b>4</b> 5.8039                  | 2.1                | 30                     |
| cis-1,2-Dichloroethene                          | 1             | <u>49.1227</u>            | <u>49.9986</u>                   | <u>1.8</u>         | <u>30</u>              |
| Bromochloromethane                              | 1             | <u>52.4483</u>            | <u>51.0953</u>                   | <u>2.6</u>         | <u>30</u>              |
| 2,2-Dichloropropane                             | 1             | 49.8642                   | 50.5774                          | 1.4                | 30                     |
| Ethyl acetate                                   | 1             | 24.3761                   | 27.4282                          | 12                 | 30                     |
| 1,4-Dioxane                                     | 1 1           | <u>2623.831</u>           | <u>2424.08</u>                   | <u>7.9</u><br>2.8  | <u>30</u><br>30        |
| 1,1-Dichloropropene                             | 1             | 52.8053<br>54.2009        | 54.2808<br>54.3015               | 2.6<br><u>0.19</u> |                        |
| <u>Chloroform</u><br>Cyclohexane                | <u>1</u><br>1 | <u>54.2009</u><br>53.0606 | <u>54.3015</u><br>55.2518        | <u>0.19</u><br>4   | <u>40</u><br>30        |
| 1,2-Dichloroethane                              | 1             | 50.9951                   | <u>51.8448</u>                   | 1.7                | <u>40</u>              |
| 2-Butanone                                      | 1             | <u>41.3825</u>            | <u>35.964</u>                    | 14                 | <u>40</u>              |
| 1,1,1-Trichloroethane                           | 1             | 52.9884                   | <u>53.5241</u>                   | 1                  | <u>30</u>              |
| Carbon Tetrachloride                            | <u>1</u>      | <del>53.1832</del>        | 54.3406                          | 2.2                | 40                     |
| Vinyl Acetate                                   | 1             | 31.5439                   | 32.0165                          | 1.5                | 30                     |
| Bromodichloromethane                            | <u>1</u>      | <u>50.8</u>               | <u>51.284</u>                    | 0.95               | <u>30</u>              |
| Methylcyclohexane                               | <u>1</u>      | <u>53.2486</u>            | <u>56.8858</u>                   | <u>6.6</u>         | <u>30</u>              |
| Dibromomethane                                  | 1             | 45.7686                   | 46.2226                          | 0.99               | 30                     |
| 1,2-Dichloropropane                             | <u>1</u>      | <u>53.1149</u>            | <u>53.6112</u>                   | <u>0.93</u>        | <u>30</u>              |
| <u>Trichloroethene</u>                          | 1<br>1<br>1   | <u>50.0574</u>            | <u>51.1711</u>                   | <u>2.2</u>         | <u>40</u>              |
| Benzene                                         | 1             | <u>52.4594</u>            | <u>53.7386</u>                   | <u>2.4</u>         | <u>40</u>              |
| tert-Amyl methyl ether                          |               | 50.6192                   | 49.227                           | 2.8                | 30                     |
| Iso-propylacetate                               | 1             | 31.7519                   | 32.4675                          | 2.2                | 30                     |
| Methyl methacrylate                             | 1             | 58.0339                   | 57.3175<br>50.4744               | 1.2                | 30                     |
| Dibromochloromethane                            | <u>1</u><br>1 | <u>49.6381</u><br>48.3552 | <u><b>50.1711</b></u><br>49.5575 | <u>1.1</u><br>2.5  | <u><b>30</b></u><br>30 |
| 2-Chloroethylvinylether cis-1,3-Dichloropropene | 1             |                           | 51.0948                          | 2.5<br><u>3.9</u>  | <u>30</u>              |
| trans-1,3-Dichloropropene                       | <u>1</u>      | <u>49.1477</u><br>49.6715 | 51.569                           | 3.5<br>3.7         | <u>30</u>              |
| Ethyl methacrylate                              | 1             | 31.9898                   | 34.1662                          | 6.6                | <u>30</u><br>30        |
| 1.1.2-Trichloroethane                           | 1             | 52.7332                   | 53.4934                          | 1.4                | <u>30</u>              |
| 1,2-Dibromoethane                               | 1             | <u>52.6569</u>            | <u>52.7115</u>                   | <u>0.1</u>         | <u>30</u>              |
| 1,3-Dichloropropane                             | 1             | 52.5799                   | 52.6395                          | 0.11               | 30                     |
| 4-Methyl-2-Pentanone                            |               | 44.0688                   | 43.4495                          | 1.4                | <u>30</u>              |
| 2-Hexanone                                      | 1<br>1<br>1   | 41.2465                   | 42.9325                          | <u>4</u>           | <u>30</u>              |
| Tetrachloroethene                               | <u>1</u>      | <u>47.1151</u>            | 48.8927                          | <u>3.7</u>         | <u>40</u>              |
| Toluene                                         | <u>1</u>      | <u>48.7928</u>            | <u>49.7691</u>                   | <u>2</u>           | <u>40</u>              |
| 1,1,1,2-Tetrachloroethane                       | 1             | 48.7395                   | 49.8389                          | 2.2                | 30                     |
| Chlorobenzene                                   | 1             | <u>48.7386</u>            | <u>50.3359</u>                   | <u>3.2</u>         | <u>40</u>              |
|                                                 |               | 114 5 11                  | 4:                               | 14 1 1-            | 1-1-1                  |

<sup>\* -</sup> Indicates outside of limits

| Method: 8260D               | Matr                  | ix: Soil       | QC T            | ype:MSD     |               |
|-----------------------------|-----------------------|----------------|-----------------|-------------|---------------|
|                             |                       | Dup/MSD/MBSD   | Sample/MS/MB    |             |               |
| Analyte:                    | Column                | Conc           | Conc            | RPD         | Limit         |
| n-Butyl acrylate            | 1                     | 28.9927        | 30.0449         | 3.6         | 30            |
| n-Amyl acetate              | 1                     | 19.899         | 21.0249         | 5.5         | 30            |
| <u>Bromoform</u>            | <u>1</u>              | <u>51.493</u>  | <u>50.74</u>    | <u>1.5</u>  | <u>30</u>     |
| <u>Ethylbenzene</u>         | 1                     | <u>54.9114</u> | <u>55.3331</u>  | <u>0.77</u> | <u>30</u>     |
| 1,1,2,2-Tetrachloroethane   | 1<br>1<br>1<br>1<br>1 | <u>58.2647</u> | <u>57.9072</u>  | 0.62        | <u>30</u>     |
| <u>Styrene</u>              | 1                     | <u>55.9455</u> | <u>56.3304</u>  | <u>0.69</u> | <u>30</u>     |
| m&p-Xylenes                 | 1                     | <u>103.946</u> | <u>105.4878</u> | <u>1.5</u>  | <u>30</u>     |
| <u>o-Xylene</u>             |                       | <u>56.0587</u> | <u>56.6291</u>  | 1           | <u>30</u>     |
| trans-1,4-Dichloro-2-butene | 1                     | 48.0211        | 48.9266         | 1.9         | 30            |
| 1,3-Dichlorobenzene         | 1<br>1<br>1<br>1      | <u>49.7085</u> | <u>51.0956</u>  | <u>2.8</u>  | <u>30</u>     |
| <u>1,4-Dichlorobenzene</u>  | 1                     | <u>49.7774</u> | <u>51.2007</u>  | <u>2.8</u>  | <u>40</u>     |
| <u>1,2-Dichlorobenzene</u>  | 1                     | <u>50.4913</u> | <u>51.313</u>   | <u>1.6</u>  | <u>40</u>     |
| <u>Isopropylbenzene</u>     |                       | <u>55.5281</u> | <u>55.8428</u>  | 0.57        | <u>30</u>     |
| Cyclohexanone               | 1                     | 236.2084       | 220.8445        | 6.7         | 30            |
| Camphene                    | 1                     | 52.9361        | 54.1708         | 2.3         | 30            |
| 1,2,3-Trichloropropane      | 1                     | 53.3945        | 53.6347         | 0.45        | 30            |
| 2-Chlorotoluene             | 1                     | 53.8171        | 55.464          | 3           | 30            |
| o-Ethyltoluene              | 1                     | 54.6961        | 55.742          | 1.9         | 30            |
| 4-Chlorotoluene             | 1                     | 52.3223        | 52.6698         | 0.66        | 30            |
| n-Propylbenzene             | 1                     | 54.4878        | 55.9609         | 2.7         | 40            |
| Bromobenzene                | 1                     | 58.0235        | 58.7041         | 1.2         | 30            |
| 1,3,5-Trimethylbenzene      | 1                     | 52.2482        | 53.2883         | 2           | 30            |
| Butyl methacrylate          | 1                     | 33.114         | 33.1586         | 0.13        | 30            |
| -Butylbenzene               | 1                     | 51.4056        | 52.6223         | 2.3         | 30            |
| 1,2,4-Trimethylbenzene      | 1                     | 53.1216        | 53.8755         | 1.4         | 30            |
| sec-Butylbenzene            | 1                     | 54.0346        | 55.1733         | 2.1         | 40            |
| 4-Isopropyltoluene          | 1                     | 52.4139        | 54.1024         | 3.2         | 30            |
| n-Butylbenzene              | 1                     | 52.1473        | 54.3632         | 4.2         | 30            |
| p-Diethylbenzene            | 1                     | 50.8365        | 52.7181         | 3.6         | 30            |
| 1,2,4,5-Tetramethylbenzene  | 1                     | 53.7745        | 55.5307         | 3.2         | 30            |
| 1,2-Dibromo-3-Chloropropane | 1                     | <u>48.2055</u> | <u>47.3189</u>  | <u>1.9</u>  | <u>30</u>     |
| Camphor                     | 1                     | 546.7788       | 514.0376        | 6.2         | <del>30</del> |
| Hexachlorobutadiene         | 1                     | 38.2279        | 40.3288         | 5.3         | 30            |
| 1,2,4-Trichlorobenzene      | 1                     | 43.7605        | 45.9681         | 4.9         | <u>30</u>     |
| 1,2,3-Trichlorobenzene      | <u>1</u><br>1         | 44.6621        | 46.272          | 3.5         | <u>30</u>     |
| Naphthalene                 | 1                     | 49.291         | 50.6254         | 2.7         | 30            |

<sup>\* -</sup> Indicates outside of limits

Data File

Sample ID:

Analysis Date

Spike or Dup: 11M83419.D

MBS89411

10/1/2020 12:17:00 PM

Non Spike(If applicable):

| Method: 8260D                                   | !             | Matrix: Soil              |                | QC Type:MBS            |                  |                        | :                        |  |  |
|-------------------------------------------------|---------------|---------------------------|----------------|------------------------|------------------|------------------------|--------------------------|--|--|
| Analyte:                                        | Col           | Spike<br>Conc             | Sample<br>Conc | Expected<br>Conc       | Recovery         | Lower<br>Limit         | Upper                    |  |  |
| Chlorodifluoromethane                           | 1             | 49.0652                   | 0              | 50                     | 98               | 20                     | 130                      |  |  |
| <u>Dichlorodifluoromethane</u>                  | <u>1</u>      | <u>36.7576</u>            | <u>0</u>       | <u>50</u>              | <u>74</u>        | <u>20</u>              | 130                      |  |  |
| <u>Chloromethane</u>                            | <u>1</u>      | <u>36.2382</u>            | <u>0</u>       | <u>50</u>              | <u>72</u>        | <u>20</u>              | <u>130</u>               |  |  |
| <u>Bromomethane</u>                             | <u>1</u>      | <u>44.638</u>             | <u>o</u>       | <u>50</u>              | <u>89</u>        | <u>20</u>              | <u>130</u>               |  |  |
| Vinyl Chloride                                  | 1             | 40.2092                   | <u>Q</u>       | <u>50</u>              | <u>80</u>        | <u>20</u>              | <u>130</u>               |  |  |
| <u>Chloroethane</u>                             | 1             | <u>47.6359</u>            | <u>0</u>       | <u>50</u>              | <u>95</u>        | <u>20</u>              | 130                      |  |  |
| Trichlorofluoromethane                          | <u>1</u>      | <u>47.2047</u><br>49.238  | <u>0</u><br>0  | <u><b>50</b></u><br>50 | <b>94</b><br>98  | <u>20</u><br>50        | <b>130</b><br>130        |  |  |
| Ethyl ether<br>Furan                            | 1             | 49.236<br>45.3974         | 0              | 50                     | 90<br>91         | 50                     | 130                      |  |  |
| 1,1,2-Trichloro-1,2,2-trifluoroeth              |               | 51.3845                   | <u>0</u>       | 50<br>50               | 103              | <u>50</u>              | 130                      |  |  |
| Methylene Chloride                              | 1             | 50.6926                   | <u>0</u>       | <u>50</u>              | 101              | <u>50</u>              | 130                      |  |  |
| Acrolein                                        | <u>†</u>      | 236.1189                  | Ŏ              | 200                    | 118              | 20                     | 130                      |  |  |
| Acrylonitrile                                   | 1             | 47.6916                   | Ö              | 50                     | 95               | 20                     | 130                      |  |  |
| Iodomethane                                     | 1             | 28.1358                   | Ö              | 50                     | 56               | 50                     | 130                      |  |  |
| <u>Acetone</u>                                  | 1             | 232.4532                  | <u>0</u>       | 200                    | <u>116</u>       | <u>20</u>              | 130                      |  |  |
| Carbon Disulfide                                | 1             | 45.4889                   | Q              | <u>50</u>              | <u>91</u>        | <u>50</u>              | <u>130</u>               |  |  |
| t-Butyl Alcohol                                 | 1             | 152.49                    | 0              | 200                    | 76               | 20                     | 130                      |  |  |
| n-Hexane                                        | 1             | 50.5062                   | 0              | 50                     | 101              | 50                     | 130                      |  |  |
| Di-isopropyl-ether                              | 1             | 49.0014                   | 0              | 50                     | 98               | 50                     | 130                      |  |  |
| 1,1-Dichloroethene                              | 1             | <u>46.9704</u>            | <u>0</u>       | <u>50</u>              | <u>94</u>        | <u>50</u>              | 130                      |  |  |
| Methyl Acetate                                  | 1             | <u>45.7528</u>            | Q              | <u>50</u>              | <u>92</u>        | <u>50</u>              | <u>130</u>               |  |  |
| Methyl-t-butyl ether                            | 1             | <u>51.0527</u>            | <u>Q</u>       | <u>50</u>              | 102              | <u>50</u>              | <u>130</u>               |  |  |
| 1,1-Dichloroethane                              | 1             | 47.9282<br>46.0284        | <u>Q</u>       | <u>50</u>              | <u>96</u>        | <u>50</u>              | 130                      |  |  |
| trans-1,2-Dichloroethene<br>Ethyl-t-butyl ether | <u>1</u>      | <u>46.9281</u><br>42.324  | <u>o</u><br>0  | <u>50</u><br>50        | <u>94</u><br>85  | <u><b>50</b></u><br>50 | <u>130</u><br>130        |  |  |
| cis-1,2-Dichloroethene                          | 1             | 47.4665                   | <u>0</u>       | <b>50</b>              | 9 <b>5</b>       | <b>50</b>              | 130                      |  |  |
| Bromochloromethane                              | <u>1</u>      | 47.1695                   | <u>0</u>       | <u>50</u>              | 9 <u>4</u>       | <u>50</u>              | 130                      |  |  |
| 2,2-Dichloropropane                             | 1             | 44.6608                   | Ŏ              | 50                     | 89               | 50                     | 130                      |  |  |
| Ethyl acetate                                   | 1             | 43.1958                   | Ö              | 50                     | 86               | 50                     | 130                      |  |  |
| 1,4-Dioxane                                     | 1             | 2038.195                  | <u>0</u>       | <u>2500</u>            | <u>82</u>        | <u>50</u>              | <u>130</u>               |  |  |
| 1,1-Dichloropropene                             | 1             | 46.625                    | Ō              | 50                     | 93               | 50                     | 130                      |  |  |
| <u>Chloroform</u>                               | <u>1</u>      | 49.5072                   | <u>0</u>       | <u>50</u>              | <u>99</u>        | <u>50</u>              | <u>130</u>               |  |  |
| <u>Cyclohexane</u>                              | <u>1</u>      | <u>46.7679</u>            | <u>0</u>       | <u>50</u>              | <u>94</u>        | <u>50</u>              | <u>130</u>               |  |  |
| 1,2-Dichloroethane                              | <u>1</u>      | <u>47.0833</u>            | Ō              | <u>50</u>              | <u>94</u>        | <u>50</u>              | <u>130</u>               |  |  |
| 2-Butanone                                      | 1             | <u>31.2481</u>            | Q              | <u>50</u>              | <u>62</u>        | <u>20</u>              | <u>130</u>               |  |  |
| 1,1,1-Trichloroethane                           | 1             | <u>45.502</u>             | <u>Q</u>       | <u>50</u>              | <u>91</u>        | <u>50</u>              | <u>130</u>               |  |  |
| Carbon Tetrachloride                            | 1             | 45.879                    | <u>0</u>       | <u>50</u>              | <u>92</u>        | <u>50</u>              | 130                      |  |  |
| Vinyl Acetate                                   | 1             | 48.2254                   | 0              | 50<br>50               | 96<br>05         | 50                     | 130                      |  |  |
| Bromodichloromethane                            | 11            | 47.4851<br>40.4564        | 0              | <u>50</u>              | <u>95</u><br>98  | <u>50</u>              | 130                      |  |  |
| <u>Methylcyclohexane</u><br>Dibromomethane      | 1             | <u>49.1561</u><br>42.1388 | <u>o</u><br>o  | <b>50</b><br>50        | 84               | <u><b>50</b></u><br>50 | <u>130</u><br>130        |  |  |
| 1,2-Dichloropropane                             | 1             | 47.4374                   | Q              | <u>50</u>              | 9 <u>5</u>       | <u>50</u>              | 130                      |  |  |
| Trichloroethene                                 | <u> </u>      | 44.2737                   | Õ              | <u>50</u>              | <del>89</del>    | <u>50</u>              | 130<br>130               |  |  |
| Benzene                                         | 1             | 48.3136                   | <u>ŏ</u>       | <u>50</u>              | <u>97</u>        | <u>50</u>              | 130                      |  |  |
| tert-Amyl methyl ether                          | 1             | 45.2158                   | Ŏ              | 50                     | 90               | 50                     | 130                      |  |  |
| Iso-propylacetate                               | 1             | 43.5064                   | Ö              | 50                     | 87               | 50                     | 130                      |  |  |
| Methyl methacrylate                             | 1             | 39.0379                   | 0              | 50                     | 78               | 50                     | 130                      |  |  |
| Dibromochloromethane                            | <u>1</u>      | 45.3567                   | <u>0</u>       | <u>50</u>              | <u>91</u>        | <u>50</u>              | 130                      |  |  |
| 2-Chloroethylvinylether                         | 1             | 47.5556                   | 0              | 50                     | 95               | 50                     | 130                      |  |  |
| cis-1,3-Dichloropropene                         | <u>1</u>      | <u>47.5586</u>            | <u>o</u>       | <u>50</u>              | <u>95</u>        | <u>50</u>              | <u>130</u>               |  |  |
| trans-1,3-Dichloropropene                       | 1             | 48.3479                   | <u>0</u>       | <u>50</u>              | <u>97</u>        | <u>50</u>              | 130                      |  |  |
| Ethyl methacrylate                              | 1             | 40.0904                   | 0              | 50                     | 80               | 50                     | 130                      |  |  |
| 1,1,2-Trichloroethane                           | 1             | 48.4521                   | <u>0</u>       | <u>50</u>              | <u>97</u>        | <u>50</u>              | 130<br>130               |  |  |
| 1,2-Dibromoethane                               | 1             | 48.8728<br>40.3566        | <u>0</u>       | <u>50</u>              | <u>98</u>        | <u>50</u>              | 130<br>130               |  |  |
| 1,3-Dichloropropane                             | 1             | 49.3566                   | 0              | 50<br>50               | 99<br><b>7</b> 0 | 50<br>30               | 130                      |  |  |
| 4-Methyl-2-Pentanone                            | 1             | <u>39.6504</u>            | 0              | <u>50</u>              | <u>79</u>        | <u>20</u>              | 130<br>130               |  |  |
| <u>2-Hexanone</u><br>Tetrachloroethene          | <u>1</u><br>1 | <u>40.6568</u><br>41.8074 | <u>0</u>       | <u>50</u><br>50        | <u>81</u><br>84  | <u>20</u><br>50        | <u>130</u><br><u>130</u> |  |  |
| Toluene                                         | 1             | 41.6074<br>44.4122        | <u>0</u>       | <u>50</u><br>50        | <u>84</u><br>89  | <u>50</u><br>50        | 130<br>130               |  |  |
| 1,1,1,2-Tetrachloroethane                       | 1             | 44.9364                   | 0              | <u>50</u><br>50        | 90               | <u>50</u><br>50        | 130                      |  |  |
| Chlorobenzene                                   | 4             | 46.3025                   | <u>0</u>       | <u>50</u>              | 93               | 50<br>50               | 130                      |  |  |

<sup># -</sup> Indicates outside of standard limits but within method exceedance limits \* - Indicates outside of limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | I             | Matrix: Soil   |          |               | QC Type:MBS |           |            |  |
|-----------------------------|---------------|----------------|----------|---------------|-------------|-----------|------------|--|
|                             |               | Spike          | Sample   | Expected      | _           | Lower     | Upper      |  |
| Analyte:                    | Col           | Conc           | Conc     | Conc          | Recovery    | Limit     | Limit      |  |
| n-Butyl acrylate            | 1             | 49.8868        | 0        | 50            | 100         | 50        | 130        |  |
| n-Amyl acetate              | 1             | 47.9172        | 0        | 50            | 96          | 50        | 130        |  |
| <u>Bromoform</u>            | <u>1</u>      | <u>46.9964</u> | <u>o</u> | <u>50</u>     | <u>94</u>   | <u>20</u> | <u>130</u> |  |
| <u>Ethylbenzene</u>         | 1             | <u>50.5233</u> | Q        | <u>50</u>     | <u>101</u>  | <u>50</u> | <u>130</u> |  |
| 1,1,2,2-Tetrachloroethane   | 1             | <u>52.8924</u> | <u>0</u> | <u>50</u>     | <u>106</u>  | <u>50</u> | <u>130</u> |  |
| Styrene                     | <u>1</u><br>1 | <u>52.6538</u> | Q        | <u>50</u>     | <u>105</u>  | <u>50</u> | <u>130</u> |  |
| m&p-Xylenes                 | <u>1</u>      | <u>94.2872</u> | <u>o</u> | <u>100</u>    | <u>94</u>   | <u>50</u> | <u>130</u> |  |
| o-Xylene                    | 1             | <u>50.7876</u> | Q        | <u>50</u>     | <u>102</u>  | <u>50</u> | <u>130</u> |  |
| trans-1,4-Dichloro-2-butene | 1             | 45.542         | 0        | 50            | 91          | 20        | 130        |  |
| 1,3-Dichlorobenzene         | 1             | 49.6447        | <u>0</u> | <u>50</u>     | <u>99</u>   | <u>50</u> | <u>130</u> |  |
| 1,4-Dichlorobenzene         |               | <u>49.6546</u> | <u>o</u> | <u>50</u>     | <u>99</u>   | <u>50</u> | 130        |  |
| 1,2-Dichlorobenzene         | <u>1</u><br>1 | 49.8765        | <u>Q</u> | <u>50</u>     | <u>100</u>  | <u>50</u> | <u>130</u> |  |
| Isopropylbenzene            | 1             | 50.6554        | <u>o</u> | <u>50</u>     | <u>101</u>  | <u>50</u> | 130        |  |
| Cyclohexanone               | 1             | 222.4355       | 0        | 250           | 89          | 50        | 130        |  |
| Camphene                    | 1             | 50.5207        | 0        | 50            | 101         | 50        | 130        |  |
| 1,2,3-Trichloropropane      | 1             | 50.1397        | 0        | 50            | 100         | 50        | 130        |  |
| 2-Chlorotoluene             | 1             | 50.4799        | 0        | 50            | 101         | 50        | 130        |  |
| p-Ethyltoluene              | 1             | 51.4182        | 0        | 50            | 103         | 50        | 130        |  |
| 4-Chlorotoluene             | 1             | 50.8258        | 0        | 50            | 102         | 50        | 130        |  |
| n-Propylbenzene             | 1             | 51.3635        | 0        | 50            | 103         | 50        | 130        |  |
| Bromobenzene                | 1             | 54.9641        | 0        | 50            | 110         | 50        | 130        |  |
| 1,3,5-Trimethylbenzene      | 1             | 49.1626        | 0        | 50            | 98          | 50        | 130        |  |
| Butyl methacrylate          | 1             | 41.9569        | 0        | 50            | 84          | 50        | 130        |  |
| t-Butylbenzene              | 1             | 47.9231        | 0        | 50            | 96          | 50        | 130        |  |
| 1,2,4-Trimethylbenzene      | 1             | 50.6118        | 0        | 50            | 101         | 50        | 130        |  |
| sec-Butylbenzene            | 1             | 51.7222        | 0        | 50            | 103         | 50        | 130        |  |
| 4-Isopropyltoluene          | 1             | 51.148         | 0        | 50            | 102         | 50        | 130        |  |
| n-Butylbenzene              | 1             | 52.4835        | 0        | 50            | 105         | 50        | 130        |  |
| p-Diethylbenzene            | 1             | 50.3171        | Ó        | 50            | 101         | 50        | 130        |  |
| 1,2,4,5-Tetramethylbenzene  | 1             | 54.9162        | Ö        | 50            | 110         | 50        | 130        |  |
| 1,2-Dibromo-3-Chloropropane | <u>1</u>      | 42.3682        | <u>o</u> | 50            | 85          | 50        | 130        |  |
| Camphor                     | Ì             | 436.5083       | Ō        | 500           | 87          | 50        | 130        |  |
| Hexachlorobutadiene         | 1             | 41.3539        | Ö        | 50            | 83          | 50        | 130        |  |
| 1,2,4-Trichlorobenzene      | 1             | 48.2444        | <u>o</u> | 50            | 96          | 50        | 130        |  |
| 1.2.3-Trichlorobenzene      | <u>†</u>      | 48.5219        | <u>o</u> | <del>50</del> | 97          | 50        | 130        |  |
| Naphthalene                 | 1             | 48.5344        | ŏ        | 50            | 97          | 50        | 130        |  |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Data File

Sample ID:

Analysis Date

Spike or Dup: 11M83426.D

Non Spike(If applicable): 11M83420.D

AD19504-005(MS) AD19504-005

10/1/2020 3:35:00 PM 10/1/2020 12:37:00 PM

Inst Blank(If applicable):

| Method: 8260D                                   |               | Matrix: Soil                     |                 |                         | QC Type:MS       |                        |                          |
|-------------------------------------------------|---------------|----------------------------------|-----------------|-------------------------|------------------|------------------------|--------------------------|
|                                                 |               | Spike                            | Sample          | Expected                |                  | Lower                  | Upper                    |
| Analyte:                                        | Col           | Conc                             | Conc            | Conc                    | Recovery         | Limit                  | Limit                    |
| Chlorodifluoromethane                           | 1             | 39.0663                          | 0               | 50<br>50                | 78               | 20                     | 130                      |
| <u>Dichlorodifluoromethane</u><br>Chloromethane | 1             | <u>33.061</u><br>32.6144         | <u>0</u>        | <u>50</u><br>50         | <u>66</u><br>65  | <u>20</u><br>20        | <u>130</u><br>130        |
| Bromomethane                                    | <u>1</u><br>1 | 39.7397                          | O<br>V          | <u>50</u><br>50         | <u>55</u><br>79  | <u>20</u><br>20        | 130<br>130               |
| Vinyl Chloride                                  | 1             | <u>36.676</u>                    | <u>0</u><br>0   | <u>50</u>               | <del>73</del>    | <u>20</u>              | 130                      |
| Chloroethane                                    | 1             | 40.6438                          | <u><u> </u></u> | <del>50</del>           | <u>81</u>        | <u>20</u>              | 130                      |
| Trichlorofluoromethane                          | 1             | 41.524                           | <u>0</u>        | <u>50</u>               | 83               | <u>20</u>              | 130                      |
| Ethyl ether                                     | 1             | 47.6515                          | 0               | 50                      | 95               | 50                     | 130                      |
| Furan                                           | 1             | 38.7126                          | 0               | 50                      | 77               | 50                     | 130                      |
| 1,1,2-Trichloro-1,2,2-trifluoroethane           | 1             | 44.5049                          | <u>0</u>        | <u>50</u>               | <u>89</u>        | <u>50</u>              | <u>130</u>               |
| Methylene Chloride<br>Acrolein                  | <u>1</u><br>1 | <u>44.6246</u><br>133.7812       | <u>o</u><br>0   | <u><b>50</b></u><br>200 | <b>89</b><br>67  | <u><b>50</b></u><br>20 | <u>130</u><br>130        |
| Acrylonitrile                                   | 1             | 42.1112                          | 0               | 50                      | 84               | 20                     | 130                      |
| Iodomethane                                     | 1             | 26.7891                          | Ö               | 50                      | 54               | 50                     | 130                      |
| Acetone                                         | 1             | 190.8121                         | <u>0</u>        | 200                     | <u>95</u>        | 20                     | 130                      |
| Carbon Disulfide                                | 1             | 40.1099                          | Q               | 50                      | 80               | <u>50</u>              | 130                      |
| t-Butyl Alcohol                                 | 1             | 145.7471                         | 0               | 200                     | 73               | 20                     | 130                      |
| n-Hexane                                        | 1             | 39.6293                          | 0               | 50                      | 79               | 50                     | 130                      |
| Di-isopropyl-ether                              | 1             | 43.1466                          | 0               | 50                      | 86               | 50                     | 130                      |
| 1,1-Dichloroethene                              | 1             | <u>42.4968</u>                   | <u>0</u>        | <u>50</u>               | <u>85</u>        | <u>50</u>              | <u>130</u>               |
| Methyl Acetate                                  | 1             | 71.4855                          | 0               | <u>50</u>               | 143 <u>*</u>     | <u>50</u>              | <u>130</u><br>130        |
| Methyl-t-butyl ether 1.1-Dichloroethane         | 11            | <u>48.0215</u><br><u>42.7247</u> | <u>0</u>        | <u>50</u><br>50         | <u>96</u><br>85  | <u>50</u><br>50        | 130<br>130               |
| trans-1,2-Dichloroethene                        | 1             | 41,2101                          | <u>o</u>        | <u>50</u>               | <u>82</u>        | <del>50</del>          | 130                      |
| Ethyl-t-butyl ether                             | 1             | 38.5057                          | Ŏ               | 50                      | 77               | 50                     | 130                      |
| cis-1,2-Dichloroethene                          | 1             | 39.6989                          | <u>0</u>        | <u>50</u>               | <u>79</u>        | <u>50</u>              | <u>130</u>               |
| <b>Bromochloromethane</b>                       | <u>1</u>      | 43.04                            | <u> </u>        | 50                      | <u>86</u>        | <u>50</u>              | <u>130</u>               |
| 2,2-Dichloropropane                             | 1             | 38.901                           | 0               | 50                      | 78               | 50                     | 130                      |
| Ethyl acetate                                   | 1             | 21.252                           | 0               | 50                      | 43*              | 50                     | 130                      |
| 1,4-Dioxane                                     | 1             | <u>1941.512</u>                  | <u>0</u>        | <u>2500</u>             | <u>78</u>        | <u>50</u>              | <u>130</u>               |
| 1,1-Dichloropropene                             | 1             | 40.6404                          | 0               | 50                      | 81<br>96         | 50                     | 130                      |
| Chloroform<br>Cyclohexane                       | 1<br>1        | <u>43.1324</u><br>39.9485        | <u>0</u>        | <u>50</u><br>50         | <u>86</u><br>80  | <u>50</u><br>50        | <u>130</u><br>130        |
| 1,2-Dichloroethane                              | 1             | 43.0305                          | <u>o</u>        | <u>50</u>               | <u>86</u>        | <u>50</u>              | 130<br>130               |
| 2-Butanone                                      | <u>1</u>      | 28.7724                          | <u><u> </u></u> | 50                      | <u>58</u>        | 20                     | 130                      |
| 1,1,1-Trichloroethane                           | 1             | 41.2527                          | <u>0</u>        | <u>50</u>               | <del>83</del>    | <u>50</u>              | 130                      |
| Carbon Tetrachloride                            | 1             | 39.9271                          | <u>o</u>        | <u>50</u>               | <u>80</u>        | <u>50</u>              | <u>130</u>               |
| Vinyl Acetate                                   | 1             | 25.1888                          | 0               | 50                      | 50               | 50                     | 130                      |
| <u>Bromodichloromethane</u>                     | 1             | 41.312                           | <u>0</u>        | <u>50</u>               | <u>83</u>        | <u>50</u>              | <u>130</u>               |
| Methylcyclohexane                               | 1             | <u>39.401</u>                    | <u>0</u>        | <u>50</u>               | <u>79</u>        | <u>50</u>              | <u>130</u>               |
| Dibromomethane                                  | 1             | 37.4414<br><u>42.3724</u>        | 0               | 50<br><b>50</b>         | 75<br><b>85</b>  | 50<br><u><b>50</b></u> | 130<br><u>1<b>30</b></u> |
| 1,2-Dichloropropane Trichloroethene             | <u>1</u><br>1 | <u>42.3724</u><br>39.1313        | Õ<br>Õ          | <u>50</u>               | <u> </u>         | <u>50</u><br>50        | 130<br>130               |
| Benzene                                         | 1             | <u>41.8835</u>                   | Ō               | <u>50</u>               | <u> 10</u><br>84 | <u>50</u>              | 130<br>130               |
| tert-Amyl methyl ether                          | 1             | 40.6965                          | Ō               | 50                      | 81               | 50                     | 130                      |
| Iso-propylacetate                               | 1             | 26.1554                          | 0               | 50                      | 52               | 50                     | 130                      |
| Methyl methacrylate                             | 1             | 46.8319                          | 0               | 50                      | 94               | 50                     | 130                      |
| <u>Dibromochloromethane</u>                     | 1             | <u>40.1614</u>                   | <u>0</u>        | <u>50</u>               | <u>80</u>        | <u>50</u>              | <u>130</u>               |
| 2-Chloroethylvinylether                         | 1             | 39.5115                          | 0               | 50                      | 79<br>           | 50                     | 130                      |
| cis-1,3-Dichloropropene                         | 1             | <u>39.5513</u>                   | 0               | <u>50</u>               | <u>79</u>        | <u>50</u>              | 130<br>130               |
| trans-1,3-Dichloropropene Ethyl methacrylate    | 1<br>1        | <u>40.6113</u><br>25.4546        | <u>o</u><br>O   | <u><b>50</b></u><br>50  | <u>81</u><br>51  | <u><b>50</b></u><br>50 | <u>130</u><br>130        |
| 1,1,2-Trichloroethane                           | 1             | 42.3023                          | <u>o</u>        | <u>50</u>               | <u>85</u>        | <u>50</u>              | 130<br>130               |
| 1,2-Dibromoethane                               | 1             | <u>42.0195</u>                   | <u>o</u>        | <u>50</u>               | <u>84</u>        | <u>50</u>              | 130<br>130               |
| 1,3-Dichloropropane                             | 1             | 42.5878                          | Ö               | 50                      | 85               | 50                     | 130                      |
| 4-Methyl-2-Pentanone                            | 1             | 34.1663                          | <u>0</u>        | <u>50</u>               | <u>68</u>        | <u>20</u>              | <u>130</u>               |
| 2-Hexanone                                      | 1             | 33.7164                          | <u>0</u>        | <u>50</u>               | <u>67</u>        | <u>20</u>              | <u>130</u>               |
| <u>Tetrachloroethene</u>                        | 1             | <u>34.9413</u>                   | <u>0</u>        | <u>50</u>               | <u>70</u>        | <u>50</u>              | <u>130</u>               |
| Toluene                                         | 1             | <u>37.3776</u>                   | <u>0</u>        | <u>50</u>               | <u>75</u>        | <u>50</u>              | 130<br>130               |
| 1,1,1,2-Tetrachloroethane                       | 1             | 38.5162                          | 0               | 50<br>50                | 77<br><b>76</b>  | 50                     | 130                      |
| <u>Chlorobenzene</u>                            | 1             | <u>38.001</u>                    | <u>0</u>        | <u>50</u>               | <u>76</u>        | <u>50</u>              | <u>130</u>               |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method 8260D                |                  | Matrix: Soil   |                | •                | QC Type: MS   |                |                |
|-----------------------------|------------------|----------------|----------------|------------------|---------------|----------------|----------------|
| Analyte:                    | Col              | Spike<br>Conc  | Sample<br>Conc | Expected<br>Conc | Recovery      | Lower<br>Limit | Upper<br>Limit |
| n-Butyl acrylate            | 1                | 22.5639        | 0              | 50               | 45*           | 50             | 130            |
| n-Amyl acetate              | 1                | 14.4545        | Ö              | 50               | 29*           | 50             | 130            |
| Bromoform                   | <u>1</u>         | 40.4712        | Q              | <u>50</u>        | <u>81</u>     | 20             | 130            |
| Ethylbenzene                |                  | 41.3817        | <u>0</u>       | 50               | 83            | 50             | 130            |
| 1,1,2,2-Tetrachloroethane   | ī                | 44.7104        | Ō              | <u>50</u>        | 89            | 50             | 130            |
| Styrene                     | 1<br>1<br>1<br>1 | 42.0914        | Q              | 50               | 84            | 50             | 130            |
| m&p-Xylenes                 | <u>1</u>         | 76.6221        | <u>0</u>       | 100              | 77            | <u>50</u>      | 130            |
| o-Xylene                    | 1                | 41.0794        | <u>0</u>       | 50               | 82            | 50             | 130            |
| trans-1,4-Dichloro-2-butene | ī                | 34.8169        | ō              | 50               | 70            | 20             | 130            |
| 1,3-Dichlorobenzene         | 1                | 37.6742        | 0              | 50               | <u>75</u>     | 50             | 130            |
| 1,4-Dichlorobenzene         | ĩ                | 37.4226        | <u>0</u>       | <del>50</del>    | <del>75</del> | 50             | 130            |
| 1,2-Dichlorobenzene         | 1<br>1<br>1      | 38.4247        | ō              | 50               | 77            | 50             | 130            |
| Isopropylbenzene            | 1                | 39.7205        | <u> </u>       | <del>50</del>    | 79            | <del>50</del>  | 130            |
| Cyclohexanone               | 1                | 171.8091       | ō              | 250              | 69            | 50             | 130            |
| Camphene                    | 1                | 35.9626        | 0              | 50               | 72            | 50             | 130            |
| 1,2,3-Trichloropropane      | 1                | 40.8297        | 0              | 50               | 82            | 50             | 130            |
| 2-Chlorotoluene             | 1                | 39.5811        | 0              | 50               | 79            | 50             | 130            |
| p-Ethyltoluene              | 1                | 39.1732        | 0              | 50               | 78            | 50             | 130            |
| 4-Chlorotoluene             | 1                | 38.1313        | 0              | 50               | 76            | 50             | 130            |
| n-Propylbenzene             | 1                | 38.7078        | 0              | 50               | 77            | 50             | 130            |
| Bromobenzene                | 1                | 42.8613        | 0              | 50               | 86            | 50             | 130            |
| 1,3,5-Trimethylbenzene      | 1                | 38.3127        | 0              | 50               | 77            | 50             | 130            |
| Butyl methacrylate          | 1                | 24.2405        | 0              | 50               | 48*           | 50             | 130            |
| t-Butylbenzene              | 1                | 36.4538        | 0              | 50               | 73            | 50             | 130            |
| 1,2,4-Trimethylbenzene      | 1                | 38.7398        | 0              | 50               | 77            | 50             | 130            |
| sec-Butylbenzene            | 1                | 37.4329        | 0              | 50               | 75            | 50             | 130            |
| 4-Isopropyltoluene          | 1                | 36.9062        | 0              | 50               | 74            | 50             | 130            |
| n-Butylbenzene              | 1                | 35.8062        | 0              | 50               | 72            | 50             | 130            |
| p-Diethylbenzene            | 1                | 35.4358        | 0              | 50               | 71            | 50             | 130            |
| 1,2,4,5-Tetramethylbenzene  | 1                | 39.2795        | 0              | 50               | 79            | 50             | 130            |
| 1,2-Dibromo-3-Chloropropane | <u>1</u>         | 36.0068        | <u>o</u>       | <u>50</u>        | <u>72</u>     | <u>50</u>      | <u>130</u>     |
| Camphor                     | <u>1</u>         | 412.4506       | ō              | 500              | 82            | 50             | 130            |
| Hexachlorobutadiene         | 1                | 25.6488        | 0              | 50               | 51            | 50             | 130            |
| 1,2,4-Trichlorobenzene      | <u>1</u>         | <u>31.9547</u> | Q              | <u>50</u>        | <u>64</u>     | <u>50</u>      | <u>130</u>     |
| 1,2,3-Trichlorobenzene      | <u>1</u>         | 32.6948        | Q              | <u>50</u>        | <u>65</u>     | <u>50</u>      | 130            |
| Naphthalene                 | 1                | 37.0087        | 1.634          | 50               | 71            | 50             | 130            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Data File

Sample ID:

Analysis Date

Spike or Dup: 11M83427.D Non Spike(If applicable): 11M83420.D AD19504-005(MSD) AD19504-005 10/1/2020 3:54:00 PM 10/1/2020 12:37:00 PM

Inst Blank(If applicable): Method: 8260D Matrix: Soil QC Type: MSD Spike Sample Expected Lower Upper Analyte: Col Conc Conc Conc Recovery Limit Limit Chlorodifluoromethane 130 40.3044 0 50 81 20 Dichlorodifluoromethane 1 33.2334 0 <u>50</u> <u>66</u> <u> 20</u> 130 Chloromethane <u>50</u> 20 <u>31.5805</u> 0 <u>63</u> <u>130</u> 0 <u>50</u> <u>77</u> <u>20</u> **Bromomethane** <u>38.4898</u> <u>130</u> 0 <u>50</u> <u>72</u> <u> 20</u> 130 Vinyl Chloride 35.9296 <u>20</u> **Chloroethane** <u>40.2106</u> 0 <u>50</u> <u>80</u> <u>130</u> <u>0</u> <u>20</u> 50 41.3214 <u>50</u> <u>130</u> <u>83</u> **Trichlorofluoromethane** 43.4508 50 87 130 Ethyl ether 0 50 50 130 36.9931 74 Furan 1,1,2-Trichloro-1,2,2-trifluoroethane 44.5975 0 <u>50</u> <u>89</u> <u>50</u> <u>130</u> **Methylene Chloride** 42.8442 0 <u>50</u> 86 50 <u>130</u> 0 20 132.0898 200 66 130 Acrolein 0 50 79 20 130 Acrylonitrile 39.6621 50 56 50 130 Iodomethane 28.1782 0 Acetone 1 193.194 0 200 97 <u>20</u> <u>130</u> Carbon Disulfide <u>79</u> <u>50</u> <u>39.3403</u> Q <u>50</u> <u>130</u> t-Butyl Alcohol Ō 75 20 149.9155 200 130 n-Hexane 38.3359 0 50 77 50 130 0 42.1995 50 84 50 130 Di-isopropyl-ether 1 41.2888 0 50 <u>83</u> <u>50</u> 130 1,1-Dichloroethene 1 **Methyl Acetate** 1 66.3837 Q <u>50</u> 133 \* <u>50</u> <u>130</u> 0 <u>50</u> <u>50</u> Methyl-t-butyl ether <u>46.4026</u> <u>93</u> <u>130</u> 41.5304 0 <u>50</u> <u>83</u> <u>50</u> 130 1,1-Dichloroethane 0 50 50 130 trans-1,2-Dichloroethene 1 41.0115 82 0 50 50 74 130 Ethyl-t-butyl ether 36.9482 cis-1,2-Dichloroethene <u>0</u> <u>50</u> <u>78</u> <u>50</u> 130 1 38.9086 83 **Bromochioromethane** 1 41.6194 0 50 <u>50</u> 130 2,2-Dichloropropane 37.6291 0 50 75 50 130 20.4132 0 411 50 130 Ethyl acetate 50 1,4-Dioxane 0 2500 86 <u>50</u> <u>130</u> 1 2151.485 50 1,1-Dichloropropene 39.5758 0 50 79 130 Q 1 <u>50</u> <u>85</u> <u>50</u> <u>130</u> **Chloroform** <u>42.6947</u> 38.5772 0 50 <u>77</u> 50 130 Cyclohexane 1 1 0 50 81 50 130 1,2-Dichloroethane 40.2784 <u>20</u> 0 <u>50</u> <u>58</u> <u>130</u> 2-Butanone <u>28.897</u> 1 Q <u>50</u> <u>80</u> <u>50</u> <u> 130</u> 1,1,1-Trichloroethane 40.1326 <u>0</u> Carbon Tetrachloride <u>50</u> <u>79</u> <u>50</u> 130 1 39.3722 50 50 50 130 Vinyl Acetate 24.7509 1 0 50 <u>81</u> <u>50</u> <u>130</u> **Bromodichloromethane** 40.7322 0 <u>50</u> <u>50</u> 130 Methylcyclohexane 1 38.4475 <u>77</u> ō 50 Dibromomethane 37.41 50 75 130 0 <u>130</u> 1,2-Dichloropropane 41.2771 <u>50</u> <u>83</u> <u>50</u> **Trichloroethene** 38.4177 0 <u>50</u> <u>77</u> <u>50</u> <u>130</u> 0 <u>50</u> 82 <u>50</u> 40.8602 <u>130</u> **Benzene** tert-Amyl methyl ether 40 3707 ō 50 81 50 130 25.9353 0 50 52 50 130 Iso-propylacetate 50 0 50 90 130 Methyl methacrylate 44.8646 <u>130</u> **Dibromochloromethane** 1 40.162 <u>0</u> <u>50</u> <u>80</u> <u>50</u> 2-Chloroethylvinylether 40.0463 0 50 80 50 130 0 <u>50</u> cis-1,3-Dichloropropene 1 39.1186 <u>50</u> <u>78</u> <u>130</u> 0 <u>78</u> <u>50</u> trans-1,3-Dichloropropene <u>38.95</u> <u>50</u> <u>130</u> 0 50 52 130 Ethyl methacrylate 26.0503 <u>50</u> 1,1,2-Trichloroethane 1 42.554 0 <u>50</u> <u>85</u> 130 <u>0</u> <u>83</u> <u>50</u> 1,2-Dibromoethane 41.4307 <u>50</u> <u>130</u> 1,3-Dichloropropane 41.7784 50 84 130 0 <u>20</u> 4-Methyl-2-Pentanone 1 <u>50</u> <u>69</u> <u>130</u> <u>34.3184</u> 0 <u>50</u> <u>66</u> <u>20</u> <u>130</u> 2-Hexanone <u>33.2026</u> <u>50</u> **Tetrachloroethene** 35,1159 0 <u>50</u> <u>70</u> <u>130</u> 1 0 <u>50</u> <u>73</u> <u>50</u> **130** Toluene <u>36.611</u> 77 1,1,1,2-Tetrachloroethane 38.5118 0 50 50 130

0

<u>50</u>

<u>76</u>

<u>50</u>

<u>130</u>

37.8528

1

Chlorobenzene

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Analyte:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method: 8260D               |          | Matrix: Soil   |          | QC Type:MSD   |               |           |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|----------------|----------|---------------|---------------|-----------|------------|
| n-Butyl acrylate         1         23.7092         0         50         47°         50         1           n-Amyl acetate         1         15.3123         0         50         31°         50         1           Bromoform         1         40.5078         0         50         81         20         1           Ethylbenzene         1         40.695         0         50         80         50         1           1.1,2.2-Tetrachloroethane         1         45.5252         0         50         91         50         1           Styrene         1         41.6827         0         50         83         50         1           m&p-Xylenes         1         73.4035         0         100         73         50         1           c-Xylene         1         41.0892         0         50         82         50         1           trans-1.4-Dichloro-2-butene         1         34.0682         0         50         68         20         1           1,3-Dichlorobenzene         1         37.1027         0         50         74         50         1           1,2-Dichlorobenzene         1         38.0385         0<                                                                                 |                             |          |                |          |               | _             |           | Upper      |
| N-Amyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analyte:                    | Col      | Conc           | Conc     | Conc          |               | Limit     | Limit      |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n-Butyl acrylate            | 1        | 23.7092        | -        |               |               |           | 130        |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n-Amyl acetate              | 1        | 15.3123        |          | 50            | 31*           | 50        | 130        |
| 1.1.2.2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | <u>1</u> | 40.5078        |          | <u>50</u>     | <u>81</u>     | <u>20</u> | <u>130</u> |
| 1.1.2.2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ethylbenzene                | 1        | <u>40.1695</u> | <u>0</u> | <u>50</u>     | <u>80</u>     | <u>50</u> | <u>130</u> |
| Map-Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1,2,2-Tetrachloroethane   | 1        | 45.5252        | <u>0</u> | <u>50</u>     |               | <u>50</u> | <u>130</u> |
| o-Xylene         1         41.0892         0         50         82         50         1           trans-1,4-Dichloro-2-butene         1         34.0682         0         50         68         20         1           1,3-Dichlorobenzene         1         37.1928         0         50         74         50         1           1,4-Dichlorobenzene         1         37.1027         0         50         74         50         1           1,2-Dichlorobenzene         1         38.0385         0         50         76         50         1           1sopropylbenzene         1         39.6197         0         50         79         50         1           Cyclohexanone         1         177.6047         0         250         71         50         1           Camphene         1         36.3339         0         50         73         50         1           1,2,3-Trichloropropane         1         41.0088         0         50         82         50         1           2-Chlorotoluene         1         38.7981         0         50         78         50         1           p-Ethyltoluene         1         38.4556                                                                               | Styrene                     |          | <u>41.6827</u> | <u>0</u> | <u>50</u>     | <u>83</u>     | <u>50</u> | <u>130</u> |
| o-Xylene         1         41.0892         0         50         82         50         1           trans-1,4-Dichloro-2-butene         1         34.0682         0         50         68         20         1           1,3-Dichlorobenzene         1         37.1928         0         50         74         50         1           1,4-Dichlorobenzene         1         37.1027         0         50         74         50         1           1,2-Dichlorobenzene         1         38.0385         0         50         76         50         1           1sopropylbenzene         1         39.6197         0         50         79         50         1           1sopropylbenzene         1         177.6047         0         250         71         50         1           1sopropylbenzene         1         36.3339         0         50         73         50         1           1.2,3-Trichloropropane         1         36.3339         0         50         73         50         1           2-Chlorotoluene         1         39.3627         0         50         79         50         1           4-Chlorotoluene         1         3                                                                         | m&p-Xylenes                 | 1        | 73.4035        | <u>0</u> | <u>100</u>    |               | <u>50</u> | <u>130</u> |
| trans-1,4-Dichloro-2-butene         1         34.0682         0         50         68         20         1:1,3-Dichlorobenzene         1         37.1928         0         50         74         50         1:1,4-Dichlorobenzene         1         37.1027         0         50         74         50         1:1         1:1,2-Dichlorobenzene         1         37.1027         0         50         74         50         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1         1:1< | o-Xylene                    | <u>1</u> | 41.0892        | <u>o</u> | <u>50</u>     | <u>82</u>     | <u>50</u> | <u>130</u> |
| 1,4-Dichlorobenzene         1         37.1027         0         50         74         50         1           1,2-Dichlorobenzene         1         38.0385         0         50         76         50         1           Isopropylbenzene         1         39.6197         0         50         79         50         1           Cyclohexanone         1         177.6047         0         250         71         50         1           Cyclohexanone         1         36.3339         0         50         73         50         11           Camphene         1         36.3339         0         50         73         50         11           1,2,3-Trichloropropane         1         41.0088         0         50         82         50         13           2-Chlorotoluene         1         38.7981         0         50         78         50         11           4-Chlorotoluene         1         38.7981         0         50         78         50         11           4-Chlorotoluene         1         38.7981         0         50         77         50         11           4-Chlorotoluene         1         38.4607                                                                                   | trans-1,4-Dichloro-2-butene | 1        | 34.0682        | 0        | 50            | 68            | 20        | 130        |
| 1,4-Dichlorobenzene         1         37.1027         0         50         74         50         1           1,2-Dichlorobenzene         1         38.0385         0         50         76         50         1           Isopropylbenzene         1         39.6197         0         50         79         50         1           Cyclohexanone         1         177.6047         0         250         71         50         1           Cyclohexanone         1         36.3339         0         50         73         50         11           Camphene         1         36.3339         0         50         73         50         11           1,2,3-Trichloropropane         1         41.0088         0         50         82         50         13           2-Chlorotoluene         1         38.7981         0         50         78         50         11           4-Chlorotoluene         1         38.7981         0         50         78         50         11           4-Chlorotoluene         1         38.7981         0         50         77         50         11           4-Chlorotoluene         1         38.4607                                                                                   | 1,3-Dichlorobenzene         | 1        | 37.1928        | <u>0</u> | 50            | <u>74</u>     | <u>50</u> | <u>130</u> |
| 1.2-Dichlorobenzene   1   38.0385   0   50   76   50   1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,4-Dichlorobenzene         | <u>1</u> | 37.1027        | 0        | 50            | 74            | <u>50</u> | 130        |
| Sopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-Dichlorobenzene         | <u>1</u> | 38.0385        | <u> </u> | 50            | 76            |           | 130        |
| Cyclohexanone         1         177.6047         0         250         71         50         13           Camphene         1         36.3339         0         50         73         50         13           1.2,3-Trichloropropane         1         41.0088         0         50         82         50         13           2-Chlorotoluene         1         39.3627         0         50         79         50         13           4-Chlorotoluene         1         38.7981         0         50         78         50         13           4-Chlorotoluene         1         38.4556         0         50         77         50         13           n-Propylbenzene         1         38.4607         0         50         77         50         13           Bromobenzene         1         43.0828         0         50         86         50         13           Bromobenzene         1         37.7217         0         50         75         50         13           Butyl methacrylate         1         25.8829         0         50         75         50         13           t-Butyl methacrylate         1         36.5859                                                                                    | Isopropylbenzene            |          | 39.6197        | 0        | 50            | 79            | 50        | 130        |
| 1.2,3-Trichloropropane       1       41.0088       0       50       82       50       11         2-Chlorotoluene       1       39.3627       0       50       79       50       13         p-Ethyltoluene       1       38.7981       0       50       78       50       13         4-Chlorotoluene       1       38.4556       0       50       77       50       13         n-Propylbenzene       1       38.4607       0       50       77       50       13         Bromobenzene       1       43.0828       0       50       86       50       13         Bromobenzene       1       37.7217       0       50       75       50       13         Bromobenzene       1       37.7217       0       50       75       50       13         1,3,5-Trimethylbenzene       1       25.8829       0       50       75       50       13         1,2Btylbenzene       1       36.5859       0       50       73       50       13         1,2,4-Trimethylbenzene       1       37.9148       0       50       76       50       13         4-Isopropyltoluene       1<                                                                                                                                                                | Cyclohexanone               |          | 177.6047       | ō        | 250           | <del>71</del> | 50        | 130        |
| 2-Chlorotoluene 1 39.3627 0 50 79 50 13 p-Ethyltoluene 1 38.7981 0 50 78 50 13 4-Chlorotoluene 1 38.4556 0 50 77 50 13 n-Propylbenzene 1 38.4607 0 50 77 50 13 Bromobenzene 1 43.0828 0 50 86 50 13 1,3,5-Trimethylbenzene 1 37.7217 0 50 75 50 13 Butyl methacrylate 1 25.8829 0 50 50 52 50 13 t-Butylbenzene 1 36.5859 0 50 73 50 13 1,2,4-Trimethylbenzene 1 37.9148 0 50 76 50 13 4-Isopropyltoluene 1 37.1844 0 50 76 50 13 n-Butylbenzene 1 36.3559 0 50 73 50 13 1,2,4-Trimethylbenzene 1 36.3559 0 50 74 50 13 n-Butylbenzene 1 36.3559 0 50 74 50 13 1,2,4-Tetramethylbenzene 1 39.2621 0 50 72 50 13 1,2,4-Tetramethylbenzene 1 39.2621 0 50 79 50 13 1,2,4-Tetramethylbenzene 1 37.9735 0 50 76 50 13 1,2,4-Tichlorobenzene 1 37.9735 0 50 76 50 13 1,2,4-Trichlorobenzene 1 33.0605 0 50 50 51 50 13 1,2,4-Trichlorobenzene 1 33.0605 0 50 50 50 51 50 13                                                                                                                                                                                                                                                                                                                                                             | Camphene                    | 1        | 36.3339        | 0        | 50            | 73            | 50        | 130        |
| 2-Chlorotoluene       1       39.3627       0       50       79       50       13         p-Ethyltoluene       1       38.7981       0       50       78       50       13         4-Chlorotoluene       1       38.4556       0       50       77       50       13         n-Propylbenzene       1       38.4607       0       50       77       50       13         Bromobenzene       1       43.0828       0       50       86       50       13         1.3,5-Trimethylbenzene       1       37.7217       0       50       75       50       13         1.3,5-Trimethylbenzene       1       37.7217       0       50       75       50       13         1.3,4-Trimethylbenzene       1       36.5859       0       50       73       50       13         1.2,4-Trimethylbenzene       1       37.9148       0       50       77       50       13         4-Isopropyltoluene       1       37.9148       0       50       74       50       13         4-Isopropyltoluene       1       36.3559       0       50       73       50       13         p-Diethylbenzene                                                                                                                                                       | 1,2,3-Trichloropropane      | 1        | 41.0088        | 0        | 50            | 82            | 50        | 130        |
| 4-Chlorotoluene       1       38.4556       0       50       77       50       1:         n-Propylbenzene       1       38.4607       0       50       77       50       1:         Bromobenzene       1       43.0828       0       50       86       50       1:         1,3,5-Trimethylbenzene       1       37.7217       0       50       75       50       1:         Butyl methacrylate       1       25.8829       0       50       52       50       1:         t-Butylbenzene       1       36.5859       0       50       73       50       1:         1,2,4-Trimethylbenzene       1       38.6607       0       50       77       50       1:         sec-Butylbenzene       1       37.9148       0       50       76       50       1:         4-Isopropyltoluene       1       37.1844       0       50       74       50       1:         n-Butylbenzene       1       36.3559       0       50       73       50       1:         p-Diethylbenzene       1       35.8178       0       50       72       50       1:         1,2,4,5-Tetramethylbenzene <td></td> <td>1</td> <td>39.3627</td> <td>0</td> <td>50</td> <td>79</td> <td>50</td> <td>130</td>                                                        |                             | 1        | 39.3627        | 0        | 50            | 79            | 50        | 130        |
| n-Propylbenzene       1       38.4607       0       50       77       50       11         Bromobenzene       1       43.0828       0       50       86       50       11         1.3,5-Trimethylbenzene       1       37.7217       0       50       75       50       11         Butyl methacrylate       1       25.8829       0       50       52       50       11         t-Butylbenzene       1       36.5859       0       50       73       50       11         1,2,4-Trimethylbenzene       1       38.6607       0       50       77       50       11         sec-Butylbenzene       1       37.9148       0       50       76       50       11         4-Isopropyltoluene       1       37.1844       0       50       74       50       11         n-Butylbenzene       1       36.3559       0       50       73       50       11         n-Butylbenzene       1       35.8178       0       50       72       50       11         n-L2,4,5-Tetramethylbenzene       1       37.9735       0       50       76       50       11         n-L2-Dibromo-3-Chlo                                                                                                                                                       | p-Ethyltoluene              | 1        | 38.7981        | 0        | 50            | 78            | 50        | 130        |
| Bromobenzene 1 43.0828 0 50 86 50 1: 1,3,5-Trimethylbenzene 1 37.7217 0 50 75 50 1: Butyl methacrylate 1 25.8829 0 50 52 50 1: t-Butylbenzene 1 36.5859 0 50 73 50 1: 1,2,4-Trimethylbenzene 1 38.6607 0 50 77 50 1: sec-Butylbenzene 1 37.9148 0 50 76 50 1: 4-Isopropyltoluene 1 37.1844 0 50 74 50 1: n-Butylbenzene 1 36.3559 0 50 73 50 1: p-Diethylbenzene 1 35.8178 0 50 72 50 1: 1,2,4,5-Tetramethylbenzene 1 39.2621 0 50 79 50 1: 1,2-Dibromo-3-Chloropropane 1 37.9735 0 50 76 50 1: 1,2,4-Trichlorobenzene 1 33.0605 0 50 50 51 50 1: 1,2,4-Trichlorobenzene 1 33.0605 0 50 50 51 50 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Chlorotoluene             | 1        | 38.4556        | 0        | 50            | 77            | 50        | 130        |
| Bromobenzene       1       43.0828       0       50       86       50       13.3,5-Trimethylbenzene       1       37.7217       0       50       75       50       13.3,5-Trimethylbenzene       1       37.7217       0       50       75       50       13.3,5-Trimethylbenzene       1       25.8829       0       50       75       50       13.3,5-Trimethylbenzene       1       36.5859       0       50       73       50       13.3,5-Trimethylbenzene       1       38.6607       0       50       77       50       13.3,5-Trimethylbenzene       1       37.9148       0       50       76       50       13.3,5-Trimethylbenzene       1       37.1844       0       50       76       50       13.3,5-Trimethylbenzene       1       37.1844       0       50       74       50       13.3,5-Trimethylbenzene       1       36.3559       0       50       74       50       13.3,5-Trimethylbenzene       1       35.8178       0       50       73       50       13.3,5-Trimethylbenzene       1       35.8178       0       50       72       50       13.3,5-Trimethylbenzene       1       37.9735       0       50       76       50       13.3,5-Trimethylbenzene       1       37.9735       <              | n-Propylbenzene             | 1        | 38.4607        | 0        | 50            | 77            | 50        | 130        |
| 1,3,5-Trimethylbenzene       1       37.7217       0       50       75       50       13         Butyl methacrylate       1       25.8829       0       50       52       50       13         t-Butylbenzene       1       36.5859       0       50       73       50       13         1,2,4-Trimethylbenzene       1       38.6607       0       50       77       50       13         sec-Butylbenzene       1       37.9148       0       50       76       50       13         4-Isopropyltoluene       1       37.1844       0       50       74       50       13         n-Butylbenzene       1       36.3559       0       50       73       50       13         p-Diethylbenzene       1       35.8178       0       50       72       50       13         1,2,4,5-Tetramethylbenzene       1       39.2621       0       50       76       50       13         1,2-Dibromo-3-Chloropropane       1       37.9735       0       50       76       50       13         Camphor       1       435.09       0       50       51       50       13         Hexachlorobu                                                                                                                                                       | • •                         | 1        | 43.0828        | 0        | 50            | 86            | 50        | 130        |
| Butyl methacrylate       1       25.8829       0       50       52       50       13         t-Butylbenzene       1       36.5859       0       50       73       50       13         1,2,4-Trimethylbenzene       1       38.6607       0       50       77       50       13         sec-Butylbenzene       1       37.9148       0       50       76       50       13         4-Isopropyltoluene       1       37.1844       0       50       74       50       13         n-Butylbenzene       1       36.3559       0       50       73       50       13         p-Diethylbenzene       1       35.8178       0       50       72       50       13         1,2,4,5-Tetramethylbenzene       1       39.2621       0       50       79       50       13         1,2-Dibromo-3-Chloropropane       1       37.9735       0       50       76       50       13         Camphor       1       435.09       0       50       87       50       13         Hexachlorobutadiene       1       25.5804       0       50       50       50       50         1,2,4-Trichloro                                                                                                                                                       | 1.3.5-Trimethylbenzene      | 1        | 37.7217        | 0        | 50            | 75            | 50        | 130        |
| t-Butylbenzene       1       36.5859       0       50       73       50       13         1,2,4-Trimethylbenzene       1       38.6607       0       50       77       50       13         sec-Butylbenzene       1       37.9148       0       50       76       50       13         4-Isopropyltoluene       1       37.1844       0       50       74       50       13         n-Butylbenzene       1       36.3559       0       50       73       50       13         p-Diethylbenzene       1       35.8178       0       50       72       50       13         1,2,4,5-Tetramethylbenzene       1       39.2621       0       50       79       50       13         1,2-Dibromo-3-Chloropropane       1       37.9735       0       50       76       50       13         Camphor       1       435.09       0       50       87       50       13         Hexachlorobutadiene       1       25.5804       0       50       50       51       50       13         1,2,4-Trichlorobenzene       1       33.0605       0       50       66       50       15   <                                                                                                                                                              | · · · · ·                   | 1        | 25.8829        | 0        | 50            | 52            | 50        | 130        |
| 1,2,4-Trimethylbenzene       1       38.6607       0       50       77       50       13         sec-Butylbenzene       1       37.9148       0       50       76       50       13         4-Isopropyltoluene       1       37.1844       0       50       74       50       13         n-Butylbenzene       1       36.3559       0       50       73       50       13         p-Diethylbenzene       1       35.8178       0       50       72       50       13         1,2,4,5-Tetramethylbenzene       1       39.2621       0       50       79       50       13         1,2-Dibromo-3-Chloropropane       1       37.9735       0       50       76       50       13         Camphor       1       435.09       0       50       87       50       13         Hexachlorobutadiene       1       25.5804       0       50       51       50       13         1,2,4-Trichlorobenzene       1       33.0605       0       50       66       50       13                                                                                                                                                                                                                                                                    | •                           | 1        | 36.5859        | Ö        | 50            | 73            | 50        | 130        |
| sec-Butylbenzene       1       37.9148       0       50       76       50       13         4-Isopropyltoluene       1       37.1844       0       50       74       50       13         n-Butylbenzene       1       36.3559       0       50       73       50       13         p-Diethylbenzene       1       35.8178       0       50       72       50       13         1,2,4,5-Tetramethylbenzene       1       39.2621       0       50       79       50       13         1,2-Dibromo-3-Chloropropane       1       37.9735       0       50       76       50       13         Camphor       1       435.09       0       50       87       50       13         Hexachlorobutadiene       1       25.5804       0       50       51       50       13         1,2,4-Trichlorobenzene       1       33.0605       0       50       66       50       11                                                                                                                                                                                                                                                                                                                                                                     | •                           | 1        | 38.6607        | 0        | 50            | 77            | 50        | 130        |
| 4-Isopropyltoluene       1       37.1844       0       50       74       50       13         n-Butylbenzene       1       36.3559       0       50       73       50       13         p-Diethylbenzene       1       35.8178       0       50       72       50       13         1,2,4,5-Tetramethylbenzene       1       39.2621       0       50       79       50       13         1,2-Dibromo-3-Chloropropane       1       37.9735       0       50       76       50       15         Camphor       1       435.09       0       50       87       50       13         Hexachlorobutadiene       1       25.5804       0       50       51       50       13         1,2,4-Trichlorobenzene       1       33.0605       0       50       66       50       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                           | 1        | 37.9148        | 0        | 50            | 76            | 50        | 130        |
| n-Butylbenzene     1     36.3559     0     50     73     50     13       p-Diethylbenzene     1     35.8178     0     50     72     50     13       1,2,4,5-Tetramethylbenzene     1     39.2621     0     50     79     50     13       1,2-Dibromo-3-Chloropropane     1     37.9735     0     50     76     50     13       Camphor     1     435.09     0     50     87     50     13       Hexachlorobutadiene     1     25.5804     0     50     51     50     13       1,2,4-Trichlorobenzene     1     33.0605     0     50     66     50     11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                           | 1        | 37.1844        | 0        | 50            | 74            | 50        | 130        |
| p-Diethylbenzene     1     35.8178     0     50     72     50     13       1,2,4,5-Tetramethylbenzene     1     39.2621     0     50     79     50     13       1,2-Dibromo-3-Chloropropane     1     37.9735     0     50     76     50     15       Camphor     1     435.09     0     500     87     50     13       Hexachlorobutadiene     1     25.5804     0     50     51     50     13       1,2,4-Trichlorobenzene     1     33.0605     0     50     66     50     11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · ·                       | 1        | 36.3559        |          | 50            | 73            | 50        | 130        |
| 1,2,4,5-Tetramethylbenzene     1     39.2621     0     50     79     50     1       1,2-Dibromo-3-Chloropropane     1     37.9735     0     50     76     50     1       Camphor     1     435.09     0     500     87     50     1       Hexachlorobutadiene     1     25.5804     0     50     51     50     1       1,2,4-Trichlorobenzene     1     33.0605     0     50     66     50     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                           | 1        |                |          | 50            | 72            | 50        | 130        |
| 1.2-Dibromo-3-Chloropropane         1         37.9735         0         50         76         50         1           Camphor         1         435.09         0         500         87         50         1           Hexachlorobutadiene         1         25.5804         0         50         51         50         1           1.2,4-Trichlorobenzene         1         33.0605         0         50         66         50         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                           | 1        |                | -        | 50            | 79            | 50        | 130        |
| Camphor       1       435.09       0       500       87       50       13         Hexachlorobutadiene       1       25.5804       0       50       51       50       13         1,2,4-Trichlorobenzene       1       33.0605       0       50       66       50       11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                           | 1        |                | -        |               |               |           | 130        |
| Hexachlorobutadiene         1         25.5804         0         50         51         50         13           1,2,4-Trichlorobenzene         1         33.0605         0         50         66         50         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | _        |                |          |               |               |           | 130        |
| 1,2,4-Trichlorobenzene 1 33.0605 0 50 66 50 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                           |          |                |          |               |               |           | 130        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |          |                | -        |               | - ·           |           | 130        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.3-Trichlorobenzene      | 1        | 33.8887        | <u>v</u> | <del>50</del> | 68            | <u>50</u> | 130        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |          |                |          | _             |               |           | 130        |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

# Form3 RPD Data Laboratory Limits

QC Batch: MBS89411

Data File

Sample ID:

Spike or Dup: 11M83427.D Duplicate(If applicable): 11M83426.D

AD19504-005(MSD) AD19504-005(MS) Analysis Date

10/1/2020 3:54:00 PM 10/1/2020 3:35:00 PM

Inst Blank(If applicable):

Method: 8260D Matrix: Soil

QC Type: MSD

| Analyte:                              | Column           | Dup/MSD/MBSD<br>Conc             | Sample/MS/MBS<br>Conc | RPD                | Limit               |
|---------------------------------------|------------------|----------------------------------|-----------------------|--------------------|---------------------|
| Chlorodifluoromethane                 | 1                | 40.3044                          | 39.0663               | 3.1                | 30                  |
| Dichlorodifluoromethane               |                  | 33.2334                          | <u>33.061</u>         | 0.52               | <u>30</u>           |
| Chloromethane                         | <u>1</u><br>1    | 31.5805                          | 32.6144               | 3.2                | <u>30</u>           |
| Bromomethane                          | 1                | 38.4898                          | 39.7397               | 3.2                | <u>30</u>           |
| Vinyl Chloride                        | 1<br>1<br>1<br>1 | 35.9296                          | 36.676                | 2.1                | <u>40</u>           |
| Chloroethane                          | 1                | <u>40.2106</u>                   | 40.6438               | 1.1                | <u>30</u>           |
| Trichlorofluoromethane                | 1                | 41.3214                          | 41.524                | 0.49               | <u>30</u>           |
| Ethyl ether                           | 1                | 43.4508                          | 47.6515               | 9.2                | <u>30</u>           |
| Furan                                 | i                | 36.9931                          | 38.7126               | 4.5                | 30                  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1                | 44.5975                          | 44.5049               | 0.21               | <u>30</u>           |
| Methylene Chloride                    | 1 1              | 42.8442                          | 44.6246               | <u>v.21</u><br>4.1 | <u>30</u><br>30     |
| Acrolein                              | 1                | 42.0442<br>132.0898              | 133.7812              | 1.3                | <u>30</u><br>30     |
|                                       | 1                | 39.6621                          | 42.1112               | 6                  | 30                  |
| Acrylonitrile                         | 1                | 28.1782                          | 26.7891               | 5.1                | 30                  |
| Iodomethane                           | -                |                                  |                       | 1.2                | 30<br>30            |
| Acetone                               | <u>1</u><br>1    | <u>193.194</u>                   | <u>190.8121</u>       |                    |                     |
| Carbon Disulfide                      | 1                | <u>39.3403</u>                   | <u>40.1099</u>        | <u>1.9</u>         | <u>30</u>           |
| t-Butyl Alcohol                       | •                | 149.9155                         | 145.7471              | 2.8                | 30                  |
| n-Hexane                              | 1                | 38.3359                          | 39.6293               | 3.3                | 30                  |
| Di-isopropyl-ether                    | 1                | 42.1995                          | 43.1466               | 2.2                | 30                  |
| 1,1-Dichloroethene                    | 1<br>1<br>1<br>1 | <u>41.2888</u>                   | <u>42.4968</u>        | <u>2.9</u>         | <u>40</u>           |
| Methyl Acetate                        | 1                | <u>66.3837</u>                   | <u>71.4855</u>        | <u>7.4</u>         | <u>30</u>           |
| Methyl-t-butyl ether                  | 1                | <u>46.4026</u>                   | <u>48.0215</u>        | <u>3.4</u>         | <u>30</u>           |
| 1,1-Dichloroethane                    | 1                | <u>41.5304</u>                   | <u>42.7247</u>        | <u>2.8</u>         | <u>40</u>           |
| trans-1,2-Dichloroethene              |                  | <u>41.0115</u>                   | <u>41.2101</u>        | <u>0.48</u>        | <u>30</u>           |
| Ethyl-t-butyl ether                   | 1                | 36.9482                          | 38.5057               | 4.1                | 30                  |
| cis-1,2-Dichloroethene                | <u>1</u>         | <u>38.9086</u>                   | <u>39.6989</u>        | <u>2</u>           | <u>30</u>           |
| <u>Bromochloromethane</u>             | <u>1</u>         | <u>41.6194</u>                   | <u>43.04</u>          | <u>3.4</u>         | <u>30</u>           |
| 2,2-Dichloropropane                   | 1                | 37.6291                          | 38.901                | 3.3                | 30                  |
| Ethyl acetate                         | 1                | 20.4132                          | 21.252                | 4                  | 30                  |
| <u>1,4-Dioxane</u>                    | 1                | <u>2151.485</u>                  | <u> 1941.512</u>      | <u>10</u>          | <u>30</u>           |
| 1,1-Dichloropropene                   | 1                | 39.5758                          | 40.6404               | 2.7                | 30                  |
| <u>Chloroform</u>                     | 1                | <u>42.6947</u>                   | <u>43.1324</u>        | <u>1</u>           | <u>40</u>           |
| Cyclohexane                           | 1<br>1<br>1<br>1 | <u>38.5772</u>                   | <u>39.9485</u>        | <u>3.5</u>         | <u>30</u>           |
| 1,2-Dichloroethane                    | 1                | <u>40.2784</u>                   | <u>43.0305</u>        | <u>6.6</u>         | <u>40</u>           |
| 2-Butanone                            | 1                | <u> 28.897</u>                   | <u>28.7724</u>        | <u>0.43</u>        | <u>40</u>           |
| 1,1,1-Trichloroethane                 | 1                | <u>40.1326</u>                   | <u>41.2527</u>        | <u>2.8</u>         | <u>30</u>           |
| Carbon Tetrachloride                  | <u>1</u>         | <u>39.3722</u>                   | <u> 39.9271</u>       | <u>1.4</u>         | <u>40</u>           |
| Vinyl Acetate                         | 1                | 24.7509                          | 25.1888               | 1.8                | 30                  |
| <b>Bromodichloromethane</b>           | 1                | 40.7322                          | <u>41.312</u>         | <u>1.4</u>         | <u>30</u>           |
| Methylcyclohexane                     | 1                | <u> 38.4475</u>                  | <u>39.401</u>         | 2.4                | <u>30</u>           |
| Dibromomethane                        | 1                | 37.41                            | 37.4414               | 0.08               | 30                  |
| 1,2-Dichloropropane                   | <u>1</u>         | 41.2771                          | 42.3724               | 2.6                | <u>30</u>           |
| Trichloroethene                       | <u>1</u>         | 38.4177                          | <del>39.1313</del>    | 1.8                | 40                  |
| Benzene                               |                  | 40.8602                          | 41.8835               | 2.5                | <u>40</u>           |
| tert-Amyl methyl ether                | <u>1</u><br>1    | 40.3707                          | 40.6965               | 0.8                | 30                  |
| Iso-propylacetate                     | 1                | 25.9353                          | 26.1554               | 0.85               | 30                  |
| Methyl methacrylate                   | 1                | 44.8646                          | 46.8319               | 4.3                | 30                  |
| Dibromochloromethane                  | 1                | 40.162                           | 40.1614               | <u>0</u>           | <u>30</u>           |
| 2-Chloroethylvinylether               | ī                | 40.0463                          | 39.5115               | 1.3                | 30                  |
| cis-1,3-Dichloropropene               | 1                | 39.1186                          | 39.5513               | 1.1                | <u>30</u>           |
| trans-1,3-Dichloropropene             | <u>.</u><br>1    | 38.95                            | 40.6113               | 4.2                | <u>30</u>           |
| Ethyl methacrylate                    | <u>1</u><br>1    | 26.0503                          | 25.4546               | 2.3                | 30                  |
| 1,1,2-Trichloroethane                 |                  | 42.554                           | 42.3023               | 0.59               | <u>30</u>           |
| 1,2-Dibromoethane                     | 1                | 41.4307                          | 42.0195               | 1.4                | <u>30</u>           |
| 1,3-Dichloropropane                   | 1<br>1<br>1      | 41.7784                          | 42.5878               | 1.9                | <del>30</del><br>30 |
| 4-Methyl-2-Pentanone                  |                  | <u>34.3184</u>                   | 34.1663               | 0.44               | <u>30</u>           |
| 2-Hexanone                            | 1<br>1<br>1<br>1 | 33.2026                          | 33.7164               | 1.5                | <u>30</u>           |
| Z-nexamone<br>Tetrachloroethene       | 1                | <u>35.2020</u><br><u>35.1159</u> | 34.9413               | 0.5                | <u> </u>            |
| Toluene                               | <u> </u>         | 36.611                           | 37.3776               | <u>0.5</u><br>2.1  | <u>40</u><br>40     |
| 1,1,1,2-Tetrachloroethane             | 1                | 38.5118                          | 38.5162               | 0.01               | <del>40</del><br>30 |
|                                       | 1                |                                  | 38.001                | 0.39               | 40                  |
| Chlorobenzene                         | 1                | <u>37.8528</u>                   | 30.001                | <u> </u>           | 40                  |

<sup>\* -</sup> Indicates outside of limits

# Form3 RPD Data Laboratory Limits

QC Batch: MBS89411

Method: 8260D Matrix: Soil QC Type: MSD Dup/MSD/MBSD Sample/MS/MBS Analyte: Column Conc Conc RPD Limit 23.7092 22.5639 30 n-Butyl acrylate 1 n-Amyl acetate 14.4545 5.8 30 1 15.3123 **Bromoform** 1 40.5078 40.4712 0.09 <u>30</u> **Ethylbenzene** 40.1695 41.3817 <u>30</u> 1 1,1,2,2-Tetrachloroethane <u>1</u> <u>45.5252</u> 44.7104 1.8 <u>30</u> 1 41.6827 42.0914 0.98 30 Styrene <u>30</u> m&p-Xylenes 1 73.4035 76.6221 <u>4.3</u> 1 41.0892 <u>30</u> o-Xylene 41.0794 0.02 30 trans-1,4-Dichloro-2-butene 1 34.0682 34.8169 2.2 1 37.1928 37.6742 <u>30</u> 1,3-Dichlorobenzene <u>1.3</u> 1 37.1027 37.4226 0.86 <u>40</u> 1,4-Dichlorobenzene 1 38.0385 <u>40</u> 1,2-Dichlorobenzene 38.4247 1 <u>30</u> Isopropylbenzene 1 39.6197 39.7205 0.25 177.6047 30 3.3 Cyclohexanone 171.8091 30 Camphene 36.3339 35.9626 30 41.0088 40.8297 0.44 1,2,3-Trichloropropane 2-Chlorotoluene 39.3627 39.5811 0.55 30 38.7981 39.1732 0.96 30 p-Ethyltoluene 30 4-Chlorotoluene 38.4556 38.1313 0.85 40 n-Propylbenzene 38.4607 38.7078 0.64 Bromobenzene 43.0828 42.8613 0.52 30 30 1,3,5-Trimethylbenzene 37.7217 38.3127 1.6 24.2405 30 6.6 **Butyl** methacrylate 25.8829 30 t-Butylbenzene 36.5859 36.4538 0.36 30 1,2,4-Trimethylbenzene 38.6607 38.7398 0.2 40 sec-Butylbenzene 37.9148 37.4329 1.3 4-Isopropyltoluene 37.1844 36.9062 0.75 30 n-Butylbenzene 36.3559 35.8062 1.5 30 p-Diethylbenzene 30 35.8178 35.4358 1.1 1,2,4,5-Tetramethylbenzene 1 39.2621 39.2795 0.04 30 <u>30</u> 30 1,2-Dibromo-3-Chloropropane 37.9735 36.0068 <u>5.3</u> 1 Camphor 435.09 412.4506 5.3 25.6488 30 1 25.5804 0.27 Hexachlorobutadiene <u>30</u> 1,2,4-Trichlorobenzene <u>1</u> 33.0605 31.9547 3.4 1,2,3-Trichlorobenzene 1 33.8887 32.6948 <u>3.6</u> <u>30</u>

37.7263

Naphthalene

1.9

37.0087

30

#### FORM 4 Blank Summary

Blank Number: DAILY BLANK Blank Data File: 11M83376.D

Matrix: Soil

Blank Analysis Date: 09/30/20 18:24

Blank Extraction Date: NA (If Applicable)

Method: EPA 8260D

| Sample Number   | Data File  | Analysis Date  |  |
|-----------------|------------|----------------|--|
| AD19479-002     | 11M83392.D | 09/30/20 23:40 |  |
| AD19479-008     | 11M83394.D | 10/01/20 00:20 |  |
| AD19479-010     | 11M83395.D | 10/01/20 00:39 |  |
| AD19479-018     | 11M83399.D | 10/01/20 01:59 |  |
| AD19479-020     | 11M83400.D | 10/01/20 02:19 |  |
| AD19504-001(MSD | 11M83381.D | 09/30/20 20:03 |  |
| AD19504-001(MS) | 11M83380.D | 09/30/20 19:43 |  |
| MBS89405        | 11M83379.D | 09/30/20 19:23 |  |
| AD19504-001     | 11M83377.D | 09/30/20 18:43 |  |

#### FORM 4 Blank Summary

Blank Analysis Date: 10/01/20 11:57 Blank Number: DAILY BLANK

Blank Data File: 11M83418.D Blank Extraction Date: NA Matrix: Soil

(If Applicable)
Method: EPA 8260D

| Sample Number   | Data File  | Analysis Date  |  |
|-----------------|------------|----------------|--|
| AD19479-004     | 11M83439.D | 10/01/20 19:51 |  |
| AD19479-006     | 11M83438.D | 10/01/20 19:32 |  |
| AD19479-012     | 11M83440.D | 10/01/20 20:11 |  |
| AD19479-014     | 11M83436.D | 10/01/20 18:52 |  |
| AD19479-016     | 11M83437.D | 10/01/20 19:12 |  |
| AD19504-005(MSD | 11M83427.D | 10/01/20 15:54 |  |
| MBS89411        | 11M83419.D | 10/01/20 12:17 |  |
| AD19504-005     | 11M83420.D | 10/01/20 12:37 |  |
| AD19504-005(MS) | 11M83426.D | 10/01/20 15:35 |  |

#### Form 5

Tune Name: BFB TUNE Data File: 11M81478.D
Instrument: GCMS 11 Analysis Date: 08/05/20 12:08
Method: EPA 8260D
Tune Scan/Time Range: Average of 7.144 to 7.170 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/ |
|------|------|------|-------|-------|-------|-------|
| Mass | Mass | Lim  |       | Abund | Abund | Fail  |
| 50   | 95   | 15   | 40    | 16.4  | 6729  | PASS  |
| 75   | 95   | 30   | 60    | 47.4  | 19513 | PASS  |
| 95   | 95   | 100  | 100   | 100.0 | 41126 | PASS  |
| 96   | 95   | 5    | 9     | 7.1   | 2911  | PASS  |
| 173  | 174  | 0.00 | 2     | 0.7   | 291   | PASS  |
| 174  | 95   | 50   | 100   | 99.0  | 40704 | PASS  |
| 175  | 174  | 5    | 9     | 7.2   | 2916  | PASS  |
| 176  | 174  | 95   | 101   | 99.0  | 40282 | PASS  |
| 177  | 176  | 5    | 9     | 6.9   | 2794  | PASS  |

| Data File  | Sample Number | Analysis Date: |
|------------|---------------|----------------|
| 11M81482.D | CAL @ 100 PPB | 08/05/20 13:21 |
| 11M81484.D | CAL @ 250 PPB | 08/05/20 14:01 |
| 11M81486.D | CAL @ 500 PPB | 08/05/20 14:41 |
| 11M81487.D | BLK           | 08/05/20 15:01 |
| 11M81493.D | CAL @ 0.5 PPB | 08/05/20 17:00 |
| 11M81494.D | CAL @ 1 PPB   | 08/05/20 17:20 |
| 11M81495.D | CAL @ 2 PPB   | 08/05/20 17:40 |
| 11M81496.D | CAL @ 5 PPB   | 08/05/20 18:00 |
| 11M81497.D | CAL @ 20 PPB  | 08/05/20 18:20 |
| 11M81498.D | CAL @ 50 PPB  | 08/05/20 18:39 |
| 11M81501.D | ICV           | 08/05/20 19:39 |
| 11M81503.D | DAILY BLANK   | 08/05/20 20:19 |

CLPBFB

Data Path : G:\GcMsData\2020\GCMS\_11\Data\08-05-20\

Data File : 11M81478.D

Acq On : 5 Aug 2020 12:08

Operator : WP

Sample : BFB TUNE

Misc : S,5G

ALS Vial : 1 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GCMSDATA\2020\GCMS\_11\METHODQT\11M S0805.M

Title : @GCMS\_11,ug,624,8260

Last Update : Thu Aug 06 07:16:09 2020



Spectrum Information: Average of 7.144 to 7.170 min.

| Target  <br>  Mass | Rel. to | Lower  <br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |   |
|--------------------|---------|-------------------|-----------------|--------------|------------|---------------------|---|
| 50                 | 95      | 15                | 40              | 16.4         | 6729       | PASS                | Ī |
| 75                 | 95      | 30                | 60              | 47.4         | 19513      | PASS                | Ì |
| 95                 | 95      | 100               | 100             | 100.0        | 41126      | PASS                |   |
| 96                 | 95      | 5                 | 9               | 7.1          | 2911       | PASS                |   |
| 173                | 174     | 0.00              | 2               | 0.7          | 291        | PASS                | İ |
| 174                | 95      | 50                | 100             | 99.0         | 40704      | PASS                | İ |
| 175                | 174     | 5                 | 9               | 7.2          | 2916       | PASS                | İ |
| 176                | 174     | 95                | 101             | 99.0         | 40282      | PASS                | İ |
| 177                | 176     | 5                 | 9               | 6.9          | 2794       | PASS                | İ |

#### Form 5

Tune Name: BFB TUNE Data File: 11M83370.D
Instrument: GCMS 11 Analysis Date: 09/30/20 16:31
Method: EPA 8260D
Tune Scan/Time Range: Average of 7.147 to 7.157 min

| Tgt   | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/ |
|-------|------|------|-------|-------|-------|-------|
| Mass_ | Mass | Lim  |       | Abund | Abund | Fail  |
| 50    | 95   | 15   | 40    | 15.3  | 2684  | PASS  |
| 75    | 95   | 30   | 60    | 42.5  | 7459  | PASS  |
| 95    | 95   | 100  | 100   | 100.0 | 17530 | PASS  |
| 96    | 95   | 5    | 9     | 8.2   | 1440  | PASS  |
| 173   | 174  | 0.00 | 2     | 1.2   | 153   | PASS  |
| 174   | 95   | 50   | 100   | 73.6  | 12905 | PASS  |
| 175   | 174  | 5    | 9     | 7.0   | 902   | PASS  |
| 176   | 174  | 95   | 101   | 96.4  | 12435 | PASS  |
| 177   | 176  | 5    | 9     | 8.3   | 1026  | PASS  |

| Data File  | Sample Number   | Analysis Date: |
|------------|-----------------|----------------|
| 11M83371.D | CAL @ 50 PPB    | 09/30/20 16:45 |
| 11M83372.D | 50 PPB          | 09/30/20 17:04 |
| 11M83373.D | BLK             | 09/30/20 17:24 |
| 11M83374.D | BLK             | 09/30/20 17:44 |
| 11M83375.D | BLK             | 09/30/20 18:04 |
| 11M83376.D | DAILY BLANK     | 09/30/20 18:24 |
| 11M83377.D | AD19504-001     | 09/30/20 18:43 |
| 11M83378.D | AD19504-003     | 09/30/20 19:03 |
| 11M83379.D | MBS89405        | 09/30/20 19:23 |
| 11M83380.D | AD19504-001(MS) | 09/30/20 19:43 |
| 11M83381.D | AD19504-001(MSD | 09/30/20 20:03 |
| 11M83382.D | BLK             | 09/30/20 20:22 |
| 11M83383.D | BLK             | 09/30/20 20:42 |
| 11M83384.D | AD19451-001     | 09/30/20 21:02 |
| 11M83385.D | AD19451-002     | 09/30/20 21:22 |
| 11M83386.D | AD19451-003     | 09/30/20 21:41 |
| 11M83387.D | AD19451-004     | 09/30/20 22:01 |
| 11M83388.D | AD19451-005     | 09/30/20 22:21 |
| 11M83389.D | AD19451-006     | 09/30/20 22:41 |
| 11M83390.D | AD19451-007     | 09/30/20 23:01 |
| 11M83391.D | BLK             | 09/30/20 23:20 |
| 11M83392.D | AD19479-002     | 09/30/20 23:40 |
| 11M83393.D | AD19479-004     | 10/01/20 00:00 |
| 11M83394.D | AD19479-008     | 10/01/20 00:20 |
| 11M83395.D | AD19479-010     | 10/01/20 00:39 |
| 11M83396.D | AD19479-012     | 10/01/20 00:59 |
| 11M83397.D | AD19479-014     | 10/01/20 01:19 |
| 11M83398.D | AD19479-016     | 10/01/20 01:39 |
| 11M83399.D | AD19479-018     | 10/01/20 01:59 |
| 11M83400.D | AD19479-020     | 10/01/20 02:19 |
| 11M83401.D | AD19479-006     | 10/01/20 02:38 |
| 11M83402.D | BLK             | 10/01/20 02:58 |
| 11M83403.D | AD19466-001     | 10/01/20 03:18 |
| 11M83404.D | MBS89406        | 10/01/20 03:38 |
| 11M83405.D | BLK             | 10/01/20 03:58 |
| 11M83406.D | BLK             | 10/01/20 04:17 |
| 11M83407.D | BLK             | 10/01/20 04:37 |
| 11M83408.D | BLK             | 10/01/20 04:57 |
| 11M83409.D | BLK             | 10/01/20 05:17 |
| 11M83410.D | BLK             | 10/01/20 05:37 |

Data Path : G:\GcMsData\2020\GCMS 11\Data\09-3020\

Data File: 11M83370.D

Acq On : 30 Sep 2020 16:31

Operator : WP

Sample : BFB TUNE Misc : S,5G

ALS Vial : 33 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GCMSDATA\2020\GCMS\_11\METHODQT\11M\_S0805.M

Title : @GCMS\_11,ug,624,8260

Last Update : Thu Aug 06 07:16:09 2020



Spectrum Information: Average of 7.147 to 7.157 min.

|   | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|---|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
| Ī | 50             | 95              | 15              | 40              | 15.3         | 2684       | PASS                |
| ı | 75             | 95              | 30              | 60              | 42.5         | 7459       | PASS                |
| İ | 95             | 95              | 100             | 100             | 100.0        | 17530      | PASS                |
|   | 96             | 95              | 5               | 9               | 8.2          | 1440       | PASS                |
|   | 173            | 174             | 0.00            | 2               | 1.2          | 153        | PASS                |
|   | 174            | 95              | 50              | 100             | 73.6         | 12905      | PASS                |
|   | 175            | 174             | 5               | 9               | 7.0          | 902        | PASS                |
|   | 176            | 174             | 95              | 101             | 96.4         | 12435      | PASS                |
| İ | 177            | 176             | 5               | 9               | 8.3          | 1026       | PASS                |
|   |                |                 |                 |                 |              |            |                     |

#### Form 5

Tune Name: BFB TUNE

Data File: 11M83412.D Instrument: GCMS 11 Analysis Date: 10/01/20 10:05
Method: EPA 8260D
Tune Scan/Time Range: Average of 7.151 to 7.157 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/ |
|------|------|------|-------|-------|-------|-------|
| Mass | Mass | Lim  | _     | Abund | Abund | Fail  |
| 50   | 95   | 15   | 40    | 15.5  | 5028  | PASS  |
| 75   | 95   | 30   | 60    | 48.6  | 15816 | PASS  |
| 95   | 95   | 100  | 100   | 100.0 | 32515 | PASS  |
| 96   | 95   | 5    | 9     | 7.6   | 2458  | PASS  |
| 173  | 174  | 0.00 | 2     | 1.2   | 301   | PASS  |
| 174  | 95   | 50   | 100   | 80.2  | 26093 | PASS  |
| 175  | 174  | 5    | 9     | 7.5   | 1962  | PASS  |
| 176  | 174  | 95   | 101   | 98.4  | 25677 | PASS  |
| 177  | 176  | 5    | 9     | 6.8   | 1751  | PASS  |

| Data File  | Sample Number   | Analysis Date: |
|------------|-----------------|----------------|
| 11M83414.D | CAL @ 50 PPB    | 10/01/20 10:38 |
| 11M83415.D | 50 PPB          | 10/01/20 10:58 |
| 11M83416.D | BLK             | 10/01/20 11:18 |
| 11M83417.D | BLK             | 10/01/20 11:38 |
| 11M83418.D | DAILY BLANK     | 10/01/20 11:57 |
| 11M83419.D | MBS89411        | 10/01/20 12:17 |
| 11M83420.D | AD19504-005     | 10/01/20 12:37 |
| 11M83421.D | AD19487-001     | 10/01/20 12:57 |
| 11M83422.D | AD19487-002     | 10/01/20 13:16 |
| 11M83423.D | AD19487-003     | 10/01/20 14:35 |
| 11M83424.D | AD19514-001     | 10/01/20 14:55 |
| 11M83425.D | AD19514-008     | 10/01/20 15:15 |
| 11M83426.D | AD19504-005(MS) | 10/01/20 15:35 |
| 11M83427.D | AD19504-005(MSD | 10/01/20 15:54 |
| 11M83428.D | BLK             | 10/01/20 16:14 |
| 11M83429.D | BLK             | 10/01/20 16:34 |
| 11M83430.D | AD19472-001     | 10/01/20 16:54 |
| 11M83431.D | AD19472-002     | 10/01/20 17:13 |
| 11M83432.D | AD19472-003     | 10/01/20 17:33 |
| 11M83433.D | BLK             | 10/01/20 17:53 |
| 11M83434.D | AD19487-002     | 10/01/20 18:13 |
| 11M83435.D | AD19514-001     | 10/01/20 18:32 |
| 11M83436.D | AD19479-014     | 10/01/20 18:52 |
| 11M83437.D | AD19479-016     | 10/01/20 19:12 |
| 11M83438.D | AD19479-006     | 10/01/20 19:32 |
| 11M83439.D | AD19479-004     | 10/01/20 19:51 |
| 11M83440.D | AD19479-012     | 10/01/20 20:11 |
| 11M83441.D | BLK             | 10/01/20 20:31 |
| 11M83442.D | AD19501-002     | 10/01/20 20:51 |
| 11M83443.D | AD19501-004     | 10/01/20 21:10 |

CLPBFB

Data Path : G:\GcMsData\2020\GCMS\_11\Data\10-01-20\

Data File: 11M83412.D

Acq On : 1 Oct 2020 10:05

Operator : WP

Sample : BFB TUNE

Misc : S,5G

ALS Vial : 1 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GCMSDATA\2020\GCMS\_11\METHODQT\11M S0805.M

Title : @GCMS\_11,ug,624,8260

Last Update : Thu Aug 06 07:16:09 2020



Spectrum Information: Average of 7.151 to 7.157 min.

| Target<br>  Mass | Rel. to | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result  <br>  Pass/Fail |
|------------------|---------|-----------------|-----------------|--------------|------------|-------------------------|
| 50               | 95      | 15              | 40              | 15.5         | 5028       | PASS                    |
| 75               | 95      | 30              | 60              | 48.6         | 15816      | PASS                    |
| 95               | 95      | 100             | 100             | 100.0        | 32515      | PASS                    |
| 96               | 95      | 5               | 9               | 7.6          | 2458       | PASS                    |
| 173              | 174     | 0.00            | 2               | 1.2          | 301        | PASS                    |
| 174              | 95      | 50              | 100             | 80.2         | 26093      | PASS                    |
| 175              | 174     | 5               | 9               | 7.5          | 1962       | PASS                    |
| 176              | 174     | 95              | 101             | 98.4         | 25677      | PASS                    |
| 177              | 176     | 5               | 9               | 6.8          | 1751       | PASS                    |
|                  |         | - <i></i>       |                 |              |            |                         |

W

| Meth    |
|---------|
| od: EPA |
| 8260D   |

# Form 6 Initial Calibration

|                   | I = Correlation Coefficient for linear Eq.<br>2 = Correlation Coefficient for quad Eq.<br>Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound. | adratic Curv    | linear Eq<br>quad Eq.<br>ear, or Qu | cient for cient for RF, Lin | Correlation Coefficient for linear Eq. Correlation Coefficient for quad Eq. cates whether Avg RF, Linear, or Qu | Corr I = Co<br>Corr 2 = Co<br>Fit = Indica | - failed the min rf criteria  - failed the minimum correlation coeff criteria(if applicable)   Fir = | <ul> <li>failed the min rf criteria</li> <li>failed the minimum correlation</li> </ul> | a - Jailed th<br>c - failed th          |                              |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------|------------------------------|
| Page 1 of 3       |                                                                                                                                                                       | σ               | Avg Rsd: 9.305                      | Avg                         |                                                                                                                 |                                            | N                                                                                                    |                                                                                        | Flags                                   |                              |
| 900.0             | 20.00 5.00 2.00 50.00 100.0 250.0                                                                                                                                     | 0.20            | 0.998                               | 0.989                       | 0.352 5.41                                                                                                      |                                            | 0.3645 0.35// 0.3981 0.3240                                                                          | U.3464 U.347U U.3286 U                                                                 | - O AVG                                 | biomodicmotomethan           |
| 500.0             | 5.00 2.00 50.00 100.0 250.0                                                                                                                                           | į               |                                     | i                           | 0.353.5                                                                                                         |                                            |                                                                                                      | 0.3470 0.3386                                                                          |                                         | Promodicalle<br>Bromodicalle |
| 500.0             | 2.00 50.00 100.0 250.0                                                                                                                                                | <b>1</b> 5      |                                     | _                           | 0.4034.7                                                                                                        |                                            | 90830                                                                                                |                                                                                        | 1 0                                     | Vinyl Acetate                |
| 500.0             | 5 00 2 00 50 00 100 0 250 0                                                                                                                                           |                 |                                     |                             | 0.4324.0                                                                                                        |                                            |                                                                                                      |                                                                                        |                                         | Carbon Tetrachloride         |
| 500.0             | 5.00 2.00 50.00 100.0 250.0                                                                                                                                           | 11 010          | 0.990                               | 0.970                       | 0.0304.04.0                                                                                                     |                                            | 0.1010                                                                                               | 0.0377 0.1003 0.0391 0.0033 0.0023                                                     |                                         | 1 1 1-Trichloroethane        |
| 500.0             | 5.00 2.00 50.00 100.0 250.0                                                                                                                                           | 0 9             | 000                                 |                             | UE 7 U76U U                                                                                                     |                                            | 0.000                                                                                                | 0.0102 0.027 0.0000 0                                                                  |                                         | 2-Butanone                   |
| 0                 | 5 00 2 00 50 00 100 0 250 0                                                                                                                                           | 64 010          | O .                                 | _   i                       | İ                                                                                                               |                                            | 0.3548 0.2908                                                                                        |                                                                                        |                                         | 1.2-Dichloroethane           |
| 30.00 30.00 30.00 | 30.00 30.00 30.00                                                                                                                                                     |                 | <u>.</u>                            |                             | 13 0.323 4.03                                                                                                   | 0 1234 0 1213                              | 0.3001 0.2014                                                                                        |                                                                                        |                                         | 1 2-Dichloroethane-d4        |
| 0                 | 5 00 2 00 50 00 100 0 250 0                                                                                                                                           | 10 0 10         |                                     | 0971                        |                                                                                                                 | 2022 0.21                                  | 0.2601 0.1500                                                                                        |                                                                                        | A 2                                     | Cyclohexane                  |
| 30.00 30.00 30.00 | 30,00 00,00 00,00 00,00 00,00 00,00                                                                                                                                   |                 |                                     |                             |                                                                                                                 | 0 2822 0 2761                              | 0.7767 0.1966                                                                                        | 0.2807 0.2798 0.2838 0.2824 0.2757                                                     |                                         | Dibromofluoromethan          |
| 500.0             | 2.00 50.00 100.0 250.0                                                                                                                                                | 11 0.20         | 0.997                               |                             | 0.4474.49                                                                                                       |                                            |                                                                                                      |                                                                                        | A<br>O                                  | Chloroform                   |
| 500.0             | 5.00 2.00 50.00 100.0 250.0                                                                                                                                           | 9.5             | 0.996                               | i                           | 0.364 4.70                                                                                                      |                                            | 3923 0.3565 0.4004 0.2948                                                                            |                                                                                        |                                         | 1,1-Dichloropropene          |
| 25000             | 250.0 100.0 2500 5000 12500                                                                                                                                           | 6 X             | 0.999                               |                             | 0.00424 5.33                                                                                                    | !<br>                                      |                                                                                                      |                                                                                        |                                         | 1.4-Dioxane                  |
| 500.0             | 2.00 50.00 100.0 250.0                                                                                                                                                | <u>1</u> :      | 0.998                               |                             | 0.2094.32                                                                                                       | 1                                          | 2256 0.2088 0.2154 0.1618                                                                            | 0.2271 0.2159 0.2105 0.2256 0.2088                                                     |                                         | Ethyl acetate                |
| 500.0             | 5.00 2.00 50.00 100.0 250.0                                                                                                                                           | 4               | 0.997                               |                             | 0.3954.31                                                                                                       |                                            | 0.3924 0.3906 0.3648 0.4190 0.4082 0.4515 0.3361                                                     | 0.3924 0.3906 0.3648 0                                                                 |                                         | 2.2-Dichloropropane          |
| 500.0             | 5.00 2.00 50.00 100.0 250.0                                                                                                                                           | ç               | 0.998                               | -                           | 0.1634.45                                                                                                       |                                            | 0.1731                                                                                               | 0.1649 0.1750 0.1623 0.1760 0.1688                                                     |                                         | Bromochloromethane           |
| 500.0             | 500 200 5000 1000 2500                                                                                                                                                | ا<br>ا          | 0 997                               | į                           | 0 401 4 31                                                                                                      |                                            | 0 4495                                                                                               | 0 4009 0 4130 0 3738 0 4236 0 4099                                                     |                                         | cis-1 2-Dichloroethene       |
| 500.0             | 2 00 50 00 100 0 250 0                                                                                                                                                | 99 050          | 0.998                               |                             | 0.534.19                                                                                                        |                                            | 0.6659 0.6526 0.6872 0.6906 0.7062 0.5139                                                            | 0.6539 0.6659 0.6526 0                                                                 |                                         | Ethyl-t-butyl ether          |
| 500.0             | 2.00 50.00 100.0 250.0                                                                                                                                                |                 |                                     | 0.970                       | 0.402 3.32                                                                                                      |                                            | 0.4004                                                                                               | 0.7726 0.7734 0.2649 0                                                                 | 1 0 AV0                                 | trans-1 2-Dichlomethe        |
| 500.0 1.00        | 5.00 2.00 50.00 100.0 250.0                                                                                                                                           |                 | 0.998                               |                             | 0.531 3.59                                                                                                      | 0.52/2                                     |                                                                                                      | 0.3370 0.3417 0.3095 0                                                                 |                                         | 1 1-Dichlomethane            |
|                   | 2.00 50.00 100.0 250.0                                                                                                                                                |                 | 0.997                               |                             | 0.1233.2                                                                                                        | 3                                          | 0.0894                                                                                               | 0.1329 0.1402 0.1197 0                                                                 | 1 O AVG                                 | Methyl Acetate               |
| 500.0             | 50.00 100.0 250.0                                                                                                                                                     | 0.10            |                                     | i                           | 0.313 2.98                                                                                                      |                                            | 0.3289 0.3242 0.2846 0.3475 0.3138 0.3438 0.2471                                                     | 0.3289 0.3242 0.2846 0                                                                 |                                         | 1,1-Dichloroethene           |
| 500.0             | 2.00 50.00 100.0 250.0                                                                                                                                                |                 | 0.998                               |                             | 0.484 3.95                                                                                                      | 1                                          | 0.4886 0.4678 0.5118 0.5105 0.5348 0.3957                                                            | 0.4791 0.4886 0.4678 0                                                                 |                                         | Di-isopropyl-ether           |
| 500.0             | 2.00 50.00 100.0 250.0                                                                                                                                                | 12              | 0.996                               |                             | 0.237 3.81                                                                                                      |                                            | 0.2401 0.2649 0.2476 0.2510 0.2271 0.2514 0.1790                                                     | 0.2401 0.2649 0.2476 0                                                                 | 1 0 Avg                                 | n-Hexane                     |
| 2500.             | 10.00 250.0 500.0 1250.                                                                                                                                               |                 |                                     |                             | 0.0338 3.43                                                                                                     | 1                                          | 0.0369 0.0329 0.0369 0.0322 0.0362 0.0261                                                            | 0.0352 0.0369 0.0329 0                                                                 | ΑVQ                                     | t-Butyl Alcohol              |
| 500.0             | 100.0 250.0                                                                                                                                                           | 0.10            |                                     |                             | 0.744 3.18                                                                                                      |                                            | 0.7949 0.8187 0.7852 0.7144 0.7907 0.5577                                                            |                                                                                        | 1                                       | Carbon Disulfide             |
| 2500.             | 10.00 250.0 500.0 1250.                                                                                                                                               | 12 0.10 a       |                                     |                             | 0.0540 3.01                                                                                                     |                                            | 0.0596 0.0570 0.0573 0.0511 0.0563 0.0401                                                            | 0.0566 0.0596 0.0570 0                                                                 |                                         | Acetone                      |
| 500.0             | 5.00 2.00 50.00 100.0 250.0                                                                                                                                           | 50 ;            |                                     | •                           | 0 226 3 12                                                                                                      | -                                          | 0.1910 0.0975 0.0655 0.3137 0.3094 0.3657 0.2373                                                     | 0.1910 0.0975 0.0655 0                                                                 | 1 0 Qua                                 | lodomethane                  |
| 500 O             | 50.00 100.0 250.0                                                                                                                                                     | 14 7            |                                     |                             | 0.0237 2.00                                                                                                     |                                            | 0.0238                                                                                               | 0.0749 0.0678 0.0567 0                                                                 |                                         | Acrylonitrile                |
| 2500              | 25 00 10 00 250 0 500 0 1250                                                                                                                                          | 13 6            |                                     |                             | 0.257288                                                                                                        |                                            | 0.288                                                                                                | 0.263 0.026 0.270 0.288 0.0270                                                         |                                         | Acrolein                     |
| 5000              | 20.00 5.00 2.00 50.00 100.0 250.0                                                                                                                                     | 0.10            | 0.990                               | 0.900                       | 0.1732.37                                                                                                       |                                            | 0.1929 0.1740 0.1924 0.1930                                                                          | 0.1705 0.1055                                                                          | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Methylene Chloride           |
| 500.0             | 5.00 2.00 50.00 100.0 250.0                                                                                                                                           | 11 0.30 a       |                                     | •                           | 0.2052.01                                                                                                       |                                            | 0.2003                                                                                               | 0.2007 0.2001 0.2002 0                                                                 |                                         | 1 1 2-Trichloro-1 2 2-tr     |
| 500.0             | 2.00 50.00 100.0 250.0                                                                                                                                                | 11 0.50 a       |                                     |                             | 0.15/ 2.7                                                                                                       | -                                          | 0.1679                                                                                               | 0.1667 0.1544                                                                          |                                         | Eliran<br>Eliran             |
| 500.0             | 2.00 50.00 100.0 250.0                                                                                                                                                | 0.10            |                                     |                             | 0.462 2.54                                                                                                      | -                                          | 0.4908                                                                                               |                                                                                        |                                         | Trichlorofluoromethan        |
| 500.0             | 5.00 2.00 50.00 100.0 250.0                                                                                                                                           |                 |                                     |                             | 0.1852.32                                                                                                       | 1                                          | 0.2014                                                                                               | 0.1848 0.1852                                                                          |                                         | Chloroethane                 |
| 500.0             | 2.00 50.00 100.0 250.0                                                                                                                                                | :               |                                     | 0.961                       | 0.274 1.94                                                                                                      | 1                                          | 0.3031 0.2762 0.2972 0.2067                                                                          | 0.2786 0.2632                                                                          |                                         | Vinyl Chloride               |
| 500.0             | 5.00 2.00 50.00 100.0 250.0                                                                                                                                           |                 |                                     | •                           | 0.213 2.23                                                                                                      |                                            |                                                                                                      | 0.2219 0.2116                                                                          |                                         | Bromomethane                 |
| 500.0             | 5.00 2.00 50.00 100.0 250.0                                                                                                                                           |                 |                                     | 1 0.963                     | 0.231 1.84                                                                                                      | -                                          | 0.2464 0.2160 0.2259 0.1584                                                                          | 0.2490 0.2614 0.2587 0                                                                 | 1 0 Avg                                 | Chloromethane                |
| 500.0             | 5.00 2.00 50.00 100.0 250.0                                                                                                                                           | 0               |                                     | •                           | 0.1931.67                                                                                                       | 1                                          | 0.1895 0.2073                                                                                        | 0.1960                                                                                 | 1 0 Avg                                 | Dichlorodifluorometha        |
|                   | 20.00 5.00 2.00 50.00 100.0 250.0                                                                                                                                     | 12 0.10         | 0.996                               | 0.961                       | 0.296 1.68                                                                                                      | 1                                          | 0.3283 0.2948 0.3197 0.2219                                                                          | 0.3090 0.3110 0.2866 0                                                                 | 1 0 Avg                                 | Chlorodifluoromethane        |
| Lvi7 Lvi8 Lvi9    | LVI1 LVI2 LVI3 LVI4 LVI5 LVI6 LVI7                                                                                                                                    | %Rsd            | Corr2 %                             | Corr1                       | AvgRf RT                                                                                                        | RF8 RF9                                    | RF4_RF5_RF6_RF7_F                                                                                    | RF1 RF2 RF3 F                                                                          | Col Mr Fit:                             | Compound C                   |
|                   |                                                                                                                                                                       | :<br>:          |                                     | i<br>:                      |                                                                                                                 |                                            | 00/03/20 17:00                                                                                       | CAL @ 0.5 FFB                                                                          | 1 IMO 1493.D                            | 9;                           |
|                   | 08/05/20 17:20                                                                                                                                                        | @ 1 PPB         | CAL @                               | 494.D                       | 8 11M81                                                                                                         |                                            | 08/05/20 14:41                                                                                       | <u></u>                                                                                | 11M81486.D                              | 28                           |
|                   | 08/05/20 14:01                                                                                                                                                        | @ 250 PPB       | CAL @:                              | 484 D                       |                                                                                                                 |                                            | 08/05/20 13:21                                                                                       | CAL @                                                                                  | 11M81482.D                              |                              |
|                   | 08/05/20 18:39                                                                                                                                                        | . @ 50 PPB      | CAL @                               | 498.D                       | 4 11M81498.D                                                                                                    |                                            | 08/05/20 17:40                                                                                       | CAL                                                                                    | 11M81495.D                              |                              |
|                   | Analysis Date/Time 08/05/20 18:00                                                                                                                                     | Cal Identifier: | CAL @                               | Data File:<br>496.D         | #                                                                                                               | <u>.</u> -                                 | Analysis Date/Time 08/05/20 18:20                                                                    | Data File: Cal Identifier: 197.D CAL @ 20 PPB                                          | Data<br>11M81497.D                      | Level #:                     |
| l                 |                                                                                                                                                                       |                 |                                     |                             | iniliai Calibration                                                                                             | mual                                       |                                                                                                      |                                                                                        |                                         | 11                           |
| ∄S<br>11          | Instrument: GCMS 11                                                                                                                                                   |                 |                                     |                             | Form 6                                                                                                          | T 10                                       |                                                                                                      |                                                                                        |                                         | 7 Method: EPA 8260D          |

Form 6 Initial Calibration

|                                                                                                                                                                              | 2-Chlorotoluene                           | 1.2.3-Trichloropropane                           | Camphene                                         | Cyclohexanone                             | leastandheatana                           | 1.4-Dichlorobenzene                       | 1.3-Dichlorobenzene                       | trans-1,4-Dichloro-2-b                           | o-Xylene                           | m&p~Xvlenes                                      | Styrene                   | Bromofluorobenzene                               | Ethylbenzene 1 1 2 2-Tetrachloroeth                                      | Bromoform   | n-Amyl acetate                            | n-Butyl acrylate                          | Chlorobenzene                                    | 1 1 1 2-Tetrachloroeth                           | Toluene                                          | Teliano de                                                                                           | 2-Hexanone                                | 4-Methyl-2-Pentanone                             | 1,3-Dichloropropane                              | 1.2-Dibromoethane                                | 1 1 2-Trichlomethane                                                                                 | trans-1.3-Dichloroprop                           | cis-1,3-Dichloropropen                           | 2-Chloroethylvinylethe                           | Dibromochloromethan                       | Methyl methacrylate                              | tert-Amyl metnyl etner                           | Benzene                                         | Trichloroethene                                  | 1.2-Dichloropropane                              | Methylcyclohexane<br>Dibromomethane                                                               | 1_                  | 09                               | <b>12</b><br>س |                | <b>9</b> 6     |                                         | O1                 | Method: EPA 8260D          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------|------------------------------------|--------------------------------------------------|---------------------------|--------------------------------------------------|--------------------------------------------------------------------------|-------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------|----------------------------------|----------------|----------------|----------------|-----------------------------------------|--------------------|----------------------------|
| Flags<br>a - failed th<br>c - failed th                                                                                                                                      | 10                                        | 10                                               | 1 0 Avg                                          |                                           |                                           |                                           |                                           |                                                  | 1 0 Avg                            | 1 0 Avg                                          | 1 0 Avg                   | 1 - 0 Ava                                        | 1 0 Avg                                                                  | 1 0 Avg     | 1 0 Avg                                   | 1 0 Avg                                   | <u>.</u>                                         | <u>.</u>                                         | 1 0 Ava                                          | 1 O AVG                                                                                              |                                           | 10                                               | Avq                                              | 8                                                | 1 0 AVQ                                                                                              |                                                  |                                                  | 1 0 Avg                                          | 1 0 Avg                                   |                                                  | 1 O AVG                                          | 10                                              | 1 0 Avg                                          | 1 0 Avg                                          | 1 0 AVQ                                                                                           |                     |                                  | 11M81493.D     | 11M81486 D     | 11M81495.D     | 11M81497.D                              | Data               | O                          |
| lags<br>- failed the min rf criteria<br>- failed the minimum correlation coeff criteria(if applicable)                                                                       | 1.3957 1.3814 1.3190 1.4422 1.3631 1.5467 | 0.7215 0.7155 0.6702 0.7521 0.7204 0.6990 0.7434 | 0.8854 0.8554 0.8019 0.9157 0.7738 0.8296 0.9181 | 0 0212 0 0253 0 0247 0 0209 0 0179 0 0227 | 2 51/3 2 5003 2 7513 2 5782 2 2603 2 7237 | 1.421/ 1.4705 1.3059 1.4391 1.44/5 1.4343 | 1.1991 1.2544 1.2555 1.2362 1.2491 1.3315 | 0.2454 0.2411 0.2047 0.2603 0.2466 0.2593 0.2732 | 0.9339 0.9440 0.9186 0.9487 0.8675 | 0.9849 0.9505 0.9578 0.9900 0.8891 0.9576 0.9966 | 1.5730 1.5910 1.5442 1.6; | 0.8039 0.8186 0.7933 0.7819 0.7373 0.7692 0.6020 | 0.6845 0.6841 0.6152 0.6882 0.6172<br>0.6705 0.6836 0.6613 0.6740 0.6336 |             | 0.5622 0.4927 0.4958 0.6102 0.6152 0.6758 | 0.7210 0.7083 0.6420 0.7595 0.7345 0.7865 | 0.8922 0.9012 0.8865 0.9300 0.8947 0.9840 1.0285 | 0.3102 0.3063 0.2994 0.3353 0.3281 0.3668 0.3806 | 0.7628 0.7720 0.7585 0.8                         | 0.3091 0.3020 0.2853 0.3284 0.3063 0.3563 0.3434<br>1 1781 1 1760 1 1700 1 1868 1 1708 1 1607 1 2020 | 0.1706 0.1659 0.1673 0.1764 0.1694 0.1926 | 0.2305 0.2464 0.2653 0.2403 0.2281 0.2592 0.2663 | 0.4126 0.4230 0.3931 0.4375 0.4366 0.4715 0.4695 | 0.2721 0.2797 0.2473 0.2897 0.2823 0.2966 0.3529 | 0.1792 0.1799 0.1772 0.2031 0.2092 0.2281 0.2485<br>0.2467 0.2540 0.2498 0.2619 0.2604 0.2753 0.2928 | 0.3837 0.3871 0.3651 0.4315 0.4382 0.4740 0.5158 | 0.4364 0.4416 0.4002 0.4816 0.4789 0.5354 0.4787 | 0.0617 0.0560 0.0436 0.0674 0.0680 0.0737 0.0695 | 0.3236 0.3223 0.3129 0.39                 | 0.1960 0.2039 0.1798 0.2026 0.2182 0.2163 0.2514 | 0.5954 0.5332 0.5904 0.5488 0.5651 0.5783 0.5472 | 10195 1.0018 0.9331 1.0859 1.0330 1.1409 0.8848 | 0.3344 0.3351 0.3119 0.3515 0.3309 0.3618 0.2805 | 0.2339 0.2348 0.2149 0.2510 0.2433 0.2621 0.2111 | 0.3990 0.3820 0.3427 0.4172 0.3807 0.4370 0.3518 0.2053 0.2058 0.1884 0.2188 0.2187 0.2294 0.2018 | RF1 RF2 RF3 RF4     |                                  | ر<br>2 ج       | CA (A          | 2 5            | 2 5                                     | File:              |                            |
| eff criteria(if applicable)                                                                                                                                                  | 422 1.3631 1.5467 1.4967                  | 521 0.7204 0.6990 0.7434                         | 157 0.7738 0.8296 0.9181                         | 2.3143                                    | 782 7 7603 1.2403 1.1270                  |                                           | 362 1.2491 1.3315 1.2267                  | 603 0.2466 0.2593 0.2732                         | 1.0001 0.6770                      | 900 0.8891 0.9576 0.9966                         | 1.7589 1.1370             |                                                  |                                                                          |             | 102 0.6152 0.6758                         | 595 0.7345 0.7865 0.7021                  | 300 0.8947 0.9840 1.0285                         |                                                  | 0.7628 0.7720 0.7585 0.8126 0.7635 0.8516 0.9538 | 284                                                                                                  | 764 0.1694 0.1926 0.1907                  | 403 0.2281 0.2592 0.2663                         |                                                  |                                                  | 031 0.2092 0.2281 0.2485<br>619 0.2604 0.2753 0.2928                                                 | 315 0.4382 0.4740 0.5158                         | 816 0.4789 0.5354 0.4787                         | 674 0.0680 0.0737 0.0695                         | 0.3223 0.3129 0.3596 0.3508 0.3754 0.4335 | 026 0.2182 0.2163 0.2514                         | 488                                              |                                                 | 515 0.3309 0.3618 0.2805                         | 510 0.2433 0.2621 0.2111                         | 172 0.3807 0.4370 0.3518<br>188 0 2187 0 2294 0 2018                                              | 4 RF5 RF6 RF7       |                                  | 08/05/20 17:00 | 08/05/20 14:41 | 08/05/20 17:40 | 08/05/20 18:20                          | Analysis Date/Time |                            |
| Note:<br>Corr I = Corre<br>Corr 2 = Corre<br>Fit = Indicates                                                                                                                 |                                           |                                                  | 1                                                | 2.00                                      | 36011                                     |                                           | 1                                         |                                                  | 1.0079                             | 1.0319 1.3769                                    |                           | 0.8179 0.7997                                    | 0.7389                                                                   |             |                                           | -                                         |                                                  |                                                  | 0.8480                                           |                                                                                                      |                                           |                                                  |                                                  | 0.2640                                           |                                                                                                      | -                                                | -                                                |                                                  |                                           |                                                  |                                                  | 1.0211                                          |                                                  | *****                                            |                                                                                                   | RF8 RF9             | •                                | ,              | <b>20</b> (    | 4.0            |                                         | e Level#           | HOrm 6 Initial Calibration |
| Note: Corr I = Correlation Coefficien Corr 2 = Correlation Coefficien Fit = Indicates whether Avg RF                                                                         | 1.42 7.36                                 | 0.7177.25                                        | 0.854 7.24                                       | 0 02227 14                                | 2 44 7 07                                 | 1 16 0 05                                 | 1.257.78                                  | 0.2477.24                                        | 0.912 6.88                         | 1.02 6.66                                        | 1.54 6.88                 | 0.7697.17                                        | 0.665 6.60                                                               | 0.414 7.01  | 0.575 6.91                                | 0.7226.80                                 | 0.931 6.56                                       | 0 332 6 59                                       | 0.8155.82                                        | 0.3196.11                                                                                            | 0.1766.12                                 | 0.248 5.70                                       | 0.435 6.11                                       | 0.286 6.31                                       | 0.204 5.93                                                                                           | 0.428 5.91                                       | 0.465 5.64                                       | 0.0629 5.54                                      | 0.354 6.24                                | 0.2105.30                                        | 0.637 4.86                                       | 1.02 4.82                                       | 0.329 5.16                                       | 0.236 5.28                                       | 0.3875.27                                                                                         | AvgRf RT            |                                  |                |                | 11M81498       |                                         |                    | n 6<br>libration           |
| Avg Rsd: 9.305<br>nt for linear Eq.<br>nt for quad Eq.<br>c, Linear, or Qua                                                                                                  | 1                                         |                                                  |                                                  | 0.999 0.999                               |                                           |                                           | ~                                         |                                                  | 0.958 0.994                        |                                                  | 0.943 0.992               | -1 -1                                            | 0.994 0.999                                                              |             |                                           |                                           |                                                  |                                                  | 0.997 1.00                                       | 0.999 0.999                                                                                          |                                           |                                                  | - 1                                              |                                                  | 0.998 1.00                                                                                           |                                                  |                                                  |                                                  |                                           |                                                  | 0.999 1.00                                       |                                                 |                                                  |                                                  | 0.996 0.997                                                                                       |                     |                                  | i<br>i         | CAI (          |                |                                         | la File:           |                            |
| .305<br>Eq.<br>q.<br>Quadratic Cu                                                                                                                                            | 5.6                                       | 3.8                                              | ტ.<br>ტ. i                                       | 13 -                                      | ج د                                       |                                           |                                           |                                                  | 12 0.30                            |                                                  | 12 0.30                   |                                                  | 7.7 0.10                                                                 | 4.4 0.10    |                                           |                                           | 5.9 0.50                                         |                                                  | 83 040                                           | 1.9 0.20                                                                                             |                                           |                                                  |                                                  |                                                  | 61 0.50 a                                                                                            |                                                  |                                                  | 16                                               |                                           | 11 0.50 a                                        | 80 050                                           | i                                               |                                                  | 7.8 0.10                                         | 6.4                                                                                               | sd S                |                                  | (i             | @ 1 PPR        |                | (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) | Cal Identifier:    |                            |
| Avg Rsd: 9.305<br>Correlation Coefficient for linear Eq.<br>Correlation Coefficient for quad Eq.<br>icates whether Avg RF, Linear, or Quadratic Curve was used for compound. | 5.00 2.00                                 | 2.00                                             | 5.00 2.00                                        | 100 0 25 00 10 00 25                      | 5.00                                      | 2.00                                      | 5.00 2.00                                 | 5.00 2.00                                        | 2.00                               | 10.00 4.00                                       | 5.00 2.00                 | 30.00                                            | 500 200                                                                  | 5.00 2.00   | 20.00 5.00 2.00                           | 5.00 2.00                                 | 5.00 2.00                                        | 500 200                                          | 20.00 5.00 2.00 50                               | 30.00 2.00                                                                                           | 5.00 2.00                                 | 5.00 2.00                                        | 5.00 2.00                                        | 5.00 2.00                                        | 20.00 5.00 2.00                                                                                      | 20.00 5.00 2.00                                  | 5.00 2.00                                        | 5.00 2.00                                        | 20.00 5.00 2.00                           | 20.00 5.00 2.00                                  | 9 6                                              | 500 200                                         | 5.00 2.00                                        | 5.00 2.00                                        | 20.00 5.00 2.00 50                                                                                | - LVI2              | Calibrati                        |                | 08/05/20 17:20 | 08/05/20 18:39 | 08/05/20 18:00                          | Analysis Date/Time |                            |
|                                                                                                                                                                              | 100.0 250.0                               | 100.0 250.0                                      | 100.0                                            | 250.0 500.0 1250                          | 100.0 250.0                               | 100.0 250.0                               | 100.0 250.0                               | 100.0 250.0                                      | 50.00 100.0 250.0 500.0            | 200.0 500.0                                      | 100.0 250.0               | 30.00 30.00 30.00 30.00                          | 250.0                                                                    | 100.0 250.0 | 100.0 250.0                               | 100.0 250.0                               | 100.0 250.0                                      | 100 0 250 0                                      | 50.00 100.0 250.0 500.0                          | 30.00 250.0                                                                                          | 100.0 250.0                               | 100.0 250.0                                      | 100.0 250.0                                      | 100.0 250.0                                      | 50.00 100.0 250.0 500.0                                                                              | 100.0 250.0                                      | 100.0 250.0                                      | 100.0 250.0                                      | 100.0 250.0                               | 100.0 250.0                                      | 50.00 100.0 250.0 500.0                          | 100.0 250.0                                     | 100.0 250.0                                      | 100.0 250.0                                      | 50.00 100.0 250.0 500.0<br>50.00 100.0 250.0 500.0                                                | LVIA LVIS LVIG LVII | Calibration Level Concentrations |                |                |                |                                         | Лime               | Instrument: GCMS_11        |
| Page 2 of 3                                                                                                                                                                  | 0                                         | 0                                                | o                                                |                                           |                                           |                                           | <i>,</i> c                                | , 0                                              | 0 1.00                             | ). 2.00 1.00                                     |                           | 0 30 00 30 00                                    | 0 1.00                                                                   |             |                                           | S                                         | <b>.</b>                                         | ، ر<br>:                                         | 0 1.00                                           | 3                                                                                                    | , 0                                       | 0                                                |                                                  | 0 1.00                                           | <i>.</i> .                                                                                           | , 0                                              | . 0                                              | 0                                                | 9                                         | J 6                                              | , c                                              | 0 1.00                                          | J                                                | <b>.</b> .                                       | <i>.</i> .                                                                                        | 7 Lvi8 Lvi9         | •                                |                |                |                |                                         |                    | _                          |

# Form 6 Initial Calibration

Instrument: GCMS\_11

| 1                     |             |                                                  |                                                         |           |              |             |                 |                                                                              |      |
|-----------------------|-------------|--------------------------------------------------|---------------------------------------------------------|-----------|--------------|-------------|-----------------|------------------------------------------------------------------------------|------|
| <b>91</b><br>Level #  | Data File   | File: Cal Identifier:                            | Analysis Date/Time                                      | Level#:   | Data         | a File:     | Cal Identifier: | Analysis Date/Time                                                           |      |
|                       | 11M81497.D  | CAL @ 20 PPB                                     | 08/05/20 18:20                                          | <b>N</b>  | 11M81496.D   |             | <b>(2)</b>      | 08/0                                                                         |      |
| <b>6</b><br>3         | 11M81495.D  | CAL @ 2 PPB                                      | 08/05/20 17:40                                          | 4         | 11M81498.D   | _           | CAL @ 50 PPB    | 08/05/20 18:39                                                               |      |
| 5                     | 11M81482.D  | CAL @ 100 PPB                                    | 08/05/20 13:21                                          | o         | 11M81484.D   | _           | CAL @ 250 PPB   | 08/05/20 14:01                                                               |      |
| : <b>8</b>            | 11M81486.D  | CAL @ 500 PPB                                    | 08/05/20 14:41                                          | œ         | 11M81494.D   | _           | AL @ 1 PPB      | 08/05/20 17:20                                                               |      |
| <b>32</b><br>ဖ        | 11M81493.D  | CAL @ 0.5 PPB                                    | 08/05/20 17:00                                          |           |              |             | •               |                                                                              |      |
| Compound              | Col Mr Fit: | RF1 RF2 RF3 RF4                                  | RF5 RF6 RF7 RF8                                         | RF9 AvgRf | 끽            | Corr1 Corr2 | r⁄2 %Rsd        | Calibration Level Concentrations  Lvl1 Lvl2 Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 Lvl8 Lv | Lvi9 |
| p-Ethyltoluene        | 1 0 Avg     | 2.4954 2.5019 2.4524 2.5651 2.3906 2.7354 2.5913 | 1 2.3906 2.7354 2.5913                                  | -         | 2.537.35 0.9 | 999 0.9     | 99 4.4          | 0.00 100.0                                                                   |      |
| 4-Chlorotoluene       | 1 0 Avg     | 1.3689 1.3985 1.3995 1.4307 1.4421 1.5809 1.4306 | 7 1.4421 1.5809 1.4306                                  | -         | 1.447.42 0.  | .997 0.9    |                 | ).00 100.0 250.0                                                             |      |
| n-Propylbenzene       | 1 0 Avg     | 2.8485 2.8345 2.8410 2.861                       | 2.8485 2.8345 2.8410 2.8619 2.6309 2.8899 2.7577 3.0968 |           |              | .999 1.0    |                 | ).00 100.0 250.0                                                             |      |
| Bromobenzene          | 1 0 Avg     | 1.3326 1.3364 1.3195 1.3608 1.2754 0.9810 1.0664 | 8 1.2754 0.9810 1.0664                                  | 1         | 1.247.27 0   | .996 0.9    |                 | 0.00 100.0 250.0                                                             |      |
| 1.3.5-Trimethylbenzen | 1 0 Avg     | 1.9802 1.9977 2.0206 2.043                       | 1.9802 1.9977 2.0206 2.0430 1.9456 2.1858 2.0136 2.2769 | •         | 2.067.38 0.  | 0.998 0.999 | 55              | 20.00 5.00 2.00 50.00 100.0 250.0 500.0 1.00                                 |      |
| Butyl methacrylate    |             | 0.4643 0.4577 0.4709 0.5097 0.5708 0.5415 0.5341 | 7 0.5708 0.5415 0.5341                                  | -         |              | .00 1.0     |                 | 20.00 5.00 2.00 50.00 100.0 250.0                                            |      |
| t-Butylbenzene        | 1 0 Avg     | 2.1134 2.1515 2.1415 2.219                       | 2.1134 2.1515 2.1415 2.2196 2.0388 2.3266 1.8560 2.4481 | -         | _            | .987 0.9    |                 | 0.00 100.0 250.0                                                             |      |
| 1,2,4-Trimethylbenzen |             | 2.0347 2.0777 2.0792 2.124                       | 2.0347 2.0777 2.0792 2.1248 2.0704 2.1917 1.7042 2.3864 | 1         | _            | 984 0.9     |                 | 0.00 100.0 250.0                                                             |      |
| sec-Butylbenzene      |             | 2.7315 2.7075 2.6699 2.831                       | 2.7315 2.7075 2.6699 2.8314 2.6421 2.8776 1.8517 3.0149 | i         | _            | .944 0.9    |                 | 0.00 100.0 250.0                                                             |      |
| 4-Isopropyltoluene    | 1 0 Avg     | 2.3583 2.3612 2.3496 2.459                       | 2.3583 2.3612 2.3496 2.4591 2.3658 2.3987 1.6099 2.7089 |           | 2.33 7.76 0. | .954 0.9    |                 | 0.00 100.0 250.0                                                             | •    |
| n-Butylbenzene        | 1 0 Avg     | 2.4136 2.4227 2.4259 2.514                       | 7 2.5903 2.4433 2.0749 2.9387                           | 1         | _            | .992 1.0    |                 | 0.00 100.0 250.0                                                             |      |
| p-Diethylbenzene      | 1 0 Avg     | 1.3852 1.3986 1.3707 1.4160 1.4240 1.5248 1.2925 | 0 1.4240 1.5248 1.2925                                  | -         | 1.407.98 0   | .993 0.9    |                 | 0.00 100.0 250.0                                                             |      |
| 1.2.4.5-Tetramethylbe | 1 0 Avg     | 2.0060 1.9991 2.0066 2.0634 2.0682 2.2110 1.3104 | 4 2.0682 2.2110 1.3104                                  |           | 1.958.44 0   | .913 0.9    |                 | 20.00 5.00 2.00 50.00 100.0 250.0 500.0                                      |      |
| 1.2-Dibromo-3-Chloro  | 1 0 Avg     | 0.1830 0.1800 0.1651 0.1904 0.1729 0.1955 0.1444 | 4 0.1729 0.1955 0.1444                                  | -         | 0.1768.50 0  | .974 0.9    |                 | ).00 100.0 250.0                                                             |      |
| Camphor               | 1 0 Avg     | 0.0791 0.0806 0.0767 0.0801 0.0683 0.0859        | 1 0.0683 0.0859                                         | 0.        | 0.07858.94 0 | .993 0.9    |                 | 0.0 1000. 2500                                                               | •    |
| Hexachlorobutadiene   | 1 0 Avg     | 0.5224 0.4963 0.4837 0.5308 0.4879 0.5231 0.5261 | 8 0.4879 0.5231 0.5261                                  | -         |              | .00 1.0     |                 | 0.00 100.0 250.0                                                             |      |
| 1,2,4-Trichlorobenzen | 1 0 Avg     | 0.8177 0.8333 0.8174 0.8256 0.8669 0.9288 0.8390 | 6 0.8669 0.9288 0.8390                                  |           | 0.8478.99 0  | .997 0.9    | _               | 0.00 100.0 250.0                                                             |      |
| 1,2,3-Trichlorobenzen | 1 0 Avg     | 0.7419 0.7213 0.7464 0.7465 0.7611 0.8055 0.7906 | 5 0.7611 0.8055 0.7906                                  |           | 0.7599.29 1  | .00 1.0     | 3.9             | 20.00 5.00 2.00 50.00 100.0 250.0 500.0                                      |      |
| Naphthalene           | 1 0 Avg     | 1.9507 1.9848 1.9726 1.982                       | 1.9507 1.9848 1.9726 1.9828 1.8898 2.2135 2.0381 2.3192 | -         | 2.04 9.15 0. | .998 0.9    |                 | ).00 100.0 250.c                                                             |      |
|                       |             |                                                  |                                                         |           |              |             |                 |                                                                              |      |
|                       |             |                                                  |                                                         |           |              |             |                 |                                                                              |      |

Avg Rsd: 9.305

Note:

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

C- failed the minimum correlation coeff criteria(if applicable) Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Form7
Continuing Calibration

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 9/30/2020 4:45:00 P Data File: 11M83371.D Method: EPA 8260D Instrument: GCMS 11

| TxtCompd:                           | Co#      | 110111 | Туре | RT           | Conc           | Conc<br>Exp | Lo f |      | Initial<br>RF | RF    | %Diff        | Flag |
|-------------------------------------|----------|--------|------|--------------|----------------|-------------|------|------|---------------|-------|--------------|------|
| Fluorobenzene                       | 1        | 0      | 1    | 4.96         | 30.00          | 30          | **   |      |               | 0.000 | 0.00         |      |
| Chlorodifluoromethane               | 1        | 0      |      | 1.68         | 43.16          | 50          | 20   |      | 0.296         | 0.255 | 13.69        |      |
| Dichlorodifluoromethane             | 1        | 0      |      | 1.67         | 39.01          | 50          | 20   | 0.1  | 0.193         | 0.151 | 21.97        |      |
| Chloromethane                       | 1        | 0      |      | 1.85         | 37.01          | 50          | 20   | 0.1  | 0.231         | 0.171 | 25.99        | C1   |
| Bromomethane                        | 1        | 0      |      | 2.24         | 42.97          | 50          | 20   | 0.1  | 0.213         | 0.183 | 14.07        |      |
| Vinyl Chloride                      | 1        | 0      |      | 1.94         | 42.87          | 50          | 20   | 0.1  | 0.274         | 0.235 | 14.25        |      |
| Chloroethane                        | 1        | 0      |      | 2.33         | 46.56          | 50          | 20   | 0.1  | 0.185         | 0.172 | 6.89         |      |
| Trichlorofluoromethane              | 1        | 0      |      | 2.55         | 46.47          | 50          | 20   | 0.1  | 0.462         | 0.430 | 7.06         |      |
| Ethyl ether                         | 1        | 0      |      | 2.78         | 50.00          | 50          | 20   | 0.5  | 0.157         | 0.157 | 0.01         |      |
| Furan                               | 1        | 0      |      | 2.82         | 47.44          | 50          | 20   | 0.5  | 0.265         | 0.252 | 5.13         |      |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 1        | 0      |      | 2.97         | 53.84          | 50          | 20   | 0.1  | 0.175         | 0.188 | 7.69         |      |
| Methylene Chloride                  | 1        | 0      |      | 3.38         | 55.89          | 50          | 20   | 0.1  | 0.255         | 0.285 | 11.78        |      |
| Acrolein                            | 1        | 0      |      | 2.89         | 252.90         | 250         | 20   |      | 0.026         | 0.026 | 1.16         |      |
| Acrylonitrile                       | 1        | 0      |      | 3.57         | 51.49          | 50          | 20   |      | 0.068         | 0.070 | 2.98         |      |
| odomethane                          | 1        | 0      |      | 3.12         | 36.92          | 50          | 20   |      | 0.226         | 0.307 | 26.15        | C1   |
| Acetone                             | 1        | 0      |      | 3.01         | 229.31         | 250         | 20   | 0.1  | 0.054         | 0.050 | 8.28         |      |
| Carbon Disulfide                    | 1        | 0      |      | 3.19         | 47.23          | 50          | 20   |      | 0.744         | 0.703 | 5.55         |      |
| -Butyl Alcohol                      | 1        | 0      |      | 3.44         | 161.19         | 250         | 20   |      | 0.034         | 0.022 | 35.52        | C1   |
| n-Hexane                            | 1        | 0      |      | 3.82         | 49.99          | 50          | 20   |      | 0.237         | 0.237 | 0.01         |      |
| Di-isopropyl-ether                  | 1        | 0      |      | 3.95         | 51.24          | 50          | 20   |      | 0.484         | 0.496 | 2.48         |      |
| 1-Dichloroethene                    | 1        | 0      |      | 2.98         | 50.21          | 50          | 20   | 0.1  | 0.313         | 0.314 | 0.41         |      |
| Methyl Acetate                      | 1        | 0      |      | 3.28         | 46.55          | 50          | 20   |      | 0.123         | 0.115 | 6.89         |      |
| Methyl-t-butyl ether                | 1        | 0      |      | 3.59         | 55.78          | 50          | 20   |      | 0.531         | 0.593 | 11.56        |      |
| 1.1-Dichloroethane                  | 1        | 0      |      | 3.93         | 51.38          | 50          | 20   |      | 0.402         | 0.413 | 2.76         |      |
| rans-1,2-Dichloroethene             | 1        | 0      |      | 3.60         | 52.57          | 50          | 20   |      | 0.267         | 0.281 | 5.14         |      |
| Ethyl-t-butyl ether                 | 1        | 0      |      | 4.20         | 45.08          | 50          | 20   |      | 0.653         | 0.589 | 9.84         |      |
| cis-1,2-Dichloroethene              | 1        | 0      |      | 4.31         | 49.79          | 50          | 20   |      | 0.401         | 0.399 | 0.42         |      |
| Bromochloromethane                  | 1        | 0      |      | 4.46         | 50.75          | 50          | 20   | •    | 0.163         | 0.166 | 1.51         |      |
| 2,2-Dichloropropane                 | 1        | 0      |      | 4.31         | 46.95          | 50          | 20   |      | 0.395         | 0.371 | 6.11         |      |
| Ethyl acetate                       | 1        | 0      |      | 4.33         | 43.04          | 50          | 20   |      | 0.209         | 0.180 | 13.93        |      |
| I,4-Dioxane                         | :<br>1   | 0      |      | 5.34         | 1996.59        | 2500        | 20   |      | 0.004         | 0.003 | 20.14        |      |
| 1,1-Dichloropropene                 | 1        | 0      |      | 4.70         | 47.89          | 50          | 20   |      | 0.364         | 0.348 | 4.23         |      |
| Chloroform                          | 1        | 0      |      | 4.49         | 52.31          | 50          | 20   | 0.2  | 0.447         | 0.467 | 4.63         |      |
| Dibromofluoromethane                | 1        | 0      | S    | 4.58         | 31.52          | 75          | **   | 0.2  | 0.271         | 0.284 | 5.08         |      |
| Cyclohexane                         | 1        | 0      | Ū    | 4.65         | 46.34          | 50          | 20   | 0.1  | 0.323         | 0.299 | 7.33         |      |
| I,2-Dichloroethane-d4               | 1        | 0      | s    | 4.78         | 30.81          | 75          | **   | ×'.  | 0.119         | 0.122 | 2.68         |      |
| I,2-Dichloroethane                  | 1        | 0      | 3    | 4.82         | 49.48          | 50          | 20   | 0.1  | 0.321         | 0.122 | 1.05         |      |
| 2-Butanone                          | 1        | 0      |      | 4.32         | 44.19          | 50          | 20   |      | 0.094         | 0.097 | 11.62        |      |
| 1,1,1-Trichloroethane               | 1        | 0      |      | 4.61         | 48.85          | 50          | 20   |      | 0.432         | 0.422 | 2.31         |      |
| Carbon Tetrachloride                | 1        | 0      |      | 4.71         | 47.60          | 50          | 20   |      | 0.403         | 0.384 | 4.80         |      |
|                                     | <u>'</u> |        |      |              |                |             |      | 0.1  |               | 0.592 | ····         |      |
| /inyl Acetate                       | 1        | 0      |      | 3.94<br>5.41 | 50.56<br>46.44 | 50<br>50    | 20   | 0.2  | 0.585         | 0.392 | 1.12<br>7.12 |      |
| Bromodichloromethane                | 1        | 0      |      | 5.41<br>5.27 | 46.44<br>45.27 | 50          | 20   |      | 0.352         | 0.327 | 9.47         |      |
| Methylcyclohexane                   | 1        | 0      |      | 5.27<br>5.34 | 45.27<br>43.79 | 50<br>50    | 20   | Ų. I | 0.387         |       |              |      |
| Dibromomethane                      | 1        | 0      |      | 5.34         | 43.79<br>47.37 | 50<br>50    | 20   | 0.4  | 0.210         | 0.184 | 12.41        |      |
| 1,2-Dichloropropane                 | . 1      | 0      |      | 5.28         | 47.37          | 50          | 20   |      | 0.236         | 0.223 | 5.26         |      |
| Trichloroethene                     | 1        | 0      |      | 5.16         | 44.14          | 50<br>50    | 20   |      | 0.329         | 0.291 | 11.71        |      |
| Benzene                             | 1        | 0      |      | 4.82         | 51.36          | 50<br>50    | 20   | 0.5  | 1.015         | 1.043 | 2.73         |      |
| ert-Amyl methyl ether               | 1        | 0      |      | 4.86         | 48.15          | 50          | 20   |      | 0.637         | 0.613 | 3.71         |      |
| Chlorobenzene-d5                    | 1        | 0      | ł    | 6.55         | 30.00          | 30          |      | • -  |               | 0.000 | 0.00         |      |
| so-propylacetate                    | 1        | 0      |      | 4.81         | 45.33          | 50          | 20   |      | 0.385         | 0.349 | 9.35         |      |
| Methyl methacrylate                 | 1        | 0      |      | 5.30         | 42.20          | 50          | 20   |      | 0.210         | 0.177 | 15.61        |      |
| Dibromochloromethane                | 1        | 0      |      | 6.24         | 46.85          | 50          | 20   | 0.1  | 0.354         | 0.332 | 6.31         |      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 2

Form7
Continuing Calibration

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 9/30/2020 4:45:00 P Data File: 11M83371.D Method: EPA 8260D Instrument: GCMS 11

| Cont Calibration Date/Ti   | me 7/30/ | 2020 4       | 45:00 P | N            | lethod: EPA | 8200D       |    |              |               |       |            |
|----------------------------|----------|--------------|---------|--------------|-------------|-------------|----|--------------|---------------|-------|------------|
| TxtCompd:                  | Co#      | Multi<br>Num | Туре    | RT           | Conc        | Conc<br>Exp |    | MIN<br>RF    | Initial<br>RF | RF    | %Diff Flag |
| 2-Chloroethylvinylether    | 1        | 0            |         | 5.54         | 47.93       | 50          | 20 |              | 0.063         | 0.060 | 4.14       |
| cis-1,3-Dichloropropene    | 1        | 0            |         | 5.64         | 47.03       | 50          | 20 | 0.2          | 0.465         | 0.437 | 5.93       |
| rans-1,3-Dichloropropene   | 1        | 0            |         | 5.92         | 47.83       | 50          | 20 | 0.1          | 0.428         | 0.409 | 4.35       |
| Ethyl methacrylate         | 1        | 0            |         | 5.94         | 41.89       | 50          | 20 | 0.5          | 0.204         | 0.171 | 16.21      |
| ,1,2-Trichloroethane       | 1        | 0            |         | 6.02         | 49.09       | 50          | 20 | 0.1          | 0.263         | 0.258 | . 1.81     |
| ,2-Dibromoethane           | 1        | 0            |         | 6.32         | 49.98       | 50          | 20 | 0.1          | 0.286         | 0.286 | 0.04       |
| ,3-Dichloropropane         | 1        | 0            |         | 6.11         | 49.11       | 50          | 20 |              | 0.435         | 0.427 | 1.79       |
| I-Methyl-2-Pentanone       | 1        | 0            |         | 5.70         | 39.33       | 50          | 20 | 0.1          | 0.248         | 0.195 | 21.34 C1   |
| ?-Hexanone                 | 1        | 0            |         | 6.12         | 41.04       | 50          | 20 | 0.1          | 0.176         | 0.145 | 17.92      |
| etrachloroethene           | 1        | 0            |         | 6.12         | 42.19       | 50          | 20 | 0.2          | 0.319         | 0.269 | 15.63      |
| Toluene-d8                 | 1        | 0            | S       | 5.79         | 29.74       | 75          | ** |              | 1.177         | 1.167 | 0.86       |
| Toluene                    | 1        | 0            |         | 5.83         | 44.65       | 50          | 20 | 0.4          | 0.815         | 0.728 | 10.69      |
| ,1,1,2-Tetrachloroethane   | 1        | 0            |         | 6.60         | 45.69       | 50          | 20 |              | 0.332         | 0.304 | 8.62       |
| Chlorobenzene              | 1        | 0            |         | 6.57         | 45.86       | 50          | 20 | 0.5          | 0.931         | 0.854 | 8.28       |
| ,4-Dichlorobenzene-d4      | 1        | 0            | 1       | 7.82         | 30.00       | 30          | ** |              |               | 0.000 | 0.00       |
| -Butyl acrylate            | 1        | 0            |         | 6.80         | 50.06       | 50          | 20 | 0.5          | 0.722         | 0.723 | 0.12       |
| -Amyl acetate              | 1        | Ö            |         | 6.91         | 48.63       | 50          | 20 |              | 0.575         | 0.560 | 2.75       |
| Bromoform                  | 1        | Ö            |         | 7.01         | 48.28       | 50          | 20 |              | 0.414         | 0.400 | 3.44       |
| Ethylbenzene               | 1        | Ö            |         | 6.60         | 49.52       | 50          | 20 |              | 0.665         | 0.658 | 0.96       |
| ,1,2,2-Tetrachloroethane   | 1        |              |         | 7.22         | 53.10       | 50          | 20 |              | 0.559         | 0.593 | 6.19       |
| Bromofluorobenzene         | '<br>1   | 0<br>0       | S       | 7.17         | 29.72       | 75          | ** |              | 0.769         | 0.762 | 0.93       |
| Styrene                    | 1        | 0            | J       | 6.88         | 52.01       | 50          | 20 | 0.3          | 1.536         | 1.597 | 4.02       |
| n&p-Xylenes                | 1        | 0            |         | 6.66         | 93.05       | 100         | 20 |              | 1.015         | 0.945 | 6.95       |
| • •                        | 1        | 0            |         | 6.88         | 50.08       | 50          | 20 |              | 0.912         | 0.914 | 0.95       |
| -Xylene                    | 1        |              |         |              | 44.81       |             |    | 0.3          | 0.912         | 0.222 | 10.38      |
| rans-1,4-Dichloro-2-butene |          | 0            |         | 7.24<br>7.78 |             | 50          | 20 | 0.6          |               | 1.224 | 2.07       |
| ,3-Dichlorobenzene         | 1        |              |         |              | 48.96       | 50<br>50    | 20 |              | 1.250         |       |            |
| ,4-Dichlorobenzene         | 1        | 0            |         | 7.83         | 48.46       | 50          | 20 |              | 1.252         | 1.214 | 3.07       |
| ,2-Dichlorobenzene         | 1        | 0            |         | 8.05         | 48.76       | 50          | 20 |              | 1.160         | 1.131 | 2.47       |
| sopropylbenzene            | 1        | 0            |         | 7.07         | 49.48       | 50          | 20 | 0.1          | 2.436         | 2.411 | 1.03       |
| Cyclohexanone              | 1        | 0            | ·       | 7.14         | 214.86      | 250         | 20 | <del>_</del> | 0.022         | 0.019 | 14.06      |
| Camphene                   | 1        | 0            |         | 7.24         | 48.66       | 50          | 20 |              | 0.854         | 0.831 | 2.68       |
| ,2,3-Trichloropropane      | 1        | 0            |         | 7.26         | 49.69       | 50          | 20 |              | 0.717         | 0.713 | 0.62       |
| !-Chlorotoluene            | 1        | 0            |         | 7.36         | 48.75       | 50          | 20 |              | 1.421         | 1.385 | 2.51       |
| -Ethyltoluene              | 1        | 0            |         | 7.35         | 51.15       | 50          | 20 |              | 2.533         | 2.591 | 2.29       |
| -Chlorotoluene             | 1        | 0            |         | 7.42         | 47.66       | 50          | 20 |              | 1.436         | 1.369 | 4.68       |
| -Propylbenzene             | 1        | 0            |         | 7.29         | 48.93       | 50          | 20 |              | 2.845         | 2.784 | 2.14       |
| Bromobenzene               | 1        | 0            |         | 7.27         | 53.59       | 50          | 20 |              | 1.239         | 1.328 | 7.18       |
| ,3,5-Trimethylbenzene      | 1        | 0            |         | 7.38         | 45.92       | 50          | 20 |              | 2.058         | 1.890 | 8.16       |
| Butyl methacrylate         | 1        | 0            |         | 7.38         | 40.96       | 50          | 20 | 0.5          | 0.507         | 0.415 | 18.09      |
| -Butylbenzene              | 1        | 0            |         | 7.57         | 46.99       | 50          | 20 |              | 2.162         | 2.032 | 6.03       |
| ,2,4-Trimethylbenzene      | 1        | 0            |         | 7.60         | 48.89       | 50          | 20 |              | 2.084         | 2.037 | 2.22       |
| ec-Butylbenzene            | 1        | 0            |         | 7.69         | 50.10       | 50          | 20 |              | 2.666         | 2.671 | 0.21       |
| l-Isopropyltoluene         | 1        | 0            |         | 7.76         | 49.83       | 50          | 20 |              | 2.326         | 2.318 | 0.34       |
| -Butylbenzene              | 1        | 0            |         | 8.00         | 50.31       | 50          | 20 |              | 2.478         | 2.494 | 0.63       |
| -Diethylbenzene            | 1        | 0            |         | 7.98         | 49.58       | 50          | 20 |              | 1.402         | 1.390 | 0.84       |
| ,2,4,5-Tetramethylbenzene  | 1        | 0            |         | 8.44         | 54.28       | 50          | 20 |              | 1.952         | 2.119 | 8.56       |
| 2-Dibromo-3-Chloropropane  | 1        | 0            |         | 8.50         | 43.72       | 50          | 20 | 0.05         | 0.176         | 0.154 | 12.55      |
| Camphor                    | 1        | 0            |         | 8.94         | 458.98      | 500         | 20 |              | 0.079         | 0.072 | 8.20       |
| lexachlorobutadiene        | 1        | Ō            |         | 9.07         | 42.22       | 50          | 20 |              | 0.510         | 0.431 | 15.57      |
| 1,2,4-Trichlorobenzene     | 1        |              |         | 8.99         | 48.65       | 50          | 20 | 0.2          | 0.847         | 0.824 | 2.70       |
| ,2,3-Trichlorobenzene      | 1        | 0            |         | 9.29         | 48.93       | 50          | 20 |              | 0.759         | 0.743 | 2.13       |
| Naphthalene                | 1        | Ö            |         | 9.15         | 48.68       | 50          | 20 |              | 2.044         | 1.990 | 2.65       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 2

Form7
Continuing Calibration

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 10/1/2020 10:38:00 Data File: 11M83414.D Method: EPA 8260D Instrument: GCMS 11

| TxtCompd:                           | Co#      | Multi<br>Num | Туре | RT   | Conc    | Conc<br>Exp |    | MIN<br>RF | Initial<br>RF | RF    | %Diff Flag |
|-------------------------------------|----------|--------------|------|------|---------|-------------|----|-----------|---------------|-------|------------|
| Fluorobenzene                       | 1        | 0            | Ī    | 4.96 | 30.00   | 30          | ** |           |               | 0.000 | 0.00       |
| Chlorodifluoromethane               | 1        | 0            |      | 1.68 | 52.99   | 50          | 20 |           | 0.296         | 0.314 | 5.98       |
| Dichlorodifluoromethane             | 1        | 0            |      | 1.67 | 45.26   | 50          | 20 |           | 0.193         | 0.175 | 9.49       |
| Chloromethane                       | 1        | 0            |      | 1.84 | 41.08   | 50          | 20 |           | 0.231         | 0.190 | 17.84      |
| Bromomethane                        | 1        | 0            |      | 2.24 | 48.49   | 50          | 20 | 0.1       | 0.213         | 0.206 | 3.02       |
| Vinyl Chloride                      | 1        | 0            |      | 1.94 | 47.88   | 50          | 20 | 0.1       | 0.274         | 0.262 | 4.23       |
| Chloroethane                        | 1        | 0            |      | 2.33 | 52.78   | 50          | 20 | 0.1       | 0.185         | 0.195 | 5.55       |
| Trichlorofluoromethane              | 1        | 0            |      | 2.55 | 54.11   | 50          | 20 | 0.1       | 0.462         | 0.500 | 8.23       |
| Ethyl ether                         | 1        | 0            |      | 2.77 | 54.74   | 50          | 20 | 0.5       | 0.157         | 0.172 | 9.48       |
| Furan                               | 1        | 0            |      | 2.82 | 50.17   | 50          | 20 | 0.5       | 0.265         | 0.266 | 0.35       |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 1 1      | 0            |      | 2.97 | 58.59   | 50          | 20 | 0.1       | 0.175         | 0.205 | 17.18      |
| Methylene Chloride                  | 1        | 0            |      | 3.37 | 57.48   | 50          | 20 | 0.1       | 0.255         | 0.293 | 14.96      |
| Acrolein                            | 1        | 0            |      | 2.88 | 260.31  | 250         | 20 |           | 0.026         | 0.027 | 4.13       |
| Acrylonitrile                       | 1        | 0            |      | 3.57 | 54.82   | 50          | 20 |           | 0.068         | 0.074 | 9.64       |
| Iodomethane                         | 1        | 0            |      | 3.12 | 36.42   | 50          | 20 |           | 0.226         | 0.303 | 27.15 C1   |
| Acetone                             | 1        | 0            |      | 3.01 | 253.21  | 250         | 20 | 0.1       | 0.054         | 0.055 | 1.28       |
| Carbon Disulfide                    | 1        | 0            |      | 3.18 | 51.26   | 50          | 20 |           | 0.744         | 0.763 | 2.51       |
| t-Butyl Alcohol                     | 1        | 0            |      | 3.43 | 167.27  | 250         | 20 |           | 0.034         | 0.023 | 33.09 C1   |
| n-Hexane                            | 1        | 0            |      | 3.81 | 57.83   | 50          | 20 |           | 0.237         | 0.275 | 15.66      |
| Di-isopropyl-ether                  | 1        | 0            |      | 3.95 | 52.26   | 50          | 20 |           | 0.484         | 0.506 | 4.52       |
| 1,1-Dichloroethene                  | <u>:</u> | 0            |      | 2.98 | 54.61   | 50          | 20 | 0.1       | 0.313         | 0.342 | 9.21       |
| Methyl Acetate                      | 1        | 0            |      | 3.28 | 48.52   | 50          | 20 |           | 0.123         | 0.120 | 2.96       |
| Methyl-t-butyl ether                | 1        | 0            |      | 3.59 | 54.82   | 50          | 20 |           | 0.531         | 0.583 | 9.65       |
| 1,1-Dichloroethane                  | 1        | 0            |      | 3.93 | 52.83   | 50          | 20 |           | 0.402         | 0.425 | 5.66       |
| trans-1,2-Dichloroethene            | 1        | 0            |      | 3.60 | 53.69   | 50          | 20 |           | 0.402         | 0.423 | 7.38       |
|                                     | 1        | 0            |      | 4.19 | 44.58   | 50          | 20 |           | 0.653         | 0.582 | 10.85      |
| Ethyl-t-butyl ether                 |          |              |      | 4.31 | 52.40   | 50          | 20 |           | 0.003         | 0.420 | 4.80       |
| cis-1,2-Dichloroethene              | 1        | 0            |      |      |         |             |    | 0.1       |               |       |            |
| Bromochloromethane                  | 1        | 0            |      | 4.45 | 52.30   | 50<br>50    | 20 |           | 0.163         | 0.171 | 4.60       |
| 2,2-Dichloropropane                 | 1        | 0            |      | 4.31 | 50.02   | 50<br>50    | 20 |           | 0.395         | 0.395 | 0.04       |
| Ethyl acetate                       |          | 0            |      | 4.33 | 46.70   | 50          | 20 |           | 0.209         | 0.196 | 6.59       |
| 1,4-Dioxane                         | 1        | 0            |      | 5.34 | 2246.90 | 2500        | 20 |           | 0.004         | 0.004 | 10.12      |
| 1,1-Dichloropropene                 | 1        | 0            |      | 4.70 | 52.32   | 50          | 20 |           | 0.364         | 0.381 | 4.64       |
| Chloroform                          | 1        | 0            |      | 4.49 | 53.97   | 50          | 20 | 0.2       | 0.447         | 0.482 | 7.93       |
| Dibromofluoromethane                | 1        | 0            | s    | 4.58 | 29.62   | 75          | ** |           | 0.271         | 0.267 | 1.27       |
| Cyclohexane                         | . 1      | 0            |      | 4.65 | 52.17   | 50          | 20 | 0.1       | 0.323         | 0.337 | 4.35       |
| 1,2-Dichloroethane-d4               | 1        | 0            | S    | 4.78 | 30.84   | 75          | ** |           | 0.119         | 0.122 | 2.81       |
| 1,2-Dichloroethane                  | 1        | 0            |      | 4.82 | 50.45   | 50          | 20 |           | 0.321         | 0.324 | 0.90       |
| 2-Butanone                          | 1        | 0            |      | 4.30 | 45.96   | 50          | 20 |           | 0.094         | 0.101 | 8.07       |
| 1,1,1-Trichloroethane               | 1        | 0            |      | 4.61 | 51.47   | 50          | 20 |           | 0.432         | 0.444 | 2.95       |
| Carbon Tetrachloride                | 1        | 0            |      | 4.71 | 50.91   | 50          | 20 | 0.1       | 0.403         | 0.410 | 1.83       |
| Vinyl Acetate                       | 1        | 0            |      | 3.94 | 52.22   | 50          | 20 |           | 0.585         | 0.611 | 4.44       |
| Bromodichloromethane                | 1        | 0            |      | 5.41 | 50.96   | 50          | 20 | 0.2       | 0.352         | 0.359 | 1.93       |
| Methylcyclohexane                   | 1        | 0            |      | 5.27 | 53.12   | 50          | 20 | 0.1       | 0.387         | 0.411 | 6.25       |
| Dibromomethane                      | 1        | 0            |      | 5.34 | 46.69   | 50          | 20 |           | 0.210         | 0.196 | 6.62       |
| 1,2-Dichloropropane                 | 1        | 0            |      | 5.28 | 52.64   | 50          | 20 |           | 0.236         | 0.248 | 5.27       |
| Trichloroethene                     | 1        | 0            |      | 5.15 | 48.46   | 50          | 20 | 0.2       | 0.329         | 0.319 | 3.08       |
| Benzene                             | 1        | 0            |      | 4.82 | 52.32   | 50          | 20 | 0.5       | 1.015         | 1.062 | 4.64       |
| ert-Amyl methyl ether               | 1        | 0            |      | 4.85 | 47.62   | 50          | 20 |           | 0.637         | 0.607 | 4.76       |
| Chlorobenzene-d5                    | 1        | 0            | 1    | 6.55 | 30.00   | 30          | ** |           |               | 0.000 | 0.00       |
| lso-propylacetate                   | 1        | 0            |      | 4.81 | 46.09   | 50          | 20 | 0.5       | 0.385         | 0.355 | 7.83       |
| Methyl methacrylate                 | 1        | 0            |      | 5.30 | 42.67   | 50          | 20 |           | 0.210         | 0.179 | 14.66      |
| Dibromochloromethane                | 1        | 0            |      | 6.24 | 49.01   | 50          | 20 |           | 0.354         | 0.347 | 1.98       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 2

Form7
Continuing Calibration

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 10/1/2020 10:38:00 Data File: 11M83414.D Method: EPA 8260D Instrument: GCMS 11

| TxtCompd:                              | Col# | Multi<br>Num | Туре | RT           | Conc           | Conc<br>Exp | Lo<br>Lim | RF                 | Initial<br>RF | RF    | %Diff Flag |
|----------------------------------------|------|--------------|------|--------------|----------------|-------------|-----------|--------------------|---------------|-------|------------|
| 2-Chloroethylvinylether                | 1    | 0            |      | 5.54         | 51.76          | 50          | 20        |                    | 0.063         | 0.065 | 3.52       |
| is-1,3-Dichloropropene                 | 1    | 0            |      | 5.64         | 50.49          | 50          | 20        |                    | 0.465         | 0.469 | 0.99       |
| rans-1,3-Dichloropropene               | 1    | 0            |      | 5.92         | 49.94          | 50          | 20        |                    | 0.428         | 0.427 | 0.11       |
| Ethyl methacrylate                     | 1    | 0            |      | 5.93         | 45.26          | 50          | 20        | 0.5                | 0.204         | 0.184 | 9.48       |
| I,1,2-Trichloroethane                  | 1    | 0            |      | 6.02         | 52.86          | 50          | 20        | 0.1                | 0.263         | 0.278 | 5.71       |
| I,2-Dibromoethane                      | 1    | 0            |      | 6.31         | 52.33          | 50          | 20        | 0.1                | 0.286         | 0.299 | 4.66       |
| 1,3-Dichloropropane                    | 1    | 0            |      | 6.11         | 51.82          | 50          | 20        |                    | 0.435         | 0.451 | 3.65       |
| 1-Methyl-2-Pentanone                   | 1    | 0            |      | 5.70         | 43.58          | 50          | 20        | 0.1                | 0.248         | 0.216 | 12.84      |
| 2-Hexanone                             | 1    | 0            |      | 6.12         | 43.90          | 50          | 20        | 0.1                | 0.176         | 0.155 | 12.19      |
| Tetrachloroethene                      | 1    | 0            |      | 6.11         | 43.80          | 50          | 20        | 0.2                | 0.319         | 0.279 | 12.40      |
| Foluene-d8                             | 1    | 0            | S    | 5.79         | 30.44          | 75          | **        |                    | 1.177         | 1.194 | 1.45       |
| Foluene                                | 1    | 0            |      | 5.82         | 47.77          | 50          | 20        | 0.4                | 0.815         | 0.779 | 4.46       |
| 1,1,1,2-Tetrachloroethane              | 1    | 0            |      | 6.59         | 46.72          | 50          | 20        |                    | 0.332         | 0.311 | 6.56       |
| Chlorobenzene                          | 1    | 0            |      | 6.56         | 48.06          | 50          | 20        | 0.5                | 0.931         | 0.895 | 3.89       |
| 1,4-Dichlorobenzene-d4                 | 1    | 0            |      | 7.82         | 30.00          | 30          | **        |                    |               | 0.000 | 0.00       |
| n-Butyl acrylate                       | 1    | 0            |      | 6.80         | 53.14          | 50          | 20        | 0.5                | 0.722         | 0.767 | 6.29       |
| n-Amyl acetate                         | 1    | 0            |      | 6.91         | 50.72          | 50          | 20        | 0.5                | 0.575         | 0.584 | 1.45       |
| Bromoform                              | 1    | 0            |      | 7.01         | 51.82          | 50          | 20        | 0.1                | 0.414         | 0.429 | 3.65       |
| Ethylbenzene                           | 1    | 0            |      | 6.60         | 52.32          | 50          | 20        | 0.1                | 0.665         | 0.696 | 4.63       |
| I,1,2,2-Tetrachloroethane              | 1    | 0            |      | 7.21         | 58.18          | 50          | 20        | 0.1                | 0.559         | 0.650 | 16.36      |
| Bromofluorobenzene                     | 1    | 0            | S    | 7.17         | 29.88          | 75          | **        | ······ <del></del> | 0.769         | 0.766 | 0.39       |
| Styrene                                | 1    | 0            |      | 6.88         | 54.75          | 50          | 20        | 0.3                | 1.536         | 1.682 | 9.50       |
| n&p-Xylenes                            | 1    | 0            |      | 6.66         | 97.97          | 100         | 20        | 0.1                | 1.015         | 0.994 | 2.03       |
| o-Xylene                               | 1    | 0            |      | 6.88         | 52.61          | 50          | 20        | 0.3                | 0.912         | 0.960 | 5.21       |
| rans-1,4-Dichloro-2-butene             | 1    | 0            |      | 7.24         | 49.34          | 50          | 20        |                    | 0.247         | 0.244 | 1.31       |
| ,3-Dichlorobenzene                     | 1    | 0            |      | 7.78         | 49.75          | 50          | 20        | 0.6                | 1.250         | 1.244 | 0.51       |
| ,4-Dichlorobenzene                     | 1    | 0            |      | 7.83         | 49.79          | 50          | 20        | 0.5                | 1.252         | 1.247 | 0.42       |
| ,2-Dichlorobenzene                     | 1    | 0            |      | 8.05         | 49.82          | 50          | 20        | 0.4                | 1.160         | 1.156 | 0.35       |
| sopropylbenzene                        | 1    | 0            |      | 7.07         | 50.87          | 50          | 20        | 0.1                | 2.436         | 2.478 | 1.74       |
| Cyclohexanone                          | 1    | 0            |      | 7.14         | 255.74         | 250         | 20        |                    | 0.022         | 0.023 | 2.30       |
| Camphene                               | 1    | 0            | **** | 7.24         | 50.39          | 50          | 20        |                    | 0.854         | 0.861 | 0.79       |
| 1,2,3-Trichloropropane                 | 1    | 0            |      | 7.26         | 54.54          | 50          | 20        |                    | 0.717         | 0.783 | 9.08       |
| 2-Chlorotoluene                        | 1    | 0            |      | 7.36         | 49.64          | 50          | 20        |                    | 1.421         | 1.410 | 0.73       |
| p-Ethyltoluene                         | 1    | 0            |      | 7.35         | 51.58          | 50          | 20        |                    | 2.533         | 2.613 | 3.15       |
| 1-Chlorotoluene                        | 1    | Ö            |      | 7.42         | 50.41          | 50          | 20        |                    | 1.436         | 1.448 | 0.82       |
| n-Propylbenzene                        | 1    | 0            |      | 7.29         | 50.87          | 50          | 20        |                    | 2.845         | 2.894 | 1.73       |
| Bromobenzene                           | 1    | 0            |      | 7.27         | 56.55          | 50          | 20        |                    | 1.239         | 1.401 | 13.10      |
| 1,3,5-Trimethylbenzene                 | 1    | Ö            |      | 7.38         | 48.46          | 50          | 20        |                    | 2.058         | 1.995 | 3.08       |
| Butyl methacrylate                     | 1    | Ö            |      | 7.38         | 44.28          | 50          | 20        | 0.5                | 0.507         | 0.449 | 11.44      |
| -Butylbenzene                          | 1    | 0            |      | 7.57         | 47.53          | 50          | 20        | 3.3                | 2.162         | 2.055 | 4.94       |
| 1,2,4-Trimethylbenzene                 | 1    | 0            |      | 7.59         | 49.99          | 50          | 20        |                    | 2.084         | 2.083 | 0.02       |
| sec-Butylbenzene                       | 1    | 0            |      | 7.69         | 51.14          | 50          | 20        |                    | 2.666         | 2.727 | 2.28       |
| I-Isopropyltoluene                     | 1    | Ö            |      | 7.76         | 50.48          | 50          | 20        |                    | 2.326         | 2.349 | 0.96       |
| n-Butylbenzene                         | 1    | 0            |      | 8.00         | 51.93          | 50          | 20        |                    | 2.478         | 2.574 | 3.87       |
| p-Diethylbenzene                       | 1    | 0            |      | 7.98         | 50.15          | 50          | 20        |                    | 1.402         | 1.406 | 0.31       |
| ,2,4,5-Tetramethylbenzene              | 1    | 0            |      | 8.44         | 53.60          | 50          | 20        |                    | 1.952         | 2.093 | 7.20       |
| 1,2-Dibromo-3-Chloropropane            | 1    | 0            |      | 8.50         | 46.99          | 50          | 20        |                    | 0.176         | 0.165 | 6.03       |
| Camphor                                | 1    | 0            |      | 8.94         | 481.61         | 500         | 20        | 0.00               | 0.176         | 0.105 | 3.68       |
| Jamphoi<br>Hexachlorobutadiene         | 1    | 0            |      | 9.07         | 40.94          | 50          | 20        |                    | 0.510         | 0.078 | 18.12      |
| 1,2,4-Trichlorobenzene                 | 1    | 0            |      | 9.07<br>8.99 | 48.00          | 50<br>50    | 20        | 0.2                | 0.847         | 0.418 | 4.01       |
| 1,2,3-Trichlorobenzene                 | 1    | 0            |      | 9.29         | 46.77          | 50          | 20        | 0.2                | 0.759         | 0.613 | 6.45       |
| 1,2,3-1 richlorobenzene<br>Naphthalene | 1    | 0            |      | 9.29<br>9.15 | 49.77<br>49.06 | 50<br>50    | 20        |                    | 2.044         | 2.006 | 1.87       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 2

Evaluation Std Data File: 11M81497.D Internal Standard Areas

Method: EPA 8260D

₽ Analysis Date/Time: 08/05/20 18:20 Area Lab File ID: CAL @ 20 PPB ಹ 곡 4

|       | 召      |   |
|-------|--------|---|
| <br>÷ | . }    |   |
|       |        |   |
|       | Area   |   |
|       | e<br>G |   |
|       |        | ত |
|       | Ī      |   |
|       | 무      |   |
|       |        |   |
|       |        |   |
|       | Area   |   |

Area

괵

|   | : |          |   |
|---|---|----------|---|
|   |   | <br>Area | 5 |
|   |   | <br>곡    |   |
|   |   | Area     | _ |
| 1 |   | 곡        | σ |

| Area | 뀒 | Area | 직 |
|------|---|------|---|
| ·    |   |      |   |
|      |   |      |   |
|      | : |      |   |
|      |   |      |   |
|      |   |      |   |

11M81501.D

ই

11M81498.D

CAL @ 50 PPB

26043 258034 264467

4.96

4.96

6.55 6.55 6.55 6.55

139752

146679

143398 156817

7.82 7.82 7.82 7.82

298211 306747

> 268203 233289 232410 241421 258662 251070 256046 293526 308305

170736

CAL @ 20 PPB

CAL @ 5 PPB

11M81503.D DAILY BLANK

11M81497.D 11M81496.D 11M81495.D 11M81486.D

11M81487.D

BLK

11M81494.D

CAL @ 1 PPB

CAL @ 2 PPB

11M81493.D CAL @ 0.5 PPB

278118 318048 408017 284913 312620

4.96 4.96 4.96 4.96

6.55

151405

7.82 7.82 7.82

149647

6.55 6.55 6.55

178494

226457

223187

192828

275903

282662

4.96 4.96 4.96 11M81482.D

**CAL @ 100 PPB** 

Data File

Sample#

Eval File Area Limit: Eval File Area/RT

129017-516068 4.46-5.46

116205-464820

69876-279504 7.32-8.32

6.05-7.05

258034 Area

4.96

232410

6.55

139752

7.82

Area

Eval File Rt Limit:

11M81484.D

CAL @ 250 PPB

260434

284253

**CAL @ 500 PPB** 

| nal Standard A | 13 =                   | 12 =             | =             |
|----------------|------------------------|------------------|---------------|
| Areas          | 1,4-Dichlorobenzene-d4 | Chlorobenzene-d5 | Fluorobenzene |
|                | <br>16=                | 15=              | 14=           |

17 =

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration =5ug/L

R - Indicates the compound failed the internal standard retention time criteria

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

FORM8

Internal Standard Areas

Evaluation Std Data File: 11M83371.D Analysis Date/Time: 09/30/20 16:45

Method: EPA 8260D

Data File Eval File Area Limit: Eval File Area/RT Sample# Eval File Rt Limit: 335546 Area 167773-671092 4.46-5.46 4.96 끅 287189 143594-574378 Area 6.05-7.05  $\overline{a}$ 6.55 곡 168971 Area 84486-337942 Lab File ID: CAL @ 50 PPB 7.32-8.32 ಹ 7.82 곡 Area 4 곡 Area 5 괴 Area ਰ Area

낔

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | !    |        |      |        |          | •                                                           |                       |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|------|--------|----------|-------------------------------------------------------------|-----------------------|----|
| 625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30 ug/L 524 Internal Standard concentration = 5 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |        |      | 554    | <b>=</b> | Fluorobenzene<br>Chlorobenzene-d5<br>1,4-Dichlorobenzene-d4 | 37 T II               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82 | 105793 | 6.55 | 253456 | 4.96     | 283669                                                      | M83403.D AD19466-001  | 11 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82 | 112827 | 6.55 | 217840 | 4.96     | 242422                                                      | M83402.D BLK          | 11 |
| TOTAL OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE P | 7.82 | 42360  | 6.55 | 129413 | 4.96     | 193227                                                      | M83401.D AD19479-006  | 1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82 | 115090 | 6.55 | 219104 | 4.96     | 244529                                                      | M83400.D AD19479-020  | 11 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82 | 117248 | 6.55 | 227098 | 4.96     | 253918                                                      | M83399.D AD19479-018  | 11 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82 | 69582  | 6.55 | 172811 | 4.96     | 218432                                                      | IM83398.D AD19479-016 | 11 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82 | 79223  | 6.55 | 184824 | 4.96     | 226727                                                      | M83397.D AD19479-014  | 11 |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | 7.82 | 74488  | 6.55 | 180418 | 4.96     | 226708                                                      | M83396.D AD19479-012  | 1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82 | 109114 | 6.55 | 206570 | 4.96     | 282735                                                      | M83395.D AD19479-010  | 11 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82 | 95982  | 6.55 | 203430 | 4.96     | 233785                                                      | M83394.D AD19479-008  | 11 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82 | 80776  | 6.55 | 188264 | 4.96     | 220921                                                      | M83393.D AD19479-004  | 11 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82 | 93906  | 6.55 | 203075 | 4.96     | 237392                                                      | M83392.D AD19479-002  | 11 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82 | 121432 | 6.55 | 231001 | 4.96     | 257964                                                      | M83391.D BLK          | 1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.81 | 129808 | 6.55 | 244457 | 4.96     | 301918                                                      | M83390.D AD19451-007  | 1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82 | 127399 | 6.55 | 236180 | 4.96     | 260274                                                      | M83389.D AD19451-006  | 11 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82 | 124284 | 6.55 | 237565 | 4.96     | 301044                                                      | IM83388.D AD19451-005 | 11 |

11M83387.D 11M83386.D 11M83385.D 11M83384.D 11M83383.D 11M83382.D

AD19451-004

11M83381.D AD19504-001(MSD)

263396 257046 254621

289627

6.55 6.55 6.55

138328 133495

6.55

뮍 몺

AD19451-001

AD19451-002

AD19451-003

269106 274730

247735

279101

4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96

250827 228181 285042 257382 233623 228292 220641

247744

133842

136890 111369 160652

7.82 7.82 7.82 7.82 7.82 7.82 7.82 7.82 7.82

261138 310193 11M83380.D 11M83379.D 11M83378.D 11M83377.D

AD19504-001(MS)

MBS89405

11M83376.D DAILY BLANK

AD19504-001

282988 273164 283581 287248 292064

242842

218034 257865 242304

6.55

116258 137005 130603

6.55

6.55

6.55

125842

134461

AD19504-003

11M83375.D 11M83374.D 11M83373.D 11M83372.D 50 PPB

BLK

251919 255196 260474

133688

7.82 7.82

6.55

137393

142806

134667

BLK

265692

231929

# Internal Standard Areas

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

R - Indicates the compound failed the internal standard retention time criteria A - Indicates the compound failed the internal standard area criteria

=

 $\overline{\mathbf{z}}$ 

ದ

4

5

ಹ

Area

곡

Evaluation Std Data File: 11M83371.D Internal Standard Areas

FORM8

Method: EPA 8260D

Analysis Date/Time: 09/30/20 16:45 Lab File ID: CAL @ 50 PPB

| 11M83410.D | 11M83409.D | 11M834    | 11M83407.D | 11M83406.D | 11M83405.D | 11M83404.D     | Data File |                    | 0                    | 09                 | 2    |
|------------|------------|-----------|------------|------------|------------|----------------|-----------|--------------------|----------------------|--------------------|------|
| 110.D BLK  | 109.D BLK  | 108.D BLK |            | IO6.D BLK  |            | 104.D MBS89406 | e Sample# | Eval File Rt Limit | Eval File Area Limit | Eval File Area/RT: |      |
| 262949     | 275299     |           | 235942     | 130556     | 276310     | 228334         |           | 4.46-5.46          | 167773-671092        | 335546             | Area |
|            |            |           |            | 4.96       |            |                | 1         | 6                  | 1092                 | 4.96               | 짂    |
|            |            |           |            |            |            |                |           | 6.0                | 14359                | 287189             | Area |
| 6582       | 13398      | 8816      | 8141       | 111948     | 5701       | 8561           |           | 6.05-7.05          | 143594-574378        |                    | 곡    |
| 6.55       | 6.55       | 6.55      | 6.55       | 6.55       | 6.55       | 6.55           | 1         |                    | œ :                  |                    |      |
| 12599      | 13056      | 1252      | 1190       | 59352      | 13199      | 1145           |           | 7.32-8.32          | 84486-337942         | 168971             | Area |
|            |            |           |            |            |            |                | 1         | 32                 | 37942                | 7.82               | Ŗ    |
| 82         | 82         | 82        | 82         | 7.82       | 81         | 82             |           |                    |                      |                    | Area |
|            |            |           |            |            |            |                |           |                    |                      |                    | 끽    |
|            |            |           |            |            |            |                |           |                    |                      |                    | Area |
|            |            |           |            |            |            |                |           | :                  |                      |                    | 곡    |
|            |            |           |            |            |            |                |           |                    |                      | •                  | Area |

# Internal Standard Areas

11 = 12 = 13 =

Fluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d4

5 5 4

17=

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Retention Times:

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8260 Internal Standard concentration = 30ug/L
524 Internal Standard concentration = 5ug/L

R - Indicates the compound failed the internal standard retention time criteria.

# FORM8

Internal Standard Areas

Evaluation Std Data File: 11M83414.D Analysis Date/Time: 10/01/20 10:38

Method: EPA 8260D

Lab File ID: CAL @ 50 PPB

|            |                                    |                  |              |               |                | רמי זמ       | (%)  |          |   |         |      |            |      |     |
|------------|------------------------------------|------------------|--------------|---------------|----------------|--------------|------|----------|---|---------|------|------------|------|-----|
| צו כ       |                                    | =                |              | 20            |                | ت            |      | <u>4</u> |   | জ       |      | ਨ<br> <br> | 7    | 7   |
| 23         |                                    | Area             | R            | Area          | RT             | Area         | 끅    | Area     | 끅 | Area RT | Area | 뭐          | Area | RT  |
| בע         | Eval File Area/RT:                 |                  | 4.96         | 247438        | 6.55           | •            | 7.82 |          |   |         |      |            |      |     |
| וטו        | Eval File Area Limit               | 141152-564610    | 610          | 123719-494876 | 876            | 71523-286092 | 092  |          | : |         |      |            | :    | •   |
|            | Eval File Rt Limit:                | 4.46-5.46        |              | 6.05-7.05     | 51             | 7.32-8.32    | 2    |          |   |         |      |            |      | : ; |
| Data File  | Sample#                            |                  | i<br>i       |               | İ              |              |      |          |   |         |      |            |      |     |
| 11M83415.D | 5.D 50 PPB                         | 286214           | 4.96         | 249524        | 6.55           | 144893       | 7.82 |          |   |         |      |            |      |     |
| 11M83416.D | 6.D BLK                            | 291791           | 4.96         | 264437        | 6.55           | 139568       | 7.82 |          |   |         |      |            |      |     |
| 11M83417.D | 7.D BLK                            | 276839           | 4.96         | 254122        | 6.55           | 134037       | 7.82 |          |   |         |      |            |      |     |
| 11M83418.D | 8.D. DAILY BLANK                   | 268434           | 4.96         | 241584        | 6.55           |              | 7.82 |          |   |         |      |            |      |     |
| 11M83419.D | 9.D MBS89411                       | 284055           | 4.96         | 249397        | 6.55           | 147376       | 7.82 |          | ! |         | •    | İ          | İ    |     |
| 11M83420.D | 0.D AD19504-005                    | 280786           | 4.96         | 255884        | 6.55           | 137466       | 7.82 |          |   |         |      |            |      |     |
| 11M83421.D | Ţ                                  | 212560           | 4.96         |               | 6.55           |              | 7.82 |          |   |         |      |            |      |     |
| 11M83422.D |                                    | 243562           | 4.96         |               | 0.55           |              | 1.02 |          |   |         |      |            |      |     |
| 11M83423.L | 3.D AD19487-003<br>4.D AD19514-001 | 252356           | 4 4<br>96 96 | 208834        | 6 55<br>555    | 85138        | 7.82 |          |   |         |      |            |      |     |
| 11M83425.D |                                    | 247598           | 4.96         |               | 6.55           | ļ            | 7.82 |          |   |         |      |            | :    | !   |
| 11M83426.D | 6.D AD19504-005(MS)                | 311130           | 4.96         | 281507        | 6.55           |              | 7.82 |          |   |         |      |            |      |     |
| 11M83427.D | 7.D AD19504-005(MSD)               |                  | 4.96         |               | 6.55           |              | 7.82 |          |   |         |      |            |      |     |
| 11M83428.D |                                    | 293019           | 4.96         |               | 0.55           |              | 7.82 |          |   |         |      |            |      |     |
| 11M83430.D | 0.D AD19472-001                    | 272021           | 4.96         | 237648        | 6.55           | 119537       | 7.82 |          |   |         |      |            |      | İ   |
| 11M83431.D | _                                  | 254832           | 4.96         |               | 6.55           |              | 7.82 |          |   |         |      |            |      |     |
| 11M83432.D | 2.D AD19472-003                    | 283050           | 4.96         |               | 6.55           | 143533       | 7.82 |          |   |         |      |            |      |     |
| 11M83433.D | _                                  | 276436           | 4.96         |               | 6.55           |              | 7.82 |          |   |         |      |            |      |     |
| 11M83434.D | i.                                 | 253345           | 4.96         |               | 6.55           |              | 7.82 |          |   |         |      |            |      |     |
| 11M83435.D | 5.D AD19514-001<br>6.D AD19479-014 | 222332<br>219691 | 4 4<br>96 6  | 174839        | 5 5 5<br>5 5 5 | 73113        | 7.82 |          |   |         |      |            |      |     |
| 11M83437.D |                                    | 240067           | 4.96         |               | 6.55           | _            | 7.82 |          |   |         |      |            |      |     |
| 11M83438.D | 8.D AD19479-006                    | 239355           | 4.96         | 177603        | 6.55           | 60306        | 7.82 |          |   |         |      |            |      |     |
| 11M83439.D | 9.D AD19479-004                    | 255865           | 4.96         | 214830        | 6.55           | 96325        | 7.82 |          |   |         | i    |            |      |     |
| 11M83440.D | 0.D AD19479-012                    | 254918           | 4.96         | 207117        | 6.55           | 89536        | 7.82 |          |   |         |      |            |      |     |
| 11M83441.E | 1.D BLK                            | 269349           | 4.96         | 246030        | 6.55           | 134044       | 7.82 |          |   |         |      |            |      |     |
| 11M83442.D |                                    | 264988           | 4.96         | 237605        | 6.55           | _            | 7.82 |          |   |         |      |            |      |     |
| 11M83443.D | 3.D AD19501-004                    | 253862           | 4.96         | 234719        | 6.55           | 126348       | 7.82 |          |   |         |      |            |      |     |
|            |                                    |                  |              |               |                |              |      |          |   |         |      |            |      |     |

|   | 97       |
|---|----------|
|   | <u>ā</u> |
| 1 | Ś        |
|   |          |
|   | 훘        |
|   | ă        |
|   | ₽        |
|   | e<br>a   |
| ı | S        |
|   |          |

13 = 13 =

Fluorobenzene
Chlorobenzene-d5
1,4-Dichlorobenzene-d4

554

17 =

Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Flags:

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration = 5ug/L

R - Indicates the compound failed the internal standard retention time criteria.

Base Neutral/Acid Extractable Data

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19479-001

Client Id: HSI-SS-01 (0-0.5')

Data File: 7M109875.D

Analysis Date: 10/05/20 22:35 Date Rec/Extracted: 09/28/20-10/05/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil

Initial Vol: 30g

Final Vol: 0.5ml

Dilution: 1

Solids: 90

| Units: | mg/Kg |
|--------|-------|
|        |       |

| Cas#             | Compound                   | MDL    | RL     | Conc   | g/ <b>ng</b><br>Cas# | Compound                    | MDL     | RL     | Conc    |
|------------------|----------------------------|--------|--------|--------|----------------------|-----------------------------|---------|--------|---------|
| 92-52-4          | 1,1'-Biphenyl              | 0.011  | 0.037  | U      | 50-32-8              | Benzo[a]pyrene              | 0.013   | 0.037  | 0.014J  |
| 95-94-3          | 1,2,4,5-Tetrachlorobenzene | 0.012  | 0.037  | U      | 205-99-2             | Benzo[b]fluoranthene        | 0.013   | 0.037  | U       |
| 123-91-1         | 1,4-Dioxane                | 0.019  | 0.0093 | U      | 191-24-2             | Benzo[g,h,i]perylene        | 0.00026 | 0.037  | 0.0092J |
| 58- <b>90</b> -2 | 2,3.4,6-Tetrachlorophenol  | 0.014  | 0.037  | U      | 207-08-9             | Benzo[k]fluoranthene        | 0.014   | 0.037  | U       |
| 95-95-4          | 2,4,5-Trichlorophenol      | 0.011  | 0.037  | U      | 111-91-1             | bis(2-Chloroethoxy)methan   | 0.010   | 0.037  | U       |
| 88-06-2          | 2,4,6-Trichlorophenol      | 0.029  | 0.037  | U      | 111-44-4             | bis(2-Chloroethyl)ether     | 0.0090  | 0.0093 | U       |
| 120-83-2         | 2.4-Dichlorophenol         | 0.014  | 0.0093 | U      | 108-60-1             | bis(2-chloroisopropyl)ether | 0.015   | 0.037  | U       |
| 105-67-9         | 2,4-Dimethylphenol         | 0.018  | 0.0093 | U      | 117-81-7             | bis(2-Ethylhexyl)phthalate  | 0.033   | 0.037  | 0.24    |
| 51-28-5          | 2,4-Dinitrophenol          | 0.16   | 0.19   | U      | 85-68-7              | Butylbenzylphthalate        | 0.028   | 0.037  | U       |
| 121-14-2         | 2,4-Dinitrotoluene         | 0.012  | 0.037  | U      | 105-60-2             | Caprolactam                 | 0.030   | 0.037  | U       |
| 606-20-2         | 2.6-Dinitrotoluene         | 0.019  | 0.037  | U      | 86-74-8              | Carbazole                   | 0.012   | 0.037  | U       |
| 91-58-7          | 2-Chloronaphthalene        | 0.016  | 0.037  | U      | 218-01-9             | Chrysene                    | 0.013   | 0.037  | 0.016J  |
| 95-57-8          | 2-Chlorophenol             | 0.012  | 0.037  | U      | 53-70-3              | Dibenzo[a,h]anthracene      | 0.014   | 0.037  | U       |
| 91-57-6          | 2-Methylnaphthalene        | 0.011  | 0.037  | U      | 132-64-9             | Dibenzofuran                | 0.0094  | 0.0093 | U       |
| 95-48-7          | 2-Methylphenol             | 0.011  | 0.0093 | U      | 84-66-2              | Diethylphthalate            | 0.024   | 0.037  | U       |
| 88-74-4          | 2-Nitroaniline             | 0.017  | 0.037  | U      | 131-11-3             | Dimethylphthalate           | 0.010   | 0.037  | U       |
| 88-75-5          | 2-Nitrophenol              | 0.017  | 0.037  | U      | 84-74-2              | Di-n-butylphthalate         | 0.042   | 0.0093 | 0.12    |
| 106-44-5         | 3&4-Methylphenol           | 0.011  | 0.0093 | U      | 117-84-0             | Di-n-octylphthalate         | 0.025   | 0.037  | U       |
| 91-94-1          | 3.3'-Dichlorobenzidine     | 0.030  | 0.037  | U      | 206-44-0             | Fluoranthene                | 0.014   | 0.037  | U       |
| 99-09-2          | 3-Nitroaniline             | 0.014  | 0.037  | U      | 86-73-7              | Fluorene                    | 0.010   | 0.037  | U       |
| 534-52-1         | 4,6-Dinitro-2-methylphenol | 0.13   | 0.19   | U      | 118-74-1             | Hexachlorobenzene           | 0.015   | 0.037  | U       |
| 101-55-3         | 4-Bromophenyl-phenylether  | 0.010  | 0.037  | U      | 87-68-3              | Hexachlorobutadiene         | 0.017   | 0.037  | U       |
| 59-50-7          | 4-Chloro-3-methylphenol    | 0.0089 | 0.037  | U      | 77-47-4              | Hexachlorocyclopentadiene   | 0.12    | 0.037  | U       |
| 106-47-8         | 4-Chloroaniline            | 0.016  | 0.0093 | U      | 67-72-1              | Hexachloroethane            | 0.016   | 0.037  | U       |
| 7005-72-3        | 4-Chlorophenyl-phenylether | 0.011  | 0.037  | U      | 193-39-5             | Indeno[1,2,3-cd]pyrene      | 0.017   | 0.037  | U       |
| 100-01-6         | 4-Nitroaniline             | 0.014  | 0.037  | U      | 78-59-1              | Isophorone                  | 0.012   | 0.037  | U       |
| 100-02-7         | 4-Nitrophenol              | 0.028  | 0.037  | U      | 91-20-3              | Naphthalene                 | 0.011   | 0.0093 | U       |
| 83-32-9          | Acenaphthene               | 0.011  | 0.037  | U      | 98-95-3              | Nitrobenzene                | 0.0015  | 0.037  | U       |
| 208-96-8         | Acenaphthylene             | 0.011  | 0.037  | U      | 621-64-7             | N-Nitroso-di-n-propylamine  | 0.014   | 0.0093 | U       |
| 98-86-2          | Acetophenone               | 0.013  | 0.037  | 0.019J | 86-30 <b>-</b> 6     | n-Nitrosodiphenylamine      | 0.13    | 0.037  | U       |
| 120-12-7         | Anthracene                 | 0.010  | 0.037  | U      | 87-86-5              | Pentachlorophenol           | 0.18    | 0.19   | U       |
| 1912-24-9        | Atrazine                   | 0.015  | 0.037  | U      | 85-01-8              | Phenanthrene                | 0.012   | 0.037  | U       |
| 100-52-7         | Benzaidehyde               | 0.40   | 0.037  | U      | 108-95-2             | Phenol                      | 0.010   | 0.037  | U       |
| 56-55-3          | Benzo[a]anthracene         | 0.012  | 0.037  | U      | 129-00-0             | Pyrene                      | 0.013   | 0.037  | U       |
|                  |                            |        |        |        |                      |                             |         |        |         |

Worksheet #: 569464

Total Target Concentration

0.42

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 7M\_0917.M Qt On : 10/12/20 11:26 Qt Upd On: 10/07/20 10:09 Operator : AH/JKR/JB Sam Mult : 1 Vial# : 35 Misc : S,BNA SampleID : AD19479-001 Data File: 7M109875.D Acq On : 10/ 5/20 22:35

| Compound                    | R.T.   | QIon | Response | Conc Units | Dev  | (Min)  |
|-----------------------------|--------|------|----------|------------|------|--------|
| Internal Standards          |        |      |          |            |      |        |
| 7) 1,4-Dioxane-d8(INT)      | 2.693  | 96   | 82457    | 40.00 ng   |      | 0.00   |
| 21) 1,4-Dichlorobenzene-d4  | 5.895  | 152  | 158148   | 40.00 ng   |      | 0.00   |
| 31) Naphthalene-d8          | 6.894  | 136  | 606772   | 40.00 ng   |      | 0.00   |
| 50) Acenaphthene-d10        | 8.339  | 164  | 309832   | 40.00 ng   |      | 0.00   |
| 77) Phenanthrene-d10        | 9.820  | 188  | 561172   | 40.00 ng   |      | 0.00   |
| 91) Chrysene-d12            | 12.893 | 240  | 440553   | 40.00 ng   |      | 0.00   |
| 103) Perylene-d12           | 14.538 | 264  | 409159   | 40.00 ng   |      | 0.00   |
| System Monitoring Compounds |        |      |          |            |      |        |
| 11) 2-Fluorophenol          | 4.726  | 112  | 314501   | 64.77 ng   |      | 0.01   |
| Spiked Amount 100.000       |        |      |          | ry = 64    |      |        |
| 16) Phenol-d5               | 5.583  | 99   | 409049   | 70.11 ng   |      | 0.00   |
| Spiked Amount 100.000       |        |      | Recove   | ry = 70    | .11% |        |
| 32) Nitrobenzene-d5         | 6.336  | 128  | 81613    | 33.86 ng   |      | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   | ry = 67    | .72% |        |
| 55) 2-Fluorobiphenyl        | 7.740  | 172  | 375264   | 36.31 ng   |      | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   | ry = 72    | .62% |        |
| 80) 2,4,6-Tribromophenol    | 9.091  | 330  | 99578    | 68.87 ng   |      | 0.00   |
| Spiked Amount 100.000       |        |      | Recove   | ry = 68    | .87% |        |
| 94) Terphenyl-d14           | 11.635 | 244  | 291428   | 41.54 ng   |      | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   | ry = 83    | .08% |        |
| Target Compounds            |        |      |          |            |      | Qvalue |
| 27) Acetophenone            | 6.218  | 105  | 7159m    | 1.0136     | ng   | _      |
| 89) Di-n-butylphthalate     | 10.448 | 149  | 112823   | 6.6350     | ng   | 97     |
| 101) Chrysene               | 12.922 | 228  | 10134m   | 0.8474     | ng   |        |
| 102) bis(2-Ethylhexyl)phtha | 12.922 | 149  | 109919   | 13.1916    | ng   | 91     |
| 107) Benzo(a)pyrene         | 14.467 | 252  | 7673m    | 0.7478     | ng   |        |
| 110) Benzo(g,h,i]perylene   | 16.324 | 276  | 4735m    | 0.4961     | ng   |        |
|                             |        |      |          |            |      |        |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed



7M\_0917.M Mon Oct 12 11:49:17 2020 RPT1

ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19479-003

Client Id: HSI-SS-02 (0-0.5') Data File: 7M109876.D

Analysis Date: 10/05/20 22:58 Date Rec/Extracted: 09/28/20-10/05/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil Initial Vol: 30g Final Vol: 0.5ml

Dilution: 1

Solids: 91

|                   |                            |        |        | Units: mg | ı/Kg     |                             |         |        |      |
|-------------------|----------------------------|--------|--------|-----------|----------|-----------------------------|---------|--------|------|
| Cas#              | Compound                   | MDL    | RL     | Conc      | Cas #    | Compound                    | MDL     | RL     | Conc |
| 92-52-4           | 1,1'-Biphenyl              | 0.011  | 0.037  | U         | 50-32-8  | Benzo[a]pyrene              | 0.012   | 0.037  | U    |
| 95-94-3           | 1,2,4,5-Tetrachlorobenzene | 0.012  | 0.037  | U         | 205-99-2 | Benzo[b]fluoranthene        | 0.013   | 0.037  | U    |
| 123-91-1          | 1,4-Dioxane                | 0.018  | 0.0092 | U         | 191-24-2 | Benzo[g,h,i]perylene        | 0.00025 | 0.037  | U    |
| 58-90-2           | 2,3,4,6-Tetrachlorophenol  | 0.014  | 0.037  | U         | 207-08-9 | Benzo[k]fluoranthene        | 0.013   | 0.037  | U    |
| 95-95-4           | 2,4,5-Trichlorophenol      | 0.010  | 0.037  | U         | 111-91-1 | bis(2-Chloroethoxy)methan   | 0.010   | 0.037  | U    |
| 88-06-2           | 2,4,6-Trichlorophenol      | 0.028  | 0.037  | U         | 111-44-4 | bis(2-Chloroethyl)ether     | 0.0089  | 0.0092 | U    |
| 120-83-2          | 2,4-Dichlorophenol         | 0.014  | 0.0092 | U         | 108-60-1 | bis(2-chloroisopropyl)ether | 0.015   | 0.037  | U    |
| 105-67-9          | 2,4-Dimethylphenol         | 0.018  | 0.0092 | U         | 117-81-7 | bis(2-Ethylhexyl)phthalate  | 0.032   | 0.037  | 0.44 |
| 51-28-5           | 2,4-Dinitrophenol          | 0.16   | 0.18   | U         | 85-68-7  | Butylbenzylphthalate        | 0.028   | 0.037  | U    |
| 121-14-2          | 2,4-Dinitrotoluene         | 0.011  | 0.037  | U         | 105-60-2 | Caprolactam                 | 0.029   | 0.037  | U    |
| 606-20-2          | 2,6-Dinitrotoluene         | 0.019  | 0.037  | U         | 86-74-8  | Carbazole                   | 0.011   | 0.037  | U    |
| 91-58-7           | 2-Chloronaphthalene        | 0.016  | 0.037  | U         | 218-01-9 | Chrysene                    | 0.012   | 0.037  | U    |
| 95-57-8           | 2-Chlorophenol             | 0.012  | 0.037  | U         | 53-70-3  | Dibenzo(a,h)anthracene      | 0.013   | 0.037  | U    |
| 91-57-6           | 2-Methylnaphthalene        | 0.011  | 0.037  | U         | 132-64-9 | Dibenzofuran                | 0.0093  | 0.0092 | U    |
| 95-48-7           | 2-Methylphenol             | 0.011  | 0.0092 | U         | 84-66-2  | Diethylphthalate            | 0.024   | 0.037  | U    |
| 88-74-4           | 2-Nitroaniline             | 0.017  | 0.037  | U         | 131-11-3 | Dimethylphthalate           | 0.010   | 0.037  | U    |
| 88-75-5           | 2-Nitrophenol              | 0.017  | 0.037  | U         | 84-74-2  | Di-n-butylphthalate         | 0.042   | 0.0092 | 0.16 |
| 106-44-5          | 3&4-Methylphenol           | 0.011  | 0.0092 | U         | 117-84-0 | Di-n-octylphthalate         | 0.024   | 0.037  | U    |
| 91-94-1           | 3,3'-Dichlorobenzidine     | 0.030  | 0.037  | U         | 206-44-0 | Fluoranthene                | 0.014   | 0.037  | U    |
| 99- <b>0</b> 9-2  | 3-Nitroaniline             | 0.014  | 0.037  | U         | 86-73-7  | Fluorene                    | 0.010   | 0.037  | U    |
| 534-52-1          | 4,6-Dinitro-2-methylphenol | 0.13   | 0.18   | U         | 118-74-1 | Hexachlorobenzene           | 0.015   | 0.037  | U    |
| 101-55 <b>-3</b>  | 4-Bromophenyl-phenylether  | 0.010  | 0.037  | U         | 87-68-3  | Hexachlorobutadiene         | 0.016   | 0.037  | U    |
| 59-50-7           | 4-Chloro-3-methylphènoi    | 0.0088 | 0.037  | U         | 77-47-4  | Hexachlorocyclopentadiene   | 0.12    | 0.037  | U    |
| 106-47-8          | 4-Chloroaniline            | 0.016  | 0.0092 | U         | 67-72-1  | Hexachloroethane            | 0.016   | 0.037  | U    |
| 7005-72 <b>-3</b> | 4-Chlorophenyl-phenylether | 0.011  | 0.037  | U         | 193-39-5 | Indeno[1,2,3-cd]pyrene      | 0.017   | 0.037  | U    |
| 100-01-6          | 4-Nitroaniline             | 0.014  | 0.037  | U         | 78-59-1  | Isophorone                  | 0.012   | 0.037  | U    |
| 100-02-7          | 4-Nitrophenol              | 0.028  | 0.037  | U         | 91-20-3  | Naphthalene                 | 0.011   | 0.0092 | U    |
| 83-32-9           | Acenaphthene               | 0.010  | 0.037  | U         | 98-95-3  | Nitrobenzene                | 0.0015  | 0.037  | U    |
| 208-96-8          | Acenaphthylene             | 0.011  | 0.037  | U         | 621-64-7 | N-Nitroso-di-n-propylamine  | 0.014   | 0.0092 | U    |
| 98-86-2           | Acetophenone               | 0.013  | 0.037  | 0.023J    | 86-30-6  | n-Nitrosodiphenylamine      | 0.12    | 0.037  | U    |
| 120-12-7          | Anthracene                 | 0.010  | 0.037  | U         | 87-86-5  | Pentachlorophenol           | 0.18    | 0.18   | U    |
| 1912-24-9         | Atrazine                   | 0.015  | 0.037  | U ;       | 85-01-8  | Phenanthrene                | 0.012   | 0.037  | U    |
| 100-52-7          | Benzaldehyde               | 0.40   | 0.037  | U         | 108-95-2 | Phenol                      | 0.010   | 0.037  | U    |
| 56-55-3           | Benzo[a]anthracene         | 0.012  | 0.037  | U         | 129-00-0 | Pyrene                      | 0.012   | 0.037  | U    |
|                   |                            |        |        |           |          |                             |         |        |      |

Worksheet #: 569464

Total Target Concentration

0.62

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Operator : AH/JKR/JB Sam Mult : 1 Vial# : 36 Misc : S,BNA Qt Meth : 7M\_0917.M Qt On : 10/12/20 11:36 Qt Upd On: 10/07/20 10:09 SampleID : AD19479-003 Data File: 7M109876.D Acq On : 10/ 5/20 22:58

| Internal Standards 7) 1,4-Dioxane-d8(INT) 2.681 96 83332 40.00 ng -0.02 21) 1,4-Dichlorobenzene-d4 5.895 152 165188 40.00 ng 0.00 31) Naphthalene-d8 6.894 136 626415 40.00 ng 0.00 50) Acenaphthene-d10 8.339 164 324415 40.00 ng 0.00 77) Phenanthrene-d10 9.820 188 575402 40.00 ng 0.00 91) Chrysene-d12 12.893 240 457582 40.00 ng 0.00 103) Perylene-d12 14.538 264 413308 40.00 ng 0.00  System Monitoring Compounds 11) 2-Fluorophenol 4.726 112 309585 63.09 ng 0.01 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21) 1,4-Dichlorobenzene-d4 5.895 152 165188 40.00 ng 0.00 31) Naphthalene-d8 6.894 136 626415 40.00 ng 0.00 50) Acenaphthene-d10 8.339 164 324415 40.00 ng 0.00 77) Phenanthrene-d10 9.820 188 575402 40.00 ng 0.00 91) Chrysene-d12 12.893 240 457582 40.00 ng 0.00 103) Perylene-d12 14.538 264 413308 40.00 ng 0.00 System Monitoring Compounds                                                                                                                            |
| 31) Naphthalene-d8 6.894 136 626415 40.00 ng 0.00 50) Acenaphthene-d10 8.339 164 324415 40.00 ng 0.00 77) Phenanthrene-d10 9.820 188 575402 40.00 ng 0.00 91) Chrysene-d12 12.893 240 457582 40.00 ng 0.00 103) Perylene-d12 14.538 264 413308 40.00 ng 0.00 System Monitoring Compounds                                                                                                                                                                                      |
| 50) Acenaphthene-d10       8.339       164       324415       40.00 ng       0.00         77) Phenanthrene-d10       9.820       188       575402       40.00 ng       0.00         91) Chrysene-d12       12.893       240       457582       40.00 ng       0.00         103) Perylene-d12       14.538       264       413308       40.00 ng       0.00         System Monitoring Compounds                                                                                |
| 77) Phenanthrene-d10 9.820 188 575402 40.00 ng 0.00 91) Chrysene-d12 12.893 240 457582 40.00 ng 0.00 103) Perylene-d12 14.538 264 413308 40.00 ng 0.00 System Monitoring Compounds                                                                                                                                                                                                                                                                                            |
| 91) Chrysene-d12 12.893 240 457582 40.00 ng 0.00 103) Perylene-d12 14.538 264 413308 40.00 ng 0.00 System Monitoring Compounds                                                                                                                                                                                                                                                                                                                                                |
| 103) Perylene-dl2 14.538 264 413308 40.00 ng 0.00  System Monitoring Compounds                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Spiked Amount 100.000 Recovery = 63.09%                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 16) Phenol-d5 5.590 99 411292 69.75 ng 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Spiked Amount 100.000 Recovery = 69.75%                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 32) Nitrobenzene-d5 6.336 128 80969 32.54 ng 0.00                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spiked Amount 50.000 Recovery = 65.08%                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 55) 2-Fluorobiphenyl 7.740 172 373459 34.51 ng 0.00                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Spiked Amount 50.000 Recovery = 69.02%                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 80) 2,4,6 Tribromophenol 9.091 330 99640 67.21 ng 0.00                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Spiked Amount 100.000 Recovery = 67.21%                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 94) Terphenyl-d14 11.635 244 278905 38.28 ng 0.00                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spiked Amount 50.000 Recovery = 76.56%                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Target Compounds Qvalue                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 27) Acetophenone 6.218 105 9294 1.2598 ng 54                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 89) Di-n-butylphthalate 10.449 149 147882 8.4817 ng 97                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 102) bis(2-Ethylhexyl)phtha 12.916 149 209744 24.2351 ng 93                                                                                                                                                                                                                                                                                                                                                                                                                   |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19479-005

Client Id: HSI-SS-03 (0-0.5')
Data File: 7M109877.D

Analysis Date: 10/05/20 23:21 Date Rec/Extracted: 09/28/20-10/05/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil

Initial Vol: 30g Final Vol: 0.5ml

Dilution: 1

Solids: 82

|   | Units: | mg/Kg |  |
|---|--------|-------|--|
| L | Conc   |       |  |

| Cas#             | Compound                   | MDL    | RL    | Conc | Cas #    | Compound                    | MDL            | RL    | Conc   |
|------------------|----------------------------|--------|-------|------|----------|-----------------------------|----------------|-------|--------|
| 92-52-4          | 1,1'-Biphenyl              | 0.012  | 0.041 | U    | 50-32-8  | Benzo[a]pyrene              | 0.014          | 0.041 | U      |
| 95-94-3          | 1,2,4,5-Tetrachlorobenzene | 0.014  | 0.041 | U    | 205-99-2 | Benzo[b]fluoranthene        | 0.015          | 0.041 | U      |
| 123-91-1         | 1,4-Dioxane                | 0.020  | 0.010 | U    | 191-24-2 | Benzo[g,h,i]perylene        | 0.00028        | 0.041 | U      |
| 58-90-2          | 2,3,4,6-Tetrachlorophenol  | 0.015  | 0.041 | U    | 207-08-9 | Benzo[k]fluoranthene        | 0.015          | 0.041 | U      |
| 95-95-4          | 2,4,5-Trichlorophenol      | 0.012  | 0.041 | U    | 111-91-1 | bis(2-Chloroethoxy)methan   | 0.012          | 0.041 | U      |
| 88-06-2          | 2,4,6-Trichlorophenol      | 0.032  | 0.041 | U    | 111-44-4 | bis(2-Chloroethyl)ether     | 0.0099         | 0.010 | U      |
| 120-83-2         | 2.4-Dichlorophenol         | 0.015  | 0.010 | U    | 108-60-1 | bis(2-chloroisopropyl)ether | 0.016          | 0.041 | U      |
| 105-67-9         | 2,4-Dimethylphenol         | 0.020  | 0.010 | U    | 117-81-7 | bis(2-Ethylhexyl)phthalate  | 0.036          | 0.041 | 0.036J |
| 51-2 <b>8-5</b>  | 2,4-Dinitrophenol          | 0.18   | 0.20  | U    | 85-68-7  | Butylbenzylphthalate        | 0.031          | 0.041 | U      |
| 121-14-2         | 2,4-Dinitrotoluene         | 0.013  | 0.041 | U    | 105-60-2 | Caprolactam                 | 0.033          | 0.041 | U      |
| 606-20-2         | 2.6-Dinitrotoluene         | 0.021  | 0.041 | U    | 86-74-8  | Carbazole                   | 0.013          | 0.041 | U      |
| 91-58-7          | 2-Chloronaphthalene        | 0.018  | 0.041 | U    | 218-01-9 | Chrysene                    | 0.014          | 0.041 | U      |
| 95-57-8          | 2-Chlorophenol             | 0.013  | 0.041 | U    | 53-70-3  | Dibenzo[a,h]anthracene      | 0.015          | 0.041 | U      |
| 91-57-6          | 2-Methylnaphthalene        | 0.013  | 0.041 | U    | 132-64-9 | Dibenzofuran                | 0.010          | 0.010 | U      |
| 95-48-7          | 2-Methylphenol             | 0.012  | 0.010 | U    | 84-66-2  | Diethylphthalate            | 0.026          | 0.041 | U      |
| 88-74-4          | 2-Nitroaniline             | 0.019  | 0.041 | U    | 131-11-3 | Dimethylphthalate           | 0.011          | 0.041 | U      |
| 88-75- <b>5</b>  | 2-Nitrophenol              | 0.018  | 0.041 | U    | 84-74-2  | Di-n-butylphthalate         | 0.047          | 0.010 | U      |
| 106-44-5         | 3&4-Methylphenol           | 0.012  | 0.010 | U    | 117-84-0 | Di-n-octylphthalate         | 0.027          | 0.041 | U      |
| 91-94-1          | 3,3'-Dichlorobenzidine     | 0.033  | 0.041 | U    | 206-44-0 | Fluoranthene                | 0.016          | 0.041 | U      |
| 99-09-2          | 3-Nitroaniline             | 0 016  | 0.041 | U    | 86-73-7  | Fluorene                    | 0.011          | 0.041 | 0.012J |
| 534-52-1         | 4,6-Dinitro-2-methylphenol | 0.14   | 0.20  | U    | 118-74-1 | Hexachlorobenzene           | 0.017          | 0.041 | U      |
| 101-55-3         | 4-Bromophenyl-phenylether  | 0.011  | 0.041 | U    | 87-68-3  | Hexachlorobutadiene         | 0.018          | 0.041 | U      |
| 59-50-7          | 4-Chloro-3-methylphenol    | 0.0098 | 0.041 | U    | 77-47-4  | Hexachlorocyclopentadiene   | 0.13           | 0.041 | U      |
| 106-47-8         | 4-Chloroaniline            | 0.018  | 0.010 | U    | 67-72-1  | Hexachloroethane            | 0.018          | 0.041 | U      |
| 7005-72-3        | 4-Chlorophenyl-phenylether | 0.012  | 0.041 | U    | 193-39-5 | Indeno[1,2,3-cd]pyrene      | 0.018          | 0.041 | U      |
| 100-01-6         | 4-Nitroaniline             | 0.016  | 0.041 | U    | 78-59-1  | Isophorone                  | 0.013          | 0.041 | U      |
| 100-02-7         | 4-Nitrophenol              | 0.031  | 0.041 | U    | 91-20-3  | Naphthalene                 | 0.012          | 0.010 | U      |
| 8 <b>3-3</b> 2-9 | Acenaphthene               | 0.012  | 0.041 | U    | 98-95-3  | Nitrobenzene                | 0.0016         | 0.041 | U      |
| 208- <b>96-8</b> | Acenaphthylene             | 0.012  | 0.041 | U    | 621-64-7 | N-Nitroso-di-n-propylamine  | 0.015          | 0.010 | U      |
| 98- <b>86</b> -2 | Acetophenone               | 0.015  | 0.041 | U    | 86-30-6  | n-Nitrosodiphenylamine      | 0.14           | 0.041 | U      |
| 120-12-7         | Anthracene                 | 0.011  | 0.041 | U    | 87-86-5  | Pentachlorophenol           | 0.20           | 0.20  | U      |
| 1912-24-9        | Atrazine                   | 0.016  | 0.041 | U    | 85-01-8  | Phenanthrene                | 0.013          | 0.041 | U      |
| 100-52-7         | Benzaldehyde               | 0.44   | 0.041 | U    | 108-95-2 | Phenol                      | 0.011          | 0.041 | U      |
| 56-55-3          | Benzo(a)anthracene         | 0.014  | 0.041 | U    | 129-00-0 | Pyrene                      | 0. <b>0</b> 14 | 0.041 | U      |

Worksheet #: 569464

Total Target Concentration

0.048

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $<sup>{\</sup>it E}$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19479-005 Data File: 7M109877.D Acq On : 10/ 5/20 23:21 Operator : AH/JKR/JB Sam Mult : 1 Vial# : 37 Misc : S,BNA Qt Meth : 7M\_0917.M Qt On : 10/12/20 11:37 Qt Upd On: 10/07/20 10:09

| Compound                    | R.T.   | QIon | Response | Conc U | nits De | v(Min)   |
|-----------------------------|--------|------|----------|--------|---------|----------|
| Internal Standards          |        |      |          |        |         |          |
| 7) 1,4-Dioxane-d8(INT)      | 2.675  | 96   | 77148    | 40.00  | ng      | -0.02    |
| 21) 1,4 Dichlorobenzene-d4  | 5.895  | 152  | 152621   | 40.00  | ng      | 0.00     |
|                             | 6.894  | 136  | 584803   | 40.00  | ng      | 0.00     |
| 50) Acenaphthene-d10        | 8.339  | 164  | 298777   | 40.00  | ng      | 0.00     |
| 77) Phenanthrene-d10        | 9.820  | 188  | 538286   | 40.00  | ng      | 0.00     |
| 91) Chrysene-d12            | 12.893 | 240  | 426281   | 40.00  | ng      | 0.00     |
| 103) Perylene dl2           | 14.538 | 264  | 380114   | 40.00  | ng      | 0.00     |
| System Monitoring Compounds |        |      |          |        |         |          |
| 11) 2-Fluorophenol          | 4.726  | 112  | 278961   | 61.41  | ng      | 0.01     |
| Spiked Amount 100.000       |        |      |          | ry =   |         |          |
| 16) Phenol-d5               | 5.584  | 99   | 369973   | 67.77  | ng      | 0.00     |
| Spiked Amount 100.000       |        |      | Recove   | ry =   | 67.77   | ŧ        |
| 32) Nitrobenzene-d5         | 6.336  | 128  | 71751    | 30.88  | ng      | 0.00     |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 61.76   | ŧ        |
| 55) 2-Fluorobiphenyl        | 7.740  | 172  | 332678   | 33.38  | ng      | 0.00     |
| Spiked Amount 50.000        |        | ,    | Recove   | ry =   | 66.769  | <b>k</b> |
| 80) 2,4,6-Tribromophenol    | 9.091  | 330  | 93336    | 67.30  | ng      | 0.00     |
| Spiked Amount 100.000       |        |      | Recove   | ry =   | 67.309  | <b>š</b> |
| 94) Terphenyl-d14           | 11.636 | 244  | 265118   | 39.06  | ng      | 0.00     |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 78.129  | k        |
| Target Compounds            |        |      |          |        |         | Qvalue   |
| 72) Fluorene                | 9.086  | 166  | 6332     | 0.614  | 10 ng   | 87       |
| 102) bis(2-Ethylhexyl)phtha | 12.922 | 149  | 14384m   | 1.784  | l ng    |          |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





7M\_0917.M Mon Oct 12 11:49:24 2020 RPT1

U

U

U

U

U

U

U

U

U

U

U

U

U

U

u

U

H

U

u

U

0.15

## Form1

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19479-007

Client Id: HSI-SS-04 (0-0.5') Data File: 7M109878.D

Analysis Date: 10/05/20 23:45 Date Rec/Extracted: 09/28/20-10/05/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil

Initial Vol: 30g Final Vol: 0.5ml

Dilution: 1

Solids: 90

Cas# Compound MDL RL Conc Cas# Compound MDL RL Conc 0.037 0.013 92-52-4 1,1'-Biphenyl 0.011 U 50-32-8 Benzo[a]pyrene 0.037 95-94-3 1,2,4,5-Tetrachlorobenzene 0.012 0.037 U 205-99-2 Benzo[b]fluoranthene 0.013 0.037 0.018J U 123-91-1 1,4-Dioxane 0.019 0.0093 191-24-2 Benzo[g,h,i]perylene 0.00026 0.037 2.3.4.6-Tetrachlorophenol 0.014 0.037 U 207-08-9 Benzo[k]fluoranthene 0.014 0.037 58-90-2 111-91-1 95-95-4 2,4,5-Trichlorophenol 0.011 0.037 U bis(2-Chloroethoxy)methan 0.010 0.037 0.029 0.037 U 0.0090 0.0093 2,4,6-Trichlorophenol 111-44-4 bis(2-Chloroethyl)ether 88-06-2 0.014 0.0093 U 108-60-1 0.015 0.037 120-83-2 2,4-Dichlorophenol bis(2-chloroisopropyl)ether 0.018 0.0093 U bis(2-Ethylhexyl)phthalate 0.033 0.037 2,4-Dimethylphenol 117-81-7 105-67-9 U 85-68-7 0.028 51-28-5 2.4-Dinitrophenol 0.16 0.19 Butylbenzylphthalate 0.037 0.012 U 0.030 2.4-Dinitrotoluene 0.037 105-60-2 Caprolactam 0.037 2.6-Dinitrotoluene 0.019 0.037 U 86-74-8 Carbazole 0.012 0.037 2-Chloronaphthaiene 0.016 0.037 U 218-01-9 0.013 0.037 Chrysene

Units: mg/Kg

U 121-14-2 606-20-2 U u 91-58-7 U 0.014 95-57-8 2-Chlorophenol 0.012 0.037 53-70-3 Dibenzo[a,h]anthracene 0.037 U u 0.011 0.037 132-64-9 Dibenzofuran 0.0094 0.0093 u 91-57-6 2-Methylnaphthalene U 95-48-7 2-Methylphenol 0.011 0.0093 84-66-2 Diethylphthalate 0.024 0.037 U 88-74-4 2-Nitroaniline 0.017 0.037 U 131-11-3 Dimethylphthalate 0.010 0.037 U 88-75-5 2-Nitrophenol 0.017 0.037 U 84-74-2 Di-n-butylphthalate 0.042 0.0093 u U u 106-44-5 3&4-Methylphenol 0.011 0.0093 117-84-0 Di-n-octylphthalate 0.025 0.037 3,3'-Dichlorobenzidine 0.030 0.037 U 206-44-0 Fluoranthene 0.014 0.037 91-94-1 99-09-2 3-Nitroaniline 0.014 0.037 U 86-73-7 Fluorene 0.010 0.037 U 0.13 0.19 U 118-74-1 Hexachlorobenzene 0.015 0.037 U 534-52-1 4.6-Dinitro-2-methylphenol

101-55-3 4-Bromophenyl-phenylether 0.010 0.037 U 87-68-3 Hexachlorobutadiene 0.017 0.037 59-50-7 4-Chloro-3-methylphenol 0.0089 0.037 U 77-47-4 Hexachlorocyclopentadiene 0.12 0.037 106-47-8 4-Chloroaniline 0.016 0.0093 U 67-72-1 Hexachloroethane 0.016 0.037 0.011 0.037 U 193-39-5 0.017 7005-72-3 Indeno[1,2,3-cd]pyrene 0.037 4-Chlorophenyl-phenylether 4-Nitroaniline 0.014 0.037 U 78-59-1 Isophorone 0.012 0.037 100-01-6 4-Nitrophenol 0.028 0.037 U 91-20-3 Naphthalene 0.011 0.0093 100-02-7 83-32-9 Acenaphthene 0.011 0.037 U 98-95-3 Nitrobenzene 0.0015 0.037

0.011 0.037 208-96-8 Acenaphthylene N-Nitroso-di-n-propylamine 0.0093 U 98-86-2 Acetophenone 0.013 0.037 86-30-6 n-Nitrosodiphenylamine 0.13 0.037 0.037 U 87-86-5 Pentachiorophenol 120-12-7 Anthracene 0.010 0.18 0.19 1912-24-9 Atrazine 0.015 0.037 U 85-01-8 Phenanthrene 0.012 0.037 0.40 0.037 U 108-95-2 Phenol 0.010 0.037 100-52-7 Benzaldehyde U 56-55-3 Benzo[a]anthracene 0.012 0.037 129-00-0 Pyrene 0.013 0.037

621-64-7

u

Worksheet #: 569464

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column 0.17

0.014

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19479-007 Data File: 7M109878.D Operator : AH/JKR/JB Sam Mult : 1 Vial# : 38 Misc : S,BNA Qt Meth : 7M\_0917.M Qt On : 10/12/20 11:37 Sam . Misc Qt Upd On: 10/07/20 10:09 Acq On : 10/ 5/20 23:45

| Compound                    | R.T.   | QIon | Response | Conc Units | Dev(Min) |  |  |  |
|-----------------------------|--------|------|----------|------------|----------|--|--|--|
| Internal Standards          |        |      |          |            |          |  |  |  |
| 7) 1,4-Dioxane-d8(INT)      | 2.675  | 96   | 72871    | 40.00 ng   | -0.02    |  |  |  |
| 21) 1,4-Dichlorobenzene-d4  | 5.895  | 152  | 144393   | 40.00 ng   | 0.00     |  |  |  |
| 31) Naphthalene-d8          | 6.894  | 136  | 553167   | 40.00 ng   | 0.00     |  |  |  |
| 50) Acenaphthene-d10        | 8.339  | 164  | 281015   | 40.00 ng   | 0.00     |  |  |  |
| 77) Phenanthrene-d10        | 9.820  | 188  | 511208   | 40.00 ng   | 0.00     |  |  |  |
| 91) Chrysene-d12            | 12.887 | 240  | 409452   | 40.00 ng   | 0.00     |  |  |  |
| 103) Perylene-d12           | 14.538 | 264  | 356768   | 40.00 ng   | 0.00     |  |  |  |
| System Monitoring Compounds |        |      |          |            |          |  |  |  |
| 11) 2-Fluorophenol          | 4.726  | 112  | 275254   | 64.15 ng   | 0.01     |  |  |  |
| Spiked Amount 100.000       |        |      | Recove   | ry = 64    | .15%     |  |  |  |
| 16) Phenol-d5               | 5.584  | 99   | 352220   | 68.31 ng   | 0.00     |  |  |  |
| Spiked Amount 100.000       |        |      | Recove   | ry = 68    | .31%     |  |  |  |
| 32) Nitrobenzene-d5         | 6.336  | 128  | 68837    | 31.32 ng   | 0.00     |  |  |  |
| Spiked Amount 50.000        |        |      | Recove   | ry = 62    | .64%     |  |  |  |
| 55) 2-Fluorobiphenyl        | 7.740  | 172  | 309659   | 33.04 ng   | 0.00     |  |  |  |
| Spiked Amount 50.000        |        |      | Recove   | ry = 66    | .08%     |  |  |  |
| 80) 2,4,6-Tribromophenol    | 9.091  | 330  | 76802    | 58.31 ng   | 0.00     |  |  |  |
| Spiked Amount 100.000       |        |      | Recove   | ry = 58    | .31%     |  |  |  |
| 94) Terphenyl-d14           | 11.635 | 244  | 222165   | 34.07 ng   | 0.00     |  |  |  |
| Spiked Amount 50.000        |        |      | Recove   | ry = 68    | .14%     |  |  |  |
| Target Compounds            |        |      |          |            | Qvalue   |  |  |  |
| 102) bis(2-Ethylhexyl)phtha | 12.916 | 149  | 61443    | 7.9340     | ng 91    |  |  |  |
| 105) Benzo[b] fluoranthene  |        |      |          | 0.9530     | ng       |  |  |  |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





7M 0917.M Mon Oct 12 11:49:27 2020 RPT1

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19479-009

Client Id: HSI-SS-05 (0-0.5') Data File: 7M109879.D

Analysis Date: 10/06/20 00:08 Date Rec/Extracted: 09/28/20-10/05/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil Initial Vol: 30g

Final Vol: 0.5ml

Dilution: 1

Solids: 87

|                  |                            |        |        | Units: mg | ı/Kg             |                             |         |        |        |
|------------------|----------------------------|--------|--------|-----------|------------------|-----------------------------|---------|--------|--------|
| Cas#             | Compound                   | MDL    | RL     | Conc      | Cas #            | Compound                    | MDL     | RL     | Conc   |
| 92-52-4          | 1,1'-Biphenyl              | 0.011  | 0.038  | Ü         | 50-32-8          | Benzo[a]pyrene              | 0.013   | 0.038  | U      |
| 95-9 <b>4-3</b>  | 1,2,4,5-Tetrachlorobenzene | 0.013  | 0.038  | U         | 205-99-2         | Benzo[b]fluoranthene        | 0.014   | 0.038  | U      |
| 123-91-1         | 1,4-Dioxane                | 0.019  | 0.0096 | U         | 191-24-2         | Benzo[g,h,i]perylene        | 0.00026 | 0.038  | U      |
| 58-9 <b>0-</b> 2 | 2,3,4,6-Tetrachlorophenol  | 0.014  | 0.038  | U         | 207-08-9         | Benzo[k]fluoranthene        | 0.014   | 0.038  | U      |
| 95-95-4          | 2,4,5-Trichlorophenol      | 0.011  | 0.038  | U         | 111-91-1         | bis(2-Chloroethoxy)methan   | 0.011   | 0.038  | U      |
| 88-06-2          | 2.4.6-Trichlorophenol      | 0.030  | 0.038  | U         | 111-44-4         | bis(2-Chloroethyl)ether     | 0.0093  | 0.0096 | U      |
| 120-83-2         | 2,4-Dichlorophenol         | 0.014  | 0.0096 | U         | 108-60-1         | bis(2-chloroisopropyl)ether | 0.015   | 0.038  | U      |
| 105-67-9         | 2,4-Dimethylphenol         | 0.019  | 0.0096 | U         | 117-81-7         | bis(2-Ethylhexyl)phthalate  | 0.034   | 0.038  | 0.28   |
| 51-28-5          | 2,4-Dinitrophenol          | 0.17   | 0.19   | U         | 85-68-7          | Butylbenzylphthalate        | 0.029   | 0.038  | 0.033J |
| 121-14-2         | 2.4-Dinitrotoluene         | 0.012  | 0.038  | U         | 105-60-2         | Caprolactam                 | 0.031   | 0.038  | U      |
| 606-20-2         | 2,6-Dinitrotoluene         | 0.020  | 0.038  | U         | 86-74-8          | Carbazole                   | 0.012   | 0.038  | U      |
| 91-58-7          | 2-Chloronaphthalene        | 0.017  | 0.038  | U         | 218-01-9         | Chrysene                    | 0.013   | 0.038  | U      |
| 95-57-8          | 2-Chlorophenol             | 0.013  | 0.038  | U         | 53-70-3          | Dibenzo[a,h]anthracene      | 0.014   | 0.038  | U      |
| 91-57-6          | 2-Methylnaphthalene        | 0.012  | 0.038  | U         | 132-64-9         | Dibenzofuran                | 0.0097  | 0.0096 | U      |
| 95-48-7          | 2-Methylphenol             | 0.011  | 0.0096 | U         | 84-66-2          | Diethylphthalate            | 0.025   | 0.038  | U      |
| 88-74-4          | 2-Nitroaniline             | 0.018  | 0.038  | U         | 131-11-3         | Dimethylphthalate           | 0.011   | 0.038  | U      |
| 88-75-5          | 2-Nitrophenol              | 0.017  | 0.038  | U         | 84-74-2          | Di-n-butylphthalate         | 0.044   | 0.0096 | 0.067  |
| 106-44-5         | 3&4-Methylphenol           | 0.011  | 0.0096 | U         | 117-84-0         | Di-n-octylphthalate         | 0.025   | 0.038  | U      |
| 91-94-1          | 3,3'-Dichlorobenzidine     | 0.031  | 0.038  | U         | 206-44-0         | Fluoranthene                | 0.015   | 0.038  | U      |
| 99-09-2          | 3-Nitroaniline             | 0.015  | 0.038  | U         | 86-73-7          | Fluorene                    | 0.010   | 0.038  | U      |
| 534-52-1         | 4,6-Dinitro-2-methylphenol | 0.13   | 0.19   | U         | 118-74-1         | Hexachlorobenzene           | 0.016   | 0.038  | U      |
| 101-55-3         | 4-Bromophenyl-phenylether  | 0.011  | 0.038  | U         | 87-68-3          | Hexachlorobutadiene         | 0.017   | 0.038  | U      |
| 59-50-7          | 4-Chloro-3-methylphenol    | 0.0092 | 0.038  | U         | 77-47-4          | Hexachlorocyclopentadiene   | 0.12    | 0.038  | U      |
| 106- <b>47-8</b> | 4-Chloroaniline            | 0.017  | 0.0096 | U         | 67-72-1          | Hexachloroethane            | 0.017   | 0.038  | U      |
| 7005-72-3        | 4-Chlorophenyl-phenylether | 0.012  | 0.038  | U         | 193-39-5         | Indeno[1,2,3-cd]pyrene      | 0.017   | 0.038  | U      |
| 100-01-6         | 4-Nitroaniline             | 0.015  | 0.038  | U         | 78-59-1          | Isophorone                  | 0.012   | 0.038  | U      |
| 100-02-7         | 4-Nitrophenol              | 0.029  | 0.038  | U         | 91-20-3          | Naphthalene                 | 0.011   | 0.0096 | U      |
| 83-32-9          | Acenaphthene               | 0.011  | 0.038  | U         | 98-95-3          | Nitrobenzene                | 0.0016  | 0.038  | U      |
| 208-96-8         | Acenaphthylene             | 0.011  | 0.038  | U         | 621-64-7         | N-Nitroso-di-n-propylamine  | 0.014   | 0.0096 | U      |
| 98-86-2          | Acetophenone               | 0.014  | 0.038  | U         | 86-30-6          | n-Nitrosodiphenylamine      | 0.13    | 0.038  | U      |
| 120-12-7         | Anthracene                 | 0.011  | 0.038  | U         | 87 <b>-</b> 86-5 | Pentachlorophenol           | 0.18    | 0.19   | U      |
| 1912-24-9        | Atrazine                   | 0.015  | 0.038  | U         | 85-01-8          | Phenanthrene                | 0.012   | 0.038  | U      |
| 100-52-7         | Benzaldehyde               | 0.42   | 0.038  | U         | 108-95-2         | Phenol                      | 0.011   | 0.038  | U      |
| 56-55-3          | Benzo(a)anthracene         | 0.013  | 0.038  | U         | 129-00-0         | Pyrene                      | 0.013   | 0.038  | U      |
|                  |                            |        |        |           |                  |                             |         |        |        |

Worksheet #: 569464

Total Target Concentration

0.38 ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19479-009 Data File: 7M109879.D Acq On : 10/6/20 00:08 Qt Meth : 7M\_0917.M Qt On : 10/12/20 11:37 Operator : AH/JKR/JB Sam Mult : 1 Vial# : 39 Misc : S,BNA

Qt Upd On: 10/07/20 10:09

| Compound                    | R.T.   | QIon | Response | Conc Unit | s Dev | (Min)  |
|-----------------------------|--------|------|----------|-----------|-------|--------|
| Internal Standards          |        |      |          |           |       |        |
| 7) 1,4-Dioxane-d8(INT)      | 2.675  | 96   | 82445    | 40.00 ng  |       | -0.02  |
| 21) 1,4-Dichlorobenzene-d4  | 5.895  | 152  | 158438   | 40.00 ng  |       | 0.00   |
| 31) Naphthalene-d8          | 6.894  | 136  | 608113   | 40.00 ng  |       | 0.00   |
| 50) Acenaphthene-d10        | 8.339  | 164  | 314636   | 40.00 ng  |       | 0.00   |
| 77) Phenanthrene-d10        | 9.820  | 188  | 568431   | 40.00 ng  |       | 0.00   |
| 91) Chrysene-d12            | 12.893 | 240  | 451204   | 40.00 ng  |       | 0.00   |
| 103) Perylene-d12           | 14.538 | 264  | 397848   | 40.00 ng  |       | 0.00   |
| System Monitoring Compounds |        |      |          |           |       |        |
| 11) 2-Fluorophenol          | 4.726  | 112  | 287898   | 59.30 ng  |       | 0.01   |
| Spiked Amount 100.000       |        |      | Recove   | ry = 5    | 9.30% |        |
| 16) Phenol-d5               | 5.584  | 99   | 369634   | 63.36 ng  |       | 0.00   |
| Spiked Amount 100.000       |        |      | Recove   | ry = 6    | 3.36% |        |
| 32) Nitrobenzene-d5         | 6.336  | 128  | 74691    | 30.92 ng  |       | 0.00   |
| Spiked Amount 50.000        |        |      |          | ry = 6    |       |        |
| 55) 2-Fluorobiphenyl        | 7.740  | 172  | 331501   | 31.59 ng  |       | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   | ry = 6    | 3.18% |        |
| 80) 2,4,6-Tribromophenol    | 9.091  | 330  | 84485    | 57.68 ng  |       | 0.00   |
| Spiked Amount 100.000       |        |      | Recove   | ry = 5    | 7.68% |        |
| 94) Terphenyl-d14           | 11.635 | 244  | 244208   | 33.99 ng  |       | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   | ry = 6    | 7.98% |        |
| Target Compounds            |        |      |          |           |       | Qvalue |
| 89) Di-n-butylphthalate     | 10.449 | 149  | 60099    | 3.4892    | ng    | 97     |
| 97) Butylbenzylphthalate    | 12.223 | 149  | 11064m   | 1.7395    | ng    |        |
| 102) bis(2-Ethylhexyl)phtha | 12.916 | 149  | 125634   | 14.7217   | ng    | 94     |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19479-011

Client Id: HSI-SS-06 (0-0.5')

Data File: 7M109880.D

Analysis Date: 10/06/20 00:32 Date Rec/Extracted: 09/28/20-10/05/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil

Initial Vol: 30g

Final Vol: 0.5ml

Dilution: 1

Solids: 92

| Uı | its: | mg/ | Kg |
|----|------|-----|----|
|----|------|-----|----|

| Units: mg/kg               |                            |        |        |      |                  |                             |         |        |       |  |  |
|----------------------------|----------------------------|--------|--------|------|------------------|-----------------------------|---------|--------|-------|--|--|
| Cas#                       | Compound                   | MDL    | RL     | Conc | Cas #            | Compound                    | MDL     | RL     | Conc  |  |  |
| 92-52-4                    | 1.1'-Biphenyl              | 0.010  | 0.036  | U    | 50-32-8          | Benzo[a]pyrene              | 0.012   | 0.036  | U     |  |  |
| 95-94-3                    | 1,2,4,5-Tetrachlorobenzene | 0.012  | 0.036  | U    | 205-99-2         | Benzo[b]fluoranthene        | 0.013   | 0.036  | U     |  |  |
| 123-91-1                   | 1,4-Dioxane                | 0.018  | 0.0091 | U    | 191-24-2         | Benzo[g,h,i]perylene        | 0.00025 | 0.036  | U     |  |  |
| 58-90-2                    | 2,3,4,6-Tetrachlorophenol  | 0.014  | 0.036  | U    | 207-08-9         | Benzo[k]fluoranthene        | 0.013   | 0.036  | U     |  |  |
| 95-95-4                    | 2,4,5-Trichlorophenol      | 0.010  | 0.036  | U    | 111-91-1         | bis(2-Chloroethoxy)methan   | 0.010   | 0.036  | U     |  |  |
| 88-06-2                    | 2,4,6-Trichlorophenol      | 0.028  | 0.036  | U :  | 111-44-4         | bis(2-Chloroethyl)ether     | 0.0088  | 0.0091 | U     |  |  |
| 120-83-2                   | 2,4-Dichlorophenol         | 0.014  | 0.0091 | U    | 108-60-1         | bis(2-chloroisopropyl)ether | 0.014   | 0.036  | U     |  |  |
| 105-67-9                   | 2,4-Dimethylphenol         | 0.018  | 0.0091 | U    | 117-81-7         | bis(2-Ethylhexyl)phthalate  | 0.032   | 0.036  | 0.34  |  |  |
| 51-28-5                    | 2,4-Dinitrophenol          | 0.16   | 0.18   | U    | 85-68-7          | Butylbenzylphthalate        | 0.028   | 0.036  | U     |  |  |
| 121-14-2                   | 2.4-Dinitrotoluene         | 0.011  | 0.036  | U    | 105-60-2         | Caprolactam                 | 0.029   | 0.036  | U     |  |  |
| 606-20-2                   | 2.6-Dinitrotoluene         | 0.018  | 0.036  | U    | 86-74-8          | Carbazole                   | 0.011   | 0.036  | U     |  |  |
| 91-58-7                    | 2-Chloronaphthalene        | 0.016  | 0.036  | U    | 218-01-9         | Chrysene                    | 0.012   | 0.036  | U     |  |  |
| 95-57-8                    | 2-Chlorophenol             | 0.012  | 0.036  | U    | 53-70-3          | Dibenzo(a,h)anthracene      | 0.013   | 0.036  | U     |  |  |
| 91-57-6                    | 2-Methylnaphthalene        | 0.011  | 0.036  | U    | 132-64-9         | Dibenzofuran                | 0.0092  | 0.0091 | U     |  |  |
| 95-48-7                    | 2-Methylphenol             | 0.010  | 0.0091 | U    | 84-66-2          | Diethylphthalate            | 0.023   | 0.036  | U     |  |  |
| 88-74-4                    | 2-Nitroaniline             | 0.017  | 0.036  | U    | 131-11-3         | Dimethylphthalate           | 0.010   | 0.036  | U     |  |  |
| 88-75-5                    | 2-Nitrophenol              | 0.016  | 0.036  | U    | 84-74-2          | Di-n-butylphthalate         | 0.042   | 0.0091 | 0.077 |  |  |
| 106-44-5                   | 3&4-Methylphenol           | 0.011  | 0.0091 | U    | 117-84-0         | Di-n-octylphthalate         | 0.024   | 0.036  | U     |  |  |
| 91-94-1                    | 3,3'-Dichlorobenzidine     | 0.029  | 0.036  | U    | 206-44-0         | Fluoranthene                | 0.014   | 0.036  | U     |  |  |
| 99-09-2                    | 3-Nitroaniline             | 0.014  | 0.036  | U    | 86-73-7          | Fluorene                    | 0.0099  | 0.036  | U     |  |  |
| 534-52-1                   | 4,6-Dinitro-2-methylphenol | 0.13   | 0.18   | U    | 118-74-1         | Hexachlorobenzene           | 0.015   | 0.036  | U     |  |  |
| 101-55-3                   | 4-Bromophenyl-phenylether  | 0.010  | 0.036  | U    | 87-68-3          | Hexachlorobutadiene         | 0.016   | 0.036  | U     |  |  |
| 59-50-7                    | 4-Chloro-3-methylphenol    | 0.0087 | 0.036  | U    | 77-47-4          | Hexachlorocyclopentadiene   | 0.12    | 0.036  | U     |  |  |
| 106-47-8                   | 4-Chloroaniline            | 0.016  | 0.0091 | U    | 67-72-1          | Hexachloroethane            | 0.016   | 0.036  | U     |  |  |
| 70 <b>0</b> 5-72- <b>3</b> | 4-Chlorophenyl-phenylether | 0.011  | 0.036  | U    | 193-39-5         | Indeno[1,2,3-cd]pyrene      | 0.016   | 0.036  | U     |  |  |
| 100-01-6                   | 4-Nitroaniline             | 0.014  | 0.036  | U    | 78-59-1          | Isophorone                  | 0.012   | 0.036  | U     |  |  |
| 100-02-7                   | 4-Nitrophenol              | 0.028  | 0.036  | U    | 91-20-3          | Naphthalene                 | 0.010   | 0.0091 | U     |  |  |
| 83-32-9                    | Acenaphthene               | 0.010  | 0.036  | U    | 98-95-3          | Nitrobenzene                | 0.0015  | 0.036  | U     |  |  |
| 208-96-8                   | Acenaphthylene             | 0.011  | 0.036  | U    | 621-64-7         | N-Nitroso-di-n-propylamine  | 0.014   | 0.0091 | U     |  |  |
| 98-86-2                    | Acetophenone               | 0.013  | 0.036  | U .  | 86-30-6          | n-Nitrosodiphenylamine      | 0.12    | 0.036  | U     |  |  |
| 120-12-7                   | Anthracene                 | 0.010  | 0.036  | U    | <b>87-86-</b> 5  | Pentachlorophenol           | 0.17    | 0.18   | U     |  |  |
| 1912-24-9                  | Atrazine                   | 0.015  | 0.036  | U    | 85-01 <b>-</b> 8 | Phenanthrene                | 0.012   | 0.036  | U     |  |  |
| 100-52-7                   | Benzaldehyde               | 0.39   | 0.036  | U    | 108-95-2         | Phenol                      | 0.010   | 0.036  | U     |  |  |
| 56-55-3                    | Benzo[a]anthracene         | 0.012  | 0.036  | U    | 129-00-0         | Pyrene                      | 0.012   | 0.036  | U     |  |  |

Worksheet #: 569464

Total Target Concentration

<sup>0.42</sup> 

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 7M\_0917.M Qt On : 10/12/20 11:38 Qt Upd On: 10/07/20 10:09 SampleID : AD19479-011 Operator : AH/JKR/JB Sam Mult : 1 Vial# : 40 Misc : S,BNA Data File: 7M109880.D Acq On : 10/6/20 00:32

| Compound                    | R.T.   | QIon | Response | Conc U | nits De | v(Min) |
|-----------------------------|--------|------|----------|--------|---------|--------|
| Internal Standards          |        |      |          |        |         |        |
| 7) 1,4-Dioxane-d8(INT)      | 2.687  | 96   | 87367    | 40.00  | ng      | -0.01  |
| 21) 1,4-Dichlorobenzene-d4  | 5.895  | 152  | 174584   | 40.00  | ng      | 0.00   |
|                             | 6.894  | 136  | 663283   | 40.00  | ng      | 0.00   |
| 50) Acenaphthene-d10        | 8.339  | 164  | 336093   | 40.00  | ng      | 0.00   |
|                             | 9.820  | 188  | 608064   | 40.00  | ng      | 0.00   |
| 91) Chrysene-d12            | 12.893 | 240  | 481069   | 40.00  | ng      | 0.00   |
| 103) Perylene-d12           | 14.538 | 264  | 427798   | 40.00  | ng      | 0.00   |
| System Monitoring Compounds |        |      |          |        |         |        |
| 11) 2-Fluorophenol          | 4.726  | 112  | 325528   | 63.27  | ng      | 0.01   |
| Spiked Amount 100.000       |        |      | Recove   | ery =  | 63.27   | %      |
| 16) Phenol-d5               | 5.584  | 99   | 448281   |        | ng      |        |
| Spiked Amount 100.000       |        |      | Recove   | ery =  | 72.51   | ₹      |
| 32) Nitrobenzene-d5         | 6.336  | 128  | 86689    | 32.90  | ng      | 0.00   |
| Spiked Amount 50.000        |        | ,    | Recove   | ery =  | 65.80   | *      |
| 55) 2-Fluorobiphenyl        | 7.740  | 172  | 415163   | 37.03  | ng      | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   | ery =  | 74.06   | *      |
| 80) 2,4,6-Tribromophenol    | 9.091  | 330  | 118505   | 75.64  | ng      | 0.00   |
| Spiked Amount 100.000       |        |      | Recove   | ery =  | 75.64   | %      |
| 94) Terphenyl-d14           | 11.636 | 244  | 328121   | 42.83  | ng      | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   | ery =  | 85.66   | *      |
| Target Compounds            |        |      |          |        |         | Qvalue |
| 89) Di-n-butylphthalate     | 10.449 | 149  | 78006    | 4,233  | 37 ng   | 98     |
| 102) bis(2-Ethylhexyl)phtha |        |      |          |        |         |        |

<sup>(#)</sup> = qualifier out of range (m) = manual integration (+) = signals summed





7M\_0917.M Mon Oct 12 11:49:33 2020 RPT1

# Form1 ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19479-013

Client ld: HSI-SS-07 (0-0.5') Data File: 7M109881.D

Analysis Date: 10/06/20 00:55 Date Rec/Extracted: 09/28/20-10/05/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil Initial Vol: 30g Final Vol: 0.5ml

Dilution: 1

Solids: 82

|                   |                            |        |       | Units: mg | ı/Kg                  |                             |         |       |       |
|-------------------|----------------------------|--------|-------|-----------|-----------------------|-----------------------------|---------|-------|-------|
| Cas#              | Compound                   | MDL    | RL    | Conc      | Cas #                 | Compound                    | MDL     | RL    | Conc  |
| 92-52-4           | 1,1'-Biphenyl              | 0.012  | 0.041 | U         | 50-32-8               | Benzo[a]pyrene              | 0.014   | 0.041 | U     |
| 95-94-3           | 1,2,4,5-Tetrachlorobenzene | 0.014  | 0.041 | U         | 205-99-2              | Benzo[b]fluoranthene        | 0.015   | 0.041 | U     |
| 123-91-1          | 1,4-Dioxane                | 0.020  | 0.010 | U         | 191-24-2              | Benzo[g,h,i]perylene        | 0.00028 | 0.041 | U     |
| 58-90-2           | 2,3,4,6-Tetrachlorophenol  | 0.015  | 0.041 | U         | 207-08-9              | Benzo[k]fluoranthene        | 0.015   | 0.041 | U     |
| 95-95-4           | 2,4,5-Trichlorophenol      | 0.012  | 0.041 | U         | 111-91-1              | bis(2-Chloroethoxy)methan   | 0.012   | 0.041 | U     |
| 88-06-2           | 2,4,6-Trichlorophenol      | 0.032  | 0.041 | U         | 111-44-4              | bis(2-Chloroethyl)ether     | 0.0099  | 0.010 | U     |
| 120-83-2          | 2,4-Dichlorophenol         | 0.015  | 0.010 | U         | 108-60-1              | bis(2-chloroisopropyl)ether | 0.016   | 0.041 | U     |
| 105-67 <b>-9</b>  | 2.4-Dimethylphenol         | 0.020  | 0.010 | U         | 117-81-7              | bis(2-Ethylhexyl)phthalate  | 0.036   | 0.041 | 0.42  |
| 51-28-5           | 2.4-Dinitrophenol          | 0.18   | 0.20  | U         | 85-68-7               | Butylbenzylphthalate        | 0.031   | 0.041 | U     |
| 121-14-2          | 2,4-Dinitrotoluene         | 0.013  | 0.041 | U         | 105-60-2              | Caprolactam                 | 0.033   | 0.041 | U     |
| 606-20-2          | 2,6-Dinitrotoluene         | 0.021  | 0.041 | U         | 86-74-8               | Carbazole                   | 0.013   | 0.041 | U     |
| 91-58-7           | 2-Chloronaphthalene        | 0.018  | 0.041 | U         | 218-01-9              | Chrysene                    | 0.014   | 0.041 | U     |
| 95-57-8           | 2-Chlorophenol             | 0.013  | 0.041 | U         | 53-70-3               | Dibenzo[a,h]anthracene      | 0.015   | 0.041 | U     |
| 91-57-6           | 2-Methylnaphthalene        | 0.013  | 0.041 | U         | 132- <del>6</del> 4-9 | Dibenzofuran                | 0.010   | 0.010 | U     |
| 95-48-7           | 2-Methylphenol             | 0.012  | 0.010 | U         | 84-66-2               | Diethylphthalate            | 0.026   | 0.041 | U     |
| 88-74-4           | 2-Nitroanifine             | 0.019  | 0.041 | U         | 131-11-3              | Dimethylphthalate           | 0.011   | 0.041 | U     |
| 88-75-5           | 2-Nitrophenol              | 0.018  | 0.041 | U         | 84-74-2               | Di-n-butylphthalate         | 0.047   | 0.010 | 0.061 |
| 106-44-5          | 3&4-Methylphenol           | 0.012  | 0.010 | U         | 117-84-0              | Di-n-octylphthalate         | 0.027   | 0.041 | U     |
| 91-94-1           | 3,3'-Dichlorobenzidine     | 0.033  | 0.041 | U         | 206-44-0              | Fluoranthene                | 0.016   | 0.041 | U     |
| 99-09-2           | 3-Nitroaniline             | 0.016  | 0.041 | U         | 86-73-7               | Fluorene                    | 0.011   | 0.041 | U     |
| 534-52-1          | 4,6-Dinitro-2-methylphenol | 0.14   | 0.20  | U         | 118-74-1              | Hexachlorobenzene           | 0.017   | 0.041 | U     |
| 101-55-3          | 4-Bromophenyl-phenylether  | 0.011  | 0.041 | U ·       | 87-68-3               | Hexachlorobutadiene         | 0.018   | 0.041 | U     |
| 59-50-7           | 4-Chloro-3-methylphenol    | 0.0098 | 0.041 | U         | 77-47-4               | Hexachlorocyclopentadiene   | 0.13    | 0.041 | U     |
| 106-47-8          | 4-Chloroaniline            | 0.018  | 0.010 | U         | 67-72-1               | Hexachloroethane            | 0.018   | 0.041 | U     |
| 7005-72-3         | 4-Chlorophenyl-phenylether | 0.012  | 0.041 | U         | 193-39-5              | Indeno[1,2,3-cd]pyrene      | 0.018   | 0.041 | U     |
| 100-01-6          | 4-Nitroaniline             | 0.016  | 0.041 | U         | 78-59-1               | Isophorone                  | 0.013   | 0.041 | U     |
| 100-02-7          | 4-Nitrophenol              | 0.031  | 0.041 | U         | 91-20-3               | Naphthalene                 | 0.012   | 0.010 | U     |
| 83-32-9           | Acenaphthene               | 0.012  | 0.041 | U         | 98-95-3               | Nitrobenzene                | 0.0016  | 0.041 | U     |
| 208-96-8          | Acenaphthylene             | 0.012  | 0.041 | U         | 621-64-7              | N-Nitroso-di-n-propylamine  | 0.015   | 0.010 | U     |
| 98-86-2           | Acetophenone               | 0.015  | 0.041 | U         | 83-30-6               | n-Nitrosodiphenylamine      | 0.14    | 0.041 | U     |
| 120-12-7          | Anthracene                 | 0.011  | 0.041 | U         | 87-86-5               | Pentachlorophenol           | 0.20    | 0.20  | U     |
| 1912-24-9         | Atrazine                   | 0.016  | 0.041 | U         | 85-01-8               | Phenanthrene                | 0.013   | 0.041 | U     |
| 10 <b>0</b> -52-7 | Benzaldehyde               | 0.44   | 0.041 | U         | 108-95-2              | Phenol                      | 0.011   | 0.041 | U     |
| 56-55-3           | Benzo[a]anthracene         | 0.014  | 0.041 | U         | 129-00-0              | Pyrene                      | 0.014   | 0.041 | U     |

Worksheet #: 569464

**Total Target Concentration** 

0.48
R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

J - Indicates an estimated value when a compound is detected at less than the

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

SampleID : AD19479-013 Data File: 7M109881.D Acq On : 10/ 6/20 00:55 Operator : AH/JKR/JB Sam Mult : 1 Vial# : 41 Misc : S,BNA Qt Meth :  $7M_0917.M$ Qt On : 10/12/20 11:38

Qt Upd On: 10/07/20 10:09

Data Path : G:\GcMsData\2020\GCMS\_7\Data\10-0520\
Qt Path : G:\GCMSDATA\2020\GCMS\_7\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                              | R.T.   | QIon | Response | Conc Unit | s Dev(Min) |
|---------------------------------------|--------|------|----------|-----------|------------|
| Internal Standards                    |        |      |          |           |            |
| 7) 1,4-Dioxane-d8(INT)                | 2.681  | 96   | 88377    | 40.00 ng  | -0.02      |
| <pre>21) 1,4-Dichlorobenzene-d4</pre> | 5.895  | 152  | 174784   | 40.00 ng  | 0.00       |
| 31) Naphthalene-d8                    | 6.894  | 136  | 666794   | 40.00 ng  | 0.00       |
| 50) Acenaphthene-d10                  | 8.339  | 164  | 338694   | 40.00 ng  | 0.00       |
| 77) Phenanthrene-d10                  | 9.820  | 188  | 601200   | 40.00 ng  | 0.00       |
| 91) Chrysene-d12                      | 12.893 | 240  | 484798   | 40.00 ng  | 0.00       |
| 103) Perylene-d12                     | 14.538 | 264  | 433232   |           |            |
| System Monitoring Compounds           |        |      |          |           |            |
| 11) 2-Fluorophenol                    | 4.726  | 112  | 327112   | 62.86 ng  | 0.01       |
| Spiked Amount 100.000                 | * = *  |      | Recove   | _         |            |
| 16) Phenol-d5                         | 5.590  | 99   |          | 69.21 ng  |            |
| Spiked Amount 100.000                 |        |      |          | ery = 6   |            |
| 32) Nitrobenzene-d5                   | 6.336  | 128  | 86698    | 32.73 ng  |            |
| Spiked Amount 50.000                  |        |      | Recove   | ry = 6    |            |
| 55) 2-Fluorobiphenyl                  | 7.740  | 172  |          | 34.75 ng  |            |
| Spiked Amount 50.000                  |        |      |          | ery = 6   |            |
| 80) 2,4,6-Tribromophenol              | 9.091  | 330  | 102982   | 66.48 ng  |            |
| Spiked Amount 100.000                 |        |      | Recove   | ry = 6    |            |
| 94) Terphenyl-d14                     | 11.635 | 244  |          | 38.03 ng  |            |
| Spiked Amount 50.000                  |        |      |          | _         | 6.06%      |
| Target Compounds                      |        |      |          |           | Qvalue     |
| 89) Di-n-butylphthalate               | 10.449 | 149  | 55087    | 3.0239    | ng 97      |
| 102) bis(2-Ethylhexyl)phtha           |        |      | 191339   | 20.8673   | ng 93      |
| zon, zwolz denymenyzypnena            | 22.722 | 147  | 272333   | 20.0073   |            |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19479-015(3X)

Client Id: HSI-SS-08 (0-0.5') Data File: 7M109887.D

Analysis Date: 10/06/20 10:02 Date Rec/Extracted: 09/28/20-10/05/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil

Initial Vol: 30g Final Vol: 0.5ml

Dilution: 3

Solids: 94

| Cas #         Compound         MDL         RL         Conc         Cas #         Compound         MDL         RL         Conc           9:9:4-4         1,1-isiphenyl         0.031         0.11         U         50:32-8         Benzolpijnyrene         0.038         0.11         U           9:94-4         1,2-4,5-Tertachloropherone         0.036         0.11         U         205-99-2         Benzolpijnvoranhene         0.038         0.11         U           9:94-4         2,4-5-Trichlorophenol         0.040         0.011         U         191-24-2         Benzolpijnvoranhene         0.039         0.11         U           9:9-54-0         2,4-5-Trichlorophenol         0.030         0.11         U         111-91-1         bis2/C-hloroethylether         0.030         0.11         U           120-83-2         2,4-5-Trichlorophenol         0.043         0.027         U         117-44-4         bis2/C-hloroethylether         0.043         0.01         U           120-8-7-2         2,4-Dimerbylphenol         0.052         0.027         U         117-8-17         bis2/C-Brioroethylphenol         0.043         0.11         U           120-8-7-7         2,4-Dimerbylphenol         0.052         0.027         U         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                            |       |       | Units: m | g/Kg            |                             |         |       |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|-------|-------|----------|-----------------|-----------------------------|---------|-------|--------|
| 95-94-3         1.2.4,5-Tetrachiorobenzene         0.036         0.11         U         205-99-2         Benzolpifluoranthene         0.038         0.11         U           123-91-1         1.4-Dioxane         0.054         0.027         U         191-24-2         Benzolpifluoranthene         0.039         0.11         0.033           95-95-4         2.4.5-Trichiorophenol         0.030         0.11         U         111-14-14         bis(2-Chloroethyyl)rethen         0.020         0.01         U           95-95-4         2.4.5-Trichiorophenol         0.040         0.027         U         111-44-4         bis(2-Chloroethyyl)rethen         0.026         0.027         U         105-67-9         2.4-Dintrolyphenol         0.040         0.027         U         118-60-1         bis(2-Chloroethyyl)rethenel         0.043         0.11         U           10-56-79         2.4-Dintroloulene         0.033         0.01         U         117-81-7         bis(2-Ethylhexyl)phthalate         0.092         0.11         U           51-21-1-4-2         2.4-Dintroloulene         0.033         0.11         U         105-60-2         Caprolactam         0.085         0.11         U           91-58-8         2.Chloronaphthalene         0.047         0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cas#             | Compound                   | MDL   | RL    | Conc     | Cas#            | Compound                    | MDL.    | RL    | Conc   |
| 173-91-1         1,4-Dioxane         0,054         0,027         U         191-24-2         Benzo(g,h,liperylene         0,00073         0.11         0,033 J           58 90-2         2,3,4,6-Trachlorophenol         0,040         0.11         U         207-08-9         Benzo(k)fluoranthene         0,039         0.11         U           88-06-2         2,4,6-Trachlorophenol         0,030         0.11         U         111-91-1         bis(2-Chloroethyy)ethen         0,020         0.027         U           120-83-2         2,4-Dindtrophenol         0,040         0,027         U         108-80-1         bis(2-chloroethyy)phenale         0,043         0,11         U           51-28-5         2,4-Dindtrophenol         0,052         0,027         U         117-81-7         bis(2-chlorospory)Pithelate         0,043         0,11         U           121-14-2         2,4-Dindtrophenol         0,46         0,53         U         85-8-7         Bultybenzylphthalate         0,042         0,11         U           121-14-2         2,4-Dindtrophenol         0,033         0,11         U         105-60-2         Caprolactam         0,085         0,11         U           191-8-7-7-8         2,-Chloropphthalate         0,047         0,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92-52-4          | 1,1'-Biphenyl              | 0.031 | 0.11  | U        | 50-32-8         | Benzo(a)pyrene              | 0.036   | 0.11  | U      |
| 68 90 2         2.3.4.6-Tetrachlorophenol         0.040         0.11         U         207-08-9         Benzolkitluranthene         0.039         0.11         U           95 95 4         2.4.5-Trichlorophenol         0.030         0.11         U         111-9+1         bis(2-Chloroethyy)mithan         0.030         0.11         U           120-83-2         2.4-Dichlorophenol         0.040         0.027         U         108-60-1         bis(2-Chlorostoyproyl)ether         0.043         0.11         U           105-67-9         2.4-Dintrophenol         0.052         0.027         U         117-81-7         bis(2-Ethylhexyl)phthalate         0.094         0.11         U           51-28-5         2.4-Dintrophenol         0.46         0.53         U         185-68-7         bis(2-Ethylhexyl)phthalate         0.094         0.11         U           605-22         2.6-Dintrotoluene         0.033         0.11         U         867-68-8         Carbacole         0.033         0.11         U           91-9-7-8         2Chloropaphthalene         0.047         0.11         U         867-48         Carbacole         0.033         0.11         U           95-9-7-8         2Methylinaphthalate         0.035         0.11         U<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95-94-3          | 1,2,4,5-Tetrachlorobenzene | 0.036 | 0.11  | U        | 205-99-2        | Benzo[b]fluoranthene        | 0.038   | 0.11  | U      |
| 95-95-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 123-91-1         | 1,4-Dioxane                | 0.054 | 0.027 | U        | 191-24-2        | Benzo[g,h,i]perylene        | 0.00073 | 0.11  | 0.033J |
| 88-06-2         2.4.6-Trichlorophenol         0.083         0.11         U         111-44-4         bis(2-Chloroelthyl)ether         0.026         0.027         U           120-83-2         2.4-Dirblorophenol         0.040         0.027         U         108-60-1         bis(2-chloroelsopropy)ether         0.043         0.11         U           105-67-9         2.4-Dirutphylphenol         0.052         0.027         U         117-81-7         bis(2-Ethylhexyl)phthalate         0.094         0.11         U           1121-14-2         2.4-Dirutpolpenol         0.46         0.53         U         85-86-8         Blytheoxylphthalate         0.085         0.11         U           606-20-2         2.6-Dirutpoluene         0.033         0.11         U         105-60-2         Caprolactam         0.085         0.11         U           91-58-7         2Chlorophenol         0.035         0.11         U         218-01-9         Chrysene         0.036         0.11         U           95-57-8         2Chlorophenol         0.035         0.11         U         132-64-9         Dibenzofuran         0.027         0.027           95-457-8         2Mitrophinol         0.041         0.11         U         84-62-2         Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58-90-2          | 2.3.4,6-Tetrachlorophenol  | 0.040 | 0.11  | U        | 207-08-9        | Benzo[k]fluoranthene        | 0.039   | 0.11  | U      |
| 120-83-2         2.4-Direntorophenol         0.040         0.027         U         108-60-1         bis(2-chloroisopropy)lether         0.043         0.11         U           105-67-9         2.4-Direntoryhphenol         0.052         0.027         U         117-81-7         bis(2-Ethylhey/i)phthalate         0.094         0.11         U           51-28-5         2.4-Direntoroluene         0.033         0.11         U         105-60-2         Caprolactam         0.085         0.11         U           91-88-7         2-Chloronaphthalene         0.047         0.11         U         86-74-8         Carbazole         0.033         0.11         U           95-57-8         2-Chlorophenol         0.035         0.11         U         218-01-9         Chrysene         0.036         0.11         U           91-57-8         2-Chlorophenol         0.035         0.11         U         53-70-3         Dibenzofuran         0.027         0.027         U           91-57-6         2-Methylphanyhthalene         0.033         0.11         U         132-64-9         Dibenzofuran         0.027         0.027         U           95-48-7         2-Methylphenol         0.031         0.027         U         84-65-2         Diet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95-95-4          | 2,4,5-Trichlorophenol      | 0.030 | 0.11  | U        | 111-91-1        | bis(2-Chloroethoxy)methan   | 0.030   | 0.11  | U      |
| 105-67-9   2,4-Dimethylphenol   0.052   0.027   U   117-81-7   bis(2-Ethylhexyl)phthalate   0.094   0.11   U   0.128-5   2,4-Dimitrophenol   0.46   0.53   U   85-88-7   Butylbenzylphthalate   0.082   0.11   U   121-14-2   2,4-Dimitrobluene   0.033   0.11   U   105-60-2   Caprolactam   0.085   0.11   U   0.066-20-2   2,6-Dinitrobluene   0.054   0.11   U   86-74-8   Carbazole   0.033   0.11   U   0.066-20-2   2,6-Dinitrobluene   0.047   0.11   U   218-01-9   Chrysene   0.036   0.11   U   0.05-7-8   2-Chlorophenol   0.035   0.11   U   0.05-7-8   2-Chlorophenol   0.035   0.11   U   0.05-7-8   2-Methylphaphthalene   0.033   0.11   U   0.05-7-8   Dibenzola, hjanthracene   0.039   0.11   U   0.05-7-8   2-Methylphenol   0.031   0.027   U   0.05-48-7   Dibenzolana   0.027   0.027   U   0.05-48-7   Dibenzolana   0.027   0.027   U   0.05-48-7   Dibenzolana   0.059   0.11   U   0.05-7-8   2-Methylphenol   0.031   0.027   U   0.05-48-9   Dibenzolana   0.030   0.011   U   0.05-7-8   Dibenzolana   0.050   0.011   U   0.05-7-8   Dibenzolana   0.050   0.05-7-8   Dibenzolana   0.050   0.05-7-8   Dibenzolana   0.050   0.05-7-8   Dibenzolana   0.050   0.05-7-8   Dibenzolana   0.050   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8   Dibenzolana   0.05-7-8 | 88-06-2          | 2,4,6-Trichlorophenol      | 0.083 | 0.11  | U        | 111-44-4        | bis(2-Chloroethyl)ether     | 0.026   | 0.027 | U      |
| 51 2.8-5         2,4-Dinitrophenol         0.46         0.53         U         85-68-7         Bulylbenzylphthalate         0.082         0.11         U           121-14-2         2,4-Dinitrotoluene         0.033         0.11         U         105-60-2         Caprolactam         0.085         0.11         U           666-20-2         2,6-Dinitrotoluene         0.054         0.11         U         86-74-8         Carbazole         0.033         0.11         U           91-58-7         2-Chlorophenol         0.035         0.11         U         218-01-9         Chrysnee         0.036         0.11         U           95-95-7-8         2-Chlorophenol         0.033         0.11         U         53-70-3         Dibenzofuran         0.027         0.027         U           95-48-7         2-Methylphenol         0.031         0.027         U         84-68-2         Diethylphthalate         0.099         0.11         U           88-74-4         2-Nitropaline         0.050         0.11         U         84-74-2         Dien-bulylphthalate         0.02         0.11         U           88-75-5         2-Nitropaline         0.048         0.11         U         84-74-2         Dien-bulylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120-83-2         | 2.4-Dichlorophenol         | 0.040 | 0.027 | U        | 108-60-1        | bis(2-chloroisopropyl)ether | 0.043   | 0.11  | U      |
| 121-14-2         2,4-Dinitrotoluene         0.033         0.11         U         105-60-2         Caprolactam         0.085         0.11         U           606-20-2         2,6-Dinitrotoluene         0.054         0.11         U         86-74-8         Carbazole         0.033         0.11         U           91-88-7         2-Chloronaphthalene         0.047         0.11         U         218-01-9         Chrysene         0.036         0.11         U           91-57-6         2-Methylaphthalene         0.033         0.11         U         132-64-9         Dibenzofuran         0.027         0.027         U           95-48-7         2-Methylphenol         0.031         0.027         U         84-66-2         Diethylphthalate         0.039         0.11         U           88-74-4         2-Mitrophenol         0.048         0.11         U         84-74-2         Di-n-butylphthalate         0.020         0.11         U           88-75-5         2-Nitrophenol         0.048         0.11         U         84-74-2         Di-n-butylphthalate         0.12         0.027         U           91-94-1         3.3-Chichlorobenzidine         0.086         0.11         U         206-44-0         Piu-octylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 105-67-9         | 2,4-Dimethylphenol         | 0.052 | 0.027 | U        | 117-81-7        | bis(2-Ethylhexyl)phthalate  | 0.094   | 0.11  | U      |
| 606-20-2         2.6-Dinitrotoluene         0.054         0.11         U         86-74-8         Carbazole         0.033         0.11         U           91-58-7         2-Chloropaphthalene         0.047         0.11         U         218-01-9         Chrysene         0.036         0.11         U           95-57-8         2-Chlorophenol         0.035         0.11         U         53-70-3         Dibenzofa, hjanthracene         0.039         0.11         U           95-48-7         2-Methylnaphthalene         0.031         0.027         U         84-68-9         Diethylphthalate         0.069         0.11         U           88-74-4         2-Nitrophenol         0.031         0.027         U         84-68-2         Diethylphthalate         0.030         0.11         U           88-75-5         2-Nitrophenol         0.048         0.11         U         84-74-2         Di-n-butylphthalate         0.02         U           106-44-5         384-Methylphenol         0.031         0.027         U         117-84-0         Di-n-butylphthalate         0.01         0.027         U           91-94-1         3.3*-Dichlorobenzidine         0.086         0.11         U         260-44-0         Fluoranthene         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51-2 <b>8-5</b>  | 2,4-Dinitrophenol          | 0.46  | 0.53  | U        | 85-68-7         | Butylbenzylphthalate        | 0.082   | 0.11  | U      |
| 91:58-7         2-Chloronaphthalene         0.047         0.11         U         218-01-9         Chrysene         0.036         0.11         U           95:57-8         2-Chlorophenol         0.035         0.11         U         53-70-3         Dibenzola, Njanthracene         0.039         0.11         U           91:57-6         2-Methylphenol         0.031         0.027         U         182-64-9         Dibenzoluran         0.027         0.027         U           95-48-7         2-Methylphenol         0.031         0.027         U         183-11-13         Dimethylphthalate         0.030         0.11         U           88-74-4         2-Nitrophenol         0.048         0.11         U         181-11-3         Dimethylphthalate         0.030         0.11         U           88-75-5         2-Nitrophenol         0.048         0.11         U         84-74-2         Di-n-butylphthalate         0.020         0.011         U           91-94-1         3-3'Dichlorobenzidine         0.086         0.11         U         206-44-0         Fluoranthene         0.041         0.11         U           99-09-2         3-Nitroaniline         0.041         0.11         U         206-44-0         Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121-14-2         | 2.4-Dinitrotoluene         | 0.033 | 0.11  | U        | 105-60-2        | Caprolactam                 | 0.085   | 0.11  | U      |
| 95-57-8         2-Chlorophenol         0.035         0.11         U         53-70-3         Dibenzo[a.h]anthracene         0.039         0.11         U           91-57-6         2-Methylnaphthalene         0.033         0.11         U         132-64-9         Dibenzofuran         0.027         0.027         U           95-48-7         2-Methylphenol         0.031         0.027         U         84-66-2         Diethylphthalate         0.069         0.11         U           88-74-4         2-Nitroaniline         0.050         0.11         U         131-11-3         Dimethylphthalate         0.02         0.027         U           106-44-5         3&4-Methylphenol         0.031         0.027         U         117-84-0         Di-n-bytylphthalate         0.012         0.027         U           91-94-1         3,3-Dictorobenzidine         0.086         0.11         U         266-44-0         Fluoranthene         0.041         0.11         U           99 09-2         3-Nitroaniline         0.041         0.11         U         86-73-7         Fluoranthene         0.041         0.11         U           53-50-7         4-Chloro-3-methylphenol         0.37         0.53         U         118-74-1         Hexachl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 606-20-2         | 2,6-Dinitrotoluene         | 0.054 | 0.11  | U        | 86-74-8         | Carbazole                   | 0.033   | 0.11  | U      |
| 91-57-6         2-Methylnaphthalene         0.033         0.11         U         132-64-9         Dibenzofuran         0.027         0.027         U           96-48-7         2-Methylphenol         0.031         0.027         U         84-66-2         Diethylphthalate         0.069         0.11         U           88-74-4         2-Nitroaniline         0.050         0.11         U         84-74-2         Di-n-butylphthalate         0.030         0.11         U           88-75-5         2-Nitrophenol         0.048         0.11         U         84-74-2         Di-n-butylphthalate         0.12         0.027         U           91-94-1         3.3-Dichlorobenzidine         0.081         0.11         U         266-44-0         Fluoranthene         0.041         0.11         U           99 09-2         3-Nitroaniline         0.041         0.111         U         86-73-7         Fluorene         0.041         0.11         U           95-50-7         4-G-Dinitro-2-methylphenol         0.37         0.53         U         118-74-1         Hexachlorobutadiene         0.044         0.11         U           95-50-7         4-Chloro-3-methylphenol         0.026         0.11         U         87-68-3         Hexach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91-5 <b>8</b> -7 | 2-Chloronaphthalene        | 0.047 | 0.11  | U        | 218-01-9        | Chrysene                    | 0.036   | 0.11  | U      |
| 95-48-7         2-Methylphenol         0.031         0.027         U         84-66-2         Diethylphthalate         0.069         0.11         U           88-74-4         2-Nitroaniline         0.050         0.11         U         131-11-3         Dimethylphthalate         0.030         0.11         U           88-75-5         2-Nitrophenol         0.048         0.11         U         84-74-2         Di-n-butylphthalate         0.02         U           91-94-1         3-3-Dichlorobenzidine         0.086         0.11         U         206-44-0         Fluoranthene         0.041         0.11         U           99 09-2         3-Nitroaniline         0.041         0.11         U         86-73-7         Fluorene         0.041         0.11         U           95 45-7         3-Nitroaniline         0.041         0.11         U         86-73-7         Fluorene         0.044         0.11         U           101-55-3         4-Bromophenyl-phenylether         0.030         0.11         U         87-68-3         Hexachlorobenzene         0.044         0.11         U           106-47-8         4-Chloro-a-methylphenol         0.026         0.11         U         77-4-4         Hexachlorobenzene         0.047 <td>95-57-8</td> <td>2-Chlorophenol</td> <td>0.035</td> <td>0.11</td> <td>U</td> <td>53-70-3</td> <td>Dibenzo[a,h]anthracene</td> <td>0.039</td> <td>0.11</td> <td>U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95-57-8          | 2-Chlorophenol             | 0.035 | 0.11  | U        | 53-70-3         | Dibenzo[a,h]anthracene      | 0.039   | 0.11  | U      |
| 88.74-4         2-Nitroaniline         0.050         0.11         U         131-11-3         Dimethylphthalate         0.030         0.11         U           88-75-5         2-Nitrophenol         0.048         0.11         U         84-74-2         Di-n-butylphthalate         0.02         U         0.027         U           106-44-5         3&4-Methylphenol         0.031         0.027         U         117-84-0         Di-n-butylphthalate         0.070         0.11         U           99 09-2         3-Nitroaniline         0.041         0.11         U         266-44-0         Fluoranthene         0.041         0.11         U           534-52-1         4-6-Dinitro-2-methylphenol         0.37         0.53         U         118-74-1         Hexachlorobenzene         0.044         0.11         U           101-55-3         4-Bromophenyl-phenylether         0.030         0.11         U         87-68-3         Hexachlorobutadiene         0.047         0.11         U           59-50-7         4-Chloro-3-methylphenol         0.026         0.11         U         77-47-4         Hexachlorobutadiene         0.047         0.11         U           106-47-8         4-Chlorophenyl-phenylether         0.033         0.11 <t< td=""><td>91-57-6</td><td>2-Methylnaphthalene</td><td>0.033</td><td>0.11</td><td>U</td><td>132-64-9</td><td>Dibenzofuran</td><td>0.027</td><td>0.027</td><td>U</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 91-57-6          | 2-Methylnaphthalene        | 0.033 | 0.11  | U        | 132-64-9        | Dibenzofuran                | 0.027   | 0.027 | U      |
| 88-75-5         2-Nitrophenol         0 048         0.11         U         84-74-2         Di-n-butylphthalate         0.12         0.027         U           106-44-5         3&4-Methylphenol         0.031         0.027         U         117-84-0         Di-n-octylphthalate         0.070         0.11         U           91-94-1         3,3'-Dichlorobenzidine         0.086         0.11         U         206-44-0         Fluoranthene         0.041         0.11         U           99 09-2         3-Nitroaniline         0.041         0.11         U         86-73-7         Fluorene         0.029         0.11         U           534-52-1         4,6-Dinitro-2-methylphenol         0.37         0.53         U         118-74-1         Hexachlorobutadiene         0.044         0.11         U           101-55-3         4-Bromophenyl-phenylether         0.030         0.11         U         87-68-3         Hexachlorobutadiene         0.047         0.11         U           59-50-7         4-Chloro-3-methylphenol         0.026         0.11         U         77-47-4         Hexachlorobutadiene         0.047         0.11         U           100-47-8         4-Chlorophenyl-phenylether         0.033         0.11         U <t< td=""><td>95-48-7</td><td>2-Methylphenol</td><td>0.031</td><td>0.027</td><td>U</td><td>84-66-2</td><td>Diethylphthalate</td><td>0.069</td><td>0.11</td><td>U</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95-48-7          | 2-Methylphenol             | 0.031 | 0.027 | U        | 84-66-2         | Diethylphthalate            | 0.069   | 0.11  | U      |
| 106-44-5         3&4-Methylphenol         0.031         0.027         U         117-84-0         Di-n-octylphthalate         0.070         0.11         U           91-94-1         3,3'-Dichlorobenzidine         0.086         0.11         U         206-44-0         Fluoranthene         0.041         0.11         U           99 09-2         3-Nitroaniline         0.041         0.11         U         86-73-7         Fluorene         0.029         0.11         U           534-52-1         4,6-Dinitro-2-methylphenol         0.37         0.53         U         118-74-1         Hexachlorobenzene         0.044         0.11         U           101-55-3         4-Bromophenyl-phenylether         0.030         0.11         U         87-68-3         Hexachlorobutadiene         0.047         0.11         U           59-50-7         4-Chloro-3-methylphenol         0.026         0.11         U         77-47-4         Hexachlorobutadiene         0.047         0.11         U           106-47-8         4-Chloroaniline         0.047         0.027         U         67-72-1         Hexachlorobutadiene         0.047         0.11         U           100-01-6         4-Nitroaniline         0.041         0.11         U         78-59-1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88-74-4          | 2-Nitroaniline             | 0.050 | 0.11  | U        | 131-11-3        | Dimethylphthalate           | 0.030   | 0.11  | U      |
| 91-94-1         3,3'-Dichlorobenzidine         0.086         0.11         U         206-44-0         Fluoranthene         0.041         0.11         U           99 09-2         3-Nitroaniline         0.041         0.11         U         86-73-7         Fluorene         0.029         0.11         U           534-52-1         4,6-Dinitro-2-methylphenol         0.37         0.53         U         118-74-1         Hexachlorobenzene         0.044         0.11         U           101-55-3         4-Bromophenyl-phenylether         0.030         0.11         U         87-68-3         Hexachlorobutadiene         0.047         0.11         U           59-50-7         4-Chloro-3-methylphenol         0.026         0.11         U         77-47-4         Hexachlorocyclopentadiene         0.35         0.11         U           106-47-8         4-Chloroaniline         0.047         0.027         U         67-72-1         Hexachlorocyclopentadiene         0.047         0.11         U           7005-72-3         4-Chlorophenyl-phenylether         0.033         0.11         U         193-39-5         Indeno[1-2,3-cd]pyrene         0.048         0.11         U           100-01-6         4-Nitroaniline         0.041         0.11         U </td <td>88-75-5</td> <td>2-Nitrophenol</td> <td>0.048</td> <td>0.11</td> <td>U</td> <td>84-74-2</td> <td>Di-n-butylphthalate</td> <td>0.12</td> <td>0.027</td> <td>U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88-75-5          | 2-Nitrophenol              | 0.048 | 0.11  | U        | 84-74-2         | Di-n-butylphthalate         | 0.12    | 0.027 | U      |
| 99 09-2         3-Nitroaniline         0.041         0.11         U         86-73-7         Fluorene         0.029         0.11         U           534-52-1         4,6-Dinitro-2-methylphenol         0.37         0.53         U         118-74-1         Hexachlorobenzene         0.044         0.11         U           101-55-3         4-Bromophenyl-phenylether         0.030         0.11         U         87-68-3         Hexachlorobutadiene         0.047         0.11         U           59-50-7         4-Chloro-3-methylphenol         0.026         0.11         U         77-47-4         Hexachlorocyclopentadiene         0.047         0.11         U           106-47-8         4-Chloroaniline         0.047         0.027         U         67-72-1         Hexachlorocthane         0.047         0.11         U           7005-72-3         4-Chlorophenyl-phenylether         0.033         0.11         U         193-39-5         Indeno[1,2,3-cd]pyrene         0.048         0.11         U           100-01-6         4-Nitroaniline         0.041         0.11         U         78-59-1         Isophorone         0.034         0.11         U           100-02-7         4-Nitrophenol         0.081         0.11         U         98-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 106-44-5         | 3&4-Methylphenol           | 0.031 | 0.027 | U        | 117-84-0        | Di-n-octylphthalate         | 0.070   | 0.11  | U      |
| 534-52-1         4,6-Dinitro-2-methylphenol         0.37         0.53         U         118-74-1         Hexachlorobenzene         0.044         0.11         U           101-55-3         4-Bromophenyl-phenylether         0.030         0.11         U         87-68-3         Hexachlorobutadiene         0.047         0.11         U           59-50-7         4-Chloro-3-methylphenol         0.026         0.11         U         77-47-4         Hexachlorocyclopentadiene         0.035         0.11         U           106-47-8         4-Chloroaniline         0.047         0.027         U         67-72-1         Hexachlorocyclopentadiene         0.047         0.11         U           7005-72-3         4-Chlorophenyl-phenylether         0.033         0.11         U         193-39-5         Indeno[1,2,3-cd]pyrene         0.048         0.11         U           100-01-6         4-Nitrophenyl-phenylether         0.033         0.11         U         78-59-1         Isophorone         0.048         0.11         U           100-02-7         4-Nitrophenol         0.081         0.11         U         91-20-3         Naphthalene         0.031         0.027         U           83-32-9         Acenaphthylene         0.032         0.11 <t< td=""><td>91-94-1</td><td>3,3'-Dichlorobenzidine</td><td>0.086</td><td>0.11</td><td>U</td><td>206-44-0</td><td>Fluoranthene</td><td>0.041</td><td>0.11</td><td>U</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91-94-1          | 3,3'-Dichlorobenzidine     | 0.086 | 0.11  | U        | 206-44-0        | Fluoranthene                | 0.041   | 0.11  | U      |
| 101-55-3         4-Bromophenyl-phenylether         0.030         0.11         U         87-68-3         Hexachlorobutadiene         0.047         0.11         U           59-50-7         4-Chloro-3-methylphenol         0.026         0.11         U         77-47-4         Hexachlorocyclopentadiene         0.035         0.11         U           106-47-8         4-Chloroaniline         0.047         0.027         U         67-72-1         Hexachloroethane         0.047         0.11         U           7005-72-3         4-Chlorophenyl-phenylether         0.033         0.11         U         193-39-5         Indeno[1.2,3-cd]pyrene         0.048         0.11         U           100-01-6         4-Nitroaniline         0.041         0.11         U         78-59-1         Isophorone         0.034         0.11         U           100-02-7         4-Nitrophenol         0.081         0.11         U         91-20-3         Naphthalene         0.031         0.027         U           83-32-9         Acenaphthene         0.030         0.11         U         98-95-3         Nitrobenzene         0.0043         0.11         U           208-96-8         Acenaphthylene         0.032         0.11         U         86-30-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99-09-2          | 3-Nitroaniline             | 0.041 | 0.11  | U        | 86-73-7         | Fluorene                    | 0.029   | 0.11  | U      |
| 59-50-7         4-Chloro-3-methylphenol         0.026         0.11         U         77-47-4         Hexachlorocyclopentadiene         0.35         0.11         U           106-47-8         4-Chloroaniline         0.047         0.027         U         67-72-1         Hexachloroethane         0.047         0.11         U           7005-72-3         4-Chlorophenyl-phenylether         0.033         0.11         U         193-39-5         Indeno[1,2,3-cd]pyrene         0.048         0.11         U           100-01-6         4-Nitroaniline         0.041         0.11         U         78-59-1         Isophorone         0.034         0.11         U           100-02-7         4-Nitrophenol         0.081         0.11         U         91-20-3         Naphthalene         0.031         0.027         U           83-32-9         Acenaphthene         0.030         0.11         U         98-95-3         Nitrobenzene         0.0043         0.11         U           208-96-8         Acenaphthylene         0.032         0.11         U         621-64-7         N-Nitroso-di-n-propylamine         0.040         0.027         U           98-86-2         Acetophenone         0.038         0.11         U         86-30-6 <t< td=""><td>534-52-1</td><td>4,6-Dinitro-2-methylphenol</td><td>0.37</td><td>0.53</td><td>U</td><td>118-74-1</td><td>Hexachlorobenzene</td><td>0.044</td><td>0.11</td><td>U</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 534-52-1         | 4,6-Dinitro-2-methylphenol | 0.37  | 0.53  | U        | 118-74-1        | Hexachlorobenzene           | 0.044   | 0.11  | U      |
| 106-47-8         4-Chloroanitine         0.047         0.027         U         67-72-1         Hexachloroethane         0.047         0.11         U           7005-72-3         4-Chlorophenyl-phenylether         0.033         0.11         U         193-39-5         Indeno[1,2,3-cd]pyrene         0.048         0.11         U           100-01-6         4-Nitroaniline         0.041         0.11         U         78-59-1         Isophorone         0.034         0.11         U           100-02-7         4-Nitrophenol         0.081         0.11         U         91-20-3         Naphthalene         0.031         0.027         U           83-32-9         Acenaphthene         0.030         0.11         U         98-95-3         Nitrobenzene         0.0043         0.11         U           208-96-8         Acenaphthylene         0.032         0.11         U         621-64-7         N-Nitroso-di-n-propylamine         0.040         0.027         U           98-86-2         Acetophenone         0.038         0.11         U         86-30-6         n-Nitrosodiphenylamine         0.36         0.11         U           120-12-7         Anthracene         0.029         0.11         U         87-86-5         Pentachloroph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101-55-3         | 4-Bromophenyl-phenylether  | 0.030 | 0.11  | U        | 87-68-3         | Hexachlorobutadiene         | 0.047   | 0.11  | U      |
| 7005-72-3       4-Chlorophenyl-phenylether       0.033       0.11       U       193-39-5       Indeno[1,2,3-cd]pyrene       0.048       0.11       U         100-01-6       4-Nitroaniline       0.041       0.11       U       78-59-1       Isophorone       0.034       0.11       U         100-02-7       4-Nitrophenol       0.081       0.11       U       91-20-3       Naphthalene       0.031       0.027       U         83-32-9       Acenaphthene       0.030       0.11       U       98-95-3       Nitrobenzene       0.0043       0.11       U         208-96-8       Acenaphthylene       0.032       0.11       U       621-64-7       N-Nitroso-di-n-propylamine       0.040       0.027       U         98-86-2       Acetophenone       0.038       0.11       U       86-30-6       n-Nitrosodiphenylamine       0.36       0.11       U         120-12-7       Anthracene       0.029       0.11       U       87-86-5       Pentachlorophenol       0.51       0.53       U         1912-24-9       Atrazine       0.043       0.11       U       85-01-8       Phenol       0.029       0.11       U         100-52-7       Benzaldehyde       1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 <b>9</b> -50-7 | 4-Chloro-3-methylphenol    | 0.026 | 0.11  | U        | 77-47-4         | Hexachlorocyclopentadiene   | 0.35    | 0.11  | U      |
| 100-01-6         4-Nitroaniline         0.041         0.11         U         78-59-1         Isophorone         0.034         0.11         U           100-02-7         4-Nitrophenol         0.081         0.11         U         91-20-3         Naphthalene         0.031         0.027         U           83-32-9         Acenaphthene         0.030         0.11         U         98-95-3         Nitrobenzene         0.0043         0.11         U           208-96-8         Acenaphthylene         0.032         0.11         U         621-64-7         N-Nitroso-di-n-propylamine         0.040         0.027         U           98-86-2         Acetophenone         0.038         0.11         U         86-30-6         n-Nitrosodiphenylamine         0.36         0.11         U           120-12-7         Anthracene         0.029         0.11         U         87-86-5         Pentachlorophenol         0.51         0.53         U           1912-24-9         Atrazine         0.043         0.11         U         85-01-8         Phenanthrene         0.034         0.11         U           100-52-7         Benzaldehyde         1.2         0.11         U         108-95-2         Phenol         0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 106-47 <b>-8</b> | 4-Chloroaniline            | 0.047 | 0.027 | U        | 67-72-1         | Hexachloroethane            | 0.047   | 0.11  | U      |
| 100-02-7         4-Nitrophenol         0.081         0.11         U         91-20-3         Naphthalene         0.031         0.027         U           83-32-9         Acenaphthene         0.030         0.11         U         98-95-3         Nitrobenzene         0.0043         0.11         U           208-96-8         Acenaphthylene         0.032         0.11         U         621-64-7         N-Nitroso-di-n-propylamine         0.040         0.027         U           98-86-2         Acetophenone         0.038         0.11         U         86-30-6         n-Nitrosodiphenylamine         0.36         0.11         U           120-12-7         Anthracene         0.029         0.11         U         87-86-5         Pentachlorophenol         0.51         0.53         U           1912-24-9         Atrazine         0.043         0.11         U         85-01-8         Phenanthrene         0.034         0.11         U           100-52-7         Benzaldehyde         1.2         0.11         U         108-95-2         Phenol         0.029         0.11         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7005-72-3        | 4-Chlorophenyl-phenylether | 0.033 | 0.11  | U        | 193-39-5        | Indeno[1,2,3-cd]pyrene      | 0.048   | 0.11  | U      |
| 83-32-9         Acenaphthene         0.030         0.11         U         98-95-3         Nitrobenzene         0.0043         0.11         U           208-96-8         Acenaphthylene         0.032         0.11         U         621-64-7         N-Nitroso-di-n-propylamine         0.040         0.027         U           98-86-2         Acetophenone         0.038         0.11         U         86-30-6         n-Nitrosodiphenylamine         0.36         0.11         U           120-12-7         Anthracene         0.029         0.11         U         87-86-5         Pentachlorophenol         0.51         0.53         U           1912-24-9         Atrazine         0.043         0.11         U         85-01-8         Phenanthrene         0.034         0.11         U           100-52-7         Benzaldehyde         1.2         0.11         U         108-95-2         Phenol         0.029         0.11         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100-01-6         | 4-Nitroaniline             | 0.041 | 0.11  | U        | 78-59-1         | Isophorone                  | 0.034   | 0.11  | U      |
| 208-96-8         Acenaphthylene         0.032         0.11         U         621-64-7         N-Nitroso-di-n-propylamine         0.040         0.027         U           98-86-2         Acetophenone         0.038         0.11         U         86-30-6         n-Nitrosodiphenylamine         0.36         0.11         U           120-12-7         Anthracene         0.029         0.11         U         87-86-5         Pentachlorophenol         0.51         0.53         U           1912-24-9         Atrazine         0.043         0.11         U         85-01-8         Phenanthrene         0.034         0.11         U           100-52-7         Benzaldehyde         1.2         0.11         U         108-95-2         Phenol         0.029         0.11         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100-02-7         | 4-Nitrophenol              | 0.081 | 0.11  | U        | 91-20-3         | Naphthalene                 | 0.031   | 0.027 | U      |
| 98-86-2         Acetophenone         0.038         0.11         U         86-30-6         n-Nitrosodiphenylamine         0.36         0.11         U           120-12-7         Anthracene         0.029         0.11         U         87-86-5         Pentachlorophenol         0.51         0.53         U           1912-24-9         Atrazine         0.043         0.11         U         85-01-8         Phenanthrene         0.034         0.11         U           100-52-7         Benzaldehyde         1.2         0.11         U         108-95-2         Phenol         0.029         0.11         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83-32-9          | Acenaphthene               | 0.030 | 0.11  | U        | 98-95-3         | Nitrobenzene                | 0.0043  | 0.11  | U      |
| 120-12-7         Anthracene         0.029         0.11         U         87-86-5         Pentachlorophenol         0.51         0.53         U           1912-24-9         Atrazine         0.043         0.11         U         85-01-8         Phenanthrene         0.034         0.11         U           100-52-7         Benzaldehyde         1.2         0.11         U         108-95-2         Phenol         0.029         0.11         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 208-96-8         | Acenaphthylene             | 0.032 | 0.11  | U        | 621-64-7        | N-Nitroso-di-n-propylamine  | 0.040   | 0.027 | U      |
| 1912-24-9         Atrazine         0.043         0.11         U         85-01-8         Phenanthrene         0.034         0.11         U           100-52-7         Benzaldehyde         1.2         0.11         U         108-95-2         Phenol         0.029         0.11         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98-86-2          | Acetophenone               | 0.038 | 0.11  | U        | <b>86-30</b> -6 | n-Nitrosodiphenylamine      | 0.36    | 0.11  | U      |
| 100-52-7 Benzaldehyde 1.2 0.11 U 108-95-2 Phenol 0.029 0.11 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120-12-7         | Anthracene                 | 0.029 | 0.11  | U        | 87-86-5         | Pentachlorophenol           | 0.51    | 0.53  | U      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1912-24-9        | Atrazine                   | 0.043 | 0.11  | U        | 85-01-8         | Phenanthrene                | 0.034   | 0.11  | U      |
| 56-55-3 Benzo[a]anthracene 0.035 0.11 U 129-00-0 Pyrene 0.036 0.11 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100-52-7         | Benzaldehyde               | 1.2   | 0.11  | U        | 108-95-2        | Phenol                      | 0.029   | 0.11  | U      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56-55-3          | Benzo(a)anthracene         | 0.035 | 0.11  | U        | 129-00-0        | Pyrene                      | 0.036   | 0.11  | U      |

Worksheet #: 569464

Total Target Concentration

0.033

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Data Path : G:\GcMsData\2020\GCMS\_7\Data\10-06-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_7\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                                       | R.T.   | QIon | Response         | Conc U | nits Dev | (Min)  |
|------------------------------------------------|--------|------|------------------|--------|----------|--------|
| Internal Standards                             |        |      |                  |        |          |        |
| 7) 1,4-Dioxane-d8(INT)                         | 2.693  | 96   | 82337            | 40.00  | ng       | 0.00   |
| 21) 1,4-Dichlorobenzene-d4                     | 5.895  | 152  | 160985           |        | ng       | 0.00   |
| 31) Naphthalene-d8                             | 6.894  | 136  | 615133           | 40.00  | ng       | 0.00   |
| 50) Acenaphthene-d10                           | 8.339  | 164  | 321469           | 40.00  | ng       | 0.00   |
| 77) Phenanthrene-d10                           | 9.820  | 188  | 588836           | 40.00  | ng       | 0.00   |
| 91) Chrysene-dl2                               | 12.893 | 240  | 456084           | 40.00  | ng       | 0.00   |
| 103) Perylene-d12                              | 14.538 | 264  | 460132           | 40.00  | ng       | 0.00   |
| System Manitoring Compounds                    |        |      |                  |        |          |        |
| System Monitoring Compounds 11) 2-Fluorophenol | 4 726  | 112  | 98955            | 20 41  | 20       | 0 01   |
|                                                | 4.720  | 112  |                  |        |          |        |
| Spiked Amount 100.000                          | E E04  | 0.0  | Recove<br>130463 | 13 30  | 20.416   | 0.00   |
| 16) Phenol-d5                                  | 5.564  | 22   |                  |        |          | 0.00   |
| Spiked Amount 100.000                          | 6 336  | 120  |                  |        | 22.39%   | 0.00   |
| 32) Nitrobenzene-d5                            | 6.336  | 128  | 25969            |        |          | 0.00   |
| Spiked Amount 50.000                           | 7 740  | 170  | Recove           |        |          | 0 00   |
| 55) 2-Fluorobiphenyl                           | 7.740  | 172  | 119788           |        | -        | 0.00   |
| Spiked Amount 50.000                           | 0 001  | 220  |                  | •      | 22.34%   | 0 00   |
| 80) 2,4,6-Tribromophenol                       | 9.091  | 330  | 29136            |        |          | 0.00   |
| Spiked Amount 100.000                          |        |      | Recove           |        |          |        |
| 94) Terphenyl-d14                              | 11.635 | 244  | 89884            |        |          |        |
| Spiked Amount 50.000                           |        |      | Recove           | ry =   | 24.76%   |        |
| Target Compounds                               |        |      |                  |        |          | Qvalue |
|                                                | 16.330 | 276  | 6586             | 0.61   | 36 ng    | 75     |

(#) = qualifier out of range (m) = manual integration (+) = signals summed





7M 0917.M Mon Oct 12 11:49:40 2020 RPT1

Page: 1

ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19479-017

Client Id: HSI-SS-09 (0-0.5') Data File: 7M109883.D

Analysis Date: 10/06/20 01:42 Date Rec/Extracted: 09/28/20-10/05/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil Initial Vol: 30g

Final Vol: 0.5ml

Dilution: 1

Solids: 93

Units: ma/Ka

|                  |                            |        |        | Units: mg | /Kg              |                             |         |        |        |
|------------------|----------------------------|--------|--------|-----------|------------------|-----------------------------|---------|--------|--------|
| Cas #            | Compound                   | MDL    | RL     | Сопс      | Cas #            | Compound                    | MDL     | RL     | Conc   |
| 92-52-4          | 1,1'-Biphenyl              | 0.010  | 0.036  | U         | 50-32-8          | Benzo[a]pyrene              | 0.012   | 0.036  | U      |
| 95-94-3          | 1,2,4,5-Tetrachlorobenzene | 0.012  | 0.036  | U         | 205-99-2         | Benzo[b]fluoranthene        | 0.013   | 0.036  | 0.015J |
| 123-91-1         | 1.4-Dioxane                | 0.018  | 0.0090 | U         | 191-24-2         | Benzo[g,h,i]perylene        | 0.00025 | 0.036  | U      |
| 58-90-2          | 2,3,4,6-Tetrachlorophenol  | 0.013  | 0.036  | U         | 207-08-9         | Benzo[k]fluoranthene        | 0.013   | 0.036  | U      |
| 95-95-4          | 2,4,5-Trichlorophenol      | 0.010  | 0.036  | U         | 111-91-1         | bis(2-Chloroethoxy)methan   | 0.010   | 0.036  | U      |
| 88-06-2          | 2,4,6-Trichlorophenol      | 0.028  | 0.036  | U         | 111-44-4         | bis(2-Chloroethyl)ether     | 0.0087  | 0.0090 | U      |
| 120-83-2         | 2,4-Dichlorophenol         | 0.013  | 0.0090 | U         | 108-60-1         | bis(2-chloroisopropyl)ether | 0.014   | 0.036  | U      |
| 105-67-9         | 2.4-Dimethylphenol         | 0.017  | 0.0090 | U         | 117-81-7         | bis(2-Ethylhexyl)phthalate  | 0.032   | 0.036  | 0.12   |
| 51-28-5          | 2,4-Dinitrophenol          | 0.16   | 0.18   | U         | 85-68-7          | Butylbenzylphthalate        | 0.027   | 0.036  | U      |
| 121-14-2         | 2,4-Dinitrotoluene         | 0.011  | 0.036  | U         | 105-60-2         | Caprolactam                 | 0.029   | 0.036  | U      |
| 606-20-2         | 2,6-Dinitrotoluene         | 0.018  | 0.036  | U         | 86-74-8          | Carbazole                   | 0.011   | 0.036  | U      |
| 91-58-7          | 2-Chloronaphthalene        | 0.016  | 0.036  | U         | 218-01-9         | Chrysene                    | 0.012   | 0.036  | U      |
| 95-57-8          | 2-Chlorophenol             | 0.012  | 0.036  | U .       | 53-70-3          | Dibenzo(a,h)anthracene      | 0.013   | 0.036  | U      |
| 91-57-6          | 2-Methylnaphthalene        | 0.011  | 0.036  | U         | 132-64-9         | Dibenzofuran                | 0.0091  | 0.0090 | U      |
| 95-48-7          | 2-Methylphenol             | 0.010  | 0.0090 | U         | 84 <b>-66-</b> 2 | Diethylphthalate            | 0.023   | 0.036  | U      |
| 88-74-4          | 2-Nitroaniline             | 0.017  | 0.036  | U         | 131-11-3         | Dimethylphthalate           | 0.010   | 0.036  | 0.066  |
| 88-75-5          | 2-Nitrophenol              | 0.016  | 0.036  | U         | 84-74-2          | Di-n-butylphthalate         | 0.041   | 0.0090 | 0.058  |
| 106-44-5         | 3&4-Methylphenol           | 0.010  | 0.0090 | U         | 117-84-0         | Di-n-octylphthalate         | 0.024   | 0.036  | U      |
| 91-94-1          | 3,3'-Dichlorobenzidine     | 0.029  | 0.036  | U         | 206-44-0         | Fluoranthene                | 0.014   | 0.036  | U      |
| 99- <b>0</b> 9-2 | 3-Nitroaniline             | 0.014  | 0.036  | U         | 86-73-7          | Fluorene                    | 0.0098  | 0.036  | U      |
| 534-52-1         | 4,6-Dinitro-2-methylphenol | 0.12   | 0.18   | U         | 118-74-1         | Hexachlorobenzene           | 0.015   | 0.036  | U      |
| 101-55-3         | 4-Bromophenyl-phenylether  | 0.010  | 0.036  | U         | 87 <b>-68-3</b>  | Hexachlorobutadiene         | 0.016   | 0.036  | U      |
| 59-50-7          | 4-Chloro-3-methylphenol    | 0.0086 | 0.036  | U         | 77-47-4          | Hexachlorocyclopentadiene   | 0.12    | 0.036  | U      |
| 106-47-8         | 4-Chloroaniline            | 0.016  | 0.0090 | U         | 67-72-1          | Hexachloroethane            | 0.016   | 0.036  | U      |
| 7005-72-3        | 4-Chlorophenyl-phenylether | 0.011  | 0.036  | U         | 193-39-5         | Indeno[1,2,3-cd]pyrene      | 0.016   | 0.036  | U      |
| 100-01-6         | 4-Nitroaniline             | 0.014  | 0.036  | U         | 78-59-1          | Isophorone                  | 0.012   | 0.036  | U      |
| 100-02-7         | 4-Nitrophenol              | 0.027  | 0.036  | U         | 91-20-3          | Naphthalene                 | 0.010   | 0.0090 | U      |
| 83-32-9          | Acenaphthene               | 0.010  | 0.036  | U         | 98-95-3          | Nitrobenzene                | 0.0015  | 0.036  | U      |
| 208-96-8         | Acenaphthylene             | 0.011  | 0.036  | U         | 621-64-7         | N-Nitroso-di-n-propylamine  | 0.013   | 0.0090 | U      |
| 98-86-2          | Acetophenone               | 0.013  | 0.036  | U         | 86-30-6          | n-Nitrosodiphenylamine      | 0.12    | 0.036  | U      |
| 120-12-7         | Anthracene                 | 0.0099 | 0.036  | U         | 87-86-5          | Pentachlorophenol           | 0.17    | 0.18   | U      |
| 1912-24-9        | Atrazine                   | 0.014  | 0.036  | U         | 85-01-8          | Phenanthrene                | 0.011   | 0.036  | U      |
| 100-52-7         | Benzaldehyde               | 0.39   | 0.036  | U         | 108-95-2         | Phenol                      | 0.0099  | 0.036  | U      |
| 56-55-3          | Benzo(a)anthracene         | 0.012  | 0.036  | U         | 129-00-0         | Pyrene                      | 0.012   | 0.036  | 0.015J |
|                  |                            |        |        |           |                  |                             |         |        |        |

Worksheet #: 569464

Total Target Concentration

0.27

U - Indicutes the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19479-017 Data File: 7M109883.D Acq On : 10/6/20 01:42 Qt Meth : 7M\_0917.M Qt On : 10/12/20 11:39 Qt Upd On: 10/07/20 10:09 Operator : AH/JKR/JB Sam Mult : 1 Vial# : 43 Misc : S,BNA

| Compound                    | R.T.   | QIon | Response Conc Unit: | s Dev | (Min)  |
|-----------------------------|--------|------|---------------------|-------|--------|
| Internal Standards          |        |      |                     |       |        |
|                             | 2.693  | 96   | 77171 40.00 ng      |       | 0.00   |
| 21) 1,4-Dichlorobenzene-d4  |        |      | 151157 40.00 ng     |       | 0.00   |
| 31) Naphthalene-d8          | 6.894  |      | 569885 40.00 ng     |       | 0.00   |
|                             | 8.339  | 164  | 286841 40.00 ng     |       | 0.00   |
| 77) Phenanthrene-d10        | 9.820  | 188  |                     |       | 0.00   |
| 91) Chrysene-d12            | 12.893 | 240  | 410089 40.00 ng     |       | 0.00   |
| 103) Perylene-d12           | 14.538 | 264  | 354317 40.00 ng     |       | 0.00   |
| System Monitoring Compounds |        |      |                     |       |        |
| 11) 2-Fluorophenol          | 4.726  | 112  | 235877 51.91 ng     |       | 0.01   |
| Spiked Amount 100.000       |        |      | Recovery = 5        |       |        |
| 16) Phenol-d5               | 5.584  | 99   | 329707 60.38 ng     |       | 0.00   |
| Spiked Amount 100.000       |        |      | Recovery = 60       | 388.  |        |
| 32) Nitrobenzene-d5         | 6.336  | 128  | 64364 28.43 ng      |       | 0.00   |
| Spiked Amount 50.000        |        |      | Recovery = 50       |       |        |
| 55) 2-Fluorobiphenyl        | 7.740  | 172  | 309983 32.40 ng     |       | 0.00   |
| Spiked Amount 50.000        |        |      | Recovery = 6        |       |        |
| 80) 2,4,6-Tribromophenol    | 9.091  | 330  |                     |       | 0.00   |
| Spiked Amount 100.000       |        |      | Recovery = 63       |       |        |
| 94) Terphenyl-d14           | 11.635 | 244  | 238229 36.48 ng     |       | 0.00   |
| Spiked Amount 50.000        |        |      | Recovery = 72       | 2.96% |        |
| Target Compounds            |        |      |                     |       | Qvalue |
| 63) Dimethylphthalate       | 8.069  | 163  | 36653 3.7038        | ng    | 97     |
| 89) Di-n-butylphthalate     |        |      |                     | ng    | 98     |
| 92) Pyrene                  | 11.453 | 202  | 10496 0.8211        |       | 88     |
| 102) bis(2-Ethylhexyl)phtha |        |      |                     | ng    |        |
| 105) Benzo[b] fluoranthene  | 14.103 | 252  | 8523m 0.8513        | ng    |        |
|                             |        |      |                     |       |        |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





7M 0917.M Mon Oct 12 11:49:43 2020 RPT1

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19479-019

Client Id: HSI-SS-D (0-0.5')
Data File: 7M109886.D

Analysis Date: 10/06/20 09:39 Date Rec/Extracted: 09/28/20-10/05/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil

Initial Vol: 30g

Final Vol: 0.5ml

Dilution: 1

Solids: 92

Units: mg/Kg

| Cas#                                                                | Compound                                                                                  | MDL                                                         | RL                                                 | Conc                  | Cas#                                                                       | Compound                                                                                                             | MDL                                                        | RL                                                  | Conc             |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-----------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|------------------|
| 92-52-4                                                             | 1,1'-Biphenyl                                                                             | 0.010                                                       | 0.036                                              | U                     | 50-32-8                                                                    | Benzo[a]pyrene                                                                                                       | 0.012                                                      | 0.036                                               | U                |
| 95-94-3                                                             | 1,2,4,5-Tetrachlorobenzene                                                                | 0.012                                                       | 0.036                                              | U                     | 205-99-2                                                                   | Benzo[b]fluoranthene                                                                                                 | 0.013                                                      | 0.036                                               | U                |
| 123-91-1                                                            | 1,4-Dioxane                                                                               | 0.018                                                       | 0.0091                                             | U ,                   | 191-24-2                                                                   | Benzo[g,h,i]perylene                                                                                                 | 0.00025                                                    | 0.036                                               | U                |
| 58-90-2                                                             | 2,3,4,6-Tetrachlorophenol                                                                 | 0.014                                                       | 0.036                                              | U                     | 207-08-9                                                                   | Benzo[k]fluoranthene                                                                                                 | 0.013                                                      | 0.036                                               | U                |
| 95-95-4                                                             | 2,4,5-Trichlorophenol                                                                     | 0.010                                                       | 0.036                                              | U                     | 111-91-1                                                                   | bis(2-Chloroethoxy)methan                                                                                            | 0.010                                                      | 0.036                                               | U                |
| 88-06-2                                                             | 2,4,6-Trichlorophenol                                                                     | 0.028                                                       | 0.036                                              | U                     | 111-44-4                                                                   | bis(2-Chloroethyl)ether                                                                                              | 0.0088                                                     | 0.0091                                              | U                |
| 120-83-2                                                            | 2,4-Dichlorophenol                                                                        | 0.014                                                       | 0.0091                                             | U                     | 108-60-1                                                                   | bis(2-chloroisopropyl)ether                                                                                          | 0.014                                                      | 0.036                                               | U                |
| 105-67-9                                                            | 2,4-Dimethylphenol                                                                        | 0.018                                                       | 0.0091                                             | U                     | 117-81-7                                                                   | bis(2-Ethylhexyl)phthalate                                                                                           | 0.032                                                      | 0.036                                               | 0.38             |
| 51-28-5                                                             | 2,4-Dinitrophenol                                                                         | 0.16                                                        | 0.18                                               | U                     | 85-68-7                                                                    | Butylbenzylphthalate                                                                                                 | 0.028                                                      | 0.036                                               | U                |
| 121-14-2                                                            | 2,4-Dinitrotoluene                                                                        | 0.011                                                       | 0.036                                              | U                     | 105-60-2                                                                   | Caprolactam                                                                                                          | 0.029                                                      | 0.036                                               | U                |
| 606-20-2                                                            | 2,6-Dinitrotoluene                                                                        | 0.018                                                       | 0.036                                              | U                     | 86-74-8                                                                    | Carbazole                                                                                                            | 0.011                                                      | 0.036                                               | U                |
| 91-58-7                                                             | 2-Chloronaphthalene                                                                       | 0.016                                                       | 0.036                                              | U                     | 218-01-9                                                                   | Chrysene                                                                                                             | 0.012                                                      | 0.036                                               | U                |
| 95-57- <b>8</b>                                                     | 2-Chlorophenol                                                                            | 0.012                                                       | 0.036                                              | U                     | 53-70-3                                                                    | Dibenzo[a,h]anthracene                                                                                               | 0.013                                                      | 0.036                                               | U                |
| 91-57-6                                                             | 2-Methylnaphthalene                                                                       | 0.011                                                       | 0.036                                              | U                     | 132-64-9                                                                   | Dibenzofuran                                                                                                         | 0.0092                                                     | 0.0091                                              | U                |
| 95-48-7                                                             | 2-Methylphenol                                                                            | 0.010                                                       | 0.0091                                             | U                     | 84-66-2                                                                    | Diethylphthalate                                                                                                     | 0.023                                                      | 0.036                                               | U                |
| 88-74-4                                                             | 2-Nitroaniline                                                                            | 0.017                                                       | 0.036                                              | U                     | 131-11-3                                                                   | Dimethylphthalate                                                                                                    | 0.010                                                      | 0.036                                               | U                |
| 88-75-5                                                             | 2-Nitrophenol                                                                             | 0.016                                                       | 0.036                                              | U                     | 84-74-2                                                                    | Di-n-butylphthalate                                                                                                  | 0.042                                                      | 0.0091                                              | 0.17             |
| 106-44-5                                                            | 3&4-Methylphenol                                                                          | 0.011                                                       | 0.0091                                             | U .                   | 117-84-0                                                                   | Di-n-octylphthalate                                                                                                  | 0.024                                                      | 0.036                                               | 0.024J           |
| 91-94-1                                                             | 3,3'-Dichlorobenzidine                                                                    | 0.029                                                       | 0.036                                              | U                     | 206-44-0                                                                   | Fluoranthene                                                                                                         | 0.014                                                      | 0.036                                               | U                |
| 99-09-2                                                             | 3-Nitroaniline                                                                            | 0.014                                                       | 0.036                                              | U                     | 86-73-7                                                                    | Fluorene                                                                                                             | 0.0099                                                     | 0.036                                               | U                |
| 534-52-1                                                            | 4,6-Dinitro-2-methylphenol                                                                | 0.13                                                        | 0.18                                               | U                     | 118-74-1                                                                   | Hexachlorobenzene                                                                                                    | 0.015                                                      | 0.036                                               | U                |
| 101-55-3                                                            | 4-Bromophenyl-phenylether                                                                 | 0.010                                                       | 0.036                                              | U                     | 87-68-3                                                                    | Hexachlorobutadiene                                                                                                  | 0.016                                                      | 0.036                                               | U                |
| 5 <b>9-50</b> -7                                                    | 4-Chloro-3-methylphenol                                                                   | 0.0087                                                      | 0.036                                              | U                     | 77-47-4                                                                    | Hexachlorocyclopentadiene                                                                                            | 0.12                                                       | 0.036                                               | U                |
| 106-47-8                                                            | 4-Chloroaniline                                                                           | 0.016                                                       | 0.0091                                             | U                     | 67 <b>-7</b> 2-1                                                           | Hexachloroethane                                                                                                     | 0.016                                                      | 0.036                                               | U                |
| 7005-72-3                                                           | 4-Chiorophenyl-phenylether                                                                | 0.011                                                       | 0.000                                              |                       | 400.00.5                                                                   | ladonal 1 2 2 odloveno                                                                                               | 0.016                                                      | 0.036                                               | U                |
|                                                                     |                                                                                           | 0.011                                                       | 0.036                                              | U                     | 193-39-5                                                                   | Indeno[1,2,3-cd]pyrene                                                                                               | 0.0.0                                                      |                                                     |                  |
| 100-01-6                                                            | 4-Nitroaniline                                                                            | 0.011                                                       | 0.036                                              | U                     | 193-39-5<br>78-59-1                                                        | Isophorone                                                                                                           | 0.012                                                      | 0.036                                               | U                |
| 100-01-6<br>100-02-7                                                | , , , ,                                                                                   |                                                             |                                                    |                       |                                                                            | * * * * * * * * * * * * * * * * * * * *                                                                              |                                                            |                                                     | U<br>U           |
|                                                                     | 4-Nitroaniline                                                                            | 0.014                                                       | 0.036                                              | U                     | 78-59-1                                                                    | Isophorone                                                                                                           | 0.012                                                      | 0.036                                               |                  |
| 100-02-7                                                            | 4-Nitroaniline<br>4-Nitrophenol                                                           | 0.014<br>0.028                                              | 0.036<br>0.036                                     | U<br>U                | 78-59-1<br>91-20-3                                                         | Isophorone<br>Naphthalene                                                                                            | 0.012<br>0.010                                             | 0.036<br>0.0091                                     | U                |
| 100-02-7<br><b>83-32</b> -9                                         | 4-Nitroaniline<br>4-Nitrophenol<br>Acenaphthene                                           | 0.014<br>0.028<br>0.010                                     | 0.036<br>0.036<br>0.036                            | U<br>U<br>U           | 78-59-1<br>91-20-3<br>£8-95-3                                              | Isophorone<br>Naphthalene<br>Nitrobenzene                                                                            | 0.012<br>0.010<br>0.0015                                   | 0.036<br>0.0091<br>0.036                            | U                |
| 100-02-7<br>83-32-9<br>208-96-8                                     | 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene                                  | 0.014<br>0.028<br>0.010<br>0.011                            | 0.036<br>0.036<br>0.036<br>0.036                   | U<br>U<br>U           | 78-59-1<br>91-20-3<br>£8-95-3<br>621-64-7                                  | Isophorone<br>Naphthalene<br>Nitrobenzene<br>N-Nitroso-di-n-propylamine                                              | 0.012<br>0.010<br>0.0015<br>0.014                          | 0.036<br>0.0091<br>0.036<br>0.0091                  | U<br>U<br>U      |
| 100-02-7<br>83-32-9<br>208-96-8<br>98-86-2                          | 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acetophenone                     | 0.014<br>0.028<br>0.010<br>0.011<br>0.013                   | 0.036<br>0.036<br>0.036<br>0.036<br>0.036          | U<br>U<br>U<br>U      | 78-59-1<br>91-20-3<br>£8-95-3<br>621-64-7<br>66-30-6                       | Isophorone Naphthalene Nitrobenzene N-Nitroso-di-n-propylamine n-Nitrosodiphenylamine                                | 0.012<br>0.010<br>0.0015<br>0.014<br>0.12                  | 0.036<br>0.0091<br>0.036<br>0.0091<br>0.036         | U<br>U<br>U      |
| 100-02-7<br>83-32-9<br>208-96-8<br>98-86-2<br>120-12-7              | 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acetophenone Anthracene          | 0.014<br>0.028<br>0.010<br>0.011<br>0.013<br>0.010          | 0.036<br>0.036<br>0.036<br>0.036<br>0.036          | U<br>U<br>U<br>U      | 78-59-1<br>91-20-3<br>£8-95-3<br>621-64-7<br>66-30-6<br>37-86-5            | Isophorone Naphthalene Nitrobenzene N-Nitroso-di-n-propylamine n-Nitrosodiphenylamine Pentachlorophenol              | 0.012<br>0.010<br>0.0015<br>0.014<br>0.12<br>0.17          | 0.036<br>0.0091<br>0.036<br>0.0091<br>0.036<br>0.18 | U<br>U<br>U<br>U |
| 100-02-7<br>83-32-9<br>208-96-8<br>98-86-2<br>120-12-7<br>1912-24-9 | 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine | 0.014<br>0.028<br>0.010<br>0.011<br>0.013<br>0.010<br>0.015 | 0.036<br>0.036<br>0.036<br>0.036<br>0.036<br>0.036 | U<br>U<br>U<br>U<br>U | 78-59-1<br>91-20-3<br>£8-95-3<br>621-64-7<br>66-30-6<br>37-86-5<br>85-01-8 | Isophorone Naphthalene Nitrobenzene N-Nitroso-di-n-propylamine n-Nitrosodiphenylamine Pentachlorophenol Phenanthrene | 0.012<br>0.010<br>0.0015<br>0.014<br>0.12<br>0.17<br>0.012 | 0.036<br>0.0091<br>0.036<br>0.0091<br>0.036<br>0.18 | U<br>U<br>U<br>U |

Worksheet #: 569464

Total Target Concentration

0.57

 $<sup>\</sup>ensuremath{\mathcal{U}}$  - Indicates the compound was analyzed but not detected.

B - Indicutes the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $<sup>{\</sup>it J}$  - Indicates an estimated value when a compound is detected at less than the specified detection limit.  $\;\;$  .

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19479-019

Operator : AH/JKR/JB Sam Mult : 1 Vial# : 3 Misc : S,BNA Qt Meth : 7M\_0917.M Qt On : 10/12/20 11:39 Qt Upd On: 10/07/20 10:09 Data File: 7M109886.D Acq On : 10/6/20 09:39 Misc

Data Path : G:\GcMsData\2020\GCMS\_7\Data\10-06-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_7\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.   | QIon | Response | Conc Units | Dev(Min) |
|-----------------------------|--------|------|----------|------------|----------|
| Internal Standards          |        |      |          |            |          |
| 7) 1,4-Dioxane-d8(INT)      | 2.681  | 96   | 83793    | 40.00 ng   | -0.02    |
| 21) 1,4-Dichlorobenzene-d4  | 5.889  | 152  | 160154   | 40.00 ng   | 0.00     |
| 31) Naphthalene-d8          | 6.894  | 136  | 618098   | 40.00 ng   | 0.00     |
| 50) Acenaphthene-d10        | 8.339  | 164  | 321180   | 40.00 ng   | 0.00     |
| 77) Phenanthrene-d10        | 9.820  | 188  | 597610   | 40.00 ng   | 0.00     |
| 91) Chrysene-d12            | 12.893 | 240  | 505526   | 40.00 ng   | 0.00     |
| 103) Perylene-d12           | 14.538 | 264  | 468940   | 40.00 ng   | 0.00     |
| System Monitoring Compounds |        |      |          |            |          |
| 11) 2 Fluorophenol          | 4.726  | 112  | 308526   | 62.53 ng   | 0.01     |
| Spiked Amount 100.000       |        |      |          | ry = 62    |          |
| 16) Phenol-d5               | 5.590  | 99   |          | 67.68 ng   | 0.01     |
| Spiked Amount 100.000       |        |      |          | ry = 67    |          |
| 32) Nitrobenzene-d5         | 6.336  | 128  | 81362    | 33.13 ng   |          |
| Spiked Amount 50.000        |        |      | Recove   | ry = 66    |          |
| 55) 2-Fluorobiphenyl        | 7.740  | 172  |          | 34.34 ng   | 0.00     |
| Spiked Amount 50.000        |        |      | Recove   | ry = 68    | 1.68%    |
| 80) 2,4,6-Tribromophenol    | 9.091  | 330  |          | 63.18 ng   |          |
| Spiked Amount 100.000       |        |      |          | ry = 63    |          |
| 94) Terphenyl-d14           | 11.635 | 244  |          | 37.37 ng   | 0.00     |
| Spiked Amount 50.000        |        |      | Recove   | ry = 74    | .74%     |
| Target Compounds            |        |      |          |            | Qvalue   |
| 89) Di-n-butylphthalate     | 10.449 | 149  | 170885   | 9.4368     | ng 97    |
| 102) bis(2-Ethylhexyl)phtha |        |      |          |            | ng 93    |
| 104) Di-n-octylphthalate    |        | 149  | 20059m   | 1.3396     | ng       |
|                             |        |      |          |            |          |

<sup>(#)</sup> = qualifrer out of range (m) = manual integration (+) = signals summed





#### ORGANICS SEMIVOLATILE REPORT

Sample Number: SMB88130

Client Id:

Data File: 7M109845.D

Analysis Date: 10/05/20 10:43 Date Rec/Extracted: NA-10/05/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil

Initial Vol: 30g Final Vol: 0.5ml

Dilution: 1

Solids: 100

|                  |                            |        |        | Units: mg | /Kg      |                             |         |        |      |
|------------------|----------------------------|--------|--------|-----------|----------|-----------------------------|---------|--------|------|
| Cas #            | Compound                   | MDL    | RL     | Conc      | Cas#     | Compound                    | MDL     | RL     | Conc |
| 92-52-4          | 1,1'-Biphenyl              | 0.0096 | 0.033  | U         | 50-32-8  | Benzo[a]pyrene              | 0.011   | 0.033  | U    |
| 95- <b>9</b> 4-3 | 1,2,4,5-Tetrachlorobenzene | 0.011  | 0.033  | U         | 205-99-2 | Benzo[b]fluoranthene        | 0.012   | 0.033  | U    |
| 123-91-1         | 1.4-Dioxane                | 0.017  | 0.0083 | U         | 191-24-2 | Benzo[g,h,i]perylene        | 0.00023 | 0.033  | U    |
| 58-90-2          | 2,3,4,6-Tetrachlorophenol  | 0.013  | 0.033  | U         | 207-08-9 | Benzo(k)fluoranthene        | 0.012   | 0.033  | U    |
| 95- <b>95-4</b>  | 2,4,5-Trichlorophenol      | 0.0095 | 0.033  | U .       | 111-91-1 | bis(2-Chloroethoxy)methan   | 0.0094  | 0.033  | U    |
| 88-06-2          | 2,4,6-Trichlorophenol      | 0.026  | 0.033  | U         | 111-44-4 | bis(2-Chloroethyl)ether     | 0.0081  | 0.033  | U    |
| 120-83-2         | 2,4-Dichlorophenol         | 0.013  | 0.0083 | U         | 108-60-1 | bis(2-chloroisopropyl)ether | 0.013   | 0.033  | U    |
| 105-67-9         | 2.4-Dimethylphenol         | 0.016  | 0.0083 | U         | 117-81-7 | bis(2-Ethylhexyl)phthalate  | 0.029   | 0.033  | U    |
| 51-28-5          | 2,4-Dinitrophenol          | 0.14   | 0.17   | U         | 85-68-7  | Butylbenzylphthalate        | 0.026   | 0.033  | U    |
| 121-14-2         | 2.4-Dinitrotoluene         | 0.010  | 0.033  | U         | 105-60-2 | Caprolactam                 | 0.027   | 0.033  | U    |
| 606-20-2         | 2,6-Dinitrotoluene         | 0.017  | 0.033  | U         | 86-74-8  | Carbazole                   | 0.010   | 0.033  | U    |
| 91-58-7          | 2-Chloronaphthalene        | 0.015  | 0.033  | U         | 218-01-9 | Chrysene                    | 0.011   | 0.033  | U    |
| 95-57-8          | 2-Chlorophenol             | 0.011  | 0.033  | U         | 53-70-3  | Dibenzo[a,h]anthracene      | 0.012   | 0.033  | U    |
| 91-57-6          | 2-Methylnaphthalene        | 0.010  | 0.033  | U         | 132-64-9 | Dibenzofuran                | 0.0084  | 0.0083 | U    |
| 95-48-7          | 2-Methylphenol             | 0.0096 | 0.0083 | U         | 84-66-2  | Diethylphthalate            | 0.021   | 0.033  | U    |
| 88-74-4          | 2-Nitroaniline             | 0.016  | 0.033  | U         | 131-11-3 | Dimethylphthalate           | 0.0094  | 0.033  | U    |
| 88-75-5          | 2-Nitrophenol              | 0.015  | 0.033  | U         | 84-74-2  | Di-n-butylphthalate         | 0.038   | 0.0083 | U    |
| 106-44-5         | 3&4-Methylphenol           | 0.0097 | 0.0083 | U -       | 117-84-0 | Di-n-octylphthalate         | 0.022   | 0.033  | U    |
| 91-94-1          | 3,3'-Dichlorobenzidine     | 0.027  | 0.033  | U         | 206-44-0 | Fluoranthene                | 0.013   | 0.033  | U    |
| 99-09-2          | 3-Nitroaniline             | 0.013  | 0.033  | U         | 86-73-7  | Fluorene                    | 0.0091  | 0.033  | U    |
| 534 52-1         | 4.6-Dinitro-2-methylphenol | 0.12   | 0.17   | U         | 118-74-1 | Hexachlorobenzene           | 0.014   | 0.033  | U    |
| 101-55-3         | 4-Bromophenyl-phenylether  | 0.0093 | 0.033  | U         | 87-68-3  | Hexachlorobutadiene         | 0.015   | 0.033  | U    |
| 59 50-7          | 4-Chloro-3-methylphenol    | 0.0080 | 0.033  | U         | 77-47-4  | Hexachlorocyclopentadiene   | 0.11    | 0.033  | U    |
| 106-47-8         | 4-Chloroaniline            | 0.015  | 0.0083 | U         | 67-72-1  | Hexachloroethane            | 0.015   | 0.033  | U    |
| 7005-72-3        | 4-Chlorophenyl-phenylether | 0.010  | 0.033  | U         | 193-39-5 | Indeno[1,2,3-cd]pyrene      | 0.015   | 0.033  | U    |
| 100-01-6         | 4-Nitroaniline             | 0.013  | 0.033  | U         | 78-59-1  | Isophorone                  | 0.011   | 0.033  | U    |
| 100-02-7         | 4-Nitrophenol              | 0.025  | 0.033  | U :       | 91-20-3  | Naphthalene                 | 0.0096  | 0.0083 | U    |
| 83-32-9          | Acenaphthene               | 0.0095 | 0.033  | υ         | 98-95-3  | Nitrobenzene                | 0.0013  | 0.033  | U    |
| 208-96-8         | Acenaphthylene             | 0.010  | 0.033  | U         | 621-64-7 | N-Nitroso-di-n-propylamine  | 0.013   | 0.0083 | U    |
| 98-86-2          | Acetophenone               | 0.012  | 0.033  | U         | 86-30-6  | n-Nitrosodiphenylamine      | 0.11    | 0.033  | U    |
| 120-12-7         | Anthracene                 | 0.0092 | 0.033  | U ·       | 87-86-5  | Pentachlorophenol           | 0.16    | 0.17   | U    |
| 1912-24-9        | Atrazine                   | 0.013  | 0.033  | U         | 85-01-8  | Phenanthrene                | 0.011   | 0.033  | U    |
| 100-52-7         | Benzaldehyde               | 0.36   | 0.033  | U         | 108-95-2 | Phenol                      | 0.0092  | 0.033  | U    |
| 56-55-3          | Benzo[a]anthracene         | 0.011  | 0.033  | U         | 129-00-0 | Pyrene                      | 0.011   | 0.033  | U    |

Worksheet #: 569464

Total Target Concentration

0

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $<sup>\</sup>it E$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 7M\_0917.M Qt On : 10/05/20 11:27 Qt Upd On: 09/17/20 14:01 Operator : AH/JKR/JB Sam Mult : 1 Vial# : 7 Misc : S,BNA SampleID : SMB88130 Data File: 7M109845.D Acq On : 10/ 5/20 10:43

Data Path : G:\GcMsData\2020\GCMS\_7\Data\10-05-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_7\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.   | QIon | Response ( | Conc Ur | nits Dev | (Min)  |
|-----------------------------|--------|------|------------|---------|----------|--------|
| Internal Standards          |        |      |            |         |          |        |
| 7) 1,4-Dioxane-d8(INT)      | 2.675  | 96   | 77260      | 40.00   | ng       | -0.02  |
| 21) 1,4-Dichlorobenzene-d4  |        |      | 140606     | 40.00   | ng       | 0.00   |
| 31) Naphthalene-d8          |        |      | 537431     | 40.00   | ng       | 0.00   |
| 50) Acenaphthene-d10        | 8.339  | 164  | 276316     | 40.00   | ng       | 0.00   |
| 77) Phenanthrene-d10        |        |      | 521492     | 40.00   | ng       | 0.00   |
| 91) Chrysene-d12            | 12.887 | 240  | 461150     | 40.00   | ng       | 0.00   |
| 103) Perylene-d12           | 14.538 | 264  | 437220     | 40.00   | ng       | 0.00   |
| System Monitoring Compounds |        |      |            |         |          |        |
| 11) 2-Fluorophenol          | 4.720  | 112  | 319448     | 70.22   | ng       | 0.00   |
| Spiked Amount 100.000       |        |      | Recovery   | y =     | 70.22%   |        |
| 16) Phenol-d5               | 5.584  | 99   | 422333     | 77.25   | ng       | 0.00   |
| Spiked Amount 100.000       |        |      | Recovery   | у ≖     | 77.25%   |        |
| 32) Nitrobenzene-d5         | 6.336  | 128  | 82221      | 38.51   | ng       | 0.00   |
| Spiked Amount 50.000        |        |      | Recovery   | y =     | 77.02%   |        |
| 55) 2-Fluorobiphenyl        | 7.740  | 172  | 372189     | 40.38   | ng       | 0.00   |
| Spiked Amount 50.000        |        |      |            |         | 80.76%   |        |
| 80) 2,4,6-Tribromophenol    | 9.091  | 330  |            |         |          |        |
| Spiked Amount 100.000       |        |      | Recovery   |         |          |        |
| 94) Terphenyl-d14           | 11.635 | 244  |            |         |          |        |
| Spiked Amount 50.000        |        |      | Recovery   | y =     | 93.16%   |        |
| Target Compounds            |        |      |            |         |          | Qvalue |

(#) = qualifier out of range (m) = manual integration (+) = signals summed





7M 0917.M Mon Oct 12 11:53:03 2020 RPT1

#### FORM2

Surrogate Recovery

Method: EPA 8270E

|              |                     | B. G. m. during | Data (Time     | Surr | Dilute<br>Out | Column1<br>S1 | Column1<br>S2 | Column1<br>S3 | Column1<br>S4 | Column1<br>S5 | Column1<br>S6 |
|--------------|---------------------|-----------------|----------------|------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| <u>Dfile</u> | Sample#             | Matrix          | Date/Time      | Dil  | Flag          | Recov         | Recov         | Recov         | Recov         | Recov         | Recov         |
| 7M10984      | 5.D SMB88130        | S               | 10/05/20 10:43 | 1    |               | 70            | 77            | 77            | 81            | 72            | 93            |
| 7M10987      | 5.DAD19479-001      | S               | 10/05/20 22:35 | 1    |               | 65            | 70            | 68            | 73            | 69            | 83            |
| 7M10987      | 6.D AD19479-003     | S               | 10/05/20 22:58 | 1    |               | 63            | 70            | 65            | 69            | 67            | 77            |
| 7M10987      | 7.D AD19479-005     | S               | 10/05/20 23:21 | 1    |               | 61            | 68            | 62            | 67            | 67            | 78            |
| 7M10987      | 8.D AD19479-007     | S               | 10/05/20 23:45 | 1    |               | 64            | 68            | 63            | 66            | 58            | 68            |
| 7M10987      | 9.DAD19479-009      | S               | 10/06/20 00:08 | 1    |               | 59            | 63            | 62            | 63            | 58            | 68            |
| 7M10988      | 0.DAD19479-011      | S               | 10/06/20 00:32 | 1    |               | 63            | 73            | 66            | 74            | 76            | 86            |
| 7M10988      | 1.DAD19479-013      | S               | 10/06/20 00:55 | 1    |               | 63            | 69            | 65            | 70            | 66            | 76            |
| 7M10988      | 7.DAD19479-015(3X)  | S               | 10/06/20 10:02 | 3    |               | 61            | 67            | 64            | 67            | 58            | 74            |
| 7M10988      | 3.D AD19479-017     | S               | 10/06/20 01:42 | 1    |               | 52            | 60            | 57            | 65            | 62            | 73            |
| 7M10988      | 6.D AD19479-019     | S               | 10/06/20 09:39 | 1    |               | 63            | 68            | 66            | 69            | 63            | 75            |
| 9M10153      | 2.D SMB88130(MS)    | S               | 10/05/20 10:27 | 1    |               | 73            | 75            | 76            | 76            | 85            | 88            |
| 9M10154      | 1.D AD19587-004     | S               | 10/05/20 16:08 | 1    |               | 54            | 57            | 53            | 58            | 55            | 66            |
| 9M10154      | 2.D AD19587-004(MS) | S               | 10/05/20 16:32 | 1    |               | 52            | 58            | 59            | 63            | 75            | 78            |
| 9M10154      | 3.DAD19587-004(MSD) | S               | 10/05/20 16:55 | 1    |               | 64            | 67            | 70            | 73            | 83            | 84            |

Flags: SD=Surrogate diluted out
\*=Surrogate out

Method: EPA 8270E

#### **Soil Laboratory Limits**

| Compound                | Spike<br>Amt | Limits |
|-------------------------|--------------|--------|
| S1=2-Fluorophenol       | 100          | 43-128 |
| S2=Phenol-d5            | 100          | 49-129 |
| S3=Nitrobenzene-d5      | 50           | 52-129 |
| S4=2-Fluorobiphenyl     | 50           | 58-125 |
| S5=2,4,6-Tribromophenol | 100          | 54-145 |
| S6=Terphenyl-d14        | 50           | 58-148 |

#### Form3 **Recovery Data Laboratory Limits**

QC Batch: SMB88130

SMB88130(MS)

Data File Sample ID: Spike or Dup: 9M101532.D

Analysis Date 10/5/2020 10:27:00 AM

Non Spike(If applicable):

| Inst Blank(If applicable):                      |               |                          |                |                  |                  |                 | !                 |
|-------------------------------------------------|---------------|--------------------------|----------------|------------------|------------------|-----------------|-------------------|
| Method: 8270E                                   |               | Matrix: Soil             |                |                  | QC Type: MBS     | <b>.</b>        |                   |
| Analyte:                                        | Col           | Spike<br>Conc            | Sample<br>Conç | Expected<br>Conc | Recovery         | Lower<br>Limit  | Upper<br>Limit    |
| Pyridine                                        | 1             | 16.7937                  | 0              | 50               | 34               | 1               | 150               |
| N-Nitrosodimethylamine                          | 1             | 31.6951                  | 0              | 50               | 63               | 50              | 130               |
| <u>Benzaldehyde</u>                             | 1             | <u>35.9888</u>           | Q              | <u>50</u>        | <u>72</u>        | <u>20</u>       | <u>220</u>        |
| Aniline                                         | 1             | 21.3561                  | 0              | 50               | 43               | 20              | 150               |
| Pentachloroethane                               | 1             | 31.5428                  | 0              | 50               | 63               | 50              | 130               |
| bis(2-Chloroethyl)ether                         | 1             | <u>37.4174</u>           | <u>0</u>       | <u>50</u>        | <u>75</u>        | <u>50</u>       | <u>130</u>        |
| Phenol                                          | <u>1</u>      | <u>65.3694</u>           | <u>0</u>       | <u>100</u>       | <u>65</u>        | <u>20</u>       | <u>150</u>        |
| 2-Chlorophenol                                  | 1             | <u>67.5568</u>           | <u>0</u>       | <u>100</u>       | <u>68</u>        | <u>50</u>       | <u>130</u>        |
| N-Decane                                        | 1             | 22.4913                  | 0              | 50               | 45<br>25         | 20              | 130               |
| 1,3-Dichlorobenzene                             | 1             | 32.376                   | 0              | 50<br>50         | 65<br>71         | 60<br>60        | 130               |
| 1,4-Dichlorobenzene                             | 1<br>1        | 35.2996<br>35.7978       | 0<br>0         | 50<br>50         | 71               | 60<br>50        | 130<br>130        |
| 1,2-Dichlorobenzene                             | 1             | 39.7032                  | 0              | 50<br>50         | 72<br>79         | 20              | 130               |
| Benzyl alcohol<br>bis(2-chloroisopropyl)ether   | 1             | 36.3361                  | <u>Q</u>       | 50<br>50         | 73<br>73         | <u>40</u>       | 130<br>130        |
| 2-Methylphenol                                  | <u>1</u>      | 74.8523                  | <u>0</u>       | 100              | 7 <u>5</u><br>75 | <del>50</del>   | 130<br>130        |
| Acetophenone                                    | 1             | 39.5852                  | <u>o</u>       | <u>50</u>        | <u>79</u>        | <u>50</u>       | 130<br>130        |
| Hexachloroethane                                | 1             | 35.008 <u>8</u>          | Q              | <u>50</u>        | <u>70</u>        | <u>50</u>       | 130<br>130        |
| N-Nitroso-di-n-propylamine                      | 1 1           | 42.377                   | <u>0</u>       | <del>50</del>    | <u>85</u>        | 40              | 130               |
| 3&4-Methylphenol                                | <u> </u>      | 79.4264                  | Ŏ              | 100              | <u>79</u>        | <del>70</del>   | 130               |
| Nitrobenzene                                    | <u>1</u>      | 41.6744                  | Õ<br>Õ         | 50               | 83               | <del>70</del>   | 130               |
| Isophorone                                      | 1             | 41.5859                  | <u> </u>       | 50               | <u>83</u>        | 60              | 130               |
| 2-Nitrophenol                                   | 1             | 72.8349                  | Q              | 100              | <del>73</del>    | 70              | 130               |
| 2,4-Dimethylphenol                              | <u>1</u>      | 81.3898                  | <u> </u>       | 100              | <u>81</u>        | <u>40</u>       | <u>130</u>        |
| Benzoic Acid                                    | 1             | 39.8153                  | ō              | 100              | 40               | 20              | 130               |
| bis(2-Chloroethoxy)methane                      | 1             | 43.2789                  | Q              | <u>50</u>        | <u>87</u>        | <u>60</u>       | <u>130</u>        |
| 2,4-Dichlorophenol                              | 1             | <u>76.0615</u>           | <u>0</u>       | <u>100</u>       | <u>76</u>        | <u>70</u>       | <u>130</u>        |
| 1,2,4-Trichlorobenzene                          | 1             | 40.0968                  | 0              | 50               | 80               | 50              | 130               |
| <u>Naphthalene</u>                              | 1             | <u>39.1919</u>           | <u>0</u>       | <u>50</u>        | <u>78</u>        | <u>50</u>       | <u>130</u>        |
| 4-Chloroaniline                                 | 1             | <u>19.9435</u>           | <u>0</u>       | <u>50</u>        | <u>40</u>        | <u>10</u>       | <u>150</u>        |
| <u>Hexachlorobutadiene</u>                      | 1             | <u>37.6886</u>           | <u>o</u>       | <u>50</u>        | <u>75</u>        | <u>60</u>       | <u>130</u>        |
| Caprolactam                                     | 1             | 44.5528                  | <u>0</u>       | <u>50</u>        | <u>89</u>        | <u>50</u>       | <u>130</u>        |
| 4-Chloro-3-methylphenol                         | 1             | <u>75.9851</u>           | <u>0</u>       | <u>100</u>       | <u>76</u>        | <u>50</u>       | <u>130</u>        |
| 2-Methylnaphthalene                             | 1             | 38.6848<br>40.4567       | <u>0</u>       | <u>50</u>        | <u>77</u>        | <u>70</u>       | <u>130</u>        |
| 1-Methylnaphthalene                             | 1             | 43.1567                  | 0              | 50<br>50         | 86               | 70              | 130               |
| 1,1'-Biphenyl                                   | 1             | 35.7149                  | <u>0</u>       | <u>50</u>        | <u>71</u>        | <u>60</u>       | <u>130</u>        |
| 1,2,4,5-Tetrachlorobenzene                      | <u>1</u><br>1 | 38.9456<br>43.0408       | <u>0</u>       | <u>50</u>        | <u>78</u>        | <u>70</u>       | <u>130</u><br>160 |
| Hexachlorocyclopentadiene 2,4,6-Trichlorophenol |               | <u>43.0408</u><br>76.099 | Õ<br>Õ         | <u>50</u><br>100 | <u>86</u><br>76  | <u>20</u><br>70 | 130<br>130        |
| 2,4,5-Trichlorophenol                           | <u>1</u><br>1 | 75.1244                  | <u>0</u>       | 100              | 7 <u>5</u>       | <u>70</u><br>70 | 130<br>130        |
| 2-Chloronaphthalene                             | 1             | 43.8025                  | <u>o</u>       | <u>50</u>        | 88               | 70<br>70        | 130<br>130        |
| 1,4-Dimethylnaphthalene                         | 1             | 36.4356                  | Ö              | <del>50</del>    | 73               | <del>70</del>   | 130               |
| Diphenyl Ether                                  | 1             | 42.9049                  | Ö              | 50               | 86               | 70              | 130               |
| 2-Nitroaniline                                  | <u>1</u>      | 45.5392                  | <u>0</u>       | <u>50</u>        | <u>91</u>        | <u>50</u>       | 130               |
| Coumarin                                        | 1             | 38.7658                  | ō              | 50               | 78               | 70              | 130               |
| Acenaphthylene                                  | 1             | 46.8968                  | <u>0</u>       | <u>50</u>        | <u>94</u>        | <u>70</u>       | <u>130</u>        |
| Dimethylphthalate                               | 1             | 45,1991                  | <u></u>        | 50               | 90               | <del>70</del>   | 130               |
| 2,6-Dinitrotoluene                              | <u>1</u>      | 46.1928                  | <u>0</u>       | <u>50</u>        | 92               | 70              | 130               |
| Acenaphthene                                    | 1             | 44.2115                  | <u>0</u>       | <u>50</u>        | 88               | <u>50</u>       | 130               |
| 3-Nitroaniline                                  | <u>1</u>      | 32.8267                  | <u>0</u>       | <u>50</u>        | <u>66</u>        | <u>10</u>       | <u>130</u>        |
| 2,4-Dinitrophenol                               | <u>1</u>      | <u>57.0095</u>           | <u>0</u>       | <u>100</u>       | <u>57</u>        | <u>20</u>       | <u>150</u>        |
| <u>Dibenzofuran</u>                             | <u>1</u>      | <u>41.7483</u>           | <u>0</u>       | <u>50</u>        | <u>83</u>        | <u>70</u>       | <u>130</u>        |
| 2,4-Dinitrotoluene                              | <u>1</u>      | <u>48.5072</u>           | <u>0</u>       | <u>50</u>        | <u>97</u>        | <u>40</u>       | <u>130</u>        |
| 4-Nitrophenol                                   | 1             | <u>72.0555</u>           | <u>0</u>       | <u>100</u>       | <u>72</u>        | <u>20</u>       | <u>150</u>        |
| 2,3,4,6-Tetrachlorophenol                       | 1             | <u>71.1108</u>           | <u>0</u>       | <u>100</u>       | <u>71</u>        | <u>70</u>       | <u>130</u>        |
| Fluorene                                        | 1             | <u>44.7463</u>           | <u>Q</u>       | <u>50</u>        | <u>89</u>        | <u>50</u>       | <u>130</u>        |
| 4-Chlorophenyl-phenylether                      | 1             | <u>45.1244</u>           | <u>o</u>       | <u>50</u>        | <u>90</u>        | <u>70</u>       | <u>130</u>        |
| Diethylphthalate                                | 1             | 45.7582<br>45.5430       | <u>0</u>       | <u>50</u>        | <u>92</u>        | <u>70</u>       | 130<br>130        |
| 4-Nitroaniline                                  | 1             | 45.5429                  | <u>0</u>       | <u>50</u>        | <u>91</u>        | <u>50</u>       | 130<br>130        |
| Atrazine                                        | 1             | 43.5592<br>70.0556       | <u>0</u>       | <u>50</u>        | <u>87</u>        | <u>50</u>       | 130<br>130        |
| 4,6-Dinitro-2-methylphenol                      | 1             | 70.9556                  | <u>0</u>       | <u>100</u>       | <u>71</u>        | <u>40</u>       | <u>130</u><br>130 |
| n-Nitrosodiphenylamine                          | 1             | <u>39.0179</u>           | <u> </u>       | <u>50</u>        | <u>78</u>        | <u>50</u>       | 130               |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

### Form3 Recovery Data Laboratory Limits QC Batch: SMB88130

| Method: 8270E               | ľ             | Matrix: Soil   |                       |                  | QC Type: MBS  |                 |                |
|-----------------------------|---------------|----------------|-----------------------|------------------|---------------|-----------------|----------------|
| Analyte:                    | Col           | Spike<br>Conc  | Sample<br>Conc        | Expected<br>Conc | Recovery      | Lower<br>Limit  | Upper<br>Limit |
| 1,2-Diphenylhydrazine       | 1             | 46.31          | 0                     | 50               | 93            | 70              | 130            |
| 4-Bromophenyi-phenylether   | <u>1</u>      | <u>46.4506</u> | <u>o</u>              | <u>50</u>        | <u>93</u>     | <u>70</u>       | <u>130</u>     |
| Hexachlorobenzene           | <u>1</u>      | 42.3453        | <u>0</u>              | <u>50</u>        | <u>85</u>     | <u>70</u>       | <u>130</u>     |
| N-Octadecane                | 1             | 45.8504        | ō                     | 50               | 92            | 70              | 130            |
| Pentachlorophenol           | <u>1</u>      | 57.0503        | <u>o</u>              | 100              | <u>57</u>     | <u>40</u>       | <u>130</u>     |
| Phenanthrene                | <u>1</u>      | 46.7991        | Q<br>Q<br>Q<br>Q      | <u>50</u>        | 94            | <u>70</u>       | 130            |
| Anthracene                  | <u>1</u>      | 46.833         | <u>o</u>              | <u>50</u>        | 94            | 70              | 130            |
| Carbazole                   | <u>1</u>      | 39.2734        | <u> </u>              | <u>50</u>        | <del>79</del> | <u>70</u><br>70 | 130            |
| Di-n-butylphthalate         | <u>1</u>      | 47.3127        | Ō                     | <u>50</u>        | 95            | 70              | 130            |
| Fluoranthene                | 1             | 49.1617        | <u>0</u>              | <u>50</u>        | <u>98</u>     | <u>70</u>       | 130            |
| Pyrene                      | 1             | 47.0842        | <u>0</u>              | <u>50</u>        | 94            | <u>50</u>       | 130            |
| Benzidine                   | 1             | 2.8991         | 0                     | 50               | 5.8           | 1               | 130            |
| <u>Butylbenzylphthalate</u> | 1             | <u>47.5158</u> | <u>0</u>              | <u>50</u>        | <u>95</u>     | <u>50</u>       | <u>130</u>     |
| 3,3'-Dichlorobenzidine      | <u>1</u>      | 29.7834        | <u>0</u>              | <u>50</u>        | <u>60</u>     | <u>10</u>       | 130            |
| Benzo[a]anthracene          | <u>1</u>      | 44.3658        | <u>0</u>              | <u>50</u>        | <u>89</u>     | <u>70</u>       | 130            |
| Chrysene                    | 1             | 40.2837        |                       | <u>50</u>        | <u>81</u>     | 60              | 130            |
| bis(2-Ethylhexyl)phthalate  | 1             | 48.2868        | ō                     | <u>50</u>        | <u>97</u>     | 70              | 130            |
| Di-n-octylphthalate         | 1             | 49.8542        | ō                     | <u>50</u>        | 100           | <u>70</u><br>70 | 130            |
| Benzo[b]fluoranthene        | 1             | 56.9958        | ō                     | <u>50</u>        | 114           | <u>70</u>       | 130            |
| Benzo[k]fluoranthene        | 1             | 49.6271        | ō                     | <u>50</u>        | 99            | <u>70</u>       | 130            |
| Benzo[a]pyrene              | <u>1</u>      | 52.8318        | 0<br>0<br>0<br>0<br>0 | <u>50</u>        | <u> 106</u>   | <u>70</u>       | 130            |
| Indeno[1,2,3-cd]pyrene      | <u>1</u>      | 52.5882        | <u>0</u>              | <u>50</u>        | 105           | <del>70</del>   | <u>130</u>     |
| Dibenzo[a,h]anthracene      | <u>1</u><br>1 | 52.4511        | <u>o</u>              | <u>50</u>        | 105           | <u>60</u>       | 130            |
| Benzo[g,h,i]perylene        | <u>1</u>      | 52.3267        | <u></u>               | <u>50</u>        | <u>105</u>    | <del>70</del>   | 130            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

#### Form3 Recovery Data Laboratory Limits

QC Batch: SMB88130

Data File

Sample ID:

**Analysis Date** 

<u>74</u>

<u>54</u>

<u>64</u>

<u>84</u>

70

80

<u>68</u>

<u>70</u>

<u>70</u>

<u>80</u>

681

78

<u>82</u>

73

86

<u>50</u>

<u>10</u>

<u>60</u>

<u>50</u>

<u>70</u>

70

<u>60</u>

<u>70</u>

<u>20</u> 70

70

70

<u>50</u>

70

70

130

150

130

<u>130</u>

130

130

<u>130</u>

130

<u> 160</u>

130

130

130

<u>130</u>

130

130

Spike or Dup: 9M101542.D

**Naphthalene** 

**Caprolactam** 

1,1'-Biphenyl

Diphenyl Ether

2-Nitroaniline

Coumarin **Acenaphthylene** 

4-Chloroaniline

<u>Hexachlorobutadiene</u>

2-Methylnaphthalene

1-Methylnaphthalene

2-Chloronaphthalene

1,4-Dimethylnaphthalene

1,2,4,5-Tetrachlorobenzene

**Hexachlorocyclopentadiene** 

AD19587-004(MS) AD19587-004

10/5/2020 4:32:00 PM 10/5/2020 4:08:00 PM

Non Spike(If applicable): 9M101541.D Inst Blank(If applicable): Method: 8270E QC Type: MS Matrix: Soil Spike Sample Expected Lower Upper Analyte: Col Conc Conc Conc Recovery Limit Limit 50 150 **Pyridine** 1 18.0441 0 36 N-Nitrosodimethylamine 1 28.6618 0 50 57 50 130 <u>20</u> 220 Benzaldehyde 1 27.1896 0 <u>50</u> <u>54</u> 24.9614 0 50 50 20 150 Aniline Pentachloroethane 27.0807 0 50 54 50 130 50 <u>50</u> 130 bis(2-Chloroethyl)ether 1 31.85 0 <u>64</u> 21.5689 50 43 20 130 0 N-Decane 1 50 56 60 130 1,3-Dichlorobenzene 1 27.9767 0 60 1,4-Dichlorobenzene 31.0516 0 50 62 130 1,2-Dichlorobenzene 31.2548 0 50 63 50 130 20 Benzyl alcohol 35.6284 0 50 71 130 0 50 <u>40</u> 130 bis(2-chloroisopropyl)ether 1 30.4369 <u>61</u> <u>50</u> <u>Acetophenone</u> 1 34.9098 0 <u>50</u> <u>70</u> <u>130</u> <u>50</u> 130 <u>0</u> <u>50</u> <u>60</u> **Hexachloroethane** 1 30.0584 N-Nitroso-di-n-propylamine 1 36.8661 <u>0</u> <u>50</u> <u>74</u> <u>40</u> 130 <u>70</u> <u>50</u> <u>74</u> <u>130</u> Nitrobenzene 36.8698 0 <u>75</u> <u>60</u> 130 37.4108 0 <u>50</u> 1 <u>Isophorone</u> 0 100 72 20 130 Benzoic Acid 71.9922 bis(2-Chloroethoxy)methane 38.3086 0 <u>50</u> <u>60</u> 130 1 <u>77</u> 0 50 71 50 130 1,2,4-Trichlorobenzene 35.3301

0

0

<u>0</u>

0

<u>0</u>

0

<u>0</u>

0

0

0

0

0

0

0

<u>50</u>

<u>50</u>

<u>50</u>

<u>50</u>

<u>50</u>

50

<u>50</u>

<u>50</u>

<u>50</u>

<u>50</u>

50

50

<u>50</u>

50

<u>50</u>

1

1

1

1

1

1

1

1

1

1

1

37.0809

27.0111

32.0669

41.8394

34.9545

39.9123

<u>33.7811</u>

34.8398

<u>35.081</u>

39.8714

34.0877

39.0119

41.022

36.312

42.9164

**Dimethylphthalate** 1 41.7641 <u>0</u> <u>50</u> <u>84</u> <u>70</u> 130 70 <u>50</u> <u>85</u> 2,6-Dinitrotoluene 42.541 <u>0</u> <u>130</u> 1 <u>Acenaphthene</u> 40.3593 <u>0</u> <u>50</u> <u>81</u> <u>50</u> 130 <u>70</u> 3-Nitroaniline 1 33.6221 0 <u>50</u> 671 130 38.7499 0 <u>50</u> <u>70</u> <u>77</u> 130 <u>Dibenzofuran</u> 1 40 2,4-Dinitrotoluene 44.0034 <u>0</u> <u>50</u> <u>88</u> 130 1 <u>50</u> 70 41.6519 0 <u>50</u> <u>83</u> 130 **Fluorene** 1 4-Chlorophenyl-phenylether 0 <u>50</u> <u>84</u> <u>130</u> <u>42.2221</u> <u>70</u> **Diethylphthalate** <u>0</u> <u>50</u> <u>86</u> 130 1 <u>42.808</u> <u>50</u> 83 <u>50</u> 130 4-Nitroaniline 1 41.4621 0 <u>50</u> **Atrazine** 1 40.4217 0 <u>50</u> <u>81</u> <u>130</u> <u>50</u> n-Nitrosodiphenylamine 36.8174 0 <u>50</u> <u>74</u> 130 1 1,2-Diphenylhydrazine 42.7759 0 50 86 70 130 <u>50</u> <u>87</u> <u>70</u> 130 4-Bromophenyl-phenylether 1 43.4169 0 <u>50</u> <u>70</u> <u>Hexachlorobenzene</u> 40.2093 0 <u>80</u> <u>130</u> 70 N-Octadecane 43.7783 0 50 88 130 **Phenanthrene** 44.0696 <u>50</u> 88 <u>70</u> 130 1 ō <u>70</u> <u>43.8094</u> <u>50</u> <u>88</u> <u>Anthracene</u> 1 <u>130</u> <u>70</u> Carbazole 37.656 0 <u>50</u> <u>75</u> 130 1 Di-n-butylphthalate 1 43.4788 0 <u>50</u> <u>87</u> <u>70</u> 130 70 <u>50</u> <u>92</u> Fluoranthene 1 <u>45.9679</u> 0 130 44.5868 0 <u>50</u> <u>89</u> <u>50</u> <u>130</u> **Pyrene** 1 Benzidine 0 50 0 1 130 <u>50</u> <u>50</u> 130 **Butylbenzylphthalate** 43.9607 0 <u>88</u> 1 3,3'-Dichlorobenzidine 10 130 1 30.2305 0 50 60 Benzo[a]anthracene 1 <u>41.529</u> 0 50 83 130 # - Indicates outside of standard limits but within method exceedance limits

<sup>\* -</sup> Indicates outside of limits Bold and underline - Indicates the compounds reported on form1

### Form3 Recovery Data Laboratory Limits QC Batch: SMB88130

| Method: 8270E              | Matrix: Soil |                |                |               |           |                |                |
|----------------------------|--------------|----------------|----------------|---------------|-----------|----------------|----------------|
| Analyte:                   | Col          | Spike<br>Conc  | Sample<br>Conc | Expected Conc | Recovery  | Lower<br>Limit | Upper<br>Limit |
| Chrysene                   | 1            | 38.2204        | <u>0</u>       | 50            | <u>76</u> | <u>60</u>      | <u>130</u>     |
| bis(2-Ethylhexyl)phthalate | <u>1</u>     | 44.4361        | <u> </u>       | <u>50</u>     | 89        | 70             | 130            |
| Di-n-octylphthalate        | <u>1</u>     | 44,1402        | <u>o</u>       | 50            | 88        | 70             | 130            |
| Benzo[b]fluoranthene       | <u>1</u>     | 49.7478        | Q              | <u>50</u>     | <u>99</u> | <u>70</u>      | <u>130</u>     |
| Benzo[k]fluoranthene       | <u>1</u>     | 49.171         | <u>0</u>       | <u>50</u>     | <u>98</u> | <u>70</u>      | <u>130</u>     |
| Benzo[a]pyrene             | 1            | <u>48.9844</u> | Ō              | <u>50</u>     | <u>98</u> | <u>70</u>      | <u>130</u>     |
| Indeno[1,2,3-cd]pyrene     | 1            | <u>48.7868</u> | Q              | <u>50</u>     | <u>98</u> | <u>70</u>      | <u>130</u>     |
| Dibenzo[a,h]anthracene     | 1            | <u>48.4889</u> | <u>o</u>       | <u>50</u>     | <u>97</u> | <u>60</u>      | <u>130</u>     |
| Benzo[g.h,i]perylene       | 1            | 48,4303        | <u>0</u>       | <u>50</u>     | <u>97</u> | <u>70</u>      | <u>130</u>     |

### Form3 Recovery Data Laboratory Limits

QC Batch: SMB88130

Data File

Sample ID:

Analysis Date

Spike or Dup: 9M101543.D Non Spike(If applicable): 9M101541.D

AD19587-004(MSD) AD19587-004 10/5/2020 4:55:00 PM 10/5/2020 4:08:00 PM

Inst Blank(If applicable):

Method: 8270E Matrix: Soil QC Type: MSD Spike Sample Expected Lower Upper Analyte: Col Conc Conc Conc Recovery Limit Limit 19.9352 50 150 **Pyridine** 1 0 40 1 N-Nitrosodimethylamine 1 31.0892 0 50 62 50 130 <u>220</u> **Benzaldehyde** 1 32.6312 0 <u>50</u> <u>65</u> <u>20</u> 20 26.2099 0 50 52 150 Aniline Pentachloroethane 1 29.8623 0 50 60 50 130 34.1362 <u>50</u> <u>68</u> <u>50</u> <u>130</u> bis(2-Chloroethyl)ether 1 0 20 23.586 N-Decane 0 50 47 130 60 1.3-Dichlorobenzene 1 30.4275 0 50 61 130 60 1,4-Dichlorobenzene 34.2314 0 50 68 130 1,2-Dichlorobenzene 34.1477 0 50 68 50 130 Benzyl alcohol 35.9225 0 50 72 20 130 40 bis(2-chloroisopropyl)ether 32.4897 0 50 65 130 1 <u>50</u> **Acetophenone** 36.7936 0 <u>50</u> 74 <u>130</u> 1 <u>50</u> 0 <u>50</u> <u>66</u> 130 **Hexachloroethane** <u>32.9257</u> 1 40 70 N-Nitroso-di-n-propylamine 1 37.613 0 50 <u>75</u> 130 38.3427 **Nitrobenzene** 1 0 <u>50</u> **77** 130 60 0 <u>50</u> <u>76</u> <u>130</u> Isophorone <u>37.856</u> 77 20 Benzoic Acid 76.7438 0 100 130 78 60 130 bis(2-Chloroethoxy)methane 38.9632 0 50 1 0 50 74 50 130 1,2,4-Trichlorobenzene 36.9078 0 50 <u>75</u> <u>50</u> 130 **Naphthalene** 1 37.6149 <u>54</u> <u>10</u> 4-Chloroaniline 27.2037 0 <u>50</u> 150 1 <u>Hexachlorobutadiene</u> 35.0175 0 <u>50</u> <u>70</u> <u>60</u> <u>130</u> 1 44.0502 <u>0</u> <u>50</u> 88 <u>50</u> **Caprolactam** <u>130</u> <u>0</u> 0 <u>70</u> 2-Methylnaphthalene 1 36.2503 50 <u>73</u> 130 82 70 50 1-Methylnaphthalene 40.8193 130 <u>35.1347</u> <u>0</u> <u>60</u> 1,1'-Biphenyl <u>50</u> <u>70</u> 130 1 1,2,4,5-Tetrachlorobenzene 1 36.7843 <u>0</u> <u>50</u> <u>74</u> <u>70</u> 130 36.0646 <u> 20</u> <u>Hexachlorocyclopentadiene</u> 1 0 <u>50</u> <u>72</u> <u>160</u> 2-Chloronaphthalene 1 40.7068 0 <u>81</u> <u>70</u> <u>130</u> <u>50</u> 70 1,4-Dimethylnaphthalene 0 50 70 130 35.2206 Diphenyl Ether 40.748 0 50 81 70 130 1 2-Nitroaniline 43.1439 0 <u>50</u> <u>86</u> <u>50</u> 130 1 ō 77 70 50 Coumarin 38.6552 130 Acenaphthylene 44.0316 0 50 88 <u>70</u> 130 1 **Dimethylphthalate** 1 <u>42.9246</u> 0 <u>50</u> <u>86</u> <u>70</u> 130 2,6-Dinitrotoluene <u>88</u> <u>70</u> 1 44.2213 0 <u>50</u> <u>130</u> Acenaphthene 1 41.3093 <u>0</u> <u>50</u> <u>83</u> <u>50</u> 130 70 3-Nitroaniline 1 0 50 35.6254 71 130 <u>70</u> 0 <u>50</u> <u>80</u> <u>Dibenzofuran</u> 1 <u>39.7938</u> 130 <u>0</u> <u>50</u> 91 <u>40</u> 2,4-Dinitrotoluene 1 <u>45.548</u> <u>130</u> 0 50 <u>50</u> **Fluorene** 1 42.6018 <u>85</u> 130 <u>70</u> 4-Chlorophenyl-phenylether 1 <u>43.4574</u> 0 <u>50</u> <u>87</u> 130 70 Diethylphthalate 1 43.9004 0 <u>50</u> <u>88</u> <u>130</u> 42.9744 <u>0</u> <u>50</u> <u>86</u> <u>50</u> <u>130</u> 4-Nitroaniline 1 **Atrazine** 42.4857 0 <u>50</u> <u>85</u> <u>50</u> 130 1 n-Nitrosodiphenylamine <u>50</u> <u>75</u> <u>50</u> <u>130</u> 37.3336 1,2-Diphenylhydrazine 44.5483 0 50 89 70 130 4-Bromophenyl-phenylether 43.4446 <u>50</u> <u>87</u> <u>70</u> 130 1 0 <u>Hexachlorobenzene</u> 40.9109 0 <u>50</u> <u>82</u> <u>70</u> <u>130</u> 0 50 90 70 N-Octadecane 44.9255 130 <u>70</u> **Phenanthrene** 43.9113 0 <u>50</u> <u>88</u> 130 Q 89 70 <u>50</u> <u>130</u> <u>Anthracene</u> 1 <u>44.3694</u> 37.9276 0 <u>70</u> <u>1</u> 50 <u>76</u> 130 Carbazole Di-n-butylphthalate 1 44.322 0 <u>50</u> <u>89</u> <u>70</u> <u>130</u> <u>70</u> <u>130</u> <u>Fluoranthene</u> 1 46.2706 0 <u>50</u> <u>93</u> 0 <u>50</u> 89 <u>50</u> 130 <u>Pyrene</u> 1 44.562 Benzidine 3.2479 0 50 6.5 1 130 <u>50</u> 89 **50** 130 **Butylbenzylphthalate** 1 44.6051 0 <u>130</u> 3,3'-Dichlorobenzidine 32.6648 0 <u>50</u> 65 <u>10</u> 1 41.8715 Benzo[a]anthracene 1 0 50 84 70 130

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

#### Form3 Recovery Data Laboratory Limits QC Batch: SMB88130

| Method: 8270E              | Matrix: Soil |                |                |                  | QC Type: MSD |                |                |  |
|----------------------------|--------------|----------------|----------------|------------------|--------------|----------------|----------------|--|
| Analyte:                   | Col          | Spike<br>Conc  | Sample<br>Conc | Expected<br>Conc | Recovery     | Lower<br>Limit | Upper<br>Limit |  |
| Chrysene                   | 1            | 37.6961        | <u>0</u>       | 50               | <u>75</u>    | <u>60</u>      | 130            |  |
| bis(2-Ethylhexyl)phthalate | 1            | 44.7836        | <u>o</u>       | <u>50</u>        | <u>90</u>    | <u>70</u>      | <u>130</u>     |  |
| Di-n-octylphthalate        | 1            | 44.7584        | Q              | <u>50</u>        | <u>90</u>    | <u>70</u>      | <u>130</u>     |  |
| Benzo[b]fluoranthene       | 1            | <u>52.0256</u> | <u>0</u>       | <u>50</u>        | <u>104</u>   | <u>70</u>      | <u>130</u>     |  |
| Benzo[k]fluoranthene       | 1            | 46.561         | Q              | <u>50</u>        | <u>93</u>    | <u>70</u>      | <u>130</u>     |  |
| Benzo[a]pyrene             | <u>1</u>     | <u>49.0971</u> | <u>o</u>       | <u>50</u>        | <u>98</u>    | <u>70</u>      | <u>130</u>     |  |
| Indeno[1,2,3-cd]pyrene     | 1            | 48.5385        | <u>o</u>       | <u>50</u>        | <u>97</u>    | <u>70</u>      | <u>130</u>     |  |
| Dibenzo[a,h]anthracene     | 1            | 48.093         | Q              | <u>50</u>        | <u>96</u>    | <u>60</u>      | <u>130</u>     |  |
| Benzo[g,h,i]perylene       | <u>1</u>     | <u>48.009</u>  | <u>o</u>       | <u>50</u>        | <u>96</u>    | <u>70</u>      | <u>130</u>     |  |

#### Form3 **RPD Data Laboratory Limits**

QC Batch: SMB88130

Data File

Sample ID:

Analysis Date

Spike or Dup: 9M101543.D

AD19587-004(MSD) Duplicate(If applicable): 9M101542.D AD19587-004(MS)

10/5/2020 4:55:00 PM 10/5/2020 4:32:00 PM

Inst Blank(If applicable):

Method: 8270F

Matrix: Soil

OC Type MSD

| Method: 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Matr                             | ix: Soil                  | QC T                             | ype:MSD                   |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|----------------------------------|---------------------------|------------------------|
| The second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | · ·· ·                           | Dup/MSD/MBSD              | Sample/MS/MB                     |                           |                        |
| Analyte:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Column                           | Conc                      | Conc                             | RPD                       | Limit                  |
| Pyridine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                | 19.9352                   | 18.0441                          | 10                        | 30                     |
| N-Nitrosodimethylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                | 31.0892                   | 28.6618                          | 8.1                       | 30                     |
| <u>Benzaldehyde</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                | <u>32.6312</u>            | <u>27.1896</u>                   | <u>18</u>                 | <u>30</u>              |
| Aniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                | 26.2099                   | 24.9614                          | 4.9                       | 30                     |
| Pentachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                | 29.8623                   | 27.0807                          | 9.8                       | 30<br>30               |
| bis(2-Chloroethyl)ether N-Decane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>1</u><br>1                    | <u>34.1362</u><br>23.586  | <b>31.85</b><br>21.5689          | <u>6.9</u><br>8.9         | <b>30</b><br>30        |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                | 30.4275                   | 27.9767                          | 8.4                       | 30                     |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i                                | 34.2314                   | 31.0516                          | 9.7                       | 40                     |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                | 34.1477                   | 31.2548                          | 8.8                       | 30                     |
| Benzyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                | 35.9225                   | 35.6284                          | 0.82                      | 30                     |
| bis(2-chloroisopropyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>1</u>                         | <u>32.4897</u>            | <u>30.4369</u>                   | 6.5                       | <u>30</u>              |
| Acetophenone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | 36.7936                   | 34.9098                          | <u>5.3</u>                | <u>30</u>              |
| <u>Hexachloroethane</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>1<br>1<br>1                 | <u>32.9257</u>            | <u>30.0584</u>                   | <u>9.1</u>                | <u>30</u>              |
| N-Nitroso-di-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>1</u>                         | <u>37.613</u>             | <u>36.8661</u>                   | <u>2</u>                  | <u>40</u>              |
| <u>Nitrobenzene</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>1</u>                         | <u>38.3427</u>            | <u>36.8698</u>                   | <u>3.9</u>                | <u>30</u>              |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                         | <u>37.856</u>             | <u>37.4108</u>                   | <u>1.2</u>                | <u>30</u>              |
| Benzoic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                | 76.7438                   | 71.9922                          | 6.4                       | 30                     |
| bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                | <u>38.9632</u>            | <u>38.3086</u>                   | 1.7                       | <u>30</u>              |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                | 36.9078                   | 35.3301                          | 4.4                       | 40                     |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                | <u>37.6149</u>            | <u>37.0809</u><br>27.0111        | 1.4                       | <u>40</u>              |
| 4-Chloroaniline Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>1<br>1<br>1                 | <u>27.2037</u><br>35.0175 | 32.0669                          | <u>0.71</u><br><u>8.8</u> | <u>30</u><br><u>30</u> |
| Caprolactam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1                              | 44.0502                   | <u>32.0009</u><br>41.8394        | <u>5.0</u><br><u>5.1</u>  | <u>30</u><br>30        |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>†</u>                         | 36.2503                   | 34.9545                          | 3.6                       | <u>30</u>              |
| 1-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                | 40.8193                   | 39.9123                          | 2.2                       | <del>30</del>          |
| 1,1'-Biphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                | 35.1347                   | <u>33.7811</u>                   | 3.9                       | <u>30</u>              |
| 1,2,4,5-Tetrachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>1</u>                         | 36.7843                   | 34.8398                          | <u>5.4</u>                | <u>30</u>              |
| <u>Hexachlorocyclopentadiene</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>1<br>1                      | 36.0646                   | 35.081                           | 2.8                       | 30                     |
| 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>1</u>                         | <u>40.7068</u>            | <u>39.8714</u>                   | <u>2.1</u>                | <u>30</u>              |
| 1,4-Dimethylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                | 35.2206                   | 34.0877                          | 3.3                       | 30                     |
| Diphenyl Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                | 40.748                    | 39.0119                          | 4.4                       | 30                     |
| 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                | <u>43.1439</u>            | <u>41.022</u>                    | <u>5</u>                  | <u>30</u>              |
| Coumarin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                | 38.6552                   | 36.312                           | 6.3                       | 30                     |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1                      | <u>44.0316</u><br>42.9246 | <u>42.9164</u><br>41.7641        | <u>2.6</u>                | <u>30</u>              |
| <u>Dimethylphthalate</u><br>2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                         | <u>42.9246</u><br>44.2213 | 41.7641<br>42.541                | <u>2.7</u><br>3.9         | <u>30</u><br><u>30</u> |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                | 41.3093                   | 40.3593                          | <u>3.3</u><br><u>2.3</u>  | <u>40</u>              |
| 3-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1<br>1                 | <u>35.6254</u>            | 33.6221                          | <u>5.8</u>                | 30                     |
| <u>Dibenzofuran</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                | 39.7938                   | 38.7499                          | 2.7                       | <u>30</u>              |
| 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                | 45.548                    | 44.0034                          | 3.4                       | 40                     |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>1</u>                         | 42.6018                   | 41.6519                          | 2.3                       | 40                     |
| 4-Chlorophenyl-phenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>1</u>                         | 43.4574                   | 42.2221                          | <u>2.9</u>                | <u>30</u>              |
| <u>Diethylphthalate</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>1</u><br><u>1</u><br><u>1</u> | 43.9004                   | <u>42.808</u>                    | 2.5                       | <u>30</u>              |
| 4-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>1</u>                         | <u>42.9744</u>            | <u>41.4621</u>                   | <u>3.6</u>                | <u>30</u>              |
| <u>Atrazine</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>1</u><br>1                    | <u>42.4857</u>            | <u>40.4217</u>                   | <u>5</u>                  | <u>30</u>              |
| n-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | <u>37.3336</u>            | <u>36.8174</u>                   | <u>1.4</u>                | <u>30</u>              |
| 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                | 44.5483                   | 42.7759                          | 4.1                       | 30                     |
| 4-Bromophenyl-phenylether Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                | <u>43.4446</u>            | <u>43.4169</u>                   | <u>0.06</u>               | <u>30</u>              |
| N-Octadecane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>1</u><br>1                    | <u>40.9109</u><br>44.9255 | <u><b>40.2093</b></u><br>43.7783 | <u>1.7</u><br>2.6         | <b>30</b><br>30        |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>1</u>                         | 43.9113                   | 44.0696                          | 0.36                      | <u>30</u>              |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>1</u><br>1                    | 44.3694                   | <u>43.8094</u>                   | <u>0.30</u><br><u>1.3</u> | <u>30</u><br>30        |
| Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                | 37.9276                   | <del>37.656</del>                | <u>0.72</u>               | <u>30</u>              |
| Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>1</del>                     | 44.322                    | 43.4788                          | <u>1.9</u>                | <u>30</u>              |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>1</u><br>1                    | 46.2706                   | 45.9679                          | 0.66                      | <u>30</u>              |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                         | 44.562                    | 44.5868                          | 0.06                      | <u>40</u>              |
| Benzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                | 3.2479                    | 0                                | 200*                      | 30                     |
| <u>Butylbenzylphthalate</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>1</u>                         | <u>44.6051</u>            | <u>43.9607</u>                   | <u>1.5</u>                | <u>40</u>              |
| 3,3'-Dichlorobenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                | <u>32.6648</u>            | <u>30.2305</u>                   | <u>7.7</u>                | <u>30</u>              |
| Benzo[a]anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                | <u>41.8715</u>            | <u>41.529</u>                    | <u>0.82</u>               | <u>30</u>              |
| * Indicates autolds of Back                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | 114 B-11 - 1              |                                  |                           |                        |

<sup>\* -</sup> Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

#### Form3 RPD Data Laboratory Limits QC Batch: SMB88130

| Method: 8270E              | Matrix: Soil |                      | QC Typ                | e:MSD       |           |  |
|----------------------------|--------------|----------------------|-----------------------|-------------|-----------|--|
| Analyte:                   | Column       | Dup/MSD/MBSD<br>Conc | Sample/MS/MBS<br>Conc | RPD         | Limit     |  |
| Chrysene                   | <u>1</u>     | 37.6961              | 38.2204               | 1.4         | 30        |  |
| bis(2-Ethylhexyl)phthalate | <u>1</u>     | 44.7836              | 44.4361               | 0.78        | 30        |  |
| Di-n-octylphthalate        | 1            | <u>44.7584</u>       | 44.1402               | <u>1.4</u>  | <u>30</u> |  |
| Benzo[b]fluoranthene       | <u>1</u>     | <u>52.0256</u>       | <u>49.7478</u>        | 4.5         | <u>30</u> |  |
| Benzo[k]fluoranthene       | <u>1</u>     | <u>46.561</u>        | <u>49.171</u>         | <u>5.5</u>  | <u>30</u> |  |
| Benzo[a]pyrene             | 1            | 49.0971              | 48.9844               | 0.23        | <u>30</u> |  |
| Indeno[1,2,3-cd]pyrene     | <u>1</u>     | <u>48.5385</u>       | <u>48.7868</u>        | <u>0.51</u> | <u>30</u> |  |
| Dibenzo[a,h]anthracene     | <u>1</u>     | 48.093               | 48.4889               | 0.82        | <u>30</u> |  |
| Benzo[g,h,i]perylene       | <u>1</u>     | 48.009               | 48.4303               | 0.87        | 30        |  |

#### FORM 4 Blank Summary

Blank Number: SMB88130 Blank Data File: 7M109845.D

Matrix: Soil

Blank Analysis Date: 10/05/20 10:43

Blank Extraction Date: 10/05/20

(If Applicable) Method: EPA 8270E

| Sample Number   | Data File  | Analysis Date  |
|-----------------|------------|----------------|
| AD19479-001     | 7M109875.D | 10/05/20 22:35 |
| AD19479-003     | 7M109876.D | 10/05/20 22:58 |
| AD19479-005     | 7M109877.D | 10/05/20 23:21 |
| AD19479-007     | 7M109878.D | 10/05/20 23:45 |
| AD19479-009     | 7M109879.D | 10/06/20 00:08 |
| AD19479-011     | 7M109880.D | 10/06/20 00:32 |
| AD19479-013     | 7M109881.D | 10/06/20 00:55 |
| AD19479-015(3X) | 7M109887.D | 10/06/20 10:02 |
| AD19479-017     | 7M109883.D | 10/06/20 01:42 |
| AD19479-019     | 7M109886.D | 10/06/20 09:39 |
| AD19587-004(MSD | 9M101543.D | 10/05/20 16:55 |
| AD19587-004(MS) | 9M101542.D | 10/05/20 16:32 |
| AD19587-004     | 9M101541.D | 10/05/20 16:08 |
| SMB88130(MS)    | 9M101532.D | 10/05/20 10:27 |

Tune Name: CAL DFTPP

Data File: 7M109431.D

| Tune Name: CAL DFTPP |           |          |        |                                                    | Data File: 7M109431.D   |              |  |  |  |
|----------------------|-----------|----------|--------|----------------------------------------------------|-------------------------|--------------|--|--|--|
| Instrument: GCMS 7   |           |          |        | Analysis Date: 09/17/20 09:43<br>Method: EPA 8270E |                         |              |  |  |  |
| Tune So              | an/Time J | Range: A | verage | of 10.108                                          | of 10.108 to 10.108 min |              |  |  |  |
| Tgt                  | Rel       | Lo H     | i Lim  | Rel                                                | Raw                     | Pass/        |  |  |  |
| Mass                 | Mass      | Lim      |        | Abund                                              | Abund                   | <u> Fail</u> |  |  |  |
| 51                   | 198       | 30       | 60     | 35.1                                               | 42072                   | PASS         |  |  |  |
| 68                   | 69        | 0.00     | 2      | 0.0                                                | 0                       | PASS         |  |  |  |
| 69                   | 198       | 0.00     | 100    | 45.6                                               | 54704                   | PASS         |  |  |  |
| 70                   | 69        | 0.00     | 2      | 0.7                                                | 373                     | PASS         |  |  |  |
| 127                  | 198       | 40       | 60     | 53.1                                               | 63672                   | PASS         |  |  |  |
| 197                  | 198       | 0.00     | 1      | 0.0                                                | 0                       | PASS         |  |  |  |
| 198                  | 198       | 100      | 100    | 100.0                                              | 120000                  | PASS         |  |  |  |
| 199                  | 198       | 5        | 9      | 6.8                                                | 8197                    | PASS         |  |  |  |
| 275                  | 198       | 10       | 30     | 20.8                                               | 24936                   | PASS         |  |  |  |
| 365                  | 198       | 1        | 100    | 2.2                                                | 2683                    | PASS         |  |  |  |
| 441                  | 443       | 0.01     | 100    | 72.0                                               | 7872                    | PASS         |  |  |  |
| 442                  | 198       | 40       | 100    | 47.1                                               | 56488                   | PASS         |  |  |  |
| 443                  | 442       | 17       | 23     | 19.3                                               | 10930                   | PASS         |  |  |  |
|                      |           |          |        |                                                    |                         |              |  |  |  |

| Data File  | Sample Number | Analysis Date: |
|------------|---------------|----------------|
| 7M109432.D | CAL BNA@2PPM  | 09/17/20 10:08 |
| 7M109433.D | CAL BNA@10PPM | 09/17/20 10:32 |
| 7M109434.D | CAL BNA@196PP | 09/17/20 10:55 |
| 7M109435.D | CAL BNA@160PP | 09/17/20 11:22 |
| 7M109436.D | CAL BNA@120PP | 09/17/20 11:46 |
| 7M109437.D | CAL BNA@80PPM | 09/17/20 12:09 |
| 7M109438.D | CAL BNA@20PPM | 09/17/20 12:33 |
| 7M109439.D | CAL BNA@0.5PP | 09/17/20 12:57 |
| 7M109440.D | CAL BNA@50PPM | 09/17/20 13:20 |
| 7M109441.D | ICV BNA@50PPM | 09/17/20 13:44 |
|            |               |                |

Data Path : G:\GcMsData\2020\GCMS\_7\Data\09-17-20\

Data File : 7M109431.D

Acq On : 17 Sep 2020 9:43

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_7\METHODQT\7M\_EVALN.M

Title : @GCMS\_7

Last Update : Thu Sep 10 08:21:04 2020



Spectrum Information: Average of 10.108 to 10.108 min.

|   | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>  Pass/Fail |
|---|----------------|-----------------|-----------------|-----------------|--------------|------------|-----------------------|
| ١ | 51             | 198             | l 30            | l 60            | 35.1         | 42072      | l pass                |
| İ | 68             | 69              | 0.00            | 2               | 0.0          | 0          | PASS                  |
| i | 69             | 198             | 0.00            | 100             | 45.6         | 54704      | PASS                  |
| j | 70             | 69              | 0.00            | 2               | 0.7          | 373        | PASS                  |
| j | 127            | 198             | 40              | 60              | 53.1         | 63672      | PASS                  |
| İ | 197            | 198             | 0.00            | 1               | 0.0          | l o        | PASS                  |
| j | 198            | 198             | 100             | 100             | 100.0        | 120000     | PASS                  |
| j | 199            | 198             | 5               | 9               | 6.8          | 8197       | PASS                  |
| İ | 275            | 198             | 10              | 30              | 20.8         | 24936      | PASS                  |
| ĺ | 365            | 198             | 1               | 100             | 2.2          | 2683       | PASS                  |
|   | 441            | 443             | 0.01            | 100             | 72.0         | 7872       | PASS                  |
|   | 442            | 198             | 40              | 100             | 47.1         | 56488      | PASS                  |
|   | 443            | 442             | 17              | 23              | 19.3         | 10930      | PASS                  |

Tune Name: CAL DFTPP Instrument: GCMS 9

**Data File:** 9M101312.D Analysis Date: 09/17/20 09:43 Method: EPA 8270E

| Tune Sca | n/Time R | <u>ange: Average c</u> | of 10.107 ( | <u>o 10.10</u> 7 | <u>min</u> |
|----------|----------|------------------------|-------------|------------------|------------|
| TT . 4   | D 1      | * * *** * *            | D. 1        | n                | 10         |

| • |      | MIN'T THIS I | 70 UE 2 | 10.490 | Q1 10.1Q1 | 10 10.10 111 | ···   |
|---|------|--------------|---------|--------|-----------|--------------|-------|
|   | Tgt  | Rel          | Lo H    | i Lim  | Rel       | Raw          | Pass/ |
|   | Mass | Mass         | Lim     |        | Abund     | Abund        | Fail  |
|   | 51   | 198          | 30      | 60     | 34.3      | 42992        | PASS  |
|   | 68   | 69           | 0.00    | 2      | 0.0       | 0            | PASS  |
|   | 69   | 198          | 0.00    | 100    | 38.1      | 47736        | PASS  |
|   | 70   | 69           | 0.00    | 2      | 0.4       | 213          | PASS  |
|   | 127  | 198          | 40      | 60     | 50.6      | 63424        | PASS  |
|   | 197  | 198          | 0.00    | 1      | 0.0       | 0            | PASS  |
|   | 198  | 198          | 100     | 100    | 100.0     | 125368       | PASS  |
|   | 199  | 198          | 5       | 9      | 6.6       | 8281         | PASS  |
|   | 275  | 198          | 10      | 30     | 23.1      | 28904        | PASS  |
|   | 365  | 198          | 1       | 100    | 2.9       | 3594         | PASS  |
|   | 441  | 443          | 0.01    | 100    | 85.2      | 12575        | PASS  |
|   | 442  | 198          | 40      | 100    | 59.7      | 74840        | PASS  |
|   | 443  | 442          | 17      | 23     | 19.7      | 14757        | PASS  |
|   |      |              |         |        |           |              |       |

| Data File  | Sample Number | Analysis Date: |
|------------|---------------|----------------|
| 9M101313.D | CAL BNA@10PPM | 09/17/20 10:10 |
| 9M101314.D | CAL BNA@2PPM  | 09/17/20 10:34 |
| 9M101315.D | CAL BNA@196PP | 09/17/20 11:00 |
| 9M101316.D | CAL BNA@160PP | 09/17/20 11:24 |
| 9M101317.D | CAL BNA@120PP | 09/17/20 11:47 |
| 9M101318.D | CAL BNA@80PPM | 09/17/20 12:12 |
| 9M101319.D | CAL BNA@20PPM | 09/17/20 12:35 |
| 9M101320.D | CAL BNA@0.5PP | 09/17/20 12:58 |
| 9M101321.D | CAL BNA@50PPM | 09/17/20 13:22 |
| 9M101322.D | ICV BNA@50PPM | 09/17/20 13:47 |
| 9M101323.D | SMB88017      | 09/17/20 14:11 |
| 9M101324.D | SMB88018      | 09/17/20 14:34 |
| 9M101326.D | 88018         | 09/17/20 15:48 |
|            |               |                |

Data Path : G:\GcMsData\2020\GCMS\_9\Data\09-17-20\

Data File : 9M101312.D

Acq On : 17 Sep 2020 9:43

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_9\METHODQT\9M\_EVALN.M

Title : @GCMS 9

Last Update : Tue Sep 15 10:50:50 2020



Spectrum Information: Average of 10.107 to 10.107 min.

|   | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|---|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
|   | 51             | l 198           | 30              | 60              | 34.3         | 42992      | l pass              |
|   | 68             | 69              | 0.00            | 2               | 0.0          | 0          | PASS                |
|   | 69             | 198             | 0.00            | 100             | 38.1         | 47736      | PASS                |
|   | 70             | 69              | 0.00            | 2               | 0.4          | 213        | PASS                |
|   | 127            | 198             | 40              | 60              | 50.6         | 63424      | PASS                |
|   | 197            | 198             | 0.00            | 1               | 0.0          | 0          | PASS                |
|   | 198            | 198             | 100             | 100             | 100.0        | 125368     | PASS                |
|   | 199            | 198             | 5               | 9               | 6.6          | 8281       | PASS                |
|   | 275            | 198             | 10              | 30              | 23.1         | 28904      | PASS                |
|   | 365            | 198             | 1               | 100             | 2.9          | 3594       | PASS                |
| į | 441            | 443             | 0.01            | 100             | 85.2         | 12575      | PASS                |
|   | 442            | 198             | 40              | 100             | 59.7         | 74840      | PASS                |
|   | 443            | 442             | 17              | 23              | 19.7         | 14757      | PASS                |

Tune Name: CAL DFTPP Instrument: GCMS 7

Data File: 7M109839.D Analysis Date: 10/05/20 08:20 Method: EPA 8270E

| Tune Scan/Time Range: Average of 10.102 to 10.108 min |
|-------------------------------------------------------|
|-------------------------------------------------------|

| Tgt  | Rel  | Lo H  | i Lim | Rel   | Raw    | Pass/ |
|------|------|-------|-------|-------|--------|-------|
| Mass | Mass | _Lim_ |       | Abund | Abund  | Fail  |
| 51   | 198  | 30    | 60    | 35.0  | 49408  | PASS  |
| 68   | 69   | 0.00  | 2     | 0.0   | 0      | PASS  |
| 69   | 198  | 0.00  | 100   | 44.8  | 63184  | PASS  |
| 70   | 69   | 0.00  | 2     | 0.7   | 422    | PASS  |
| 127  | 198  | 40    | 60    | 51.6  | 72828  | PASS  |
| 197  | 198  | 0.00  | 1     | 0.3   | 434    | PASS  |
| 198  | 198  | 100   | 100   | 100.0 | 141156 | PASS  |
| 199  | 198  | 5     | 9     | 6.7   | 9497   | PASS  |
| 275  | 198  | 10    | 30    | 22.5  | 31764  | PASS  |
| 365  | 198  | 1     | 100   | 2.6   | 3713   | PASS  |
| 441  | 443  | 0.01  | 100   | 74.4  | 11351  | PASS  |
| 442  | 198  | 40    | 100   | 55.5  | 78400  | PASS  |
| 443  | 442  | 17    | 23    | 19.5  | 15260  | PASS  |

| Data File  | Sample Number   | Analysis Date: |
|------------|-----------------|----------------|
| 7M109840.D | CAL BNA@50PPM   | 10/05/20 08:44 |
| 7M109841.D | AD19515-005     | 10/05/20 09:09 |
| 7M109842.D | AD19451-004     | 10/05/20 09:32 |
| 7M109843.D | AD19451-005     | 10/05/20 09:56 |
| 7M109844.D | AD19451-006     | 10/05/20 10:20 |
| 7M109845.D | SMB88130        | 10/05/20 10:43 |
| 7M109846.D | AD19265-002(3X) | 10/05/20 11:07 |
| 7M109847.D | AD19265-002     | 10/05/20 11:30 |
| 7M109848.D | AD19414-003(3X) | 10/05/20 11:54 |
| 7M109849.D | AD19451-007     | 10/05/20 12:17 |
| 7M109850.D | AD19501-001(R)  | 10/05/20 12:40 |
| 7M109851.D | AD19501-003(R)  | 10/05/20 13:04 |
| 7M109852.D | AD19506-002(R)  | 10/05/20 13:27 |

Data Path : G:\GcMsData\2020\GCMS\_7\Data\10-05-20\

Data File : 7M109839.D

Acq On : 5 Oct 2020 8:20

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A.BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_7\METHODQT\7M\_EVALN.M

Title : @GCMS\_7

Last Update : Thu Sep 10 08:21:04 2020



Spectrum Information: Average of 10.102 to 10.108 min.

| Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
| 51             | 198             | 30              | 60              | 35.0         | 49408      | PASS                |
| 68             | 69              | 0.00            | 2               | 0.0          | 0          | PASS                |
| 69             | 198             | 0.00            | 100             | 44.8         | 63184      | PASS                |
| 70             | 69              | 0.00            | 2               | 0.7          | 422        | PASS                |
| 127            | 198             | 40              | 60              | 51.6         | 72828      | PASS                |
| 197            | 198             | 0.00            | 1               | 0.3          | 434        | PASS                |
| 198            | 198             | 100             | 100             | 100.0        | 141156     | PASS                |
| 199            | 198             | 5               | 9               | 6.7          | 9497       | PASS                |
| 275            | 198             | 10              | 30              | 22.5         | 31764      | PASS                |
| 365            | 198             | 1               | 100             | 2.6          | 3713       | PASS                |
| 441            | 443             | 0.01            | 100             | 74.4         | 11351      | PASS                |
| 442            | 198             | 40              | 100             | 55.5         | 78400      | PASS                |
| 443            | 442             | 17              | 23              | 19.5         | 15260      | PASS                |

Tune Name: CAL DFTPP

Data File: 9M101530.D

| Tune Name: CAL DFTPP |           |          |        | <b>Data File:</b> 9M101530.D                       |                         |       |  |  |
|----------------------|-----------|----------|--------|----------------------------------------------------|-------------------------|-------|--|--|
| Instrument: GCMS 9   |           |          |        | Analysis Date: 10/05/20 08:27<br>Method: EPA 8270E |                         |       |  |  |
| Tune So              | an/Time I | Range: A | verage | of 10.101                                          | of 10.101 to 10.113 min |       |  |  |
| Tgt                  | Rel       | Lo H     | i Lim  | Rel                                                | Raw                     | Pass/ |  |  |
| Mass                 | Mass      | _Lim     |        | Abund                                              | Abund                   | Fail  |  |  |
| 51                   | 198       | 30       | 60     | 30.8                                               | 20735                   | PASS  |  |  |
| 68                   | 69        | 0.00     | 2      | 0.0                                                | 0                       | PASS  |  |  |
| 69                   | 198       | 0.00     | 100    | 34.4                                               | 23178                   | PASS  |  |  |
| 70                   | 69        | 0.00     | 2      | 0.2                                                | 53                      | PASS  |  |  |
| 127                  | 198       | 40       | 60     | 48.4                                               | 32628                   | PASS  |  |  |
| 197                  | 198       | 0.00     | 1      | 0.0                                                | 0                       | PASS  |  |  |
| 198                  | 198       | 100      | 100    | 100.0                                              | 67408                   | PASS  |  |  |
| 199                  | 198       | 5        | 9      | 6.9                                                | 4649                    | PASS  |  |  |
| 275                  | 198       | 10       | 30     | 26.4                                               | 17797                   | PASS  |  |  |
| 365                  | 198       | 1        | 100    | 3.4                                                | 2296                    | PASS  |  |  |
| 441                  | 443       | 0.01     | 100    | 89.2                                               | 10493                   | PASS  |  |  |
| 442                  | 198       | 40       | 100    | 89.8                                               | 60533                   | PASS  |  |  |
| 443                  | 442       | 17       | 23     | 19.4                                               | 11768                   | PASS  |  |  |
|                      |           |          |        |                                                    |                         |       |  |  |

| Data File  | Sample Number   | Analysis Date: |
|------------|-----------------|----------------|
| 9M101531.D | CAL BNA@50PPM   | 10/05/20 08:52 |
| 9M101532.D | SMB88130(MS)    | 10/05/20 10:27 |
| 9M101533.D | SMB88131(MS)    | 10/05/20 10:50 |
| 9M101534.D | SMB88130        | 10/05/20 11:14 |
| 9M101535.D | SMB88131        | 10/05/20 11:37 |
| 9M101536.D | PEST MIX@50     | 10/05/20 13:27 |
| 9M101537.D | BENZALDEHYDE    | 10/05/20 13:50 |
| 9M101538.D | EXT MIX 1ST     | 10/05/20 14:47 |
| 9M101539.D | EXT MIX 2ST     | 10/05/20 15:22 |
| 9M101540.D | AD19540-002(R)  | 10/05/20 15:45 |
| 9M101541.D | AD19587-004     | 10/05/20 16:08 |
| 9M101542.D | AD19587-004(MS) | 10/05/20 16:32 |
| 9M101543.D | AD19587-004(MSD | 10/05/20 16:55 |

Data Path : G:\GcMsData\2020\GCMS\_9\Data\10-05-20\

Data File: 9M101530.D

Acq On : 5 Oct 2020 8:27

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_9\METHODQT\9M\_EVALN.M

Title : @GCMS\_9

Last Update : Tue Sep 15 10:50:50 2020



Spectrum Information: Average of 10.101 to 10.113 min.

| Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result  <br>  Pass/Fail |
|----------------|-----------------|-----------------|-----------------|--------------|------------|-------------------------|
| 51             | 198             | 30              | 60              | 30.8         | 20735      | PASS                    |
| 68             | 69              | 0.00            | 2               | 0.0          | 0          | PASS                    |
| 69             | 198             | 0.00            | 100             | 34.4         | 23178      | PASS                    |
| 70             | 69              | 0.00            | 2               | 0.2          | 53         | PASS                    |
| 127            | 198             | 40              | 60              | 48.4         | 32628      | PASS                    |
| 197            | 198             | 0.00            | 1               | 0.0          | i o        | PASS                    |
| 198            | 198             | 100             | 100             | 100.0        | 67408      | PASS                    |
| 199            | 198             | 5               | 9               | 6.9          | 4649       | PASS                    |
| 275            | 198             | 10              | 30              | 26.4         | 17797      | PASS                    |
| 365            | 198             | 1               | 100             | 3.4          | 2296       | PASS                    |
| 441            | 443             | 0.01            | 100             | 89.2         | 10493      | PASS                    |
| 442            | 198             | 40              | 100             | 89.8         | 60533      | PASS                    |
| 443            | 442             | 17              | 23              | 19.4         | 11768      | PASS                    |

Tune Name: CAL DFTPP

Data File: 7M109853.D Instrument: GCMS 7 Analysis Date: 10/05/20 13:59
Method: EPA 8270E
Tune Scan/Time Range: Average of 10.096 to 10.119 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw    | Pass/ |
|------|------|------|-------|-------|--------|-------|
| Mass | Mass | Lim  |       | Abund | Abund  | Fail  |
| 51   | 198  | 30   | 60    | 34.2  | 39017  | PASS  |
| 68   | 69   | 0.00 | 2     | 0.1   | 43     | PASS  |
| 69   | 198  | 0.00 | 100   | 43.4  | 49582  | PASS  |
| 70   | 69   | 0.00 | 2     | 0.7   | 357    | PASS  |
| 127  | 198  | 40   | 60    | 51.8  | 59173  | PASS  |
| 197  | 198  | 0.00 | 1     | 0.0   | 0      | PASS  |
| 198  | 198  | 100  | 100   | 100.0 | 114240 | PASS  |
| 199  | 198  | 5    | 9     | 6.9   | 7865   | PASS  |
| 275  | 198  | 10   | 30    | 24.6  | 28112  | PASS  |
| 365  | 198  | 1    | 100   | 3.0   | 3391   | PASS  |
| 441  | 443  | 0.01 | 100   | 73.0  | 11980  | PASS  |
| 442  | 198  | 40   | 100   | 73.9  | 84464  | PASS  |
| 443  | 442  | 17   | 23    | 19.4  | 16410  | PASS  |

| Data File  | Sample Number    | Analysis Date: |
|------------|------------------|----------------|
|            |                  |                |
| 7M109854.D | CAL BNA@50PPM    | 10/05/20 14:23 |
| 7M109855.D | SMB88131         | 10/05/20 14:46 |
| 7M109856.D | AD19506-004(R)   | 10/05/20 15:10 |
| 7M109857.D | AD19505-002(R)   | 10/05/20 15:33 |
| 7M109858.D | AD19505-004(R)   | 10/05/20 15:56 |
| 7M109859.D | AD19507-006(R)   | 10/05/20 16:20 |
| 7M109860.D | AD19510-006(R)   | 10/05/20 16:43 |
| 7M109861.D | AD19509-006(3X)( | 10/05/20 17:07 |
| 7M109862.D | AD19515-005(R)   | 10/05/20 17:30 |
| 7M109863.D | AD19515-004(R)   | 10/05/20 17:54 |
| 7M109864.D | 19513-003(R)     | 10/05/20 18:17 |
| 7M109865.D | AD19513-004(R)   | 10/05/20 18:41 |
| 7M109866.D | AD19587-001      | 10/05/20 19:04 |
| 7M109867.D | AD19587-003      | 10/05/20 19:28 |
| 7M109868.D | AD19587-005      | 10/05/20 19:51 |
| 7M109869.D | AD19587-006      | 10/05/20 20:14 |
| 7M109870.D | AD19587-002(5X)  | 10/05/20 20:38 |
| 7M109871.D | AD19560-001(5X)  | 10/05/20 21:01 |
| 7M109872.D | AD19581-008(5X)  | 10/05/20 21:24 |
| 7M109873.D | AD19596-001(5X)  | 10/05/20 21:48 |
| 7M109874.D | AD19443-002(3X)  | 10/05/20 22:11 |
| 7M109875.D | AD19479-001      | 10/05/20 22:35 |
| 7M109876.D | AD19479-003      | 10/05/20 22:58 |
| 7M109877.D | AD19479-005      | 10/05/20 23:21 |
| 7M109878.D | AD19479-007      | 10/05/20 23:45 |
| 7M109879.D | AD19479-009      | 10/06/20 00:08 |
| 7M109880.D | AD19479-011      | 10/06/20 00:32 |
| 7M109881.D | AD19479-013      | 10/06/20 00:55 |
| 7M109882.D | AD19479-015(5X)  | 10/06/20 01:19 |
| 7M109883.D | AD19479-017      | 10/06/20 01:42 |

Data Path : G:\GcMsData\2020\GCMS\_7\Data\10-0520\

Data File : 7M109853.D

Acq On : 5 Oct 2020 13:59

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_7\METHODQT\7M\_EVALN.M

Title : @GCMS 7

Last Update : Thu Sep 10 08:21:04 2020



Spectrum Information: Average of 10.096 to 10.119 min.

| Target<br>  Mass | Rel. to | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result  <br>  Pass/Fail |
|------------------|---------|-----------------|-----------------|--------------|------------|-------------------------|
| 51               | 198     | 30              | 60              | 34.2         | 39017      | PASS                    |
| 68               | 69      | 0.00            | 2               | 0.1          | 43         | PASS                    |
| 69               | 198     | 0.00            | 100             | 43.4         | 49582      | PASS                    |
| j 70             | 69      | 0.00            | 2               | 0.7          | 357        | PASS                    |
| 127              | 198     | 40              | 60              | 51.8         | 59173      | PASS                    |
| 197              | 198     | 0.00            | 1               | 0.0          | j o        | PASS                    |
| 198              | 198     | 100             | 100             | 100.0        | 114240     | PASS                    |
| 199              | 198     | 5               | 9               | 6.9          | 7865       | PASS                    |
| 275              | 198     | 10              | 30              | 24.6         | 28112      | PASS                    |
| 365              | 198     | 1               | 100             | 3.0          | 3391       | PASS                    |
| 441              | 443     | 0.01            | 100             | 73.0         | 11980      | PASS                    |
| 442              | 198     | 40              | 100             | 73.9         | 84464      | PASS                    |
| 443              | 442     | 17              | 23              | 19.4         | 16410      | PASS                    |

Tune Name: CAL DFTPP Data File: 7M109884.D 
 Instrument:
 GCMS
 7
 Analysis Date:
 10/06/20 08:51

 Method:
 EPA 8270E

 Tune Scan/Time Range:
 Average of 10.108 to 10.114 min

| Tgt  | Rel  | Lo H  | i Lim | Rel   | Raw    | Pass/ |
|------|------|-------|-------|-------|--------|-------|
| Mass | Mass | _Lim_ |       | Abund | Abund  | Fail  |
| 51   | 198  | 30    | 60    | 31.2  | 57412  | PASS  |
| 68   | 69   | 0.00  | 2     | 0.0   | 0      | PASS  |
| 69   | 198  | 0.00  | 100   | 41.4  | 76120  | PASS  |
| 70   | 69   | 0.00  | 2     | 0.7   | 546    | PASS  |
| 127  | 198  | 40    | 60    | 48.8  | 89624  | PASS  |
| 197  | 198  | 0.00  | 1     | 0.0   | 0      | PASS  |
| 198  | 198  | 100   | 100   | 100.0 | 183840 | PASS  |
| 199  | 198  | - 5   | 9     | 6.8   | 12578  | PASS  |
| 275  | 198  | 10    | 30    | 24.1  | 44340  | PASS  |
| 365  | 198  | 1     | 100   | 2.7   | 5040   | PASS  |
| 441  | 443  | 0.01  | 100   | 73.6  | 17173  | PASS  |
| 442  | 198  | 40    | 100   | 62.8  | 115524 | PASS  |
| 443  | 442  | 17    | 23    | 20.2  | 23348  | PASS  |

| Data File  | Sample Number    | Analysis Date: |
|------------|------------------|----------------|
| 7M109885.D | CAL BNA@50PPM    | 10/06/20 09:15 |
| 7M109886.D | AD19479-019      | 10/06/20 09:39 |
| 7M109887.D | AD19479-015(3X)  | 10/06/20 10:02 |
| 7M109888.D | 19515-004        | 10/06/20 10:26 |
| 7M109889.D | AD19515-004      | 10/06/20 11:19 |
| 7M109890.D | AD19587-002      | 10/06/20 11:42 |
| 7M109891.D | AD19414-003      | 10/06/20 12:05 |
| 7M109892.D | 19513-003        | 10/06/20 12:29 |
| 7M109893.D | AD19560-001(25X) | 10/06/20 12:53 |
| 7M109894.D | AD19560-001(25X) | 10/06/20 13:16 |
| 7M109895.D | AD19515-003(R)   | 10/06/20 13:40 |
| 7M109896.D | AD19560-001(25X) | 10/06/20 14:03 |

Data Path : G:\GcMsData\2020\GCMS\_7\Data\10-06-20\

Data File : 7M109884.D

Acq On : 6 Oct 2020 8:51

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_7\METHODQT\7M\_EVALN.M

Title : @GCMS 7

Last Update : Thu Sep 10 08:21:04 2020



Spectrum Information: Average of 10.108 to 10.114 min.

| Target<br>  Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|------------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
| 51               | 198             | 30              | 60              | 31.2         | 57412      | PASS                |
| 68               | 69              | 0.00            | 2               | 0.0          | 0          | PASS                |
| 69               | 198             | 0.00            | 100             | 41.4         | 76120      | PASS                |
| 70               | 69              | 0.00            | 2               | 0.7          | 546        | PASS                |
| 127              | 198             | 40              | 60              | 48.8         | 89624      | PASS                |
| 197              | 198             | 0.00            | 1               | 0.0          | j o        | PASS                |
| 198              | 198             | 100             | 100             | 100.0        | 183840     | PASS                |
| 199              | 198             | 5               | 9               | 6.8          | 12578      | PASS                |
| 275              | 198             | 10              | 30              | 24.1         | 44340      | PASS                |
| 365              | 198             | 1               | 100             | 2.7          | 5040       | PASS                |
| 441              | 443             | 0.01            | 100             | 73.6         | 17173      | PASS                |
| 442              | 198             | 40              | 100             | 62.8         | 115524     | PASS                |
| 443              | 442             | 17              | 23              | 20.2         | 23348      | PASS                |

Initial Calibration Form 6

Instrument: GCMS\_7

| 1 8                      | Data         | Data File: Cal Identifier:                                 | Analysis Date/Time                                                                                                               | Level#:      | Data File: |          | Cal Iden       | ifier:     | Analys         | sis Date/Time                            |
|--------------------------|--------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------|------------|----------|----------------|------------|----------------|------------------------------------------|
|                          | 7M109440.D   | CALB                                                       | i                                                                                                                                | ļ            | 09432 D    | ަ        | BNA@2PPM       | Š          | 09/17/20 1     | 09/17/20 10:08                           |
|                          | 7M109433.D   | CAL                                                        | 09/17/20 10:32                                                                                                                   | 4 7M1        | 7M109438.D | CAL B    | BNA@20PPM      | ŘΜ         | 09/17/20 12:33 | 12:33                                    |
| <b>N</b> E               | 7M109437.D   | C <sub>A</sub>                                             | 09/17/20 12:09                                                                                                                   |              | 09436.D    | CAL B    | CAL BNA@120PPM | PPM        | 09/17/20 11:46 | 11:46                                    |
| . ~                      | 7M109435.D   | CAL BNA@160PPM                                             | 09/17/20 11:22                                                                                                                   |              | 7M109434.D | CALB     | CAL BNA@196PPM | PP M       | 09/17/20 10:55 | 10:55                                    |
| 92                       |              | 1                                                          |                                                                                                                                  |              | ļ          |          | !              | T          | -              | Calibration Level Concentrations         |
| Compound                 | Col Mr Fit:  | RF1 RF2 RF3 RF4                                            | RF5 RF6 RF7 RF8 RF9                                                                                                              | AvgRf RT     | Corr1      | Corr2    | %Rsd           |            | LvI1 LvI2      | LVI3 LVI4 LVI5 LVI6 LVI7 LVI8 LVI9       |
| 1,4-Dioxane              | 1 0 Avg      | 0.9568 1.1816 1.1240 0.9562 0.9473 0.9547                  | 0.9473 0.9547 0.9719 0.9869 1.2364                                                                                               |              |            | 1.00     | =              | <b>/</b> P | 50.00 2.00     | 20.00 80.00 120.0 160.0 196.0            |
| Pyridine                 | 1 0 Avg      | 2.2822 2.7150 2.4197 2.1866                                | 2.2357 2.2432 2.3058 2.2885                                                                                                      | 2.333.22     | 22 1.00    | 1.00     | 7.2            | <b>/</b> 2 | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 196.0      |
| N-Nitrosodimethylamin    | in 1 0 Avg   | 1.4514 1.4804 1.5365 1.3723 1.4411 1.4720 1.4796           | 1.4411 1.4720 1.4796 1.4964                                                                                                      | 1.47 3.15    | 15 1.00    | 1.00     | ္သ             | <b>/</b> P | 2.00           | 10.00 20.00 80.00 120.0 160.0 196.0      |
| 2-Fluorophenol           | 1 0 Avg      | 2.3080 2.4029 2.5400 2.1946                                | 2.3315 2.3477 2.3726 2.3458                                                                                                      | 2.36 4.71    | .71 0.998  | 0.998    | 4.1            | <b></b>    | 2.00           | 10.00 20.00 80.00 120.0 160.0 196.0      |
| Benzaldehyde             | 1 0 Avq      | 2.2528 2.5614 2.5996 2.2023                                | 2.2528 2.5614 2.5996 2.2023 2.2383 2.2249 2.1906 2.1155                                                                          |              | 52 0.999   | -        | ļ              | 0.01       |                | 20.00 80.00 120.0 160.0 196.0            |
| Aniline                  | 1 0 Avg      | 3.6292 4.1426 4.0564 3.5853                                | 3.6292 4.1426 4.0564 3.5853 3.6364 3.6033 3.6378 3.5147 4.2846                                                                   |              |            | 1.00     | 7.6            | /-         | 2.00           | 10.00 20.00 80.00 120.0 160.0 196.0 0.50 |
| Pentachloroethane        | 1 0 Avg      | 0.8172 0.9204 0.9396 0.8129                                | 0.8172 0.9204 0.9396 0.8129 0.8117 0.7990 0.8039 0.7847                                                                          | 0.836 5.66   | 66 1.00    | 1.00     | 7.1 (          | 0.05       | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 196.0      |
| bis(2-Chloroethyl)ether  | er 1 0 Avg   | 2.3867 2.7789 2.7857 2.3989                                | 3867 2.7789 2.7857 2.3989 2.3968 2.3181 2.3009 2.2391 2.9791                                                                     |              |            | _        |                | 0.70       | 2.00           | 20.00 80.00 120.0 160.0 196              |
| Phenol-d5                | 1 0 Avg      | 2.7898 2.9699 3.1464 2.7032                                | 2.7898 2.9699 3.1464 2.7032 2.7853 2.7657 2.7658 2.7168                                                                          | 2.83 5.58    |            | 1.00     |                |            | 50.00 2.00     | 160.0 196                                |
| Phenol                   | 1 0 Avq      | 3.3862 3.9079 3.9643 3.3198                                | 3.3862 3.9079 3.9643 3.3198 3.3385 3.3020 3.2681 3.1926                                                                          | 3.46 5.59    | 1          | .        | 8.7            |            | 2.00           | 20.00 80.00 120.0 160.0 196              |
| N-Decane                 | 1 0 Avg      | 2.0901 2.9972 3.1130 2.0442<br>1 8656 2 2904 2 2050 1 8633 | 2.0901 2.9972 3.1136 2.0442 2.0497 2.0332 2.0324 2.3632<br>1 8656 2 2004 2 2050 1 8633 1 8740 1 7770 1 7474 1 7152               | 1 92 5 77    | 77 0.999   | 3 5      | 1 2            | 0.00       | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 196.0      |
| 1,3-Dichlorobenzene      | 1 0 Avg      | 2.9113 3.2906 3.3604 2.9118 2.9649 2.8746                  | 2.9649 2.8746 2.8642 2.7747                                                                                                      | 2.99 5.85    | _          | <u>.</u> |                |            |                | 20.00 80.00 120.0 160.0                  |
| 1,4-Dichlorobenzene      | 1 0 Avg      | 1.4926 1.5648 1.6299 1.4220                                | 1.4926 1.5648 1.6299 1.4220 1.4369 1.4550 1.4263 1.4465                                                                          | 1.485.91     |            | _        | 5.1            | ,_         |                | 20.00 80.00 120.0 160.0                  |
| 1,2-Dichlorobenzene      | 1 0 Avg      | 1.4100 1.5061 1.5397 1.3662 1.3659 1.3678                  | 1.3659 1.3678 1.3445 1.3765                                                                                                      | 1.416.04     | ) [        | 1.00     | 5.2            | _          | ١.             | 20.00 80.00                              |
| Benzyl alcohol           | 1 0 Avg      | 0.8438 0.9017 0.8937 0.7937 0.8050 0.8188                  | 0.8050 0.8188 0.8038 0.8352                                                                                                      | 0.837 6.01   |            | _        | 4.9            | -          | 50.00 2.00     | 80.00 120.0 160.0                        |
| bis(2-chloroisopropyl)e  |              | 1.1229 1.2085 1.2299 1.0841                                | 1.0131 1.0438                                                                                                                    |              |            |          |                |            |                | 20.00 80.00 120.0 160.0 196.0            |
| 2-Methylphenol           | 1 0 Avq      | 1.1784 1.2528 1.2572 1.1146 1.1227 1.1367                  |                                                                                                                                  |              |            |          |                |            |                | 20.00 80.00 120.0 160.0                  |
| Acetophenone             | 1 O Ava      | 1./996 2.0492 2.0634 1.//58 1.6607 1.6/69                  | 0 5555 0 5500 0 5440 0 5631                                                                                                      | 1.796.22     | -          |          |                |            |                | 20.00 80.00 120.0 160.0                  |
| N_Nitroso_di-n_propyla   | 1 O AVO      | 0.5/02 0.6156 0.623/ 0.5454 0.5555 0.5509                  | 0.3702 0.5135 0.5237 0.3434 0.3533 0.3509 0.3449 0.3531                                                                          | 32 0.8/36.22 | 22 0.999   |          | 3 0            | 0.50       | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 196.0      |
| 3&4-Methylphenol         | <u>.</u> .   | 1.1925 1.3190 1.3216 1.1468 1.1128 1.1207                  | 1.0690 1.0898                                                                                                                    |              |            | 0.999    |                |            |                | 80.00 120.0 160.0 196.0                  |
| Nitrobenzene-d5          | 1 0 Avg      | 0.1576 0.1658 0.1718 0.1508 0.1590 0.1535                  | 0.1531 0.1594                                                                                                                    | 0            |            |          | 4.4            |            |                | 10.00 40.00 60.00 80.00 98.00            |
| Nitrobenzene             | 1 0 Avg      | 0.3459 0.3723 0.3763 0.3326 0.3353 0.3278                  |                                                                                                                                  | 0.343 6.35   |            |          |                | 0.20       |                | 20.00 80.00 120.0 160.0                  |
| Isophorone               | 1 0 Avq      | 0.6350 0.6864 0.6859 0.6102                                | 0.6350 0.6864 0.6859 0.6102 0.6011 0.5961 0.5921 0.6090                                                                          | 0.627 6.54   | 54 0.999   | 0.999    | 6.2            | 0.40       | 2.00           | 10.00 20.00 80.00 120.0 160.0 196.0      |
| 2-Nitrophenol            | 1 0 Avg      | 0.1976 0.1932 0.2095 0.1844 0.1956 0.1936                  | 0.1956 0.1936 0.1908 0.1975                                                                                                      | 0.1956.61    |            |          |                |            | 2.00           | 10.00 20.00 80.00 120.0 160.0 196.0      |
| 2,4-Dimethylphenol       | 1 0 Avq      | 8                                                          | 0.3022 0.3036 0.2996 0.3089 0.3684                                                                                               |              | -          |          |                | 0.20       | 2.00           | 20.00 80.00 120.0 160.0                  |
| Benzoic Acid             |              | 0.2265 0.1668 0.1856                                       | 0.1668 0.1856 0.2500 0.2566 0.2660 0.2815                                                                                        | 0.233 6.68   |            |          |                |            | )              | 20.00 80.00 120.0 160.0                  |
| bis(2-Chloroethoxy)me    |              | 0.3943 0.4111 0.4283 0.3771                                | 0.3943 0.4111 0.4283 0.3771 0.3741 0.3611 0.3547 0.3641                                                                          |              |            |          |                | 0.30       |                | 20.00 80.00 120.0 160.0 196.0            |
| 2,4-Dichlorophenol       |              | 0.3043 0.3012 0.3405 0.2945                                | <u>0.3043                                  </u>                                                                                  |              | Ì          | 3 8      |                |            | 50.00 2.00     | 20.00 80.00 120.0 160.0                  |
| Nankthalana              | · -          | 0.3297 0.3627 0.3633 0.3192                                | 0.3297                                                                                                                           | _            |            | 3 5      | 7.0            |            |                | 20.00 80.00 120.0 160.0 196.0            |
| 4-Chloroaniline          | 1 0 Ava      | 0.4150 0.4514 0.4611 0.4066                                | 1.0301 1.1179 1.1370 0.3019 0.3019 0.3370 0.3031 0.3033 1.1000<br>0.4150 0.4514 0.4611 0.4066 0.3960 0.3873 0.3786 0.3848 0.4809 | 09 0.4186.95 | 95 0.999   | 8 8      |                | 0.01       | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 196.0 0.50 |
| Hexachlorobutadiene      | 1 0 Avg      | 0.1875 0.1926 0.1999 0.1756                                |                                                                                                                                  |              |            | _        | 7              |            | 2.00           | 20.00 80.00 120.0 160.0 196.0            |
| Caprolactam              |              | 0.1184 0.1106 0.1229 0.1121                                | 0.1184 0.1106 0.1229 0.1121 0.1169 0.1159 0.1185 0.1316                                                                          | 0.1187.22    |            |          | 5.6            |            | 2.00           | 20.00 80.00 120.0 160.0                  |
| 4-Chloro-3-methylphe     | 1 0 Avg      | 0.3084 0.3338 0.3341 0.2883                                | 0.3084 0.3338 0.3341 0.2883 0.2971 0.2991 0.2952 0.3049                                                                          | 0.3087.32    | .32 0.999  |          | σ              |            |                | 20.00 80.00 120.0                        |
| 2-Methylnaphthalene      | 1 0 Avg      | 0.7067 0.7453 0.7803 0.6834                                | 0.7067 0.7453 0.7803 0.6834 0.6750 0.6755 0.6696 0.6806                                                                          | 0.7027.46    | 46 1.00    | 1.00     | 7              |            | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 196.0      |
| 1-Methylnaphthalene      |              | 0.6665 0.7154 0.7299 0.6366                                | 0.6665 0.7154 0.7299 0.6366 0.6383 0.6405 0.6302 0.6399                                                                          | 0.6627.54    |            | 1.00     | 9              | 0.40       |                | 20.00 80.00 120.0 160.0                  |
| Methylnaphthalenes (T    |              | 0.6864 0.7304 0.7551 0.6600                                | 0.6864 0.7304 0.7551 0.6600 0.6565 0.6573 0.6492 0.6601                                                                          | 0.682 7.46   | _ ،        | 1.00     | · 00           |            |                | 40.00 160.0 240.0                        |
| 1 2 4 5-Tetrachlorohe    | _  <br>_   c | 0.6306 0.6526 0.7126 0.6023                                | 0.6306 0.6526 0.9106 0.6018 0.7936 0.7989 0.7639 0.6023                                                                          | 0.627 7.63   |            | 3 8      | 0 U            | į          | 3 8            | 20.00 80.00 120.0 160.0                  |
| 1.2,4,0-1 ettachilotopet | -            | 0.0200 0.0320 0.7 120 0.0023                               | 0.0200 0.0320 0.7 120 0.0023 0.0213 0.0039 0.0014 0.0020                                                                         | 0.027 7.33   | 1.00       | 5        | Ņ              | 9.0        | 20.00 2.00     | 10.00 20.00 60.00 120.0 100.0 130.0      |

Flags

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Correlation Coefficient for quad Eq.

Correlation Coefficient for Quadratic Curve was used for compound.

Note:

Avg Rsd: 6.036

## Form 6 Initial Calibration

Note:

Avg Rsd: 6.036

a - failed the min rf criteria

| Corr 1 = Correlation Coefficient for linear Eq.
| Corr 2 = Correlation Coefficient for quad Eq.
| Corr 3 = Correlation Coefficient for quad Eq.
| Corr 4 = Correlation Coefficient for Quadratic Curve was used for compound.

| _      |
|--------|
| _      |
| æ      |
| ≕      |
| _      |
| 0      |
| a      |
|        |
| ш      |
|        |
| 711    |
| ~      |
| Þ      |
|        |
| œ      |
| N      |
| ~      |
| ~      |
| $\sim$ |
| m      |
|        |

# Form 6 Initial Calibration

Instrument: GCMS\_7

| Method: EPA 8270E       | m             |                           | Ini                                                     | Initial Calibration | tion                 |                   | Ins                                | Instrument: GCMS_7       |
|-------------------------|---------------|---------------------------|---------------------------------------------------------|---------------------|----------------------|-------------------|------------------------------------|--------------------------|
| 1 Evel                  | Data File     | ile: Cal Identifier:      | Analysis Date/Time                                      | Level #:            | Data File            | : Cal Identifier: | r: Analysis Date/Time              | , ao                     |
| 0                       | 7M109440.D    | CAL BI                    | 09/17/20 13:20                                          | 2                   | 7M109432.D           | CAL B             | 09/1                               |                          |
| <b>j</b><br>ω           | 7M109433.D    | CAL BNA@10PPM             | 09/17/20 10:32                                          | 4                   | 7M109438.D           | CAL BNA@20PPM     | M 09/17/20 12:33                   |                          |
| 9 <b>E</b>              | 7M109437.D    | CAL BNA@80PPM             | 09/17/20 12:09                                          | თ                   | 7M109436.D           | CAL BNA@120PPM    | M 09/17/20 11:46                   |                          |
| 7                       | 7M109435.D    | CAL BNA@160PPM            | 09/17/20 11:22                                          | œ                   | 7M109434.D           | CAL BNA@196PPM    | M 09/17/20 10:55                   |                          |
| <b>2</b> 8              | 7M109439.D    | CAL BNA@0.5PPM            | 09/17/20 12:57                                          |                     |                      |                   |                                    |                          |
| [<br>[                  |               |                           | i                                                       | 1                   | i                    | ļ                 | Calibration Level Concentrations   |                          |
| ā.<br> -<br> -          | Col Mr Fit: F | RF1 RF2 RF3 RF4           | RF2 RF3 RF4 RF5 RF6 RF7 RF8                             | RF9 Avg             | AvgRf RT Corr1 Corr2 | Corr2 %Rsd        | LvI1 LvI2 LvI3 LvI4                | Lv15 Lv16 Lv17 Lv18 Lv19 |
| <b>2</b> 4,4'-DDE       | 1 0 Avg 0     | .3503 0.3655 0.3774 0.334 | 0.3503 0.3655 0.3774 0.3341 0.3460 0.3571 0.3595 0.3678 | 0                   | 0.357 11.57 0.999    |                   | 50.00 2.00 10.00 20.00 80.00       | 80.00 120.0 160.0 196.0  |
| 4,4'-DDD                | 1 0 Avg 0     | .5173 0.5040 0.5516 0.486 | 0.5173 0.5040 0.5516 0.4863 0.5081 0.5152 0.5081 0.5278 | 0                   | 0.515 11.97 0.999    | 1.<br>00          | 50.00 2.00 10.00 20.00 80.00 120.0 | 160.0                    |
| Butylbenzylphthalate    | 1 0 Avg 0     | .5670 0.5750 0.6106 0.538 | 0.5670 0.5750 0.6106 0.5386 0.5454 0.5565 0.5463 0.5709 | 0                   | 0.564 12.23 0.999    | 0.999             | 50.00 2.00                         | 160.                     |
| 4,4'-DDT                | 1 0 Avg 0     | .5993 0.5393 0.6429 0.552 | 0.5993 0.5393 0.6429 0.5529 0.5709 0.5754 0.5760 0.5874 | 0                   | 0.581 12.33 0.999    | 0.999             | 50.00 2.00 10.00 20.00 80.00 120.0 | 60.0                     |
| 3.3'-Dichlorobenzidine  | 1 0 Avg       | .4587 0.4820 0.4897 0.424 | 0.4587 0.4820 0.4897 0.4247 0.4479 0.4540 0.4440 0.4567 | 0                   | 0.457 12.85 1.00     | 1.<br>8           | 50.00 2.0                          | 9                        |
| Benzolalanthracene      | 1 0 Avg 1     | .1813 1.2500 1.2776 1.105 | .1813 1.2500 1.2776 1.1055 1.1167 1.1531 1.1306 1.1707  | l                   | 0.999                | 0.999 5.3         |                                    | 80.00 120.0 160.0 196.0  |
| Chrysene                | 1 0 Avg 1     | .0967 1.1295 1.2176 1.066 | .0967 1.1295 1.2176 1.0668 1.0498 1.0409 1.0250 1.0596  | İ                   | 1.09 12.92 0.999     | 0.999 5.8         | 50.00 2.0                          | 60.0                     |
| bis(2-Ethylhexyl)phthal | 1 0 Avg 0     | .7615 0.8450 0.8447 0.727 | .7615 0.8450 0.8447 0.7274 0.7265 0.7171 0.7088 0.7210  | _                   | 0.757 12.92 1.00     | 1.00 7.5          | 50.00 2.0                          | 60.0                     |
| Di-n-octylphthalate     | 1 0 Avg 1     | .2794 1.3745 1.4455 1.232 | .2794 1.3745 1.4455 1.2328 1.2345 1.2196 1.1919 1.2391  | •                   | 1.28 13.68 0.999     | 0.999 6.9         | 50.00 2.0                          | 90.0                     |
| Benzolblfluoranthene    | 1 0 Avg 1     | .1394 1.2007 1.2147 1.122 | 1.1394 1.2007 1.2147 1.1224 1.0944 1.0793 1.0414 1.1490 |                     | 1.13 14.11 0.998     | 0.998 5.2         | 50.00 2.0                          | 60.0                     |
| Benzolk Muoranthene     |               | .0417 1.1169 1.1984 0.990 |                                                         | -                   | 0.999                | 1.00 6.3          | 50.00 2.0                          | 9                        |
| Benzolalpyrene          | _             | .0102 1.0406 1.0815 0.952 | .0102 1.0406 1.0815 0.9527 0.9757 0.9811 0.9730 1.0095  | i                   | 1.00 14.48 0.999     | 1.00 4.2          | 50.00 2.0                          | 60.C                     |
| indeno[1,2,3-cd]pyren   | 1 0 Avg 1     | .1141 1.1817 1.2143 1.036 | .1141 1.1817 1.2143 1.0361 1.0844 1.0993 1.0993 1.1488  | İ                   | 1.12 15.94 0.999     | 0.999             | 50.00 2.0                          | 8                        |
| Dibenzofa,hlanthracen   | 1 0 Avg       | .9343 0.9522 1.0181 0.877 | 0.9343 0.9522 1.0181 0.8771 0.9158 0.9263 0.9176 0.9561 | 0                   | 0.937 15.96 0.999    | 1.00 4.4          | 50.00 2.00                         | 80.00 120.0 160.0 196.0  |
| Benzola, h, ilperylene  | 1 0 Avq       | .9171 1.0021 1.0080 0.857 | 0.9171 1.0021 1.0080 0.8577 0.8974 0.9121 0.9112 0.9585 |                     | 0.933 16.33 0.998    | 0.999 5.6         | 50.00 2.00                         | 160.0                    |

Flags

Note: Avg Rsd: 6.036

# Form 6 Initial Calibration

Instrument: GCMS\_9

| 6 <b>018</b>            | 9M1013<br>9M1013         | Data File<br>21.D<br>13.D | CAL BNA@50PPM CAL BNA@10PPM CAL BNA@10PPM        | Analysis Date/Time<br>09/17/20 13:22<br>09/17/20 10:10<br>09/17/20 12:12                                               | Level #                | Data F<br>9M101314.D<br>9M101319.D<br>9M101317.D | ata File:<br>1.D<br>9.D | CAL BI     | Cal Identifier: CAL BNA@2PPM CAL BNA@20PPM CAL BNA@120PPM | tifier:             | Analysis <u>Date/Time</u> 09/17/20 10:34 09/17/20 12:35 09/17/20 11:47 | သေ့ တွဲမွာ                      |
|-------------------------|--------------------------|---------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------|-------------------------|------------|-----------------------------------------------------------|---------------------|------------------------------------------------------------------------|---------------------------------|
| 28I<br>• •              | 9M101316.D<br>9M101320.D | 6.D<br>0.D                | CAL BNA@160PPM<br>CAL BNA@0.5PPM                 | 09/17/20 11:24<br>09/17/20 12:58                                                                                       | œ                      | 9M101315                                         | Ö                       | Ū          |                                                           |                     | CAL BNA@196PPM                                                         |                                 |
| OCompound               | Col Mr Fit               | RF1                       | 1 RF2 RF3 RF4                                    | RF5 RF6 RF7 RF8                                                                                                        | RF9 AvgRf              | 낁                                                | n :                     | Corr1 C    | Corr1 Corr2                                               | 1                   | 1                                                                      | 1                               |
| 21.4-Dioxane            | 0                        |                           | 1.0092 1.3770 1.0933 0.9                         | 1 0.9877 0.9761 1.0082                                                                                                 | 1.1212                 | ക                                                | _                       | 0.999      | 0.999                                                     | 0.999               | 0.999                                                                  | 0.999 0.999 12 50.00 2.00       |
| Pyridine                | 1 0 Avg                  |                           | 2.1975 1.9967 2.1554 2.1183                      | 1183 2.2474 2.3090 2.2557 2.2887                                                                                       | !                      | 2.20 3.20                                        | _                       | _          | _                                                         | 1.00 1.00           | 1.00 1.00                                                              | 1.00 1.00 4.7 50.00             |
| N-Nitrosodimethylamin   | _                        |                           | 1.2536                                           | 1.4170 1.4614                                                                                                          | !                      | 1.39 3.14                                        | -                       | 1.00       | 1.00                                                      | 1.00 1.00           | 1.00 1.00                                                              | 1.00 1.00 5.2 50.00 2.00        |
| 2-Fluorophenol          |                          |                           | 2.1263 1.8750 2.0379 2.0                         | 2.0095 2.1819 2.2213 2.1411 2.1460                                                                                     |                        | 2.094.71                                         |                         | 0.999      | 0.999                                                     | 0.999               | 0.999 1.00 5.4                                                         | 0.999 1.00 5.4 50.00 2.00       |
| Aniline                 | 1 0 Avg                  |                           | 3.4677 3.5376 3.5659 3.3                         | 3.5376 3.5659 3.3541 3.4792 3.5098 3.3609 3.3561 3.5                                                                   | 3 5095                 | 3.46 5.62                                        | 1                       | 0.999      | 1                                                         | 0.999 1.00          | 0.999 1.00                                                             | 0.999 1.00 2.4                  |
| Pentachloroethane       |                          |                           | 232 0.7500 0.7570 0.7                            |                                                                                                                        | 0                      | 0.724 5.67                                       | -                       | 0.999      | 0.999                                                     | 0.999 1.00 3.0      | 0.999 1.00                                                             | 0.999 1.00 3.0 0.05 50.00       |
| bis(2-Chloroethyl)ether | 10                       |                           | 2340 2.4920 2.4416 2.2                           | _                                                                                                                      | 2.4684                 | 2                                                | ••                      | 0.999      | 0.999                                                     | 0.999 1.00 6.9      | 0.999 1.00 6.9                                                         | 0.999 1.00 6.9 0.70 50.00 2.00  |
| Phenol-do               |                          |                           | 062 3 35/8 3 8280 3 1                            | 2.5//8                                                                                                                 |                        | nν                                               |                         | 0.998      | 0.998                                                     | 0.998 1.00 3.1      | 0.998 1.00 3.1                                                         | 0.898 0.896 8.1 0.80 50.00 2.00 |
| 2-Chlorophenol          | 1 0 Avg                  | - !                       | 357 2.4465 2.8406 2.4                            | 3.1902 3.3548 3.6289 3.1139 3.1995 3.2243 3.0391 2.9781<br>2.5357 2.4465 2.8406 2.4276 2.5640 2.5695 2.4526 2.3984     |                        | 0 10                                             | 2 53 5 72               | 0 998      | - ! -                                                     | 0.998 1.00 5.6      | 0.998 1.00                                                             | 0.998 1.00 5.6                  |
| N-Decane                |                          |                           | 398 2.1709 2.0925 1.9                            | 1.9398 2.1709 2.0925 1.9033 1.9058 1.8405 1.7378 1.6629                                                                | 1                      |                                                  |                         |            | 0.996 1                                                   | 0.996 1.00 8.8      | 0.996 1.00 8.8                                                         | 0.996 1.00 8.8 0.05 50.00 2.00  |
| 1.3-Dichlorobenzene     | 1 0                      |                           | 937 2.9965 2.9323 2.7:                           | 2.7937 2.9965 2.9323 2.7274 2.7938 2.7512 2.6097 2.5624                                                                | 1                      | N                                                | •                       | -          | 0.998 1                                                   | 0.998 1.00 5.3      | 0.998 1.00 5.3                                                         | 0.998 1.00 5.3 50.00            |
| 1,4-Dichlorobenzene     | -<br>-                   |                           | 017 1.6423 1.6377 1.4                            | 1.5017 1.6423 1.6377 1.4123 1.4405 1.4806 1.4301 1.4233                                                                |                        | 7                                                |                         | 0.999      | 0.999 1                                                   | 0.999 1.00          | 0.999 1.00                                                             | 0.999 1.00 6.3 50.00 2.00       |
| 1.2-Dichlorobenzene     | 1 0                      | İ                         | 369 1.5773 1.5119 1.3                            | 1.4369 1.5773 1.5119 1.3274 1.3672 1.3973 1.3512 1.3522                                                                | <b>!</b><br> <br> <br> | 1                                                | 1.                      | 1.00       | 1.00                                                      | 1.00 1.00           | 1.00 1.00                                                              | 1.00 1.00 6.2 50.00 2.00        |
| Benzyl alcohol          | 10                       |                           | 432 0.7567 0.8151 0.7                            | '594 0.8246 0.8521 0.8211 0.8246                                                                                       | . 0                    | 81                                               | 0.8126.01               | 1.00       | 1.00 <b>1</b>                                             | 1.00 1.00           | 1.00 1.00                                                              | 1.00 1.00 4.4 50.00 2.00        |
| bis(2-chloroisopropyl)e |                          |                           | 583 1.4421 1.4098 1.1                            |                                                                                                                        |                        | 1.266.12                                         |                         | 0.999      | 0.999                                                     | 0.999 1.00 8.5      | 0.999 1.00 8.5                                                         | 0.999 1.00 8.5 0.01 50.00 2.00  |
| Acetophenone            | 1 0 Avg                  |                           | 950 1.0908 1.2246 1.71<br>553 1.9443 1.9766 1.71 | 1.1950 1.0906 1.2246 1.1022 1.1564 1.2078 1.1433 1.1487 1.1<br>1.7553 1.9443 1.9766 1.7023 1.6551 1.6179 1.5065 1.4596 | 1.1451                 | 1,166,10                                         | _                       | 0.999      | _                                                         | 0.999 0.999 3.9     | 0.999 0.999                                                            | 0.999 0.999 3.9                 |
| Hexachloroethane        |                          |                           | 300 0.5570 0.5499 0.4                            | 0.5300 0.5570 0.5499 0.4859 0.5248 0.5307 0.5167 0.5135                                                                | 0                      | 0.526 6.32                                       |                         | 1.00       | 1.00                                                      | 1.00 1.00 4.2       | 1.00 1.00 4.2                                                          | 1.00 1.00 4.2 0.30 50.00 2.00   |
| N-Nitroso-di-n-propyla  | /la 10 Avg               |                           | 793 0.7997 0.8365 0.74                           |                                                                                                                        | 0.6633 0.              | 741                                              | - 1                     | 0.997      | 0.997 1                                                   | 0.997 1.00 7.8      | 0.997 1.00 7.8                                                         | 0.997 1.00 7.8 0.50             |
| 3&4-Methylphenol        | 1 0 Avg                  |                           | 145 1.1581 1.2742 1.1:                           |                                                                                                                        | 1.1368                 | 1.14                                             |                         | 0.993      | 0.993                                                     | 0.993 1.00          | 0.993 1.00                                                             | 0.993 1.00 7.5 50.00 2.00       |
| Nitrobenzene-d5         |                          |                           | 456 0.1237 0.1352 0.1                            | 0.1456 0.1237 0.1352 0.1338 0.1476 0.1564 0.1528 0.1555                                                                | . 0                    | 4                                                | -                       | 0.999      | 0.999                                                     | 0.999 1.00 8.2      | 0.999 1.00 8.2                                                         | 0.999 1.00 8.2 25.00 1.00       |
| Isophorone              | 1 0 Avg                  |                           | 838 0.5696 0.5877 0.5;                           | 0.31/5                                                                                                                 | ) i                    | 574                                              | 0.3146.37               | 3 5        | -                                                         | 100 100 3.2         | 100 1.00                                                               | 100 100 3.2                     |
| 2-Nitrophenol           |                          | Į                         | 785 0.1309 0.1962 0.10                           | 0.1785 0.1309 0.1962 0.1646 0.1819 0.1911 0.1866 0.1871                                                                | 0                      | 0.177 6.61                                       |                         | 0.999      | 0.999                                                     | 0.999 0.999 12      | 0.999 0.999 12                                                         | 0.999 0.999 12 0.10 50.00 2.00  |
| 2.4-Dimethylphenol      |                          |                           | 0.2900                                           |                                                                                                                        | 0.2410 0.              | 0.294 6.64                                       | -                       | 1.00       | 1.00                                                      | 1.00 1.00 11        | 1.00 1.00 11                                                           | 1.00 1.00 11 0.20 50.00 2.00    |
| Benzoic Acid            |                          |                           | 0.1881 0.1099 0.1                                | 0.1099 0.1505 0.2280 0.2481 0.2576 0.2622                                                                              | ;<br>o o               | 0.206 6.69                                       | _                       | 0.996      | 0.996                                                     | 0.996 0.999 28      | 0.996 0.999 28                                                         | 0.996 0.999 28 50.00            |
| 2.4-Dichlorophenol      | me IOAVQ                 |                           | 681                                              | 0.3681                                                                                                                 |                        | 0.365 6.71                                       | _                       | 100        | _                                                         | 0.999 1.00 7.1      | 100 100                                                                | 0.999 1.00 7.7 0.30             |
| 1,2,4-Trichlorobenzen   | 1 0                      | Ė                         | 141 0.3430 0.3434 0.2                            | 0.3141 0.3430 0.3434 0.2912 0.3001 0.3076 0.2992 0.3010                                                                | !                      | 0.3126.87                                        | 1                       | 1.00       | 1.00                                                      | 1.00 1.00 6.4       | 1.00 1.00 6.4                                                          | 1.00 1.00 6.4 50.00             |
| Naphthalene             | 1 0 Avg                  |                           | 578 1.2184 1.1567 1.0                            |                                                                                                                        | 1.1347                 | 1.066.92                                         |                         | 0.999      | 0.999                                                     | 0.999 1.00 8.2      | 0.999 1.00 8.2                                                         | 0.999 1.00 8.2 0.70 50.00 2.00  |
| 4-Chloroaniline         | 1 0                      |                           | 0.4049 0.3926 0.4205 0.3                         |                                                                                                                        | 0.3750 0.              | 0.390 6.96                                       | -                       | 0.998      | -                                                         | 0.998 1.00 4.2      | 0.998 1.00 4.2                                                         | 0.998 1.00 4.2 0.01 50.00 2.00  |
| Hexachlorobutadiene     |                          |                           | 752 0.1904 0.1886 0.10                           | 0.1752 0.1904 0.1886 0.1656 0.1683 0.1721 0.1684 0.1703                                                                | ;<br>o o               | 0.1757.02                                        |                         | 1.00       | 1.00                                                      | 1.00 1.00 5.4       | 1.00 1.00 5.4                                                          | 1.00 1.00 5.4 0.01 50.00        |
| 4-Chloro-3-methylphe    | ne 1 0 Avg               | į                         | 761 0.2460 0.3340 0.2                            | 0.2761 0.2460 0.3340 0.2475 0.2714 0.2814 0.2749 0.2751                                                                | 0 0                    | 0.2767.32                                        | i                       | 1.00       | i                                                         | 1.00 1.00 9.8       | 1.00 1.00                                                              | 1.00 1.00 9.8                   |
| 2-Methylnaphthalene     | 1 0                      |                           | 090 0.7642 0.7614 0.6                            | 0.7090 0.7642 0.7614 0.6676 0.6781 0.6824 0.6585 0.6564                                                                |                        | 0.697 7.47                                       | -                       | 0.999      | 0.999                                                     | 0.999 1.00 6.3      | 0.999 1.00 6.3                                                         | 0.999 1.00 6.3 0.40 50.00 2.00  |
| 1-Methylnaphthalene     | 10                       |                           | 696 0.7576 0.7280 0.6:                           | 0.6696 0.7576 0.7280 0.6332 0.6489 0.6475 0.6227 0.6195                                                                | 1 0.                   | 0.666 7.55                                       | •                       | 0.999      | 0.999                                                     | 0.999 1.00 7.6      | 0.999 1.00 7.6                                                         | 0.999 1.00 7.6 0.40 50.00 2.00  |
| Methylnaphthalenes (T   |                          |                           | 0.6896 0.7609 0.7436 0.6502 0.6632               | 3502                                                                                                                   | ;<br>o o               | 0.681 7.47                                       | _                       | 0.999      | _                                                         | 0.999 1.00 6.9      | 0.999 1.00 6.9                                                         | 0.999 1.00 6.9 100.0 4.00       |
| 1,2,4,5-Tetrachloroben  | pen 1 0 Avg              | i                         | 0.6288 0.7091 0.6711 0.5899 0.6236               | 0.6288 0.7091 0.6711 0.5899 0.6236 0.6163 0.5946 0.5944                                                                | 0 9                    | 0.629 7.60                                       | 7.60                    | 7.60 0.999 | 7.60                                                      | 7.60 0.999 1.00 6.7 | 7.60                                                                   | 7.60 0.999 1.00 6.7             |
|                         |                          |                           |                                                  |                                                                                                                        |                        |                                                  |                         |            |                                                           |                     |                                                                        |                                 |

Flags

Avg Rsd: 8.313

Note:

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Corr 2 = Correlation Coefficient for Quadratic Curve was used for compound.

## Form 6 Initial Calibration

Instrument: GCMS\_9

| 1 &<br>                | Data        | Data File: Cal Identifie                                | 1                                                                                                                  | _                           | evel#· Dat    | File.       | Cal Identifier | ntifier: | Analys         | Analysis Date/Time                                         |                                    |
|------------------------|-------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|-------------|----------------|----------|----------------|------------------------------------------------------------|------------------------------------|
|                        | 9M101321.D  | CAL B                                                   | M 09/17/20 13:22                                                                                                   |                             | 9M10131       | CAL         | BNA@2PPM       | M        | 09/17/20 10:34 | 0.34                                                       |                                    |
|                        | 9M101313.D  |                                                         |                                                                                                                    |                             |               |             | CAL BNA@20PPM  | PPM:     | 09/17/20 12:35 | 2:35                                                       |                                    |
| <b>5</b>               | 9M101318.D  |                                                         |                                                                                                                    |                             | 6 9M101317.D  |             | CAL BNA@120PPM | 0PPM     | 09/17/20 11:47 | 1:47                                                       |                                    |
|                        | 9M101316.D  |                                                         | _                                                                                                                  |                             | 8 9M101315.D  |             | CAL BNA@196PPM | бРРM     | 09/17/20 11:00 | 1:00                                                       |                                    |
| 9<br>9                 | 9M101320.D  | CAL BNA@0.5PPM                                          | M 09/17/20 12:58                                                                                                   |                             |               |             |                |          |                |                                                            |                                    |
| <b>©</b> Compound      | Col Mr Fit: | RF1 RF2 RF3                                             | RF4 RF5 RF6                                                                                                        | RF7 RF8 RF9                 | AvgRf RT C    | Corr1 Corr2 | %Rsd           |          | LVI1 LVI2      | Calibration Level Concentrations  Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 | centrations<br>LvI6 LvI7 LvI8 LvI9 |
| Hexachlorocyclopenta   | 10          | <b>≖</b> ¦                                              | 67 0.3608                                                                                                          | . 1                         | 97.59         | 1           | 8.9            |          | 2.00           | 10.00 20.00 80.00 1;                                       | 196.0                              |
| 2,4,6-Trichlorophenol  | 1 0         | 0.3818 0.3248 0.4552 0.3448 0.3853 0.3923 0.3806 0.3812 | 0.3448 0.3853 0.3923                                                                                               | 0.3806 0.3812               | •             | 1.00 1.00   |                | 0.20     | 2.00           | 80.00                                                      | 160.0                              |
| 2,4,5-Trichlorophenol  | 1 0 Avg     | 0.4023 0.3246 0.3934                                    | 0.4023 0.3246 0.3934 0.3768 0.4135 0.4211 0.4052 0.3981                                                            | 0.4052 0.3981               |               | 0.999 0.999 | 7.7            |          | 2.00           | 80.00<br>00.00                                             | 120.0 160.0 196.0                  |
| 2-Fluorobiphenyl       | 1 0 Avg     | 1.3707 1.4571 1.4528                                    | 1.3707 1.4571 1.4528 1.2908 1.3521 1.3636 1.3329 1.3300                                                            | 1.3329 1.3300               | -             | 1.00 1.00   | 4.3            |          | 1.00           |                                                            | 80.00                              |
| 2-Chloronaphthalene    | 1 0 Avg     | 1.2079 1.2890 1.3133                                    | 1.2079 1.2890 1.3133 1.1381 1.1798 1.1686 1.1251 1.1160                                                            | 1.1251 1.1160               | 1.197.87 0    | 0.999 1.00  | 6.2            | 0.80     | ! .            | 10.00 20.00 80.00 1;                                       | 120.0 160.0 196.0                  |
| 1,4-Dimethylnaphthale  | 10          | 0.9255 1.0309 1.0294 0.8805 0.8951 0.8660 0.8244 0.7969 | 0.8805 0.8951 0.8660                                                                                               | 0.8244 0.7969               | -             | 0.997 1.00  | 9.5            |          | 2.00           |                                                            | 120.0 160.0 196.0                  |
| Dimethylnaphthalenes   | s 10 Avg    | 0.9255 1.0309 1.0294 0.8805 0.8951 0.8660 0.8244 0.7969 | 0.8805 0.8951 0.8660                                                                                               | 0.8244 0.7969               | -             | 0.997 1.00  | 9.5            |          | 2.00           | 20.00 80.00                                                | 120.0 160.0 196.0                  |
| Diphenyl Ether         | 1 0         | 0.8861 0.9916 0.9581 0.8489 0.8725 0.8651 0.8299 0.8203 | 0.8489 0.8725 0.8651                                                                                               | 0.8299 0.8203               |               |             | 6.9            |          | 2.00           |                                                            | 160.0                              |
| 2-Nitroaniline         | 1 0 Avq     | 0.3455 0.2687 0.3218                                    | 0.3455 0.2687 0.3218 0.3181 0.3488 0.3541 0.3419 0.3389                                                            | 0.3419 0.3389               |               |             | 8. <b>4</b>    | 0.01     | 2.00           |                                                            |                                    |
| Coumarin               | 1 0 Avg     | 0.4511 0.4731 0.4791                                    | 0.4511 0.4731 0.4791 0.4300 0.4470 0.4410 0.4208 0.4099                                                            | 0.4208 0.4099               |               |             | 5.4            |          | 2.00           | 80.00                                                      | 160.0                              |
| Acenaphthylene         | 1 0 Avg     | 1.8381 1.8503 1.9043                                    | .8381 1.8503 1.9043 1.7123 1.8061 1.7964 1.7130 1.6895                                                             | 1.7130 1.6895               |               | 0.999 1.00  | 4.3            | 0.90     | 2.00           | 80.00                                                      | 120.0 160.0 196.0                  |
| Dimethylphthalate      | 1 0 Avg     | 1.3525 1.4157 1.4280                                    | .3525 1.4157 1.4280 1.2755 1.3394 1.3346 1.2880 1.2749                                                             | 1.2880 1.2749               |               |             |                |          | 2.00           |                                                            | 160.0                              |
| 2,6-Dinitrotoluene     | 1 0 Avg     | 0.3044 0.2449 0.3025                                    | 0.3044 0.2449 0.3025 0.2801 0.2964 0.2966 0.2777 0.2668                                                            | 0.2777 0.2668               |               |             | 7.2            |          | 3 29           |                                                            | 160.0                              |
| 3-Nitroaniline         | 1 0 Avg     | 0.3485 0.2526 0.3288                                    | 0.3485 0.356 0.3588 0.3130 0.3512 0.3507 0.3385                                                                    | 0.3385 0.3339               | 0.327 8 29 0  | 0.999 1.00  |                | 0.90     | 50.00 2.00     | 10.00 20.00 80.00 13                                       | 120.0 160.0 196.0                  |
| 2,4-Dinitrophenol      | 1 0 Qua     | 0.1451 0.1154                                           | 0.1154 0.1019 0.1745 0.1875 0.1863 0.1848                                                                          | 0.1863 0.1848               |               | o i         | 23             | an       |                | - 1                                                        | 160.0                              |
| Dibenzofuran           | 1 0 Avg     | 1.7149 1.9669 1.8542                                    | .7149 1.9669 1.8542 1.6174 1.6911 1.6830 1.6085 1.5976                                                             | 1.6085 1.5976 1.8084        |               |             | 7.3            |          | 2.00           |                                                            |                                    |
| 2,4-Dinitrotoluene     | 1 0 Avg     | 0.3988 0.2634 0.3715                                    | 0.3988 0.2634 0.3715 0.3555 0.4106 0.4225 0.4123 0.4121                                                            | 0.4123 0.4121               | 0.381 8.50 1. | 1.00 1.00   |                |          |                |                                                            | 120.0 160.0 196.0                  |
| 4-Nitrophenol          | 10          | 0.2152 0.1023 0.2441 0.1898 0.2276 0.2348 0.2293 0.2277 | 0.1898 0.2276 0.2348                                                                                               | 0.2293 0.2277               |               | 0           | 22             |          | 2.00           | 80.00                                                      |                                    |
| 2,3,4,6-Tetrachlorophe | 0           | 0.3563 0.3052 0.3476                                    | 0.3563 0.3052 0.3476 0.3237 0.3660 0.3748 0.3546 0.3612                                                            | 0.3546 0.3612               |               | lo          | 66             |          | 2.00           | 80.00                                                      | 160.0                              |
| Fluorene               |             | 1.3868 1.5023 1.5050                                    | .3868 1.5023 1.5050 1.3185 1.3438 1.3197 1.2672 1.2622                                                             | 1.26/2 1.2622               |               |             |                |          | 200            | 80.00                                                      | 160.0                              |
| 4-Cnioropnenyi-pnenyi  |             | 1 3010 1 3009 1 3330                                    | 0.6712                                                                                                             | 1 2566 1 2415               |               | _           |                |          | 3 5            |                                                            | 160.0                              |
| A-Nitroaniline         |             | 0.3607 0.3370 0.3413                                    | 1.3000 1.3000 1.320 1.1977 1.2000 1.3039 1.2301 0.3617 0.3617 0.3617 0.3617 0.3617 0.3617 0.3617 0.3617 0.3617     | 0.3607 0.3617               | 0 388 00.72 0 | 0.999 1.00  | ر<br>د<br>د    |          | 9 8            | 10.00 20.00 80.00 1:                                       | 120.0 160.0 196.0                  |
| Atrazine               | 1 0 Avg     | 0.4163 0.3187 0.3805                                    | 0.4163 0.3187 0.3805 0.3762 0.4223 0.4277 0.4183 0.4117                                                            | 0.4183 0.4117               | _             |             | 9 .<br>3       | 0.01     | 50.00 2.00 1   | 80.00                                                      | 160.0                              |
| 4.6-Dinitro-2-methylph | 10          | 0.1223 0.1139                                           | 0.1139 0.0958 0.1330 0.1407 0.1391 0.1378                                                                          | 0.1391 0.1378               | - !           | ,           | !              | ļ        |                |                                                            | 160.0 196                          |
| n-Nitrosodiphenylamin  | n 10 Avg    | 0.6288 0.6407 0.6630                                    | 0.6288 0.6407 0.6630 0.6065 0.6239 0.6160 0.6038 0.5906                                                            | 0.6038 0.5906               |               |             |                |          | 2.00           | 20.00 80.00                                                | 120.0 160.0 196.0                  |
| 2.4.6-Tribromophenol   | . 1         | 0.0964 0.0626 0.0902                                    | 0.0964 0.0626 0.0902 0.0859 0.1005 0.1016 0.1003 0.0991                                                            | 0.1003 0.0991               | _             |             | : 1            |          | 2.00           | 20.00 80.00                                                | 160.0                              |
| 1.2-Dipnenyinydrazine  |             | 0.6311 0.6875 0.6713                                    | 0.6311                                                                                                             | 0.6524 0.6365               |               | •           | 4. c           | 5        | 9 6            | 800                                                        | 160.0                              |
| Hexachlorobenzene      | 1 0 Avg     | 0.2036 0.2163 0.2079                                    | 0.2036 0.2163 0.2079 0.1914 0.2033 0.2067 0.2060 0.2033 0.2138 0.2663 0.2339 0.2213                                | 0.2239 0.2213               | 0.200 9.34    | 180         | 7.4            | 0 10     | 50.00 2.00     | 10.00 20.00 80.00 1                                        | 120.0 160.0 196.0                  |
| N-Octadecane           | 1 0 Avg     | 0.3090 0.2392 0.3093                                    | 0.3090 0.2392 0.3093 0.2832 0.3054 0.2996 0.2828 0.2698                                                            | 0.2828 0.2698               | -             | ٥.          | 8.4            |          | 2.00           | 20.00 80.00                                                | 160.0                              |
| Pentachlorophenol      | 1 0 Avg     | 0.1414 0.1466                                           | 0.1466 0.1187 0.1506 0.1575 0.1544 0.1549                                                                          | 0.1544 0.1549               | 0.146 9.61 0  | 0.998 0.998 |                |          |                | 20.00 80.00                                                | 120.0 160.0 196.0                  |
| Phenanthrene           |             | 1.0499 1.2518 1.1464                                    | .0499 1.2518 1.1464 1.0090 1.0378 1.0254 1.0012 0.9849                                                             | 1.0012 0.9849               |               | _           | . œ            |          | 2.00           | 80.00                                                      | 160.0                              |
| Anthracene             | 1 0 Avg     | 1.0753 1.1218 1.1276                                    | .0753 1.1218 1.1276 1.0259 1.0713 1.0503 1.0307 0.9983                                                             | 1.0307 0.9983               | •             | :<br>-      |                |          | 2.00           | 20.00 80.00                                                |                                    |
| Carbazole              | 1 O Ava     | 0.9801 0.9423 1.0058                                    | 0.9801 0.9423 1.0058 0.9287 0.9786 0.9766 0.9442 0.9399<br>1 1066 0 7731 0 0731 0 0766 1 1308 1 1306 1 1174 1 0063 |                             | 0.96210.07 0  |             | 2.00           | 0.01     |                | 20.00                                                      |                                    |
| Fluoranthene           | 1 0 Ava     | 1 1752 1 0345 1 1343                                    | 1752 1 0345 1 1343 1 0740 1 1771 1 1804 1 1547 1 1440                                                              | 1 1547 1 1440               |               | 100 100     |                |          | 200            | 80.00                                                      | 120.0 160.0 196.0                  |
| Pyrene                 | 1 0 Avg     | 1.1991 1.1646 1.2120                                    | .1991 1.1646 1.2120 1.1032 1.1754 1.2103 1.1905 1.1796                                                             | 1.1905 1.1796               |               | 1.00 1.00   |                | 0.60     | 2.00           | 20.00 80.00                                                |                                    |
| Benzidine              | 1 0 Qua     | 0.6242 0.2647 0.5975 0.5110 0.6516 0.6623 0.6553 0.6510 | 0.5110 0.6516 0.6623                                                                                               | 0.6553 0.6510               | 0.577 11.34 0 | 0.999 0.999 | 24             | ļ        |                | 10.00 20.00 80.00 1                                        | 120.0 160.0 196.0                  |
| Terphenyl-d14          | 1 0 Ava     | 0 5839 0 5338 0 5769 0 5303                             | 0.5303 0.5876 0.6160                                                                                               | 0.5876 0.6160 0.6119 0.6171 | 0 582 11 64 1 | 100         | n<br>0         |          | 37 20 4 20 7   |                                                            | 60 00 80 00 96 00                  |

Flags

Avg Rsd: 8.313

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

C-failed the minimum correlation coeff criteria(if applicable)

Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound. Note:

| _   |
|-----|
| _   |
| æ   |
| -   |
|     |
| ō   |
| ×   |
| -   |
|     |
| ш   |
| π.  |
| Ų   |
| ъ   |
| _   |
| œ   |
| ~~  |
| 1,7 |
| ~   |
| 0   |
| -   |
|     |

| Nethod: EPA 8270E | m          |                           |                    | Form 6 Initial Calibration | ion        |                   |  |
|-------------------|------------|---------------------------|--------------------|----------------------------|------------|-------------------|--|
| Level#            | Data File: | e: Cal Identifier:        | Analysis Date/Time | Level #                    | Data File: | : Cal Identifier: |  |
| _                 | 9M101321.D | CAL BNA@50PPM             | 09/17/20 13:22     | 2                          | 9M101314.D | CALE              |  |
| ω                 | 9M101313.D | CAL BNA@10PPM             | 09/17/20 10:10     | 4                          | 9M101319.D | CAL BNA@20PPM     |  |
| <b>С</b> т        | 9M101318.D | CAL BNA@80PPM             | 09/17/20 12:12     | 6                          | 9M101317.D | CAL BNA@120PPM    |  |
| 7                 | 9M101316.D | 9M101316.D CAL BNA@160PPM | 09/17/20 11:24     | œ                          | 9M101315.D | CAL BNA@196PPM    |  |

Instrument: GCMS\_9

| Level#                  | Data File:  | File: Cal Identifier:       | Analysis Date/Time                                        | Level #: | Data File:             | Cal Identifier: |                  | Analysis Date/Time                  |                     |
|-------------------------|-------------|-----------------------------|-----------------------------------------------------------|----------|------------------------|-----------------|------------------|-------------------------------------|---------------------|
| ;<br>]<br>              | 9M101321.D  | CAL B                       | 09/17/20 13:22                                            | <b>2</b> | 9M101314.D             | CAL B           | 09/              | 10:34                               |                     |
| ω                       | 9M101313.D  | CAL BNA@10PPM               | 09/17/20 10:10                                            | 4        | 9M101319.D             | CAL BNA@20PPM   | 09/17/20 12:35   | 12:35                               |                     |
| υı                      | 9M101318.D  | CAL BNA@80PPM               | 09/17/20 12:12                                            | 6        | 9M101317.D             | CAL BNA@120PPM  |                  | 11:47                               |                     |
| 7                       | 9M101316.D  | CAL BNA@160PPM              | 09/17/20 11:24                                            | œ        | 9M101315.D             | CAL BNA@196PPM  | M 09/17/20 11:00 | 11:00                               |                     |
| <b>2</b> ٤              | 9M101320.D  | CAL BNA@0.5PPM              | 09/17/20 12:58                                            |          |                        |                 |                  |                                     |                     |
| 3                       | 1           |                             |                                                           | !        | -                      | i               |                  | Calibration Level Concentrations    | :                   |
| ZCompound C             | Col Mr Fit: | RF1 RF2 RF3 RF4             | RF5 RF6 RF7 RF8                                           | RF9 AvgR | AvgRf RT Corr1 Corr2   | Corr2 %Rsd      | LvI1 LvI2        | LVI3 LVI4 LVI5 LVI6                 | LVI6 LVI7 LVI8 LVI9 |
| <b>24</b> ,4'-DDE       | 1 0 Avg (   | 0.3164 0.3085 0.3251 0.2870 | 0.3164 0.3085 0.3251 0.2870 0.3181 0.3368 0.3355 0.3357 - | 0.3      | 320 11.57 0.999        |                 | 50.00 2.00       | 10.00 20.00 80.00 1                 | 120.0 160.0 196.0   |
| 4,4'-DDD                | 1 0 Avg (   | 0.4676 0.3298 0.4118 0.4039 | 0.4676 0.3298 0.4118 0.4039 0.4696 0.4943 0.4859 0.4842 - | 0.4      | 143 11.97 0.999        |                 |                  | 10.00 20.00 80.00 120.0 160.0 196.0 | 120.0 160.0 196.0   |
| Butylbenzylphthalate    | 1 0 Qua (   | 0.4710 0.2384 0.3600 0.3840 | 0.4710 0.2384 0.3600 0.3840 0.4937 0.5153 0.5030 0.5012 - | 0.4      | 133 12.23 0.999        | 0.999 23 0.01   |                  | 10.00 20.00 80.00 120.0 160.0 196.0 | 120.0 160.0 196.0   |
| 4,4'-DDT                | 1 0 Avg (   | 0.5607 0.4100 0.6178 0.5043 | 0.5607 0.4100 0.6178 0.5043 0.5646 0.5801 0.5774 0.5756 - | 0.5      | 549 12.33 1.00         |                 |                  | 10.00 20.00 80.00 1                 | 120.0 160.0 196.0   |
| 3,3'-Dichlorobenzidine  | 1 0 Qua (   | 0.3898 0.2240 0.4113 0.3352 | 0.3898 0.2240 0.4113 0.3352 0.4035 0.4225 0.4142 0.3995   | 0.3      | 375 12.85 0.999        | <del>1</del> 8  | 1                | 10.00 20.00 80.00 120.0 160.0 196.0 | 120.0 160.0 196.0   |
| Benzolalanthracene      | 1 0 Avg     | 1.1262 1.1259 1.1404 1.0406 | 1.1262 1.1259 1.1404 1.0406 1.1448 1.1645 1.1679 1.1421 - |          | .13 12.88 1.00         | 3.5             |                  | 10.00 20.00 80.00 1                 | 120.0 160.0 196.0   |
| Chrysene                | 1 0 Avg     | 1.1020 1.2634 1.1943 1.0445 | 1.1020 1.2634 1.1943 1.0445 1.0556 1.0822 1.0400 1.0496 - | _        | .10 12.92 1.00         | 7.4             | 50.00 2.00       | 10.00 20.00 80.00 1                 | 20.0                |
| bis(2-Ethylhexyl)phthal | 1 0 Qua (   | 0.6559 0.3313 0.5540 0.5664 | 0.6559 0.3313 0.5540 0.5664 0.6633 0.6739 0.6511 0.6267 - | 0.5      | 590 12.92 0.998        | 19              | 50.00 2.00       | 10.00 20.00 80.00 1                 | 20.0                |
| Di-n-octylphthalate     | 1 0 Qua     | 1.0321 0.3373 0.6180 0.8050 | 1.0321 0.3373 0.6180 0.8050 1.0983 1.1633 1.1157 1.0860 - | 0.9      | 907 13.68 0.998        | 33              | 50.00 2.00       | 10.00 20.00 80.00                   | 20.0                |
| Benzoibifluoranthene    | 1 0 Avg     | 1.0627 0.8442 0.9841 0.9332 | 1.0627 0.8442 0.9841 0.9332 1.0674 1.1317 1.1321 1.1712   |          | .04 14.10 0.999        | <u>'</u>        | 50.00 2.00       | 10.00 20.00 80.00                   | 120.0 160.0 196.0   |
| Benzolklfluoranthene    |             | 1.1059 1.0441 1.1654 1.0308 | 1.1059 1.0441 1.1654 1.0308 1.0850 1.0826 1.0345 0.9585 - | 1        | 1.06 14.13 0.994 0.999 |                 | 50.00 2.00       | 10.00 20.00 80.00 1                 | 120.0 160.0 196.0   |
| Benzolalpyrene          | 1 0 Avg (   | 0.9862 0.7020 0.9358 0.8535 | 0.9862 0.7020 0.9358 0.8535 0.9952 1.0171 1.0027 0.9943 - | 0.9      | 936 14.47 1.00         | 12              |                  | 10.00 20.00 80.00                   | 120.0 160.0 196.0   |
| Indeno[1,2,3-cd]pyren   | 1 0 Avg     | 1,1882 0.9198 1.0889 1.0476 | 1.1882 0.9198 1.0889 1.0476 1.2176 1.2755 1.2625 1.2526 - | 1        | .16 15.89 1.00         | ⇉               |                  | 10.00 20.00 80.00 120.0 160.0 196.0 | 120.0 160.0 196.0   |
| Dibenzofa,hlanthracen   | 1 0 Avg     | 1.0042 0.7706 0.9347 0.8922 | 1.0042 0.7706 0.9347 0.8922 1.0083 1.0517 1.0405 1.0286 - | 0.9      | 966 15.92 1.00         | 9.9             |                  | 10.00 20.00 80.00                   | 120.0 160.0 196.0   |
| Benzolg,h,ilperylene    | 1 0 Avg (   | 0.9795 0.8174 0.9208 0.8688 | 0.9795 0.8174 0.9208 0.8688 0.9875 1.0324 1.0163 1.0094   |          | 954 16.29 1.00         | . <del></del>   | l                | 10.00 20.00 80.00 120.0 160.0 196.0 | 120.0 160.0 196.0   |

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

c - failed the minimum correlation coeff criteria(if applicable) [Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Avg Rsd: 8.313

Note:

Form7
Continuing Calibration

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/5/2020 8:44:00 A Data File: 7M109840.D Method: EPA 8270E Instrument: GCMS 7

| TxtCompd:                  | Col#     |     | Туре | RT   | Conc   | Conc<br>Exp | Lim | MIN<br>RF | Initial<br>RF | RF    | %Diff  | Flag |
|----------------------------|----------|-----|------|------|--------|-------------|-----|-----------|---------------|-------|--------|------|
| I,4-Dioxane-d8(INT)        | 1        | 0   | 1    | 2.69 | 40.00  | 40          | **  |           |               | 0.000 | 0.00   |      |
| ,4-Dioxane                 | 1        | 0   |      | 2.73 | 47.86  | 50          | **  |           | 1.035         | 0.991 | 4.28   |      |
| Pyridine                   | 1        | 0   |      | 3.21 | 49.76  | 50          | **  |           | 2.335         | 2.323 | 0.49   |      |
| N-Nitrosodimethylamine     | 1        | 0   |      | 3.15 | 55.81  | 50          | **  |           | 1.466         | 1.637 | 11.61  |      |
| -Fluorophenol              | 1        | 0   | S    | 4.72 | 48.80  | 50          | **  |           | 2.355         | 2.299 | 2.39   |      |
| Benzaldehyde               | 1        | 0   |      | 5.52 | 49.55  | 50          | 20  | 0.01      | 2.298         | 2.277 | 0.91   |      |
| Aniline                    | 1        | 0   |      | 5.61 | 48.53  | 50          | **  |           | 3.788         | 3.676 | 2.95   |      |
| Pentachloroethane          | 1        | 0   |      | 5.66 | 47.99  | 50          | **  |           | 0.836         | 0.803 | 4.03   |      |
| is(2-Chloroethyl)ether     | 1        | 0   |      | 5.67 | 51.31  | 50          | 20  | 0.7       | 2.509         | 2.515 | 2.63   |      |
| Phenol-d5                  | 1        | 0   | S    | 5.58 | 50.43  | 50_         | **  |           | 2.830         | 2.855 | 0.86   |      |
| Phenol                     | 1        | 0   |      | 5.60 | 50.04  | 50          | 20  |           | 3.460         | 3.462 | 0.07   |      |
| -Chlorophenol              | 1        | 0   |      | 5.72 | 47.03  | 50          | 20  |           | 2.749         | 2.586 | 5.94   |      |
| I-Decane                   | 1        | 0   |      | 5.76 | 55.59  | 50          | **  | 0.05      | 1.917         | 2.132 | 11.18  |      |
| ,3-Dichlorobenzene         | 1        | 0   |      | 5.85 | 45.80  | 50          | **  |           | 2.994         | 2.743 | 8.40   |      |
| ,4-Dichlorobenzene-d4      | 1        | 0   |      | 5.90 | 40.00  | 40          | **  |           |               | 0.000 | 0.00   |      |
| ,4-Dichlorobenzene         | 1        | 0   |      | 5.91 | 50.07  | 50          | 20  |           | 1.484         | 1.486 | 0.14   |      |
| ,2-Dichlorobenzene         | 1        | 0   |      | 6.03 | 50.70  | 50          | **  |           | 1.410         | 1.429 | 1.40   |      |
| Benzyl alcohol             | 1        | 0   |      | 6.01 | 38.51  | 50          | **  |           | 0.837         | 0.645 | 22.99  |      |
| is(2-chloroisopropyl)ether | 1        | 0   |      | 6.11 | 64.17  | 50          | 20  |           | 1.103         | 1.416 | 28.34  | C1   |
| -Methylphenol              | 1        | 0   |      | 6.09 | 55.73  | 50_         | 20  |           | 1.172         | 1.306 | 11.45  |      |
| cetophenone                | 1        | 0   |      | 6.22 | 53.08  | 50          | 20  | 0.01      | 1.786         | 1.897 | 6.17   |      |
| lexachloroethane           | 1        | 0   |      | 6.31 | 50.27  | 50          | 20  | 0.3       | 0.571         | 0.574 | 0.55   |      |
| -Nitroso-di-n-propylamine  | 1        | 0   |      | 6.22 | 56.85  | 50          | 20  | 0.5       | 0.843         | 0.958 | 13.70  |      |
| &4-Methylphenol            | 1        | 0   |      | 6.22 | 52.71  | 50          | 20  |           | 1.200         | 1.265 | 5.42   |      |
| laphthalene-d8             | <u>1</u> | 0   | 1    | 6.90 | 40.00  | 40          | **  |           |               | 0.000 | 0.00   |      |
| itrobenzene-d5             | 1        | 0   | S    | 6.34 | 25.20  | 25          | **  |           | 0.159         | 0.160 | 0.80   |      |
| itrobenzene                | 1        | 0   |      | 6.35 | 54.26  | 50          | 20  | 0.2       | 0.343         | 0.372 | 8.53   |      |
| sophorone                  | 1        | 0   |      | 6.54 | 54.08  | 50          | 20  | 0.4       | 0.627         | 0.678 | 8.16   |      |
| -Nitrophenol               | 1        | 0   |      | 6.60 | 50.60  | 50          | 20  | 0.1       | 0.195         | 0.198 | 1.20   |      |
| ,4-Dimethylphenol          | 1        | 0   |      | 6.63 | 50.18  | 50          | 20  | 0.2       | 0.320         | 0.321 | 0.36   |      |
| enzoic Acid                | 1        | 0   |      | 6.69 | 24.93  | 50          | **  |           | 0.233         | 0.107 | 50.15  |      |
| is(2-Chloroethoxy)methane  | 1        | 0   |      | 6.70 | 55.05  | 50          | 20  |           | 0.383         | 0.422 | 10.09  |      |
| ,4-Dichlorophenol          | 1        | 0   |      | 6.79 | 47.86  | 50          | 20  | 0.2       | 0.306         | 0.293 | 4.29   |      |
| ,2,4-Trichlorobenzene      | 1        | 0   |      | 6.85 | 47.00  | 50          | **  |           | 0.334         | 0.314 | 5.99   |      |
| laphthalene                | 1        | 0   |      | 6.91 | 50.06  | 50          | 20  |           | 1.040         | 1.041 | 0.12   |      |
| -Chloroaniline             | 1        | 0   |      | 6.95 | 48.61  | 50          | 20  | 0.01      | 0.418         | 0.406 | 2.78   |      |
| lexachlorobutadiene        | 1        | 0   |      | 7.00 | 45.20  | 50          | 20  |           | 0.188         | 0.170 | 9.60   |      |
| aprolactam                 | 1        | 0   |      | 7.22 | 51.89  | 50          | 20  |           | 0.118         | 0.123 | 3.78   |      |
| -Chloro-3-methylphenol     | 1        | 0   |      | 7.32 | 47.51  | 50          | 20  |           | 0.308         | 0.292 | 4.99   |      |
| -Methylnaphthalene         | 1        | 0   |      | 7.45 | 50.18  | 50          | **  |           | 0.702         | 0.705 | 0.36   |      |
| -Methylnaphthalene         | 1        | 0   |      | 7.53 | 50.15  | 50          | źź  | 0.4       | 0.662         | 0.664 | 0.31   |      |
| lethylnaphthalenes         | 1        | 0   |      | 7.45 | 100.35 | 50          | **  |           |               | 1.369 | 100.70 |      |
| ,1'-Biphenyl               | 1        | 0   |      | 7.83 | 49.18  | 50          | 20  | 0.01      | 0.825         | 0.811 | 1.63   |      |
| cenaphthene-d10            | 1        | 0   | ı    | 8.34 | 40.00  | 40          | **  |           |               | 0.000 | 0.00   |      |
| ,2,4,5-Tetrachlorobenzene  | 1        | 0   |      | 7.59 | 48.66  | 50          | 20  | 0.01      | 0.627         | 0.610 | 2.68   |      |
| exachlorocyclopentadiene   | 1        | 0   |      | 7.58 | 34.99  | 50          | 20  | 0.05      | 0.351         | 0.246 | 30.03  | C1   |
| ,4,6-Trichlorophenol       | 1        | 0   |      | 7.68 | 47.82  | 50          | 20  | 0.2       | 0.417         | 0.398 | 4.37   |      |
| ,4,5-Trichlorophenol       | 1        | 0   |      | 7.72 | 48.85  | 50          | 20  | 0.2       | 0.434         | 0.424 | 2.31   |      |
| -Fluorobiphenyl            | 1        | 0   | S    | 7.74 | 24.82  | 25          | **  |           | 1.334         | 1.325 | 0.72   |      |
| -Chloronaphthalene         | 1        | _0_ |      | 7.86 | 50.93  | 50          | 20  | 0.8       | 1.201         | 1.223 | 1.87   |      |
| ,4-Dimethylnaphthalene     | 1        | 0   |      | 8.14 | 52.67  | 50          | **  |           | 0.879         | 0.926 | 5.35   |      |
| imethylnaphthalenes        | 1        | 0   |      | 8.14 | 52.67  | 50          | 20  |           |               | 0.926 | 5.35   |      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 3

Form7
Continuing Calibration

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/5/2020 8:44:00 A Data File: 7M109840.D Method: EPA 8270E Instrument: GCMS 7

| TxtCompd:                  | Col#                         | Multi<br>Num | Туре | RT    | Conc  | Conc<br>Exp | Lo f<br>Lim | RF    | Initial<br>RF | RF    | %Diff Flag |
|----------------------------|------------------------------|--------------|------|-------|-------|-------------|-------------|-------|---------------|-------|------------|
| Diphenyl Ether             | 1                            | 0            |      | 7.92  | 50.92 | 50          | ##          |       | 0.859         | 0.875 | 1.84       |
| 2-Nitroaniline             | 1                            | 0            |      | 7.93  | 57.76 | 50          | 20          | 0.01  | 0.367         | 0.423 | 15.52      |
| Coumarin                   | 1                            | 0            |      | 8.12  | 52.93 |             | **          |       | 0.454         |       |            |
| Acenaphthylene             | 1                            | 0            |      | 8.22  | 51.90 | 50          | 20          | 0.9   | 1.762         | 1.829 | 3.80       |
| Dimethylphthalate          | 1                            | 0            |      | 8.07  | 51.03 | 50          | 20          | 0.01  | 1.380         | 1.408 | 2.06       |
| 2,6-Dinitrotoluene         | 1                            | 0            |      | 8.13  | 53.00 | 50          | 20          | 0.2   | 0.313         | 0.332 | 6.00       |
| Acenaphthene               | 1                            | 0            |      | 8.37  | 52.47 | 50          | 20          | 0.9   | 1.171         | 1.229 | 4.94       |
| 3-Nitroaniline             | 1                            | 0            |      | 8.29  | 52.55 | 50          | 20          | 0.01  | 0.349         | 0.367 | 5.11       |
| 2,4-Dinitrophenol          | 1                            | 0            |      | 8.38  | 48.33 | 50          | 20          | 0.2   | 0.184         | 0.178 | 3.34       |
| Dibenzofuran               | 1                            | 0            |      | 8.53  | 50.59 | 50          | 20          | 0.8   | 1.723         | 1.744 | 1.18       |
| 2,4-Dinitrotoluene         | 1                            | 0            |      | 8.50  | 52.86 | 50          | 20          | 0.2   | 0.433         | 0.457 | 5.71       |
| 4-Nitrophenol              | 1                            | 0            |      | 8.43  | 48.66 | 50          | 20          | 0.01  | 0.248         | 0.241 | 2.68       |
| 2,3,4,6-Tetrachlorophenol  | 1                            | 0            |      | 8.64  | 48.53 | 50          | 20          | 0.01  | 0.376         | 0.365 | 2.94       |
| Fluorene                   | 1                            | 0            |      | 8.86  | 52.36 | 50          | 20          | 0.9   | 1.381         | 1.446 | 4.71       |
| 4-Chlorophenyl-phenylether | 1                            | 0            |      | 8.84  | 49.81 | 50          | 20          | 0.4   | 0.694         | 0.692 | 0.39       |
| Diethylphthalate           | 1                            | 0            |      | 8.72  | 51.93 | 50          | 20          | 0.01  | 1.375         | 1.428 | 3.85       |
| 1-Nitroaniline             | 1                            | 0            |      | 8.86  | 53.27 | 50          | 20          | 0.01  | 0.371         | 0.395 | 6.54       |
| Atrazine                   | 1                            | 0            |      | 9.50  | 47.82 | 50          | 20          | 0.01  | 0.455         | 0.435 | 4.35       |
| Phenanthrene-d10           | 1                            | 0            | 1    | 9.82  | 40.00 | 40          | **          |       |               | 0.000 | 0.00       |
| 1,6-Dinitro-2-methylphenol | 1                            | 0            |      | 8.89  | 51.06 | 50          | 20          | 0.01  | 0.133         | 0.136 | 2.12       |
| n-Nitrosodiphenylamine     | 1                            | 0            |      | 8.96  | 52.44 | 50          | 20          | 0.01  | 0.622         | 0.652 | 4.88       |
| 2,4,6-Tribromophenol       | 1                            | 0            | s    | 9.09  | 47.17 | 50          | **          |       | 0.103         | 0.097 | 5.67       |
| 1,2-Diphenylhydrazine      | 1                            | 0            |      | 9.00  | 58.04 | 50          | **          |       | 0.652         | 0.757 | 16.08      |
| I-Bromophenyl-phenylether  | 1                            | 0            |      | 9.34  | 49.15 | 50          | 20          | 0.1   | 0.219         | 0.216 | 1.70       |
| Hexachlorobenzene          | 1                            | 0            |      | 9.41  | 48.21 | 50          | 20          | 0.1   | 0.234         | 0.226 | 3.58       |
| N-Octadecane               | 1                            | 0            |      | 9.67  | 64.88 | 50          | **          | 0.05  | 0.299         | 0.388 | 29.75      |
| Pentachlorophenol          | 1                            | 0            |      | 9.61  | 40.57 | 50          | 20          | 0.05  | 0.154         | 0.125 | 18.86      |
| Phenanthrene               | 1                            | 0            |      | 9.85  | 51.93 | 50          | 20          | 0.7   | 1.051         | 1.091 | 3.85       |
| Anthracene                 | 1                            | 0            |      | 9.90  | 52.10 | 50          | 20          | 0.7   | 1.079         | 1.125 | 4.21       |
| Carbazole                  | 1                            | 0            |      | 10.07 | 52.30 | 50          | 20          | 0.01  | 0.990         | 1.035 | 4.59       |
| Di-n-butylphthalate        | 1                            | 0            | •    | 10.45 | 53.01 | 50          | 20          |       | 1.212         | 1.285 | 6.01       |
| Fluoranthene               | 1                            | 0            |      | 11.19 | 51.67 | 50          | 20          |       | 1.193         | 1.232 | 3.35       |
| Chrysene-d12               | 1                            | 0            | - 1  | 12.89 | 40.00 | 40          | **          |       |               | 0.000 | 0.00       |
| Pyrene                     | 1                            | 0            |      | 11.45 | 51.58 | 50          | 20          | 0.6   | 1.247         | 1.286 | 3.15       |
| Benzidine                  | 1                            | 0            |      | 11.34 | 39.55 | 50          | **          |       | 0.737         | 0.583 | 20.90      |
| Ferphenyl-d14              |                              | 0            | S    | 11.64 | 25.07 | 25          | **          |       | 0.637         | 0.639 | 0.29       |
| 1,4'-DDE                   | 1                            | 0            |      | 11.57 | 50.53 |             | **          |       | 0.357         |       |            |
| 1,4'-DDD                   | 1                            | 0            |      | 11.98 | 51.62 |             | **          |       | 0.515         |       |            |
| Butylbenzylphthalate       | 1                            | 0            |      | 12.23 | 54.09 | 50          | 20          | 0.01  | 0.564         | 0.610 | 8.18       |
| 1,4'-DDT                   | 1                            | 0            |      | 12.33 | 52.86 | •           | **          | 0.0.  | 0.581         | 0.000 | 0.70       |
| 3,3'-Dichlorobenzidine     | ··· <u>·</u> -               | 0            |      | 12.85 | 49.59 | 50          | 20          | 0.01  | 0.457         | 0.453 | 0.82       |
| Benzo[a]anthracene         | 1                            | 0            |      | 12.88 | 50.89 | 50          | 20          |       | 1.173         | 1.194 | 1.78       |
| Chrysene                   | 1                            | ō            |      | 12.93 | 52.42 | 50          | 20          |       | 1.086         | 1.138 | 4.85       |
| pis(2-Ethylhexyl)phthalate | 1                            | Ö            |      | 12.92 | 54.09 | 50          | 20          |       | 0.757         | 0.818 | 8.17       |
| Perylene-d12               | 1                            | 0            | ı    | 14.54 | 40.00 | 40          | **          | J.V 1 | # VI          | 0.000 | 0.00       |
| Di-n-octylphthalate        | <u>-</u> <u>-</u> <u>-</u> - | 0            |      | 13.67 | 55.57 | 50          | 20          | 0.01  | 1.277         | 1.419 | 11.14      |
| Benzo[b]fluoranthene       | 1                            | 0            |      | 14.10 | 53.06 | 50          | 20          |       | 1.130         | 1.199 | 6.11       |
| Benzo[k]fluoranthene       | 1                            | 0            |      | 14.13 | 51.03 | 50          | 20          |       | 1.059         | 1.081 | 2.07       |
| Benzo[a]pyrene             | 1                            | 0            |      | 14.47 | 51.93 | 50          | 20          |       | 1.003         | 1.042 | 3.86       |
| ndeno[1,2,3-cd]pyrene      | 1                            | 0            |      | 15.94 | 53.13 | 50          | 20          |       | 1.122         | 1.193 | 6.27       |
| ingeno[1,2,0-on]hyrene     |                              |              |      |       |       |             |             |       |               |       |            |
| Dibenzo[a,h]anthracene     | 1                            | 0            |      | 15.95 | 53.33 | 50          | 20          | Ο 4   | 0.937         | 1.000 | 6.66       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 3

Form7
Continuing Calibration

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/5/2020 8:44:00 A Data File: 7M109840.D Method: EPA 8270E Instrument: GCMS 7

| TxtCompd:                      | Co# | Multi<br>Num | Туре | RT   | Conc | Conc<br>Exp | Lo MII<br>Lim RF |       | RF    | %Diff Flag |
|--------------------------------|-----|--------------|------|------|------|-------------|------------------|-------|-------|------------|
| Endrin                         | 1   | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| 2,4 Diaminotoluene             | 1   | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| Toluene Diisocyanate           | 1   | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| 2,2'-oxybis-(1-Chloropropane)  | 1   | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| Methylnaphthalenes (Total)     | 1   | 100          |      | 0.00 | 0.00 | 100         | **               | 0.682 | 0.000 | 100.00     |
| Methoxychlor                   | 1   | 100          |      | 0.00 | 0.00 | 10          | **               |       | 0.000 | 100.00     |
| Heptachlor epoxide             | 1   | 100          |      | 0.00 | 0.00 | 10          | **               |       | 0.000 | 100.00     |
| gamma-BHC                      | 1   | 100          |      | 0.00 | 0.00 | 10          | **               |       | 0.000 | 100.00     |
| Dimethylnaphthalenes (Total)   | 1   | 100          |      | 0.00 | 0.00 | 50          | **               | 0.879 | 0.000 | 100.00     |
| Diaminotoluene Dihydrochloride | 1   | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| 1,4-Dioxane-d8                 | 1   | 100          |      | 0.00 | 0.00 | 40          | **               |       | 0.000 | 100.00     |
| 1,4-Dioxane-d8-Surro           | 1   | 100          |      | 0.00 | 0.00 | 40          | **               |       | 0.000 | 100.00     |
| 4-Methylphenol                 | 1   | 100          |      | 0.00 | 0.00 | 50          | **               | 0.6   | 0.000 | 100.00     |
| Heptachlor                     | 1   | 100          |      | 0.00 | 0.00 | 10          | **               |       | 0.000 | 100.00     |

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/5/2020 8:52:00 A Data File: 9M101531.D Method: EPA 8270E Instrument: GCMS 9

| TxtCompd:                              | Col#       | Multi<br>Num | Туре | RT           | Conc           | Conc<br>Exp | Lo I<br>Lim |      | Initial<br>RF | RF    | %Diff Flag |
|----------------------------------------|------------|--------------|------|--------------|----------------|-------------|-------------|------|---------------|-------|------------|
| 1,4-Dioxane-d8(INT)                    | 1          | 0            | Ī    | 2.71         | 40.00          | 40          | **          | -    |               | 0.000 | 0.00       |
| 1,4-Dioxane                            | 1          | 0            |      | 2.74         | 47.26          | 50          | **          |      | 1.057         | 0.999 | 5.48       |
| Pyridine                               | 1          | 0            |      | 3.20         | 50.75          | 50          | **          |      | 2.196         | 2.229 | 1.49       |
| N-Nitrosodimethylamine                 | 1          | 0            |      | 3.14         | 52.81          | 50          | **          |      | 1.391         | 1.469 | 5.61       |
| 2-Fluorophenol                         | 1 -        | 0            | S    | 4.71         | 51.69          | 50          | **          |      | 2.092         | 2.163 | 3.37       |
| Benzaldehyde                           | 1          | 0            |      | 5.52         | 49.41          | 50          | 20          | 0.01 | 2.004         | 1.980 | 1.19       |
| Aniline                                | 1          | 0            |      | 5.62         | 51.60          | 50          | **          |      | 3.460         | 3.571 | 3.19       |
| Pentachloroethane                      | 1          | 0            |      | 5.67         | 50.08          | 50          | **          | 0.05 | 0.724         | 0.725 | 0.15       |
| bis(2-Chloroethyl)ether                | 1          | 0            |      | 5.68         | 52.21          | 50          | 20          | 0.7  | 2.274         | 2.375 | 4.43       |
| Phenol-d5                              | 1          | 0            | S    | 5.58         | 52.08          | 50          | **          |      | 2.531         | 2.636 | 4.16       |
| Phenol                                 | 1          | 0            |      | 5.59         | 50.40          | 50          | 20          | 0.8  | 3.242         | 3.268 | 0.80       |
| 2-Chlorophenol                         | 1          | 0            |      | 5.72         | 50.31          | 50          | 20          | 0.8  | 2.529         | 2.545 | 0.63       |
| N-Decane                               | 1          | 0            |      | 5.77         | 51.54          | 50          | **          | 0.05 | 1.907         | 1.965 | 3.07       |
| 1,3-Dichlorobenzene                    | 1          | 0            |      | 5.85         | 49.74          | 50          | **          |      | 2.771         | 2.756 | 0.52       |
| 1,4-Dichlorobenzene-d4                 | 1          | 0            | ı    | 5.90         | 40.00          | 40          | **          |      |               | 0.000 | 0.00       |
| 1,4-Dichlorobenzene                    | 1          | 0            |      | 5.92         | 50.84          | 50          | 20          |      | 1.496         | 1.521 | 1.67       |
| 1,2-Dichlorobenzene                    | 1          | 0            |      | 6.04         | 51.11          | 50          | **          |      | 1.415         | 1.447 | 2.23       |
| Benzyl alcohol                         | 1          | 0            |      | 6.01         | 51.04          | 50          | **          |      | 0.812         | 0.829 | 2.08       |
| bis(2-chloroisopropyl)ether            | 1          | 0            |      | 6.12         | 53.22          | 50          | 20          | 0.01 | 1.260         | 1.341 | 6.44       |
| 2-Methylphenol                         | 1          | 0            |      | 6.10         | 52.83          | 50          | 20          |      | 1.157         | 1.223 | 5.66       |
| Acetophenone                           | 1          | 0            |      | 6.22         | 53.10          | 50          | 20          |      | 1.702         | 1.808 | 6.19       |
| Hexachloroethane                       | 1          | 0            |      | 6.32         | 51.67          | 50          | 20          |      | 0.526         | 0.544 | 3.34       |
| N-Nitroso-di-n-propylamine             | 1          | 0            |      | 6.22         | 54.24          | 50          | 20          |      | 0.741         | 0.804 | 8.48       |
| 3&4-Methylphenol                       | 1          | 0            |      | 6.22         | 54.92          | 50          | 20          |      | 1.136         | 1.247 | 9.83       |
| Naphthalene-d8                         | 1          | Ō            | 1    | 6.91         | 40.00          | 40          | **          |      |               | 0.000 | 0.00       |
| Nitrobenzene-d5                        | - <u>-</u> | 0            | S    | 6.35         | 26.86          | 25          | **          |      | 0.144         | 0.155 | 7.45       |
| Nitrobenzene                           | 1          | 0            | •    | 6.36         | 52.32          | 50          | 20          | 0.2  | 0.314         | 0.328 | 4.63       |
| sophorone                              | 1          | 0            |      | 6.55         | 52.71          | 50          | 20          |      | 0.574         | 0.605 | 5.41       |
| 2-Nitrophenol                          | 1          | 0            |      | 6.61         | 52.26          | 50          | 20          |      | 0.177         | 0.185 | 4.52       |
| 2,4-Dimethylphenol                     | 1          | 0            |      | 6.64         | 52.21          | 50          | 20          |      | 0.294         | 0.307 | 4.43       |
| Benzoic Acid                           | 1          | 0            |      | 6.70         | 43.19          | 50          |             | 0.2  | 0.206         | 0.167 | 13.61      |
| bis(2-Chloroethoxy)methane             | 1          | 0            |      | 6.71         | 52.30          | 50          | 20          | 0.3  | 0.365         | 0.381 | 4.60       |
| 2,4-Dichlorophenol                     | 1          | 0            |      | 6.79         | 52.60          | 50          | 20          |      | 0.270         | 0.381 | 5.20       |
| 1,2,4-Trichlorobenzene                 | 1          | 0            |      | 6.86         | 49.62          | 50          | **          | 0.2  | 0.270         | 0.204 | 0.76       |
| Naphthalene                            | 1          | 0            |      | 6.92         | 50.94          | 50<br>50    | 20          | 0.7  | 1.062         |       |            |
|                                        |            |              |      |              |                |             |             |      |               | 1.082 | 1.87       |
| 4-Chloroaniline<br>Hexachlorobutadiene | 1          | 0            |      | 6.95<br>7.01 | 50.91<br>49.77 | 50          | 20          |      | 0.390         | 0.397 | 1.82       |
|                                        |            |              |      |              |                | 50<br>50    | 20          |      | 0.175         | 0.174 | 0.46       |
| Caprolactam                            | 1          | 0            |      | 7.22         | 53.55          | 50          | 20          |      | 0.105         | 0.113 | 7.11       |
| 4-Chloro-3-methylphenol                | 1          | 0            |      | 7.32         | 50.91          | 50          | 20          |      | 0.276         | 0.281 | 1.81       |
| 2-Methylnaphthalene                    | 1          | 0            |      | 7.46         | 51.17          | 50          | **          |      | 0.697         | 0.714 | 2.34       |
| 1-Methylnaphthalene                    | 1          | 0            |      | 7.54         | 50.93          | 50          | **          | 0.4  | 0.666         | 0.678 | 1.86       |
| Methylnaphthalenes                     | 1          | 0            |      | 7.54         | 102.20         | 50          |             |      |               | 1.393 | 104.40     |
| I,1'-Biphenyl                          | 1          | 0            |      | 7.84         | 50.82          | 50          | 20          | 0.01 | 0.805         | 0.818 | 1.65       |
| Acenaphthene-d10                       | 1          | 0            | 1    | 8.35         | 40.00          | 40          |             |      |               | 0.000 | 0.00       |
| 1,2,4,5-Tetrachlorobenzene             | 1          | 0            |      | 7.60         | 50.13          | 50          | 20          | ~    | 0.629         | 0.630 | 0.26       |
| Hexachlorocyclopentadiene              | 1          | 0            |      | 7.58         | 50.86          | 50          | 20          |      | 0.339         | 0.345 | 1.72       |
| 2,4,6-Trichlorophenol                  | 1          | 0            |      | 7.68         | 49.91          | 50          | 20          |      | 0.381         | 0.380 | 0.18       |
| 2,4,5-Trichlorophenol                  | 1          | 0            |      | 7.71         | 51.01          | 50          | 20          | 0.2  | 0.392         | 0.400 | 2.02       |
| 2-Fluorobiphenyl                       | 1          | 0            | S    | 7.75         | 25.47          | 25          | **          |      | 1.369         | 1.395 | 1.90       |
| 2-Chloronaphthalene                    | 1          | 0_           |      | 7.86         | 51.32          | 50          | 20          | 0.8  | 1.192         | 1.224 | 2.63       |
| 1,4-Dimethylnaphthalene                | 1          | 0            |      | 8.14         | 51.43          | 50          | **          |      | 0.906         | 0.932 | 2.86       |
| Dimethylnaphthalenes                   | 1          | 0            |      | 8.14         | 51.43          | 50          | 20          |      |               | 0.932 | 2.86       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/5/2020 8:52:00 A Data File: 9M101531.D Method: EPA 8270E Instrument: GCMS 9

| TxtCompd:                  | Col#       | Multi<br>Num | Туре | RT    | Conc           | Conc<br>Exp | Lo f<br>Lim |       | Initial<br>RF | RF    | %Diff Flag   |
|----------------------------|------------|--------------|------|-------|----------------|-------------|-------------|-------|---------------|-------|--------------|
| Diphenyl Ether             | 1          | 0            |      | 7.92  | 52.03          | 50          | **          |       | 0.884         | 0.920 | 4.07         |
| 2-Nitroaniline             | 1          | 0            |      | 7.94  | 55.38          | 50          | 20          | 0.01  | 0.330         | 0.365 | 10.75        |
| Coumarin                   | 1          | 0            |      | 8.12  | 52.82          |             | **          |       | 0.444         |       |              |
| Acenaphthylene             | 1          | 0            |      | 8.22  | 52.24          | 50          | 20          | 0.9   | 1.789         | 1.869 | 4.49         |
| Dimethylphthalate          | 1          | 0            |      | 8.08  | 51.32          | 50          | 20          | 0.01  | 1.339         | 1.374 | 2.65         |
| 2,6-Dinitrotoluene         | 1          | 0            |      | 8.14  | 54.27          | 50          | 20          | 0.2   | 0.284         | 0.308 | 8.54         |
| Acenaphthene               | 1          | 0            |      | 8.38  | 51.67          | 50          | 20          | 0.9   | 1.239         | 1.280 | 3.34         |
| 3-Nitroaniline             | 1          | 0            |      | 8.29  | 54.72          | 50          | 20          | 0.01  | 0.327         | 0.358 | 9.45         |
| 2,4-Dinitrophenol          | 1          | 0            |      | 8.38  | 55.88          | 50          | 20          | 0.2   | 0.157         | 0.174 | 11.75        |
| Dibenzofuran               | 1          | 0            |      | 8.53  | 50.63          | 50          | 20          | 0.8   | 1.727         | 1.749 | 1.27         |
| 2,4-Dinitrotoluene         | 1          | 0            |      | 8.50  | 54.22          | 50          | 20          | 0.2   | 0.381         | 0.413 | 8.45         |
| 1-Nitrophenol              | 1          | 0            |      | 8.41  | 51.74          | 50          | 20          | 0.01  | 0.209         | 0.236 | 3.49         |
| 2,3,4,6-Tetrachlorophenol  | 1          | 0            |      | 8.64  | 52.62          | 50          | 20          | 0.01  | 0.349         | 0.367 | 5.23         |
| Fluorene                   | 1          | 0            |      | 8.86  | 51.14          | 50          | 20          | 0.9   | 1.363         | 1.394 | 2.27         |
| 1-Chlorophenyl-phenylether | 1          | 0            |      | 8.85  | 50.88          | 50          | 20          | 0.4   | 0.672         | 0.684 | 1.75         |
| Diethylphthalate           | 1          | 0            |      | 8.72  | 51.85          | 50          | 20          | 0.01  | 1.277         | 1.324 | 3.70         |
| 1-Nitroaniline             | 1          | 0            |      | 8.86  | 55.08          | 50          | 20          | 0.01  | 0.342         | 0.377 | 10.17        |
| Atrazine                   | 1          | 0            |      | 9.49  | 51.62          | 50          | 20          | 0.01  | 0.397         | 0.409 | 3.24         |
| Phenanthrene-d10           | 1          | 0            | 1    | 9.82  | 40.00          | 40          | **          |       |               | 0.000 | 0.00         |
| I,6-Dinitro-2-methylphenol | 1          | 0            |      | 8.89  | 52.14          | 50          | 20          | 0.01  | 0.126         | 0.132 | 4.28         |
| n-Nitrosodiphenylamine     | 1          | 0            |      | 8.96  | 52.64          | 50          | 20          |       | 0.622         | 0.655 | 5.28         |
| 2.4.6-Tribromophenol       | 1          | 0            | s    | 9.09  | 52.41          | 50          | **          |       | 0.092         | 0.097 | 4.82         |
| ,2-Diphenylhydrazine       | 1          | 0            |      | 9.00  | 52.27          | 50          | **          |       | 0.641         | 0.670 | 4.53         |
| I-Bromophenyl-phenylether  | 1          | 0            |      | 9.34  | 50.86          | 50          | 20          | 0.1   | 0.206         | 0.209 | 1.72         |
| lexachlorobenzene          | 1          | 0            |      | 9.41  | 49.42          | 50          | 20          |       | 0.229         | 0.226 | 1.16         |
| N-Octadecane               | 1          | 0            |      | 9.68  | 56.92          | 50          | **          |       | 0.287         | 0.327 | 13.83        |
| Pentachlorophenol          | 1          | 0            |      | 9.61  | 50.01          | 50          | 20          |       | 0.146         | 0.146 | 0.02         |
| Phenanthrene               | 1          | 0            |      | 9.85  | 50.78          | 50          | 20          |       | 1.063         | 1.080 | 1.55         |
| Anthracene                 | 1          | 0            |      | 9.90  | 52.43          | 50          | 20          |       | 1.063         | 1.114 | 4.86         |
| Carbazole                  | 1          | 0            |      | 10.07 | 53.11          | 50          | 20          |       | 0.962         | 1.022 | 6.22         |
| Di-n-butylphthalate        | 1          | 0            |      | 10.45 | 50.34          | 50          | 20          |       | 0.987         | 1.150 | 0.68         |
| Fluoranthene               | 1          | Ō            |      | 11.18 | 53.50          | 50          | 20          |       | 1.134         | 1.214 | 6.99         |
| Chrysene-d12               | 1          | 0            | 1    | 12.88 | 40.00          | 40          | **          | •.•   |               | 0.000 | 0.00         |
| Pyrene                     | 1          | 0            | •    | 11.45 | 52.05          | 50          | 20          | 0.6   | 1.179         | 1.228 | 4.09         |
| Benzidine                  | 1          | 0            |      | 11.33 | 46.08          | 50          | **          | 0.0   | 0.577         | 0.568 | 7.84         |
| Terphenyl-d14              | 1          | 0            | S    | 11.63 | 25.80          | 25          | **          |       | 0.582         | 0.601 | 3.21         |
| I,4'-DDE                   | 1          | Ō            | •    | 11.57 | 51.06          |             | **          |       | 0.320         | 0.001 | <b>U.D.</b>  |
| I,4'-DDD                   | 1          | Ō            |      | 11.97 | 54.34          |             | **          |       | 0.443         |       |              |
| Butylbenzylphthalate       | 1          | Ō            |      | 12.22 | 49.95          | 50          | 20          | 0.01  | 0.433         | 0.492 | 0.09         |
| I,4'-DDT                   | 1          | o            |      | 12.32 | 53.34          | 00          | **          | 0.01  | 0.549         | VV.   | 0.00         |
| 3,3'-Dichlorobenzidine     | <u>.</u> 1 | 0            |      | 12.84 | 48.46          | 50          | 20          | 0.01  | 0.375         | 0.401 | 3.07         |
| Benzo[a]anthracene         | 1          | 0            |      | 12.87 | 51.70          | 50          | 20          |       | 1.132         | 1.170 | 3.40         |
| Chrysene                   | 1          | 0            |      | 12.91 | 50.29          | 50          | 20          |       | 1.104         | 1.110 | 0.59         |
| pis(2-Ethylhexyl)phthalate | 1          | 0            |      | 12.91 | 50.29          | 50          | 20          |       | 0.590         | 0.690 | 1.62         |
| Perylene-d12               | 1          | 0            | ,    | 14.51 | 40.00          | 40          | **          | Ų.Ų I | J.J30         | 0.000 | 0.00         |
| Di-n-octylphthalate        | <u>'</u>   | 0 -          |      | 13.66 | 48.94          | 50          | 20          | 0.01  | 0.907         | 1.090 | 2.11         |
| Benzo[b]fluoranthene       | 1          | 0            |      | 14.08 | 53.49          | 50          | 20          |       | 1.041         | 1.114 | 6.99         |
| Benzo[k]fluoranthene       | 1          | 0            |      | 14.12 | 51.85          | 50          | 20          |       | 1.063         | 1.103 | 3.71         |
| Benzo[a]pyrene             | 1          | 0            |      | 14.12 | 54.23          | 50          | 20          |       | 0.936         | 1.103 | 3.71<br>8.47 |
|                            | 1          | 0            |      | 15.88 | 54.23<br>53.82 | 50<br>50    | 20          |       | 1.157         | 1.015 | 7.64         |
| ndeno[1,2,3-cd]pyrene      |            | 0            |      | 15.89 |                | 50          | 20          |       | 0.966         | 1.245 | 8.26         |
| Dibenzo[a,h]anthracene     | 1          |              |      |       | 54.13          |             |             |       |               |       |              |

S-Surrogate Compound N/O or N/Q - Not applicable for this run I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/5/2020 8:52:00 A Data File: 9M101531.D Method: EPA 8270E Instrument: GCMS 9

| TxtCompd:                      | Co# | Multi<br>Num | Туре | RT   | Conc | Conc<br>Exp |    | /IN<br>RF | Initial<br>RF | RF    | %Diff  | Flag |
|--------------------------------|-----|--------------|------|------|------|-------------|----|-----------|---------------|-------|--------|------|
| 2,4 Diaminotoluene             | 1   | 100          | •    | 0.00 | 0.00 | 50          | ** |           |               | 0.000 | 100.00 |      |
| 1,4-Dioxane-d8                 | 1   | 100          |      | 0.00 | 0.00 | 40          | ** |           |               | 0.000 | 100.00 |      |
| 2,2'-oxybis-(1-Chloropropane)  | 1   | 100          |      | 0.00 | 0.00 | 50          | ** |           |               | 0.000 | 100.00 |      |
| Toluene Diisocyanate           | 1   | 100          |      | 0.00 | 0.00 | 50          | ** |           |               | 0.000 | 100.00 |      |
| 4-Methylphenol                 | 1   | 100          |      | 0.00 | 0.00 | 50          | ** | 0.6       |               | 0.000 | 100.00 |      |
| Methylnaphthalenes (Total)     | 1   | 100          |      | 0.00 | 0.00 | 100         | ** |           | 0.681         | 0.000 | 100.00 |      |
| Methoxychlor                   | 1   | 100          |      | 0.00 | 0.00 | 10          | ** |           |               | 0.000 | 100.00 |      |
| Heptachlor epoxide             | 1   | 100          |      | 0.00 | 0.00 | 10          | ** |           |               | 0.000 | 100.00 |      |
| gamma-BHC                      | 1   | 100          |      | 0.00 | 0.00 | 10          | ** |           |               | 0.000 | 100.00 |      |
| Endrin                         | 1   | 100          |      | 0.00 | 0.00 | 50          | ** |           |               | 0.000 | 100.00 |      |
| 1,4-Dioxane-d8-Surro           | 1   | 100          |      | 0.00 | 0.00 | 40          | ** |           |               | 0.000 | 100.00 |      |
| Dimethylnaphthalenes (Total)   | 1   | 100          |      | 0.00 | 0.00 | 50          | ** |           | 0.906         | 0.000 | 100.00 |      |
| Diaminotoluene Dihydrochloride | 1   | 100          |      | 0.00 | 0.00 | 50          | ** |           |               | 0.000 | 100.00 |      |
| Heptachlor                     | 1   | 100          |      | 0.00 | 0.00 | 10          | ** |           |               | 0.000 | 100.00 |      |

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/5/2020 2:23:00 P Data File: 7M109854.D Method: EPA 8270E Instrument: GCMS 7

| TxtCompd:                   | Col# | Multi<br>Num | Туре | RT   | Conc  | Conc<br>Exp | Lo I<br>Lim |      | Initial<br>RF | RF    | %Diff | Flag |
|-----------------------------|------|--------------|------|------|-------|-------------|-------------|------|---------------|-------|-------|------|
| I,4-Dioxane-d8(INT)         | 1    | 0            | - 1  | 2.69 | 40.00 | 40          | **          |      |               | 0.000 | 0.00  |      |
| ,4-Dioxane                  | 1    | 0            |      | 2.73 | 49.57 | 50          | **          |      | 1.035         | 1.026 | 0.87  |      |
| Pyridine                    | 1    | 0            |      | 3.21 | 53.52 | 50          | **          |      | 2.335         | 2.499 | 7.04  |      |
| N-Nitrosodimethylamine      | 1    | 0            |      | 3.15 | 57.71 | 50          | **          |      | 1.466         | 1.692 | 15.42 |      |
| ?-Fluorophenol              | 1    | 0            | S    | 4.72 | 50.74 | 50          | **          |      | 2.355         | 2.390 | 1.48  |      |
| Benzaldehyde                | 1    | 0            |      | 5.52 | 52.40 | 50          | 20          | 0.01 | 2.298         | 2.409 | 4.81  |      |
| Aniline                     | 1    | 0            |      | 5.61 | 49.74 | 50          | **          |      | 3.788         | 3.768 | 0.52  |      |
| Pentachloroethane           | 1    | 0            |      | 5.65 | 49.64 | 50          | **          | 0.05 | 0.836         | 0.830 | 0.71  |      |
| ois(2-Chloroethyl)ether     | 1    | 0            |      | 5.67 | 54.92 | 50          | 20          | 0.7  | 2.509         | 2.692 | 9.84  |      |
| Phenol-d5                   | 1    | 0            | S    | 5.58 | 53.01 | 50          | **          |      | 2.830         | 3.001 | 6.01  |      |
| Phenol                      | 1    | 0            |      | 5.60 | 52.97 | 50          | 20          | 8.0  | 3.460         | 3.665 | 5.93  |      |
| 2-Chlorophenol              | 1    | 0            |      | 5.72 | 49.89 | 50          | 20          | 8.0  | 2.749         | 2.743 | 0.22  |      |
| N-Decane                    | 1    | 0            |      | 5.76 | 57.87 | 50          | **          | 0.05 | 1.917         | 2.219 | 15.73 |      |
| ,3-Dichlorobenzene          | 1    | 0            |      | 5.84 | 48.27 | 50          | **          |      | 2.994         | 2.890 | 3.47  |      |
| ,4-Dichlorobenzene-d4       | _ 1  | 0_           | _ L  | 5.90 | 40.00 | 40          | **          |      |               | 0.000 | 0.00  |      |
| ,4-Dichlorobenzene          | 1    | 0            |      | 5.91 | 53.70 | 50          | 20          |      | 1.484         | 1.594 | 7.41  |      |
| ,2-Dichlorobenzene          | 1    | 0            |      | 6.03 | 53.77 | 50          | **          |      | 1.410         | 1.516 | 7.54  |      |
| Benzyl alcohol              | 1    | 0            |      | 6.01 | 43.68 | 50          | **          |      | 0.837         | 0.731 | 12.64 |      |
| ois(2-chloroisopropyl)ether | 1    | 0            |      | 6.11 | 68.33 | 50          | 20          | 0.01 | 1.103         | 1.508 | 36.66 | C1   |
| ?-Methylphenol              | 1    | 0            |      | 6.09 | 58.20 | 50          | 20          | 0.7  | 1.172         | 1.364 | 16.39 | _    |
| Acetophenone                | 1    | 0            |      | 6.22 | 56.75 | 50          | 20          | 0.01 | 1.786         | 2.027 | 13.49 |      |
| lexachloroethane            | 1    | 0            |      | 6.31 | 54.17 | 50          | 20          | 0.3  | 0.571         | 0.619 | 8.34  |      |
| N-Nitroso-di-n-propylamine  | 1    | 0            |      | 6.22 | 61.00 | 50          | 20          | 0.5  | 0.843         | 1.028 | 22.00 | C1   |
| &4-Methylphenol             | 1    | 0            |      | 6.22 | 57.15 | 50          | 20          |      | 1.200         | 1.372 | 14.30 |      |
| laphthalene-d8              | 1    | 0            | t    | 6.89 | 40.00 | 40          | **          |      |               | 0.000 | 0.00  |      |
| Nitrobenzene-d5             | 1    | 0            | S    | 6.34 | 25.65 | 25          | **          |      | 0.159         | 0.163 | 2.61  |      |
| litrobenzene                | 1    | 0            |      | 6.35 | 55.69 | 50          | 20          | 0.2  | 0.343         | 0.382 | 11.38 |      |
| sophorone                   | 1    | 0            |      | 6.54 | 56.83 | 50          | 20          | 0.4  | 0.627         | 0.713 | 13.66 |      |
| ?-Nitrophenol               | 1    | 0            |      | 6.60 | 54.02 | 50          | 20          | 0.1  | 0.195         | 0.211 | 8.05  |      |
| 2,4-Dimethylphenol          | 1    | 0            |      | 6.63 | 52.17 | 50          | 20          | 0.2  | 0.320         | 0.334 | 4.34  |      |
| Benzoic Acid                | 1    | 0            |      | 6.68 | 20.30 | 50          | **          |      | 0.233         | 0.086 | 59.41 |      |
| ois(2-Chloroethoxy)methane  | 1    | 0            |      | 6.70 | 57.91 | 50          | 20          | 0.3  | 0.383         | 0.444 | 15.83 |      |
| 2,4-Dichlorophenol          | 1    | 0            |      | 6.79 | 50.10 | 50          | 20          | 0.2  | 0.306         | 0.306 | 0.21  |      |
| 1,2,4-Trichlorobenzene      | 1    | 0            |      | 6.85 | 49.19 | 50          | **          |      | 0.334         | 0.329 | 1.62  |      |
| Naphthalene                 | 1    | 0            |      | 6.91 | 52.78 | 50          | 20          | 0.7  | 1.040         | 1.098 | 5.56  |      |
| I-Chloroaniline             | 1    | 0            |      | 6.95 | 67.10 | 50          | 20          | 0.01 | 0.418         | 0.561 | 34.19 | C1   |
| dexachlorobutadiene         | 1    | 0            |      | 7.00 | 46.67 | 50          | 20          |      | 0.188         | 0.175 | 6.66  |      |
| Caprolactam                 | 1    | 0            |      | 7.22 | 53.88 | 50          | 20          | 0.01 | 0.118         | 0.128 | 7.75  |      |
| I-Chloro-3-methylphenol     | 1    | 0            |      | 7.32 | 50.86 | 50          | 20          |      | 0.308         | 0.313 | 1.72  |      |
| 2-Methylnaphthalene         | 1    | 0            |      | 7.45 | 52.72 | 50          | **          | 0.4  | 0.702         | 0.740 | 5.44  |      |
| -Methylnaphthalene          | 1 -  | 0            |      | 7.53 | 53.08 | 50          | **          |      | 0.662         | 0.703 | 6.16  |      |
| Methylnaphthalenes          | 1    | 0            |      | 7.45 | 54.28 | 50          | **          |      |               | 0.740 | 8.55  |      |
| ,1'-Biphenyl                | 1    | 0            |      | 7.83 | 52.12 | 50          | 20          | 0.01 | 0.825         | 0.860 | 4.24  |      |
| Acenaphthene-d10            | 1    | 0            | 1    | 8.34 | 40.00 | 40          | **          |      |               | 0.000 | 0.00  |      |
| ,2,4,5-Tetrachlorobenzene   | 1    | 0            |      | 7.59 | 50.37 | 50          | 20          | 0.01 | 0.627         | 0.632 | 0.74  |      |
| lexachlorocyclopentadiene   | 1    | 0            |      | 7.58 | 34.89 | 50          | 20          | 0.05 |               | 0.245 | 30.23 | C1   |
| 2,4,6-Trichlorophenol       | 1    | 0            |      | 7.68 | 50.02 | 50          | 20          |      | 0.417         | 0.417 | 0.04  |      |
| 2,4,5-Trichlorophenol       | 1    | 0            |      | 7.71 | 51.92 | 50          | 20          |      | 0.434         | 0.451 | 3.84  |      |
| 2-Fluorobiphenyl            | 1    | 0            | s    | 7.74 | 25.97 | 25          | **          |      | 1.334         | 1.386 | 3.90  |      |
| -Chloronaphthalene          | 1    | 0            |      | 7.85 | 53.06 | 50          | 20          | 0.8  | 1.201         | 1.274 | 6.12  |      |
| I,4-Dimethylnaphthalene     | 1    | 0            |      | 8.14 | 55.07 | 50          | **          |      | 0.879         | 0.968 | 10.13 |      |
| Dimethylnaphthalenes        | 1    | Ō            |      | 8.14 | 55.07 | 50          | 20          |      |               | 0.968 | 10.13 |      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/5/2020 2:23:00 P Data File: 7M109854.D Method: EPA 8270E Instrument: GCMS 7

| TxtCompd:                  | Co# |     | Туре       | RT    | Conc           | Conc<br>Exp  |          | RF   | Initial<br>RF | RF    | %Diff Flag    |
|----------------------------|-----|-----|------------|-------|----------------|--------------|----------|------|---------------|-------|---------------|
| Diphenyl Ether             | 1   | 0   |            | 7.92  | 52.68          | 50           | **       |      | 0.859         | 0.905 | 5.37          |
| 2-Nitroaniline             | 1   | 0   |            | 7.93  | 60.56          | 50           | 20       | 0.01 | 0.367         | 0.444 | 21.12 C1      |
| Coumarin                   | 1   | 0   |            | 8.12  | 55.52          |              | **       |      | 0.454         |       |               |
| Acenaphthylene             | 1   | 0   |            | 8.22  | 54.50          | 50           | 20       | 0.9  | 1.762         | 1.920 | 9.00          |
| Dimethylphthalate          | 1_  | 0   |            | 8.07  | 53.28          | 50           | 20       | 0.01 | 1.380         | 1.470 | 6.56          |
| 2,6-Dinitrotoluene         | 1   | 0   |            | 8.13  | 55.34          | 50           | 20       |      | 0.313         | 0.346 | 10.68         |
| Acenaphthene               | 1   | 0   |            | 8.37  | 54.98          | 50           | 20       | 0.9  | 1.171         | 1.288 | 9.96          |
| 3-Nitroaniline             | 1   | 0   |            | 8.29  | 54.26          | 50           | 20       |      | 0.349         | 0.379 | 8.51          |
| 2,4-Dinitrophenol          | 1   | 0   |            | 8.38  | 50.08          | 50           | 20       | 0.2  | 0.184         | 0.184 | 0.16          |
| Dibenzofuran               | 1   | 0   |            | 8.53  | 52.88          | 50           | 20       | 0.8  | 1.723         | 1.823 | 5.77          |
| 2,4-Dinitrotoluene         | 1   | 0   |            | 8.50  | 54.23          | 50           | 20       | 0.2  | 0.433         | 0.469 | 8.46          |
| l-Nitrophenol              | 1   | 0   |            | 8.43  | 47.38          | 50           | 20       | 0.01 | 0.248         | 0.235 | 5.25          |
| 2,3,4,6-Tetrachlorophenol  | 1   | 0   |            | 8.63  | 50.84          | 50           | 20       | 0.01 | 0.376         | 0.383 | 1.69          |
| luorene                    | 1   | 0   |            | 8.86  | 54.99          | 50           | 20       | 0.9  | 1.381         | 1.519 | 9.99          |
| I-Chlorophenyl-phenylether | 1   | 0   |            | 8.84  | 51.50          | 50           | 20       | 0.4  | 0.694         | 0.715 | 2.99          |
| Diethylphthalate           | 1   | 0   |            | 8.72  | 54.13          | 50           | 20       | 0.01 | 1.375         | 1.488 | 8.26          |
| -Nitroaniline              | 1   | 0   |            | 8.86  | 55.99          | 50           | 20       | 0.01 | 0.371         | 0.415 | 11.98         |
| Atrazine                   | 1   | 0   |            | 9.49  | 49.53          | 50           | 20       | 0.01 | 0.455         | 0.451 | 0.93          |
| Phenanthrene-d10           | 1   | 0   | 1          | 9.82  | 40.00          | 40           | **       |      |               | 0.000 | 0.00          |
| ,6-Dinitro-2-methylphenol  | 1   | 0   |            | 8.89  | 52.25          | 50           | 20       | 0.01 | 0.133         | 0.139 | 4.50          |
| -Nitrosodiphenylamine      | 1   | 0   |            | 8.96  | 54.40          | 50           | 20       |      | 0.622         | 0.676 | 8.80          |
| ,4,6-Tribromophenol        | 1   | 0   | s          | 9.09  | 48.91          | 50           | **       |      | 0.103         | 0.101 | 2.18          |
| ,2-Diphenylhydrazine       | 1   | 0   |            | 9.00  | 60.55          | 50           | **       |      | 0.652         | 0.789 | 21.10         |
| -Bromophenyl-phenylether   | 1   | 0   |            | 9.34  | 51.35          | 50           | 20       | 0.1  | 0.219         | 0.225 | 2.70          |
| lexachlorobenzene          | 1   | 0   |            | 9.41  | 50.63          | 50           | 20       |      | 0.234         | 0.237 | 1.26          |
| I-Octadecane               | 1   | 0   |            | 9.67  | 68.27          | 50           | **       |      | 0.299         | 0.408 | 36.53         |
| Pentachlorophenol          | 1   | 0   |            | 9.61  | 41.00          | 50           | 20       |      | 0.154         | 0.127 | 18.01         |
| Phenanthrene               | 1   | Ō   |            | 9.84  | 53.89          | 50           | 20       |      | 1.051         | 1.132 | 7.77          |
| Anthracene                 | 1   | 0   |            | 9.90  | 54.32          | 50           | 20       |      | 1.079         | 1.172 | 8.64          |
| Carbazole                  | 1   | Ö   |            | 10.07 | 54.76          | 50           | 20       |      | 0.990         | 1.084 | 9.51          |
| Di-n-butylphthalate        |     | 0   |            | 10.45 | 55.88          | 50           | 20       |      | 1.212         | 1.355 | 11.76         |
| fluoranthene               | 1   | 0   |            | 11.19 | 53.21          | 50<br>50     | 20       |      | 1.193         | 1.269 | 6.41          |
| Chrysene-d12               | 1   | 0   | 1          | 12.89 | 40.00          | 40           | **       | 0.0  | 1.155         | 0.000 | 0.00          |
| Pyrene                     | 1   | 0   | •          | 11.45 | 54.95          | 50           | 20       | 0.6  | 1.247         | 1.370 | 9.90          |
| Penzidine                  | 1   | 0   |            | 11.45 | 42.37          | 50<br>50     | 2U<br>** | 0.0  | 0.737         | 0.625 | 9.90<br>15.26 |
| erzidine<br>Terphenyl-d14  |     |     | S          | 11.64 | 26.11          |              | **       |      | 0.737         | 0.665 | 4.43          |
| •                          | 1   | 0   | J          |       |                | 25           | **       |      |               | 0.000 | 4.43          |
| 4'-DDE                     | 1   | 0   |            | 11.57 | 53.46          |              | **       |      | 0.357         |       |               |
| 1,4'-DDD                   | 1   | 0   |            | 11.97 | 56.06          | 50           |          | 0.04 | 0.515         | 0.645 | 14.46         |
| Butylbenzylphthalate       | 1   | 0   |            | 12.22 | 57.23<br>56.03 | 50           | 20       | U.U1 | 0.564         | 0.645 | 14.46         |
| ,4'-DDT                    | 1   | 0   |            | 12.33 | 56.92          | <br><b>.</b> |          |      | 0.581         | 0.400 | 6.70          |
| 3,3'-Dichlorobenzidine     | 1   | 0   |            | 12.85 | 53.39          | 50<br>50     | 20       |      | 0.457         | 0.488 | 6.78          |
| Benzo[a]anthracene         | 1   | 0   |            | 12.88 | 53.17          | 50<br>50     | 20       |      | 1.173         | 1.248 | 6.34          |
| Chrysene                   | 1   | 0   |            | 12.92 | 55.29          | 50<br>50     | 20       |      | 1.086         | 1.201 | 10.57         |
| ois(2-Ethylhexyl)phthalate | 1   | 0   |            | 12.92 | 57.60          | 50           | 20       | 0.01 | 0.757         | 0.872 | 15.20         |
| Perylene-d12               | 1   | 0   | <u>!</u> . | 14.54 | 40.00          | 40           |          |      | 4 6           | 0.000 | 0.00          |
| Di-n-octylphthalate        | 1   | 0   |            | 13.67 | 58.72          | 50           | 20       |      | 1.277         | 1.500 | 17.44         |
| Benzo[b]fluoranthene       | 1   | 0   |            | 14.10 | 57.68          | 50           | 20       |      | 1.130         | 1.304 | 15.35         |
| Benzo[k]fluoranthene       | 1   | 0   |            | 14.13 | 54.80          | 50           | 20       |      | 1.059         | 1.161 | 9.60          |
| Benzo[a]pyrene             | 1   | 0   |            | 14.47 | 54.67          | 50           | 20       |      | 1.003         | 1.097 | 9.35          |
| ndeno[1,2,3-cd]pyrene      | 1   | _0_ |            | 15.93 | 54.79          | 50           | 20       |      | 1.122         | 1.230 | 9.58          |
| Dibenzo[a,h]anthracene     | 1   | 0   |            | 15.95 | 54.49          | 50           | 20       |      | 0.937         | 1.021 | 8.97          |
| Benzo[g,h,i]perylene       | 1   | 0   |            | 16.33 | 53.72          | 50           | 20       | 0.5  | 0.933         | 1.002 | 7.43          |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/5/2020 2:23:00 P Data File: 7M109854.D Method: EPA 8270E Instrument: GCMS 7

| TxtCompd:                      | Col# | Multi<br>Num | Туре | RT   | Conc | Conc<br>Exp | Lo MII<br>Lim Ri |       | RF    | %Diff Flag |
|--------------------------------|------|--------------|------|------|------|-------------|------------------|-------|-------|------------|
| Methoxychlor                   | 1    | 100          |      | 0.00 | 0.00 | 10          | **               |       | 0.000 | 100.00     |
| Endrin                         | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| 2,4 Diaminotoluene             | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| 2,2'-oxybis-(1-Chloropropane)  | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| Methylnaphthalenes (Total)     | 1    | 100          |      | 0.00 | 0.00 | 100         | **               | 0.682 | 0.000 | 100.00     |
| Heptachlor                     | 1    | 100          |      | 0.00 | 0.00 | 10          | **               |       | 0.000 | 100.00     |
| gamma-BHC                      | 1    | 100          |      | 0.00 | 0.00 | 10          | **               |       | 0.000 | 100.00     |
| Dimethylnaphthalenes (Total)   | 1    | 100          |      | 0.00 | 0.00 | 50          | **               | 0.879 | 0.000 | 100.00     |
| 1,4-Dioxane-d8                 | 1    | 100          |      | 0.00 | 0.00 | 40          | **               |       | 0.000 | 100.00     |
| 1,4-Dioxane-d8-Surro           | 1    | 100          |      | 0.00 | 0.00 | 40          | **               |       | 0.000 | 100.00     |
| Diaminotoluene Dihydrochloride | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| Toluene Diisocyanate           | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| 4-Methylphenol                 | 1    | 100          |      | 0.00 | 0.00 | 50          | **               | 0.6   | 0.000 | 100.00     |
| Heptachlor epoxide             | 1    | 100          |      | 0.00 | 0.00 | 10          | **               |       | 0.000 | 100.00     |

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 9:15:00 A Data File: 7M109885.D Method: EPA 8270E Instrument: GCMS 7

| TxtCompd:                                  | Col#             | Multi<br>Num   | Туре     | RT                       | Conc           | Conc<br>Exp | Lo I |                   | Initial<br>RF  | RF    | %Diff  | Flag |
|--------------------------------------------|------------------|----------------|----------|--------------------------|----------------|-------------|------|-------------------|----------------|-------|--------|------|
| ,4-Dioxane-d8(INT)                         | 1                | 0              | 1        | 2.69                     | 40.00          | 40          | **   |                   |                | 0.000 | 0.00   |      |
| I,4-Dioxane                                | 1                | 0              |          | 2.73                     | 49.60          | 50          | **   |                   | 1.035          | 1.027 | 0.81   |      |
| Pyridine                                   | 1                | 0              |          | 3.21                     | 51.76          | 50          | **   |                   | 2.335          | 2.417 | 3.52   |      |
| N-Nitrosodimethylamine                     | 1                | 0              |          | 3.15                     | 58.37          | 50          | **   |                   | 1.466          | 1.712 | 16.74  |      |
| 2-Fluorophenol                             | 1                | _0_            | <u>s</u> | 4.72                     | 51.52          | _50         |      |                   | 2.355          | 2.427 | 3.05   |      |
| 3enzaldehyde                               | 1                | 0              |          | 5.52                     | 53.03          | 50          | 20   | 0.01              | 2.298          | 2.438 | 6.07   |      |
| Aniline                                    | 1                | 0              |          | 5.61                     | 51.47          | 50          | **   |                   | 3.788          | 3.899 | 2.95   |      |
| Pentachloroethane                          | 1                | 0              |          | 5.65                     | 49.46          | 50          | **   | 0.05              | 0.836          | 0.827 | 1.08   |      |
| ois(2-Chloroethyl)ether                    | 1                | 0              |          | 5.67                     | 54.46          | 50          | 20   | 0.7               | 2.509          | 2.669 | 8.92   |      |
| Phenol-d5                                  | 1                | 0              | S        | 5.58                     | 53.90          | 50          | **   |                   | 2.830          | 3.051 | 7.80   |      |
| Phenol                                     | 1                | 0              |          | 5.60                     | 53.47          | 50          | 20   | 0.8               | 3.460          | 3.700 | 6.93   |      |
| 2-Chlorophenol                             | 1                | 0              |          | 5.72                     | 50.96          | 50          | 20   | 0.8               | 2.749          | 2.802 | 1.93   |      |
| N-Decane                                   | 1                | 0              |          | 5.76                     | 58.29          | 50          | **   | 0.05              | 1.917          | 2.235 | 16.58  |      |
| ,3-Dichlorobenzene                         | 1                | 0              |          | 5.85                     | 49.34          | 50          | **   |                   | 2.994          | 2.955 | 1.32   |      |
| ,4-Dichlorobenzene-d4                      | 1                | 0              | . 1      | 5.90                     | 40.00          | 40          | **   |                   |                | 0.000 | 0.00   |      |
| ,4-Dichlorobenzene                         | 1                | 0              |          | 5.91                     | 50.92          | 50          | 20   |                   | 1.484          | 1.512 | 1.84   |      |
| ,2-Dichlorobenzene                         | 1                | 0              |          | 6.03                     | 51.64          | 50          | **   |                   | 1.410          | 1.456 | 3.29   |      |
| Benzyl alcohol                             | 1                | 0              |          | 6.01                     | 44.92          | 50          | **   |                   | 0.837          | 0.752 | 10.16  |      |
| ois(2-chloroisopropyl)ether                | 1                | 0              |          | 6.11                     | 64.78          | 50          | 20   | 0.01              | 1.103          | 1.429 | 29.55  | C1   |
| 2-Methylphenol                             | 1                | 0              |          | 6.10                     | 55.68          | 50          | 20   | 0.7               | 1.172          | 1.305 | 11.37  |      |
| Acetophenone                               | 1                | 0              |          | 6.22                     | 54.49          | 50          | 20   | 0.01              | 1.786          | 1.947 | 8.97   |      |
| lexachloroethane                           | 1                | 0              |          | 6.31                     | 51.53          | 50          | 20   | 0.3               | 0.571          | 0.589 | 3.06   |      |
| N-Nitroso-di-n-propylamine                 | 1                | 0              |          | 6.22                     | 58.66          | 50          | 20   | 0.5               | 0.843          | 0.989 | 17.31  |      |
| 3&4-Methylphenol                           | 1                | 0              |          | 6.22                     | 54.16          | 50          | 20   |                   | 1.200          | 1.300 | 8.32   |      |
| Naphthalene-d8                             | 1                | 0              | 1        | 6.90                     | 40.00          | 40          | **   |                   |                | 0.000 | 0.00   |      |
| Nitrobenzene-d5                            | 1                | 0              | S        | 6.34                     | 25.12          | 25          | **   |                   | 0.159          | 0.160 | 0.49   |      |
| Nitrobenzene                               | 1                | 0              |          | 6.35                     | 53.51          | 50          | 20   | 0.2               | 0.343          | 0.367 | 7.02   |      |
| sophorone                                  | 1                | 0              |          | 6.54                     | 54.22          | 50          | 20   | 0.4               | 0.627          | 0.680 | 8.45   |      |
| 2-Nitrophenol                              | 1                | 0              |          | 6.60                     | 51.48          | 50          | 20   | 0.1               | 0.195          | 0.201 | 2.97   |      |
| 2,4-Dimethylphenol                         | 1                | 0              |          | 6.63                     | 50.02          | 50          | 20   | 0.2               | 0.320          | 0.320 | 0.04   |      |
| Benzoic Acid                               | 1                | 0              |          | 6.69                     | 29.69          | 50          | **   | *** * * ***** * * | 0.233          | 0.128 | 40.63  |      |
| ois(2-Chloroethoxy)methane                 | 1                | 0              |          | 6.70                     | 54.59          | 50          | 20   | 0.3               | 0.383          | 0.418 | 9.17   |      |
| 2,4-Dichlorophenol                         | 1                | 0              |          | 6.79                     | 48.70          | 50          | 20   |                   | 0.306          | 0.298 | 2.61   |      |
| 1,2,4-Trichlorobenzene                     | 1                | 0              |          | 6.85                     | 47.40          | 50          | **   |                   | 0.334          | 0.317 | 5.20   |      |
| Naphthalene                                | 1                | 0              |          | 6.91                     | 50.51          | 50          | 20   | 0.7               | 1.040          | 1.051 | 1.02   |      |
| I-Chloroaniline                            | - <del>i</del> - | 0              |          | 6.95                     | 48.47          | 50          | 20   |                   | 0.418          | 0.405 | 3.05   |      |
| Hexachlorobutadiene                        | 1                | Ō              |          | 7.00                     | 45.61          | 50          | 20   |                   | 0.188          | 0.171 | 8.78   |      |
| Caprolactam                                | 1                | Ö              |          | 7.22                     | 52.39          | 50          | 20   |                   | 0.118          | 0.124 | 4.78   |      |
| I-Chloro-3-methylphenol                    | 1                | 0              |          | 7.32                     | 49.58          | 50          | 20   |                   | 0.308          | 0.305 | 0.83   |      |
| 2-Methylnaphthalene                        | 1                | ō              |          | 7.45                     | 50.49          | 50          | **   |                   | 0.702          | 0.709 | 0.99   |      |
| I-Methylnaphthalene                        | 1                | 0              |          | 7.53                     | 50.28          | _ <u>50</u> | **   |                   | 0.662          | 0.666 | 0.56   |      |
| Methylnaphthalenes                         | 1                | Ō              |          | 7.45                     | 100.77         | 50          | **   | <b>3.</b> •       |                | 1.374 | 101.54 |      |
| I,1'-Biphenyl                              | 1                | Ö              |          | 7.83                     | 49.75          | 50          | 20   | 0.01              | 0.825          | 0.821 | 0.51   |      |
| Acenaphthene-d10                           | 1                | 0              | 1        | 8.34                     | 40.00          | 40          | **   | J. <b>J</b> .     | J. <b>VL</b> V | 0.000 | 0.00   |      |
| 1,2,4,5-Tetrachlorobenzene                 | 1                | 0              | •        | 7.59                     | 49.55          | 50          | 20   | 0.01              | 0.627          | 0.622 | 0.89   |      |
| dexachlorocyclopentadiene                  | 1                | 0              |          | 7.58                     | 32.71          | 50<br>50    | 20   |                   | 0.351          | 0.230 | 34.57  | C1   |
| 2,4,6-Trichlorophenol                      | 1                | 0              |          | 7.68                     | 48.30          | 50<br>50    | 20   |                   | 0.351          | 0.402 | 34.57  | ٠.   |
| 2,4,5-Trichlorophenol                      | 1                | 0              |          | 7.00<br>7.72             | 49.64          | 50<br>50    | 20   |                   | 0.417          | 0.402 | 0.72   |      |
| 2,4,5-1 richlorophenol<br>2-Fluorobiphenyl | 1                | 0              | s        | 7.72<br>7.74             | 49.04<br>25.05 | 25          | 20   | 0.2               | 1.334          | 1.337 | 0.72   |      |
| • •                                        | 1                | 0              | J        | 7.7 <del>4</del><br>7.85 | 51.75          | 50          | 20   | 0.0               | 1.201          | 1.337 | 3.49   |      |
|                                            |                  |                |          | 7.00                     | 31./3          | 50          | 20   | U.0               | 1.201          | 1.242 | 3.49   |      |
| 2-Chloronaphthalene                        | 1                | <del>-</del> 0 |          | 8.14                     | 52.13          | 50          | **   |                   | 0.879          | 0.916 | 4.26   |      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 9:15:00 A Data File: 7M109885.D Method: EPA 8270E Instrument: GCMS 7

| TxtCompd:                  | Col#             | Multi<br>Num | Туре | RT    | Conc  | Conc<br>Exp | Lo I<br>Lim |      | Initial<br>RF | RF    | %Diff Flag                              |
|----------------------------|------------------|--------------|------|-------|-------|-------------|-------------|------|---------------|-------|-----------------------------------------|
| Diphenyl Ether             | 1                | 0            |      | 7.92  | 51.64 | 50          | **          |      | 0.859         | 0.887 | 3.28                                    |
| 2-Nitroaniline             | 1                | 0            |      | 7.93  | 57.61 | 50          | 20          | 0.01 | 0.367         | 0.422 | 15.22                                   |
| Coumarin                   | 1                | 0            |      | 8.12  | 53.80 |             | **          |      | 0.454         |       |                                         |
| Acenaphthylene             | 1                | 0            |      | 8.22  | 52.17 | 50          | 20          |      | 1.762         | 1.838 | 4.33                                    |
| Dimethylphthalate          | 1                | 0            |      | 8.07  | 51.75 | 50          | 20          |      | 1.380         | 1.428 | 3.51                                    |
| 2,6-Dinitrotoluene         | 1                | 0            |      | 8.13  | 52.76 | 50          | 20          | 0.2  | 0.313         | 0.330 | 5.51                                    |
| Acenaphthene               | 1                | 0            |      | 8.37  | 52.63 | 50          | 20          | 0.9  | 1.171         | 1.233 | 5.27                                    |
| 3-Nitroaniline             | 1                | 0            |      | 8.29  | 52.76 | 50          | 20          | 0.01 | 0.349         | 0.369 | 5.53                                    |
| 2,4-Dinitrophenol          | 1                | 0            |      | 8.38  | 50.19 | 50          | 20          | 0.2  | 0.184         | 0.184 | 0.37                                    |
| Dibenzofuran               | _ 1              | 0            |      | 8.53  | 51.07 | 50          | 20          | 0.8  | 1.723         | 1.760 | 2.15                                    |
| 2,4-Dinitrotoluene         | 1                | 0            |      | 8.50  | 53.90 | 50          | 20          | 0.2  | 0.433         | 0.467 | 7.81                                    |
| 4-Nitrophenol              | 1                | 0            |      | 8.43  | 45.43 | 50          | 20          | 0.01 | 0.248         | 0.225 | 9.14                                    |
| 2,3,4,6-Tetrachlorophenol  | 1                | 0            |      | 8.64  | 49.25 | 50          | 20          | 0.01 | 0.376         | 0.371 | 1.51                                    |
| Fluorene                   | 1                | 0            |      | 8.86  | 52.78 | 50          | 20          | 0.9  | 1.381         | 1.457 | 5.57                                    |
| 4-Chlorophenyl-phenylether | 1                | 0            |      | 8.84  | 50.86 | 50          | 20          | 0.4  | 0.694         | 0.706 | 1.72                                    |
| Diethylphthalate           | 1                | 0            |      | 8.72  | 52.45 | 50          | 20          | 0.01 | 1.375         | 1.442 | 4.90                                    |
| 4-Nitroaniline             | 1                | 0            |      | 8.86  | 53.98 | 50          | 20          | 0.01 | 0.371         | 0.400 | 7.96                                    |
| Atrazine                   | 1                | 0            |      | 9.50  | 49.01 | 50          | 20          | 0.01 | 0.455         | 0.446 | 1.98                                    |
| Phenanthrene-d10           | 1                | 0            | ı    | 9.82  | 40.00 | 40          | **          |      |               | 0.000 | 0.00                                    |
| 4,6-Dinitro-2-methylphenol | 1                | 0            |      | 8.89  | 52.16 | 50          | 20          | 0.01 | 0.133         | 0.139 | 4.32                                    |
| n-Nitrosodiphenylamine     | 1                | 0            |      | 8.96  | 52.45 | 50          | 20          | 0.01 | 0.622         | 0.652 | 4.90                                    |
| 2,4,6-Tribromophenol       | 1                | 0            | s    | 9.09  | 48.69 | 50          | **          |      | 0.103         | 0.100 | 2.63                                    |
| 1.2-Diphenylhydrazine      | 1                | 0            |      | 9.00  | 55.98 | 50          | **          |      | 0.652         | 0.730 | 11.95                                   |
| 4-Bromophenyl-phenylether  | 1                | 0            |      | 9.34  | 49.32 | 50          | 20          | 0.1  | 0.219         | 0.216 | 1.37                                    |
| Hexachlorobenzene          | 1                | 0            |      | 9.41  | 48.71 | 50          | 20          |      | 0.234         | 0.228 | 2.57                                    |
| N-Octadecane               | 1                | 0            |      | 9.67  | 63.20 | 50          | **          |      | 0.299         | 0.378 | 26.40                                   |
| Pentachlorophenol          | 1                | 0            |      | 9.61  | 41.43 | 50          | 20          | 0.05 | 0.154         | 0.128 | 17.14                                   |
| Phenanthrene               | 1                | 0            |      | 9.85  | 51.93 | 50          | 20          | 0.7  | 1.051         | 1.091 | 3.87                                    |
| Anthracene                 | 1                | 0            |      | 9.90  | 51.76 | 50          | 20          |      | 1.079         | 1.117 | 3.53                                    |
| Carbazole                  | 1                | 0            |      | 10.07 | 52.49 | 50          | 20          |      | 0.990         | 1.039 | 4.98                                    |
| Di-n-butylphthalate        | - <del>-</del> - | 0            |      | 10.45 | 53.21 | 50          | 20          |      | 1.212         | 1.290 | 6.41                                    |
| Fluoranthene               | 1                | 0            |      | 11.19 | 50.50 | 50          | 20          | 0.6  | 1.193         | 1.204 | 1.00                                    |
| Chrysene-d12               | 1                | 0            | - 1  | 12.90 | 40.00 | 40          | **          |      |               | 0.000 | 0.00                                    |
| Pyrene                     | 1                | 0            |      | 11.46 | 53.71 | 50          | 20          | 0.6  | 1.247         | 1.340 | 7.43                                    |
| Benzidine                  | 1                | 0            |      | 11.34 | 43.00 | 50          | **          |      | 0.737         | 0.634 | 14.01                                   |
| Terphenyl-d14              | 1                | 0            | S    | 11.64 | 26.06 | 25          | **          |      | 0.637         | 0.664 | 4.24                                    |
| 4,4'-DDE                   | 1                | Ō            | _    | 11.57 | 51.87 |             | **          |      | 0.357         |       | _                                       |
| 4,4'-DDD                   | 1                | 0            |      | 11.98 | 53.17 |             | **          |      | 0.515         |       |                                         |
| Butylbenzylphthalate       | 1                | 0            |      | 12.22 | 54.86 | 50          | 20          | 0.01 | 0.564         | 0.619 | 9.71                                    |
| 4,4'-DDT                   | 1                | 0            |      | 12.33 | 54.79 |             | **          |      | 0.581         |       | • • • • • • • • • • • • • • • • • • • • |
| 3,3'-Dichlorobenzidine     | 1                | 0            |      | 12.85 | 52.35 | 50          | 20          | 0.01 | 0.457         | 0.479 | 4.69                                    |
| Benzo[a]anthracene         | 1                | 0            |      | 12.89 | 51.50 | 50          | 20          |      | 1.173         | 1.208 | 3.01                                    |
| Chrysene                   | 1                | 0            |      | 12.93 | 52.98 | 50          | 20          |      | 1.086         | 1.150 | 5.95                                    |
| bis(2-Ethylhexyl)phthalate | 1                | 0            |      | 12.92 | 56.29 | 50          | 20          |      | 0.757         | 0.852 | 12.59                                   |
| Perylene-d12               | 1                | 0            | ı    | 14.54 | 40.00 | 40          | **          | 5.51 | 5.151         | 0.000 | 0.00                                    |
| Di-n-octylphthalate        | <u>_</u>         | 0            |      | 13.67 | 55.49 | 50          | 20          | 0.01 | 1.277         | 1.418 | 10.99                                   |
| Benzo[b]fluoranthene       | 1                | 0            |      | 14.11 | 50.79 | 50          | 20          |      | 1.130         | 1.148 | 1.59                                    |
| Benzo[k]fluoranthene       | 1                | Ö            |      | 14.14 | 51.42 | 50          | 20          |      | 1.059         | 1.089 | 2.84                                    |
| Benzo[a]pyrene             | 1                | 0            |      | 14.48 | 51.60 | 50          | 20          |      | 1.003         | 1.035 | 3.19                                    |
| Indeno[1,2,3-cd]pyrene     | 1                | 0            |      | 15.94 | 53.08 | 50          | 20          |      | 1.122         | 1.191 | 6.16                                    |
|                            | 1                | 0            |      | 15.94 | 52.90 | 50          | 20          |      | 0.937         | 0.992 | 5.80                                    |
| Dibenzo[a,h]anthracene     |                  |              |      | 16.34 |       | 50<br>50    | 20          |      | 0.937         | 0.992 | 3.94                                    |
| Benzo[g,h,i]perylene       | 1                | 0            |      | 10.34 | 51.97 | 50          | 20          | 0.5  | U.933         | 0.970 | 3.94                                    |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 9:15:00 A Data File: 7M109885.D Method: EPA 8270E Instrument: GCMS 7

| TxtCompd:                      | Co# | Multi<br>Num | Туре | RT   | Conc | Conc<br>Exp | Lo MII |       | RF    | %Diff Flag |
|--------------------------------|-----|--------------|------|------|------|-------------|--------|-------|-------|------------|
| Heptachlor                     | 1   | 100          |      | 0.00 | 0.00 | 10          | **     |       | 0.000 | 100.00     |
| Toluene Diisocyanate           | 1   | 100          |      | 0.00 | 0.00 | 50          | **     |       | 0.000 | 100.00     |
| 2,2'-oxybis-(1-Chloropropane)  | 1   | 100          |      | 0.00 | 0.00 | 50          | **     |       | 0.000 | 100.00     |
| Methylnaphthalenes (Total)     | 1   | 100          |      | 0.00 | 0.00 | 100         | **     | 0.682 | 0.000 | 100.00     |
| Methoxychlor                   | 1   | 100          |      | 0.00 | 0.00 | 10          | **     |       | 0.000 | 100.00     |
| 1,4-Dioxane-d8                 | 1   | 100          |      | 0.00 | 0.00 | 40          | **     |       | 0.000 | 100.00     |
| 1,4-Dioxane-d8-Surro           | 1   | 100          |      | 0.00 | 0.00 | 40          | **     |       | 0.000 | 100.00     |
| 2,4 Diaminotoluene             | 1   | 100          |      | 0.00 | 0.00 | 50          | **     |       | 0.000 | 100.00     |
| gamma-BHC                      | 1   | 100          |      | 0.00 | 0.00 | 10          | **     |       | 0.000 | 100.00     |
| Endrin                         | 1   | 100          |      | 0.00 | 0.00 | 50          | **     |       | 0.000 | 100.00     |
| Dimethylnaphthalenes (Total)   | 1   | 100          |      | 0.00 | 0.00 | 50          | **     | 0.879 | 0.000 | 100.00     |
| Diaminotoluene Dihydrochloride | 1   | 100          |      | 0.00 | 0.00 | 50          | **     |       | 0.000 | 100.00     |
| 4-Methylphenol                 | 1   | 100          |      | 0.00 | 0.00 | 50          | **     | 0.6   | 0.000 | 100.00     |
| Heptachlor epoxide             | 1   | 100          |      | 0.00 | 0.00 | 10          | **     |       | 0.000 | 100.00     |

Evaluation Std Data File: 7M109440.D Internal Standard Areas

FORM8

Method: EPA 8270E

Analysis Date/Time: 09/17/20 13:20 Lab File ID: CAL BNA@50PPM

|                      |                                    | 1                 | 1            |                     | i      | 1              | ļ      | !           |               | 1           |                |       |                | · · · · · · · · · · · · · · · · · · · |                | 1 1 4 1 |
|----------------------|------------------------------------|-------------------|--------------|---------------------|--------|----------------|--------|-------------|---------------|-------------|----------------|-------|----------------|---------------------------------------|----------------|---------|
|                      |                                    | =                 |              | 12                  |        | ಪ              |        |             | _             |             | 5              | -     | 16             |                                       | 17             |         |
| 28                   |                                    | Area              | R            | Area                | 끽      | Area           | RT     | Area        | Ŗ             | <b>&gt;</b> | Area           | 괵     | Area           | 직                                     | Area           | 괵       |
|                      | Eval File Area/RT:                 | 73342             | 2.70         | 143111              | 5.90   | 535871         | 6.90   | 299982      | 8.35          | 591         | 591079         | 9.83  | 566863         | 12.89                                 | 606663         | 14.54   |
| Eval File Area Limit | rea Limit:                         | 36671-146684      | 6684         | 71556-286222        | 6222   | 267936-1071742 | 071742 | 149991      | 149991-599964 | 20          | 295540-1182158 | 32158 | 283432-1133726 | 33726                                 | 303332-1213326 | 13326   |
| Eval Fi              | Eval File Rt Limit:                | 2.2-3.2           | 2            | 5.4-6.4             | 4      | 6.4-7.4        | 7.4    | 7.85        | 7.85-8.85     |             | 9.33-10.33     | ္ထ    | 12.39-13.39    | 3.39                                  | 14.04-15.04    | 2       |
| Data File Sample#    | <b>4</b> 4<br> <br> <br> <br> <br> | <u> </u><br> <br> | <u> </u><br> | <br> <br> <br> <br> | !<br>! |                |        |             |               | į<br>į      | !<br>!         |       |                |                                       |                |         |
| 7M109432.D CAL E     | CAL BNA@2PPM                       | 69531             |              | 0 148428            | -      | 90 561422      |        | 6.90 316478 | -             | 8.35        | 606550         | 9.82  | 573487         | 12.89                                 | 547194         | 14.53   |
| 7M109433.D CAL E     | CAL BNA@10PPM                      | 64785             | 5 2.70       |                     |        | 5.89 507069    | _      | 6.90 279139 | Ī             | 8.35        | 539654         | 9.82  | 514810         | 12.89                                 | 506378         | 14.53   |
| 7M109434.D CAL E     | BNA@196PPM                         | 6707              |              |                     |        |                | -      | 6.91 277961 |               | 8.35        | 551065         | 9.83  | 511721         | 12.90                                 | 549912         | 14.54   |
| 7M109435.D CAL E     | BNA@160PPM                         | 6776              |              |                     | -      |                |        | 6.91 2917   |               | 8.35        | 586013         | 9.83  | 545173         | 12.90                                 | 587760         | 14.54   |
| 7M109436.D CAL E     | CAL BNA@120PPM                     | 6995              | İ            | !<br>               |        |                |        | .90 296088  |               | 35          | 589714         | 9.83  | 559462         | 12.90                                 | 599997         | 14.54   |
| 7M109437.D CAL E     | CAL BNA@80PPM                      | 7085              |              |                     |        |                | _      | 6.91 2978   |               | 8.36        | 591364         | 9.83  | 573376         | 12.89                                 | 606957         | 14.54   |
| 7M109438.D CAL E     | CAL BNA@20PPM                      | 72238             |              | 0 147645            |        |                |        | 6.90 303248 |               | 8.35        | 586639         | 9.82  | 574202         | 12.89                                 | 588787         | 14.54   |
| 7M109439.D CAL E     | CAL BNA@0.5PPM                     | 7647              |              |                     | _      |                |        | 6.91 332270 | Ŭ             | 8.35        | 642708         | 9.83  | 623159         | 12.89                                 | 617986         | 14.56   |
| 7M109440.D CAL E     | CAL BNA@50PPM                      | 7334              |              |                     |        | 90 53587       | _      | 6.90 299982 |               | 8.35        | 591079         | 9.83  | 566863         | 12.89                                 | 606663         | 14.54   |
| 7M109441.D ICV B     | ICV BNA@50PPM                      | 67053             |              | 0 134202            | , •    | 5.90 503057    |        | 6.90 276686 | 1             | 8.35        | 543669         | 9.83  | 533914         | 12.89                                 | 555170         | 14.54   |
|                      |                                    |                   |              |                     |        |                |        |             |               |             |                |       |                |                                       |                |         |

| ۱ | ₹        |
|---|----------|
|   | 륪        |
|   | ¥        |
|   | ऱ        |
|   | <u>۳</u> |
|   | S        |
|   | ជ        |
|   | 5        |
|   | ٩        |
|   | 읙        |
|   | غ        |
|   | ъ        |
|   | Ź        |
|   | 8        |
|   | ឆ        |

11 = 12 = 13 =

1,4-Dioxane-d8(INT)
1,4-Dichlorobenzene-d4
Naphthalene-d8

15 H 16 H

Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12

17 =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8360 Internal Standard concentration = 30 ug/L
524 Internal Standard concentration = 5 ug/L

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria.

Internal Standard Areas FORM8

Evaluation Std Data File: 9M101321.D

Method: EPA 8270E

Analysis Date/Time: 09/17/20 13:22

Lab File ID: CAL BNA@50PPM

|                                         | 9M101324.D | 9M101323.D | 9M101322.D    | 9M101321.D    | 9M101320.D     | 9M101319.D    | 9M101318.D    | 9M101317.D     | 9M101316.D     |                | 9M101314.D   | 9M101313.D    | Data File S | т.                  | O O                   |                    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 301             |
|-----------------------------------------|------------|------------|---------------|---------------|----------------|---------------|---------------|----------------|----------------|----------------|--------------|---------------|-------------|---------------------|-----------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                         | SMB88018   | SMB88017   | ICV BNA@50PPM | CAL BNA@50PPM | CAL BNA@0.5PPN | CAL BNA@20PPM | CAL BNA@80PPM | CAL BNA@120PPN | CAL BNA@160PPN | CAL BNA@196PPN | CAL BNA@2PPM | CAL BNA@10PPM | Sample#     | Eval File Rt Limit: | Eval File Area Limit: | Eval File Area/RT: | the result of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th |                 |
| 1                                       | 45386      | 492        | 46870         |               | _              | 502           | 50413         |                | _              |                | 57993        | 51565         |             | 2.2-3.2             | 26070-104282          | 52141              | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =               |
|                                         | •          | _          | i —<br>I      |               | •              | •             | •             |                |                | _              | _            | •             |             | 3.2                 | 04282                 | 2.70               | 곡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
|                                         |            |            |               |               |                |               | 2.70          | ļ              |                |                | .71          | 70            |             | <br> <br>           | 485                   | 97053              | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| 2                                       | 84733      | 94546      | 89922         | 97053         | 105764         | 98086         | 96900         | 100690         | 99671          | 98295          | 109516       | 94603         |             | 5.4-6.4             | 48526-194106          |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12              |
| 2                                       | 5.90       | 5.90       | 5.90          | 5.90          | 5.90           | 5.90          | 5.90          | 5.90           | 5.91           | 5.91           | 5.90         | 5.90          |             |                     | 8                     | 5.90               | 끅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 321859     | 3577       | 342712        | 3690          | 4018           | 373           | 367645        | 3886           | 380119         | 37091          | 415864       | 35764         |             | 6.41-7.41           | 184986-739944         | 369972             | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ı               |
| •                                       | •          | -          |               |               |                |               |               |                |                | 4              | _            | -             | i<br>:      | .7.41               | 739944                | 6.91               | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| )                                       | 6.91       | 6.91       | 6.91          | 6.91          | 6.91           | 6.91          | 6.91          | 6.91           | 6.91           | 6.91           | 6.91         | 6.91          | i<br>İ      |                     |                       | 19                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                         | 165009     | 185930     | 179589        | 193560        | 207520         | 195446        | 189022        | 204304         | 201097         | 198313         | 224715       | 186206        |             | 7.85-8.85           | 96780-387120          | 193560             | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14              |
| ,                                       | 8.35       | _          | 8.35          | 8.35          | 8.35           | 8.35          |               | 8.35           | 8.35           | 8.35           | 8.35         | 8.35          |             | 85                  | 7120                  | 8.35               | 직                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
|                                         |            |            | !             |               |                |               | 5 364874      | į              |                |                |              |               | !           | 9.32                | 18727                 | 374543             | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                         | _          |            |               | •             | ·              | -             |               |                | •              |                | _            | _             |             | 9.32-10.32          | 187272-749086         | 9.82               | ᅍ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5               |
|                                         | 9.82       | 9.82       | 9.82          | 9.82          | 9.82           | 9.82          | 9.82          | 9.82           | 9.82           | 9.83           | 9.82         | 9.82          | !<br>!      | <u></u>             | 6                     |                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del> -   |
| 346630                                  | 309160     | 347985     | 350075        | 375977        | 398325         | 381268        | 368614        | 389040         | 376869         | 372874         | 428070       | 362365        |             | 12.39-13.39         | 187988-75195          | 375977             | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>-</del> 16 |
| 3 01                                    | 12.88      | 12.89      | 12.89         | 12.89         | 12.89          | 12.89         | 12.89         | 12.90          | 12.90          | 12.90          | 12.89        | 12.89         | <br>        | 3.39                | 51954                 | 12.89              | 꼰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| 3/07/0                                  |            |            |               |               |                |               | 384858        |                |                |                |              |               | !<br>:      | 14.03               | 193707                | 387414             | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                         |            |            |               |               |                |               | 38 14.53      | ļ              |                |                | 26 14.52     |               | !<br> <br>  | 14.03-15.03         | 193707-774828         | 14.53              | RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7               |

# Internal Standard Areas

11 = 12 = 13 =

1,4-Dioxane-d8(INT) 1,4-Dichlorobenzene-d4 Naphthalene-d8

Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12

**17** =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8260 Internal Standard concentration = 30ug/L
524 Internal Standard concentration = 5ug/L

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria

Eval File Area/RT:

65105 Area

2.71 즤

119885

5.90

461983

6.91 꼭

239583

8.35

457492

9.82 곡

462375

12.88 곡

483656

14.51

Area

Area

Area

55

Area

Area

FORM8

Evaluation Std Data File: 9M101531.D Internal Standard Areas

Analysis Date/Time: 10/05/20 08:52

Method: EPA 8270E

Lab File ID: CAL BNA@50PPM

| 96         | Eval File Area Limit | 32552-130210 |      | 59942-239770 | (    | 230992-923966 | නි  <br>: | 119792-479166 | 6           | 228746-91498 | 98<br>4        | 231188-924750 | 1750  | 241828-96731 | 7312  |
|------------|----------------------|--------------|------|--------------|------|---------------|-----------|---------------|-------------|--------------|----------------|---------------|-------|--------------|-------|
| l          | Eval File Rt Limit   | 2.21-3.21    |      | 5.4-6.4      | -    | 6.41-7.41     |           | 7.85-8.85     | <br>        | 9.32-10.32   | <b>7</b>  <br> | 12.38-13.38   | 38    | 14.01-15.01  | 5     |
| Data File  | Sample#              |              |      |              |      |               |           |               |             |              |                |               |       |              |       |
| 9M101532.D | 2.D SMB88130(MS)     |              | 2.69 |              | 5.90 | 368822        | 6.92      | 189186        | 8.37        | 358445       | 9.83           | 357125        | 12.89 | 353175       |       |
| 9M101533.D | 3.D SMB88131(MS)     |              | 2.68 | -            | 5.90 | 332718        | 6.91      | 173758        | 8.34        | 331275       | 9.82           | 329856        | 12.88 | 328524       |       |
| 9M10153    | 4.D SMB88130         |              | 2.69 |              | 5.90 | 344510        | 6.91      | 176047        | 8.34        | 344433       | 9.82           | 324771        | 12.88 | 322191       |       |
| 9M101535.D |                      |              | 2.69 |              | 5.90 | 345735        | 6.91      | 177057        | 8.34        | 344028       | 9.82           | 328824        | 12.88 | 320931       |       |
| 9M10153    | 6.D PEST MIX@50      | ĺ            | 2.71 |              | 5.90 | 435540        | 6.92      | 224827        | 8.36        | 434485       | 9.83           | 420707        | 12.88 | 414737       | i     |
| 9M101537.D | 7.D BENZALDEHYDE     | 59207        | 2.70 | 109480       | 5.90 | 409281        | 6.91      | 212137        | 8.34        | 412363       | 9.82           | 392719        | 12.88 | 394091       |       |
| 9M10153    | 8.D EXT MIX 1ST      |              | 2.71 |              | 5.90 | 440134        | 6.91      | 233916        | 8.35        | 455575       | 9.82           | 433921        | 12.88 | 435348       |       |
| 9M101539.D | 9.D EXT MIX 2ST      |              | 2.71 | _            | 5.90 | 429558        | 6.91      | 223874        | 8.35        | 437158       | 9.82           | 411076        | 12.88 | 402448       |       |
| 9M101540.D | 0.D AD19540-002(R)   |              | 2.68 |              | 5.90 | 383591        | 6.91      | 198633        | 8.34        | 381877       | 9.82           | 364232        | 12.88 | 353248       |       |
| 9M101541.C | 1.D AD19587-004      | į            | 2.68 | i            | 5.90 | 380382        | 6.91      | 200151        | 8.34        | 383916       | 9.82           | 364894        | 12.88 | 356488       | 14.51 |
| 9M101542.E | 2.D AD19587-004(MS)  |              | 2.70 | -            | 5.90 | 365617        | 6.91      | 192345        | 8.35        | 361810       | 9.82           | 357957        | 12.88 | 358978       |       |
| 9M101543.D | 3.D AD19587-004(MSD) |              | 2.70 | _            | 5 90 | 365321        | 6.91      | 191480        | ر<br>د<br>د | 365053       | φ<br>80        | 362200        | 10 88 | 362771       |       |

# Internal Standard Areas

12 = 13 =

1,4-Dioxane-d8(INT) 1,4-Dichlorobenzene-d4 Naphthalene-d8

**15** = **16** 

Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12

17 =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8260 Internal Standard concentration = 30 ug/L
524 Internal Standard concentration = 5 ug/L

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt

Retention Times:

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria.

Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

Internal Standard Areas FORM8

Evaluation Std Data File: 7M109840.D

Method: EPA 8270E

Analysis Date/Time: 10/05/20 08:44

Lab File ID: CAL BNA@50PPM

| (          |                       |              |        |              |       | T              | 1       | <br> -<br> - |               |          | 1                |        | 1              |         |            |                |
|------------|-----------------------|--------------|--------|--------------|-------|----------------|---------|--------------|---------------|----------|------------------|--------|----------------|---------|------------|----------------|
| 0          |                       | =            |        | 12           |       |                | ω       |              | <b>4</b>      |          | 15               |        | <u>.</u>       |         | _          | 7              |
| 28         |                       | Area         | P      | Area         | 끽     | Area           | 막       | -            | Area          | 꼭        | Area             | 끽      | Area           | 낌       | Area       | 괵              |
| 92         | Eval File Area/RT;    |              | 2.69   | 180878       | 5.90  | 689370         | 6.90    |              | 365958        | 8.34     | 708422           | 9.82   | 662824         | 12.89   | 682268     | 14.54          |
| 00         | Eval File Area Limit: | 48974-195898 | 898    | 90439-361756 | 61756 | 344685-1378740 | 137874  | -            | 182979-731916 | 1916     | 354211-1416844   | 416844 | 331412-1325648 | 1325648 | 341134     | 341134-1364536 |
| ,          | Eval File Rt Limit:   | 2.19-3.19    | 9      | 5.4-6.4      | .4    | 6.4            | 6.4-7.4 |              | 7.84-8.84     | <b>A</b> | 9.32-10.32       | 0.32   | 12.39-13.39    | 13.39   | 14.02      | 14.04-15.04    |
| Data File  | Sample#               |              | i<br>İ |              | <br>  |                | !<br>!  | {<br>!<br>!  |               | :        | :<br>!<br>!<br>! |        |                |         | <br>!<br>! |                |
| 7M109841.D | .D AD19515-005        | 82133        | 2.6    |              | _     | 90 581634      |         | 6.89         | 191756        | 8.34     | 531685           | •      | 2 296579       | _       |            |                |
| 7M109842.D | .D AD19451-004        | 71283        | 2.68   | 8 140040     |       | 90 545937      | 7       | 6.89         | 284669        | 8.34     |                  |        |                |         | 9 409996   | -              |
| 7M109843.C | D AD19451-005         | 74016        | 2.6    |              |       |                |         | 6.89         | 287214        | 8.34     |                  | •      |                |         |            |                |
| 7M109844.D | I.D AD19451-006       | 77515        | 2.6    |              |       |                |         | 6.89         | 306656        | 8.34     |                  | •      |                |         |            | _              |
| 7M109845.D | D SMB88130            | 77260        | 2.6    |              |       | i<br>:         | ļ       | 6.89         | 276316        | 8.34     | :                |        | İ              | ļ       | į          |                |
| 7M109846.D | 3.D AD19265-002(3X)   | 81318        | 2.7    |              |       | 90 564166      |         | 6.89         | 291481        | 8.34     |                  | •      |                |         |            | -              |
| 7M109847.D | D AD19265-002         | 80776        | 2.6    |              |       |                |         | 6.89         | 296743        | 8.34     |                  | •      |                |         |            | •              |
| 7M109848.D | 3.D AD19414-003(3X)   | 83338        | 2.6    |              | -     |                |         | 6.89         | 325428        | 8.34     |                  | -      |                | -       |            | •              |
| 7M109849.D | ).D AD19451-007       | 72277        | 2.7    |              |       |                |         | 6.89         | 308080        | 8.34     |                  | -      |                | Ī       |            | ·              |
| 7M109850.D | D AD19501-001(R)      | 73346        | 2.6    | }            | İ     | !              | 1       | 6.89         | 316300        | 8.34     |                  |        | İ              |         | ļ          | İ              |
| 7M109851.D | .D AD19501-003(R)     | 79543        | 2.69   |              |       |                |         | 6.89         | 331604        | 8.34     |                  | 1 9.82 |                | 6 12.89 |            | 30 14.54       |
| 7M109852.D | P.D AD19506-002(R)    | 85144        | 2.69   | 9 170535     | •     | 5.89 665669    |         | 6.89         | 342053        | 8.34     |                  | _      | 2 539083       | -       |            |                |

| ternal Stanc |                                                           |
|--------------|-----------------------------------------------------------|
| lard A       | 13 = 12 = 11 = 11 = 11 = 11 = 11 = 11 =                   |
| ireas        | 1,4-Dioxane-d8(INT) 1,4-Dichlorobenzene-d4 Naphthalene-d8 |

15 = 16 =

Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12

7=

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8260 Internal Standard concentration = 30 ug/L
524 Internal Standard concentration = 5 ug/L

Upper Limit = + 100% of internal standard area from daily cal or mid pt Lower Limit = - 50% of internal standard area from daily cal or mid pt.

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria.

Retention Times: Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

# Internal Standard Areas FORM8

Evaluation Std Data File: 7M109854.D

Method: EPA 8270E

Analysis Date/Time: 10/05/20 14:23 Lab File ID: CAL BNA@50PPM

| Eval File Area/RT;    | 85650     | 2.69      | 35650 2.69 156565 5.90    | 5.90  | 614305 6.89 | 6.89    | 1         | 8.34  |            | 9.82   | 9.82 583707 12.89 602390 14.54 | 12.89       | 583707 12.89 602390 14.54 | 14.54  |
|-----------------------|-----------|-----------|---------------------------|-------|-------------|---------|-----------|-------|------------|--------|--------------------------------|-------------|---------------------------|--------|
| Eval File Area Limit: | 42825-17  | 1300      | 42825-171300 78282-313130 | 13130 |             | 1228610 | 1         | 55568 | 31859      | 74384  | 291854-1167414                 | 167414      | 301195-1204780            | 120478 |
| Eval File Rt Limit    | 2.19-3.19 | 2.19-3.19 | 5.4-6.4                   | 5.4   | 6.39-7.39   | 7.39    | 7.84-8.84 | 23.   | 9.32-10.32 | -10.32 | 12.39-                         | 12.39-13.39 | 12.39-13.39 14.04-15.04   | 15.04  |

| 7M109883.D A | 7M109882.D A    | 7M109881.D A | 7M109880.D A | 7M109879.D A | 7M109878.D A | 7M109877.D A | 7M109876.D A |             | 7M109874.D A    |                 | 7M109872.D A    | 7M109871.D A    | 7M109870.D A    | 7M109869.D A | 7M109868.D A | 7M109867.D A | 7M109866.D A | 7M109865.D A   | 7M109864.D 1 | 7M109863.D A   | 7M109862.D A   | 7M109861.D A       | 7M109860.D A   | 7M109859.D A   | 7M109858.D A   | 7M109857.D A   | 7M109856.D A   | 7M109855.D S | Data File Sa |
|--------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------|--------------|--------------|--------------|----------------|--------------|----------------|----------------|--------------------|----------------|----------------|----------------|----------------|----------------|--------------|--------------|
| AD19479-017  | AD19479-015(5X) | AD19479-013  | AD19479-011  | AD19479-009  | AD19479-007  | AD19479-005  | AD19479-003  | AD19479-001 | AD19443-002(3X) | AD19596-001(5X) | AD19581-008(5X) | AD19560-001(5X) | AD19587-002(5X) | AD19587-006  | AD19587-005  | AD19587-003  | AD19587-001  | AD19513-004(R) | 19513-003(R) | AD19515-004(R) | AD19515-005(R) | AD19509-006(3X)(R) | AD19510-006(R) | AD19507-006(R) | AD19505-004(R) | AD19505-002(R) | AD19506-004(R) | SMB88131     | Sample#      |
| 77171        | 88279           | 88377        | 87367        | 82445        | 72871        | 77148        | 83332        | 82457       | 82675           | 85410           | 88094           | 90464           | 84615           | 88246        | 84124        | 90755        | 82647        | 88789          | 90942        | 83303          | 88196          | 94004              | 82883          | 81869          | 83559          | 81152          | 85253          | 76069        |              |
| 2.69         | 2.70            | 2.68         | 2.69         | 2.68         | 2.68         | 2.68         | 2.68         | 2.69        | 2.69            | 2.70            | 2.70            | 2.69            | 2.70            | 2.68         | 2.69         | 2.68         | 2.68         | 2.68           | 2.69         | 2.70           | 2.68           | 2.69               | 2.68           | 2.68           | 2.68           | 2.68           | 2.68           | 2.68         | <br>         |
| 151157       | 173638          | 174784       | 174584       | 158438       | 144393       | 152621       | 165188       | 158148      | 154329          | 168376          | 173682          | 178782          | 166519          | 173291       | 164584       | 174743       | 161160       | 175884         | 175902       | 163501         | 174686         | 195426             | 167501         | 168915         | 164721         | 162841         | 163102         | 142494       |              |
| 5.90         | 5.90            | 5.90         | 5.90         | 5.89         | 5.90         | 5.90         | 5.90         | 5.89        | 5.90            | 5.90            | 5.89            | 5.90            | 5.90            | 5.90         | 5.90         | 5.89         | 5.89         | 5.89           | 5.89         | 5.89           | 5.90           | 5.90               | 5.90           | 5.89           | 5.89           | 5.89           | 5.89           | 5.89         |              |
| 569885       | 664401          | 666794       | 663283       | 608113       | 553167       | 584803       | 626415       | 606772      | 522398          | 606003          | 644940          | 684578          | 623518          | 654189       | 621697       | 651083       | 620518       | 666828         | 664455       | 613909         | 679158         | 734107             | 648257         | 652968         | 645144         | 637072         | 642717         | 546364       | i            |
| 6.89         | 6.89            | 6.89         | 6.89         | 6.89         | 6.89         | 6.89         | 6.89         | 6.89        | 6.90            | 6.89            | 6.89            | 6.89            | 6.89            | 6.89         | 6.89         | 6.89         | 6.89         | 6.89           | 6.89         | 6.89           | 6.89           | 6.89               | 6.89           | 6.89           | 6.89           | 6.89           | 6.89           | 6.89         |              |
| 286841       | 340306          | 338694       | 336093       | 314636       | 281015       | 298777       | 324415       | 309832      | 320276          | 302688          | 323908          | 349074          | 322972          | 336173       | 309133       | 311969       | 313260       | 340008         | 341195       | 317066         | 347617         | 375549             | 332096         | 335292         | 338771         | 336948         | 334603         | 286125       |              |
| 8.34         | 8.34            | 8.34         | 8.34         | 8.34         | 8.34         | 8.34         | 8.34         | 8.34        | 8.35            | 8.34            | 8.34            | 8.34            | 8.34            | 8.34         | 8.34         | 8.34         | 8.34         | 8.34           | 8.34         | 8.34           | 8.34           | 8.34               | 8.34           | 8.34           | 8.34           | 8.34           | 8.34           | 8.34         | <br> <br>    |
| 517556       | 620956          | 601200       | 608064       | 568431       | 511208       | 538286       | 575402       | 561172      | 519978          | 562361          | 574072          | 610232          | 590145          | 608392       | 555063       | 578793       | 560532       | 590550         | 615293       | 576402         | 615505         | 653912             | 589801         | 634376         | 629794         | 626607         | 632581         | 548215       |              |
| 9.82         | 9.82            | 9.82         | 9.82         | 9.82         | 9.82         | 9.82         | 9.82         | 9.82        | 9.84            | 9.82            | 9.82            | 9.82            | 9.82            | 9.82         | 9.82         | 9.82         | 9.82         | 9.82           | 9.82         | 9.82           | 9.82           | 9.82               | 9.82           | 9.82           | 9.82           | 9.82           | 9.82           | 9.82         | i<br>!       |
| 410089       | 476418          | 484798       | 481069       | 451204       | 409452       | 426281       | 457582       | 440553      | 484559          | 477309          | 502469          | 490374          | 460773          | 483257       | 435479       | 498191       | 434137       | 481784         | 482755       | 435133         | 476149         | 528235             | 482028         | 533513         | 537771         | 542260         | 552559         | 495110       | !<br>!<br>!  |
| 12.89        | 12.89           | 12.89        | 12.89        | 12.89        | 12.89        | 12.89        | 12.89        | 12.89       | 12.90           | 12.89           | 12.90           | 12.89           | 12.89           | 12.89        | 12.89        | 12.89        | 12.89        | 12.89          | 12.89        | 12.89          | 12.89          | 12.89              | 12.89          | 12.89          | 12.89          | 12.89          | 12.89          | 12.89        | l<br> <br>   |
| 354317       | 426238          | 433232       | 427798       | 397848       | 356768       | 380114       | 413308       | 409159      | 457863          | 459031          | 484464          | 472219          | 434238          | 458526       | 418140       | 464676       | 421659       | 478247         | 486358       | 426012         | 473488         | 543075             | 502539         | 492803         | 499968         | 510594         | 516215         | 464138       | !            |
| 14.54        | 14.54           | 14.54        | 14.54        | 14.54        | 14.54        | 14.54        | 14.54        | 14.54       | 14.54           | 14.54           | 14.54           | 14.54           | 14.54           | 14.54        | 14.54        | 14.54        | 14.54        | 14.54          | 14.54        | 14.54          | 14.54          | 14.54              | 14.54          | 14.54          | 14.53          | 14.54          | 14.54          | 14.53        |              |

| _          |
|------------|
| -          |
| IΦ         |
| Ιã         |
| ı⊰         |
| _          |
| ıω         |
| =          |
| l          |
| KO)        |
| -          |
| ندا        |
| !=         |
|            |
| ᄓ          |
|            |
| 120        |
| 13         |
| <u>.</u>   |
| -          |
| <b>I</b> ~ |
| _          |
| 13         |
| læ –       |
|            |
| ið)        |
| KO .       |
|            |
|            |
|            |
|            |

11 = 12 = 13 =

1,4-Dioxane-d8(INT)
1,4-Dichlorobenzene-d4
Naphthalene-d8

15 H

Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12

**17** =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8360 Internal Standard concentration = 30 ug/L
524 Internal Standard concentration = 5 ug/L

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria

Internal Standard Areas

FORM8

Evaluation Std Data File: 7M109885.D

Method: EPA 8270E

Analysis Date/Time: 10/06/20 09:15 Lab File ID: CAL BNA@50PPM

| 806                            |                      | Area 11      | 끽     | <b>≥</b>                                             | I2<br>Area                                                                                            | 콥.                                           | Area           | 괵       | >                                     | Area                                                                                        | 끽                                                     | Area 15                                                                                        | 짇                                       | Area   | Б                                                                                           |                                                                                        | 1 | Area                                                                              |
|--------------------------------|----------------------|--------------|-------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------|---------|---------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------|--------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------|
|                                | Eval File Area/RT:   | 94184        | 2.69  | 182                                                  | 182720                                                                                                | 5.90                                         | 716778         | 6.90    | 383790                                |                                                                                             | 8.34                                                  | 751796                                                                                         | 9.82                                    | 676649 | 9 12.90                                                                                     |                                                                                        | _ | 697653 14.54                                                                      |
|                                | Eval File Area Limit | 47092-188368 | 88368 | 9                                                    | 91360-365440                                                                                          | 3                                            | 358389-1433556 | 1433556 | 75                                    | 191895-767580                                                                               |                                                       | 375898-1503592                                                                                 | 503592                                  | 33832  | 338324-1353298                                                                              |                                                                                        |   | 348826-1                                                                          |
| · ·                            | Eval File Rt Limit:  | 2.19-3.19    | 3.19  |                                                      | 5.4-6.4                                                                                               | i<br>                                        | 6.4-7.4        | 7.4     |                                       | 7.84-8.84                                                                                   |                                                       | 9.32-                                                                                          | 0.32                                    | 12     | 12.4-13.4                                                                                   |                                                                                        |   | 14.04                                                                             |
| Data File                      | Sample#              |              |       |                                                      |                                                                                                       | !<br>!                                       |                |         |                                       |                                                                                             |                                                       | '                                                                                              |                                         |        |                                                                                             |                                                                                        |   | :                                                                                 |
| 7M109886.D                     | D AD19479-019        | 83793        | -     | .68                                                  | 160154                                                                                                |                                              |                |         | ,                                     |                                                                                             |                                                       |                                                                                                |                                         |        |                                                                                             |                                                                                        | : | 1                                                                                 |
| 7M109887.D                     | D AD19479-015(3X)    | 82337        |       | 2.69                                                 | 2                                                                                                     | 5.89                                         |                | -       |                                       | 321180                                                                                      | 8.34                                                  | 59761                                                                                          |                                         |        |                                                                                             | 12.89                                                                                  |   | 468940                                                                            |
| 7M109888.D                     | D 19515-004          |              | 0     | .00R                                                 | 160985                                                                                                | 5.89<br>5.89                                 | 615133         |         |                                       | 321180<br>321469                                                                            | 8.34<br>8.34                                          | 59761<br>58883                                                                                 |                                         |        |                                                                                             | 12.89<br>12.89                                                                         |   | 468940<br>460132                                                                  |
| 7M109889.D                     | O AD19515-004        | 731          |       |                                                      | 160985                                                                                                | 5.89<br>5.89<br>0.00                         |                |         | 6.89<br>6.89<br>0.00R                 | 321180<br>321469<br>0                                                                       | 8.34<br>8.34<br>0.00F                                 | 59761<br>58883                                                                                 |                                         | ~      |                                                                                             | 12.89<br>12.89<br>0.00R                                                                |   | 468940<br>460132                                                                  |
| 7M109890.D                     | AD19587-002          | 852<br>852   | i     | .68                                                  | 160985<br>0<br>141708                                                                                 | 5.89<br>5.89<br>5.90                         |                |         | Z)                                    | 321180<br>321469<br>0<br>243714                                                             | 8.34<br>8.34<br>0.00F                                 | 59761<br>58883<br>8<br>52000                                                                   |                                         | ~      |                                                                                             | 12.89<br>12.89<br>0.00R<br>12.89                                                       | 1 | 468940<br>460132<br>C<br>195413                                                   |
| 7M109891.D                     | AD19414-003          | 73559        |       | 69                                                   | 160985<br>0<br>141708<br>161 <u>933</u>                                                               | 5.89<br>5.89<br>5.90<br>5.90                 |                |         | 7                                     | 321180<br>321469<br>0<br>243714<br>316838                                                   | 8.34<br>0.00F<br>8.34<br>8.34                         | 59761<br>58883<br>52000<br>57492                                                               |                                         | ~      |                                                                                             | 12.89<br>12.89<br>0.00R<br>12.89<br>12.89                                              |   | 468940<br>460132<br>0<br>195413<br>458925                                         |
| 7M109892.D                     | D 19513-003          | 933          |       | 69                                                   | 160985<br>0<br>141708<br>161933<br>139422                                                             | 5.89<br>5.89<br>5.90<br>5.89                 | 1              | Ì       | 7                                     | 321180<br>321469<br>0<br>243714<br>316838<br>262216                                         | 8.34<br>0.00F<br>8.34<br>8.34<br>8.35                 | 59761<br>58883<br>52000<br>57492<br>45598                                                      |                                         |        |                                                                                             | 12.89<br>12.89<br>0.00R<br>12.89<br>12.89<br>12.89                                     |   | 468940<br>460132<br>0<br>195413<br>458925<br>459276                               |
| 7M109893.D                     | D AD19560-001(25X)   | 904          |       | 69                                                   | 160985<br>0<br>141708<br>161933<br>139422<br>201422                                                   | 5.89<br>5.89<br>5.89<br>5.89<br>5.89         |                | Ì       | , , , , , , , , , , , , , , , , , , , | 321180<br>321469<br>0<br>243714<br>316838<br>262216<br>395073                               | 8.34<br>8.34<br>0.00F<br>8.34<br>8.35                 | 59761<br>58883<br>{<br>52000<br>57492<br>45598<br>69196                                        |                                         | ~      |                                                                                             | 12.89<br>12.89<br>0.00R<br>12.89<br>12.89<br>12.92                                     |   | 468940<br>460132<br>0<br>195413<br>458925<br>459276<br>615322                     |
| 7M109894.D                     | D AD19560-001(25X)(M |              |       | .69<br>.69<br>.70                                    | 160985<br>0<br>141708<br>161933<br>139422<br>201422<br>185660                                         | 5.89<br>5.89<br>5.89<br>5.89<br>5.89         | 1              | İ       | 77                                    | 321180<br>321469<br>0<br>243714<br>316838<br>262216<br>395073<br>366491                     | 8.34<br>8.34<br>0.00F<br>8.34<br>8.35<br>8.35         | 59761<br>58883<br>7<br>52000<br>57492<br>45598<br>69196<br>65347                               | 1 .                                     | ~      |                                                                                             | 12.89<br>12.89<br>0.00R<br>12.89<br>12.89<br>12.90<br>12.90                            |   | 468940<br>460132<br>460132<br>0<br>195413<br>458925<br>459276<br>615322<br>537754 |
| 7M109895.D                     | AD19515-003(R)       | 82798        |       | .68<br>.69<br>.69<br>.70                             | 160985<br>0<br>141708<br>161933<br>161933<br>139422<br>201422<br>201422<br>185660<br>178711           | 5.89<br>5.89<br>5.89<br>5.89<br>5.89<br>5.89 | (              | Ì       | 7                                     | 321180<br>321469<br>0<br>243714<br>316838<br>262216<br>395073<br>366491<br>353480           | 8.34<br>0.00F<br>8.34<br>8.34<br>8.35<br>8.35<br>8.35 | 59761<br>58883<br>7<br>52000<br>57492<br>45598<br>69196<br>65347<br>62931                      | 1 .                                     | ~      |                                                                                             | 12.89<br>12.89<br>0.00R<br>12.89<br>12.89<br>12.92<br>12.90<br>12.90<br>12.90          |   | 468940<br>460132<br>0<br>195413<br>458925<br>458276<br>615322<br>537754           |
| 711100000 J AD10000 001/354/11 |                      |              |       | 2.68<br>2.69<br>2.69<br>2.69<br>2.70<br>2.70<br>2.69 | 160985<br>0<br>141708<br>161933<br>161933<br>139422<br>201422<br>201422<br>185660<br>178711<br>165731 | 5.89<br>5.89<br>5.89<br>5.89<br>5.89         |                | j       | 7                                     | 321180<br>321469<br>0<br>243714<br>316838<br>262216<br>395073<br>366491<br>353480<br>329877 | 8.34<br>0.00F<br>8.34<br>8.35<br>8.35<br>8.35         | 597610<br>588836<br>2<br>0<br>520005<br>57492 <u>6</u><br>455980<br>691965<br>653476<br>629315 | 9 9 8 3 3 9 8 8 3 9 8 8 3 8 8 8 8 8 8 8 |        | 505526<br>456084<br>0<br>400130<br>433572<br>437385<br>597970<br>520753<br>479788<br>455790 | 12.89<br>12.89<br>0.00R<br>12.89<br>12.89<br>12.92<br>12.90<br>12.90<br>12.89<br>12.89 |   | 468940<br>460132<br>0<br>195413<br>458925<br>459276<br>615322<br>537754<br>491237 |

| =   |
|-----|
| ΙĐ  |
| 192 |
| 13  |
| ıω  |
| -   |
| S   |
| St. |
| 15  |
| ᇛ   |
| ı   |
| I٦  |
| 15  |
| I>  |
| ᇒ   |
| نةا |
| 찌   |
|     |
|     |

11 = 12 = 13 =

1,4-Dioxane-d8(INT) 1,4-Dichlorobenzene-d4 Naphthalene-d8

5 = 4

Acenaphthene-d10
Phenanthrene-d10
Chrysene-d12

17 =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8260 Internal Standard concentration = 30 ug/L
524 Internal Standard concentration = 5 ug/L

Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Lower Limit = - 50% of internal standard area from daily cal or mid pt.

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria

**Metal Data** 

Sample ID: AD19479-001

% Solid: 90

Lab Name: Veritech

100 09/29/20

09/30/20

09/29/20

09/29/20

09/29/20

09/29/20

25

100

100

100

100

Nras No:

Client Id: HSI-SS-01 (0-0.5')

7439-96-5 Manganese

7440-09-7 Potassium

7439-97-6

7440-02-0

7440-23-5

7440-66-6

Mercury

Nickel

Sodium

Zinc

SOIL

Date Rec: 9/28/2020

Units: MG/KG

Lab Code:

Sdg No:

85348 287A3MDL

85348 6287 SMDL

85348 287A3MDL

85348 287A4MDL

85348 287A4MDL

85348 287A3MDL

17

16

17

17

17

17

CV

Ρ

PEICP3A

HGCV3A

PEICP3A

PEICP3A

PEICPRAD4A

PEICPRAD4A

Matrix: Level: LOW

Contract:

Case No:

| Cas No.   | Analyte   | MDL  | RL   | Conc  | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date |       | File:    | Seq<br>Num | 1 | Instr   |
|-----------|-----------|------|------|-------|----------|-------------------|-----------------|------------------|-------|----------|------------|---|---------|
| 7429-90-5 | Aluminum  | 19   | 220  | 3200  | 1        | 1                 | 100             | 09/29/20         | 85348 | 287A3MDL | 17         | Р | PEICP3A |
| 7440-39-3 | Barium    | 0.75 | 11   | 21    | 1        | 1                 | 100             | 09/29/20         | 85348 | 287A3MDL | 17         | Р | PEICP3A |
| 7440-70-2 | Calcium   | 110  | 1100 | 1700  | 1        | 1                 | 100             | 09/29/20         | 85348 | 287A3MDL | 17         | P | PEICP3A |
| 7440-47-3 | Chromium  | 0.74 | 5.6  | 19B   | 1        | 1                 | 100             | 09/29/20         | 85348 | 287A3MDL | 17         | ₽ | PEICP3A |
| 7440-48-4 | Cobalt    | 0.79 | 2.8  | 0.95J | 1        | 1                 | 100             | 09/29/20         | 85348 | 287A3MDL | 17         | P | PEICP3A |
| 7440-50-8 | Copper    | 0.68 | 5.6  | 14B   | 1        | 1                 | 100             | 09/29/20         | 85348 | 287A3MDL | 17         | Р | PEICP3A |
| 7439-89-6 | Iron      | 15   | 220  | 6500B | 1        | 1                 | 100             | 09/29/20         | 85348 | 287A3MDL | 17         | P | PEICP3A |
| 7439-92-1 | Lead      | 0.68 | 5.6  | 17    | 1        | 1                 | 100             | 09/29/20         | 85348 | 287A3MDL | 17         | Р | PEICP3A |
| 7439-95-4 | Magnesium | 22   | 560  | 450J  | 1        | 1                 | 100             | 09/29/20         | 85348 | 287A3MDL | 17         | Р | PEICP3A |

0.15

| Comments: |  |
|-----------|--|
|           |  |

50

ND

3.5J

150J

ND

43B

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

0.71

0.014

1.2

110

140

1.7

11

5.6

560

280

11

0.093

P-ICP-AES

CV -ColdVapor

Sample ID: AD19479-001

% Solid: 90

Lab Name: Veritech

Nras No:

Client Id: HSI-SS-01 (0-0.5') Matrix: SOIL

Units: MG/KG

Date Rec: 9/28/2020

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL   | Conc    | Dil Fact | Initial<br>Wt/Vol | - 1 |          |       | File:    | Seq<br>Num | M  | Instr       |
|-----------|-----------|-------|------|---------|----------|-------------------|-----|----------|-------|----------|------------|----|-------------|
| 7440-36-0 | Antimony  | 0.025 | 0.89 | 0.13J   | 1        | 0.5               | 100 | 10/01/20 | 85347 | 0120AMDL | 21         | MS | MS3_7700SWA |
| 7440-38-2 | Arsenic   | 0.019 | 0.22 | 3.9B    | 1        | 0.5               | 100 | 10/01/20 | 85347 | 0120AMDL | 21         | MS | MS3_7700SWA |
| 7440-41-7 | Beryllium | 0.017 | 0.22 | 0.18J   | 1        | 0.5               | 100 | 10/01/20 | 85347 | 0120AMDL | 21         | MS | MS3_7700SWA |
| 7440-43-9 | Cadmium   | 0.016 | 0.44 | 0.38J   | 1        | 0.5               | 100 | 10/01/20 | 85347 | 0120AMDL | 21         | MS | MS3_7700SWA |
| 7782-49-2 | Selenium  | 0.071 | 2.2  | 1.2JB   | 1        | 0.5               | 100 | 10/01/20 | 85347 | 0120AMDL | 21         | MS | MS3_7700SWA |
| 7440-22-4 | Silver    | 0.029 | 0.22 | 0.067JB | 1        | 0.5               | 100 | 10/01/20 | 85347 | 0120AMDL | 21         | MS | MS3_7700SWA |
| 7440-28-0 | Thallium  | 0.020 | 0.44 | 0.10J   | 1        | 0.5               | 100 | 10/01/20 | 85347 | 0120AMDL | 21         | MS | MS3_7700SWA |
| 7440-62-2 | Vanadium  | 0.012 | 0.22 | 47B     | 1        | 0.5               | 100 | 10/01/20 | 85347 | 0120AMDL | 21         | MS | MS3_7700SWA |

| Comments: |         |      |  |
|-----------|---------|------|--|
|           |         |      |  |
|           | <u></u> | <br> |  |

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19479-003

% Solid: 91

Lab Name:

Veritech

Nras No:

Client Id: HSI-SS-02 (0-0.5')

Units: MG/KG

Lab Code:

Sdg No:

Matrix: SOIL Level: LOW

Date Rec: 9/28/2020

Contract:

Case No:

| Cas No.   | Analyte   | MDL   | RL    | Conc   | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | М  | Instr      |
|-----------|-----------|-------|-------|--------|----------|-------------------|-----------------|------------------|---------------|----------|------------|----|------------|
| 7429-90-5 | Aluminum  | 18    | 220   | 3800   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 29         | Р  | PEICP3A    |
| 7440-39-3 | Barium    | 0.74  | 11    | 20     | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 29         | P  | PEICP3A    |
| 7440-70-2 | Calcium   | 110   | 1100  | 1600   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 29         | P  | PEICP3A    |
| 7440-47-3 | Chromium  | 0.74  | 5.5   | 20B    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 29         | P  | PEICP3A    |
| 7440-48-4 | Cobalt    | 0.78  | 2.7   | 1.4J   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 29         | P  | PEICP3A    |
| 7440-50-8 | Copper    | 0.68  | 5.5   | 18B    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 29         | P  | PEICP3A    |
| 7439-89-6 | Iron      | 15    | 220   | 6700B  | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 29         | P  | PEICP3A    |
| 7439-92-1 | Lead      | 0.68  | 5.5   | 23     | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 29         | P  | PEICP3A    |
| 7439-95-4 | Magnesium | 21    | 550   | 540J   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 29         | P  | PEICP3A    |
| 7439-96-5 | Manganese | 0.71  | 11    | 61     | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 29         | P  | PEICP3A    |
| 7439-97-6 | Mercury   | 0.014 | 0.092 | 0.020J | 1        | 0.15              | 25              | 09/30/20         | 85348         | 6287SMDL | 26         | CV | HGCV3A     |
| 7440-02-0 | Nickel    | 1.2   | 5.5   | 4.5J   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 29         | P  | PEICP3A    |
| 7440-09-7 | Potassium | 110   | 550   | 160J   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287B4MDL | 14         | P  | PEICPRAD4A |
| 7440-23-5 | Sodium    | 140   | 270   | ND     | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287B4MDL | 14         | P  | PEICPRAD4A |
| 7440-66-6 | Zinc      | 1.7   | 11    | 29B    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 29         | P  | PEICP3A    |

| Comments: | <br> |  |  |
|-----------|------|--|--|
|           |      |  |  |
|           | <br> |  |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P-ICP-AES

CV -ColdVapor

Sample ID: AD19479-003

% Solid: 91

Lab Name: Veritech

Nras No:

Client Id: HSI-SS-02 (0-0.5')

Units: MG/KG Date Rec: 9/28/2020 Lab Code: Contract:

Sdg No: Case No:

Matrix: SOIL Level: LOW

| Cas No.   | Analyte   | MDL   | RL   | Conc    | Dil Fact | Initial<br>Wt/Vol |     | Analysis<br>Date | •     | File:    | Seq<br>Num | M  | Instr       |
|-----------|-----------|-------|------|---------|----------|-------------------|-----|------------------|-------|----------|------------|----|-------------|
| 7440-36-0 | Antimony  | 0.025 | 0.88 | 0.11J   | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 34         | MS | MS3_7700SWA |
| 7440-38-2 | Arsenic   | 0.019 | 0.22 | 3.2B    | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 34         | MS | MS3_7700SWA |
| 7440-41-7 | Beryllium | 0.017 | 0.22 | 0.18J   | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 34         | MS | MS3_7700SWA |
| 7440-43-9 | Cadmium   | 0.016 | 0.44 | 0.49    | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 34         | MS | MS3_7700SWA |
| 7782-49-2 | Selenium  | 0.070 | 2.2  | 1.4JB   | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 34         | MS | MS3_7700SWA |
| 7440-22-4 | Silver    | 0.029 | 0.22 | 0.048JB | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 34         | MS | MS3_7700SWA |
| 7440-28-0 | Thallium  | 0.019 | 0.44 | 0.020J  | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 34         | MS | MS3_7700SWA |
| 7440-62-2 | Vanadium  | 0.012 | 0.22 | 18B     | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 34         | мѕ | MS3_7700SWA |

| Comments: |  |
|-----------|--|
|           |  |
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Р

PEICP3A

32

# Form1 Inorganic Analysis Data Sheet

Sample ID: AD19479-005

% Solid: 82

Lab Name: Veritech

Nras No:

Matrix:

Client Id: HSI-SS-03 (0-0.5')

Units: MG/KG

Date Rec: 9/28/2020

Lab Code:

Sdg No:

85348 287A3MDL

Level: LOW

SOIL

Contract:

Case No:

| Cas No.   | Analyte   | MDL   | RL   | Conc  | Dil Fact | Initial<br>Wt/Vol |    | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | м  | Instr      |
|-----------|-----------|-------|------|-------|----------|-------------------|----|------------------|---------------|----------|------------|----|------------|
| 7429-90-5 | Aluminum  | 20    | 240  | 4000  | 1        | 0.5               | 50 | 09/29/20         | 85348         | 287A3MDL | 32         | ₽  | PEICP3A    |
| 7440-39-3 | Barium    | 0.82  | 12   | 22    | 1        | 0.5               | 50 | 09/29/20         | 85348         | 287A3MDL | 32         | P  | PEICP3A    |
| 7440-70-2 | Calcium   | 120   | 1200 | 1700  | 1        | 0.5               | 50 | 09/29/20         | 85348         | 287A3MDL | 32         | Р  | PEICP3A    |
| 7440-47-3 | Chromium  | 0.82  | 6.1  | 23B   | 1        | 0.5               | 50 | 09/29/20         | 85348         | 287A3MDL | 32         | P  | PEICP3A    |
| 7440-48-4 | Cobalt    | 0.87  | 3.0  | 1.2J  | 1        | 0.5               | 50 | 09/29/20         | 85348         | 287A3MDL | 32         | P  | PEICP3A    |
| 7440-50-8 | Copper    | 0.75  | 6.1  | 9.2B  | 1        | 0.5               | 50 | 09/29/20         | 85348         | 287A3MDL | 32         | P  | PEICP3A    |
| 7439-89-6 | Iron      | 16    | 240  | 7100B | 1        | 0.5               | 50 | 09/29/20         | 85348         | 287A3MDL | 32         | P  | PEICP3A    |
| 7439-92-1 | Lead      | 0.75  | 6.1  | 3.9J  | 1        | 0.5               | 50 | 09/29/20         | 85348         | 287A3MDL | 32         | P  | PEICP3A    |
| 7439-95-4 | Magnesium | 24    | 610  | 560J  | 1        | 0.5               | 50 | 09/29/20         | 85348         | 287A3MDL | 32         | Р  | PEICP3A    |
| 7439-96-5 | Manganese | 0.78  | 12   | 54    | 1        | 0.5               | 50 | 09/29/20         | 85348         | 287A3MDL | 32         | P  | PEICP3A    |
| 7439-97-6 | Mercury   | 0.015 | 0.10 | ND    | 1        | 0.15              | 25 | 09/30/20         | 85348         | 6287SMDL | 27         | cv | HGCV3A     |
| 7440-02-0 | Nickel    | 1.3   | 6.1  | 3.0J  | 1        | 0.5               | 50 | 09/29/20         | 85348         | 287A3MDL | 32         | P  | PEICP3A    |
| 7440-09-7 | Potassium | 120   | 610  | 180J  | 1        | 0.5               | 50 | 09/29/20         | 85348         | 287B4MDL | 15         | P  | PEICPRAD4A |
| 7440-23-5 | Sodium    | 150   | 300  | ND    | 1        | 0.5               | 50 | 09/29/20         | 85348         | 287B4MDL | 15         | Р  | PEICPRAD4A |

0.5

09/29/20

| Comments: |  |
|-----------|--|
|           |  |

22B

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

1.8

Zinc

12

P-ICP-AES

CV -ColdVapor

7440-66-6

Sample ID: AD19479-005

% Solid: 82

Lab Name: Veritech

Nras No:

Matrix: SOIL

Client Id: HSI-SS-03 (0-0.5')

Units: MG/KG Date Rec: 9/28/2020 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL   | Conc    | Dil Fact | Initial<br>Wt/Vol |     | Analysis<br>Date | •     | File:    | Seq<br>Num | М  | Instr       |
|-----------|-----------|-------|------|---------|----------|-------------------|-----|------------------|-------|----------|------------|----|-------------|
| 7440-36-0 | Antimony  | 0.027 | 0.98 | ND      | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 35         | MS | MS3_7700SWA |
| 7440-38-2 | Arsenic   | 0.021 | 0.24 | 3.6B    | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 35         | MS | MS3_7700SWA |
| 7440-41-7 | Beryllium | 0.019 | 0.24 | 0.19J   | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 35         | MS | MS3_7700SWA |
| 7440-43-9 | Cadmium   | 0.017 | 0.49 | 0.17J   | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 35         | MS | MS3_7700SWA |
| 7782-49-2 | Selenium  | 0.077 | 2.4  | 1.2JB   | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 35         | MS | MS3_7700SWA |
| 7440-22-4 | Silver    | 0.032 | 0.24 | 0.050JB | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 35         | MS | MS3_7700SWA |
| 7440-28-0 | Thallium  | 0.022 | 0.49 | 0.026J  | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 35         | MS | MS3_7700SWA |
| 7440-62-2 | Variadium | 0.013 | 0.24 | 19B     | 1        | 0.5               | 100 | 10/01/20         | 85347 | 0120AMDL | 35         | MS | MS3_7700SWA |

| Comments: |      |  | <br> |  |
|-----------|------|--|------|--|
|           | <br> |  |      |  |

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19479-007

% Solid: 90

Lab Name: Veritech

Nras No:

Client Id: HSI-SS-04 (0-0.5')

Matrix: SOIL

Date Rec: 9/28/2020

Units: MG/KG

Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

| Ins       | М  | Seq<br>Num | File:    | Prep<br>Batch | Analysis<br>Date | Final<br>Wt/Vol | Initial<br>Wt/Vol | Dil Fact | Conc   | RL    | MDL   | Analyte   | Cas No.   |
|-----------|----|------------|----------|---------------|------------------|-----------------|-------------------|----------|--------|-------|-------|-----------|-----------|
| PEICP3    | Р  | 35         | 287A3MDL | 85348         | 09/29/20         | 50              | 0.5               | 1        | 6700   | 220   | 19    | Aluminum  | 7429-90-5 |
| PEICP3    | P  | 35         | 287A3MDL | 85348         | 09/29/20         | 50              | 0.5               | 1        | 22     | 11    | 0.75  | Barium    | 7440-39-3 |
| PEICP3    | P  | 35         | 287A3MDL | 85348         | 09/29/20         | 50              | 0.5               | . 1      | 210J   | 1100  | 110   | Calcium   | 7440-70-2 |
| PEICP3    | Р  | 35         | 287A3MDL | 85348         | 09/29/20         | 50              | 0.5               | 1        | 24B    | 5.6   | 0.74  | Chromium  | 7440-47-3 |
| PEICP3    | Р  | 35         | 287A3MDL | 85348         | 09/29/20         | 50              | 0.5               | 1        | 1.5J   | 2.8   | 0.79  | Cobalt    | 7440-48-4 |
| PEICP3    | Р  | 35         | 287A3MDL | 85348         | 09/29/20         | 50              | 0.5               | 1        | 7.3B   | 5.6   | 0.68  | Copper    | 7440-50-8 |
| PEICP3    | Р  | 35         | 287A3MDL | 85348         | 09/29/20         | 50              | 0.5               | 1        | 11000B | 220   | 15    | Iron      | 7439-89-6 |
| PEICP3    | Р  | 35         | 287A3MDL | 85348         | 09/29/20         | 50              | 0.5               | 1        | 7.1    | 5.6   | 0.68  | Lead      | 7439-92-1 |
| PEICP3    | P  | 35         | 287A3MDL | 85348         | 09/29/20         | 50              | 0.5               | 1        | 680    | 560   | 22    | Magnesium | 7439-95-4 |
| PEICP3    | P  | 35         | 287A3MDL | 85348         | 09/29/20         | 50              | 0.5               | 1        | 31     | 11    | 0.71  | Manganese | 7439-96-5 |
| HGCV3     | cv | 28         | 6287SMDL | 85348         | 09/30/20         | 25              | 0.15              | 1        | ND     | 0.093 | 0.014 | Mercury   | 7439-97-6 |
| PEICP3    | Р  | 35         | 287A3MDL | 85348         | 09/29/20         | 50              | 0.5               | 1        | 4.2J   | 5.6   | 1.2   | Nickel    | 7440-02-0 |
| PEICPRAD4 | P  | 16         | 287B4MDL | 85348         | 09/29/20         | 50              | 0.5               | 1        | 220J   | 560   | 110   | Potassium | 7440-09-7 |
| PEICPRAD4 | P  | 16         | 287B4MDL | 85348         | 09/29/20         | 50              | 0.5               | 1        | ND     | 280   | 140   | Sodium    | 7440-23-5 |
| PEICP3/   | Р  | 35         | 287A3MDL | 85348         | 09/29/20         | 50              | 0.5               | 1        | 18B    | 11    | 1.7   | Zinc      | 7440-66-6 |

| Comments: |  |
|-----------|--|
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P-ICP-AES

CV -ColdVapor

Sample ID: AD19479-007

% Solid: 90

Lab Name: Veritech

Nras No:

Matrix: SOIL

Client Id: HSI-SS-04 (0-0.5')

Units: MG/KG

Date Rec: 9/28/2020

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL   | Conc    | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | М  | Instr       |
|-----------|-----------|-------|------|---------|----------|-------------------|-----------------|------------------|---------------|----------|------------|----|-------------|
| 7440-36-0 | Antimony  | 0.025 | 0.89 | 0.031J  | 1        | 0.5               | 100             | 10/01/20         | 85347         | 0120AMDL | 36         | MS | MS3_7700SWA |
| 7440-38-2 | Arsenic   | 0.019 | 0.22 | 7.1B    | 1        | 0.5               | 100             | 10/01/20         | 85347         | 0120AMDL | 36         | MS | MS3_7700SWA |
| 7440-41-7 | Beryllium | 0.017 | 0.22 | 0.20J   | 1        | 0.5               | 100             | 10/01/20         | 85347         | 0120AMDL | 36         | MS | MS3_7700SWA |
| 7440-43-9 | Cadmium   | 0.016 | 0.44 | 0.15J   | 1        | 0.5               | 100             | 10/01/20         | 85347         | 0120AMDL | 36         | MS | MS3_7700SWA |
| 7782-49-2 | Selenium  | 0.071 | 2.2  | 0.88JB  | 1        | 0.5               | 100             | 10/01/20         | 85347         | 0120AMDL | 36         | MS | MS3_7700SWA |
| 7440-22-4 | Silver    | 0.029 | 0.22 | 0.037JB | 1        | 0.5               | 100             | 10/01/20         | 85347         | 0120AMDL | 36         | MS | MS3_7700SWA |
| 7440-28-0 | Thallium  | 0.020 | 0.44 | 0.039J  | 1        | 0.5               | 100             | 10/01/20         | 85347         | 0120AMDL | 36         | MS | MS3_7700SWA |
| 7440-62-2 | Vanadium  | 0.012 | 0.22 | 22B     | 1        | 0.5               | 100             | 10/01/20         | 85347         | 0120AMDL | 36         | MS | MS3_7700SWA |

| Comments: |      |      |      |  |  |  |  |
|-----------|------|------|------|--|--|--|--|
|           |      | <br> | <br> |  |  |  |  |
|           |      |      |      |  |  |  |  |
|           |      |      |      |  |  |  |  |
|           |      |      |      |  |  |  |  |
|           | <br> |      |      |  |  |  |  |
|           |      |      |      |  |  |  |  |

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19479-009

% Solid: 87

Lab Name: Veritech

Nras No:

Client Id: HSI-SS-05 (0-0.5')

Matrix: SOIL

Date Rec: 9/28/2020

Units: MG/KG

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL    | Conc               | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol |          | Prep<br>Batch | File:    | Seq<br>Num | М  | Inst      |
|-----------|-----------|-------|-------|--------------------|----------|-------------------|-----------------|----------|---------------|----------|------------|----|-----------|
| 7429-90-5 | Aluminum  | 19    | 230   | 3300               | 1        | 0.5               | 50              | 09/29/20 | 85348         | 287A3MDL | 36         | Р  | PEICP3A   |
| 7440-39-3 | Barium    | 0.78  | 11    | 15                 | 1        | 0.5               | 50              | 09/29/20 | 85348         | 287A3MDL | 36         | Р  | PEICP3/   |
| 7440-70-2 | Calcium   | 120   | 1100  | 190J               | 1        | 0.5               | 50              | 09/29/20 | 85348         | 287A3MDL | 36         | Р  | PEICP3    |
| 7440-47-3 | Chromium  | 0.77  | 5.7   | 20B                | 1        | 0.5               | 50              | 09/29/20 | 85348         | 287A3MDL | 36         | Р  | PEICP3    |
| 7440-48-4 | Cobalt    | 0.82  | 2.9   | 0. <del>9</del> 4J | 1        | 0.5               | 50              | 09/29/20 | 85348         | 287A3MDL | 36         | Ρ  | PEICP3    |
| 7440-50-8 | Copper    | 0.71  | 5.7   | 13B                | 1        | 0.5               | 50              | 09/29/20 | 85348         | 287A3MDL | 36         | P  | PEICP3    |
| 7439-89-6 | Iron      | 15    | 230   | 7000B              | 1        | 0.5               | 50              | 09/29/20 | 85348         | 287A3MDL | 36         | Р  | PEICP3    |
| 7439-92-1 | Lead      | 0.71  | 5.7   | 22                 | 1        | 0.5               | 50              | 09/29/20 | 85348         | 287A3MDL | 36         | Р  | PEICPS    |
| 7439-95-4 | Magnesium | 22    | 570   | 340J               | 1        | 0.5               | 50              | 09/29/20 | 85348         | 287A3MDL | 36         | Р  | PEICP3    |
| 7439-96-5 | Manganese | 0.74  | 11    | 28                 | 1        | 0.5               | 50              | 09/29/20 | 85348         | 287A3MDL | 36         | Р  | PEICP3    |
| 7439-97-6 | Mercury   | 0.015 | 0.096 | ND                 | 1        | 0.15              | 25              | 09/30/20 | 85348         | 6287SMDL | 29         | cv | HGCV3     |
| 7440-02-0 | Nickel    | 1.3   | 5.7   | 4.7J               | 1        | 0.5               | 50              | 09/29/20 | 85348         | 287A3MDL | 36         | Р  | PEICPS    |
| 7440-09-7 | Potassium | 110   | 570   | 140J               | 1        | 0.5               | 50              | 09/29/20 | 85348         | 287B4MDL | 17         | P  | PEICPRAD4 |
| 7440-23-5 | Sodium    | 140   | 290   | ND                 | 1        | 0.5               | 50              | 09/29/20 | 85348         | 287B4MDL | 17         | Р  | PEICPRAD4 |

0.5

50

09/29/20

85348 287A3MDL

Р

36

PEICP3A

| Comments: |  |
|-----------|--|
|           |  |

24B

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

11

1.7

P-ICP-AES

CV -ColdVapor

7440-66-6

Zinc

Sample ID: AD19479-009

% Solid: 87

Lab Name: Veritech

Nras No:

Client Id: HSI-SS-05 (0-0.5')

Matrix: SOIL

Date Rec: 9/28/2020

Units: MG/KG

Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL   | Conc    | Dil Fact | Initial<br>Wt/Vol |     |          | Prep<br>Batch | File:    | Seq<br>Num | М  | Instr       |
|-----------|-----------|-------|------|---------|----------|-------------------|-----|----------|---------------|----------|------------|----|-------------|
| 7440-36-0 | Antimony  | 0.026 | 0.92 | 0.058J  | 1        | 0.5               | 100 | 10/01/20 | 85347         | 0120AMDL | 37         | MS | MS3_7700SWA |
| 7440-38-2 | Arsenic   | 0.020 | 0.23 | 3.0B    | 1        | 0.5               | 100 | 10/01/20 | 85347         | 0120AMDL | 37         | MS | MS3_7700SWA |
| 7440-41-7 | Beryllium | 0.054 | 0.69 | 0.20J   | 3        | 0.5               | 100 | 10/01/20 | 85347         | 0120AMDL | 46         | MS | MS3_7700SWA |
| 7440-43-9 | Cadmium   | 0.016 | 0.46 | 0.50    | 1        | 0.5               | 100 | 10/01/20 | 85347         | 0120AMDL | 37         | MS | MS3_7700SWA |
| 7782-49-2 | Selenium  | 0.073 | 2.3  | 4.0B    | 1        | 0.5               | 100 | 10/01/20 | 85347         | 0120AMDL | 37         | MS | MS3_7700SWA |
| 7440-22-4 | Silver    | 0.030 | 0.23 | 0.061JB | 1        | 0.5               | 100 | 10/01/20 | 85347         | 0120AMDL | 37         | MS | MS3_7700SWA |
| 7440-28-0 | Thallium  | 0.061 | 1.4  | ND      | 3        | 0.5               | 100 | 10/01/20 | 85347         | 0120AMDL | 46         | MS | MS3_7700SWA |
| 7440-62-2 | Vanadium  | 0.012 | 0.23 | 21B     | 1        | 0.5               | 100 | 10/01/20 | 85347         | 0120AMDL | 37         | MS | MS3_7700SWA |

| Comments: |  |
|-----------|--|
|           |  |
|           |  |

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19479-011

% Solid: 92

Lab Name: Veritech

Nras No:

Client Id: HSI-SS-06 (0-0.5')

Units: MG/KG

Lab Code:

Sdg No:

Matrix: SOIL

Date Rec: 9/28/2020

Contract:

Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL    | Conc  | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | М  | Instr      |
|-----------|-----------|-------|-------|-------|----------|-------------------|-----------------|------------------|---------------|----------|------------|----|------------|
| 7429-90-5 | Aluminum  | 18    | 220   | 5000  | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 37         | P  | PEICP3A    |
| 7440-39-3 | Barium    | 0.73  | 11    | 24    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 37         | P  | PEICP3A    |
| 7440-70-2 | Calcium   | 110   | 1100  | 290J  | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 37         | Р  | PEICP3A    |
| 7440-47-3 | Chromium  | 0.73  | 5.4   | 21B   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 37         | Р  | PEICP3A    |
| 7440-48-4 | Cobalt    | 0.77  | 2.7   | 1.5J  | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 37         | Р  | PEICP3A    |
| 7440-50-8 | Copper    | 0.67  | 5.4   | 8.9B  | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 37         | P  | PEICP3A    |
| 7439-89-6 | Iron      | 14    | 220   | 9900B | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 37         | Р  | PEICP3A    |
| 7439-92-1 | Lead      | 0.67  | 5.4   | 15    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 37         | P  | PEICP3A    |
| 7439-95-4 | Magnesium | 21    | 540   | 510J  | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 37         | Р  | PEICP3A    |
| 7439-96-5 | Manganese | 0.70  | 11    | 37    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 37         | Р  | PEICP3A    |
| 7439-97-6 | Mercury   | 0.014 | 0.091 | ND    | 1        | 0.15              | 25              | 09/30/20         | 85348         | 6287SMDL | 30         | cv | HGCV3A     |
| 7440-02-0 | Nickel    | 1.2   | 5.4   | 3.8J  | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 37         | Р  | PEICP3A    |
| 7440-09-7 | Potassium | 110   | 540   | 150J  | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287B4MDL | 18         | Р  | PEICPRAD4A |
| 7440-23-5 | Sodium    | 140   | 270   | ND    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287B4MDL | 18         | P  | PEICPRAD4A |
| 7440-66-6 | Zinc      | 1.6   | 11    | 25B   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 37         | Р  | PEICP3A    |

| Comments: |  |
|-----------|--|
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19479-011

Client Id: HSI-SS-06 (0-0.5')

% Solid: 92

Lab Name: Veritech

Nras No:

Matrix: SOIL

Units: MG/KG Date Rec: 9/28/2020 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL   | Conc    | Dil Fact | Initial<br>Wt/Vol |     | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | М  | Instr       |
|-----------|-----------|-------|------|---------|----------|-------------------|-----|------------------|---------------|----------|------------|----|-------------|
| 7440-36-0 | Antimony  | 0.024 | 0.87 | 0.053J  | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 38         | MS | MS3_7700SWA |
| 7440-38-2 | Arsenic   | 0.019 | 0.22 | 3.2B    | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 38         | MS | MS3_7700SWA |
| 7440-41-7 | Beryllium | 0.017 | 0.22 | 0.18J   | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 38         | MS | MS3_7700SWA |
| 7440-43-9 | Cadmium   | 0.015 | 0.43 | 0.18J   | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 38         | MS | MS3_7700SWA |
| 7782-49-2 | Selenium  | 0.069 | 2.2  | 1.1JB   | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 38         | мѕ | MS3_7700SWA |
| 7440-22-4 | Silver    | 0.028 | 0.22 | 0.047JB | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 38         | MS | MS3_7700SWA |
| 7440-28-0 | Thallium  | 0.019 | 0.43 | 0.035J  | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 38         | MS | MS3_7700SWA |
| 7440-62-2 | Vanadium  | 0.012 | 0.22 | 17B     | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 38         | мѕ | MS3_7700SWA |

| Comments: |      |  |  |
|-----------|------|--|--|
|           |      |  |  |
|           | <br> |  |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19479-013

% Solid: 82

Lab Name: Veritech

Nras No:

Client Id: HSI-SS-07 (0-0.5') Matrix: SOIL

Units: MG/KG

Lab Code:

Sdg No:

Level: LOW

Date Rec: 9/28/2020 Contract: Case No:

| Cas No.   | Analyte   | MDL   | RL   | Conc   | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | М  | Instr      |
|-----------|-----------|-------|------|--------|----------|-------------------|-----------------|------------------|---------------|----------|------------|----|------------|
| 7429-90-5 | Aluminum  | 20    | 240  | 3200   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 38         | Р  | PEICP3A    |
| 7440-39-3 | Barium    | 0.82  | 12   | 21     | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 38         | Р  | PEICP3A    |
| 7440-70-2 | Calcium   | 120   | 1200 | 410J   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 38         | Р  | PEICP3A    |
| 7440-47-3 | Chromium  | 0.82  | 6.1  | 18B    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 38         | Р  | PEICP3A    |
| 7440-48-4 | Cobalt    | 0.87  | 3.0  | 1.6J   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 38         | P  | PEICP3A    |
| 7440-50-8 | Copper    | 0.75  | 6.1  | 12B    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 38         | P  | PEICP3A    |
| 7439-89-6 | Iron      | 16    | 240  | 14000B | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 38         | Р  | PEICP3A    |
| 7439-92-1 | Lead      | 0.75  | 6.1  | 22     | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 38         | P  | PEICP3A    |
| 7439-95-4 | Magnesium | 24    | 610  | 300J   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 38         | Р  | PEICP3A    |
| 7439-96-5 | Manganese | 0.78  | 12   | 68     | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 38         | P  | PEICP3A    |
| 7439-97-6 | Mercury   | 0.015 | 0.10 | 0.038J | 1        | 0.15              | 25              | 09/30/20         | 85348         | 6287SMDL | 31         | cv | HGCV3A     |
| 7440-02-0 | Nickel    | 1.3   | 6.1  | 4.6J   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 38         | P  | PEICP3A    |
| 7440-09-7 | Potassium | 120   | 610  | 150J   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287B4MDL | 22         | Р  | PEICPRAD4A |
| 7440-23-5 | Sodium    | 150   | 300  | ND     | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287B4MDL | 22         | P  | PEICPRAD4A |
| 7440-66-6 | Zinc      | 1.8   | 12   | 42B    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 38         | Р  | PEICP3A    |

| Comments: |  |
|-----------|--|
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

MSMS3\_7700SWA

MSMS3\_7700SWA

#### Form1 **Inorganic Analysis Data Sheet**

Sample ID: AD19479-013

% Solid:

Lab Name: Veritech

100 10/01/20

10/01/20

100

Nras No:

Client Id: HSI-SS-07 (0-0.5') Matrix: SOIL

Units: Date Rec:

MG/KG 9/28/2020

82

0.022J

16B

Lab Code: Contract:

Sdg No: Case No:

85347 0120AMDL

85347 0120AMDL

42

42

Level: LOW

| Cas No.   | Analyte   | MDL   | RL   | Conc    | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol |          | •     | File:    | Seq<br>Num | М  | Instr       |
|-----------|-----------|-------|------|---------|----------|-------------------|-----------------|----------|-------|----------|------------|----|-------------|
| 7440-36-0 | Antimony  | 0.027 | 0.98 | 0.084J  | 1        | 0.5               | 100             | 10/01/20 | 85347 | 0120AMDL | 42         | MS | MS3_7700SWA |
| 7440-38-2 | Arsenic   | 0.021 | 0.24 | 2.2B    | 1        | 0.5               | 100             | 10/01/20 | 85347 | 0120AMDL | 42         | MS | MS3_7700SWA |
| 7440-41-7 | Beryllium | 0.019 | 0.24 | 0.14J   | 1        | 0.5               | 100             | 10/01/20 | 85347 | 0120AMDL | 42         | MS | MS3_7700SWA |
| 7440-43-9 | Cadmium   | 0.017 | 0.49 | 0.48J   | 1        | 0.5               | 100             | 10/01/20 | 85347 | 0120AMDL | 42         | MS | MS3_7700SWA |
| 7782-49-2 | Selenium  | 0.077 | 2.4  | 1.4JB   | 1        | 0.5               | 100             | 10/01/20 | 85347 | 0120AMDL | 42         | MS | MS3_7700SWA |
| 7440-22-4 | Silver    | 0.032 | 0.24 | 0.084JB | 1        | 0.5               | 100             | 10/01/20 | 85347 | 0120AMDL | 42         | MS | MS3_7700SWA |

0.5

0.5

| Comments: | <br> | · |  |
|-----------|------|---|--|
|           |      |   |  |

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

7440-28-0

7440-62-2

Thallium

Vanadium

0.022

0.013

0.49

0.24

Sample ID: AD19479-015

% Solid: 94

Lab Name: Veritech

Nras No:

Client Id: HSI-SS-08 (0-0.5')

Units: MG/KG Date Rec: 9/28/2020 Lab Code: Contract:

Sdg No: Case No:

Matrix: SOIL

Level: LOW

| Cas No.   | Analyte   | MDL   | RL    | Conc  | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | М  | Instr      |
|-----------|-----------|-------|-------|-------|----------|-------------------|-----------------|------------------|---------------|----------|------------|----|------------|
| 7429-90-5 | Aluminum  | 18    | 210   | 3900  | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 39         | Р  | PEICP3A    |
| 7440-39-3 | Barium    | 0.72  | 11    | 29    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 39         | Р  | PEICP3A    |
| 7440-70-2 | Calcium   | 110   | 1100  | 19000 | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 39         | Ρ  | PEICP3A    |
| 7440-47-3 | Chromium  | 0.71  | 5.3   | 15B   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 39         | P  | PEICP3A    |
| 7440-48-4 | Cobalt    | 0.76  | 2.7   | 3.1   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 39         | Р  | PEICP3A    |
| 7440-50-8 | Copper    | 0.66  | 5.3   | 11B   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 39         | Р  | PEICP3A    |
| 7439-89-6 | Iron      | 14    | 210   | 8100B | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 39         | Р  | PEICP3A    |
| 7439-92-1 | Lead      | 0.66  | 5.3   | 6.6   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 39         | P  | PEICP3A    |
| 7439-95-4 | Magnesium | 21    | 530   | 7900  | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 39         | Р  | PEICP3A    |
| 7439-96-5 | Manganese | 0.68  | 11    | 150   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 39         | Р  | PEICP3A    |
| 7439-97-6 | Mercury   | 0.013 | 0.089 | ND    | 1        | 0.15              | 25              | 09/30/20         | 85348         | 6287SMDL | 32         | CV | HGCV3A     |
| 7440-02-0 | Nickel    | 1.2   | 5.3   | 9.1   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 39         | P  | PEICP3A    |
| 7440-09-7 | Potassium | 100   | 530   | 540   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287B4MDL | 23         | P  | PEICPRAD4A |
| 7440-23-5 | Sodium    | 130   | 270   | ND    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287B4MDL | 23         | Р  | PEICPRAD4  |
| 7440-66-6 | Zinc      | 1.6   | 11    | 22B   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 39         | P  | PEICP3A    |

| Comments: |      |  |      |
|-----------|------|--|------|
|           | <br> |  | <br> |
|           |      |  |      |
|           |      |  |      |
|           |      |  |      |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19479-015

% Solid: 94

Lab Name: Veritech

Nras No:

Matrix: SOIL

Client Id: HSI-SS-08 (0-0.5')

Date Rec: 9/28/2020

Units: MG/KG

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL   | Conc    | Dil Fact | Initial<br>Wt/Vol |     | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | M   | Instr      |
|-----------|-----------|-------|------|---------|----------|-------------------|-----|------------------|---------------|----------|------------|-----|------------|
| 7440-36-0 | Antimony  | 0.024 | 0.85 | ND      | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 43         | MSM | S3_7700SWA |
| 7440-38-2 | Arsenic   | 0.019 | 0.21 | 2.2B    | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 43         | мѕм | S3_7700SWA |
| 7440-41-7 | Beryllium | 0.017 | 0.21 | 0.14J   | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 43         | мѕм | S3_7700SWA |
| 7440-43-9 | Cadmium   | 0.015 | 0.43 | 0.15J   | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 43         | мѕм | S3_7700SWA |
| 7782-49-2 | Selenium  | 0.068 | 2.1  | 0.87JB  | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 43         | мѕм | S3_7700SWA |
| 7440-22-4 | Silver    | 0.028 | 0.21 | 0.049JB | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 43         | мѕм | S3_7700SWA |
| 7440-28-0 | Thallium  | 0.019 | 0.43 | 0.028J  | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 43         | мѕм | S3_7700SWA |
| 7440-62-2 | Vanadium  | 0.012 | 0.21 | 15B     | 1        | 0.5               | 100 | 10/01/20         | 85347         | 0120AMDL | 43         | MSM | S3_7700SWA |

| Comments: |  |
|-----------|--|
|           |  |

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19479-017

% Solid: 93

Lab Name: Veritech

Nras No:

Client Id: HSI-SS-09 (0-0.5') Matrix: SOIL

Units: MG/KG Date Rec: 9/28/2020

Lab Code:

Sdg No:

Contract:

Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL    | Conc   | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | М  | Instr     |
|-----------|-----------|-------|-------|--------|----------|-------------------|-----------------|------------------|---------------|----------|------------|----|-----------|
| 7429-90-5 | Aluminum  | 18    | 220   | 5000   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 40         | Р  | PEICP3A   |
| 7440-39-3 | Barium    | 0.73  | 11    | 37     | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 40         | Ρ  | PEICP3A   |
| 7440-70-2 | Calcium   | 110   | 1100  | 1400   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 40         | P  | PEICP3A   |
| 7440-47-3 | Chromium  | 0.72  | 5.4   | 178    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 40         | Р  | PEICP3A   |
| 7440-48-4 | Cobalt    | 0.77  | 2.7   | 4.0    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 40         | Р  | PEICP3A   |
| 7440-50-8 | Copper    | 0.66  | 5.4   | 27B    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 40         | Ρ  | PEICP3    |
| 7439-89-6 | Iron      | 14    | 220   | 11000B | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 40         | Р  | PEICP3/   |
| 7439-92-1 | Lead      | 0.66  | 5.4   | 9.8    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 40         | Р  | PEICP3/   |
| 7439-95-4 | Magnesium | 21    | 540   | 2200   | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 40         | Р  | PEICP3/   |
| 7439-96-5 | Manganese | 0.69  | 11    | 210    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 40         | P  | PEICP3/   |
| 7439-97-6 | Mercury   | 0.014 | 0.090 | ND     | 1        | 0.15              | 25              | 09/30/20         | 85348         | 6287SMDL | 35         | cv | HGCV3/    |
| 7440-02-0 | Nickel    | 1.2   | 5.4   | 9.8    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 40         | P  | PEICP3    |
| 7440-09-7 | Potassium | 110   | 540   | 550    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287B4MDL | 24         | P  | PEICPRAD4 |
| 7440-23-5 | Sodium    | 140   | 270   | ND     | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287B4MDL | 24         | Р  | PEICPRAD4 |
| 7440-66-6 | Zinc      | 1.6   | 11    | 38B    | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 40         | Р  | PEICP3/   |

| Comments: |  |
|-----------|--|
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P-ICP-AES

CV -ColdVapor

Sample ID: AD19479-017

% Solid: 93

Lab Name: Veritech

Nras No:

Matrix: SOIL

Client Id: HSI-SS-09 (0-0.5')

Units: MG/KG

Date Rec: 9/28/2020

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL   | Conc    | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol |          | Prep<br>Batch | File:    | Seq<br>Num | М  | Instr       |
|-----------|-----------|-------|------|---------|----------|-------------------|-----------------|----------|---------------|----------|------------|----|-------------|
| 7440-36-0 | Antimony  | 0.024 | 0.86 | 0.031J  | 1        | 0.5               | 100             | 10/01/20 | 85347         | 0120AMDL | 44         | MS | MS3_7700SWA |
| 7440-38-2 | Arsenic   | 0.019 | 0.22 | 3.5B    | 1        | 0.5               | 100             | 10/01/20 | 85347         | 0120AMDL | 44         | MS | MS3_7700SWA |
| 7440-41-7 | Beryllium | 0.017 | 0.22 | 0.19J   | 1        | 0.5               | 100             | 10/01/20 | 85347         | 0120AMDL | 44         | MŞ | MS3_7700SWA |
| 7440-43-9 | Cadmium   | 0.015 | 0.43 | 0.26J   | 1        | 0.5               | 100             | 10/01/20 | 85347         | 0120AMDL | 44         | MS | MS3_7700SWA |
| 7782-49-2 | Selenium  | 0.068 | 2.2  | 0.99JB  | 1        | 0.5               | 100             | 10/01/20 | 85347         | 0120AMDL | 44         | MS | MS3_7700SWA |
| 7440-22-4 | Silver    | 0.028 | 0.22 | 0.050JB | 1        | 0.5               | 100             | 10/01/20 | 85347         | 0120AMDL | 44         | MS | MS3_7700SWA |
| 7440-28-0 | Thallium  | 0.019 | 0.43 | 0.037J  | 1        | 0.5               | 100             | 10/01/20 | 85347         | 0120AMDL | 44         | MS | MS3_7700SWA |
| 7440-62-2 | Vanadium  | 0.012 | 0.22 | 20B     | 1        | 0.5               | 100             | 10/01/20 | 85347         | 0120AMDL | 44         | MS | MS3_7700SWA |

| Comments: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19479-019

% Solid: 92

Lab Name: Veritech

Nras No:

Client Id: HSI-SS-D (0-0.5') Matrix: SOIL

Date Rec: 9/28/2020

Units: MG/KG

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL    | Conc        | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | м  | Instr      |
|-----------|-----------|-------|-------|-------------|----------|-------------------|-----------------|------------------|---------------|----------|------------|----|------------|
| 7429-90-5 | Aluminum  | 18    | 220   | 3700        | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 41         | Р  | PEICP3A    |
| 7440-39-3 | Barium    | 0.73  | 11    | 20          | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 41         | Р  | PEICP3A    |
| 7440-70-2 | Calcium   | 110   | 1100  | 1400        | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 41         | Р  | PEICP3A    |
| 7440-47-3 | Chromium  | 0.73  | 5.4   | 17 <b>B</b> | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 41         | Р  | PEICP3A    |
| 7440-48-4 | Cobalt    | 0.77  | 2.7   | 1.5J        | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 41         | Р  | PEICP3A    |
| 7440-50-8 | Copper    | 0.67  | 5.4   | 16B         | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 41         | Р  | PEICP3A    |
| 7439-89-6 | Iron      | 14    | 220   | 6500B       | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 41         | Р  | PEICP3A    |
| 7439-92-1 | Lead      | 0.67  | 5.4   | 140         | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 41         | Р  | PEICP3A    |
| 7439-95-4 | Magnesium | 21    | 540   | 550         | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 41         | P  | PEICP3A    |
| 7439-96-5 | Manganese | 0.70  | 11    | 56          | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 41         | Р  | PEICP3A    |
| 7439-97-6 | Mercury   | 0.014 | 0.091 | 0.014J      | 1        | 0.15              | 25              | 09/30/20         | 85348         | 6287SMDL | 36         | cv | HGCV3A     |
| 7440-02-0 | Nickel    | 1.2   | 5.4   | 3.8J        | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 41         | P  | PEICP3A    |
| 7440-09-7 | Potassium | 110   | 540   | 160J        | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287B4MDL | 25         | P  | PEICPRAD4A |
| 7440-23-5 | Sodium    | 140   | 270   | ND          | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287B4MDL | 25         | Ρ  | PEICPRAD4A |
| 7440-66-6 | Zinc      | 1.6   | 11    | 26B         | 1        | 0.5               | 50              | 09/29/20         | 85348         | 287A3MDL | 41         | P  | PEICP3A    |

| Comments: |  |
|-----------|--|
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P-ICP-AES

CV -ColdVapor

Sample ID: AD19479-019

% Solid: 92

Lab Name: Veritech

Nras No:

85347 0120AMDL

85347 0120AMDL

45

45

MSMS3\_7700SWA

MSMS3\_7700SWA

Matrix:

Cas No.

7440-36-0

7440-38-2

7440-41-7

7440-43-9

7782-49-2

7440-22-4

7440-28-0

7440-62-2

Client Id: HSI-SS-D (0-0.5') SOIL

Units: MG/KG

Date Rec: 9/28/2020

Lab Code: Contract:

0.5

0.5

Sdg No: Case No:

Level:

LOW

Analyte Antimony

Arsenic

Beryllium

Cadmium

Selenium

Thallium

Vanadium

Silver

0.019

0.012

0.43

0.22

| MDL   | RL   | Conc    | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol |          | •     | File:    | Seq<br>Num | М  | Instr       |
|-------|------|---------|----------|-------------------|-----------------|----------|-------|----------|------------|----|-------------|
| 0.024 | 0.87 | 0.063J  | 1        | 0.5               | 100             | 10/01/20 | 85347 | 0120AMDL | 45         | MS | MS3_7700SWA |
| 0.019 | 0.22 | 3.0B    | 1        | 0.5               | 100             | 10/01/20 | 85347 | 0120AMDL | 45         | MS | MS3_7700SWA |
| 0.017 | 0.22 | 0.17J   | 1        | 0.5               | 100             | 10/01/20 | 85347 | 0120AMDL | 45         | MS | MS3_7700SWA |
| 0.015 | 0.43 | 0.39J   | 1        | 0.5               | 100             | 10/01/20 | 85347 | 0120AMDL | 45         | MS | MS3_7700SWA |
| 0.069 | 2.2  | 1.3JB   | 1        | 0.5               | 100             | 10/01/20 | 85347 | 0120AMDL | 45         | MS | MS3_7700SWA |
| 0.028 | 0.22 | 0.041JB | 1        | 0.5               | 100             | 10/01/20 | 85347 | 0120AMDL | 45         | MS | MS3_7700SWA |

100 10/01/20

100 10/01/20

| Comments: |  |
|-----------|--|
|           |  |

ND

18B

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

#### Form1 **Inorganic Analysis Data Sheet**

Sample ID: MB 85347

% Solid: 0

Units: MG/KG

Lab Name: Veritech

Client Id: MB 85347

SOIL

Lab Code:

Matrix: Level: LOW

| Cas No.            | Analyte    | MDL    | RL   | Conc   | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis Date | Prep<br>Batch |           | Seq<br>Num | М  | Inst        |
|--------------------|------------|--------|------|--------|----------|-------------------|-----------------|---------------|---------------|-----------|------------|----|-------------|
| 7429-90-5          | Aluminum   | 0.79   | 100  | 1.1J   | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW/ |
| 7440-36-0          | Antimony   | 0.011  | 0.80 | ND     | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 7440-38 <b>-</b> 2 | Arsenic    | 0.0087 | 0.20 | 0.011J | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 7440-39-3          | Barium     | 0.028  | 1.0  | ND     | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 7440-41-7          | Beryllium  | 0.0078 | 0.20 | ND     | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 7440-43-9          | Cadmium    | 0.0071 | 0.40 | ND     | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW/ |
| 7440-70-2          | Calcium    | 9.5    | 100  | ND     | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 7440-47-3          | Chromium   | 0.043  | 0.40 | 0.073J | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 7440-48-4          | Cobalt     | 0.0054 | 0.40 | ND     | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 7440-50-8          | Copper     | 0.097  | 2.0  | 0.16J  | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 7439-89-6          | Iron       | 2.1    | 100  | 5.6J   | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 439-92-1           | Lead       | 0.019  | 0.40 | ND     | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 7439-95-4          | Magnesium  | 1.2    | 100  | ND     | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 439-96-5           | Manganese  | 0.12   | 1.2  | 0.80J  | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 7439-98-7          | lolybdenum | 0.027  | 0.20 | ND     | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 7440-02-0          | Nickel     | 0.026  | 0.60 | 0.030J | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 7440-09-7          | Potassium  | 2.9    | 100  | ND     | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 7782-49-2          | Selenium   | 0.032  | 2.0  | 0.081J | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 7440-22-4          | Silver     | 0.013  | 0.20 | 0.042J | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | мѕ | M\$3_7700SW |
| 7440-23-5          | Sodium     | 8.9    | 100  | 9.8J   | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | мѕ | MS3_7700SW  |
| 7440-28-0          | Thallium   | 0.0088 | 0.40 | ND     | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | мѕ | MS3_7700SW  |
| 7440-62-2          | Vanadium   | 0.0054 | 0.20 | 0.032J | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |
| 440-66-6           | Zinc       | 0.73   | 4.0  | 0.79J  | 1        | 0.5               | 100             | 10/01/20      | 85347         | 00120AMDL | 18         | MS | MS3_7700SW  |

| Comments: |  |  |
|-----------|--|--|
|           |  |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

MS - ICP-MS

#### Form1 Inorganic Analysis Data Sheet

Sample ID: MB 85348 (100)

% Solid: 0

Lab Name: Veritech

Client Id: MB 85348 (100)

Units: MG/KG

Lab Code:

Matrix: SOIL Level: LOW

| Cas No.   | Analyte   | MDL  | RL   | Conc  | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis Date | Prep<br>Batch |           | Seq<br>Num | М | Instr      |
|-----------|-----------|------|------|-------|----------|-------------------|-----------------|---------------|---------------|-----------|------------|---|------------|
| 7429-90-5 | Aluminum  | 8.4  | 200  | ND    | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A3MDL | 14         | Р | PEICP3A    |
| 7440-39-3 | Barium    | 0.34 | 10   | ND    | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A3MDL | 14         | Р | PEICP3A    |
| 7440-70-2 | Calcium   | 50   | 1000 | ND    | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A3MDL | 14         | P | PEICP3A    |
| 7440-47-3 | Chromium  | 0.33 | 5.0  | 0.56J | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A3MDL | 14         | P | PEICP3A    |
| 7440-48-4 | Cobalt    | 0.36 | 2.5  | ND    | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A3MDL | 14         | Р | PEICP3A    |
| 7440-50-8 | Copper    | 0.31 | 5.0  | 0.63J | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A3MDL | 14         | P | PEICP3A    |
| 7439-89-6 | Iron      | 6.6  | 200  | 12J   | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A3MDL | 14         | P | PEICP3A    |
| 7439-92-1 | Lead      | 0.31 | 5.0  | ND    | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A3MDL | 14         | Р | PEICP3A    |
| 7439-95-4 | Magnesium | 9.8  | 500  | ND    | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A3MDL | 14         | P | PEICP3A    |
| 7439-96-5 | Manganese | 0.32 | 10   | ND    | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A3MDL | 14         | P | PEICP3A    |
| 7440-02-0 | Nickel    | 0.55 | 5.0  | ND    | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A3MDL | 14         | P | PEICP3A    |
| 7440-09-7 | Potassium | 49   | 500  | ND    | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A4MDL | 14         | P | PEICPRAD4A |
| 7440-23-5 | Sodium    | 63   | 250  | ND    | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A4MDL | 14         | Р | PEICPRAD4A |
| 7440-62-2 | Vanadium  | 0.48 | 10   | 0.54J | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A3MDL | 14         | Р | PEICP3A    |
| 7440-66-6 | Zinc      | 0.75 | 10   | 2.3J  | 1        | 0.5               | 50              | 09/29/20      | 85348         | 6287A3MDL | 14         | Р | PEICP3A    |

| Comments: | : |  |
|-----------|---|--|
|           |   |  |

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P-ICP-AES

CV -ColdVapor

MS - ICP-MS

#### Form1 **Inorganic Analysis Data Sheet**

Sample ID: MB 85348 (167)

% Solid: 0

Lab Name: Veritech

Client Id: MB 85348 (167)

Units: MG/KG

Lab Code:

Matrix: SOIL Level: LOW

| Cas No.   | Analyte | MDL.  | RL    | Conc | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol |          | Prep<br>Batch | 1         | Seq<br>Num | М | Instr  |
|-----------|---------|-------|-------|------|----------|-------------------|-----------------|----------|---------------|-----------|------------|---|--------|
| 7439-97-6 | Mercury | 0.013 | 0.083 | ND   | 1        | 0.15              | 25              | 09/30/20 | 85348         | 26287SMDL | 11         | Ċ | HGCV3A |

| Comments: |  |  |
|-----------|--|--|
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

# FORM 2 (ICV/CCV Summary)

Date Analyzed: 09/29/20

Data File: S26287A3MDL

Prep Batch: 85348

Analytical Method:6010B(ICP)/7470A,7471A(Hg),6020

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0092806

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

| Analyte   | ICV/CCV<br>Amt | ICV V-<br>333673-<br>5 | Rec | CCV V-<br>333673-<br>12 | Rec | CCV V-<br>333673-<br>23 | Rec | CCV V-<br>333673-<br>33 | Rec | CCV V-<br>333673-<br>42 | Rec |      | Rec |       | Rec | Rec   |
|-----------|----------------|------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|------|-----|-------|-----|-------|
| Aluminum  | 10/5           | 4.95455                | 99  | 4.98287                 | 100 | 4.77561                 | 96  | 4.74271                 | 95  | 4.74945                 | 95  |      |     |       |     |       |
| Barium    | 1/.5           | 0.50047                | 100 | 0.50060                 | 100 | 0.49024                 | 98  | 0.47828                 | 96  | 0.48352                 | 97  |      |     |       |     |       |
| Calcium   | 100/50         | 52.42130               | 105 | 52.04800                | 104 | 50.65290                | 101 | 50.19470                | 100 | 50.23190                | 100 |      |     |       |     |       |
| Chromium  | 1/.5           | 0.50480                | 101 | 0.49799                 | 100 | 0.48654                 | 97  | 0.48205                 | 96  | 0.48536                 | 97  |      |     | ]<br> |     |       |
| Cobalt    | 1/.5           | 0.51145                | 102 | 0.51009                 | 102 | 0.49904                 | 100 | 0.48598                 | 97  | 0.49093                 | 98  |      | İ   |       |     |       |
| Copper    | 1/.5           | 0.51689                | 103 | 0.50490                 | 101 | 0.49242                 | 98  | 0.49241                 | 98  | 0.49118                 | 98  | i i  |     |       |     |       |
| Iron      | 10/5           | 5.02495                | 100 | 5.02998                 | 101 | 4.87332                 | 97  | 4.82870                 | 97  | 4.86155                 | 97  |      |     |       |     |       |
| Lead      | 1/.5           | 0.51323                | 103 | 0.50707                 | 101 | 0.49356                 | 99  | 0.47970                 | 96  | 0.48327                 | 97  | İ    |     |       |     |       |
| Magnesium | 100/50         | 52.14400               | 104 | 51.77960                | 104 | 50.26480                | 101 | 49.63770                | 99  | 49.75630                | 100 | <br> |     | {     |     |       |
| Manganese | 1/.5           | 0.51166                | 102 | 0.50602                 | 101 | 0.49377                 | 99  | 0.48971                 | 98  | 0.49081                 | 98  |      |     |       |     |       |
| Nickel    | 1/.5           | 0.51849                | 104 | 0.51506                 | 103 | 0.50387                 | 101 | 0.49220                 | 98  | 0.49960                 | 100 |      |     |       |     |       |
| Zinc      | 1/.5           | 0.51414                | 103 | 0.50675                 | 101 | 0.49241                 | 98  | 0.47567                 | 95  | 0.48289                 | 97  |      |     |       |     | !<br> |

Notes: a-indicates analyte failed the ICV limits for 6010B, 6020

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B (Except Hg 7470A,7471A),6020

d-indicates analyte failed the CCV limits Hg 7470A/7471A

**Qc Limits:** ICV - 200.7 : 95-105

CCV- 200.7/200.8/6010B/245.1 : 90-110 (Except Hg 7470A/ 7471A=80-120)

ICV -6010B/6020/200.8: 90-110

CLP ICP ICV/CCV: 90-110

CLP Hg ICV/CCV: 80-120

## FORM 2 LLQCS/LRS Summary)

Date Analyzed: 09/29/20

Data File: S26287A3MDL

Prep Batch: 85348

Analytical Method: 6010D, 6020B, 7470A, 7471B

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

LLQCS/LRS SOURCE: SPEX

| Analyte    | LLQCS<br>Spike<br>Amount | LLICV V-<br>333671 | Recovery | Low<br>Limit | High<br>Limit | LRS<br>Spike<br>Amoun | LRS V-<br>335063<br>t | Recovery | Low<br>Limit | High<br>Limit |
|------------|--------------------------|--------------------|----------|--------------|---------------|-----------------------|-----------------------|----------|--------------|---------------|
| Magnesium  | 5.0                      | 4.93753            | 99       | 80           | 120           | 500                   | 499.889               | 100      | 90           | 110           |
| Silver     | 0.015                    | 0.0135465          | 90       | 80           | 120           | 1                     | 1.05843               | 106      | 90           | 110           |
| Aluminum   | 2.0                      | 2.01031            | 101      | 80           | 120           | 500                   | 476.267               | 95       | 90           | 110           |
| Arsenic    | 0.04                     | 0.0388412          | 97       | 80           | 120           | 10                    | 10.2896               | 103      | 90           | 110           |
| Boron      | 0.2                      | 0.217566           | 109      | 80           | 120           | 5                     | 8.34135               | 167 a    | 90           | 110           |
| Barium     | 0.1                      | 0.0936159          | 94       | 80           | 120           | 10                    | 9.46857               | 95       | 90           | 110           |
| Beryllium  | 0.012                    | 0.0116395          | 97       | 80           | 120           | 5                     | 4.78074               | 96       | 90           | 110           |
| Calcium    | 10                       | 9.90648            | 99       | 80           | 120           | 500                   | 476.325               | 95       | 90           | 110           |
| Cadmium    | 0.012                    | 0.0042451          | 35 a     | 80           | 120           | 5                     | 5.06504               | 101      | 90           | 110           |
| Cobalt     | 0.025                    | 0.0208125          | 83       | 80           | 120           | 5                     | 5.07216               | 101      | 90           | 110           |
| Chromium   | 0.05                     | 0.0558798          | 112      | 80           | 120           | 10                    | 9.52314               | 95       | 90           | 110           |
| Copper     | 0.05                     | 0.0529418          | 106      | 80           | 120           | 10                    | 11.0839               | 111a     | 90           | 110           |
| Silicon    | 0.1                      | 0.113610           | 114      | 80           | 120           | 25                    | 26.7256               | 107      | 90           | 110           |
| Potassium  | NA                       | -593.634           |          | 80           | 120           | 200                   | 254.205               | 127 a    | 90           | 110           |
| Zinc       | 0.1                      | 0.0871587          | 87       | 80           | 120           | 10                    | 9.54040               | 95       | 90           | 110           |
| Manganese  | 0.1                      | 0.102803           | 103      | 80           | 120           | 10                    | 9.99086               | 100      | 90           | 110           |
| Molybdenum | 0.025                    | 0.0196390          | 79 a     | 80           | 120           | 10                    | 10.0027               | 100      | 90           | 110           |
| Sodium     | NA                       | 3.60949            |          | 80           | 120           | 1000                  | 1072.88               | 107      | 90           | 110           |
| Nickel     | 0.05                     | 0.0484991          | 97       | 80           | 120           | 10                    | 9.70405               | 97       | 90           | 110           |
| Lead       | 0.05                     | 0.0448466          | 90       | 80           | 120           | 10                    | 10.0589               | 101      | 90           | 110           |
| Antimony   | 0.04                     | 0.0235084          | 59 a     | 80           | 120           | 5                     | 5.25456               | 105      | 90           | 110           |
| Selenium   | 0.05                     | 0.0494130          | 99       | 80           | 120           | 5                     | 5.14259               | 103      | 90           | 110           |
| Tin        | 0.2                      | 0.197553           | 99       | 80           | 120           | 10                    | 10.3034               | 103      | 90           | 110           |
| Titanium   | 0.1                      | 0.0995872          | 100      | 80           | 120           | 10                    | 10.0881               | 101      | 90           | 110           |
| Thallium   | 0.05                     | 0.0658311          | 132 a    | 80           | 120           | 5                     | 5.31473               | 106      | 90           | 110           |
| Vanadium   | 0.1                      | 0.107023           | 107      | 80           | 120           | 10                    | 9.97004               | 100      | 90           | 110           |
| Iron       | 2.0                      | 2.04685            | 102      | 80           | 120           | 400                   | 383.507               | 96       | 90           | 110           |

Notes:

a-indicates analyte is outsite the limits.

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

# FORM 2 (ICV/CCV Summary)

Date Analyzed: 09/29/20

Data File: S26287A4MDL

Prep Batch: 85348

Analytical Method:6010B(ICP)/7470A,7471A(Hg),6020

Instrument: PEICPRAD4A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0092806

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

| Analyte   | ICV/CCV<br>Amt | ICV V-<br>333673-<br>5 | Rec | CCV V-<br>333673-<br>12 | Rec | CCV V-<br>333673-<br>23 | Rec | Rec | Rec | Rec | Rec | Rec |
|-----------|----------------|------------------------|-----|-------------------------|-----|-------------------------|-----|-----|-----|-----|-----|-----|
| Potassium | 100/50         | 50.39370               | 101 | 50.20520                | 100 | 49.85960                | 100 |     |     |     |     |     |
| Sodium    | 100/50         | 51.50420               | 103 | 51.67370                | 103 | 52.11520                | 104 |     |     |     |     |     |

Notes: a-indicates analyte failed the ICV limits for 6010B, 6020

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B (Except Hg 7470A,7471A),6020

d-indicates analyte failed the CCV limits Hg 7470A/7471A

**Qc Limits:** ICV - 200.7: 95-105

CCV- 200.7/200.8/6010B/245.1 : 90-110 (Except Hg 7470A/ 7471A=80-120)

ICV -6010B/6020/200.8: 90-110

CLP ICP ICV/CCV: 90-110

CLP Hg ICV/CCV: 80-120

### FORM 2 LLQCS/LRS Summary)

Date Analyzed: 09/29/20

Data File: S26287A4MDL

Prep Batch: 85348

Analytical Method: 6010D, 6020B, 7470A, 7471B

Instrument: PEICPRAD4A

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

LLQCS/LRS SOURCE: SPEX

| Analyte    | LLQCS<br>Spike<br>Amount | LLICV V-<br>333671 | Recovery | Low<br>Limit | High<br>Limit | LRS<br>Spike<br>Amount | LRS V-<br>333662 | Recovery | Low<br>Limit | High<br>Limit |  |
|------------|--------------------------|--------------------|----------|--------------|---------------|------------------------|------------------|----------|--------------|---------------|--|
| Molybdenum | 0.025                    | 0.0214371          | 86       | 80           | 120           | 10                     | 9.38486          | 94       | 90           | 110           |  |
| Boron      | 0.2                      | 0.193178           | 97       | 80           | 120           | 5                      | 4.44860          | 89 a     | 90           | 110           |  |
| Barium     | 0.1                      | 0.0927602          | 93       | 80           | 120           | 10                     | 9.08901          | 91       | 90           | 110           |  |
| Calcium    | 10.00                    | 9.59227            | 96       | 80           | 120           | 500                    | 460.547          | 92       | 90           | 110           |  |
| Copper     | 0.05                     | 0.0497909          | 100      | 80           | 120           | 10                     | 9.47780          | 95       | 90           | 110           |  |
| Iron       | 2.00                     | 1.92142            | 96       | 80           | 120           | 400                    | 366.767          | 92       | 90           | 110           |  |
| Potassium  | 5.00                     | 4.74378            | 95       | 80           | 120           | 200                    | 210.263          | 105      | 90           | 110           |  |
| Aluminum   | 2.00                     | 1.93489            | 97       | 80           | 120           | 500                    | 500.438          | 100      | 90           | 110           |  |
| Manganese  | 0.10                     | 0.0952512          | 95       | 80           | 120           | 10                     | 9.06384          | 91       | 90           | 110           |  |
| Zinc       | 0.1                      | 0.0845846          | 85       | 80           | 120           | 10                     | 9.22307          | 92       | 90           | 110           |  |
| Sodium     | 2.50                     | 2.45305            | 98       | 80           | 120           | 1000                   | 933.978          | 93       | 90           | 110           |  |
| Nickel     | 0.05                     | 0.0407765          | 82       | 80           | 120           | 10                     | 9.55245          | 96       | 90           | 110           |  |
| Selenium   | 0.05                     | -0.0140360         | -28 a    | 80           | 120           | 5                      | 5.39001          | 108      | 90           | 110           |  |
| Silicon    | 0.1                      | 0.130774           | 131 a    | 80           | 120           | 25                     | 25.2465          | 101      | 90           | 110           |  |
| Tin        | 0.2                      | 0.208588           | 104      | 80           | 120           | 10                     | 10.1264          | 101      | 90           | 110           |  |
| Titanium   | 0.1                      | 0.0985430          | 99       | 80           | 120           | 10                     | 9.29844          | 93       | 90           | 110           |  |
| Vanadium   | 0.1                      | 0.0991873          | 99       | 80           | 120           | 10                     | 8.86566          | 89 a     | 90           | 110           |  |
| Magnesium  | 5.00                     | 4.64097            | 93       | 80           | 120           | 500                    | 491.077          | 98       | 90           | 110           |  |

Notes: a-indicates analyte is outsite the limits.

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

#### FORM 2 (ICV/CCV Summary)

Date Analyzed: 09/29/20

Data File: \$26287B4MDL

Prep Batch: 85348

Analytical Method:6010B(ICP)/7470A,7471A(Hg),6020

Instrument: PEICPRAD4A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0092806

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

| Analyte   | ICV/CCV<br>Amt | ICV V-<br>333673-<br>5 | Rec | CCV V-<br>333673-<br>12 | Rec | CCV V-<br>333673-<br>19 | Rec | CCV V-<br>333673-<br>27 | Rec | Rec | Rec | Rec | Rec |
|-----------|----------------|------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|-----|-----|-----|-----|
| Potassium | 100/50         | 49.30180               | 99  | 49.52890                | 99  | 49.43500                | 99  | 49.28950                | 99  |     |     |     |     |
| Sodium    | 100/50         | 49.54650               | 99  | 50.01810                | 100 | 50.01690                | 100 | 50.08140                | 100 |     |     |     |     |

a-indicates analyte failed the ICV limits for 6010B, 6020 Notes:

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B (Except Hg 7470A,7471A),6020

d-indicates analyte failed the CCV limits Hg 7470A/7471A

ICV - 200.7: 95-105 Qc Limits:

CCV- 200.7/200.8/6010B/245.1 : 90-110 (Except Hg 7470A/ 7471A=80-120)

ICV -6010B/6020/200.8:90-110

CLP ICP ICV/CCV: 90-110

**CLP Hg ICV/CCV: 80-120** 

### FORM 2 LLQCS/LRS Summary)

Date Analyzed: 09/29/20

Lab Name: Hampton-Clarke

Data File: S26287B4MDL

Lab Code:

Prep Batch: 85348 Analytical Method: 6010D, 6020B, 7470A, 7471B Contract:

Nras No: Sdg No:

Instrument: PEICPRAD4A

Case No:

Units: All units in ppm except Hg and icp-ms in ppb

LLQCS/LRS SOURCE: SPEX

|            | LLQCS<br>Spike<br>Amount | LLICV V-<br>333671 | Recovery | Low<br>Limit | High<br>Limit | LRS<br>Spike<br>Amount | LRS V-<br>333662 | Recovery | Low<br>Limit | High<br>Limit |  |
|------------|--------------------------|--------------------|----------|--------------|---------------|------------------------|------------------|----------|--------------|---------------|--|
| Molybdenum | 0.025                    | 0.0153208          | 61 a     | 80           | 120           | 10                     | 9.43651          | 94       | 90           | 110           |  |
| Boron      | 0.2                      | 0.193469           | 97       | 80           | 120           | 5                      | 4.59302          | 92       | 90           | 110           |  |
| Barium     | 0.1                      | 0.0971529          | 97       | 80           | 120           | 10                     | 9.16858          | 92       | 90           | 110           |  |
| Calcium    | 10.00                    | 10.0904            | 101      | 80           | 120           | 500                    | 464.559          | 93       | 90           | 110           |  |
| Copper     | 0.05                     | 0.0479485          | 96       | 80           | 120           | 10                     | 9.54184          | 95       | 90           | 110           |  |
| Iron       | 2.00                     | 1.93626            | 97       | 80           | 120           | 400                    | 365.848          | 91       | 90           | 110           |  |
| Potassium  | 5.00                     | 4.94896            | 99       | 80           | 120           | 200                    | 211.545          | 106      | 90           | 110           |  |
| Aluminum   | 2.00                     | 1.92212            | 96       | 80           | 120           | 500                    | 506.185          | 101      | 90           | 110           |  |
| Manganese  | 0.10                     | 0.0993190          | 99       | 80           | 120           | 10                     | 9.02971          | 90       | 90           | 110           |  |
| Zinc       | 0.1                      | 0.0992511          | 99       | 80           | 120           | 10                     | 9.21569          | 92       | 90           | 110           |  |
| Sodium     | 2.50                     | 2.39580            | 96       | 80           | 120           | 1000                   | 950.883          | 95       | 90           | 110           |  |
| Nickel     | 0.05                     | 0.0557994          | 112      | 80           | 120           | 10                     | 9.53391          | 95       | 90           | 110           |  |
| Selenium   | 0.05                     | 0.114853           | 230 a    | 80           | 120           | 5                      | 4.12752          | 83 a     | 90           | 110           |  |
| Silicon    | 0.1                      | 0.168684           | 169 a    | 80           | 120           | 25                     | 25.7078          | 103      | 90           | 110           |  |
| Tin        | 0.2                      | 0.218376           | 109      | 80           | 120           | 10                     | 10.4749          | 105      | 90           | 110           |  |
| Titanium   | 0.1                      | 0.0985580          | 99       | 80           | 120           | 10                     | 9.32297          | 93       | 90           | 110           |  |
| Vanadium   | 0.1                      | 0.0968455          | 97       | 80           | 120           | 10                     | 8.95563          | 90       | 90           | 110           |  |
| Magnesium  | 5.00                     | 4.98045            | 100      | 80           | 120           | 500                    | 496.257          | 99       | 90           | 110           |  |

a-indicates analyte is outsite the limits. Notes:

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

#### FORM 2 (ICV/CCV Summary)

Date Analyzed: 09/30/20

Data File: H26287SMDL

Prep Batch: 85348

Analytical Method:6010B(ICP)/7470A,7471A(Hg),6020

Instrument: HGCV3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0092806

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

|         |                | ICV (2)-9 | <del></del> | CCV-21   |     | CCV-33   |     | CCV-37   |     |     |     |     | · · · |     |
|---------|----------------|-----------|-------------|----------|-----|----------|-----|----------|-----|-----|-----|-----|-------|-----|
| Analyte | ICV/CCV<br>Amt |           | Rec         |          | Rec |          | Rec |          | Rec | Rec | Rec | Rec |       | Rec |
| Mercury | 20/10          | 20.02000  | 100         | 10.03000 | 100 | 10.11000 | 101 | 10.11000 | 101 |     |     |     |       |     |

a-indicates analyte failed the ICV limits for 6010B, 6020 Notes:

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B (Except Hg 7470A,7471A),6020

d-indicates analyte failed the CCV limits Hg 7470A/7471A

ICV - 200.7:95-105 Qc Limits:

CCV- 200.7/200.8/6010B/245.1 : 90-110 (Except Hg 7470A/ 7471A=80-120)

ICV -6010B/6020/200.8:90-110

CLP ICP ICV/CCV: 90-110 CLP Hg ICV/CCV: 80-120

# FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/01/20

Data File: S100120AMDL

Prep Batch: 85347

Analytical Method:6010B(ICP)/7470A,7471A(Hg),6020

Instrument: MS3\_7700SWA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0092806

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

| Analyte   | ICV/CCV<br>Amt | ICV V-<br>, 335544-<br>8 | Rec | CCV V-<br>335548-<br>16 | Rec | CCV V-<br>335548-<br>28 | Rec | CCV V-<br>335548-<br>40 | Rec | CCV V-<br>335548-<br>48 | Rec |   | Rec |   | Rec |            | Rec |
|-----------|----------------|--------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|---|-----|---|-----|------------|-----|
| Antimony  | 50/30          | 50.74600                 | 101 | 46.83200                | 94  | 51.15200                | 102 | 48.93100                | 98  | 49.23100                | 98  |   |     |   |     |            |     |
| Arsenic   | 50/30          | 51.94600                 | 104 | 51.29300                | 103 | 51.14400                | 102 | 50.54300                | 101 | 50.35000                | 101 |   |     |   |     |            |     |
| Beryllium | 50/30          | 51.35600                 | 103 | 50.38200                | 101 | 49.93200                | 100 | 47.54400                | 95  | 49.62100                | 99  |   |     |   |     |            |     |
| Cadmium   | 50/30          | 51.17800                 | 102 | 47.62700                | 95  | 50.46800                | 101 | 48.28500                | 97  | 48.80700                | 98  |   |     |   |     |            |     |
| Selenium  | 50/30          | 52.31500                 | 105 | 259.78300               | 104 | 257.43100               | 103 | 254.65100               | 102 | 256.82300               | 103 |   |     |   |     |            |     |
| Silver    | 10/6           | 10.21500                 | 102 | 46.93300                | 94  | 51.88700                | 104 | 50.42800                | 101 | 50.61100                | 101 |   |     | [ |     | '<br> <br> |     |
| Thallium  | 50/30          | 49.89900                 | 100 | 51.38200                | 103 | 51.30700                | 103 | 49.21700                | 98  | 49.68200                | 99  | İ |     |   |     |            |     |
| Vanadium  | 50/30          | 50.66300                 | 101 | 50.73800                | 101 | 50.88900                | 102 | 49.85400                | 100 | 49.48900                | 99  |   |     | i |     |            |     |

Notes: a-indicates analyte failed the ICV limits for 6010B, 6020

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B (Except Hg 7470A,7471A),6020

d-indicates analyte failed the CCV limits Hg 7470A/7471A

**Qc Limits:** ICV - 200.7:95-105

CCV- 200.7/200.8/6010B/245.1 : 90-110 (Except Hg 7470A/ 7471A=80-120)

ICV -6010B/6020/200.8:90-110

CLP ICP ICV/CCV: 90-110

CLP Hg ICV/CCV: 80-120

### FORM 2 LLQCS/LRS Summary)

Date Analyzed: 10/01/20

Data File: S100120AMDL Prep Batch: 85347

Analytical Method: 6010D, 6020B, 7470A, 7471B

Instrument: MS3\_7700SWA

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name: Hampton-Clarke

Lab Code:

Contract: Nras No:

Sdg No:

Case No:

LLQCS/LRS SOURCE: SPEX

| Analyte    | Spike | LLICV V-<br>335549 | Recovery | Low<br>Limit | High<br>Limit | LRS<br>Spike<br>Amount | LRS V-<br>335547 | Recovery | Low<br>Limit | High<br>Limit | :                                       |
|------------|-------|--------------------|----------|--------------|---------------|------------------------|------------------|----------|--------------|---------------|-----------------------------------------|
| Magnesium  | 500   | 493.367            | 99       | 80           | 120           | 50000                  | 51699.197        | 103      | 90           | 110           |                                         |
| Aluminum   | 500   | 509.192            | 102      | 80           | 120           | 15000                  | 15934.248        | 106      | 90           | 110           | :                                       |
| Chromium   | 2     | 2.055              | 103      | 80           | 120           | 500                    | 535.413          | 107      | 90           | 110           |                                         |
| Copper     | 10    | 10.323             | 103      | 80           | 120           | 500                    | 523.172          | 105      | 90           | 110           | į                                       |
| Iron       | 500   | 524.224            | 105      | 80           | 120           | 50000                  | 52652.805        | 105      | 90           | 110           |                                         |
| Arsenic    | 1     | 1.014              | 101      | 80           | 120           | 500                    | 525.595          | 105      | 90           | 110           | !                                       |
| Barium     | 5     | 4.988              | 100      | 80           | 120           | 500                    | 534.453          | 107      | 90           | 110           | į                                       |
| Beryllium  | 1     | 0.996              | 100      | 80           | 120           | 500                    | 487.596          | 98       | 90           | 110           |                                         |
| Calcium    | 500   | 512.238            | 102      | 80           | 120           | 50000                  | 55127.085        | 110      | 90           | 110           | *************************************** |
| Cadmium    | 2     | 1.893              | 95       | 80           | 120           | 500                    | 532.773          | 107      | 90           | 110           | #<br>-                                  |
| Silver     | 1     | 0.947              | 95       | 80           | 120           | 500                    | 183.223          | 37 a     | 90           | 110           | :                                       |
| Potassium  | 500   | 498.534            | 100      | 80           | 120           | 50000                  | 53166.454        | 106      | 90           | 110           | ;                                       |
| Zinc       | 20    | 19.552             | 98       | 80           | 120           | 500                    | 493.361          | 99       | 90           | 110           | ļ                                       |
| Manganese  | 6     | 5.904              | 98       | 80           | 120           | 500                    | 545.002          | 109      | 90           | 110           | ·<br> -                                 |
| Molybdenum | 1     | 1.016              | 102      | 80           | 120           | 500                    | 544.859          | 109      | 90           | 110           |                                         |
| Sodium     | 500   | 469.782            | 94       | 80           | 120           | 50000                  | 52482.637        | 105      | 90           | 110           |                                         |
| Nickel     | 3     | 3.072              | 102      | 80           | 120           | 500                    | 536.000          | 107      | 90           | 110           | :                                       |
| Lead       | 2     | 1.848              | 92       | 80           | 120           | 500                    | 482.793          | 97       | 90           | 110           | ļ                                       |
| Antimony   | 4     | 3.718              | 93       | 80           | 120           | 500                    | 532.921          | 107      | 90           | 110           |                                         |
| Selenium   | 10    | 10.135             | 101      | 80           | 120           | 2500                   | 2602.671         | 104      | 90           | 110           |                                         |
| Thallium   | 2     | 1.778              | 89       | 80           | 120           | 500                    | 481.756          | 96       | 90           | 110           | :                                       |
| Vanadium   | 1     | 0.995              | 100      | 80           | 120           | 500                    | 543.251          | 109      | 90           | 110           | ;                                       |
| Cobalt     | 2     | 1.957              | 98       | 80           | 120           | 500                    | 532.848          | 107      | 90           | 110           |                                         |

Notes: a-indicates analyte is outsite the limits.

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

Date Analyzed: 09/29/20

Data File: S26287A3MDL

Prep Batch: 85348

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0092806

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

| Analyte   | ICB V-333667-<br>6 | CCB V-333667-<br>13 | CCB V-333667-<br>24 | CCB V-333667-<br>34 | CCB V-333667-<br>43 | MB 85348<br>(100)-14 |
|-----------|--------------------|---------------------|---------------------|---------------------|---------------------|----------------------|
| Aluminum  | .0835 U            | .167 U              | .167 U              | .167 U              | .167 U              | 8.4U                 |
| Barium    | 00422 a            | .00676 U            | .00676 U            | .00676 U            | .00676 U            | .34U                 |
| Calcium   | .505 U             | 1.01 U              | 1.01 U              | 1.01 U              | 1.01 U              | 51U                  |
| Chromium  | .00385 a           | .0067 U             | .0067 U             | .0067 U             | .0067 U             | .56a                 |
| Cobalt    | .00356 U           | .00713 U            | .00713 U            | .00713 U            | .00713 U            | .36U                 |
| Copper    | .00888 a           | .00616 U            | .00616 U            | .00616 U            | .00616 U            | .63a                 |
| lron      | .066 U             | .132 U              | .132 U              | .132 U              | .132 U              | 12a                  |
| Lead      | 00675 a            | 0115 a              | 00665 a             | 0105 a              | 00974 a             | .31U                 |
| Magnesium | 209 a              | 206 a               | 204 a               | 212 a               | 218 a               | 9.8U                 |
| Manganese | .00321 U           | .00642 U            | .00642 U            | .00642 U            | .00642 U            | .32U                 |
| Nickel    | .0055 U            | .011 U              | .011 U              | .011 U              | .011 U              | .55U                 |
| Zinc      | 00784 a            | .0151 U             | .0151 U             | .0151 U             | .0151 U             | 2.3a                 |

Date Analyzed: 09/29/20

Data File: S26287A4MDL

Lab Name: Veritech

Prep Batch: 85348

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Lab Code: Contract:

Instrument: PEICPRAD4A

Nras No: Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0092806

Case No:

|           | ICB V-333667- | CCB V-333667- | CCB V-333667- | MB 85348 |  |  |  |
|-----------|---------------|---------------|---------------|----------|--|--|--|
| Analyte   | 6             | 13            | 24            | (100)-14 |  |  |  |
| Potassium | .493 U        | .987 U        | .987 U        | 49 U     |  |  |  |
| Sodium    | .628 U        | 1.26 U        | 1.26 U        | 63 U     |  |  |  |

Date Analyzed: 09/29/20

Data File: S26287B4MDL

Lab Name: Veritech

Prep Batch: 85348

Lab Code:

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Contract:

Instrument: PEICPRAD4A

Nras No: Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0092806

Case No:

| Analyte   | ICB V-333667-<br>6 | CCB V-333667-<br>13 | CCB V-333667-<br>20 | CCB V-333667-<br>28 |   |      |     |  |   |
|-----------|--------------------|---------------------|---------------------|---------------------|---|------|-----|--|---|
| Potassium | .493 U             | .987 U              | .987 U              | .987 U              |   | <br> | Γ'' |  | - |
| Sodium    | .628 U             | 1.26 U              | 1.26 U              | 1.26 U              | ĺ |      |     |  |   |

Date Analyzed: 09/30/20

Data File: H26287SMDL

Prep Batch: 85348

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Instrument: HGCV3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0092806

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

| Analyte | ICB-10  | CCB-22 | CCB-34  | CCB-38  | MB 85348<br>(167)-11 |  |  |
|---------|---------|--------|---------|---------|----------------------|--|--|
| Mercury | .0757 U | 085 a  | .0757 U | .0757 U | 13 U                 |  |  |

Date Analyzed: 10/01/20

Data File: S100120AMDL

Lab Name: Veritech

Prep Batch: 85347

Lab Code:

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Contract:

Instrument: MS3\_7700SWA

Nras No:

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0092806

Case No:

| Analyte   | ICB V-335545-<br>10 | CCB V-335545-<br>17 | CCB V-335545-<br>29 | CCB V-335545-<br>41 | CCB V-335545-<br>49 | MB 85347-18 |  |
|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------|--|
| Antimony  | 135 a               | 116 a               | 145 a               | 15 a                | 15 a                | 11U         |  |
| Arsenic   | .0437 U             | .0874 U             | .0874 U             | .0874 U             | .0874 U             | 11a         |  |
| Beryllium | .0391 U             | .0783 U             | .0783 U             | .0783 U             | .0783 U             | 7.8U        |  |
| Cadmium   | .0353 U             | .0706 U             | .0706 U             | .0706 U             | .0706 U             | 7.1U        |  |
| Selenium  | .192 a              | .318 U              | .318 U              | .318 U              | .318 U              | 81a         |  |
| Silver    | .0652 U             | .13U                | .13U                | .13 U               | .13 U               | 42a         |  |
| Thallium  | .0441 U             | .0882 U             | .0882 U             | .0882 U             | .0882 U             | 8.8U        |  |
| Vanadium  | .0271 U             | .0542 U             | .0542 U             | .0542 U             | .0542 U             | 32a         |  |

Date Analyzed: 09/29/20

Data File: \$26287A3MDL

Prep Batch: 85348

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb Project Number: 0092806

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

ICSA/ICSAB: SOURCE: VHG LABS

| Analyte   | Spk<br>Amt | ICSA V-<br>333668-11 | Rec | Rec | Rec | Rec | Rec | Rec | Rec | Rec |
|-----------|------------|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Aluminum  | 500        | 514.242              | 103 |     |     |     |     |     |     |     |
| Barium    | 0          | U                    |     |     |     |     |     |     |     |     |
| Calcium   | 500        | 518.059              | 104 |     |     |     |     | ļ   |     |     |
| Chromium  | 0          | U                    |     |     |     |     |     |     |     |     |
| Cobalt    | 0          | U                    |     |     |     |     |     |     |     | ļ   |
| Copper    | 0          | 0300415a             |     |     |     |     |     |     |     |     |
| Iron      | 200        | 197.768              | 99  |     |     |     |     |     |     |     |
| Lead      | 0          | 033936a              |     |     |     |     |     |     |     |     |
| Magnesium | 500        | 537.501              | 108 |     |     |     |     |     |     |     |
| Manganese | 0          | 028529a              |     |     |     |     |     |     |     |     |
| Nickel    | 0          | U                    | -   |     |     |     |     |     |     |     |
| Zinc      | 0          | U                    |     |     |     |     |     |     |     |     |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 \* Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

Date Analyzed: 09/29/20

Lab Name: Veritech

Data File: S26287A4MDL

Lab Code: Contract:

Prep Batch: 85348

Nras No:

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Sdg No:

Instrument: PEICPRAD4A

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 0092806

ICSA/ICSAB: SOURCE: VHG LABS

| Analyte   | Spk<br>Amt | ICSA V-<br>333668-11 | Rec | Rec | Rec | Rec | Rec | Rec    | Rec | Rec |
|-----------|------------|----------------------|-----|-----|-----|-----|-----|--------|-----|-----|
| Aluminum  | 500        | 515.722              | 103 |     |     |     |     |        |     |     |
| Calcium   | 500        | 505.672              | 101 |     |     |     |     |        |     |     |
| Iron      | 200        | 184.926              | 92  |     |     |     |     |        |     |     |
| Magnesium | 500        | 507.172              | 101 |     |     |     | ļ   |        |     |     |
| Potassium | 0          | U                    |     |     |     |     | i   |        |     |     |
| Sodium    | 0          | U                    |     |     |     |     |     | I<br>I |     |     |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 \* Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

Date Analyzed: 09/29/20

Lab Name: Veritech

Data File: S26287B4MDL

Lab Code:

Prep Batch: 85348

Contract:

Reporting Limits Used:SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Nras No:

Instrument: PEICPRAD4A

Sdg No:

Case No:

Units: All units in ppm except Hg and icp-ms in ppb Project Number: 0092806

**ICSA/ICSAB: SOURCE: VHG LABS** 

| Analyte   | Spk<br>Amt | ICSA V-<br>333668-11 | Rec | Rec | Rec | Rec | Rec | Rec | Rec | Rec |
|-----------|------------|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Aluminum  | 500        | 526.079              | 105 |     |     |     |     |     |     |     |
| Calcium   | 500        | 511.237              | 102 |     |     |     |     |     |     |     |
| Iron      | 200        | 187.712              | 94  |     |     |     |     |     |     |     |
| Magnesium | 500        | 517.081              | 103 |     |     |     |     |     |     |     |
| Potassium | 0          | U                    |     |     |     |     |     |     |     |     |
| Sodium    | 0          | U                    |     |     |     |     |     |     |     |     |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 \* Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

Date Analyzed: 10/01/20

Lab Name: Veritech

Data File: S100120AMDL

Lab Code:

Prep Batch: 85347

Contract:

Reporting Limits Used:SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Nras No:

Instrument: MS3\_7700SWA

Sdg No:

Case No:

Units: All units in ppm except Hg and icp-ms in ppb Project Number: 0092806

ICSA/ICSAB: SOURCE: VHG LABS

|           | Spk<br>Amt | ICSA V-<br>335546-11 |     |     | _   | _      |             |      | _   | _   |
|-----------|------------|----------------------|-----|-----|-----|--------|-------------|------|-----|-----|
| Analyte   | ·          |                      | Rec | Rec | Rec | Rec    | Rec         | Rec_ | Rec | Rec |
| Aluminum  | 50000      | 50898.6              | 102 |     |     |        |             |      |     |     |
| Antimony  | 0          | .232a                |     |     |     |        |             |      |     |     |
| Arsenic   | 0          | .26a                 |     |     |     |        |             |      |     |     |
| Beryllium | 0          | U                    | Ì   |     |     |        |             |      |     |     |
| Cadmium   | 0          | 1.297a               |     |     |     | 1      |             |      |     |     |
| Calcium   | 150000     | 161621.5             | 108 |     |     |        |             |      |     |     |
| Iron      | 125000     | 126165               | 101 |     |     |        | 7<br>5<br>1 |      |     |     |
| Magnesium | 50000      | 49641.29             | 99  |     |     | ĺ      |             | :    |     |     |
| Selenium  | 0          | .383b                |     |     |     |        |             | į    |     |     |
| Silver    | 0          | .179b                |     |     |     | [<br>] |             |      |     |     |
| Thallium  | 0          | U                    |     |     |     |        |             |      |     |     |
| Vanadium  | 0          | .111a                |     |     |     |        |             |      |     |     |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 \* Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

PREP BATCH: 85347

Instrument Type: ICPMS

Analytical Method(s):6020/200.8

| TxtQcType:          | LCSMR          | Ма  | trix: SOIL           |       | Sample      | eID: LC | S MR 85347          |          |           |       |      |        |        |
|---------------------|----------------|-----|----------------------|-------|-------------|---------|---------------------|----------|-----------|-------|------|--------|--------|
| Analyte             | Batchid        | DF  | Data File            | Seq#: |             |         | Spk Conc:           |          | Spk Added | Recov | Qual | Lo Lim | Hi Lim |
| Antimony            | 85347          | 1   | S100120A             | 20    |             |         | 37.8660             |          | 117       | 32    |      | 10     | 110    |
| Arsenic             | 85347          | 1   | S100120A             | 20    |             |         | 47.1760             |          | 49.4      | 95    |      | 61     | 113    |
| Beryllium           | 85347          | 1   | S100120A             | 20    |             |         | 166.5650            |          | 187       | 89    |      | 66     | 110    |
| Cadmium             | 85347          | 1   | S100120A             | 20    |             |         | 182.5200            |          | 197       | 93    |      | 64     | 110    |
| Selenium            | 85347          | 1   | S100120A             | 20    |             |         | 350.7950            |          | 364       | 96    |      | 60     | 112    |
| Silver              | 85347          | 1   | S100120A             | 20    |             |         | 93.0830             |          | 94.0      | 99    |      | 61     | 111    |
| Thallium            | 85347          | 1   | S100120A             | 20    |             |         | 202.9060            |          | 229       | 89    |      | 61     | 110    |
| Vanadium            | 85347          | 1   | S100120A             | 20    |             |         | 281.1180            |          | 300       | 94    |      | 66     | 110    |
| TxtQcType:          | LCS            | Ма  | trix: SOIL           |       | Sample      | eID: LC | S 85347             |          |           |       |      |        |        |
| Analyte             | Batchld        | DF  | Data File            | Seq#: |             |         | Spk Conc:           |          | Spk Added | Recov | Qual | Lo Lim | Hi Lim |
| Antimony            | 85347          | 1   | S100120A             | 19    |             |         | 36.6160             |          | 117       | 31    |      | 10     | 110    |
| Arsenic             | 85347          | 1   | S100120A             | 19    |             |         | 41.5980             |          | 49.4      | 84    |      | 61     | 113    |
| Beryllium           | 85347          | 1   | S100120A             | 19    |             |         | 147.1960            |          | 187       | 79    |      | 66     | 110    |
| Cadmium             | 85347          | 1   | S100120A             | 19    |             |         | 164.0540            |          | 197       | 83    |      | 64     | 110    |
| Selenium            | 85347          | 1   | S100120A             | 19    |             |         | 300.6640            |          | 364       | 83    |      | 60     | 112    |
| Silver              | 85347          | 1   | S100120A             | 19    |             |         | 84.8560             |          | 94.0      | 90    |      | 61     | 111    |
| Thallium            | 85347          | 1   | S100120A             | 19    |             |         | 175.5660            |          | 229       | 77    |      | 61     | 110    |
| Vanadium            | 85347          | 1 . | S100120A             | 19    |             |         | 245.8990            |          | 300       | 82    |      | 66     | 110    |
| TxtQcType:          | MSD            | Ma  | trix: SOIL           |       | Sample      | eID: AD | 19479-001           |          |           | _     |      |        |        |
| Analyte             | Batchld        | DF  | Data File            | Seq#: | NS Data Fil | Seq#    | Spk Conc:           | NS Conc: | Spk Added | Recov | Qual | Lo Lim | Hi Lim |
| Antimony            | 85347          | 1   | S100120A             | 25    | S100120A    | 21      | 71.1210             | 0.5840   | 250       | 28    | а    | 75     | 125    |
| Arsenic             | 85347          | 1   | S100120A             | 25    | S100120A    | 21      | 230.8610            | 17.6350  | 250       | 85    |      | 75     | 125    |
| Beryllium           | 85347          | 1   | S100120A             | 25    | S100120A    | 21      | 197.6950            | 0.7970   | 250       | 79    |      | 75     | 125    |
| Cadmium             | 85347          | _1  | S100120A             | 25    | S100120A    | 21      | 219.9040            | 1.6960   | 250       | 87    |      | 75     | 125    |
| Selenium            | 85347          | 1   | S100120A             | 25    | S100120A    | 21      | 209.8380            | 5.4710   | 250       | 82    |      | 75     | 125    |
| Silver              | 85347          | 1   | S100120A             | 25    | S100120A    | 21      | 43.7240             | 0.3000   | 50        | 87    |      | 75     | 125    |
| Thallium            | 85347          | 1   | S100120A             | 25    | S100120A    | 21      | 194.8700            | 0.4670   | 250       | 78    |      | 75     | 125    |
| /anadium            | 85347          | 1   | S100120A             | 25    | S100120A    | 21      | 306.2560            | 212.0810 | 250       | 38    | а    | 75     | 125    |
| TxtQcType:          | MS             | Ма  | trix: SOIL           |       | Sample      | eID: AD | 19479-001           |          |           |       |      |        |        |
| Analyte             | Batchld        | DF  | Data File            | Seq#: | NS Data Fil | Seq#    | Spk Conc:           | NS Conc: | Spk Added | Recov | Qual | Lo Lim | Hi Lim |
| Antimony            | 85347          | 1   | S100120A             | 24    | S100120A    | 21      | 67.2390             | 0.5840   | 250       | 27    | а    | 75     | 125    |
| Arsenic             | 85347          | 1   | S100120A             | 24    | S100120A    | 21      | 232.9120            | 17.6350  | 250       | 86    |      | 75     | 125    |
| Beryllium           | 85347          | 1   | S100120A             | 24    | S100120A    | 21      |                     | 0.7970   | 250       | 77    |      | 75     | 125    |
|                     | 85347          | 1   | S100120A             | 24    | S100120A    | 21      | 217.5450            | 1.6960   | 250       | 86    |      | 75     | 125    |
| Cadmium             |                | 4   | S100120A             | 24    | S100120A    | 21      | 209.7510            | 5.4710   | 250       | 82    |      | 75     | 125    |
| Cadmium<br>Selenium | 85347          | 1   | 3100120A             | 24    |             |         |                     |          |           |       |      | -      |        |
|                     | 85347<br>85347 | 1   | S100120A<br>S100120A | 24    | S100120A    | 21      | 43.3920             | 0.3000   | 50        | 86    |      | 75     | 125    |
| Selenium            |                |     |                      |       |             |         | 43.3920<br>190.2050 |          |           |       |      |        |        |

PREP BATCH: 85347

Instrument Type: ICPMS
Analytical Method(s):6020/200.8

| TxtQcType: PS | Matrix: SOIL |           |       | Sample      | eID: AD | 19479-001 |          |           |       |             |        |
|---------------|--------------|-----------|-------|-------------|---------|-----------|----------|-----------|-------|-------------|--------|
| Analyte       | DF           | Data File | Seq#: | NS Data Fil | Seq#    | Spk Conc: | NS Conc: | Spk Added | Recov | Qual Lo Lim | Hi Lim |
| Antimony      | 1            | S100120A  | 26    | S100120A    | 21      | 49.4780   | 0.5840   | 50        | 98    | 75          | 125    |
| Arsenic       | 1            | S100120A  | 26    | S100120A    | 21      | 67.0580   | 17.6350  | 50        | 99    | 75          | 125    |
| Beryllium     | 1            | S100120A  | 26    | S100120A    | 21      | 43.1330   | 0.7970   | 50        | 85    | 75          | 125    |
| Cadmium       | 1            | S100120A  | 26    | S100120A    | 21      | 50.1660   | 1.6960   | 50        | 97    | 75          | 125    |
| Selenium      | 1            | S100120A  | 26    | S100120A    | 21      | 249.2780  | 5.4710   | 250       | 98    | 75          | 125    |
| Silver        | 1            | S100120A  | 26    | S100120A    | 21      | 49.3990   | 0.3000   | 50        | 98    | 75          | 125    |
| Thallium      | 1            | S100120A  | 26    | S100120A    | 21      | 45.3800   | 0.4670   | 50        | 90    | 75          | 125    |
| Vanadium      | 1            | S100120A  | 26    | S100120A    | 21      | 266.3740  | 212.0810 | 50        | 109   | 75          | 125    |

PREP BATCH: 85348

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| TxtQcType:                                   | LCSMR          | Ma | trix: SOIL |       | Sample      | eID: LC  | S MR 85348 | ]                |           |          |           |            |
|----------------------------------------------|----------------|----|------------|-------|-------------|----------|------------|------------------|-----------|----------|-----------|------------|
| Analyte                                      | BatchId        | DF | Data File  | Seq#: |             |          | Spk Conc:  | · · ·            | Spk Added | Recov    | Qual Lo L | im Hi Li   |
| Aluminum                                     | 85348          | 1  | S26287A3   | 16    |             |          | 77.5682    |                  | 110       | 71       | 55        | 152        |
| Barium                                       | 85348          | 1  | S26287A3   | 16    |             |          | 7.1677     |                  | 8.92      | 80       | 65        | 110        |
| Calcium                                      | 85348          | 1  | S26287A3   | 16    |             |          | 181.9040   |                  | 207.00    | 88       | 69        | 110        |
| Chromium                                     | 85348          | 1  | S26287A3   | 16    |             |          | 1.8197     |                  | 2.27      | 80       | 61        | 114        |
| Cobalt                                       | 85348          | 1  | S26287A3   | 16    |             |          | 2.4286     |                  | 2.87      | 85       | 64        | 110        |
| Copper                                       | 85348          | 4  | S26287A3   | 31    |             |          | 0.4283     |                  | 2.09      | 82       | 66        | 110        |
| Iron                                         | 85348          | 1  | S26287A3   | 16    |             |          | 126.9690   |                  | 192.00    | 66       | 34        | 138        |
| Lead                                         | 85348          | 1  | S26287A3   | 16    |             |          | 1.3716     |                  | 1.63      | 84       | 62        | 110        |
| Magnesium                                    | 85348          | 1  | S26287A3   | 16    |             |          | 63.0571    |                  | 74.60     | 85       | 26        | 114        |
| Manganese                                    | 85348          | 1  | S26287A3   | 16    |             |          | 5.1248     |                  | 6.03      | 85       | 68        | 110        |
| Mercury                                      | 85348          | 4  | H26287SM   | 15    |             |          | 6.6430     |                  | 41.64     | 64       | 39        | 110        |
| Nickel                                       | 85348          | 1  | S26287A3   | 16    |             |          | 0.4675     |                  | .553      | 85       | 61        | 114        |
| Potassium                                    | 85348          | 1  | S26287A4   | 16    |             |          | 16.1564    |                  | 22.60     | 71       | 61        | 140        |
| Sodium                                       | 85348          | 1  | S26287A4   | 16    |             |          | 7.6666     |                  | 8.67      | 88       | 57        | 125        |
| Zinc                                         | 85348          | 1  | S26287A3   | 16    |             |          | 5.7369     |                  | 7.13      | 80       | 60        | 112        |
|                                              |                |    |            |       |             |          |            |                  |           |          |           |            |
| TxtQcType:                                   | LCS            | Ma | trix: SOIL |       | Sample      | eID: LC  | S 85348    |                  |           |          |           |            |
| Analyte                                      | Batchld        | DF |            | Seq#: |             |          | Spk Conc:  |                  | Spk Added |          | Qual Lo L | ****       |
| Aluminum                                     | 85348          | 1  | S26287A3   | 15    |             |          | 78.0373    |                  | 110       | 71       | 55        | 152        |
| Barium                                       | 85348          | 1  | S26287A3   | 15    |             |          | 7.2381     |                  | 8.92      | 81       | 65        | 110        |
| Calcium                                      | 85348          | 1  | S26287A3   | 15    |             |          | 186.1730   |                  | 207.00    | 90       | 69        | 110        |
| Chromium                                     | 85348          | 1  | S26287A3   | 15    |             |          | 1.9406     |                  | 2.27      | 85       | 61        | 114        |
| Cobalt                                       | 85348          | 1  | S26287A3   | 15    |             |          | 2.4334     |                  | 2.87      | 85       | 64        | 110        |
| Copper                                       | 85348          | 4  | S26287A3   | 30    |             |          | 0.4358     |                  | 2.09      | 83       | 66        | 110        |
| ron                                          | 85348          | 1  | S26287A3   | 15    |             |          | 125.0020   |                  | 192.00    | 65       | 34        | 138        |
| _ead                                         | 85348          | 1  | S26287A3   | 15    |             |          | 1.3902     |                  | 1.63      | 85       | 62        | 110        |
| Magnesium                                    | 85348          | 1  | S26287A3   | 15    |             |          | 63.6629    |                  | 74.60     | 85       | 26        | 114        |
| Manganese                                    | 85348          | 1  | S26287A3   | 15    |             |          | 5.2648     |                  | 6.03      | 87       | 68        | 110        |
| Mercury                                      | 85348          | 4  | H26287SM   | 14    |             |          | 6.7810     |                  | 41.64     | 65       | 39        | 110        |
| Nickel                                       | 85348          | 1  | S26287A3   | 15    |             |          | 0.4663     |                  | .553      | 84       | 61        | 114        |
| Potassium                                    | 85348          | 1  | S26287A4   | 15    | •           |          | 16.1603    |                  | 22.60     | 72       | 61        | 140        |
| Sodium                                       | 85348          | 1  | S26287A4   | 15    |             |          | 7.6695     |                  | 8.67      | 88       | 57        | 125        |
| Zinc                                         | 85348          | 1  | S26287A3   | 15    |             |          | 5.8182     |                  | 7.13      | 82       | 60        | 112        |
| TxtQcType:                                   | MSD            | Ma | trix: SOIL |       | Samol       | elD· ΔΓ  | 19479-001  |                  |           |          |           |            |
|                                              | BatchId        |    |            | 0"    |             |          |            | NO C             | 0-1-4-1-1 |          | 0         |            |
| Analyte                                      |                | DF |            | Seq#: | NS Data Fil |          |            | NS Conc:         | Spk Added |          | Qual Lo L |            |
| Aluminum                                     | 85348          | 1  | S26287A3   | 20    | S26287A3    |          | 51.5347    | 28.8089          | 5.0       | 455      | b 75      | 125        |
| Barium<br>Bariaiana                          | 85348          | 1  | S26287A3   | 20    | S26287A3    |          | 0.7160     | 0.1910           | 0.5       | 105      | 75<br>    | 125        |
| Calcium                                      | 85348          | 1  | S26287A3   | 20    | S26287A3    |          | 62.7309    | 14.9423          | 50        | 96       | 75<br>    | 125        |
| Chromium                                     | 85348          | _1 | S26287A3   | 20    | S26287A3    |          | 0.6547     | 0.1748           | 0.5       | 96       | 75        | 125        |
| Cobalt                                       | 85348          | 1  | S26287A3   | 20    | S26287A3    |          | 0.4961     | 0.0086           | 0.5       | 98       | 75<br>    | 125        |
| Copper                                       | 85348          | 1  | S26287A3   | 20    | S26287A3    |          | 0.6104     | 0.1236           | 0.5       | 97       | 75        | 125        |
| ron                                          | 85348          | 1  | S26287A3   | 20    | S26287A3    |          | 75.9866    | 58.2815          | 5.0       | 354      | b 75      | 125        |
| _ead                                         | 85348          | 1  | S26287A3   | 20    | S26287A3    | 17       |            | 0.1532           | 0.5       | 101      | 75        | 125        |
|                                              | 85348          | 1  | S26287A3   | 20    | S26287A3    |          | 52.0601    | 4.0690           | 50        | 96       | 75        | 125        |
| Magnesium                                    | 85348          | 1  | S26287A3   | 20    | S26287A3    |          | 0.9794     | 0.4462           | 0.5       | 107      | 75        | 125        |
| •                                            |                |    | U26207CM   | 19    | H26287SM    | 16       | 9.8970     | 0.075725U        | 10        | 99       | 75        | 125        |
| Manganese                                    | 85348          | 1  | H26287SM   | 13    |             |          |            |                  |           |          |           |            |
| Manganese<br>Mercury                         |                | 1  | S26287A3   | 20    | S26287A3    |          | 0.5285     | 0.0312           | 0.5       | 99       | 75        | 125        |
| Magnesium Manganese Mercury Nickel Potassium | 85348          |    |            |       |             | 17       |            | 0.0312<br>1.3750 | 0.5<br>50 | 99<br>90 | 75<br>75  | 125<br>125 |
| Manganese<br>Mercury<br>Nickel               | 85348<br>85348 | 1  | S26287A3   | 20    | S26287A3    | 17<br>17 | 0.5285     |                  |           |          |           |            |

PREP BATCH: 85348

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| TxtQcType: | MS      | Ma | trix: SOIL |       | Sample      | eID: AD | 19479-001 |              |           |       |      |        |        |
|------------|---------|----|------------|-------|-------------|---------|-----------|--------------|-----------|-------|------|--------|--------|
| Analyte    | BatchId | DF | Data File  | Seq#: | NS Data Fil | Seq#    | Spk Conc: | NS Conc:     | Spk Added | Recov | Qual | Lo Lim | Hi Lim |
| Aluminum   | 85348   | 1  | S26287A3   | 19    | S26287A3    | 17      | 53.4327   | 28.8089      | 5.0       | 492   | b    | 75     | 125    |
| Barium     | 85348   | 1  | S26287A3   | 19    | S26287A3    | 17      | 0.7111    | 0.1910       | 0.5       | 104   |      | 75     | 125    |
| Calcium    | 85348   | 1  | S26287A3   | 19    | S26287A3    | 17      | 64.9542   | 14.9423      | 50        | 100   |      | 75     | 125    |
| Chromium   | 85348   | 1  | S26287A3   | 19    | S26287A3    | 17      | 0.7100    | 0.1748       | 0.5       | 107   |      | 75     | 125    |
| Cobalt     | 85348   | 1  | S26287A3   | 19    | S26287A3    | 17      | 0.5001    | 0.0086       | 0.5       | 98    |      | 75     | 125    |
| Copper     | 85348   | 1  | S26287A3   | 19    | S26287A3    | 17      | 0.6299    | 0.1236       | 0.5       | 101   |      | 75     | 125    |
| Iron       | 85348   | 1  | S26287A3   | 19    | S26287A3    | 17      | 70.7174   | 58.2815      | 5.0       | 249   | b    | 75     | 125    |
| Lead       | 85348   | 1  | S26287A3   | 19    | S26287A3    | 17      | 0.6702    | 0.1532       | 0.5       | 103   |      | 75     | 125    |
| Magnesium  | 85348   | 1  | S26287A3   | 19    | S26287A3    | 17      | 53.8427   | 4.0690       | 50        | 100   |      | 75     | 125    |
| Manganese  | 85348   | 1  | S26287A3   | 19    | S26287A3    | 17      | 1.0197    | 0.4462       | 0.5       | 115   |      | 75     | 125    |
| Mercury    | 85348   | 1  | H26287SM   | 18    | H26287SM    | 16      | 9.9870    | 0.075725U    | 10        | 100   |      | 75     | 125    |
| Nickel     | 85348   | 1  | S26287A3   | 19    | S26287A3    | 17      | 0.5345    | 0.0312       | 0.5       | 101   |      | 75     | 125    |
| Potassium  | 85348   | 1  | S26287A4   | 19    | S26287A4    | 17      | 47.9307   | 1.3750       | 50        | 93    |      | 75     | 125    |
| Sodium     | 85348   | 1  | S26287A4   | 19    | S26287A4    | 17      | 47.2295   | 1.255852743U | 50        | 94    |      | 75     | 125    |
| Zinc       | 85348   | 1  | S26287A3   | 19    | S26287A3    | 17      | 0.9700    | 0.3910       | 0.5       | 116   |      | 75     | 125    |

PREP BATCH: 85348

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| TxtQcType: PS | Ma | trix: SOIL |       | Sample      | eID: AD | 19479-001 |              |           |       |        |            |        |
|---------------|----|------------|-------|-------------|---------|-----------|--------------|-----------|-------|--------|------------|--------|
| Analyte       | DF | Data File  | Seq#: | NS Data Fil | Seq#    | Spk Conc: | NS Conc:     | Spk Added | Recov | Qual L | o Lim      | Hi Lim |
| Aluminum      | 1  | S26287A3   | 21    | S26287A3    | 17      | 32.5098   | 28.8089      | 5.0       | 74    | b 7    | 75         | 125    |
| Barium        | 1  | S26287A3   | 21    | S26287A3    | 17      | 0.6921    | 0.1910       | 0.50      | 100   | 7      | 75         | 125    |
| Calcium       | 1  | S26287A3   | 21    | S26287A3    | 17      | 63.6371   | 14.9423      | 50        | 97    | 7      | 75         | 125    |
| Chromium      | 1  | S26287A3   | 21    | S26287A3    | 17      | 0.6219    | 0.1748       | 0.50      | 89    | 7      | 75         | 125    |
| Cobalt        | 1  | S26287A3   | 21    | S26287A3    | 17      | 0.5131    | 0.0086       | 0.50      | 101   | 7      | 75         | 125    |
| Copper        | 1  | S26287A3   | 21    | S26287A3    | 17      | 0.6045    | 0.1236       | 0.50      | 96    | 7      | <b>7</b> 5 | 125    |
| Iron          | 1  | S26287A3   | 21    | S26287A3    | 17      | 61.7919   | 58.2815      | 5.0       | 70    | b 7    | 75         | 125    |
| Lead          | 1  | S26287A3   | 21    | S26287A3    | 17      | 0.6527    | 0.1532       | 0.50      | 100   | 7      | 75         | 125    |
| Magnesium     | 1  | S26287A3   | 21    | S26287A3    | 17      | 52.9873   | 4.0690       | 50        | 98    | 7      | <b>7</b> 5 | 125    |
| Manganese     | 1  | S26287A3   | 21    | S26287A3    | 17      | 0.9186    | 0.4462       | 0.50      | 94    | 7      | 75         | 125    |
| Nickel        | 1  | S26287A3   | 21    | S26287A3    | 17      | 0.5409    | 0.0312       | 0.50      | 102   | 7      | 75         | 125    |
| Potassium     | 1  | S26287A4   | 21    | S26287A4    | 17      | 48.5280   | 1.3750       | 50        | 94    | 7      | 75         | 125    |
| Sodium        | 1  | S26287A4   | 21    | S26287A4    | 17      | 48.1698   | 1.255852743U | 50        | 96    | 7      | 75         | 125    |
| Zinc          | 1  | S26287A3   | 21    | S26287A3    | 17      | 0.8476    | 0.3910       | 0.50      | 91    | 7      | 75         | 125    |

# FORM6/FORM9 RPD/%Difference Data

PREP BATCH: 85347

Instrument Type: ICPMS
Analytical Method(s):6020/200.8

| TxtQcType: | LCSMR   | Matrix: SOIL    | SampleID:    | LCS MR 85347 |          |       |       |
|------------|---------|-----------------|--------------|--------------|----------|-------|-------|
| Analyte    | Batchld | Data File Seq#: | NS File Seq# | Result 1     | Result 2 | RPD   | Limit |
| Antimony   | 85347   | S100120A 20     | S100120A 19  | 37.8660      | 36.6160  | 3.4   | 20    |
| Arsenic    | 85347   | S100120A 20     | S100120A 19  | 47.1760      | 41.5980  | 13    | 20    |
| Beryllium  | 85347   | S100120A 20     | S100120A 19  | 166.5650     | 147.1960 | 12    | 20    |
| Cadmium    | 85347   | S100120A 20     | S100120A 19  | 182.5200     | 164.0540 | 11    | 20    |
| Selenium   | 85347   | S100120A 20     | S100120A 19  | 350.7950     | 300.6640 | 15    | 20    |
| Silver     | 85347   | S100120A 20     | S100120A 19  | 93.0830      | 84.8560  | 9.2   | 20    |
| Thallium   | 85347   | S100120A 20     | S100120A 19  | 202.9060     | 175.5660 | 14    | 20    |
| Vanadium   | 85347   | S100120A 20     | S100120A 19  | 281.1180     | 245.8990 | 13    | 20    |
| TxtQcType: | MR      | Matrix: SOIL    | SampleID:    | AD19479-001  |          |       |       |
| Analyte    | BatchId | Data File Seq#: | NS File Seq# | Result 1     | Result 2 | RPD   | Limit |
| Antimony   | 85347   | S100120A 22     | S100120A 21  | 0.4920       | 0.5840   | 17    | 20    |
| Arsenic    | 85347   | S100120A 22     | S100120A 21  | 16.0020      | 17.6350  | 9.7   | 20    |
| Beryllium  | 85347   | S100120A 22     | S100120A 21  | 0.6880       | 0.7970   | 15    | 20    |
| Cadmium    | 85347   | S100120A 22     | S100120A 21  | 1.5420       | 1.6960   | 9.5   | 20    |
| Selenium   | 85347   | S100120A 22     | S100120A 21  | 5.4800       | 5.4710   | 0.16  | 20    |
| Silver     | 85347   | S100120A 22     | S100120A 21  | 0.2860       | 0.3000   | 4.8   | 20    |
| Thallium   | 85347   | S100120A 22     | S100120A 21  | 0.1580       | 0.4670   | 99 b  | 20    |
| Vanadium   | 85347   | S100120A 22     | S100120A 21  | 73.6920      | 212.0810 | 97 a  | 20    |
| TxtQcType: | MSD     | Matrix: SOIL    | SampleID:    | AD19479-001  | -        |       |       |
| Analyte    | BatchId | Data File Seq#: | MS File Seq# | Result 1     | Result 2 | RPD   | Limi  |
| Antimony   | 85347   | S100120A 25     | S100120A 24  | 71.1210      | 67.2390  | 5.6   | 20    |
| Arsenic    | 85347   | S100120A 25     | S100120A 24  | 230.8610     | 232.9120 | .88   | 20    |
| Beryllium  | 85347   | S100120A 25     | S100120A 24  | 197.6950     | 193.3760 | 2.2   | 20    |
| Cadmium    | 85347   | S100120A 25     | S100120A 24  | 219.9040     | 217.5450 | 1.1   | 20    |
| Selenium   | 85347   | S100120A 25     | S100120A 24  | 209.8380     | 209.7510 | .041  | 20    |
| Silver     | 85347   | S100120A 25     | S100120A 24  |              | 43.3920  | .76   | 20    |
| Thallium   | 85347   | S100120A 25     | S100120A 24  |              | 190.2050 | 2.4   | 20    |
| Vanadium   | 85347   | S100120A 25     | S100120A 24  | 306.2560     | 320.0080 | 4.4   | 20    |
| TxtQcType: | SD      | Matrix: SOIL    | SampleID:    | AD19479-001  |          |       |       |
| Analyte    | BatchId | Data File Seq#: | NS File Seq# | DF Result 1  | Result 2 | %Diff | Limi  |
| Antimony   | 85347   | S100120A 23     | S100120A 21  | 5 -0.0270    | 0.5840   |       | 20    |
| Arsenic    | 85347   | S100120A 23     |              | 5 3.7730     | 17.6350  | 7     | 20    |
| Beryllium  | 85347   | S100120A 23     |              | 5 0.1920     | 0.7970   | 20 с  | 20    |
| Cadmium    | 85347   | S100120A 23     | S100120A 21  | 5 0.3270     | 1.6960   | 3.6   | 20    |
| Selenium   | 85347   | S100120A 23     |              | 5 1.1640     | 5.4710   | 6.4   | 20    |
| Silver     | 85347   | S100120A 23     | S100120A 21  | 5 0.0580     | 0.3000   | 3.3   | 20    |
| Thallium   | 85347   | S100120A 23     |              | 5 0.0290     | 0.4670   | 69 c  | 20    |
|            | 85347   | S100120A 23     | \$100120A 21 |              |          | 1.7   | 20    |

#### FORM6/FORM9

#### RPD/%Difference Data

PREP BATCH: 85348

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| TxtQcType: L       | CSMR    | Matrix: SOIL                 | Sam       | pleID: LCS | MR 85348     |              |            |   |          |
|--------------------|---------|------------------------------|-----------|------------|--------------|--------------|------------|---|----------|
| Analyte            | Batchld | Data File Seq#:              | NS File   | Seq#       | Result 1     | Result 2     | RPD        |   | Limit    |
| Aluminum           | 85348   | S26287A3 16                  | \$26287A3 | 15         | 77.5682      | 78.0373      | .6         |   | 20       |
| Barium             | 85348   | S26287A3 16                  | S26287A3  | 15         | 7.1677       | 7.2381       | .98        |   | 20       |
| Calcium            | 85348   | S26287A3 16                  | S26287A3  | 15         | 181.9040     | 186.1730     | 2.3        |   | 20       |
| Chromium           | 85348   | S26287A3 16                  | S26287A3  | 15         | 1.8197       | 1.9406       | 6.4        |   | 20       |
| Cobalt             | 85348   | S26287A3 16                  | S26287A3  | 15         | 2.4286       | 2.4334       | .19        |   | 20       |
| Copper             | 85348   | S26287A3 31                  | S26287A3  | 30         | 0.4283       | 0.4358       | 1.7        |   | 20       |
| Iron               | 85348   | S26287A3 16                  | S26287A3  | 15         | 126.9690     | 125.0020     | 1.6        |   | 20       |
| Lead               | 85348   | S26287A3 16                  | S26287A3  | 15         | 1.3716       | 1.3902       | 1.3        |   | 20       |
| Magnesium          | 85348   | S26287A3 16                  | S26287A3  | 15         | 63.0571      | 63.6629      | .96        |   | 20       |
| Manganese          | 85348   | S26287A3 16                  | S26287A3  | 15         | 5.1248       | 5.2648       | 2.7        |   | 20       |
| Mercury            | 85348   | H26287SM 15                  | H26287SM  | 14         | 6.6430       | 6.7810       | 2.1        |   | 20       |
| Nickel             | 85348   | S26287A3 16                  | S26287A3  | 15         | 0.4675       | 0.4663       | .27        |   | 20       |
| Potassium          | 85348   | S26287A4 16                  | S26287A4  | 15         | 16.1564      | 16.1603      | .024       |   | 20       |
| Sodium             | 85348   | \$26287A4 16                 | S26287A4  | 15         | 7.6666       | 7.6695       | .038       |   | 20       |
| Zinc               | 85348   | S26287A3 16                  | S26287A3  | 15         | 5.7369       | 5.8182       | 1.4        |   | 20       |
|                    |         |                              |           |            |              |              | .,.        |   |          |
| TxtQcType: N       | /IR<br> | Matrix: SOIL                 | Sam       | pleID: AD1 | 9479-001     |              |            |   |          |
| Analyte            | BatchId | Data File Seq#:              | NS File   | Seq#       | Result 1     | Result 2     | RPD        |   | Limit    |
| Aluminum           | 85348   | \$26287A3 18                 | S26287A3  | 17         | 32.9102      | 28.8089      | 13         |   | 20       |
| Barium             | 85348   | S26287A3 18                  | S26287A3  | 17         | 0.2197       | 0.1910       | 14         |   | 20       |
| Calcium            | 85348   | S26287A3 18                  | S26287A3  | 17         | 17.1285      | 14.9423      | 14         |   | 20       |
| Chromium           | 85348   | S26287A3 18                  | S26287A3  | 17         | 0.2062       | 0.1748       | 16         |   | 20       |
| Cobalt             | 85348   | S26287A3 18                  | S26287A3  | 17         | 0.0133       | 0.0086       | 43         | b | 20       |
| Copper             | 85348   | S26287A3 18                  | S26287A3  | 17         | 0.1478       | 0.1236       | 18         |   | 20       |
| Iron               | 85348   | S26287A3 18                  | S26287A3  | 17         | 67.7515      | 58.2815      | 15         |   | 20       |
| Lead               | 85348   | S26287A3 18                  | S26287A3  | 17         | 0.1988       | 0.1532       | 26         | а | 20       |
| Magnesium          | 85348   | S26287A3 18                  | S26287A3  | 17         | 4.8365       | 4.0690       | 17         |   | 20       |
| Manganese          | 85348   | S26287A3 18                  | S26287A3  | 17         | 0.5217       | 0.4462       | 16         |   | 20       |
| Mercury            | 85348   | H26287SM 17                  | H26287SM  | 16         | 0.1070       | 0.075725U    |            |   | 20       |
| Nickel             | 85348   | S26287A3 18                  | \$26287A3 | 17         | 0.0373       | 0.0312       | 18         |   | 20       |
| Potassium          | 85348   | S26287A4 18                  | S26287A4  | 17         | 1.6067       | 1.3750       | 16         |   | 20       |
| Sodium             | 85348   | S26287A4 18                  | S26287A4  | 17         | 1.255852743U | 1.255852743U |            |   | 20       |
| Zinc               | 85348   | S26287A3 18                  | S26287A3  | 17         | 0.4602       | 0.3910       | 16         |   | 20       |
| TxtQcType: N       | /ISD    | Matrix: SOIL                 | Sam       | pleID: AD1 | 9479-001     |              |            |   |          |
| Analyte            | Batchid | Data File Seq#:              | MS File   |            | Result 1     | Result 2     | RPD        |   | Limit    |
| Aluminum           | 85348   | S26287A3 20                  | \$26287A3 | Seq#<br>19 | 51.5347      | 53.4327      |            |   |          |
| Barium             | 85348   | \$26287A3 20<br>\$26287A3 20 | S26287A3  | 19         | 0.7160       | 0.7111       | 3.6<br>.69 |   | 20<br>20 |
| Calcium            | 85348   |                              | \$26287A3 |            | 62.7309      | 64.9542      |            |   |          |
|                    |         |                              |           | 19<br>10   |              |              | 3.5        |   | 20       |
| Chromium<br>Cobalt | 85348   | \$26287A3 20                 | S26287A3  | 19<br>19   | 0.6547       | 0.7100       | 8.1        |   | 20       |
|                    | 85348   | S26287A3 20                  | S26287A3  |            | 0.4961       | 0.5001       | .8         |   | 20       |
| Copper             | 85348   | S26287A3 20                  | S26287A3  | 19<br>10   | 0.6104       | 0.6299       | 3.1        |   | 20       |
| iron               | 85348   | \$26287A3 20                 | S26287A3  | 19<br>10   | 75.9866      | 70.7174      | 7.2        |   | 20       |
| Lead               | 85348   | S26287A3 20                  | S26287A3  | 19         | 0.6579       | 0.6702       | 1.9        |   | 20       |
| Magnesium          | 85348   | S26287A3 20                  | S26287A3  | 19         | 52.0601      | 53.8427      | 3.4        |   | 20       |
| Manganese          | 85348   | \$26287A3 20                 | S26287A3  | 19         | 0.9794       | 1.0197       | 4          |   | 20       |
| Mercury            | 85348   | H26287SM 19                  | H26287SM  | 18         | 9.8970       | 9.9870       | .91        |   | 20       |
| Nickel             | 85348   | S26287A3 20                  | S26287A3  | 19         | 0.5285       | 0.5345       | 1.1        |   | 20       |
| Potassium          | 85348   | S26287A4 20                  | S26287A4  | 19         | 46.4840      | 47.9307      | 3.1        |   | 20       |
| Sodium             | 85348   | S26287A4 20                  | S26287A4  | 19         | 45.9992      | 47.2295      | 2.6        |   | 20       |
|                    |         |                              |           |            |              |              |            |   |          |

#### FORM6/FORM9

#### RPD/%Difference Data

PREP BATCH: 85348

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| TxtQcType: S | SD      | Matrix: S | OIL   | Sam      | pleID: AD194 | 79-001   |          |       |   |       |
|--------------|---------|-----------|-------|----------|--------------|----------|----------|-------|---|-------|
| Analyte      | Batchid | Data File | Seq#: | N\$ File | Seq# DF      | Result 1 | Result 2 | %Diff |   | Limit |
| Aluminum     | 85348   | S26287A3  | 22    | S26287A3 | 17 5         | 6.8754   | 28.8089  | 19    | а | 10    |
| Barium       | 85348   | S26287A3  | 22    | S26287A3 | 17 5         | 0.0425   | 0.1910   | 11    | а | 10    |
| Calcium      | 85348   | S26287A3  | 22    | S26287A3 | 17 5         | 3.3193   | 14.9423  | 11    | а | 10    |
| Chromium     | 85348   | S26287A3  | 22    | S26287A3 | 17 5         | 0.0428   | 0.1748   | 23    | а | 10    |
| Cobalt       | 85348   | S26287A3  | 22    | S26287A3 | 17 5         | 0.0010   | 0.0086   | 42    | С | 10    |
| Copper       | 85348   | S26287A3  | 22    | S26287A3 | 17 5         | 0.0334   | 0.1236   | 35    | а | 10    |
| Iron         | 85348   | S26287A3  | 22    | S26287A3 | 17 5         | 13.6223  | 58.2815  | 17    | а | 10    |
| Lead         | 85348   | S26287A3  | 22    | S26287A3 | 17 5         | 0.0263   | 0.1532   | 14    | С | 10    |
| Magnesium    | 85348   | S26287A3  | 22    | S26287A3 | 17 5         | 0.8101   | 4.0690   | 0.45  |   | 10    |
| Manganese    | 85348   | S26287A3  | 22    | S26287A3 | 17 5         | 0.1088   | 0.4462   | 22    | а | 10    |
| Nickel       | 85348   | S26287A3  | 22    | S26287A3 | 17 5         | 0.0069   | 0.0312   | 11    | С | 10    |
| Potassium    | 85348   | S26287A4  | 22    | S26287A4 | 17 5         | 0.4032   | 1.3750   | 47    | С | 10    |
| Sodium       | 85348   | S26287A4  | 22    | S26287A4 | 17 5         | 0.1383   | 0.2677   | 158   | С | 10    |
| Zinc         | 85348   | S26287A3  | 22    | S26287A3 | 17 5         | 0.0801   | 0.3910   | 2.4   |   | 10    |

Hampton-Clarke

#### (ICP SAMPLE PREPARATION LOG

| <b>ANALYTICAL METHOD: 3010A</b> | 3005A 3050B 200.7/200 | .8 OTHER |  |
|---------------------------------|-----------------------|----------|--|
| Batch No.: 26288                | Analyst:              | AVS      |  |
| QC Number: 85347                | Prep Date:            | 3/29/20  |  |
| Matrix: Sail 6020               | Reviewed By:          | p        |  |

| LAB ID#                                 | IC      |       | (Secon  | -MS<br>dary dil) | Т       | CLP         | COMMENTS                                                       |
|-----------------------------------------|---------|-------|---------|------------------|---------|-------------|----------------------------------------------------------------|
|                                         | Initial | Final | Aliquot |                  | Eff     | TCLP        |                                                                |
| Method blank                            | Soul    | Sonl  | 25 L    | 50ml             | <u></u> |             |                                                                |
| LCS                                     | 0.19    | 1     |         |                  |         | ••          |                                                                |
| LCSD                                    | 0.19    |       |         |                  |         |             |                                                                |
| 1. AD 19479-001 1. Analytical Duplicate | 0-59    |       |         |                  |         |             | Samples are combined prior to analysis to provide extra sample |
| MR 001                                  |         |       |         |                  |         |             | volume for analysis                                            |
| MS -001                                 |         |       |         | -                |         | <del></del> | Balance used: 0 3 2                                            |
| MSD V -001                              |         |       |         |                  |         |             | Pipettes used:149,155                                          |
| 2. 19451-006                            |         |       |         |                  |         |             | 1,7,00                                                         |
| 3.19472-001                             |         | `     |         |                  |         |             | Hot Block used: 4                                              |
| 4. 1 -002                               |         |       |         |                  |         |             |                                                                |
| 5. V -003                               |         |       |         |                  |         |             |                                                                |
| 6. 19479-003                            |         |       |         |                  |         |             |                                                                |
| 7. 1 -005                               |         |       |         |                  |         |             |                                                                |
| 8 007                                   |         |       |         |                  |         |             |                                                                |
| 9009                                    |         |       |         |                  |         |             |                                                                |
| 10011                                   |         |       |         |                  |         |             |                                                                |
| 11013                                   |         |       |         |                  |         |             |                                                                |
| 12015                                   |         |       |         |                  |         |             |                                                                |
| 13617                                   |         |       |         |                  |         |             |                                                                |
| 14. V -019                              | J       | Ψ     | 4       | Ψ                |         |             |                                                                |
| 15.                                     |         | 1     |         |                  |         |             |                                                                |
| 16.                                     |         |       |         |                  |         |             |                                                                |
| 17.                                     |         |       |         |                  |         |             |                                                                |
| 18.                                     |         |       |         |                  |         |             |                                                                |
| 19.                                     |         |       |         |                  |         |             |                                                                |
| 20.                                     |         |       |         |                  |         |             |                                                                |
|                                         |         |       |         |                  |         |             |                                                                |
|                                         |         |       |         |                  |         |             |                                                                |

| Hot Plate     | Temperate | иге: 93.4  | _C ( | (90-95°C)                     | Start Tin | ie: 8:00an | End Time             | : 10:3 | oan      |
|---------------|-----------|------------|------|-------------------------------|-----------|------------|----------------------|--------|----------|
|               | Volume    | Lot #      |      | Acid                          | Vol       | Lot#       | Acid                 | Vol    | Lot#     |
|               | mL        |            |      | ] [                           | mL        |            |                      | mL     |          |
| LCS, LCSD     | 0.19      | V- 13005   |      | HNO <sub>3</sub>              | 2.5       | V-13457    | 1:1 HNO <sub>3</sub> | 5.0    | V-334735 |
| LLLCS, LLLCSD |           | V-         |      | HCI                           |           | V-         | 1:1 HCl              |        | V-       |
| MS, MSD       | 0252      | V-13177;13 | 78   | H <sub>2</sub> O <sub>2</sub> | 1-5       | V-13067    |                      |        |          |
| LLMS, LLMSD   |           | V-         |      |                               |           |            |                      |        |          |
| Relinquish    | ed By     | 2 M        |      | Date                          | 9/29/2    | O          |                      |        |          |
| Received I    | Зу        | n          |      | Date                          | 9/21      | W          |                      |        |          |

T:\QC\FORMS\LOGBOOK FORMS\METALS\ICP sample prep log 2018 DOD.DOC

Hampton-Clarke

## ( ICP SAMPLE PREPARATION LOG

| Batch No.: 2628<br>QC Number: 8534       | 8                  |                | _                  | Date:                  | 9/2  | 9/20    |                                                                              |
|------------------------------------------|--------------------|----------------|--------------------|------------------------|------|---------|------------------------------------------------------------------------------|
| Matrix: Sail                             | 6010               |                | Revie              | wed By:                |      | 9A-     |                                                                              |
| LAB ID#                                  | IC                 | P              | 1                  | -MS<br>dary dil)       | T    | CLP     | COMMENTS                                                                     |
|                                          | Initial            | Final          | Aliquot            | Final                  | Eff  | TCLP    |                                                                              |
| Method blank                             | Sonl               | Sone           | <u> </u>           |                        |      |         |                                                                              |
| LCS                                      | 0,59               |                |                    |                        |      |         |                                                                              |
| LCSD                                     |                    |                |                    |                        |      |         | Samples are combined arios                                                   |
| 1.4019479-001<br>1. Analytical Duplicate |                    |                |                    |                        |      |         | Samples are combined prior analysis to provide extra sam volume for analysis |
| MR -001                                  |                    |                |                    |                        |      |         |                                                                              |
| MS -001                                  |                    |                |                    |                        |      |         | Balance used: 03.                                                            |
| MSD V -001                               |                    |                |                    | -                      |      |         | Pipettes used: 149 /                                                         |
| 2. 19451-006                             |                    |                |                    |                        |      |         | •                                                                            |
| 3. 19472-001                             |                    | `              |                    |                        |      |         | Hot Block used: 5                                                            |
| 4.   -002                                |                    |                |                    |                        |      |         |                                                                              |
| 5. V-003                                 |                    |                |                    |                        |      |         |                                                                              |
| 6. 19479-003                             |                    |                |                    |                        |      |         | •                                                                            |
| 7. 1 -005                                |                    |                |                    |                        |      |         |                                                                              |
| 8007                                     |                    |                |                    |                        |      |         |                                                                              |
| 9. /069                                  |                    |                |                    |                        |      |         |                                                                              |
| 1001                                     |                    |                |                    |                        |      |         |                                                                              |
| 11013                                    |                    |                |                    |                        |      |         |                                                                              |
| 12015                                    |                    |                |                    |                        |      |         |                                                                              |
| 13017                                    |                    |                |                    |                        |      |         |                                                                              |
| 14. V -019                               |                    | 4              |                    |                        |      |         |                                                                              |
| 15.                                      |                    | 1              |                    |                        |      |         |                                                                              |
| 16.                                      |                    |                |                    |                        |      |         |                                                                              |
| 17.                                      |                    |                |                    |                        |      |         |                                                                              |
| 18.                                      |                    |                |                    |                        |      |         |                                                                              |
| 19.                                      |                    |                |                    |                        |      |         |                                                                              |
| 20.                                      |                    |                |                    |                        |      |         |                                                                              |
|                                          |                    |                |                    |                        |      |         |                                                                              |
|                                          |                    |                |                    |                        |      |         |                                                                              |
| Hot Plate Temperature:                   | 99.1               | C (90-95       | °C) Start          | Time: <b>8</b> :0      | oan  | End Ti  | me: 11:00an                                                                  |
| Volume<br>mL                             | Lot#               |                | l m                | L                      | ot#  | Acid    | Vol Lot#<br>mL                                                               |
| SD 0,5, V-                               | 13005              |                | NO <sub>3</sub> 2. | 5 V-17                 | 1457 | 1:1 HNO |                                                                              |
| LLCSD V-                                 | 1122               | HC             |                    |                        | 3392 | 1:1 HCl | V-                                                                           |
| 0.25nl V-11<br>LMSD V-                   | 3177.(3178<br>3319 | H <sub>2</sub> | O <sub>2</sub> (.  | > \ \ <sup>V</sup> -(` | 3067 |         |                                                                              |

#### **HG SAMPLE PREPARATION LOG**

Hampton-Clarke/Veritech

| QC Number: 85348 Matrix: Sail                                        |                            |            |                   | Analyst: ANS Prep Date: 9/29/20 Review.By: DL |
|----------------------------------------------------------------------|----------------------------|------------|-------------------|-----------------------------------------------|
| LAB ID#                                                              | M                          | ERCURY     | T                 |                                               |
|                                                                      | INITIAL                    | FINAL      | COMMENTS          | STANDARDS                                     |
| Method blank                                                         | 25 pe                      | 25ml       |                   | CALCURVE BLK Oppb V- 335726                   |
| cs                                                                   | 0.152                      |            |                   |                                               |
| CSD                                                                  |                            |            |                   | STD 0.2 ppb V- 335727                         |
| AD 19479-001                                                         |                            |            |                   | STD 0.5 ppb V- 3 3 5 7-2 8                    |
| MR   -001                                                            |                            |            |                   | STD 1.0 ppb V- 3357 29                        |
| 4s -001                                                              |                            |            | ·                 | STD 2.0 ppb V- 3357-3 ©                       |
| 4SD 1-001                                                            |                            |            |                   | STD 5.0 ppb V-33 7-3 /                        |
| 19451-006                                                            |                            |            | ,                 | STD 10.0 ppb V-3357) 2                        |
| 19472-001                                                            |                            |            |                   | STD 25.0 ppb V-335 73 3                       |
| -002                                                                 |                            |            |                   | ICV 10.0 ppb V- 7357-24                       |
| V -003                                                               |                            |            |                   | CCV 20.0 ppb V- 3 3 5 7 2 5                   |
| 19479-003                                                            |                            |            |                   |                                               |
| -005                                                                 |                            |            |                   |                                               |
| -007                                                                 |                            |            |                   | Balance used: 032                             |
| -009                                                                 |                            |            |                   | Pipettes used: 155 143 159                    |
| 0 -011                                                               |                            |            |                   |                                               |
| -013                                                                 |                            |            |                   | Hot Block used: 6                             |
| 2   -015                                                             |                            |            |                   | 3/200                                         |
| -017                                                                 |                            |            |                   | ·                                             |
| 4 V-019                                                              | $\underline{\hspace{1cm}}$ | <u> </u>   |                   |                                               |
| 5                                                                    |                            |            |                   |                                               |
| 6                                                                    |                            |            |                   |                                               |
| 7                                                                    |                            |            |                   |                                               |
| 8                                                                    |                            |            |                   |                                               |
| 9                                                                    |                            |            |                   |                                               |
| 0                                                                    |                            |            |                   |                                               |
|                                                                      |                            |            |                   | ·                                             |
| · · · · · · · · · · · · · · · · · · ·                                | Volume (mL)                | Acid       | Volume (mL)       | Lot# *** **Block Temp. : *C                   |
| Lot Numbers                                                          |                            |            | V 01245 (.1.2)    | 1 1 92 3                                      |
| mm0 <sub>4</sub> : v- 3 3 5 2 9 8 s <sub>2</sub> o <sub>4</sub> : v- | 3.75                       | HNO3       |                   | V- Time in Block: g: 300                      |
| H <sub>2</sub> OH: V- 33 467                                         | 1.5                        | H2\$04     | <del> </del>      | V- Time Out of Block: 10                      |
| 3)467                                                                | 1, 7                       | Aque Regia | 1.25              | v-3357-23                                     |
| pike Volume & Lot#                                                   | 300S 612/025               |            | ne: 9:00 End Time | * **Temperature                               |

\*25 mLs of each standard was digested with this batch using the same reagents and at the same time as the above samples. The preparation of each standard may be referenced in Veriprog using the standard batch number and the corresponding V #s.

#### Run Log

Data File: W:\METALS.FRM\ICPDATA\New\PEICP3A\S26287A3MDL.txt

Analysis Date: 09/29/20

**Instrument: PEICP3A** 

| Sample Id                           | DF       | Qc<br>Type | Time        | Run<br># | Test<br>Group                                      | Rept<br>Limit<br>Matrix                    | Qc<br>Matrix               | Anal<br>Method     | Prep<br>iBatch | Comments:                    | Stds:                       |
|-------------------------------------|----------|------------|-------------|----------|----------------------------------------------------|--------------------------------------------|----------------------------|--------------------|----------------|------------------------------|-----------------------------|
| CALBLK V-333667                     |          | CAL        | 15:07       | 1        | agentalis de de desendar de la la grapa de la como | eren en en en en en en en en en en en en e | -17 SEPHINE ACCESSED AND A | COMO MARIO MODERNA |                |                              | V-333667(ICB/CCB)           |
| CALST2 V-333671                     | ī        | CAL        | 15:11       | 2        |                                                    |                                            |                            |                    |                |                              | V-333671(LLICV/LLCCV soil)  |
| CALST3 V-333666                     | 1        | CAL        | 15:15       | 3        |                                                    |                                            |                            |                    |                |                              | V-333666(ICS3 - Middle Std) |
| CALST4 V-333665                     | 1        | CAL        | 15:19       | 4        |                                                    |                                            |                            |                    |                |                              | V-333665(ICS4 High std)     |
| ICV V-333673                        | Ļ        | ICV        | 15:23       | 5        |                                                    |                                            |                            |                    |                |                              | V-333673(CCV)               |
| ICB V-333667                        | 1        | ICB        | 15:26       | 6        |                                                    |                                            |                            |                    |                |                              | V-333667(ICB/CCB)           |
| LRS V-335063                        | l        | LRS        | 15:30       | 7        | MET-TAL6010S                                       | SOIL                                       | SOIL                       | SW846              | 85348          | Cu failed (1 ppM used as LR) | V-335063(LRS)               |
| ICS3 V-333666                       | 1        | ICS        | 15:35       | 8        |                                                    |                                            |                            |                    |                |                              | V-333666(ICS3 - Middle Std) |
| RINSE                               | !        | NA         | 15:39       | 9        | MET-TAL6010S                                       | SOIL                                       | SOIL                       | SW846              | 85348          |                              | 0                           |
| LLICV V-333671                      | l        | LLICV      | 15:43       | 10       | MET-TAL6010S                                       | SOIL                                       | SOIL                       | SW846              | 85348          |                              | V-333671(LLICV/LLCCV soil)  |
| ICSA V-333668                       | 1        | ICSA       | 15:47       | 11       |                                                    |                                            |                            |                    |                |                              | V-333668(IC\$A)             |
| CCV V-333673                        | 1        | CCV        | 15:51       | 12       |                                                    |                                            |                            |                    |                |                              | V-333673(CCV)               |
| CCB V-333667                        | 11       | CCB        | 15:55       | 13       |                                                    |                                            |                            |                    |                |                              | V-333667(ICB/CCB)           |
| MB 85348 (100)                      | 1        | MB         | 15:59       | 14       | MET-TAL6010S                                       | SOIL                                       | SOIL                       | SW846              | 85348          |                              | 0                           |
| LCS 85348                           | 1        | LCS        | 16:03       | 15       | MET-TAL6010S                                       | SOIL                                       | SOIL                       | SW846              | 85348          | Cu NOT reported (Cu> LR)     | 0                           |
| LCS MR 85348                        | 1        | LCS        | 16:07       | 16       | MET-TAL6010S                                       | SOIL                                       | SOIL                       | SW846              | 85348          | Cu NOT reported (Cu> LR)     | 0                           |
| AD19479-001                         | 1        | SMP        | 16:12       | 17       | MET-TAL6010S                                       | SOIL                                       | SOIL                       | SW846              | 85348          |                              | 0                           |
| AD19479-001                         | ı        | MR         | 16:16       | 18       | MET-TAL6010S                                       | SOIL                                       | SOIL                       | SW846              | 85348          |                              | 0                           |
| AD19479-001                         | 1        | MS         | 16:20       | 19       | MET-TAL6010S                                       | SOIL                                       | SOIL                       | SW846              | 85348          |                              | 0                           |
| AD19479-001                         | 1        | MSD        | 16:24       | 20       | MET-TAL6010S                                       | SOIL                                       | SOIL                       | SW846              | 85348          |                              | 0                           |
| AD19479-001                         | 1        | PS         | 16:29       | 21       | MET-TAL6010S                                       | SOIL                                       | SOIL                       | SW846              | 85348          |                              | 0                           |
| AD19479-001                         | 5        | SD         | 16:33       | 22       | MET-TAL6010S                                       |                                            | SOIL                       |                    | 85348          |                              | 0                           |
| CCV V-333673                        | 1        | CCV        | 16:36       | 23       |                                                    |                                            |                            |                    |                |                              | V-333673(CCV)               |
| CCB V-333667                        | 1        | CCB        | 16:40       | 24       |                                                    |                                            |                            |                    |                |                              | V-333667(ICB/CCB)           |
| AD19451-006                         | 1        | SMP        | 16:44       | 25       | MET-RCRA-S                                         | SOIL                                       | SOIL                       | SW846              | 85348          |                              | 0                           |
| AD19472-001                         | 1        | SMP        | 16:48       | 26       | MET-RCRA-S                                         | SOIL                                       | SOIL                       |                    | 85348          |                              | 0                           |
| AD19472-002                         | 1        | SMP        | 16:52       | 27       | MET-RCRA-S                                         | SOIL                                       | SOIL                       | SW846              | 85348          |                              | 0                           |
| AD19472-003                         | 1        | SMP        | 16:56       | 28       | MET-RCRA-S                                         | SOIL                                       | SOIL                       | SW846              | 85348          | ·                            | 0                           |
| AD19479-003                         | 1        | SMP        | 17:00       | 29       | MET-TAL6010S                                       | SOIL                                       | SOIL                       |                    | 85348          |                              | 0                           |
| LCS 85348 4D                        | 4        | LCS        | 17:04       | 30       | MET-TAL6010S                                       | SOIL                                       | SOIL                       | SW846              | 85348          | Cu reported                  | 0                           |
| LCS MR 85348 4D                     | 4        | LCS        | 17:08       | 31       |                                                    | SOIL                                       | SOIL                       |                    | 85348          | Cu reported                  | 0                           |
| AD19479-005                         | 1        | SMP        | 17:12       | 32       | MET-TAL6010S                                       | SOIL                                       | SOIL                       |                    | 85348          | <u>-</u>                     | 0                           |
| CCV V-333673                        | 1        | CCV        | 17:15       | 33       |                                                    |                                            |                            |                    |                |                              | V-333673(CCV)               |
| CCB V-333667                        | 1        | CCB        | 17:19       | 34       |                                                    |                                            |                            |                    |                |                              | V-333667(ICB/CCB)           |
| AD19479-007                         | i        | SMP        | 17:23       | 35       | MET-TAL6010S                                       | SOIL                                       | SOIL                       | SW846              | 85348          |                              | 0                           |
| AD19479-009                         | ı        | SMP        | 17:27       | 36       | MET-TAL6010S                                       |                                            | SOIL                       |                    | 85348          |                              | 0                           |
| AD19479-011                         | 1        | SMP        | 17:31       | 37       | MET-TAL6010S                                       |                                            | SOIL                       |                    | 85348          |                              | 0                           |
| ADI9479-013                         | i        | SMP        |             | 38       | MET-TAL6010S                                       |                                            | SOIL                       |                    | 85348          |                              | 0                           |
| AD19479-015                         | i        | SMP        | 17:39       | 39       | MET-TAL6010S                                       |                                            | SOIL                       |                    | 85348          |                              | 0                           |
| AD19479-017                         | i        | SMP        |             | 40       | MET-TAL6010S                                       |                                            | SOIL                       |                    | 85348          |                              | 0                           |
| AD19479-019                         | i        | SMP        |             | 41       | MET-TAL6010S                                       |                                            | SOIL                       |                    | 85348          |                              | 0                           |
| CCV V-333673                        | <u>-</u> | CCV        |             | 42       |                                                    |                                            |                            | J J 40             |                |                              | V-333673(CCV)               |
| CCB V-333667                        | 1        | CCB        |             | 43       |                                                    |                                            |                            |                    |                | ·····                        | V-333667(ICB/CCB)           |
| , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | •        |            | • • • • • • | 40       |                                                    |                                            |                            |                    |                |                              |                             |

| Com     | ments/Reviewedby:          |
|---------|----------------------------|
| olufemi |                            |
|         | 1 90 10/17/2020 A:A0:30 BM |

192.168.1.89 10/12/2020 4:49:39 PM

RUN IS OK All elements reported, except Na, K Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor:\_\_\_\_\_

Standard/Batch/SnCl2 Lot #:

| sc | 12/20   |
|----|---------|
|    | \ - U - |

Run Log
Data File: W:\METALS.FRM\CPDATA\New\PEICPRAD4A\S26287A4MDL.txt

Analysis Date: 09/29/20

**Instrument:** PEICPRAD4A

| Sample Id       | DF       | Qc<br>Type | Time  | Run<br># | Test<br>Group                  | Rept<br>Limit<br>Matrix | Qc<br>Matrix | Anal<br>Method | Prep<br>Batch            | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stds:                       |
|-----------------|----------|------------|-------|----------|--------------------------------|-------------------------|--------------|----------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| CALBLK V-333667 | 1        | CAL        | 12:26 | 1        | COLUMN TOTAL COLUMN CONTRACTOR |                         |              |                | Author a clumban price - | CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR | V-333667(ICB/CCB)           |
| CALST2 V-333671 | l        | CAL        | 12:30 | 2        |                                |                         |              |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V-333671(LLICV/LLCCV soil)  |
| CALST3 V-333666 | 1        | CAL        | 12:35 | 3        |                                |                         |              |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V-333666(ICS3 - Middle Std) |
| CALST4 V-333665 | 1        | CAL        | 12:40 | 4        |                                |                         |              |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V-333665(ICS4 High std)     |
| ICV V-333673    | 1        | ICV        | 12:44 | 5        |                                |                         |              |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V-333673(CCV)               |
| ICB V-333667    | ı        | ICB        | 12:48 | 6        |                                |                         |              |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V-333667(ICB/CCB)           |
| LRS V-333662    | 1        | LRS        | 12:52 | 7        |                                | SOIL                    | SOIL         | SW846          | 85348                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V-333662(LRS)               |
| ICS3 V-333666   | 1        | ICS        | 12:57 | 8        |                                |                         |              |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V-333666(ICS3 - Middle Std) |
| RINSE           | 1        | NA         | 13:01 | 9        |                                | SOIL                    | SOIL         | SW846          | 85348                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                           |
| LLICV V-333671  | 1        | LLICV      | 13:05 | 10       |                                | SOIL                    | SOIL         | SW846          | 85348                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V-33367t(LLICV/LLCCV soit)  |
| ICSA V-333668   | 1        | ICSA       | 13:10 | 11       |                                |                         |              |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V-333668(ICSA)              |
| CCV V-333673    | 1        | CCV        | 13:14 | 12       |                                |                         |              |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V-333673(CCV)               |
| CCB V-333667    |          | CCB        | 13:18 | 13       |                                |                         |              |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V-333667(ICB/CCB)           |
| MB 85348 (100)  | ì        | MB         | 13:22 | 14       |                                | SOIL                    | SOIL         | SW846          | 85348                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                           |
| LCS 85348       | 1        | LCS        | 13:27 | 15       |                                | SOIL                    | SOIL         | SW846          | 85348                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                           |
| LCS MR 85348    | 1        | LCS        | 13:30 | 16       |                                | SOIL                    | SOIL         | SW846          | 85348                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                           |
| AD19479-001     | <u> </u> | SMP        | 13:34 | 17       | MET-TAL6010S                   | SOIL                    | SOIL         | SW846          | 85348                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                           |
| AD19479-001     | 1        | MIR        | 13:38 | 18       | MET-TAL6010S                   | SOIL                    | SOIL         | SW846          | 85348                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                           |
| AD19479-001     | 1        | MS         | 13:42 | 19       | MET-TAL6010S                   | SOIL                    | SOIL         | SW846          | 85348                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                           |
| AD19479-001     | 1        | MSD        | 13:47 | 20       | MET-TAL6010S                   | SOIL                    | SOIL         | SW846          | 85348                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                           |
| AD19479-001     | 1        | PS         | 13:52 | 21       | MET-TAL6010S                   | SOIL                    | SOIL         | SW846          | 85348                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                           |
| AD19479-001     | 5        | SD         | 13:57 | 22       | MET-TAL6010S                   | SOIL                    | SOIL         | SW846          | 85348                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                           |
| CCV V-333673    | ı        | CCV        | 14:02 | 23       |                                |                         |              |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V-333673(CCV)               |
| CCB V-333667    | 1        | ССВ        | 14:07 | 24       |                                |                         |              |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V-333667(ICB/CCB)           |

| Comments/Reviewedby:                          |                                         |            |
|-----------------------------------------------|-----------------------------------------|------------|
| olufemi<br>192.168.1.89.10/12/2020 5:12:07 PM |                                         | ********** |
| RUN IS OK<br>Na, K reported                   | *************************************** |            |

10/12/20

Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor:\_

Standard/Batch/SnCI2 Lot #:

Data File: W:\METALS.FRM\ICPDATA\New\PEICPRAD4A\S26287B4MDL.txt

Analysis Date: 09/29/20

**Instrument: PEICPRAD4A** 

| Sample Id       | DF  | Qc<br>Type | Time  | Run<br># | Test<br>Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rept<br>Limit<br>Matrix | Qc<br>Matrix                          | Anal<br>Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prep<br>Batch         | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stds:                       |
|-----------------|-----|------------|-------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| CALBLK V-333667 |     | CAL        | 16:11 | 1        | A CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O | CONTROL OF STREET       | Preference and American Security Con- | AND THE PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY O | OF THE PERSON AND THE | The self-rand control and an arrangement of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random management of the self-random manage | V-333667(ICB/CCB)           |
| CALST2 V-333671 | 1   | CAL        | 16:15 | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333671(LLICV/LLCCV soil)  |
| CALST3 V-333666 | - 1 | CAL        | 16:19 | 3        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333666(ICS3 - Middle Std) |
| CALST4 V-333665 | 1   | CAL        | 16:24 | 4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333665(ICS4 High std)     |
| ICV V-333673    | 1   | ICV        | 16:29 | 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333673(CCV)               |
| ICB V-333667    | 1   | ICB        | 16:34 | 6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)           |
| LRS V-333662    | 1   | LRS        | 16:38 | 7        | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                  | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85348                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333662(LRS)               |
| ICS3 V-333666   | ı   | ICS        | 16:42 | 8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333666(ICS3 - Middle Std) |
| RINSE           | . 1 | NA         | 16:47 | 9        | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                  | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85348                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| LLICV V-333671  | 1   | LLICV      | 16:52 | 10       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                  | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85348                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333671(LLICV/LLCCV soil)  |
| ICSA V-333668   | 1   | ICSA       | 16:56 | 11       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333668(IC\$A)             |
| CCV V-333673    | 1   | CCV        | 17:00 | 12       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333673(CCV)               |
| CCB V-333667    | 11  | ССВ        | 17:05 | 13       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)           |
| AD19479-003     | 1   | SMP        | 17:10 | 14       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                  | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85348                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19479-005     | 1   | SMP        | 17:14 | 15       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                  | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85348                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19479-007     | 1   | SMP        | 17:18 | 16       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                  | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85348                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19479-009     |     | SMP        | 17:23 | 17       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                  | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85348                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19479-011     | l   | SMP        | 17:27 | 18       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                  | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85348                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| CCV V-333673    | 1   | CCV        | 17:31 | 19       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333673(CCV)               |
| CCB V-333667    | 1   | CCB        | 17:36 | 20       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)           |
| AD19479-013     | 1   | NA         | 17:40 | 21       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                  | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85348                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19479-013     | 1   | SMP        | 17:45 | 22       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                  | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85348                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19479-015     | 1   | SMP        | 17:49 | 23       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                  | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85348                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19479-017     | 1   | SMP        | 17:53 | 24       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                  | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85348                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19479-019     | 11  | SMP        | 17:57 | 25       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                  | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85348                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19463-001     | 1   | SMP        | 18:01 | 26       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                  | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85342                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| CCV V-333673    | 1   | CCV        | 18:06 | 27       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333673(CCV)               |
| CCB V-333667    | 1   | CCB        | 18:11 | 28       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V-333667(ICB/CCB)           |

| Com | ments | /Revie | wedby:       |
|-----|-------|--------|--------------|
|     |       |        | *** <b>*</b> |

olufemi 192.168.1.89 [0/12/2020 5:18:28 PM

RUN IS OK Na, K reported

Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor:\_

Standard/Batch/SnCI2 Lot #:



Data File: W:\METALS.FRM\ICPDATA\New\HGCV3A\H26287SMDL.txt

Analysis Date: 09/30/20

Instrument: HGCV3A

| Allalysis         | acc. On | 30/20        |       |          |               |                         |                                         |                | 1D            | strument: HGCV3A                        |       |
|-------------------|---------|--------------|-------|----------|---------------|-------------------------|-----------------------------------------|----------------|---------------|-----------------------------------------|-------|
| Sample Id         | DF      | Qc<br>: Type | Time  | Run<br># | Test<br>Group | Rept<br>Limit<br>Matrix | Qc<br>Matrix                            | Anal<br>Method | Prep<br>Batch | Comments:                               | Stds: |
| Calibration Blank | 1       | CAL          | 10:59 | 1        |               |                         | 100000000000000000000000000000000000000 |                |               |                                         | 0     |
| .2 PPB            | 1       | CAL          | 11:00 | 2        |               |                         |                                         |                |               |                                         | 0     |
| .5 PPB            | 1       | CAL          | 11:02 | 3        |               |                         |                                         |                |               |                                         | 0     |
| I PPB             | 1       | CAL          | 11:03 | 4        |               |                         |                                         |                |               |                                         | 0     |
| 2 PPB             |         | CAL          | 11:04 | 5        |               |                         |                                         |                |               |                                         | 0     |
| 5 PPB             | 1       | CAL          | 11:06 | 6        |               |                         |                                         |                |               |                                         | 0     |
| 10 PPB            | 1       | CAL          | 11:07 | 7        |               |                         |                                         |                |               |                                         | 0     |
| 25 PPB            | I       | CAL          | 11:09 | 8        |               |                         |                                         |                |               |                                         | 0     |
| ICV (2)           | 11      | ICV          | 11:11 | 9        |               |                         |                                         |                |               |                                         | 0     |
| ICB               | 1       | ICB          | 11:12 | 10       |               |                         |                                         |                |               |                                         | 0     |
| MB 85348 (167)    | 1       | MB           | 11:14 | 11       |               | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| LCS 85348         | 1       | NA           | 11:15 | 12       |               | SOIL                    | SOIL                                    | SW846          | 85348         | Conc. Is greater than calibration limit | 0     |
| LCS MR 85348      | 1       | NA           | 11:17 | 13       |               | SOIL                    | SOIL                                    | SW846          | 85348         | Conc. Is greater than calibration limit | 0     |
| LCS 4D            | 4       | LCS          | 11:18 | 14       |               | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| .CS MR 4D         | 4       | LCS          | 11:20 | 15       |               | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| AD19479-001       | 1       | SMP          | 11:21 | 16       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| AD19479-001       | 11      | MR           | 11:22 | 17       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| 4D19479-001       | 1       | MS           | 11:24 | 18       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| AD19479-001       | 1       | MSD          | 11:25 | 19       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         | *                                       | 0     |
| AD19451-006       | 1       | SMP          | 11:27 | 20       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| CCV               | 1       | CCV          | 11:28 | 21       |               |                         |                                         |                |               |                                         | 0     |
| CCB               | 1       | CCB          | 11:30 | 22       |               |                         |                                         |                |               |                                         | 0     |
| AD19472-001       | ı       | SMP          | 11:31 | 23       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| AD19472-002       | 1       | SMP          | 11:33 | 24       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| AD19472-003       | I       | SMP          | 11:34 | 25       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| AD19479-003       | 1       | SMP          | 11:35 | 26       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| AD19479-005       | 1       | SMP          | 11:37 | 27       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| AD19479-007       | 1       | SMP          | 11:38 | 28       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| AD19479-009       |         | SMP          | 11:39 | 29       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| AD19479-011       | 1       | SMP          | 11:41 | 30       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| AD19479-013       | 1       | SMP          | 11:42 | 31       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| AD19479-015       | 1       | SMP          | 11;43 | 32       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| ccv               | 1       | CCV          | 11:45 | 33       |               |                         |                                         |                |               |                                         | 0     |
| ССВ               | 1       | ССВ          | 11:46 | 34       |               |                         |                                         |                |               |                                         | 0     |
| \D19479-017       | 1       | SMP          | 11:48 | 35       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| AD19479-019       | 1       | SMP          | 11:49 | 36       | HG-SOIL       | SOIL                    | SOIL                                    | SW846          | 85348         |                                         | 0     |
| CCV               | 1       | CCV          | 11:50 | 37       |               |                         |                                         |                |               |                                         | 0     |
| ССВ               | 1       | CCB          | 11:52 | 38       |               |                         |                                         |                |               |                                         | 0     |

| Comments/Reviewedby:               |
|------------------------------------|
| oluferni                           |
| 192.168.1.89 10/12/2020 4:26:00 PM |
| RUN IS OK                          |

Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor:\_

Standard/Batch/SnCl2 Lot #:

Run Log

Data File: W:\METALS.FRM\ICPDATA\New\MS3\_7700SWA\S100120AMDL.txt

Analysis Date: 10/01/20

Instrument: MS3\_7700SWA

| Sample Id                               | DF            | Qc<br>Type        | Time                   | Run<br>#      | Test<br>Group                 | Rept<br>Limit<br>Matrix | Qc<br>Matrix     | Anal<br>Method | Prep  | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stds:                                                   |
|-----------------------------------------|---------------|-------------------|------------------------|---------------|-------------------------------|-------------------------|------------------|----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Sample Id                               | opologijani z | SANGER ASSESSMENT | TO STREET AND SOUTHERN | PER HORSESSES | Shall stage Shall stall state | -CHARGANGHINNI IST      | en Paper Talande |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| RINSE                                   | !             | NA                | 09:50                  | 1             | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ()                                                      |
| CalBlk V-335538                         | !             | ISBLK             | 09:54                  | 2             |                               | SOIL                    | SOIL             |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335538(Cal Blk WARNING)                               |
| CalStd1 V-335539                        |               | CAL               | 09:59                  | 3             |                               |                         |                  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335539(Cal Std-1 WARNING) V-335540(Cal Std-2 WARNING) |
| CalStd2 V-335540                        |               | CAL               | 10:03                  | 4             |                               |                         |                  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335541(Cal Std-3 WARNING)                             |
| CalStd3 V-335541                        |               | CAL               | 10:08                  | 5             |                               |                         |                  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335542(Cal Std-4 WARNING)                             |
| CalStd4 V-335542                        |               | CAL               | 10:12                  | 6             |                               |                         |                  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335543(Cal Std-5 WARNING)                             |
| CalStd5 V-335543                        |               | CAL               | 10:17                  | 7             |                               |                         |                  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335544(ICV WARNING)                                   |
| ICV V-335544                            |               | ICV               | 10:21                  | 8             | MET TAL (020C                 | COII                    | COII             | CWOAC          | 06347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335549(LL-ICV/CCV SOIL                                |
| LLICV V-335549                          | ······        | LLICV             | 10:26                  | 9             | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 | M/2- va _/6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WARNING)                                                |
| ICB V-335545                            | ı             | ICB               | 10:30                  | 10            |                               |                         |                  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335545(ICB/CCB WARNING)                               |
| ICSA V-335546                           | l             | ICSA              | 10:35                  | 11            |                               |                         |                  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335546(ICSA WARNING)                                  |
| RINSE                                   | l             | NA                | 10:39                  | 12            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| LRS V-335547                            | ـــــا        | LRS               | 10:44                  | 13            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 | Ag fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V-335547(LRS WARNING)                                   |
| RINSE                                   | ı             | NA                | 10:48                  | 14            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| RINSE                                   | I             | NA                | 10:53                  | 15            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| CCV V-335548                            | ı             | CCV               | 10:57                  | 16            |                               |                         |                  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335548(CCV WARNING)                                   |
| CCB V-335545                            | ١.,           | ССВ               | 11:02                  | 17            |                               |                         |                  |                |       | The second section of the second section and the second section of the second section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section section  | V-335545(ICB/CCB WARNING)                               |
| MB 85347                                | I             | MB                | 11:06                  | 18            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| LCS 85347                               | ı             | LCS               | 11:11                  | 19            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| LCS MR 85347                            | ı             | LCS               | 11:15                  | 20            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| AD19479-001                             | ١             | SMP               | _11:19                 | 21            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| AD19479-001                             | l             | MR                | 11:24                  | 22            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| AD19479-001                             | 5             | SD                | 11:28                  | 23            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| AD19479-001                             | ı             | MS                | 11:33                  | 24            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| AD19479-001                             | l į           | MSD               | 11:37                  | 25            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| AD19479-001                             | l             | PS                | 11:41                  | 26            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| RINSE                                   | l             | NA                | 11:45                  | 27            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| CCV V-335548                            | ı             | CCV               | 11:50                  | 28            |                               |                         |                  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335548(CCV WARNING)                                   |
| CCB V-335545                            | ـــــا        | ССВ               | 11:54                  | 29            |                               |                         |                  |                |       | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th | V-335545(ICB/CCB WARNING)                               |
| AD19451-006                             | l             | NA                | 11:59                  | 30            | MET-RCRA-MS                   |                         | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| AD19472-001                             | !             | NA                | 12:03                  | 31            | MET-RCRA-MS                   |                         | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| AD19472-002                             | l             | NA                | 12:08                  | 32            | MET-RCRA-MS                   |                         | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| AD19472-003                             | ! <u>-</u> -  | NA                | 12:12                  | 33            | MET-RCRA-MS                   |                         | SOIL             | SW846          | 85347 | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | 0                                                       |
| AD19479-003                             | !             | SMP               | 12:17                  | 34            | MET-TAL6020S                  |                         | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| AD19479-005                             |               | SMP               | 12:21                  | 35            | MET-TAL6020S                  |                         | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| AD19479-007                             | !             | SMP               | 12:26                  | 36            | MET-TAL6020S                  |                         | SOIL             | SW846          | 85347 | B. D. TI (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                       |
| AD19479-009                             | !             | SMP               | 12:30                  | 37            | MET-TAL6020S                  |                         | SOIL             | SW846          | 85347 | Rerun Be, Tl (IS).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                |
| AD19479-011                             |               | SMP               | 12:35                  | 38            |                               | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| RINSE                                   | !             | NA                | 12:39                  | 39            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                       |
| CCV V-335548                            |               | CCV               | 12:44                  | 40            |                               |                         |                  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335548(CCV WARNING)                                   |
| CCB V-335545                            | !             | CCB               | 12:48                  | 41            | NET TAL (0200                 |                         |                  | 0111046        | 06345 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335545(ICB/CCB WARNING)                               |
| AD19479-013                             | l<br>1        | SMP               | 12:53                  | 42            | MET-TAL6020S                  |                         | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| AD19479-015                             | !             | SMP               | 12:57                  | 43            | MET-TAL6020S                  |                         | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| AD19479-017                             | !             | SMP               | 13:02                  | 44            | MET-TAL6020S                  |                         | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                |
| AD19479-019                             |               | SMP               | 13:06                  | 45            | MET-TAL6020S                  |                         | SOIL             | SW846          | 85347 | Barre B. Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                       |
| *************************************** | 3             | SMP               | 13:11                  | 46            | MET-TAL6020S                  |                         | SOIL             | SW846          | 85347 | Report Be, Tl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                       |
| RINSE                                   | l             | NA                | 13:15                  | 47            | MET-TAL6020S                  | SOIL                    | SOIL             | SW846          | 85347 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ()                                                      |
| CCV V-335548                            | !             | CCV               | 13:20                  | 48            |                               |                         |                  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335548(CCV WARNING)                                   |
| CCB V-335545                            | ١             | CCB               | 13:24                  | 49            |                               |                         |                  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335545(ICB/CCB WARNING)                               |

| Comm | ents/Re | viewe | dhv. |
|------|---------|-------|------|
|      |         |       |      |

pcousineau 192 168 1.87 10/13/2020 10:16:25 AM

Run ok Report Ag, As, Be, Cd, Sb, Se, Tl, v LRS fail for Ag AG LR = 100ppb Reran Be, Tl for 19479-009 (int std Fail). PC,

Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor: 20 10/11

Standard/Batch/SnCI2 Lot #:

TuneID: 1

Batch/FileID: S100120AMSample ID: CalBlk V-335538 Sample Date 10/01/20 Sample Time: 09:54

IS ID: Area Area Limit

Ho-1 1867556.26 In-1 1239591.53 Sc-1 949092.10 Tb-1 1953718.53 1307289.382 - 2427823.138 867714.071 - 1611468.989 664364.47 - 1233819.73 1367602.971 - 2539834.089

|        |                 |     | Ho-1       | In-1     | Sc-1       | Tb-1     |      |      |      | • • • • • • • • • • • • • • • • • • • • |
|--------|-----------------|-----|------------|----------|------------|----------|------|------|------|-----------------------------------------|
| QcType | txtSamId:       | Pos | Area       | Area     | Area       | Area     | Area | Area | Area | Area                                    |
| ISBLK  | CalBlk V-335538 |     | 1867556.   | 1239591. | 949092.1   | 1953718. |      |      |      |                                         |
| SMP    | RINSE           | 1   | 1890605.   | 1239955. | 949398.7   | 1948137. |      |      |      |                                         |
| CAL    | CalStd1 V-33553 |     | 1884899.   | 1264948. | 973508.9   | 1953955. |      |      |      |                                         |
| CAL    | CalStd2 V-33554 |     | 1953230.   | 1299900. | 978578.9   | 2004387. |      |      |      |                                         |
| CAL    | CalStd3 V-33554 | 5   | 1938544.   | 1281387. | 981390.7   | 2006116. |      |      |      |                                         |
| CAL    | CalStd4 V-33554 | 6   | 1917704.   | 1245770. | 963567.3   | 1967213. |      |      |      |                                         |
| CAL    | CalStd5 V-33554 | 7   | 1893748.   | 1221640. | 952777.6   | 1936564. |      |      |      |                                         |
| ICV    | ICV V-335544    | 8   | 1942952.   | 1279349. | 988275.7   | 2001283. |      |      |      |                                         |
| LLICV  | LLICV V-335549  | 9   | 1984522.   | 1350518. | 1017608.   | 2046051. |      |      |      |                                         |
| ICB    | ICB V-335545    | 10  | 1904903.   | 1281264. | 1001512.   | 1969921. |      |      |      |                                         |
| ICSA   | ICSA V-335546   | 11  | 1965584.   | 1221987. | 992190.2   | 2043657. |      |      |      |                                         |
| SMP    | RINSE           | 12  | 1981926.   | 1387095. | 1013762.   | 2071333. |      |      |      |                                         |
| LRS    | LRS V-335547    | 13  | 1952465.   | 1245524. | 1002360.   | 2011131. |      |      |      |                                         |
| SMP    | RINSE           | 14  | 1954984.   | 1429250. | 1027489.   | 2049929. |      |      |      |                                         |
| SMP    | RINSE           | 15  | 1970145.   | 1368428. | 1008983.   | 2049070. |      |      |      |                                         |
| CCV    | CCV V-335548    | 16  | 1985946.   | 1400622. | 1022610.   | 2049839. |      |      |      |                                         |
| CCB    | CCB V-335545    | 17  | 1936263.   | 1316538. | 993418.2   | 2009436. |      |      |      |                                         |
| MB     | MB 85347        | 18  | 2018814.   | 1406757. | 998953.1   | 2077026. |      |      |      |                                         |
| LCS    | LCS 85347       | 19  | 2032541.   | 1299299. | 1056041.   | 2117375. |      |      |      |                                         |
| MR     | LCS MR 85347    | 20  | 2029660.   | 1343027. | 1044309.   | 2101759. |      |      |      |                                         |
| SMP    | AD19479-001     | 21  | 2161397.   | 1273959. | 1507502. * | 2204955. |      |      |      |                                         |
| MR     | AD19479-001     | 22  | 2159181.   | 1322830. | 1445167. * | 2220723. |      |      |      |                                         |
| SD     | AD19479-001     | 23  | 1973262.   | 1264224. | 1064404    | 2042781. |      |      |      |                                         |
| MS     | AD19479-001     | 24  | 2104030.   | 1249422. | 1439328. * | 2134598. |      |      |      |                                         |
| MSD    | AD19479-001     | 25  | 2096147.   | 1259724. | 1428817. * | 2155322. |      |      |      |                                         |
| PS     | AD19479-001     | 26  | 2144411.   | 1265193. | 1477992. * | 2192372. |      |      |      |                                         |
| SMP    | RINSE           | 27  | 1844729.   | 1212766. | 942042.2   | 1923094. |      |      |      |                                         |
| CCV    | CCV V-335548    | 28  | 1875256.   | 1215489. | 931701.8   | 1937018. |      |      |      |                                         |
| CCB    | CCB V-335545    | 29  | 1842787.   | 1189556. | 911557.6   | 1906148. |      |      |      |                                         |
| SMP    | AD19451-006     | 30  | 2063788.   | 1284303. | 1423663. * | 2126112. |      |      |      |                                         |
| SMP    | AD19472-001     | 31  | 2096034.   | 1359554. | 1622229. * | 2156562. |      |      |      |                                         |
| SMP    | AD19472-002     | 32  | 2084863.   | 1365833. | 1402846. * | 2152305. |      |      |      |                                         |
| SMP    | AD19472-003     | 33  | 2076291.   | 1306239. | 1306740. * | 2146049. |      |      |      |                                         |
| SMP    | AD19479-003     | 34  | 2161325.   | 1304396. | 1466972. * |          |      |      |      |                                         |
| SMP    | AD19479-005     | 35  | 2157283.   | 1285404. | 1441677. * |          |      |      |      |                                         |
| SMP    | AD19479-007     | 36  | 2103184.   | 1278823. | 1446662. * | 2176393. |      |      |      |                                         |
| SMP    | AD19479-009     | 37  | 2649831. * | 1291758. | 1582600. * |          |      |      |      |                                         |
| SMP    | AD19479-011     | 38  | 2133623.   | 1345645. | 1381634. * |          |      |      |      |                                         |
| SMP    | RINSE           | 39  | 1865617.   | 1224829. | 943654.7   | 1944238. |      |      |      |                                         |
| CCV    | CCV V-335548    | 40  | 1915018.   | 1237564. | 950938.9   | 1963917. |      |      |      |                                         |
| ССВ    | CCB V-335545    | 41  | 1829540.   | 1207751. | 917523.4   | 1898084. |      |      |      |                                         |
| SMP    | AD19479-013     | 42  | 2198200.   | 1333866. | 1473931. * |          |      |      |      |                                         |
| SMP    | AD19479-015     | 43  | 2067544.   | 1263437. | 1270674. * |          |      |      |      |                                         |
| SMP    | AD19479-017     | 44  | 2193926.   | 1418665. | 1435051. * |          |      |      |      |                                         |
| SMP    | AD19479-019     | 45  | 2180296.   | 1404307. | 1509773. * |          |      |      |      |                                         |
| SMP    | AD19479-009     | 46  | 2208375.   | 1302432. | 1251900. * |          |      |      |      |                                         |
| SMP    | RINSE           | 47  | 1899541.   | 1253424. | 957308.3   | 1952429. |      |      |      |                                         |
| CCV    | CCV V-335548    | 48  | 1922863.   | 1252141. | 974758.3   | 1989631. |      |      |      |                                         |

<sup>\*</sup> Indicates Internal Standard Area outside of limits

0092806 0267

### ICPMS Internal Standard Summary Report

TuneID: 1

ССВ CCB V-335545 49

1872768.

1236729.

943765.1

1930533.

<sup>\*</sup> Indicates Internal Standard Area outside of limits

TuneID: 2

Batch/FileID: S100120AMSample ID: CalBlk V-335538 Sample Date 10/01/20 Sample Time: 09:54

 IS ID:
 Area
 Area Limit

 Ho-2
 821636.05
 575145.235
 - 1068126.865

 In-2
 257993.71
 180595.597
 - 335391.823

 Sc-2
 46556.07
 32589.249
 - 60522.891

 Tb-2
 827462.16
 579223.512
 - 1075700.808

| . 19.1911 |                      |          | Ho-2                 | In-2                 | Sc-2                | Tb-2       |      |      |      |      |
|-----------|----------------------|----------|----------------------|----------------------|---------------------|------------|------|------|------|------|
| QcType    | txtSamld:            | Pos      | Area                 | Area                 | Area                | Area       | Area | Area | Area | Area |
| ISBLK     | CalBlk V-335538      |          | 821636.0             | 257993.7             | 46556.07            | 827462.1   |      |      |      |      |
| SMP       | RINSE                | 1        | 816617.2             | 253905.3             | 46437.01            | 819415.0   |      |      |      |      |
| CAL       | CalStd1 V-33553      | 3        | 837305.1             | 260403.1             | 47157.45            | 844156.1   |      |      |      |      |
| CAL       | CalStd2 V-33554      |          | 848533.1             | 265883.4             | 47802.44            | 857074.9   |      |      |      |      |
| CAL       | CalStd3 V-33554      |          | 844580.4             | 265309.7             | 47899.30            | 849717.2   |      |      |      |      |
| CAL       | CalStd4 V-33554      |          | 825854.2             | 255469.2             | 45423.28            | 837247.6   |      |      |      |      |
| CAL       | CalStd5 V-33554      |          | 830870.1             | 252189.2             | 46528.07            | 833828.1   |      |      |      |      |
| ICV       | ICV V-335544         | 8        | 848065.7             | 264075.2             | 48214.51            | 854795.6   |      |      |      |      |
| LLICV     | LLICV V-335549       |          | 862458.9             | 274597.9             | 50129.41            | 876912.3   |      |      |      |      |
| ICB       | ICB V-335545         | 10       | 833345.4             | 265684.5             | 49344.33            | 842019.9   |      |      |      |      |
| ICSA      | ICSA V-335546        | 11       | 853923.3             | 256126.8             | 50280.04            | 858841.6   |      |      |      |      |
| SMP       | RINSE                | 12       | 858391.5             | 273413.0             | 49655.03            | 868050.6   |      |      |      |      |
| LRS       | LRS V-335547         | 13       | 852987.1             | 261988.9             | 49848.74            | 856864.2   |      |      |      |      |
| SMP       | RINSE                | 14       | 867709.9             | 279485.5             | 51205.92            | 871680.8   |      |      |      |      |
| SMP       | RINSE                | 15       | 851854.7             | 273707.1             | 50870.69            | 863155.8   |      |      |      |      |
| CCV       | CCV V-335548         | 16       | 869347.8             | 275096.2             | 51069.72            | 878624.8   |      |      |      |      |
| ССВ       | CCB V-335545         | 17       | 835070.4             | 268061.1             | 48872.83            | 845384.7   |      |      |      |      |
| MB        | MB 85347             | 18       | 852391.5             | 261766.4             | 46748.89            | 859728.9   |      |      |      |      |
| LCS       | LCS 85347            | 19       | 858947.8             | 259441.1             | 49641.70            | 866397.3   |      |      |      |      |
| MR        | LCS MR 85347         | 20       | 858560.4             | 257562.4             | 49118.31            | 863834.6   |      |      |      |      |
| SMP       | AD19479-001          | 21       | 912869.4             | 255501.8             | 68624.79 *          |            |      |      |      |      |
| MR        | AD19479-001          | 22       | 926192.3             | 256526.4             | 65466.14 *          |            |      |      |      |      |
| SD        | AD19479-001          | 23       | 853529.1             | 257902.2             | 51101.12            | 859493.3   |      |      |      |      |
| MS        | AD19479-001          | 24       | 901751.7             | 253049.5             | 67160.97 *          |            |      |      |      |      |
| MSD       | AD19479-001          | 25       | 895262.1             | 256050.2             | 64972.07 *          |            |      |      |      |      |
|           |                      |          |                      |                      |                     |            |      |      |      |      |
| PS<br>SMP | AD19479-001<br>RINSE | 26<br>27 | 912419.8             | 255030.0<br>254830.5 | 67827.56 * 46329.79 | 817448.9   |      |      |      |      |
| CCV       | CCV V-335548         | 28       | 811616.4<br>813555.5 | 254839.5<br>250229.5 | 45507.91            | 820515.0   |      |      |      |      |
| CCB       | CCB V-335545         | 29       | 797148.9             | 249832.7             | 45218.33            | 802826.3   |      |      |      |      |
|           |                      | 30       | 878172.6             |                      |                     |            |      |      |      |      |
| SMP       | AD19451-006          |          |                      | 262012.4             | 66285.79 *          |            |      |      |      |      |
| SMP       | AD19472-001          | 31       | 886243.6             | 260385.7             | 74916.10 *          |            |      |      |      |      |
| SMP       | AD19472-002          | 32       | 878667.0             | 259025.4             | 62131.40 *          |            |      |      |      |      |
| SMP       | AD19472-003          | 33       | 897376.1             | 259583.4             | 59503.04            | 896184.9   |      |      |      |      |
| SMP       | AD19479-003          | 34       | 925369.6             | 258793.9             | 68213.64 *          |            |      |      |      |      |
| SMP       | AD19479-005          | 35<br>36 | 916577.6             | 258270.2             | 65709.10 *          |            |      |      |      |      |
| SMP       | AD19479-007          | 36<br>37 | 900975.7             | 259198.2             | 65959.67 *          |            | ,    |      |      |      |
| SMP       | AD19479-009          | 37       | 1170984. *           | 262068.2             |                     | 1102349. * |      |      |      |      |
| SMP       | AD19479-011          | 38       | 899904.8             | 258108.4             | 61901.00 *          |            |      |      |      |      |
| SMP       | RINSE                | 39       | 815554.6             | 260185.9             | 46315.43            | 826572.7   |      |      |      |      |
| CCV       | CCV V-335548         | 40       | 831733.8             | 257040.3             | 46188.29            | 837587.9   |      |      |      |      |
| CCB       | CCB V-335545         | 41       | 806153.8             | 252530.1             | 45973.60            | 812390.3   |      |      |      |      |
| SMP       | AD19479-013          | 42       | 941466.5             | 262941.0             | 67097.13 *          |            |      |      |      |      |
| SMP       | AD19479-015          | 43       | 867965.2             | 244959.7             | 56519.73            | 872226.3   |      |      |      |      |
| SMP       | AD19479-017          | 44       | 928224.3             | 263292.9             | 65604.56 *          |            |      |      |      |      |
| SMP       | AD19479-019          | 45<br>46 | 942786.5             | 264327.3             | 69969.96 *          |            |      |      |      |      |
| SMP       | AD19479-009          | 46       | 976905.4             | 270101.0             | 57460.08            | 953246.1   |      |      |      |      |
| SMP       | RINSE                | 47       | 830339.3             | 265083.4             | 47318.90            | 841502.0   |      |      |      |      |
| CCV       | CCV V-335548         | 48       | 849038.9             | 262879.5             | 47316.84            | 851980.0   |      |      |      |      |

<sup>\*</sup> Indicates Internal Standard Area outside of limits

0092806 0269

### ICPMS Internal Standard Summary Report

TuneID: 2

CCB CCB V-335545 49

836994.3 265948.0 47938.40

843042.2

<sup>\*</sup> Indicates Internal Standard Area outside of limits

Wet Chemistry Data

# VERITECH Wet Chem Form1 Analysis Summary % Solids

TestGroupName: % Solids SM2540G

TestGroup: %SOLIDS

Project #: 0092806

| Lab#        | Client SampleID    | Matrix         | Dilution: | Result | Units:  | RL | Prep Date | Analysis<br>Date | Received<br>Date | Collect<br>Date |
|-------------|--------------------|----------------|-----------|--------|---------|----|-----------|------------------|------------------|-----------------|
| AD19479-001 | HSI-SS-01 (0-0.5') | Soil           | 1         | 90     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-002 | HSI-SS-01 (0.5-1') | Soil/Terracore | 1         | 92     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-003 | HSI-SS-02 (0-0.5') | Soil           | 1         | 91     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-004 | HSI-SS-02 (0.5-1') | Soil/Terracore | 1         | 91     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-005 | HSI-SS-03 (0-0.5') | Soil           | 1         | 82     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-006 | HSI-SS-03 (0.5-1') | Soil/Terracore | 1         | 81     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-007 | HSI-SS-04 (0-0.5') | Soil           | 1         | 90     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-008 | HSI-SS-04 (0.5-1') | Soil/Terracore | 1         | 91     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-009 | HSI-SS-05 (0-0.5') | Soil           | 1         | 87     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-010 | HSI-SS-05 (0.5-1') | Soil/Terracore | 1         | 90     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-011 | HSI-SS-06 (0-0.5') | Soil           | 1         | 92     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-012 | HSI-SS-06 (0.5-1') | Soil/Terracore | 1         | 91     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-013 | HSI-SS-07 (0-0.5') | Soil           | 1         | 82     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-014 | HSI-SS-07 (0.5-1') | Soil/Terracore | 1         | 71     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-015 | HSI-SS-08 (0-0.5') | Soil           | 1         | 94     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-016 | HSI-SS-08 (0.5-1') | Soil/Terracore | 1         | 89     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-017 | HSI-SS-09 (0-0.5') | Soil           | 1         | 93     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-018 | HSI-SS-09 (0.5-1') | Soil/Terracore | 1         | 93     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-019 | HSI-SS-D (0-0.5')  | Soil           | 1         | 92     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |
| AD19479-020 | HSI-SS-D (0.5-1')  | Soil/Terracore | 1         | 79     | Percent |    |           | 09/28/20         | 09/28/20         | 09/25/20        |

### % Solids Report

Analysis Type: SOLIDS-SS BatchID: SOLIDS-SS-11020

| QсТуре | SampleID:   | Rounded<br>Result | Raw<br>Result | Units   | Tare<br>Weight | Wet<br>Weight | Dry<br>Weight | Analysis<br>Date | Analyzed<br>By | QC RPD | Rpd<br>Limit |
|--------|-------------|-------------------|---------------|---------|----------------|---------------|---------------|------------------|----------------|--------|--------------|
| DUP    | AD19479-001 | 90                | 90.10340      | Percent | 1.36           | 8.13          | 7.47          | 09/28/20         | jessica        | 0.046  | 5            |
| Sample | AD19479-001 | 90                | 90.14493      | Percent | 1.35           | 11.70         | 10.68         | 09/28/20         | jessica        |        |              |
| Sample | AD19479-002 | 92                | 92.49395      | Percent | 1.36           | 9.62          | 9.00          | 09/28/20         | jessica        |        |              |
| Sample | AD19479-003 | 91                | 91.37597      | Percent | 1.36           | 11.68         | 10.79         | 09/28/20         | jessica        |        |              |
| Sample | AD19479-004 | 91                | 90.51173      | Percent | 1.36           | 10.74         | 9.85          | 09/28/20         | jessica        |        |              |
| Sample | AD19479-005 | 82                | 81.98294      | Percent | 1.34           | 10.72         | 9.03          | 09/28/20         | jessica        |        |              |
| Sample | AD19479-006 | 81                | 80.95975      | Percent | 1.37           | 14.29         | 11.83         | 09/28/20         | jessica        |        |              |
| Sample | AD19479-007 | 90                | 90.39666      | Percent | 1.35           | 10.93         | 10.01         | 09/28/20         | jessica        |        |              |
| Sample | AD19479-008 | 91                | 90.77670      | Percent | 1.36           | 7.54          | 6.97          | 09/28/20         | jessica        |        |              |
| Sample | AD19479-009 | 87                | 87.24672      | Percent | 1.34           | 9.73          | 8.67          | 09/28/20         | jessica        |        |              |
| Sample | AD19479-010 | 90                | 90.07315      | Percent | 1.36           | 10.93         | 9.98          | 09/28/20         | jessica        |        |              |
| Sample | AD19479-011 | 92                | 91.81637      | Percent | 1.36           | 11.38         | 10.56         | 09/28/20         | jessica        |        |              |
| Sample | AD19479-012 | 91                | 90.61697      | Percent | 1.37           | 9.15          | 8.42          | 09/28/20         | jessica        |        |              |
| Sample | AD19479-013 | 82                | 82.44444      | Percent | 1.36           | 10.36         | 8.78          | 09/28/20         | jessica        |        |              |
| Sample | AD19479-014 | 71                | 71.04430      | Percent | 1.36           | 7.68          | 5.85          | 09/28/20         | jessica        |        |              |
| Sample | AD19479-015 | 94                | 93.76771      | Percent | 1.36           | 11.95         | 11.29         | 09/28/20         | jessica        |        |              |
| Sample | AD19479-016 | 89                | 89.41642      | Percent | 1.38           | 11.49         | 10.42         | 09/28/20         | jessica        |        |              |
| Sample | AD19479-017 | 93                | 93.12377      | Percent | 1.36           | 11.54         | 10.84         | 09/28/20         | jessica        |        |              |
| Sample | AD19479-018 | 93                | 92.84165      | Percent | 1.32           | 10.54         | 9.88          | 09/28/20         | jessica        |        |              |
| Sample | AD19479-019 | 92                | 92.33449      | Percent | 1.36           | 9.97          | 9.31          | 09/28/20         | jessica        |        |              |
| Sample | AD19479-020 | 79                | 79.03635      | Percent | 1.37           | 13.20         | 10.72         | 09/28/20         | jessica        |        |              |

<sup>\* -</sup> Indicates Failed Rpd Criteria



Analytical & Field Services

Last Page of Report

### ATTACHMENT G

GROUNDWATER, SUBSURFACE SOIL, AND WASTE CHARACTERIZATION SAMPLE LABORATORY ANALYTICAL REPORTS



WWW.HCVLAB.COM



**Project:** Hot Spot Investigation

Client PO: CG09042310MS

Report To: Chesapeake Geosciences Inc

5405 Twin Knolls Rd.

Suite 1

Columbia, MD 21045 Attn: Nancy Love

Received Date: 9/30/2020

Report Date: 10/26/2020

**Deliverables:** MDE-R

Lab ID: AD19539

Lab Project No: 0093024



This report is a true report of results obtained from our tests of this material. The report relates only to those samples received and analyzed by the laboratory. All results meet the requirements of the NELAC Institute standards. Laboratory reports may not be reproduced, except in full, without the written approval of the laboratory.

In lieu of a formal contract document, the total aggregate liability of Hampton-Clarke to all parties shall not exceed Hampton-Clarke's total fee for analytical services rendered.

Sean Berls - Quality Assurance Officer

OR

Jean Revolus - Laboratory Director

NJ (07071) PA (68-00463) NY (ELAP11408) KY (90124) CT (PH-0671)





## **Table of Contents - 0093024**

| Sample Summary                                   | 1   |
|--------------------------------------------------|-----|
| Case Narrative                                   | 2   |
| Executive Summary                                | 4   |
| Report of Analysis                               | 12  |
| Reporting Definitions / Data Qualifiers          | 38  |
| Laboratory Chronicles                            | 39  |
| Chain of Custody Forms                           | 43  |
| Chain of Custody                                 |     |
| Condition Upon Receipt Forms                     |     |
| Preservation Documentation Forms (If Applicable) |     |
| Internal Chain Of Custody Records                |     |
| Volatile Data                                    | 51  |
| Form 1 Sample and Blank Results                  |     |
| Form 2 Surrogate Recovery                        |     |
| Form 3 Spike Recovery                            |     |
| Form 4 Method Blank Summary                      |     |
| Form 5 Tune Summary & BFB Spectra                |     |
| Form 6,7 Calibration & RT Summary                |     |
| Form 8 Internal Standard Area Summary            |     |
| Base Neutral/Acid Extractable Data               | 226 |
| Form 1 Sample and Blank Results                  |     |
| Form 2 Surrogate Recovery                        |     |
| Form 3 Spike Recovery                            |     |
| Form 4 Method Blank Summary                      |     |
| Form 5 Tune Summary & DFTPP Spectra              |     |
| Form 6,7 Calibration & RT Summary                |     |
| Form 8 Internal Standard Area Summary            |     |
| Metal Data                                       | 285 |
| Form 1 Sample Results                            |     |
| Form 2 Calibration Summary                       |     |
| Form 3 Blank Summary                             |     |
| Form 4 ICP Interference Check Sample Summary     |     |
| Form 5/7 Spike / LCS Recovery Data               |     |
| Form 6/9 Duplicate / Serial Dilution Sample Data |     |



| Wet Chemistry Data    | 349 |
|-----------------------|-----|
| Form 1 Sample Results |     |

Inorganic Spreadsheet / QC Summary

## **Sample Summary**

Client: Chesapeake Geosciences Inc

**Project:** Hot Spot Investigation

HC Project #: 0093024

| Lab#        | SampleID            | Matrix         | Collection<br>Date | Receipt<br>Date |
|-------------|---------------------|----------------|--------------------|-----------------|
| AD19539-001 | HSI-TB-01           | Aqueous        | 9/28/2020          | 9/30/2020       |
| AD19539-002 | HSI-GW-01           | Aqueous        | 9/28/2020          | 9/30/2020       |
| AD19539-003 | HSI-GW-02           | Aqueous        | 9/28/2020          | 9/30/2020       |
| AD19539-004 | HSI-GW-03           | Aqueous        | 9/28/2020          | 9/30/2020       |
| AD19539-005 | HSI-GW-04           | Aqueous        | 9/28/2020          | 9/30/2020       |
| AD19539-006 | HSI-SB-02(3.5-4)    | Soil/Terracore | 9/28/2020          | 9/30/2020       |
| AD19539-007 | HSI-SB-02(10-10.5)  | Soil/Terracore | 9/28/2020          | 9/30/2020       |
| AD19539-008 | HSI-SB-02(11-11.5)  | Soil/Terracore | 9/28/2020          | 9/30/2020       |
| AD19539-009 | HSI-SB-04 (9.5-10)  | Soil/Terracore | 9/29/2020          | 9/30/2020       |
| AD19539-010 | HSI-SB-03 (3.5-4)   | Soil/Terracore | 9/29/2020          | 9/30/2020       |
| AD19539-011 | HSI-SB-03 (10-10.5) | Soil/Terracore | 9/29/2020          | 9/30/2020       |
| AD19539-012 | HSI-SB-03 (11-11.5) | Soil/Terracore | 9/29/2020          | 9/30/2020       |
| AD19539-013 | HSI-SB-01 (2.5-3)   | Soil/Terracore | 9/29/2020          | 9/30/2020       |
| AD19539-014 | HSI-SB-01 (6-6.5)   | Soil/Terracore | 9/29/2020          | 9/30/2020       |
| AD19539-015 | HSI-SB-01 (10-10.5) | Soil/Terracore | 9/29/2020          | 9/30/2020       |
| AD19539-016 | HSI-SB-01 (14.5-15) | Soil/Terracore | 9/29/2020          | 9/30/2020       |
| AD19539-017 | HSI-SB-D1           | Soil/Terracore | 9/29/2020          | 9/30/2020       |

### **HC Case Narrative**

Client: Chesapeake Geosciences Inc HC Project: 0093024

Project: Hot Spot Investigation

This case narrative is in the form of an exception report. Method specific and/or QA/QC anomalies related to this report only are detailed below.

#### **Volatile Organic Analysis:**

Methyl acetate was recovered in Method Blank 89447 and in samples AD19539-002, -003, -004, -005 due to possible laboratory contamination.

The Method Blank Spike for batches 89425, 89426, 89427, 89437, 89447, 89475 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

The MS/MSD RPD, Matrix Spike and/or Matrix Spike Duplicate for batches 89425, 89426, 89427, 89437, 89447, 89475 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

2-Chloroethylvinylether did not recover in the Matrix Spike and/or Matrix Spike Duplicate in batches 89427, 89447 due to acid preservation of sample. 2-Chloroethylvinylether readily decomposes under acidic conditions. The recovery of 2-Chloroethylvinylether is within QC limits in the Laboratory Control Sample. Please refer to the applicable Form 3 for the recoveries.

Sample AD19539-007 had one or more surrogate recoveries outside QC limits. The sample was reanalyzed confirming recoveries outside QC limits due to matrix interference. The initial analysis is reported. Please refer to the applicable Form 2 for the recoveries.

### Base Neutral/Acid Extractable Analysis:

The MS/MSD RPD, Matrix Spike and/or Matrix Spike Duplicate for batch 88132 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

Samples AD19539-014, -017 had one or more surrogates outside QC limits. Please refer to the applicable Form 2 for the recoveries.

#### **Metals Analysis:**

Sample AD19539-007 was reported at a dilution for Be, TI due to internal standard interference.

The Post Spike, Matrix Spike and/or Matrix Spike Duplicate for batches 85372, 85373 had recoveries outside QC limits. Please refer to the applicable Form 5/7 for the recoveries.

The RPD between the LCS and the LCS Replicate had recoveries outside QC limits in batch 85372. Please refer to the applicable Form 6/9 for the recoveries.

The RPD between the QC sample and the Method Replicate had recoveries outside QC limits in batches 85372, 85373. Please refer to the applicable Form 6/9 for the recoveries.

The MS/MSD RPD had recoveries outside QC limits in batch 85372. Please refer to the applicable Form 6/9 for the recoveries.

The serial dilution for batch 85372 is outside QC limits for one or more analytes. Please refer to the applicable Form 6/9 for the recoveries.

Reported to MDL per client request. When reporting to the MDL, detections are typically found in the blanks. Acceptance criteria for blanks are based on the RL.

| Wet | <b>Chemis</b> | try | Analy | /sis: |
|-----|---------------|-----|-------|-------|
|     |               |     |       |       |

Data conforms to method requirements.

Sean Berls Or Jean Revolus Date
Quality Assurance Officer Laboratory Director

Client: Chesapeake Geosciences Inc

HC Project #: 0093024

**Project:** Hot Spot Investigation

Lab#: AD19539-002

Sample ID: HSI-GW-01

| Analyte                  | Units | RL/MDL | Result | Analytical<br>Method |
|--------------------------|-------|--------|--------|----------------------|
| 1,1-Dichloroethane       | ug/l  | 2.1    | 6.9    | EPA 8260D            |
| 1,2-Dichloroethane       | ug/l  | 3.2    | 35     | EPA 8260D            |
| Benzene                  | ug/l  | 1.5    | 40     | EPA 8260D            |
| Chlorobenzene            | ug/l  | 1.7    | 510    | EPA 8260D            |
| cis-1,2-Dichloroethene   | ug/l  | 3.2    | 360    | EPA 8260D            |
| Ethylbenzene             | ug/l  | 2.3    | 3.6J   | EPA 8260D            |
| m&p-Xylenes              | ug/l  | 4.2    | 6.6    | EPA 8260D            |
| Methyl Acetate           | ug/l  | 3.5    | 11B    | EPA 8260D            |
| Methyl-t-butyl ether     | ug/l  | 1.6    | 18     | EPA 8260D            |
| o-Xylene                 | ug/l  | 3.4    | 3.6J   | EPA 8260D            |
| Toluene                  | ug/l  | 1.6    | 2.1J   | EPA 8260D            |
| trans-1,2-Dichloroethene | ug/l  | 1.5    | 91     | EPA 8260D            |
| Trichloroethene          | ug/l  | 1.7    | 10     | EPA 8260D            |
| Vinyl chloride           | ug/l  | 3.5    | 65     | EPA 8260D            |
| Xylenes (Total)          | ug/l  | 3.4    | 10     | EPA 8260D            |

Lab#: AD19539-003 Sample ID: HSI-GW-02

| Analyte                   | Units | RL/MDL | Result | Analytical<br>Method |
|---------------------------|-------|--------|--------|----------------------|
| 1,1,2,2-Tetrachloroethane | ug/l  | 2.2    | 7.5    | EPA 8260D            |
| 1,1-Dichloroethane        | ug/l  | 2.1    | 3.6J   | EPA 8260D            |
| 1,2-Dichloroethane        | ug/l  | 3.2    | 24     | EPA 8260D            |
| Benzene                   | ug/l  | 1.5    | 36     | EPA 8260D            |
| Chlorobenzene             | ug/l  | 1.7    | 550    | EPA 8260D            |
| cis-1,2-Dichloroethene    | ug/l  | 3.2    | 97     | EPA 8260D            |
| Ethylbenzene              | ug/l  | 2.3    | 17     | EPA 8260D            |
| Isopropylbenzene          | ug/l  | 2.5    | 2.9J   | EPA 8260D            |
| m&p-Xylenes               | ug/l  | 4.2    | 39     | EPA 8260D            |
| Methyl Acetate            | ug/l  | 3.5    | 13B    | EPA 8260D            |
| Methyl-t-butyl ether      | ug/l  | 1.6    | 4.1    | EPA 8260D            |
| o-Xylene                  | ug/l  | 3.4    | 13     | EPA 8260D            |
| Toluene                   | ug/l  | 1.6    | 120    | EPA 8260D            |
| trans-1,2-Dichloroethene  | ug/l  | 1.5    | 15     | EPA 8260D            |
| Trichloroethene           | ug/l  | 1.7    | 16     | EPA 8260D            |
| Vinyl chloride            | ug/l  | 3.5    | 45     | EPA 8260D            |
| Xylenes (Total)           | ug/l  | 3.4    | 52     | EPA 8260D            |

Lab#: AD19539-004 Sample ID: HSI-GW-03

|                           |       |        |        | Analytical |
|---------------------------|-------|--------|--------|------------|
| Analyte                   | Units | RL/MDL | Result | Method     |
| 1,1,2,2-Tetrachloroethane | ug/i  | 2.2    | 2.4J   | EPA 8260D  |
| 1,1-Dichloroethane        | ug/l  | 2.1    | 2.7J   | EPA 8260D  |
| Benzene                   | ug/l  | 1.5    | 13     | EPA 8260D  |
| Chlorobenzene             | ug/l  | 1.7    | 320    | EPA 8260D  |
| Chloroethane              | ug/l  | 2.9    | 4.5J   | EPA 8260D  |
| cis-1,2-Dichloroethene    | ug/l  | 3.2    | 4.7J   | EPA 8260D  |
| Methyl Acetate            | ug/i  | 3.5    | 15B    | EPA 8260D  |
| Methyl-t-butyl ether      | ug/l  | 1.6    | 1.9J   | EPA 8260D  |
| trans-1,2-Dichloroethene  | ug/l  | 1.5    | 1.9J   | EPA 8260D  |
| Vinyl chloride            | ug/l  | 3.5    | 9.0    | EPA 8260D  |

Client: Chesapeake Geosciences Inc

HC Project #: 0093024

**Project:** Hot Spot Investigation

Lab#: AD19539-005

Sample ID: HSI-GW-04

| Analyte                   | Units | RL/MDL | Result | Analytical<br>Method |
|---------------------------|-------|--------|--------|----------------------|
| 1,1,2,2-Tetrachloroethane | ug/l  | 2.2    | 12     | EPA 8260D            |
| 1,1-Dichloroethane        | ug/l  | 2.1    | 4.5J   | EPA 8260D            |
| 1,2-Dichloroethane        | ug/l  | 3.2    | 20     | EPA 8260D            |
| Benzene                   | ug/l  | 1.5    | 28     | EPA 8260D            |
| Chlorobenzene             | ug/l  | 1.7    | 460    | EPA 8260D            |
| Chloroethane              | ug/l  | 2.9    | 3.6J   | EPA 8260D            |
| cis-1,2-Dichloroethene    | ug/l  | 3.2    | 120    | EPA 8260D            |
| Methyl Acetate            | ug/l  | 3.5    | 14B    | EPA 8260D            |
| Methylene chloride        | ug/l  | 1.5    | 1.9J   | EPA 8260D            |
| Methyl-t-butyl ether      | ug/l  | 1.6    | 9.6    | EPA 8260D            |
| Toluene                   | ug/l  | 1.6    | 4.3J   | EPA 8260D            |
| trans-1,2-Dichloroethene  | ug/l  | 1.5    | 32     | EPA 8260D            |
| Trichloroethene           | ug/l  | 1.7    | 26     | EPA 8260D            |
| Vinyl chloride            | ug/l  | 3.5    | 48     | EPA 8260D            |

Lab#: AD19539-006 Sample ID: HSI-SB-02(3.5-4)

| Analyte         | Units | RL/MDL | Result | Analytical<br>Method |
|-----------------|-------|--------|--------|----------------------|
| Chlorobenzene   | mg/kg | 0.030  | 9.1    | EPA 8260D            |
| Ethylbenzene    | mg/kg | 0.042  | 0.78   | EPA 8260D            |
| m&p-Xylenes     | mg/kg | 0.076  | 4.1    | EPA 8260D            |
| o-Xylene        | mg/kg | 0.061  | 1.3    | EPA 8260D            |
| Toluene         | mg/kg | 0.029  | 0.31   | EPA 8260D            |
| Xylenes (Total) | mg/kg | 0.061  | 5.4    | EPA 8260D            |

Client: Chesapeake Geosciences Inc

HC Project #: 0093024

Project: Hot Spot Investigation

Lab#: AD19539-007

Sample ID: HSI-SB-02(10-10.5)

| Analyte                    | Units | RL/MDL  | Result   | Analytical<br>Method |
|----------------------------|-------|---------|----------|----------------------|
| Aluminum                   | mg/kg | 21      | 2200     | EPA 6010D            |
| Barium                     | mg/kg | 0.84    | 15       | EPA 6010D            |
| Calcium                    | mg/kg | 130     | 200J     | EPA 6010D            |
| Chromium                   | mg/kg | 0.84    | 21       | EPA 6010D            |
| Copper                     | mg/kg | 0.77    | 8.0      | EPA 6010D            |
| Iron                       | mg/kg | 16      | 5300     | EPA 6010D            |
| Lead                       | mg/kg | 0.77    | 13       | EPA 6010D            |
| Magnesium                  | mg/kg | 24      | 160J     | EPA 6010D            |
| Manganese                  | mg/kg | 0.80    | 12J      | EPA 6010D            |
| Nickel                     | mg/kg | 1.4     | 2.5J     | EPA 6010D            |
| Zinc                       | mg/kg | 1.9     | 23       | EPA 6010D            |
| Antimony                   | mg/kg | 0.028   | 0.053J   | EPA 6020B            |
| Arsenic                    | mg/kg | 0.022   | 1.9      | EPA 6020B            |
| Beryllium                  | mg/kg | 0.059   | 0.12J    | EPA 6020B            |
| Cadmium                    | mg/kg | 0.018   | 0.24J    | EPA 6020B            |
| Selenium                   | mg/kg | 0.079   | 3.1      | EPA 6020B            |
| Silver                     | mg/kg | 0.033   | 0.12J    | EPA 6020B            |
| Vanadium                   | mg/kg | 0.014   | 32       | EPA 6020B            |
| 1,1,2,2-Tetrachloroethane  | mg/kg | 0.00039 | 0.0063   | EPA 8260D            |
| 1,1-Dichloroethane         | mg/kg | 0.00075 | 0.0011J  | EPA 8260D            |
| 1,2-Dichlorobenzene        | mg/kg | 0.00044 | 0.0016J  | EPA 8260D            |
| 1,4-Dichlorobenzene        | mg/kg | 0.00046 | 0.00075J | EPA 8260D            |
| 2-Butanone                 | mg/kg | 0.0010  | 0.0093   | EPA 8260D            |
| 4-Methyl-2-pentanone       | mg/kg | 0.00050 | 0.0042   | EPA 8260D            |
| Acetone                    | mg/kg | 0.0058  | 0.034    | EPA 8260D            |
| Benzene                    | mg/kg | 0.00063 | 0.083    | EPA 8260D            |
| Ethylbenzene               | mg/kg | 0.00059 | 0.074    | EPA 8260D            |
| Isopropylbenzene           | mg/kg | 0.00071 | 0.035    | EPA 8260D            |
| m&p-Xylenes                | mg/kg | 0.0010  | 0.29     | EPA 8260D            |
| Methylcyclohexane          | mg/kg | 0.00077 | 0.0025   | EPA 8260D            |
| Methylene chloride         | mg/kg | 0.00064 | 0.0024   | EPA 8260D            |
| o-Xylene                   | mg/kg | 0.00061 | 0.12     | EPA 8260D            |
| Toluene                    | mg/kg | 0.00057 | 0.17     | EPA 8260D            |
| Xylenes (Total)            | mg/kg | 0.00061 | 0.41     | EPA 8260D            |
| bis(2-Ethylhexyl)phthalate | mg/kg | 0.037   | 0.34     | <b>EPA</b> 8270E     |
| Di-n-butylphthalate        | mg/kg | 0.048   | 1.6      | EPA 8270E            |
| Naphthalene                | mg/kg | 0.012   | 0.058    | EPA 8270E            |

Lab#: AD19539-008

Sample ID: HSI-SB-02(11-11.5)

|                 |       |        |        | Analytical |
|-----------------|-------|--------|--------|------------|
| Analyte         | Units | RL/MDL | Result | Method     |
| Benzene         | mg/kg | 0.021  | 0.098  | EPA 8260D  |
| Chlorobenzene   | mg/kg | 0.024  | 2.7    | EPA 8260D  |
| Ethylbenzene    | mg/kg | 0.034  | 0.046J | EPA 8260D  |
| m&p-Xylenes     | mg/kg | 0.061  | 0.14   | EPA 8260D  |
| Toluene         | mg/kg | 0.023  | 1.2    | EPA 8260D  |
| Xylenes (Total) | mg/kg | 0.049  | 0.14   | EPA 8260D  |

Client: Chesapeake Geosciences Inc

HC Project #: 0093024

Project: Hot Spot Investigation

Lab#: AD19539-009

Sample ID: HSI-SB-04 (9.5-10)

| Amalista                 | 1124  | DI (45) | D 14     | Analytical<br>Method |
|--------------------------|-------|---------|----------|----------------------|
| Analyte                  | Units | RL/MDL  | Result   | Method               |
| 1,1-Dichloroethane       | mg/kg | 0.00071 | 0.0014J  | EPA 8260D            |
| 1,2-Dichloroethane       | mg/kg | 0.00034 | 0.0028   | EPA 8260D            |
| Benzene                  | mg/kg | 0.00060 | 0.0072   | EPA 8260D            |
| Chlorobenzene            | mg/kg | 0.00051 | 0.097    | EPA 8260D            |
| cis-1,2-Dichloroethene   | mg/kg | 0.00066 | 0.030    | EPA 8260D            |
| m&p-Xylenes              | mg/kg | 0.00099 | 0.0010   | EPA 8260D            |
| Methylene chloride       | mg/kg | 0.00062 | 0.0022   | EPA 8260D            |
| Methyl-t-butyl ether     | mg/kg | 0.00044 | 0.00070J | EPA 8260D            |
| o-Xylene                 | mg/kg | 0.00058 | 0.0014   | EPA 8260D            |
| Toluene                  | mg/kg | 0.00054 | 0.0049   | EPA 8260D            |
| trans-1,2-Dichloroethene | mg/kg | 0.00099 | 0.0033   | EPA 8260D            |
| Trichloroethene          | mg/kg | 0.00067 | 0.0012J  | EPA 8260D            |
| Vinyl chloride           | mg/kg | 0.0010  | 0.14     | EPA 8260D            |
| Xylenes (Total)          | mg/kg | 0.00058 | 0.0024   | EPA 8260D            |

Lab#: AD19539-010

Sample ID: HSI-SB-03 (3.5-4)

| Amalista                  | 11    | DI (11D) | D = = = 14 | Analytical<br>Method |
|---------------------------|-------|----------|------------|----------------------|
| Analyte                   | Units | RL/MDL   | Result     | Metriod              |
| 1,1,2,2-Tetrachloroethane | mg/kg | 0.034    | 0.43       | EPA 8260D            |
| 1,1,2-Trichloroethane     | mg/kg | 0.024    | 0.025J     | EPA 8260D            |
| 1,2-Dichloroethane        | mg/kg | 0.048    | 0.39       | EPA 8260D            |
| Chlorobenzene             | mg/kg | 0.025    | 0.057J     | EPA 8260D            |
| cis-1,2-Dichloroethene    | mg/kg | 0.048    | 0.18       | EPA 8260D            |
| Tetrachloroethene         | mg/kg | 0.027    | 0.17       | EPA 8260D            |
| Toluene                   | mg/kg | 0.025    | 0.042J     | EPA 8260D            |
| Trichloroethene           | mg/kg | 0.026    | 2.3        | EPA 8260D            |

Lab#: AD19539-011

Sample ID: HSI-SB-03 (10-10.5)

| Analyte       |       |        |        | Analytical |
|---------------|-------|--------|--------|------------|
|               | Units | RL/MDL | Result | Method     |
| Aluminum      | mg/kg | 20     | 570    | EPA 6010D  |
| Chromium      | mg/kg | 0.80   | 1.0J   | EPA 6010D  |
| Copper        | mg/kg | 0.73   | 1.0J   | EPA 6010D  |
| fron          | mg/kg | 16     | 1400   | EPA 6010D  |
| Lead          | mg/kg | 0.73   | 1.2J   | EPA 6010D  |
| Manganese     | mg/kg | 0.76   | 1.4J   | EPA 6010D  |
| Arsenic       | mg/kg | 0.021  | 0.30   | EPA 6020B  |
| Beryllium     | mg/kg | 0.019  | 0.040J | EPA 6020B  |
| Selenium      | mg/kg | 0.076  | 1.1J   | EPA 6020B  |
| Silver        | mg/kg | 0.031  | 0.077J | EPA 6020B  |
| Vanadium      | mg/kg | 0.013  | 7.5    | EPA 6020B  |
| Chlorobenzene | mg/kg | 0.026  | 0.33   | EPA 8260D  |
| Toluene       | mg/kg | 0.025  | 0.37   | EPA 8260D  |

HC Project #: 0093024

## **HC Executive Summary**

Client: Chesapeake Geosciences Inc

**Project:** Hot Spot Investigation

Lab#: AD19539-012

Sample ID: HSI-SB-03 (11-11.5)

| Analyte                | Units | RL/MDL | Result | Analytical<br>Method |
|------------------------|-------|--------|--------|----------------------|
| Chlorobenzene          | mg/kg | 0.029  | 0.19   | EPA 8260D            |
| cis-1,2-Dichloroethene | mg/kg | 0.055  | 0.079J | EPA 8260D            |
| Toluene                | mg/kg | 0.028  | 0.082J | EPA 8260D            |
| Trichloroethene        | mg/kg | 0.030  | 0.032J | EPA 8260D            |

Lab#: AD19539-013 Sample ID: HSI-SB-01 (2.5-3)

| Analyte                    | Units | RL/MDL | Result | Analytical<br>Method |
|----------------------------|-------|--------|--------|----------------------|
| Aluminum                   | mg/kg | 19     | 4200   | EPA 6010D            |
| Barium                     | mg/kg | 0.78   | 9.1J   | EPA 6010D            |
| Chromium                   | mg/kg | 0.77   | 20     | EPA 6010D            |
| Copper                     | mg/kg | 0.71   | 7.0    | EPA 6010D            |
| Iron                       | mg/kg | 15     | 7600   | EPA 6010D            |
| Lead                       | mg/kg | 0.71   | 9.8    | EPA 6010D            |
| Magnesium                  | mg/kg | 22     | 350J   | EPA 6010D            |
| Manganese                  | mg/kg | 0.74   | 13     | EPA 6010D            |
| Nickel                     | mg/kg | 1.3    | 3.5J   | EPA 6010D            |
| Potassium                  | mg/kg | 110    | 160J   | EPA 6010D            |
| Zinc                       | mg/kg | 1.7    | 9.0J   | EPA 6010D            |
| Antimony                   | mg/kg | 0.026  | 0.045J | EPA 6020B            |
| Arsenic                    | mg/kg | 0.020  | 1.8    | EPA 6020B            |
| Beryllium                  | mg/kg | 0.018  | 0.059J | EPA 6020B            |
| Cadmium                    | mg/kg | 0.016  | 0.40J  | EPA 6020B            |
| Selenium                   | mg/kg | 0.073  | 0.80J  | EPA 6020B            |
| Silver                     | mg/kg | 0.030  | 0.054J | EPA 6020B            |
| Vanadium                   | mg/kg | 0.012  | 14     | EPA 6020B            |
| 1,1,2,2-Tetrachloroethane  | mg/kg | 0.033  | 2.7    | EPA 8260D            |
| 1,1,2-Trichloroethane      | mg/kg | 0.023  | 0.031J | EPA 8260D            |
| 1,2-Dichloroethane         | mg/kg | 0.047  | 1.8    | EPA 8260D            |
| 4-Methyl-2-pentanone       | mg/kg | 0.035  | 0.59   | EPA 8260D            |
| Benzene                    | mg/kg | 0.022  | 0.034J | EPA 8260D            |
| Chlorobenzene              | mg/kg | 0.024  | 1.5    | EPA 8260D            |
| cis-1,2-Dichloroethene     | mg/kg | 0.046  | 0.35   | EPA 8260D            |
| m&p-Xylenes                | mg/kg | 0.062  | 0.11   | EPA 8260D            |
| Methylene chloride         | mg/kg | 0.021  | 2.3    | EPA 8260D            |
| Tetrachloroethene          | mg/kg | 0.026  | 0.21   | EPA 8260D            |
| Toluene                    | mg/kg | 0.024  | 0.75   | EPA 8260D            |
| rans-1,2-Dichloroethene    | mg/kg | 0.023  | 0.088  | EPA 8260D            |
| Trichloroethene            | mg/kg | 0.025  | 4.4    | EPA 8260D            |
| Kylenes (Total)            | mg/kg | 0.050  | 0.11   | EPA 8260D            |
| 2-Chlorophenol             | mg/kg | 0.013  | 0.35   | EPA 8270E            |
| 2-Methylphenol             | mg/kg | 0.011  | 0.013  | EPA 8270E            |
| pis(2-Ethylhexyl)phthalate | mg/kg | 0.034  | 0.25   | EPA 8270E            |
| Di-n-butylphthalate        | mg/kg | 0.044  | 0.25   | EPA 8270E            |
| Naphthalene                | mg/kg | 0.011  | 0.063  | EPA 8270E            |

Client: Chesapeake Geosciences Inc

HC Project #: 0093024

**Project:** Hot Spot Investigation

Lab#: AD19539-014

Sample ID: HSI-SB-01 (6-6.5)

| Analyte                    | Units | RL/MDL | Result | Analytica<br>Method |
|----------------------------|-------|--------|--------|---------------------|
| Aluminum                   | mg/kg | 20     | 4200   | EPA 60100           |
| Barium                     | mg/kg | 0.81   | 75     | EPA 6010E           |
| Calcium                    | mg/kg | 120    | 290J   | EPA 6010E           |
| Chromium                   | mg/kg | 0.81   | 60     | EPA 6010D           |
| Cobalt                     | mg/kg | 0.86   | 1.3J   | EPA 6010D           |
| Copper                     | mg/kg | 0.74   | 12     | EPA 6010D           |
| Iron                       | mg/kg | 16     | 8200   | EPA 6010E           |
| Lead                       | mg/kg | 0.74   | 160    | EPA 6010E           |
| Magnesium                  | mg/kg | 23     | 420J   | EPA 6010D           |
| Manganese                  | mg/kg | 0.77   | 27     | EPA 6010D           |
| Nickel                     | mg/kg | 1.3    | 8.1    | EPA 6010E           |
| Potassium                  | mg/kg | 120    | 160J   | EPA 6010E           |
| Zinc                       | mg/kg | 1.8    | 33     | EPA 6010E           |
| Antimony                   | mg/kg | 0.027  | 0.84J  | EPA 6020E           |
| Arsenic                    | mg/kg | 0.021  | 2.3    | EPA 6020E           |
| Beryllium                  | mg/kg | 0.019  | 0.20J  | EPA 6020E           |
| Cadmium                    | mg/kg | 0.017  | 11     | EPA 6020E           |
| Selenium                   | mg/kg | 0.077  | 3.3    | EPA 6020E           |
| Silver                     | mg/kg | 0.031  | 0.062J | EPA 6020E           |
| Vanadium                   | mg/kg | 0.013  | 18     | EPA 6020E           |
| Mercury                    | mg/kg | 0.015  | 0.063J | EPA 7471E           |
| 1,1,2,2-Tetrachloroethane  | mg/kg | 0.66   | 58     | EPA 82600           |
| 1,2-Dichloroethane         | mg/kg | 0.94   | 19     | EPA 8260D           |
| 4-Methyl-2-pentanone       | mg/kg | 0.72   | 14     | EPA 8260E           |
| Benzene                    | mg/kg | 0.44   | 2.4    | EPA 82600           |
| Chlorobenzene              | mg/kg | 0.49   | 320    | EPA 82600           |
| cis-1,2-Dichloroethene     | mg/kg | 0.94   | 9.9    | EPA 82600           |
| Ethylbenzene               | mg/kg | 0.69   | 12     | EPA 82600           |
| Isopropylbenzene           | mg/kg | 0.72   | 1.2J   | EPA 82600           |
| m&p-Xylenes                | mg/kg | 1.3    | 57     | EPA 82600           |
| Methylcyclohexane          | mg/kg | 0.90   | 1.8    | EPA 82600           |
| Methylene chloride         | mg/kg | 0.43   | 49     | EPA 82600           |
| o-Xylene                   | mg/kg | 1.0    | 13     | EPA 82600           |
| Tetrachloroethene          | mg/kg | 0.53   | 29     | EPA 82600           |
| Toluene                    | mg/kg | 0.48   | 570    | EPA 82600           |
| trans-1,2-Dichloroethene   | mg/kg | 0.46   | 3.4    | EPA 82600           |
| Trichloroethene            | mg/kg | 0.51   | 460    | EPA 82600           |
| Xylenes (Total)            | mg/kg | 1.0    | 70     | EPA 82600           |
| 2-Chlorophenol             | mg/kg | 2.6    | 13     | EPA 8270E           |
| bis(2-Ethylhexyl)phthalate | mg/kg | 7.1    | 50     | EPA 8270E           |
| Di-n-butylphthalate        | mg/kg | 9.2    | 720    | EPA 8270E           |
| Naphthalene                | mg/kg | 2.3    | 16     | EPA 8270E           |

Client: Chesapeake Geosciences Inc

HC Project #: 0093024

Project: Hot Spot Investigation

Lab#: AD19539-015 Sample ID: HSI-SB-01 (10-10.5)

| Analyte                   | Units | RL/MDL  | Result   | Analytical<br>Method |
|---------------------------|-------|---------|----------|----------------------|
| 1,1,2,2-Tetrachloroethane | mg/kg | 0.00034 | 0.0011J  | EPA 8260D            |
| 1,1-Dichloroethane        | mg/kg | 0.00065 | 0.00097J | EPA 8260D            |
| 1,1-Dichloroethene        | mg/kg | 0.00086 | 0.0016   | EPA 8260D            |
| 1,2-Dichloroethane        | mg/kg | 0.00031 | 0.0073   | EPA 8260D            |
| 4-Methyl-2-pentanone      | mg/kg | 0.00044 | 0.0040   | EPA 8260D            |
| Acetone                   | mg/kg | 0.0051  | 0.0080   | EPA 8260D            |
| Benzene                   | mg/kg | 0.00055 | 0.0086   | EPA 8260D            |
| Chlorobenzene             | mg/kg | 0.00047 | 0.18     | EPA 8260D            |
| cis-1,2-Dichloroethene    | mg/kg | 0.00061 | 0.052    | EPA 8260D            |
| Ethylbenzene              | mg/kg | 0.00052 | 0.0028   | EPA 8260D            |
| m&p-Xylenes               | mg/kg | 0.00090 | 0.0024   | EPA 8260D            |
| Methylcyclohexane         | mg/kg | 0.00068 | 0.00093J | EPA 8260D            |
| Methylene chloride        | mg/kg | 0.00056 | 0.0031   | EPA 8260D            |
| o-Xylene                  | mg/kg | 0.00053 | 0.0019   | EPA 8260D            |
| Toluene                   | mg/kg | 0.00050 | 0.0094   | EPA 8260D            |
| trans-1,2-Dichloroethene  | mg/kg | 0.00090 | 0.0027   | EPA 8260D            |
| Trichloroethene           | mg/kg | 0.00062 | 0.030    | EPA 8260D            |
| Vinyl chloride            | mg/kg | 0.00092 | 0.084    | EPA 8260D            |
| Xylenes (Total)           | mg/kg | 0.00053 | 0.0043   | EPA 8260D            |

Lab#: AD19539-016 Sample ID: HSI-SB-01 (14.5-15)

| -                         |       |         |          | Analytical |
|---------------------------|-------|---------|----------|------------|
| Analyte                   | Units | RL/MDL  | Result   | Method     |
| 1,1,2,2-Tetrachloroethane | mg/kg | 0.00040 | 0.0024   | EPA 8260D  |
| 1,2-Dichloroethane        | mg/kg | 0.00036 | 0.010    | EPA 8260D  |
| 4-Methyl-2-pentanone      | mg/kg | 0.00051 | 0.00081J | EPA 8260D  |
| Acetone                   | mg/kg | 0.0060  | 0.012    | EPA 8260D  |
| Benzene                   | mg/kg | 0.00065 | 0.0030   | EPA 8260D  |
| Chlorobenzene             | mg/kg | 0.00055 | 0.065    | EPA 8260D  |
| cis-1,2-Dichloroethene    | mg/kg | 0.00072 | 0.014    | EPA 8260D  |
| Ethylbenzene              | mg/kg | 0.00061 | 0.00070J | EPA 8260D  |
| m&p-Xylenes               | mg/kg | 0.0011  | 0.0013   | EPA 8260D  |
| Methylene chloride        | mg/kg | 0.00067 | 0.022    | EPA 8260D  |
| Methyl-t-butyl ether      | mg/kg | 0.00048 | 0.0012   | EPA 8260D  |
| Toluene                   | mg/kg | 0.00059 | 0.035    | EPA 8260D  |
| trans-1,2-Dichloroethene  | mg/kg | 0.0011  | 0.0027   | EPA 8260D  |
| Trichloroethene           | mg/kg | 0.00073 | 0.040    | EPA 8260D  |
| Vinyl chloride            | mg/kg | 0.0011  | 0.0075   | EPA 8260D  |
| Xylenes (Total)           | mg/kg | 0.00063 | 0.0013   | EPA 8260D  |

Client: Chesapeake Geosciences Inc

HC Project #: 0093024

**Project:** Hot Spot Investigation

Lab#: AD19539-017

Sample ID: HSI-SB-D1

| Analyte                    | Units | RL/MDL | Result | Analytical<br>Method |
|----------------------------|-------|--------|--------|----------------------|
| Aluminum                   | mg/kg | 20     | 5000   | EPA 6010D            |
| Barium                     | mg/kg | 0.80   | 37     | EPA 6010D            |
| Calcium                    | mg/kg | 120    | 1300   | EPA 6010D            |
| Chromium                   | mg/kg | 0.80   | 49     | EPA 6010D            |
| Cobalt                     | mg/kg | 0.85   | 1.4J   | EPA 6010D            |
| Copper                     | mg/kg | 0.73   | 12     | EPA 6010D            |
| Iron                       | mg/kg | 16     | 9700   | EPA 6010D            |
| Lead                       | mg/kg | 0.73   | 140    | EPA 6010D            |
| Magnesium                  | mg/kg | 23     | 440J   | EPA 6010D            |
| Manganese                  | mg/kg | 0.76   | 27     | EPA 6010D            |
| Nickel                     | mg/kg | 1.3    | 9.0    | EPA 6010D            |
| Potassium                  | mg/kg | 120    | 190J   | EPA 6010D            |
| Zinc                       | mg/kg | 1.8    | 31     | EPA 6010D            |
| Antimony                   | mg/kg | 0.027  | 1.3    | EPA 6020B            |
| Arsenic                    | mg/kg | 0.021  | 2.3    | EPA 6020B            |
| Beryllium                  | mg/kg | 0.019  | 0.17J  | EPA 6020B            |
| Cadmium                    | mg/kg | 0.017  | 6.2    | EPA 6020B            |
| Selenium                   | mg/kg | 0.076  | 2.8    | EPA 6020B            |
| Silver                     | mg/kg | 0.031  | 0.064J | EPA 6020B            |
| √anadium                   | mg/kg | 0.013  | 19     | EPA 6020B            |
| Mercury                    | mg/kg | 0.015  | 0.14   | EPA 7471B            |
| 1,1,2,2-Tetrachloroethane  | mg/kg | 3.5    | 200    | EPA 8260D            |
| 1,2-Dichloroethane         | mg/kg | 5.0    | 74     | EPA 8260D            |
| 4-Methyl-2-pentanone       | mg/kg | 3.8    | 76     | EPA 8260D            |
| Benzene                    | mg/kg | 2.3    | 9.7    | EPA 8260D            |
| Chlorobenzene              | mg/kg | 2.6    | 1200   | EPA 8260D            |
| cis-1,2-Dichloroethene     | mg/kg | 5.0    | 33     | EPA 8260D            |
| Ethylbenzene               | mg/kg | 3.7    | 44     | EPA 8260D            |
| sopropylbenzene            | mg/kg | 3.9    | 5.0J   | EPA 8260D            |
| m&p-Xylenes                | mg/kg | 6.7    | 200    | EPA 8260D            |
| Methylene chloride         | mg/kg | 2.3    | 160    | EPA 8260D            |
| o-Xylene                   | mg/kg | 5.4    | 46     | EPA 8260D            |
| Tetrachloroethene          | mg/kg | 2.8    | 95     | EPA 8260D            |
| Toluene                    | mg/kg | 2.6    | 2200   | EPA 8260D            |
| rans-1,2-Dichloroethene    | mg/kg | 2.4    | 12     | EPA 8260D            |
| richloroethene             | mg/kg | 2.7    | 1700   | EPA 8260D            |
| (ylenes (Total)            | mg/kg | 5.4    | 250    | EPA 8260D            |
| 2-Chlorophenol             | mg/kg | 5.2    | 24     | EPA 8270E            |
| ois(2-Ethylhexyl)phthalate | mg/kg | 14     | 58     | EPA 8270E            |
| Di-n-butylphthalate        | mg/kg | 18     | 1200   | EPA 8270E            |
| Naphthalene                | mg/kg | 4.6    | 26     | EPA 8270E            |

## **HC Report of Analysis**

Client: Chesapeake Geosciences Inc HC Project #: 0093024

**Project:** Hot Spot Investigation

Sample ID: HSI-TB-01

Lab#: AD19539-001 Matrix: Aqueous Collection Date: 9/28/2020 Receipt Date: 9/30/2020

#### Volatile Organics (no search) 8260

| Analyte                               | DF                                                | Units | MDL  | RL   | Result |
|---------------------------------------|---------------------------------------------------|-------|------|------|--------|
| 1,1,1-Trichloroethane                 | 1                                                 | ug/l  | 0.36 | 1.0  | ND     |
| 1,1,2,2-Tetrachloroethane             | 1                                                 | ug/l  | 0.45 | 1.0  | ND     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1                                                 | ug/l  | 0.73 | 1.0  | ND     |
| 1,1,2-Trichloroethane                 | 1                                                 | ug/l  | 0.32 | 1.0  | ND     |
| 1,1-Dichloroethane                    | 1                                                 | ug/l  | 0.43 | 1.0  | ND     |
| 1,1-Dichloroethene                    | 1                                                 | ug/i  | 0.53 | 1.0  | ND     |
| 1,2,3-Trichlorobenzene                | 1                                                 | ug/l  | 0.79 | 1.0  | ND     |
| 1,2,4-Trichlorobenzene                | 1                                                 | ug/l  | 0.73 | 1.0  | ND     |
| 1,2-Dibromo-3-chloropropane           | -··- <del></del> 1                                | ug/l  | 0.83 | 1.0  | ND     |
| 1,2-Dibromoethane                     | 1                                                 | ug/l  | 0.34 | 1.0  | ND     |
| 1,2-Dichlorobenzene                   | 1                                                 | ug/l  | 0.32 | 1.0  | ND     |
| 1,2-Dichloroethane                    | 1                                                 | ug/l  | 0.64 | 0.64 | ND     |
| 1,2-Dichloropropane                   | 1                                                 | ug/l  | 0.30 | 1.0  | ND     |
| 1,3-Dichlorobenzene                   | 1                                                 | ug/l  | 0.38 | 1.0  | ND     |
| 1,4-Dichlorobenzene                   | 1                                                 | ug/l  | 0.37 | 1.0  | ND     |
| 1,4-Dioxane                           | 1                                                 | ug/l  | 39   | 50   | ND     |
| 2-Butanone                            | 1                                                 | ug/l  | 0.75 | 1.0  | ND     |
| 2-Hexanone                            | 1                                                 | ug/l  | 0.60 | 1.0  | ND     |
| 4-Methyl-2-pentanone                  | 1                                                 | ug/l  | 0.49 | 1.0  | ND     |
| Acetone                               | 1                                                 | ug/l  | 4.6  | 5.0  | ND     |
| Benzene                               | 1                                                 | ug/l  | 0.30 | 0.50 | ND ND  |
| Bromochloromethane                    | 1                                                 | ug/l  | 0.79 | 1.0  | ND     |
| Bromodichloromethane                  | 1                                                 | ug/l  | 0.35 | 1.0  | ND     |
| Bromoform                             | 1                                                 | ug/l  | 0.54 | 1.0  | ND     |
| Bromomethane                          | <u>i</u>                                          | ug/l  | 0.50 | 1.0  | ND     |
| Carbon disulfide                      | 1                                                 | ug/l  | 0.42 | 1.0  | ND     |
| Carbon tetrachloride                  | 1                                                 | ug/l  | 0.32 | 1.0  | ND     |
| Chlorobenzene                         | 1                                                 | ug/l  | 0.33 | 1.0  | ND     |
| Chloroethane                          | 1                                                 | ug/i  | 0.58 | 1.0  | ND     |
| Chloroform                            | 1                                                 | ug/l  | 2.0  | 2.0  | ND     |
| Chloromethane                         | 1                                                 | ug/l  | 0.52 | 1.0  | ND     |
| cis-1,2-Dichloroethene                | 1                                                 | ug/l  | 0.64 | 1.0  | ND     |
| cis-1,3-Dichloropropene               | 1                                                 | ug/l  | 0.32 | 1.0  | ND     |
| Cyclohexane                           | 1                                                 | ug/l  | 0.49 | 1.0  | ND     |
| Dibromochloromethane                  | 1                                                 | ug/l  | 0.24 | 1.0  | ND     |
| Dichlorodifluoromethane               | 1                                                 | ug/l  | 0.62 | 1.0  | ND     |
| Ethylbenzene                          | 1                                                 | ug/l  | 0.47 | 1.0  | ND     |
| Isopropylbenzene                      | 1                                                 | ug/l  | 0.49 | 1.0  | ND     |
| m&p-Xylenes                           | 1                                                 | ug/l  | 0.85 | 1.0  | ND     |
| Methyl Acetate                        | 1                                                 | ug/l  | 0.70 | 1.0  | ND     |
| Methylcyclohexane                     | 1                                                 | ug/l  | 0.61 | 1.0  | ND     |
| Methylene chloride                    | 1                                                 | ug/l  | 0.29 | 1.0  | ND     |
| Methyl-t-butyl ether                  | 1                                                 | ug/l  | 0.31 | 0.50 | ND     |
| o-Xylene                              | 1                                                 | ug/l  | 0.68 | 1.0  | ND     |
| Styrene                               | 1                                                 | ug/l  | 0.54 | 1.0  | ND     |
| Tetrachloroethene                     | 1                                                 | ug/l  | 0.36 | 1.0  | ND     |
| Toluene                               | 1                                                 | ug/l  | 0.33 | 1.0  | ND     |
| trans-1,2-Dichloroethene              | 1                                                 | ug/l  | 0.31 | 1.0  | ND     |
| trans-1,3-Dichloropropene             | ·                                                 | ug/l  | 0.31 | 1.0  | ND     |
| Trichloroethene                       | 1                                                 | ug/l  | 0.35 | 1.0  | ND     |
| Trichlorofluoromethane                | 1                                                 | ug/l  | 0.31 | 1.0  | ND     |
| Vinyl chloride                        | 1                                                 | ug/l  | 0.71 | 1.0  | ND     |
| Xylenes (Total)                       | · · · · · <del>· · · · · · · · · · · · · · </del> | ug/l  | 0.68 | 1.0  | ND     |
|                                       | •                                                 | - 5 . |      |      | -      |

Project #: 0093024

Sample ID: HSI-GW-01 Lab#: AD19539-002 Matrix: Aqueous Collection Date: 9/28/2020 Receipt Date: 9/30/2020

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DF | Units        | MDL               | RL         | Result     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------|-------------------|------------|------------|
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5  | ug/l         | 1.8               | 5.0        | ND         |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5  | ug/l         | 2.2               | 5.0        | ND         |
| 1,1,2-Trichloro-1,2,2-trifluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5  | ug/l         | 3.6               | 5.0        | ND         |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5  | ug/l         | 1.6               | 5.0        | ND         |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  | ug/l         | 2.1               | 5.0        | 6.9        |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  | ug/l         | 2.7               | 5.0        | ND         |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5  | ug/l         | 3.9               | 5.0        | ND         |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5  | ug/l         | 3.6               | 5.0        | ND         |
| 1,2-Dibromo-3-chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5  | ug/l         | 4.2               | 5.0        | ND         |
| 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5  | ug/l         | 1.7               | 5.0        | ND         |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5  | ug/l         | 1.6               | 5.0        | ND         |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  | ug/l         | 3.2               | 3.2        | 35         |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5  | ug/l         | 1.5               | 5.0        | ND         |
| ,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  | ug/l         | 1.9               | 5.0        | ND         |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5  | ug/l         | 1.8               | 5.0        | ND         |
| ,4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5  | ug/l         | 200               | 250        | ND         |
| -Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5  | ug/l         | 3.7               | 5.0        | ND         |
| 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5  | ug/l         | 3.0               | 5.0        | ND         |
| -Methyl-2-pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5  | ug/l         | 2.4               | 5.0        | ND         |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5  | ug/l         | 23                | 25         | ND         |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5  | ug/l         | 1.5               | 2.5        | 40         |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  | ug/l         | 3.9               | 5.0        | ND         |
| romodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5  | ug/i         | 1.7               | 5.0        | ND         |
| romoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5  | ug/l         | 2.7               | 5.0        | ND         |
| romomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5  | ug/l         | 2.5               | 5.0        | ND         |
| Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5  | ug/l         | 2.1               | 5.0        | ND         |
| arbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5  | ug/l         | 1.6               | 5.0        | ND         |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5  | ug/l         | 1.7               | 5.0        | 510        |
| hioroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5  | ug/l         | 2.9               | 5.0        | ND ND      |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5  | ug/l         | 9.8               | 9.8        | ND         |
| thioromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5  | ug/l         | 2.6               | 5.0        | ND         |
| is-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5  | ug/l         | 3.2               | 5.0        | 360        |
| s-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | ug/i         | 1.6               | 5.0        | ND ND      |
| yclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5  |              | 2.4               | 5.0        | ND         |
| ibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5  | ug/l         | 1.2               | 5.0        | ND         |
| icromocnioromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5  | ug/l<br>ug/l | 1.2<br>3.1        | 5.0<br>5.0 | ND<br>ND   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5  | <del>-</del> |                   | 5.0        |            |
| thylbenzene<br>sopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | ug/l         | <b>2.3</b><br>2.5 | 5.0        | 7.6J<br>ND |
| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5  | ug/l         |                   |            |            |
| l&p-Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5  | ug/l         | 4.2               | 5.0        | 6.6        |
| ethyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5  | ug/l         | 3.5               | 5.0        | 11B        |
| lethylcyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5  | ug/l         | 3.1               | 5.0        | ND         |
| lethylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  | ug/l         | 1.5               | 5.0        | ND         |
| ethyl-t-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5  | ug/l         | 1.6               | 2.5        | 18         |
| -Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5  | ug/l         | 3.4               | 5.0        | 3.6J       |
| tyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5  | ug/l         | 2.7               | 5.0        | ND         |
| etrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5  | ug/l         | 1.8               | 5.0        | ND         |
| oluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5  | ug/l         | 1.6               | 5.0        | 2.1J       |
| rans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5  | ug/l         | 1.5               | 5.0        | 91         |
| rans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5  | ug/l         | 1.5               | 5.0        | ND         |
| richloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5  | ug/l         | 1.7               | 5.0        | 10         |
| Colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la co | 5  | ug/l         | 1.5               | 5.0        | ND         |
| richlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •  | •            | 3.5               | 5.0        | 65         |

Sample ID: HSI-GW-02 Lab#: AD19539-003 Collection Date: 9/28/2020 Receipt Date: 9/30/2020

Matrix: Aqueous

| Analyte                               | DF      | Units | MDL        | RL         | Result |
|---------------------------------------|---------|-------|------------|------------|--------|
| 1,1,1-Trichloroethane                 | 5       | ug/l  | 1.8        | 5.0        | ND     |
| 1,1,2,2-Tetrachloroethane             | 5       | ug/l  | 2.2        | 5.0        | 7.5    |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 5       | ug/l  | 3.6        | 5.0        | ND     |
| 1,1,2-Trichloroethane                 | 5       | ug/l  | 1.6        | 5.0        | ND     |
| 1,1-Dichloroethane                    | 5       | ug/l  | 2.1        | 5.0        | 3.6J   |
| 1,1-Dichloroethene                    | 5       | ug/l  | 2.7        | 5.0        | ND     |
| 1,2,3-Trichlorobenzene                | 5       | ug/l  | 3.9        | 5.0        | ND     |
| 1,2,4-Trichlorobenzene                | 5       | ug/l  | 3.6        | 5.0        | ND     |
| 1,2-Dibromo-3-chloropropane           | 5       | ug/l  | 4.2        | 5.0        | ND     |
| 1,2-Dibromoethane                     | 5       | ug/l  | 1.7        | 5.0        | ND     |
| 1,2-Dichlorobenzene                   | 5       | ug/l  | 1.6        | 5.0        | ND     |
| 1,2-Dichloroethane                    | 5       | ug/t  | 3.2        | 3.2        | 24     |
| 1,2-Dichloropropane                   | 5       | ug/l  | 1.5        | 5.0        | ND     |
| 1,3-Dichlorobenzene                   | 5       | ug/l  | 1.9        | 5.0        | ND     |
| 1,4-Dichlorobenzene                   | 5       | ug/l  | 1.8        | 5.0        | ND     |
| 1,4-Dioxane                           | 5       | ug/l  | 200        | 250        | ND     |
| 2-Butanone                            | 5       | ug/l  | 3.7        | 5.0        | ND     |
| 2-Hexanone                            | 5       | ug/l  | 3.0        | 5.0        | ND     |
| 4-Methyl-2-pentanone                  | 5       | ug/l  | 2.4        | 5.0        | ND     |
| Acetone                               | 5       | ug/l  | 23         | 25         | ND     |
| Benzene                               | 5       | ug/l  | 1.5        | 2.5        | 36     |
| Bromochloromethane                    | 5       | ug/i  | 3.9        | 5.0        | ND     |
| Bromodichloromethane                  | 5       | ug/l  | 1.7        | 5.0        | ND     |
| Bromoform                             | 5       | ug/l  | 2.7        | 5.0        | ND     |
| Bromomethane                          | 5       | ug/l  | 2.5        | 5.0        | ND     |
| Carbon disulfide                      | 5       | ug/l  | 2.1        | 5.0        | ND     |
| Carbon tetrachloride                  | 5       | ug/l  | 1.6        | 5.0        | ND     |
| Chlorobenzene                         | 5       | ug/l  | 1.7        | 5.0        | 550    |
| Chloroethane                          | 5       | ug/l  | 2.9        | 5.0        | ND ND  |
| Chloroform                            | 5       | ug/l  | 9.8        | 9.8        | ND     |
| Chloromethane                         | 5       | ug/l  | 2.6        | 5.0        | ND     |
| cis-1,2-Dichloroethene                | 5       | ug/l  | 3.2        | 5.0        | 97     |
| cis-1,3-Dichloropropene               | 5       | ug/l  | 1.6        | 5.0        | ND ND  |
| Cyclohexane                           | 5       | ug/l  | 2.4        | 5.0        | ND     |
| Dibromochloromethane                  | 5       | ug/l  | 1.2        | 5.0        | ND     |
| Dichlorodifluoromethane               | 5       | =     | 3.1        | 5.0        | ND     |
| Ethylbenzene                          | 5       | ug/l  | 2.3        | 5.0        | 17     |
| Isopropylbenzene                      | 5       | ug/l  |            | 5.0        |        |
| • ••                                  |         | ug/l  | 2.5<br>4.2 | 5.0        | 2.9J   |
| m&p-Xylenes                           | 5       | ug/l  |            | 5.0        | 39     |
| Methyl Acetate                        | 5       | ug/l  | 3.5        |            | 13B    |
| Methylcyclohexane                     | 5       | ug/l  | 3.1        | 5.0        | ND     |
| Methylene chloride                    | 5       | ug/i  | 1.5        | 5.0        | ND     |
| Methyl-t-butyl ether                  | 5       | ug/l  | 1.6        | 2.5<br>5.0 | 4.1    |
| o-Xylene                              | <u></u> | ug/l  | 3.4        |            | 13     |
| Styrene                               | 5       | ug/l  | 2.7        | 5.0        | ND     |
| Tetrachloroethene                     | 5       | ug/l  | 1.8        | 5.0        | ND     |
| Toluene                               | 5       | ug/i  | 1.6        | 5.0        | 120    |
| trans-1,2-Dichloroethene              | 5       | ug/l  | 1.5        | 5.0        | 15     |
| trans-1,3-Dichloropropene             | 5       | ug/l  | 1.5        | 5.0        | ND     |
| Trichloroethene                       | 5       | ug/l  | 1.7        | 5.0        | 16     |
| Trichlorofluoromethane                | 5       | ug/l  | 1.5        | 5.0        | ND     |
| Vinyl chloride                        | 5       | ug/l  | 3.5        | 5.0        | 45     |

Sample ID: HSI-GW-03 Lab#: AD19539-004

Matrix: Aqueous

Collection Date: 9/28/2020 Receipt Date: 9/30/2020

| Analyte                                      | DF     | Units        | MDL        | RL         | Result    |
|----------------------------------------------|--------|--------------|------------|------------|-----------|
| 1,1,1-Trichloroethane                        | 5      | ug/l         | 1.8        | 5.0        | ND        |
| 1,1,2,2-Tetrachloroethane                    | 5      | ug/l         | 2.2        | 5.0        | 2.4J      |
| 1,1,2-Trichloro-1,2,2-trifluoroethane        | 5      | ug/l         | 3.6        | 5.0        | ND        |
| 1,1,2-Trichloroethane                        | 5      | ug/l         | 1.6        | 5.0        | ND        |
| 1,1-Dichloroethane                           | 5      | ug/l         | 2.1        | 5.0        | 2.7J      |
| 1,1-Dichloroethene                           | 5      | ug/l         | 2.7        | 5.0        | ND        |
| 1,2,3-Trichlorobenzene                       | 5      | ug/l         | 3.9        | 5.0        | ND        |
| 1,2,4-Trichlorobenzene                       | 5      | ug/l         | 3.6        | 5.0        | ND        |
| 1,2-Dibromo-3-chloropropane                  | 5      | ug/l         | 4.2        | 5.0        | ND        |
| 1,2-Dibromoethane                            | 5      | ug/l         | 1.7        | 5.0        | ND        |
| 1,2-Dichlorobenzene                          | 5      | ug/l         | 1.6        | 5.0        | ND        |
| 1,2-Dichloroethane                           | 5      | ug/l         | 3.2        | 3.2        | ND        |
| 1,2-Dichloropropane                          | 5      | ug/l         | 1.5        | 5.0        | ND        |
| 1,3-Dichlorobenzene                          | 5      | ug/l         | 1.9        | 5.0        | ND        |
| 1,4-Dichlorobenzene                          | 5      | ug/l         | 1.8        | 5.0        | ND        |
| 1,4-Dioxane                                  | 5      | ug/l         | 200        | 250        | ND        |
| 2-Butanone                                   | 5      | ug/l         | 3.7        | 5.0        | ND        |
| 2-Hexanone                                   | 5      | ug/l         | 3.0        | 5.0        | ND        |
| 4-Methyl-2-pentanone                         | 5      | ug/l         | 2.4        | 5.0        | ND        |
| Acetone                                      | 5      | ug/l         | 23         | 25         | ND        |
| Benzene                                      | 5      | ug/l         | 1.5        | 2.5        | 13        |
| Bromochloromethane                           | 5      | ug/l         | 3.9        | 5.0        | ND        |
| Bromodichloromethane                         | 5      | ug/l         | 1.7        | 5.0        | ND        |
| Bromoform                                    | 5      | ug/l         | 2.7        | 5.0        | ND        |
| Bromomethane                                 | 5      | ug/l         | 2.5        | 5.0        | ND ND     |
| Carbon disulfide                             | 5      | ug/l         | 2.1        | 5.0        | ND        |
| Carbon distinide  Carbon tetrachloride       | 5      | ug/l         | 1.6        | 5.0        | ND        |
| Chlorobenzene                                | 5      |              | 1.7        | 5.0        | 320       |
| Chloroethane                                 | 5      | ug/l<br>ug/l | 2.9        | 5.0        | 4.5J      |
| Chloroform                                   | 5      | •            | 9.8        | 9.8        | ND        |
| Chloromethane                                | 5      | ug/l<br>ug/l | 2.6        | 5.0        | ND        |
|                                              | 5      | -            | 3.2        | 5.0        | 4.7J      |
| cis-1,2-Dichloroethene                       | 5      | ug/l         | 1.6        | 5.0        | ND ND     |
| cis-1,3-Dichloropropene                      | 5      | ug/l         | 2.4        | 5.0        | ND<br>ND  |
| Cyclohexane                                  |        | ug/l         |            |            | ND        |
| Dibromochloromethane Dichlorodifluoromethane | 5<br>5 | ug/l         | 1.2<br>3.1 | 5.0<br>5.0 | ND<br>ND  |
|                                              |        | ug/l         |            |            | ND ND     |
| Ethylbenzene                                 | 5      | ug/l         | 2.3        | 5.0        | ND<br>ND  |
| Isopropylbenzene                             | 5      | ug/l         | 2.5        | 5.0        |           |
| m&p-Xylenes                                  | 5      | ug/l         | 4.2        | 5.0        | ND<br>450 |
| Methyl Acetate                               | 5      | ug/l         | 3.5        | 5.0        | 158       |
| Methylcyclohexane                            | 5      | ug/l         | 3.1        | 5.0        | ND        |
| Methylene chloride                           | 5      | ug/l         | 1.5        | 5.0        | ND        |
| Methyl-t-butyl ether                         | 5      | ug/l         | 1.6        | 2.5        | 1.9J      |
| o-Xylene                                     |        | ug/l         | 3.4        | 5.0        | ND ND     |
| Styrene                                      | 5      | ug/l         | 2.7        | 5.0        | ND        |
| Tetrachloroethene                            | 5      | ug/l         | 1.8        | 5.0        | ND        |
| Toluene                                      | 5      | ug/l         | 1.6        | 5.0        | ND        |
| trans-1,2-Dichloroethene                     | 5      | ug/l         | 1.5        | 5.0        | 1.9J      |
| trans-1,3-Dichloropropene                    | 5      | ug/l         | 1.5        | 5.0        | ND        |
| Trichloroethene                              | 5      | ug/l         | 1.7        | 5.0        | ND        |
| Trichlorofluoromethane                       | 5      | ug/l         | 1.5        | 5.0        | ND        |
| Vinyl chloride                               | 5      | ug/l         | 3.5        | 5.0        | 9.0       |

Sample ID: HSI-GW-04 Lab#: AD19539-005 Matrix: Aqueous Collection Date: 9/28/2020 Receipt Date: 9/30/2020

| Analyte                                   | DF       | Units        | MDL        | RL  | Result     |
|-------------------------------------------|----------|--------------|------------|-----|------------|
| 1,1,1-Trichloroethane                     | 5        | ug/l         | 1.8        | 5.0 | ND         |
| 1,1,2,2-Tetrachloroethane                 | 5        | ug/l         | 2.2        | 5.0 | 12         |
| ,1,2-Trichloro-1,2,2-trifluoroethane      | 5        | ug/l         | 3.6        | 5.0 | ND         |
| .1,2-Trichloroethane                      | 5        | ug/l         | 1.6        | 5.0 | ND         |
| I,1-Dichloroethane                        | 5        | ug/l         | 2.1        | 5.0 | 4.5J       |
| 1,1-Dichloroethene                        | 5        | ug/l         | 2.7        | 5.0 | ND         |
| 1,2,3-Trichlorobenzene                    | 5        | ug/l         | 3.9        | 5.0 | ND         |
| 1,2,4-Trichlorobenzene                    | 5        | ug/l         | 3.6        | 5.0 | ND         |
| 1,2-Dibromo-3-chloropropane               | 5        | ug/l         | 4.2        | 5.0 | ND         |
| 1,2-Dibromoethane                         | 5        | ug/l         | 1.7        | 5.0 | ND         |
| 1,2-Dichlorobenzene                       | 5        | ug/l         | 1.6        | 5.0 | ND         |
| 1,2-Dichloroethane                        | 5        | ug/l         | 3.2        | 3.2 | 20         |
| 1,2-Dichloropropane                       | 5        | ug/l         | 1.5        | 5.0 | ND         |
| 1,3-Dichlorobenzene                       | 5        | ug/l         | 1.9        | 5.0 | ND         |
| 1,4-Dichlorobenzene                       | 5        | ug/l         | 1.8        | 5.0 | ND         |
| 1,4-Dioxane                               | 5        | ug/l         | 200        | 250 | ND         |
| 2-Butanone                                | 5        | ug/l         | 3.7        | 5.0 | ND         |
| 2-Hexanone                                | 5        | ug/l         | 3.0        | 5.0 | ND         |
| 4-Methyl-2-pentanone                      | 5        | ug/l         | 2.4        | 5.0 | ND         |
| Acetone                                   | 5        | ug/l         | 23         | 25  | ND         |
| Benzene                                   | 5        | ug/l         | 1.5        | 2.5 | 28         |
| Bromochloromethane                        | 5        | ug/l         | 3.9        | 5.0 | ND         |
| Bromodichloromethane                      | 5        | ug/l         | 1.7        | 5.0 | ND         |
| Bromoform                                 | 5        | ug/l         | 2.7        | 5.0 | ND         |
| Bromomethane                              | 5        | ug/l         | 2.5        | 5.0 | ND         |
| Carbon disulfide                          | 5        | ug/l         | 2.1        | 5.0 | ND         |
| Carbon tetrachloride                      | 5        | ug/l         | 1.6        | 5.0 | ND         |
| Chlorobenzene                             | 5        | ug/l         | 1.7        | 5.0 | 460        |
| Chloroethane                              | 5        | ug/l         | 2.9        | 5.0 | 3.6J       |
| Chloroform                                | 5        | ug/l         | 9.8        | 9.8 | ND         |
| Chloromethane                             | 5        | ug/l         | 2.6        | 5.0 | ND         |
| cis-1,2-Dichloroethene                    | 5        | ug/l         | 3.2        | 5.0 | 120        |
| cis-1,3-Dichloropropene                   | 5        | ug/l         | 1.6        | 5.0 | ND         |
| Cyclohexane                               | 5        | ug/l         | 2.4        | 5.0 | ND         |
| Dibromochloromethane                      | 5        | ug/l         | 1.2        | 5.0 | ND         |
| Dichlorodifluoromethane                   | 5        | ug/l         | 3.1        | 5.0 | ND         |
| Ethylbenzene                              | 5        | ug/l         | 2.3        | 5.0 | ND         |
| Isopropylbenzene                          | 5        | ug/l         | 2.5        | 5.0 | ND         |
| m&p-Xylenes                               | 5        | ug/l         | 4.2        | 5.0 | ND         |
| Methyl Acetate                            | 5        | ug/l         | 3.5        | 5.0 | 14B        |
| Methylcyclohexane                         | 5        | ug/l         | 3.1        | 5.0 | ND         |
| Methylene chloride                        | 5        | ug/l         | 1.5        | 5.0 | 1.9J       |
| Methyl-t-butyl ether                      | 5        | ug/l         | 1.6        | 2.5 | 9.6        |
| o-Xylene                                  | 5        | ug/l         | 3.4        | 5.0 | ND         |
| Styrene                                   |          | ug/l         | 2.7        | 5.0 | ND -       |
| Tetrachloroethene                         | 5        | ug/l         | 1.8        | 5.0 | ND         |
| Toluene                                   | 5<br>5   | •            |            | 5.0 | 4.3J       |
| trans-1,2-Dichloroethene                  | 5        | ug/l<br>ug/l | 1.6<br>1.5 | 5.0 | 4.3J<br>32 |
| trans-1,2-Dichloropropene                 | 5        | ug/l         | 1.5        | 5.0 | ND         |
| Trichloroethene                           | 5<br>5   | -            |            |     |            |
| Trichloroettene<br>Trichlorofluoromethane | <b>5</b> | ug/l         | 1.7        | 5.0 | 26<br>ND   |
|                                           |          | ug/l         | 1.5        | 5.0 | ND         |
| Vinyl chloride                            | 5        | ug/l         | 3.5        | 5.0 | 48         |

Sample ID: HSI-SB-02(3.5-4) Lab#: AD19539-006 Matrix: Soil/Terracore

Collection Date: 9/28/2020

Receipt Date: 9/30/2020

#### % Solids SM2540G

| Analyte                               | DF_  | Units   | RL                                     |                                         | Result |
|---------------------------------------|------|---------|----------------------------------------|-----------------------------------------|--------|
| % Solids                              | 1    | percent |                                        |                                         | 83     |
| platile Organics (no search) 8260     |      |         | ······································ | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        |
| Analyte                               | DF   | Units   | MDL                                    | RL                                      | Result |
| 1,1,1-Trichloroethane                 | 74.5 | mg/kg   | 0.032                                  | 0.090                                   | ND     |
| 1,1,2,2-Tetrachloroethane             | 74.5 | mg/kg   | 0.040                                  | 0.090                                   | ND     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 74.5 | mg/kg   | 0.065                                  | 0.090                                   | ND     |
| 1,1,2-Trichloroethane                 | 74.5 | mg/kg   | 0.029                                  | 0.090                                   | ND     |
| 1,1-Dichloroethane                    | 74.5 | mg/kg   | 0.038                                  | 0.090                                   | ND     |
| 1,1-Dichloroethene                    | 74.5 | mg/kg   | 0.048                                  | 0.090                                   | ND     |
| 1,2,3-Trichlorobenzene                | 74.5 | mg/kg   | 0.071                                  | 0.090                                   | ND     |
| 1,2,4-Trichlorobenzene                | 74.5 | mg/kg   | 0.065                                  | 0.090                                   | ND     |
| 1,2-Dibromo-3-chloropropane           | 74.5 | mg/kg   | 0.075                                  | 0.090                                   | ND     |
| 1,2-Dibromoethane                     | 74.5 | mg/kg   | 0.031                                  | 0.090                                   | ND     |
| 1,2-Dichlorobenzene                   | 74.5 | mg/kg   | 0.029                                  | 0.090                                   | ND     |
| 1,2-Dichloroethane                    | 74.5 | mg/kg   | 0.057                                  | 0.057                                   | ND     |
| 1,2-Dichloropropane                   | 74.5 | mg/kg   | 0.027                                  | 0.090                                   | ND     |
| 1,3-Dichlorobenzene                   | 74.5 | mg/kg   | 0.034                                  | 0.090                                   | ND     |
| 1,4-Dichlorobenzene                   | 74.5 | mg/kg   | 0.033                                  | 0.090                                   | ND     |
| 1,4-Dioxane                           | 74.5 | mg/kg   | 3.5                                    | 4.5                                     | ND     |
| 2-Butanone                            | 74.5 | mg/kg   | 0.067                                  | 0.090                                   | ND     |
| 2-Hexanone                            | 74.5 | mg/kg   | 0.054                                  | 0.090                                   | ND     |
| 4-Methyl-2-pentanone                  | 74.5 | mg/kg   | 0.044                                  | 0.090                                   | ND     |
| Acetone                               | 74.5 | mg/kg   | 0.41                                   | 0.45                                    | ND     |
| Benzene                               | 74.5 | mg/kg   | 0.027                                  | 0.045                                   | ND     |
| Bromochloromethane                    | 74.5 | mg/kg   | 0.071                                  | 0.090                                   | ND     |
| Bromodichloromethane                  | 74.5 | mg/kg   | 0.031                                  | 0.090                                   | ND     |
| Bromoform                             | 74.5 | mg/kg   | 0.049                                  | 0.090                                   | ND     |
| Bromomethane                          | 74.5 | mg/kg   | 0.045                                  | 0.090                                   | ND     |
| Carbon disulfide                      | 74.5 | mg/kg   | 0.038                                  | 0.090                                   | ND     |
| Carbon tetrachloride                  | 74.5 | mg/kg   | 0.029                                  | 0.090                                   | ND     |
| Chlorobenzene                         | 74.5 | mg/kg   | 0.030                                  | 0.090                                   | 9.1    |
| Chloroethane                          | 74.5 | mg/kg   | 0.052                                  | 0.090                                   | ND     |
| Chloroform                            | 74.5 | mg/kg   | 0.18                                   | 0.18                                    | ND     |
| Chloromethane                         | 74.5 | mg/kg   | 0.046                                  | 0.090                                   | ND     |
| cis-1,2-Dichloroethene                | 74.5 | mg/kg   | 0.057                                  | 0.090                                   | ND     |
| cis-1,3-Dichloropropene               | 74.5 | mg/kg   | 0.029                                  | 0.090                                   | ND     |
| Cyclohexane                           | 74.5 | mg/kg   | 0.044                                  | 0.090                                   | ND     |
| Dibromochloromethane                  | 74.5 | mg/kg   | 0.021                                  | 0.090                                   | ND     |
| Dichlorodifluoromethane               | 74.5 | mg/kg   | 0.056                                  | 0.090                                   | ND     |
| Ethylbenzene                          | 74.5 | mg/kg   | 0.042                                  | 0.090                                   | 0.78   |
| Isopropylbenzene                      | 74.5 | mg/kg   | 0.044                                  | 0.090                                   | ND     |
| m&p-Xylenes                           | 74.5 | mg/kg   | 0.076                                  | 0.090                                   | 4.1    |
| Methyl Acetate                        | 74.5 | mg/kg   | 0.063                                  | 0.090                                   | ND .   |
| Methylcyclohexane                     | 74.5 | mg/kg   | 0.055                                  | 0.090                                   | ND     |
| Methylene chloride                    | 74.5 | mg/kg   | 0.026                                  | 0.090                                   | ND     |
| Methyl-t-butyl ether                  | 74.5 | mg/kg   | 0.028                                  | 0.045                                   | ND     |
| o-Xylene                              | 74.5 | mg/kg   | 0.061                                  | 0.090                                   | 1.3    |
| Styrene                               | 74.5 | mg/kg   | 0.049                                  | 0.090                                   | ND     |
| Tetrachloroethene                     | 74.5 | mg/kg   | 0.032                                  | 0.090                                   | ND     |
| Toluene                               | 74.5 | mg/kg   | 0.029                                  | 0.090                                   | 0.31   |
| trans-1,2-Dichloroethene              | 74.5 | mg/kg   | 0.028                                  | 0.090                                   | ND     |
| trans-1,3-Dichloropropene             | 74.5 | mg/kg   | 0.028                                  | 0.090                                   | ND     |
| Trichloroethene                       | 74.5 | mg/kg   | 0.031                                  | 0.090                                   | ND     |
| Trichlorofluoromethane                | 74.5 | mg/kg   | 0.028                                  | 0.090                                   | ND     |
| Vinyl chloride                        | 74.5 | mg/kg   | 0.063                                  | 0.090                                   | ND     |
| Xylenes (Total)                       | 74.5 | mg/kg   | 0.061                                  | 0.090                                   | 5.4    |

Sample ID: HSI-SB-02(10-10.5) Lab#: AD19539-007

Matrix: Soil/Terracore

Collection Date: 9/28/2020 Receipt Date: 9/30/2020

#### % Solids SM2540G

| Analyte                                         | DF            | Units          | RL             |                | Result            |
|-------------------------------------------------|---------------|----------------|----------------|----------------|-------------------|
| % Solids                                        | 1             | percent        |                |                | 80                |
| ercury (Soil/Waste) 7471B                       |               |                |                |                |                   |
| Analyte                                         | DF            | Units          | MDL            | RL             | Result            |
|                                                 |               |                |                |                |                   |
| Mercury                                         | 1             | mg/kg          | 0.016          | 0.10           | ND                |
| emivolatile Organics (no search) 8270           |               |                |                |                |                   |
| Analyte                                         | ÐF            | Units          | MDL.           | RL             | Result            |
| 1,1'-Biphenyl                                   | 1             | mg/kg          | 0.012          | 0.042          | ND                |
| 1,2,4,5-Tetrachlorobenzene                      | 1             | mg/kg          | 0.014          | 0.042          | ND                |
| 1,4-Dioxane                                     | 1             | mg/kg          | 0.021          | 0.021          | ND                |
| 2,3,4,6-Tetrachiorophenol                       | 1             | mg/kg          | 0.016          | 0.042          | ND                |
| 2,4,5-Trichlorophenol                           | 1             | mg/kg          | 0.012          | 0.042          | ND                |
| 2,4,6-Trichlorophenol                           | 1             | mg/kg          | 0.032          | 0.042          | ND                |
| 2,4-Dichlorophenol                              | 1             | mg/kg          | 0.016          | 0.016          | ND                |
| 2,4-Dimethylphenol                              | 1             | mg/kg          | 0.020          | 0.020          | ND                |
| 2,4-Dinitrophenol                               | 1             | mg/kg          | 0.18           | 0.21           | ND                |
| 2,4-Dinitrotoluene                              | 1             | mg/kg          | 0.013          | 0.042          | ND                |
| 2,6-Dinitrotoluene                              | 1             | mg/kg          | 0.021          | 0.042          | ND                |
| 2-Chloronaphthalene                             | 1             | mg/kg          | 0.019          | 0.042          | ND                |
| 2-Chlorophenol                                  | 1             | mg/kg          | 0.014          | 0.042          | ND                |
| 2-Methylnaphthalene                             | 1             | mg/kg          | 0.013          | 0.042          | ND                |
| 2-Methylphenol                                  | 1             | mg/kg          | 0.012          | 0.012          | ND                |
| 2-Nitroaniline                                  | 1             | mg/kg          | 0.020          | 0.042          | ND                |
| 2-Nitrophenol                                   | 1             | mg/kg          | 0.019          | 0.042          | ND                |
| 3&4-Methylphenol                                | 1             | mg/kg          | 0.012          | 0.012          | ND                |
| 3,3'-Dichlorobenzidine                          | 1             | mg/kg          | 0.034          | 0.042          | ND                |
| 3-Nitroaniline                                  | 1             | mg/kg          | 0.016          | 0.042          | ND                |
| 4,6-Dinitro-2-methylphenol                      | 1             | mg/kg          | 0.15           | 0.21           | ND                |
| 4-Bromophenyl-phenylether                       | 1             | mg/kg          | 0.012          | 0.042          | ND                |
| 4-Chloro-3-methylphenol                         | 1             | mg/kg          | 0.010          | 0.042          | ND                |
| 4-Chloroaniline                                 | 1             | mg/kg          | 0.018          | 0.018          | ND                |
| 4-Chlorophenyl-phenylether                      | 1             | mg/kg          | 0.013          | 0.042          | ND                |
| 4-Nitroaniline                                  | 1             | mg/kg          | 0.016          | 0.042          | ND                |
| 4-Nitrophenol                                   | 1             | mg/kg          | 0.032          | 0.042          | ND                |
| Acenaphthene                                    | 1             | mg/kg          | 0.012          | 0.042          | ND                |
| Acenaphthylene                                  | 1             | mg/kg          | 0.012          | 0.042          | ND                |
| Acetophenone                                    | 1             | mg/kg          | 0.015          | 0.042          | ND                |
| Anthracene                                      | 1             | mg/kg          | 0.011          | 0.042          | ND                |
| Atrazine                                        |               | mg/kg          | 0.017          | 0.042          | ND                |
| Benzaldehyde<br>Benzaldehyde                    | 1             | mg/kg          | 0.45           | 0.45           | ND                |
| Benzo(a)anthracene                              | 1             | mg/kg          | 0.014          | 0.042          | ND                |
| Benzo[a]pyrene                                  | 1             | mg/kg          | 0.014          | 0.042          | ND<br>ND          |
| Benzo[b]fluoranthene                            | 1             | mg/kg          | 0.015          | 0.042          | ND                |
| Benzo(g,h,i)perylene                            | 1             | mg/kg          | 0.00029        | 0.042          | ND<br>ND          |
| Benzo(k)fluoranthene                            | 1             | mg/kg<br>ma/ka | 0.015          | 0.042          | ND<br>ND          |
| bis(2-Chloroethoxy)methane                      | 1             | mg/kg          | 0.012          | 0.042          | ND<br>ND          |
| bis(2-Chloroethyl)ether                         | 1             | mg/kg          | 0.010          | 0.010          | ND<br>ND          |
| bis(2-Chloroisopropyl)ether                     |               | mg/kg          | 0.017          | 0.042          | ND<br>0.34        |
| bis(2-Ethylhexyl)phthalate Butylbenzylphthalate | <b>1</b><br>1 | mg/kg<br>mg/kg | 0.037          | 0.042<br>0.042 | <b>0.34</b><br>ND |
| •                                               |               | mg/kg<br>ma/ka | 0.032<br>0.033 | 0.042          | ND<br>ND          |
| Carbazole Carbazole                             | <u>1</u>      | mg/kg          |                |                | ND ND             |
| Carbazole Chrysene                              | 1             | mg/kg<br>ma/ka | 0.013<br>0.014 | 0.042<br>0.042 | ND<br>ND          |
| Crirysene Dibenzo[a,h]anthracene                | 1             | mg/kg<br>mg/kg | 0.014          | 0.042          | ND<br>ND          |
| Dibenzofa,njantnracene<br>Dibenzofuran          |               |                |                |                | ND<br>ND          |
| Diethylphthalate                                | 1             | mg/kg          | 0.011          | 0.011          | ND ND             |
| Dietnylphthalate Dimethylphthalate              | 1             | mg/kg<br>ma/ka | 0.027          | 0.042          | ND<br>ND          |
|                                                 |               | mg/kg          |                | 0.042          |                   |
| Di-n-butylphthalate                             | 1             | mg/kg          | 0.048          |                | 1.6<br>ND         |
| Di-n-octylphthalate                             | 1             | mg/kg          | 0.028          | 0.042          | ND<br>ND          |
| Fluoranthene                                    | 1             | mg/kg          | 0.016          | 0.042          | ND<br>ND          |
| Fluorene                                        | 1             | mg/kg          | 0.011          | 0.042          | ND<br>ND          |
| Hexachlorobenzene                               | 1             | mg/kg          | 0.017          | 0.042          | ND                |
| Hexachlorobutadiene Hexachloropytelepentadiene  | 1             | mg/kg          | 0.019          | 0.042          | ND ND             |
| Hexachlorocyclopentadiene                       | 1             | mg/kg          | 0.14           | 0.14           | ND                |
| Hexachloroethane                                | 1             | mg/kg          | 0.018          | 0.042          | ND                |

| Is<br>N:<br>Ni<br>N:<br>N:<br>Pr<br>Pr<br>Pr | deno[1,2,3-cd]pyrene ophorone aphthalene itrobenzene -Nitroso-di-n-propylamine -Nitrosodiphenylamine | 1<br>1<br>1<br>1 | mg/kg<br>mg/kg        | 0.019              |                  |             |
|----------------------------------------------|------------------------------------------------------------------------------------------------------|------------------|-----------------------|--------------------|------------------|-------------|
| Is<br>N:<br>Ni<br>N:<br>N:<br>Pr<br>Pr<br>Pr | ophorone<br>aphthalene<br>itrobenzene<br>-Nitroso-di-n-propylamine                                   | 1                |                       | 0.019              | 0.042            | AID.        |
| N:<br>Ni<br>N:<br>N:<br>P:<br>P:<br>P:       | aphthalene<br>itrobenzene<br>-Nitroso-di-n-propylamine                                               | 1                | mg/kg                 |                    | 0.042            | ND<br>ND    |
| Ni<br>Ni<br>Ni<br>Pi<br>Pi<br>Pi             | trobenzene<br>-Nitroso-di-n-propylamine                                                              | •                |                       | 0.013              | 0.042            |             |
| N-<br>N-<br>Pi<br>Pi<br>Pi                   | -Nitroso-di-n-propylamine                                                                            | 1                | mg/kg                 | 0.012              | 0.012            | 0.058       |
| N-<br>P€<br>Pt<br>Pt                         |                                                                                                      |                  | mg/kg                 | 0.0017             | 0.042            | ND ND       |
| Pe<br>Ph<br>Ph<br>Py                         | -Nitrosodiphenylamine                                                                                | 1                | mg/kg                 | 0.016              | 0.016            | ND          |
| Pi<br>Pi<br>Pi                               | · •                                                                                                  | 1                | mg/kg                 | 0.14               | 0.14             | ND          |
| Pi                                           | entachlorophenol                                                                                     | 1                | mg/kg                 | 0.20               | 0.21             | ND          |
| · · · <u>P</u> y                             | nenanthrene                                                                                          | 1                | mg/kg                 | 0.013              | 0.042            | ND          |
|                                              | nenol                                                                                                | 1                | mg/kg                 | 0.012              | 0.042            | ND          |
|                                              | <u>/rene</u>                                                                                         | 1                | mg/kg                 | 0.014              | 0.042            | ND          |
| TAL Met                                      | tals 6010D                                                                                           |                  |                       |                    |                  |             |
| A                                            | nalyte                                                                                               | DF               | Units                 | MDL                | RL               | Result      |
| A                                            | luminum                                                                                              | 1                | mg/kg                 | 21                 | 250              | 2200        |
| В:                                           | arium                                                                                                | 1                | mg/kg                 | 0.84               | 12               | 15          |
| C:                                           | alcium                                                                                               | 1                | mg/kg                 | 130                | 1200             | 200J        |
| C                                            | hromium                                                                                              | 1                | mg/kg                 | 0.84               | 6.2              | 21          |
|                                              | obalt                                                                                                | 1                | mg/kg                 | 0.89               | 3.1              | ND          |
|                                              | opper                                                                                                | 1                | mg/kg                 | 0.77               | 6.2              | 8.0         |
|                                              | on                                                                                                   | 1                | mg/kg                 | 16                 | 250              | 5300        |
|                                              | ead                                                                                                  | •                | mg/kg                 | 0.77               | 6.2              | 13          |
|                                              | agnesium                                                                                             | <del>'</del>     | mg/kg                 | 24                 | 620              | 15<br>160J  |
|                                              | agnesium<br>anganese                                                                                 | 1                |                       | 0.80               | 12               | 12J         |
|                                              | anganese<br>ickel                                                                                    |                  | mg/kg<br>ma/ka        |                    |                  |             |
|                                              |                                                                                                      | 1                | mg/kg                 | 1.4                | 6.2              | 2.5J        |
|                                              | otassium                                                                                             | <u>1</u> 1       | mg/kg                 | 120                | 620              | ND ND       |
|                                              | nc                                                                                                   | 1                | mg/kg<br><b>mg/kg</b> | 160<br><b>1.9</b>  | 310<br>12        | ND<br>23    |
|                                              | als 6020B                                                                                            |                  |                       |                    |                  |             |
|                                              | nalyte                                                                                               | DF               | Units                 | MDL                | RL               | Result      |
| _                                            |                                                                                                      | •                |                       |                    |                  |             |
|                                              | ntimony                                                                                              | 1                | mg/kg                 | 0.028              | 1.0              | 0.053J      |
|                                              | rsenic                                                                                               | 1                | mg/kg                 | 0.022              | 0.25             | 1.9         |
|                                              | eryllium                                                                                             | 3                | mg/kg                 | 0.059              | 0.75             | 0.12J       |
| *** III III                                  | admium                                                                                               | 1                | mg/kg                 | 0.018              | 0.50             | 0.24J       |
|                                              | elenium                                                                                              | 1                | mg/kg                 | 0.079              | 2.5              | 3.1         |
|                                              | fver                                                                                                 | 1                | mg/kg                 | 0.033              | 0.25             | 0.12J       |
|                                              | nallium                                                                                              | 3                | mg/kg                 | 0.066              | 1.5              | ND          |
|                                              | anadlum Organics (no search) 8260                                                                    | 1                | mg/kg                 | 0.014              | 0.25             | 32          |
|                                              | nalyte                                                                                               | DF               | Units                 | MDL                | RL               | Result      |
| -                                            | 1,1-Trichloroethane                                                                                  | 0.687            | mg/kg                 | 0.00079            | 0.0017           | ND          |
|                                              | 1,2,2-Tetrachloroethane                                                                              | 0.687            | mg/kg<br>mg/kg        | 0.00079            | 0.0017           | 0.0063      |
|                                              | 1,2-Trichloro-1,2,2-trifluoroethane                                                                  | 0.687            | mg/kg                 | 0.0003             | 0.0017           | ND          |
|                                              | 1,2-Trichloroethane                                                                                  |                  |                       |                    |                  |             |
|                                              |                                                                                                      | 0.687            | mg/kg                 | 0.00039            | 0.0017           | ND 0.0011 I |
|                                              | 1-Dichloroethane                                                                                     | 0.687            | mg/kg                 | 0.00075            | 0.0017           | 0.0011J     |
|                                              | 1-Dichloroethene                                                                                     | 0.687            | mg/kg                 | 0.00099            | 0.0017           | ND<br>ND    |
|                                              | 2,3-Trichlorobenzene                                                                                 | 0.687            | mg/kg                 | 0.00047            | 0.0017           | ND<br>ND    |
|                                              | 2,4-Trichlorobenzene                                                                                 | 0.687            | mg/kg                 | 0.00054            | 0.0017           | ND          |
|                                              | 2-Dibromo-3-chloropropane                                                                            | 0.687            | mg/kg                 | 0.00047            | 0.0017           | ND          |
|                                              | 2-Dibromoethane                                                                                      | 0.687            | mg/kg                 | 0.00042            | 0.00043          | ND          |
| •                                            | 2-Dichlorobenzene                                                                                    | 0.687            | mg/kg                 | 0.00044            | 0.0017           | 0.0016J     |
|                                              | 2-Dichloroethane                                                                                     | 0.687            | mg/kg                 | 0.00035            | 0.0017           | ND          |
|                                              | 2-Dichloropropane                                                                                    | 0.687            | mg/kg                 | 0.00070            | 0.0017           | ND          |
|                                              | 3-Dichlorobenzene                                                                                    | 0.687            | mg/kg                 | 0.00047            | 0.0017           | ND          |
| 1,                                           | 4-Dichlorobenzene                                                                                    | 0.687            | mg/kg                 | 0.00046            | 0.0017           | 0.00075J    |
| 1,                                           | 4-Dioxane                                                                                            | 0.687            | mg/kg                 | 0.042              | 0.086            | ND          |
| 2-                                           | Butanone                                                                                             | 0.687            | mg/kg                 | 0.0010             | 0.0017           | 0.0093      |
| 2-                                           | Hexanone                                                                                             | 0.687            | mg/kg                 | 0.00073            | 0.0017           | ND          |
| 4-                                           | Methyl-2-pentanone                                                                                   | 0.687            | mg/kg                 | 0.00050            | 0.0017           | 0.0042      |
|                                              | cetone                                                                                               | 0.687            | mg/kg                 | 0.0058             | 0.0086           | 0.034       |
| Bı                                           | enzene                                                                                               | 0.687            | mg/kg                 | 0.00063            | 0.00086          | 0.083       |
| Br                                           | romochloromethane                                                                                    | 0.687            | mg/kg                 | 0.00060            | 0.0017           | ND          |
|                                              | romodichloromethane                                                                                  | 0.687            | mg/kg                 | 0.00040            | 0.0017           | ND          |
|                                              | romoform                                                                                             | 0.687            | mg/kg                 | 0.00028            | 0.0017           | ND          |
|                                              | omomethane                                                                                           | 0.687            | mg/kg                 | 0.00028            | 0.0017           | ND          |
|                                              | arbon disulfide                                                                                      | 0.687            |                       |                    |                  | ND<br>ND    |
|                                              |                                                                                                      |                  | mg/kg                 | 0.0029             | 0.0029           |             |
|                                              | arbon tetrachloride<br>nlorobenzene                                                                  | 0.687<br>0.687   | mg/kg<br>mg/kg        | 0.00083<br>0.00053 | 0.0017<br>0.0017 | ND<br>ND    |

| Lab#: | HSI-SB-02(10-10.5)<br>AD19539-007<br>Soil/Terracore |       |       |         | Collection Date:<br>Receipt Date: |        |
|-------|-----------------------------------------------------|-------|-------|---------|-----------------------------------|--------|
|       | Chloroethane                                        | 0.687 | mg/kg | 0.0017  | 0.0017                            | ND     |
|       | Chloroform                                          | 0.687 | mg/kg | 0.0012  | 0.0017                            | ND     |
|       | Chloromethane                                       | 0.687 | mg/kg | 0.0011  | 0.0017                            | ND     |
|       | cis-1,2-Dichloroethene                              | 0.687 | mg/kg | 0.00070 | 0.0017                            | ND     |
|       | cis-1,3-Dichloropropene                             | 0.687 | mg/kg | 0.00046 | 0.0017                            | ND     |
|       | Cyclohexane                                         | 0.687 | mg/kg | 0.0010  | 0.0017                            | ND     |
|       | Dibromochloromethane                                | 0.687 | mg/kg | 0.00037 | 0.0017                            | ND     |
|       | Dichlorodifluoromethane                             | 0.687 | mg/kg | 0.0012  | 0.0017                            | ND     |
| _     | Ethylbenzene                                        | 0.687 | mg/kg | 0.00059 | 0.00086                           | 0.074  |
|       | Isopropylbenzene                                    | 0.687 | mg/kg | 0.00071 | 0.00086                           | 0.035  |
|       | m&p-Xylenes                                         | 0.687 | mg/kg | 0.0010  | 0.0010                            | 0.29   |
|       | Methyl Acetate                                      | 0.687 | mg/kg | 0.00082 | 0.0017                            | ND     |
| -     | Methylcyclohexane                                   | 0.687 | mg/kg | 0.00077 | 0.0017                            | 0.0025 |
|       | Methylene chloride                                  | 0.687 | mg/kg | 0.00064 | 0.0017                            | 0.0024 |
|       | Methyl-t-butyl ether                                | 0.687 | mg/kg | 0.00046 | 0.00086                           | ND     |
|       | o-Xylene                                            | 0.687 | mg/kg | 0.00061 | 0.00086                           | 0.12   |
|       | Styrene                                             | 0.687 | mg/kg | 0.00047 | 0.0017                            | ND     |
|       | Tetrachloroethene                                   | 0.687 | mg/kg | 0.00084 | 0.0017                            | ND     |
|       | Toluene                                             | 0.687 | mg/kg | 0.00057 | 0.00086                           | 0.17   |
|       | trans-1,2-Dichloroethene                            | 0.687 | mg/kg | 0.0010  | 0.0017                            | ND     |
|       | trans-1,3-Dichloropropene                           | 0.687 | mg/kg | 0.00040 | 0.0017                            | ND     |
|       | Trichloroethene                                     | 0.687 | mg/kg | 0.00070 | 0.0017                            | ND     |
|       | Trichlorofluoromethane                              | 0.687 | mg/kg | 0.0010  | 0.0017                            | ND     |
|       | Vinyl chloride                                      | 0.687 | mg/kg | 0.0010  | 0.0017                            | ND     |
|       | Xylenes (Total)                                     | 0.687 | mg/kg | 0.00061 | 0.00086                           | 0.41   |

Sample ID: HSI-SB-02(11-11.5)

Lab#: AD19539-008 Matrix: Soil/Terracore Collection Date: 9/28/2020 Receipt Date: 9/30/2020

#### % Solids SM2540G

| Analyte                               | DF           | Units     | RL            |       | Result      |
|---------------------------------------|--------------|-----------|---------------|-------|-------------|
| % Solids                              | 1            | percent   |               |       | 79          |
| tile Organics (no search) 8260        |              |           |               |       |             |
| Analyte                               | DF           | Units     | MDL           | RL    | Result      |
| 1,1,1-Trichloroethane                 | 56.9         | mg/kg     | 0.026         | 0.072 | ND          |
| 1,1,2,2-Tetrachloroethane             | 56.9         | mg/kg     | 0.032         | 0.072 | ND          |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 56.9         | mg/kg     | 0.052         | 0.072 | ND          |
| 1,1,2-Trichloroethane                 | 56.9         | mg/kg     | 0.023         | 0.072 | ND          |
| 1,1-Dichloroethane                    | 56.9         | mg/kg     | 0.031         | 0.072 | ND          |
| 1,1-Dichloroethene                    | 56.9         | mg/kg     | 0.038         | 0.072 | ND          |
| 1,2,3-Trichlorobenzene                | 56.9         | mg/kg     | 0.057         | 0.072 | ND          |
| 1,2,4-Trichlorobenzene                | 56.9         | mg/kg     | 0.052         | 0.072 | ND          |
| 1,2-Dibromo-3-chloropropane           | 56.9         | mg/kg     | 0.060         | 0.072 | ND          |
| 1,2-Dibromoethane                     | 56.9         | mg/kg     | 0.025         | 0.072 | ND          |
| 1,2-Dichlorobenzene                   | 56.9         | mg/kg     | 0.023         | 0.072 | ND          |
| 1,2-Dichloroethane                    | 56.9         | mg/kg     | 0.023         | 0.046 | ND          |
| 1,2-Dichloropropane                   | 56.9         | mg/kg     | 0.022         | 0.072 | ND ND       |
| 1,3-Dichlorobenzene                   | 56.9         | mg/kg     | 0.022         | 0.072 | ND          |
| 1,4-Dichlorobenzene                   | 56.9         | mg/kg     | 0.026         | 0.072 | ND          |
| 1,4-Dioxane                           | 56.9         | mg/kg     | 2.8           | 3.6   | ND          |
| 2-Butanone                            | 56.9         | mg/kg     | 0.054         | 0.072 | ND ND       |
| 2-Hexanone                            | 56.9         |           | 0.034         | 0.072 |             |
| 4-Methyl-2-pentanone                  | 56.9         | mg/kg     |               | 0.072 | ND<br>ND    |
| Acetone                               | 56.9         | mg/kg     | 0.035<br>0.33 | 0.36  | ND          |
| Benzene                               |              | mg/kg     |               |       | ND<br>0.000 |
| Bromochloromethane                    | 56.9         | mg/kg     | 0.021         | 0.036 | 0.098       |
| Bromodichloromethane                  | 56.9<br>56.9 | mg/kg     | 0.057         | 0.072 | ND          |
| Bromoform                             |              | mg/kg     | 0.025         | 0.072 | ND          |
|                                       | 56.9         | mg/kg     | 0.039         | 0.072 | ND          |
| Bromomethane Carbon disulfide         | 56.9         | mg/kg     | 0.036         | 0.072 | ND          |
|                                       | 56.9         | mg/kg     | 0.031         | 0.072 | ND          |
| Carbon tetrachloride                  | 56.9         | mg/kg     | 0.023         | 0.072 | ND          |
| Chlorothera                           | 56.9         | mg/kg     | 0.024         | 0.072 | 2.7         |
| Chloroform                            | 56.9         | mg/kg     | 0.042         | 0.072 | ND          |
| Chloroform                            | 56.9         | mg/kg     | 0.14          | 0.14  | ND          |
| Chloromethane                         | 56.9         | mg/kg     | 0.037         | 0.072 | ND          |
| cis-1,2-Dichloroethene                | 56.9         | mg/kg     | 0.046         | 0.072 | ND -        |
| cis-1,3-Dichloropropene               | 56.9         | mg/kg     | 0.023         | 0.072 | ND          |
| Cyclohexane                           | 56.9         | mg/kg     | 0.035         | 0.072 | ND          |
| Dibromochloromethane                  | 56.9         | mg/kg<br> | 0.017         | 0.072 | ND          |
| Dichlorodifluoromethane               | 56.9         | mg/kg     | 0.045         | 0.072 | ND          |
| Ethylbenzene                          | 56.9         | mg/kg     | 0.034         | 0.072 | 0.046J      |
| Isopropylbenzene                      | 56.9         | mg/kg     | 0.035         | 0.072 | ND          |
| m&p-Xylenes                           | 56.9         | mg/kg     | 0.061         | 0.072 | 0.14        |
| Methyl Acetate                        | 56.9         | mg/kg     | 0.051         | 0.072 | ND          |
| Methylcyclohexane                     | 56.9         | mg/kg     | 0.044         | 0.072 | ND          |
| Methylene chloride                    | 56.9         | mg/kg     | 0.021         | 0.072 | ND          |
| Methyl-t-butyl ether                  | 56.9         | mg/kg     | 0.022         | 0.036 | ND          |
| o-Xylene                              | 56.9         | mg/kg     | 0.049         | 0.072 | ND          |
| Styrene                               | 56.9         | mg/kg     | 0.039         | 0.072 | ND          |
| Tetrachloroethene                     | 56.9         | mg/kg     | 0.026         | 0.072 | ND          |
| Toluene                               | 56.9         | mg/kg     | 0.023         | 0.072 | 1.2         |
| trans-1,2-Dichloroethene              | 56.9         | mg/kg     | 0.022         | 0.072 | ND          |
| trans-1,3-Dichloropropene             | 56.9         | mg/kg     | 0.022         | 0.072 | ND          |
| Trichloroethene                       | 56.9         | mg/kg     | 0.025         | 0.072 | ND          |
| Trichlorofluoromethane                | 56.9         | mg/kg     | 0.022         | 0.072 | ND          |
| Vinyl chloride                        | 56.9         | mg/kg     | 0.051         | 0.072 | ND          |
| Xvienes (Total)                       | 56.9         | malka     | 0.049         | 0.072 | 0.14        |

Xylenes (Total)

mg/kg

0.049

0.072

56.9

0.14

Sample ID: HSI-SB-04 (9.5-10) Lab#: AD19539-009

Matrix: Soil/Terracore

Collection Date: 9/29/2020 Receipt Date: 9/30/2020

#### % Solids SM2540G

| Analyte                           | DF Units RL | Result |
|-----------------------------------|-------------|--------|
| % Solids                          | 1 percent   | 81     |
| Volatile Organics (no search) 826 | 60          |        |

| Analyte                                 | DF    | Units          | MDL     | RL               | Result        |
|-----------------------------------------|-------|----------------|---------|------------------|---------------|
| I,1,1-Trichloroethane                   | 0.665 | mg/kg          | 0.00076 | 0.0016           | ND            |
| 1,1,2,2-Tetrachloroethane               | 0.665 | mg/kg          | 0.00037 | 0.0016           | ND            |
| ,1,2-Trichloro-1,2,2-trifluoroethane    | 0.665 | mg/kg          | 0.0011  | 0.0016           | ND            |
| ,1,2-Trichloroethane                    | 0.665 | mg/kg          | 0.00038 | 0.0016           | ND            |
| ,1-Dichloroethane                       | 0.665 | mg/kg          | 0.00071 | 0.0016           | 0.0014J       |
| ,1-Dichloroethene                       | 0.665 | mg/kg          | 0.00094 | 0.0016           | ND            |
| ,2,3-Trichlorobenzene                   | 0.665 | mg/kg          | 0.00045 | 0.0016           | ND            |
| ,2,4-Trichlorobenzene                   | 0.665 | mg/kg          | 0.00052 | 0.0016           | ND            |
| ,2-Dibromo-3-chloropropane              | 0.665 | mg/kg          | 0.00045 | 0.0016           | ND            |
| ,2-Dibromoethane                        | 0.665 | mg/kg          | 0.00040 | 0.00041          | ND            |
| ,2-Dichlorobenzene                      | 0.665 | mg/kg          | 0.00042 | 0.0016           | ND            |
| ,2-Dichloroethane                       | 0.665 | mg/kg          | 0.00034 | 0.0016           | 0.0028        |
| ,2-Dichloropropane                      | 0.665 | mg/kg          | 0.00067 | 0.0016           | ND            |
| ,3-Dichlorobenzene                      | 0.665 | mg/kg          | 0.00045 | 0.0016           | ND            |
| ,4-Dichlorobenzene                      | 0.665 | mg/kg          | 0.00044 | 0.0016           | ND            |
| ,4-Dioxane                              | 0.665 | mg/kg          | 0.040   | 0.082            | ND            |
| -Butanone                               | 0.665 | mg/kg          | 0.00099 | 0.0016           | ND            |
| -Hexanone                               | 0.665 | mg/kg          | 0.00070 | 0.0016           | ND            |
| -Methyl-2-pentanone                     | 0.665 | mg/kg          | 0.00048 | 0.0016           | ND            |
| cetone                                  | 0.665 | mg/kg          | 0.0056  | 0.0082           | ND            |
| enzene                                  | 0.665 | mg/kg          | 0.00060 | 0.00082          | 0.0072        |
| romochloromethane                       | 0.665 | mg/kg          | 0.00057 | 0.0016           | ND            |
| romodichloromethane                     | 0.665 | mg/kg          | 0.00039 | 0.0016           | ND            |
| romoform                                | 0.665 | mg/kg          | 0.00027 | 0.0016           | ND            |
| romomethane                             | 0.665 | mg/kg          | 0.0013  | 0.0016           | ND            |
| arbon disulfide                         | 0.665 | mg/kg          | 0.0028  | 0.0028           | ND            |
| arbon tetrachloride                     | 0.665 | mg/kg          | 0.00080 | 0.0016           | ND            |
| hlorobenzene                            | 0.665 | mg/kg          | 0.00051 | 0.0016           | 0.097         |
| hloroethane                             | 0.665 | mg/kg          | 0.0016  | 0.0016           | ND            |
| Chloroform                              | 0.665 | mg/kg          | 0.0011  | 0.0016           | ND            |
| Chloromethane                           | 0.665 | mg/kg          | 0.0010  | 0.0016           | ND            |
| is-1,2-Dichloroethene                   | 0.665 | mg/kg          | 0.00066 | 0.0016           | 0.030         |
| is-1,3-Dichloropropene                  | 0.665 | mg/kg          | 0.00044 | 0.0016           | ND            |
| yclohexane                              | 0.665 | mg/kg          | 0.00099 | 0.0016           | ND            |
| bibromochloromethane                    | 0.665 | mg/kg          | 0.00035 | 0.0016           | ND            |
| ichlorodifluoromethane                  | 0.665 | mg/kg          | 0.0012  | 0.0016           | ND            |
| thylbenzene                             | 0.665 | mg/kg          | 0.00057 | 0.00082          | ND            |
| copropylbenzene                         | 0.665 | mg/kg          | 0.00068 | 0.00082          | ND            |
| n&p-Xylenes                             | 0.665 | mg/kg          | 0.00099 | 0.00099          | 0.0010        |
| lethyl Acetate                          | 0.665 | mg/kg          | 0.00079 | 0.0016           | ND            |
| lethylcyclohexane                       | 0.665 | mg/kg          | 0.00074 | 0.0016           | ND            |
| lethylene chloride                      | 0.665 | mg/kg          | 0.00062 | 0.0016           | 0.0022        |
| lethyl-t-butyl ether                    | 0.665 | mg/kg          | 0.00044 | 0.00082          | 0.00070J      |
| -Xylene                                 | 0.665 | mg/kg          | 0.00058 | 0.00082          | 0.0014        |
| tyrene                                  | 0.665 | mg/kg          | 0.00045 | 0.0016           | ND            |
| etrachloroethene                        | 0.665 | mg/kg          | 0.00043 | 0.0016           | ND            |
| oluene                                  | 0.665 |                | 0.00054 | 0.00082          | 0.0049        |
| oluene<br>rans-1,2-Dichloroethene       |       | mg/kg<br>ma/ka |         |                  |               |
| ans-1,2-Dichloroethene                  | 0.665 | mg/kg          | 0.00099 | 0.0016<br>0.0016 | 0.0033        |
| • •                                     | 0.665 | mg/kg<br>ma/ka | 0.00039 |                  | ND<br>0.00131 |
| richloroethene<br>richlorofluoromethane | 0.665 | mg/kg          | 0.00067 | 0.0016           | 0.0012J       |
|                                         | 0.665 | mg/kg          | 0.00097 | 0.0016           | ND            |
| inyl chloride                           | 0.665 | mg/kg          | 0.0010  | 0.0016           | 0.14          |

Sample ID: HSI-SB-03 (3.5-4) Lab#: AD19539-010

Matrix: Soil/Terracore

Collection Date: 9/29/2020 Receipt Date: 9/30/2020

#### % Solids SM2540G

| Analyte                                 | DF   | Units          | RL            |       | Result     |
|-----------------------------------------|------|----------------|---------------|-------|------------|
| % Solids                                | 1    | percent        |               |       | 86         |
| tile Organics (no search) 8260          |      |                | <del></del> - |       |            |
| Analyte                                 | DF   | Units          | MDL           | RL    | Result     |
| 1,1,1-Trichloroethane                   | 65.2 | mg/kg          | 0.027         | 0.076 | ND         |
| 1,1,2,2-Tetrachloroethane               | 65.2 | mg/kg          | 0.034         | 0.076 | 0.43       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane   | 65.2 | mg/kg          | 0.055         | 0.076 | ND         |
| 1,1,2-Trichloroethane                   | 65.2 | mg/kg          | 0.024         | 0.076 | 0.025J     |
| 1,1-Dichloroethane                      | 65.2 | mg/kg          | 0.032         | 0.076 | ND         |
| 1,1-Dichloroethene                      | 65.2 | mg/kg          | 0.040         | 0.076 | ND         |
| 1,2,3-Trichlorobenzene                  | 65.2 | mg/kg          | 0.060         | 0.076 | ND         |
| 1,2,4-Trichlorobenzene                  | 65.2 | mg/kg          | 0.055         | 0.076 | ND         |
| 1,2-Dibromo-3-chloropropane             | 65.2 | mg/kg          | 0.063         | 0.076 | ND ND      |
| 1,2-Dibromoethane                       | 65.2 | mg/kg          | 0.026         | 0.076 | ND         |
| 1,2-Dichlorobenzene                     | 65.2 | mg/kg          | 0.025         | 0.076 | ND         |
| 1,2-Dichloroethane                      |      |                |               | 0.048 |            |
| 1,2-Dichloropropane                     | 65.2 | mg/kg          | 0.048         | 0.046 | 0.39<br>ND |
| 1,3-Dichlorobenzene                     | 65.2 | mg/kg<br>ma/ka | 0.023         |       |            |
| 1,3-Dichlorobenzene 1,4-Dichlorobenzene | 65.2 | mg/kg          | 0.029         | 0.076 | ND         |
| 1,4-Dioxane                             | 65.2 | mg/kg          | 0.028         | 0.076 | ND<br>ND   |
| 2-Butanone                              | 65.2 | mg/kg          | 3.0           | 3.8   | ND ND      |
|                                         | 65.2 | mg/kg          | 0.057         | 0.076 | ND<br>ND   |
| 2-Hexanone                              | 65.2 | mg/kg          | 0.046         | 0.076 | ND         |
| 4-Methyl-2-pentanone                    | 65.2 | mg/kg          | 0.037         | 0.076 | ND         |
| Acetone                                 | 65.2 | mg/kg          | 0.35          | 0.38  | ND         |
| Benzene                                 | 65.2 | mg/kg          | 0.022         | 0.038 | ND         |
| Bromochloromethane                      | 65.2 | mg/kg          | 0.060         | 0.076 | ND         |
| Bromodichloromethane                    | 65.2 | mg/kg          | 0.026         | 0.076 | ND         |
| Bromoform                               | 65.2 | mg/kg          | 0.041         | 0.076 | ND         |
| Bromomethane                            | 65.2 | mg/kg          | 0.038         | 0.076 | ND         |
| Carbon disulfide                        | 65.2 | mg/kg          | 0.032         | 0.076 | ND         |
| Carbon tetrachloride                    | 65.2 | mg/kg          | 0.024         | 0.076 | ND         |
| Chlorobenzene                           | 65.2 | mg/kg          | 0.025         | 0.076 | 0.057J     |
| Chloroethane                            | 65.2 | mg/kg          | 0.044         | 0.076 | ND         |
| Chloroform                              | 65.2 | mg/kg          | 0.15          | 0.15  | ND         |
| Chloromethane                           | 65.2 | mg/kg          | 0.039         | 0.076 | ND         |
| cis-1,2-Dichloroethene                  | 65.2 | mg/kg          | 0.048         | 0.076 | 0.18       |
| cis-1,3-Dichloropropene                 | 65.2 | mg/kg          | 0.024         | 0.076 | ND         |
| Cyclohexane                             | 65.2 | mg/kg          | 0.037         | 0.076 | ND         |
| Dibromochloromethane                    | 65.2 | mg/kg          | 0.018         | 0.076 | ND         |
| Dichlorodifluoromethane                 | 65.2 | mg/kg          | 0.047         | 0.076 | ND         |
| Ethylbenzene                            | 65.2 | mg/kg          | 0.035         | 0.076 | ND         |
| Isopropylbenzene                        | 65.2 | mg/kg          | 0.037         | 0.076 | ND         |
| m&p-Xylenes                             | 65.2 | mg/kg          | 0.064         | 0.076 | ND         |
| Methyl Acetate                          | 65.2 | mg/kg          | 0.053         | 0.076 | ND         |
| Methylcyclohexane                       | 65.2 | mg/kg          | 0.047         | 0.076 | ND         |
| Methylene chloride                      | 65.2 | mg/kg          | 0.022         | 0.076 | ND         |
| Methyl-t-butyl ether                    | 65.2 | mg/kg          | 0.024         | 0.038 | ND         |
| o-Xylene                                | 65.2 | mg/kg          | 0.052         | 0.076 | ND         |
| Styrene                                 | 65.2 | mg/kg          | 0.041         | 0.076 | ND         |
| Tetrachioroethene                       | 65.2 | mg/kg          | 0.027         | 0.076 | 0.17       |
| Toluene                                 | 65.2 | mg/kg          | 0.025         | 0.076 | 0.042J     |
| trans-1,2-Dichloroethene                | 65.2 | mg/kg          | 0.023         | 0.076 | ND         |
| trans-1,3-Dichloropropene               | 65.2 | mg/kg          | 0.023         | 0.076 | ND         |
| Trichloroethene                         | 65.2 | mg/kg          | 0.026         | 0.076 | 2.3        |
| Trichlorofluoromethane                  | 65.2 | mg/kg          | 0.023         | 0.076 | ND         |
| Vinyl chloride                          | 65.2 | mg/kg          | 0.054         | 0.076 | ND         |

Xylenes (Total)

mg/kg

0.052

0.076

65.2

ND

Sample ID: HSI-SB-03 (10-10.5)

Lab#: AD19539-011 Matrix: Soil/Terracore Collection Date: 9/29/2020 Receipt Date: 9/30/2020

| Analyte                                         | DF         | Units          | RL             |                  | Result           |
|-------------------------------------------------|------------|----------------|----------------|------------------|------------------|
| % Solids                                        | 1          | percent        |                |                  | 84               |
| ercury (Soil/Waste) 7471B                       |            | _ ·            | ·              |                  |                  |
| Analyte                                         | DF         | Units          | MDL            | RL               | Result           |
| Mercury                                         | 1          | mg/kg          | 0.015          | 0.099            | ND               |
| emivolatile Organics (no search) 8270           |            |                |                |                  |                  |
|                                                 |            |                |                |                  |                  |
| Analyte                                         | DF         | Units          | MDL            | RL               | Result           |
| 1,1'-Biphenyl                                   | 1          | mg/kg          | 0.011          | 0.040            | ND               |
| 1,2,4,5-Tetrachlorobenzene                      | 1          | mg/kg          | 0.013          | 0.040            | ND               |
| 1,4-Dioxane                                     | 1          | mg/kg          | 0.020          | 0.020            | ND               |
| 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol |            | mg/kg<br>mg/kg | 0.015          | 0.040            | ND<br>ND         |
| 2,4,6-Trichlorophenol                           | 1          | mg/kg          | 0.011          | 0.040            | ND               |
| 2,4-Dichlorophenol                              | 1          | mg/kg          | 0.015          | 0.015            | ND               |
| 2,4-Dimethylphenol                              | 1          | mg/kg          | 0.019          | 0.019            | ND               |
| 2,4-Dinitrophenol                               | 1          | mg/kg          | 0.17           | 0.20             | ND               |
| 2,4-Dinitrotoluene                              | 1          | mg/kg          | 0.012          | 0.040            | ND               |
| 2,6-Dinitrotoluene                              | 1          | mg/kg          | 0.020          | 0.040            | ND               |
| 2-Chloronaphthalene                             | 1          | mg/kg          | 0.018          | 0.040            | ND               |
| 2-Chlorophenol                                  | 1          | mg/kg          | 0.013          | 0.040            | ND               |
| 2-Methylnaphthalene                             | 1          | mg/kg          | 0.012          | 0.040            | ND               |
| 2-Methylphenol                                  | 1          | mg/kg          | 0.011          | 0.011            | ND               |
| 2-Nitroaniline 2-Nitrophenol                    | <u>1</u>   | mg/kg          | 0.019          | 0.040            | ND ND            |
| 3&4-Methylphenol                                | 1          | mg/kg<br>mg/kg | 0.018<br>0.012 | 0.040<br>0.012 ` | ND<br>ND         |
| 3,3'-Dichlorobenzidine                          | 1          | mg/kg          | 0.012          | 0.040            | ND               |
| 3-Nitroaniline                                  | 1          | mg/kg          | 0.032          | 0.040            | ND               |
| 4,6-Dinitro-2-methylphenol                      | i          | mg/kg          | 0.14           | 0.20             | ND ND            |
| 4-Bromophenyl-phenylether                       | 1          | mg/kg          | 0.011          | 0.040            | ND               |
| 4-Chloro-3-methylphenol                         | 1          | mg/kg          | 0.0096         | 0.040            | ND               |
| 4-Chloroaniline                                 | 1          | mg/kg          | 0.017          | 0.017            | ND               |
| 4-Chlorophenyl-phenylether                      | 1          | mg/kg          | 0.012          | 0.040            | ND               |
| 4-Nitroaniline                                  | 1          | mg/kg          | 0.015          | 0.040            | ND               |
| 4-Nitrophenol                                   | 1          | mg/kg          | 0.030          | 0.040            | ND               |
| Acenaphthene                                    | 1          | mg/kg          | 0.011          | 0.040            | ND               |
| Acenaphthylene                                  | 1          | mg/kg          | 0.012          | 0.040            | ND               |
| Actophenone                                     | 1          | mg/kg          | 0.014          | 0.040            | ND<br>ND         |
| Anthracene<br>Atrazine                          | 1          | mg/kg<br>mg/kg | 0.011<br>0.016 | 0.040<br>0.040   | ND<br>ND         |
| Benzaldehyde                                    |            | mg/kg          | 0.43           | 0.43             | ND ND            |
| Benzo[a]anthracene                              | 1          | mg/kg          | 0.013          | 0.040            | ND               |
| Benzo[a]pyrene                                  | 1          | mg/kg          | 0.014          | 0.040            | ND               |
| Benzo[b]fluoranthene                            | 1          | mg/kg          | 0.014          | 0.040            | ND               |
| Benzo[g,h,i]perylene                            | 1          | mg/kg          | 0.00027        | 0.040            | ND               |
| Benzo[k]fluoranthene                            | 1          | mg/kg          | 0.015          | 0.040            | ND               |
| bis(2-Chloroethoxy)methane                      | 1          | mg/kg          | 0.011          | 0.040            | ND               |
| bis(2-Chloroethyl)ether                         | 1          | mg/kg          | 0.0096         | 0.0099           | ND               |
| bis(2-Chloroisopropyl)ether                     | 1          | mg/kg          | 0.016          | 0.040            | ND               |
| bis(2-Ethylhexyl)phthalate                      | 1          | mg/kg          | 0.035          | 0.040            | ND               |
| Butylbenzylphthalate                            | 1          | mg/kg          | 0.030          | 0.040            | ND               |
| Caprolactam Carbazole                           | <u>1</u> 1 | mg/kg<br>mg/kg | 0.032          | 0.040            | ND ND            |
| Chrysene                                        | 1          | mg/kg          | 0.012          | 0.040            | ND               |
| Dibenzo[a,h]anthracene                          | 1          | mg/kg          | 0.015          | 0.040            | ND               |
| Dibenzofuran                                    | 1          | mg/kg          | 0.010          | 0.010            | ND               |
| Diethylphthalate                                | 1          | mg/kg          | 0.026          | 0.040            | ND               |
| Dimethylphthalate                               | 1          | mg/kg          | 0.011          | 0.040            | ND               |
| Di-n-butylphthalate                             | 1          | mg/kg          | 0.046          | 0.046            | ND               |
| Di-n-octylphthalate                             | 1          | mg/kg          | 0.026          | 0.040            | ND               |
| Fluoranthene                                    | 1          | mg/kg          | 0.015          | 0.040            | ND               |
| Fluorene                                        | 1          | mg/kg          | 0.011          | 0.040            | ND               |
| Hexachlorobenzene                               | 1          | mg/kg          | 0.017          | 0.040            | ND               |
| Hexachtorobutadiene                             | 1          | mg/kg          | 0.018          | 0.040            | ND               |
| Hexachlorocyclopentadiene                       | 1          | mg/kg          | 0.13           | 0.13             | ND<br>ND         |
| Hexachloroethane                                | 1          | mg/kg          | 0.018          | 0.040            | ND Page 42 of 27 |

| ID: HSI-SB-03 (10-10.5)               |              |                |                     | <b>Collection Date:</b> | 9/29/2020  |
|---------------------------------------|--------------|----------------|---------------------|-------------------------|------------|
| b#: AD19539-011                       |              |                |                     | Receipt Date:           |            |
| rix: Soil/Terracore                   |              |                |                     |                         |            |
| Indeno[1,2,3-cd]pyrene                | 1            | mg/kg          | 0.018               | 0.040                   | ND         |
| Isophorone                            | 1            | mg/kg          | 0.013               | 0.040                   | ND         |
| Naphthalene                           | 1            | mg/kg          | 0.011               | 0.011                   | ND         |
| Nitrobenzene                          | 1            | mg/kg          | 0.0016              | 0.040                   | ND         |
| N-Nitroso-di-n-propylamine            | 1            | mg/kg          | 0.015               | 0.015                   | ND         |
| N-Nitrosodiphenylamine                | 1            | mg/kg          | 0.13                | 0.13                    | ND         |
| Pentachlorophenol                     | 1            | mg/kg          | 0.19                | 0.20                    | ND         |
| Phenanthrene                          | - <u>1</u>   | mg/kg          | 0.013               | 0.040                   | ND ND      |
| Phenol<br>Pyrene                      | 1            | mg/kg<br>mg/kg | 0.011<br>0.014      | 0.040                   | ND         |
|                                       |              | mg/kg          | 0.014               | 0.040                   |            |
| TAL Metals 6010D                      |              |                |                     |                         |            |
| Analyte                               | DF           | Units          | MDL                 | RL                      | Result     |
| Aluminum                              | 1            | mg/kg          | 20                  | 240                     | 570        |
| Barium                                | 1            | mg/kg          | 0.80                | 12                      | ND         |
| Calcium                               | 1            | mg/kg          | 120                 | 1200                    | ND         |
| Chromium                              | 1 1          | mg/kg          | 0.80                | 6.0                     | 1.0J<br>ND |
| Cobalt<br>Copper                      | 1<br>1       | mg/kg<br>ma/ka | 0.85<br><b>0.73</b> | 3.0<br>6.0              | NU<br>1.0J |
| Copp <del>e</del> r<br>Iron           | 1            | mg/kg<br>mg/kg | 0.73<br>16          | 240                     | 1400       |
| Lead                                  | 1            | mg/kg<br>mg/kg | 0.73                | 6.0                     | 1.2J       |
| Magnesium                             | <u> </u>     | mg/kg          | 23                  | 600                     | ND         |
| Manganese                             | 1            | mg/kg          | 0.76                | 12                      | 1.4J       |
| Nickel                                | 1            | mg/kg          | 1.3                 | 6.0                     | ND         |
| Potassium                             | 1            | mg/kg          | 120                 | 600                     | ND         |
| Sodium                                | 1            | mg/kg          | 150                 | 300                     | ND         |
| Zinc                                  | 1            | mg/kg          | 1.8                 | 12                      | ND         |
| TAL Metals 6020B                      |              |                |                     |                         |            |
| Analyte                               | DF           | Units          | MDL                 | RL                      | Result     |
| Antimony                              | 1            | mg/kg          | 0.027               | 0.95                    | ND         |
| Arsenic                               | 1            | mg/kg          | 0.021               | 0.24                    | 0.30       |
| Beryllium                             | 1            | mg/kg          | 0.019               | 0.24                    | 0.040J     |
| Cadmium                               | 1            | mg/kg          | 0.017               | 0.48                    | ND         |
| Selenium                              | 1            | mg/kg          | 0.076               | 2.4                     | 1.1J       |
| Silver                                | 1            | mg/kg          | 0.031               | 0.24                    | 0.077J     |
| Thallium<br>Vanadium                  | 1            | mg/kg          | 0.021               | 0.48<br>0.24            | ND<br>7.5  |
|                                       |              | mg/kg          | 0.013               | 0.24                    |            |
| Volatile Organics (no search) 8260    |              |                |                     |                         |            |
| Analyte                               | DF           | Units          | MDL                 | RL                      | Result     |
| 1,1,1-Trichloroethane                 | 65.2         | mg/kg          | 0.028               | 0.078                   | ND         |
| 1,1,2,2-Tetrachloroethane             | 65.2         | mg/kg          | 0.035               | 0.078                   | ND<br>ND   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 65.2<br>65.2 | mg/kg          | 0.056<br>0.025      | 0.078<br>0.078          | ND         |
| 1,1,2-Trichloroethane                 | 65.2         | mg/kg<br>mg/kg | 0.025               | 0.078                   | ND ND      |
| 1,1-Dichloroethene                    | 65.2         | mg/kg          | 0.033               | 0.078                   | ND         |
| 1,2,3-Trichlorobenzene                | 65.2         | mg/kg          | 0.061               | 0.078                   | ND         |
| 1,2,4-Trichlorobenzene                | 65.2         | mg/kg          | 0.056               | 0.078                   | ND         |
| 1,2-Dibromo-3-chloropropane           | 65.2         | mg/kg          | 0.065               | 0.078                   | ND         |
| 1,2-Dibromoethane                     | 65.2         | mg/kg          | 0.027               | 0.078                   | ND         |
| 1,2-Dichtorobenzene                   | 65.2         | mg/kg          | 0.025               | 0.078                   | ND         |
| 1,2-Dichloroethane                    | 65.2         | mg/kg          | 0.050               | 0.050                   | ND         |
| 1,2-Dichloropropane                   | 65.2         | mg/kg          | 0.023               | 0.078                   | ND         |
| 1,3-Dichlorobenzene                   | 65.2         | mg/kg          | 0.029               | 0.078                   | ND         |
| 1,4-Dichlorobenzene                   | 65.2         | mg/kg          | 0.028               | 0.078                   | ND         |
| 1,4-Dioxane                           | 65.2         | mg/kg          | 3.1                 | 3.9                     | ND<br>ND   |
| 2-Butanone                            | 65.2         | mg/kg<br>mg/kg | 0.058               | 0.078                   | ND<br>ND   |
| 2-Hexanone<br>4-Methyl-2-pentanone    | 65.2<br>65.2 | mg/kg<br>ma/ka | 0.047<br>0.038      | 0.078<br>0.078          | ND<br>ND   |
| 4-metnyi-2-pentanone Acetone          | 65.2<br>65.2 | mg/kg<br>mg/kg | 0.038               | 0.39                    | ND<br>ND   |
| Benzene                               | 65.2         | mg/kg          | 0.023               | 0.039                   | ND         |
| Bromochloromethane                    | 65.2         | mg/kg          | 0.023               | 0.078                   | ND         |
| Bromodichloromethane                  | 65.2         | mg/kg          | 0.027               | 0.078                   | ND         |
| Bromoform                             | 65.2         | mg/kg          | 0.042               | 0.078                   | ND         |
| Bromomethane                          | 65.2         | mg/kg          | 0.039               | 0.078                   | ND         |
| Carbon disulfide                      | 65.2         | mg/kg          | 0.033               | 0.078                   | ND         |
| Carbon diodinac                       |              |                |                     |                         |            |
| Carbon tetrachloride                  | 65.2         | mg/kg          | 0.025               | 0.078                   | ND         |

| Lab#: | HSI-SB-03 (10-10.5)<br>AD19539-011<br>Soil/Terracore |      |       |       | Collection Date:<br>Receipt Date: |       |
|-------|------------------------------------------------------|------|-------|-------|-----------------------------------|-------|
|       | Chloroethane                                         | 65.2 | mg/kg | 0.045 | 0.078                             | ND    |
|       | Chloroform                                           | 65.2 | mg/kg | 0.15  | 0.15                              | ND    |
|       | Chloromethane                                        | 65.2 | mg/kg | 0.040 | 0.078                             | ND    |
|       | cis-1,2-Dichloroethene                               | 65.2 | mg/kg | 0.049 | 0.078                             | ND    |
| _     | cis-1,3-Dichloropropene                              | 65.2 | mg/kg | 0.025 | 0.078                             | ND    |
|       | Cyclohexane                                          | 65.2 | mg/kg | 0.038 | 0.078                             | ND    |
|       | Dibromochloromethane                                 | 65.2 | mg/kg | 0.019 | 0.078                             | ND    |
|       | Dichlorodifluoromethane                              | 65.2 | mg/kg | 0.048 | 0.078                             | ND    |
| _     | Ethylbenzene                                         | 65.2 | mg/kg | 0.036 | 0.078                             | ND    |
|       | Isopropylbenzene                                     | 65.2 | mg/kg | 0.038 | 0.078                             | ND    |
|       | m&p-Xylenes                                          | 65.2 | mg/kg | 0.066 | 0.078                             | ND    |
|       | Methyl Acetate                                       | 65.2 | mg/kg | 0.055 | 0.078                             | ND    |
|       | Methylcyclohexane                                    | 65.2 | mg/kg | 0.048 | 0.078                             | ND ND |
|       | Methylene chloride                                   | 65.2 | mg/kg | 0.023 | 0.078                             | ND    |
|       | Methyl-t-butyl ether                                 | 65.2 | mg/kg | 0.024 | 0.039                             | ND    |
|       | o-Xylene                                             | 65.2 | mg/kg | 0.053 | 0.078                             | ND    |
| _     | Styrene                                              | 65.2 | mg/kg | 0.042 | 0.078                             | ND    |
|       | Tetrachloroethene                                    | 65.2 | mg/kg | 0.028 | 0.078                             | ND    |
|       | Toluene                                              | 65.2 | mg/kg | 0.025 | 0.078                             | 0.37  |
|       | trans-1,2-Dichloroethene                             | 65.2 | mg/kg | 0.024 | 0.078                             | ND    |
| _     | trans-1,3-Dichloropropene                            | 65.2 | mg/kg | 0.024 | 0.078                             | ND    |
|       | Trichloroethene                                      | 65.2 | mg/kg | 0.027 | 0.078                             | ND    |
|       | Trichlorofluoromethane                               | 65.2 | mg/kg | 0.024 | 0.078                             | ND    |
|       | Vinyl chloride                                       | 65.2 | mg/kg | 0.055 | 0.078                             | ND    |
|       | Xylenes (Total)                                      | 65.2 | mg/kg | 0.053 | 0.078                             | ND    |

Sample ID: HSI-SB-03 (11-11.5)

Lab#: AD19539-012 Matrix: Soil/Terracore Collection Date: 9/29/2020 Receipt Date: 9/30/2020

| Analyte                               | DF   | Units          | RL    |       | Result   |
|---------------------------------------|------|----------------|-------|-------|----------|
| % Solids                              | 1    | percent        |       |       | 80       |
| /olatile Organics (no search) 8260    |      |                |       |       |          |
| Analyte                               | DF   | Units          | MDL   | RL    | Result   |
| 1,1,1-Trichloroethane                 | 69.1 | mg/kg          | 0.031 | 0.086 | ND ND    |
| 1,1,2,2-Tetrachloroethane             | 69.1 | mg/kg          | 0.039 | 0.086 | ND       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 69.1 | mg/kg          | 0.063 | 0.086 | ND       |
| 1,1,2-Trichloroethane                 | 69.1 | mg/kg          | 0.028 | 0.086 | ND       |
| 1,1-Dichloroethane                    | 69.1 | mg/kg          | 0.037 | 0.086 | ND       |
| 1,1-Dichloroethene                    | 69.1 | mg/kg          | 0.046 | 0.086 | ND       |
| 1,2,3-Trichlorobenzene                | 69.1 | mg/kg          | 0.068 | 0.086 | ND       |
| 1,2,4-Trichlorobenzene                | 69.1 | mg/kg          | 0.063 | 0.086 | ND       |
| 1,2-Dibromo-3-chloropropane           | 69.1 | mg/kg          | 0.072 | 0.086 | ND       |
| 1,2-Dibromoethane                     | 69.1 | mg/kg          | 0.030 | 0.086 | ND       |
| 1,2-Dichlorobenzene                   | 69.1 | mg/kg          | 0.028 | 0.086 | ND       |
| 1,2-Dichloroethane                    | 69.1 | mg/kg          | 0.055 | 0.055 | ND       |
| 1,2-Dichloropropane                   | 69.1 | mg/kg          | 0.026 | 0.086 | ND       |
| 1,3-Dichlorobenzene                   | 69.1 | mg/kg          | 0.033 | 0.086 | ND       |
| 1,4-Dichlorobenzene                   | 69.1 | mg/kg          | 0.032 | 0.086 | ND       |
| 1,4-Dioxane                           | 69.1 |                | 3.4   | 4.3   | ND       |
| 2-Butanone                            |      | mg/kg          |       | 0.086 | ND ND    |
|                                       | 69.1 | mg/kg          | 0.065 |       |          |
| 2-Hexanone                            | 69.1 | mg/kg          | 0.052 | 0.086 | ND       |
| 4-Methyl-2-pentanone                  | 69.1 | mg/kg          | 0.042 | 0.086 | ND       |
| Acetone                               | 69.1 | mg/kg          | 0.40  | 0.43  | ND       |
| Benzene                               | 69.1 | mg/kg          | 0.026 | 0.043 | ND       |
| Bromochloromethane                    | 69.1 | mg/kg          | 0.068 | 0.086 | ND       |
| Bromodichloromethane                  | 69.1 | mg/kg          | 0.030 | 0.086 | ND       |
| Bromoform                             | 69.1 | mg/kg          | 0.047 | 0.086 | ND       |
| Bromomethane                          | 69.1 | mg/kg          | 0.043 | 0.086 | ND       |
| Carbon disulfide                      | 69.1 | mg/kg          | 0.037 | 0.086 | ND       |
| Carbon tetrachloride                  | 69.1 | mg/kg          | 0.028 | 0.086 | ND       |
| Chlorobenzene                         | 69.1 | mg/kg          | 0.029 | 0.086 | 0.19     |
| Chloroethane                          | 69.1 | mg/kg          | 0.050 | 0.086 | ND       |
| Chloroform                            | 69.1 | mg/kg          | 0.17  | 0.17  | ND       |
| Chloromethane                         | 69.1 | mg/kg          | 0.045 | 0.086 | ND       |
| cis-1,2-Dichloroethene                | 69.1 | mg/kg          | 0.055 | 0.086 | 0.079J   |
| cis-1,3-Dichloropropene               | 69.1 | mg/kg          | 0.028 | 0.086 | ND · ··· |
| Cyclohexane                           | 69.1 | mg/kg          | 0.042 | 0.086 | ND       |
| Dibromochloromethane                  | 69.1 | mg/kg          | 0.021 | 0.086 | ND       |
| Dichlorodifluoromethane               | 69.1 | mg/kg          | 0.053 | 0.086 | ND       |
| Ethylbenzene                          | 69.1 | mg/kg          | 0.040 | 0.086 | ND       |
| Isopropylbenzene                      | 69.1 | mg/kg          | 0.042 | 0.086 | ND       |
| m&p-Xylenes                           | 69.1 | mg/kg          | 0.073 | 0.086 | ND       |
| Methyl Acetate                        | 69.1 | mg/kg          | 0.061 | 0.086 | ND       |
| Methylcyclohexane                     | 69.1 |                | 0.053 | 0.086 | ND ND    |
| Methylene chloride                    | 69.1 | mg/kg<br>mg/kg |       | 0.086 | ND       |
| •                                     |      | mg/kg<br>ma/ka | 0.025 |       |          |
| Methyl-t-butyl ether                  | 69.1 | mg/kg          | 0.027 | 0.043 | ND<br>ND |
| o-Xylene                              | 69.1 | mg/kg          | 0.059 | 0.086 |          |
| Styrene                               | 69.1 | mg/kg          | 0.047 | 0.086 | ND       |
| Tetrachloroethene                     | 69.1 | mg/kg          | 0.031 | 0.086 | ND       |
| Toluene                               | 69.1 | mg/kg          | 0.028 | 0.086 | 0.082J   |
| trans-1,2-Dichloroethene              | 69.1 | mg/kg          | 0.027 | 0.086 | ND       |
| trans-1,3-Dichloropropene             | 69.1 | mg/kg          | 0.026 | 0.086 | ND       |
| Trichloroethene                       | 69.1 | mg/kg          | 0.030 | 0.086 | 0.032J   |
| Trichlorofluoromethane                | 69.1 | mg/kg          | 0.027 | 0.086 | ND       |
| Vinyl chloride                        | 69.1 | mg/kg          | 0.061 | 0.086 | ND       |
| Xylenes (Total)                       | 69.1 | mg/kg          | 0.059 | 0.086 | ND       |

Sample ID: HSI-SB-01 (2.5-3) Lab#: AD19539-013 Matrix: Soil/Terracore

Collection Date: 9/29/2020 Receipt Date: 9/30/2020

| Analyte                                             | DF                                     | Units          | RL             |                | Result     |
|-----------------------------------------------------|----------------------------------------|----------------|----------------|----------------|------------|
| % Solids                                            | 1                                      | percent        |                |                | 87         |
| ercury (Soil/Waste) 7471B                           | ······································ | Potonic        |                |                |            |
|                                                     |                                        | [ F *4 -       | MOI            | D'             | B          |
| Analyte                                             | DF                                     | Units          | MDL            | RL             | Result     |
| Mercury                                             | 1                                      | mg/kg          | 0.015          | 0.096          | ND         |
| emivolatile Organics (no search) 8270               |                                        |                |                |                |            |
| Analyte                                             | DF                                     | Units          | MDL            | RL             | Result     |
| 1,1'-Biphenyl                                       | 1                                      | mg/kg          | 0.011          | 0.038          | ND         |
| 1,2,4,5-Tetrachlorobenzene                          | 1                                      | mg/kg          | 0.013          | 0.038          | ND         |
| 1,4-Dioxane                                         | 1                                      | mg/kg          | 0.019          | 0.019          | ND         |
| 2,3,4,6-Tetrachlorophenol                           | 1                                      | mg/kg          | 0.014          | 0.038          | ND         |
| 2,4,5-Trichlorophenol                               | 1                                      | mg/kg          | 0.011          | 0.038          | ND         |
| 2,4,6-Trichlorophenol 2,4-Dichlorophenol            | 1                                      | mg/kg          | 0.030<br>0.014 | 0.038<br>0.014 | ND<br>ND   |
| 2,4-Dimethylphenol                                  | 1                                      | mg/kg<br>mg/kg | 0.014          | 0.019          | ND<br>ND   |
| 2,4-Dinitrophenol                                   |                                        | mg/kg          | 0.17           | 0.19           | ND ND      |
| 2,4-Dinitrotoluene                                  | 1                                      | mg/kg          | 0.012          | 0.038          | ND         |
| 2,6-Dinitrotoluene                                  | 1                                      | mg/kg          | 0.020          | 0.038          | ND         |
| 2-Chloronaphthalene                                 | 1                                      | mg/kg          | 0.017          | 0.038          | ND         |
| 2-Chlorophenol                                      | 1                                      | mg/kg          | 0.013          | 0.038          | 0.35       |
| 2-Methylnaphthalene                                 | 1                                      | mg/kg          | 0.012          | 0.038          | ND         |
| 2-Methylphenol                                      | 1                                      | mg/kg          | 0.011          | 0.011          | 0.013      |
| 2-Nitroaniline                                      | 1                                      | mg/kg          | 0.018          | 0.038          | ND         |
| 2-Nitrophenol 3&4-Methylphenol                      | 1<br>1                                 | mg/kg          | 0.017<br>0.011 | 0.038<br>0.011 | ND<br>ND   |
| 3,3'-Dichlorobenzidine                              | 1                                      | mg/kg<br>mg/kg | 0.011          | 0.011          | ND<br>ND   |
| 3-Nitroaniline                                      | 1                                      | mg/kg          | 0.015          | 0.038          | ND         |
| 4,6-Dinitro-2-methylphenol                          |                                        | mg/kg          | 0.13           | 0.19           | ND         |
| 4-Bromophenyl-phenylether                           | 1                                      | mg/kg          | 0.011          | 0.038          | ND         |
| 4-Chloro-3-methylphenol                             | 1                                      | mg/kg          | 0.0092         | 0.038          | ND         |
| 4-Chloroaniline                                     | 1                                      | mg/kg          | 0.017          | 0.017          | ND         |
| 4-Chlorophenyl-phenylether                          | 1                                      | mg/kg          | 0.012          | 0.038          | ND         |
| 4-Nitroaniline                                      | 1                                      | mg/kg          | 0.015          | 0.038          | ND         |
| 4-Nitrophenol                                       | 1                                      | mg/kg          | 0.029          | 0.038          | ND         |
| Acceptable                                          | <u>1</u>                               | mg/kg          | 0.011          | 0.038          | ND ND      |
| Acenaphthylene Acetophenone                         | 1                                      | mg/kg<br>mg/kg | 0.011<br>0.014 | 0.038<br>0.038 | ND<br>ND   |
| Anthracene                                          | 1                                      | mg/kg          | 0.014          | 0.038          | ND<br>ND   |
| Atrazine                                            | 1                                      | mg/kg          | 0.015          | 0.038          | ND         |
| Benzaldehyde                                        | 1                                      | mg/kg          | 0.42           | 0.42           | ND         |
| Benzo(a)anthracene                                  | 1                                      | mg/kg          | 0.013          | 0.038          | ND         |
| Benzo[a]pyrene                                      | 1                                      | mg/kg          | 0.013          | 0.038          | ND         |
| Benzo[b]fluoranthene                                | 1                                      | mg/kg          | 0.014          | 0.038          | ND         |
| Benzo[g,h,i]perylene                                | 1                                      | mg/kg          | 0.00026        | 0.038          | ND         |
| Benzo(k)fluoranthene                                | 1                                      | mg/kg          | 0.014          | 0.038          | ND         |
| bis(2-Chloroethoxy)methane                          | 1                                      | mg/kg          | 0.011          | 0.038          | ND<br>ND   |
| bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether |                                        | mg/kg<br>mg/kg | 0.0093         | 0.0096         | ND<br>ND   |
| bis(2-Ethylhexyl)phthalate                          | 1                                      | mg/kg<br>mg/kg | 0.015          | 0.038          | 0.25       |
| Butylbenzylphthalate                                | 1                                      | mg/kg          | 0.029          | 0.038          | ND         |
| Caprolactam                                         | 1                                      | mg/kg          | 0.031          | 0.038          | ND         |
| Carbazole                                           | 1                                      | mg/kg          | 0.012          | 0.038          | ND         |
| Chrysene                                            | 1                                      | mg/kg          | 0.013          | 0.038          | ND         |
| Dibenzo[a,h]anthracene                              | 1                                      | mg/kg          | 0.014          | 0.038          | ND         |
| Dibenzofuran                                        | 1                                      | mg/kg          | 0.0097         | 0.0097         | ND         |
| Diethylphthalate                                    | 1                                      | mg/kg          | 0.025          | 0.038          | ND         |
| Dimethylphthalate                                   | 1                                      | mg/kg          | 0.011          | 0.038          | ND<br>0.35 |
| Di-n-butylphthalate                                 | <b>1</b><br>1                          | mg/kg          | 0.044          | 0.044          | 0.25<br>ND |
| Di-n-octylphthalate Fluoranthene                    | 1                                      | mg/kg<br>mg/kg | 0.025          | 0.038          | ND ND      |
| Fluorene                                            | 1                                      | mg/kg<br>mg/kg | 0.015          | 0.038          | ND<br>ND   |
| Hexachlorobenzene                                   | 1                                      | mg/kg          | 0.016          | 0.038          | ND         |
| Hexachlorobutadiene                                 | 1                                      | mg/kg          | 0.017          | 0.038          | ND         |
| Hexachlorocyclopentadiene                           | 1                                      | mg/kg          | 0.12           | 0.12           | ND         |
| Hexachloroethane                                    | 1                                      | mg/kg          | 0.017          | 0.038          | ND         |

| ple ID: H | SI-SB-01 (2.5-3)                              |      |           |                | Collection Date: | 9/29/2020 |
|-----------|-----------------------------------------------|------|-----------|----------------|------------------|-----------|
|           | D19539-013                                    |      |           |                | Receipt Date:    |           |
|           | oil/Terracore                                 |      |           |                | Receipt Date.    | 9/30/2020 |
|           | Indeno[1,2,3-cd]pyrene                        | 1    | mg/kg     | 0.017          | 0.038            | ND        |
|           | Isophorone                                    | 1    | mg/kg     | 0.017          | 0.038            | ND        |
|           | Naphthalene                                   | 4    | mg/kg     | 0.012          | 0.030            | 0.063     |
|           | Nitrobenzene                                  | 1    |           | 0.0016         | 0.038            | ND        |
|           | N-Nitroso-di-n-propylamine                    |      | mg/kg     |                |                  |           |
|           |                                               | _    | mg/kg<br> | 0.014          | 0.014            | ND        |
|           | N-Nitrosodiphenylamine                        | 1    | mg/kg     | 0.13           | 0.13             | ND        |
|           | Pentachlorophenol                             | 1    | mg/kg     | 0.18           | 0.19             | ND        |
|           | Phenanthrene                                  | 1    | mg/kg     | 0.012          | 0.038            | ND        |
|           | Phenof                                        | 1    | mg/kg     | 0.011          | 0.038            | ND        |
|           | Pyrene                                        | 1    | mg/kg     | 0.013          | 0.038            | ND        |
| TAL       | Metals 6010D                                  |      |           |                |                  |           |
|           | Analyte                                       | DF   | Units     | MDL            | RL               | Result    |
|           | Aluminum                                      | 1    | mg/kg     | 19             | 230              | 4200      |
|           | Barium                                        | 1    | mg/kg     | 0.78           | 11               | 9.1J      |
|           | Calcium                                       | ,    |           |                | 1100             |           |
|           | Chromium                                      | 1    | mg/kg     | 120            |                  | ND        |
|           |                                               | 1    | mg/kg     | 0.77           | 5.7              | 20        |
|           | Cobalt                                        | 1    | mg/kg     | 0.82           | 2.9              | ND        |
|           | Copper                                        | 1    | mg/kg     | 0.71           | 5.7              | 7.0       |
|           | Iron                                          | 1    | mg/kg     | 15             | 230              | 7600      |
|           | Lead                                          | 1    | mg/kg     | 0.71           | 5.7              | 9.8       |
|           | Magnesium                                     | 1    | mg/kg     | 22             | 570              | 350J      |
|           | Manganese                                     | 1    | mg/kg     | 0.74           | 11               | 13        |
|           | Nickel                                        | 1    | mg/kg     | 1.3            | 5.7              | 3.5J      |
|           | Potassium                                     | 1    | mg/kg     | 110            | 570              | 160J      |
|           | Sodium                                        | 1    | mg/kg     | 140            | 290              | ND        |
|           | Zinc                                          | 1    | mg/kg     | 1.7            | 11               | 9.0J      |
| TAL       | Metals 6020B                                  |      |           |                |                  |           |
|           | Analyte                                       | DF   | Units     | MDL            | RL               | Result    |
|           | Antimony                                      | 1    | mg/kg     | 0.026          | 0.92             | 0.045J    |
|           | Arsenic                                       |      |           | 0.020          | 0.23             | 1.8       |
|           |                                               |      | mg/kg     |                |                  |           |
|           | Beryllium                                     | 1    | mg/kg     | 0.018          | 0.23             | 0.059J    |
|           | Cadmium                                       |      | mg/kg     | 0.016          | 0.46             | 0.40J     |
|           | Selenium                                      | 1    | mg/kg     | 0.073          | 2.3              | 0.80J     |
|           | Silver                                        | 1    | mg/kg     | 0.030          | 0.23             | 0.054J    |
|           | Thallium                                      | 1    | mg/kg     | 0.020          | 0.46             | ND        |
|           | Vanadium                                      | 1    | mg/kg     | 0.012          | 0.23             | 14        |
| Vola      | ntile Organics (no search) 8260               |      |           |                |                  |           |
|           | Analyte                                       | DF   | Units     | MDL            | RL               | Result    |
|           | 1,1,1-Trichloroethane                         | 63.5 | mg/kg     | 0.026          | 0.073            | ND        |
|           | 1,1,2,2-Tetrachloroethane                     | 63.5 | mg/kg     | 0.033          | 0.073            | 2.7       |
|           | 1,1,2-Trichloro-1,2,2-trifluoroethane         | 63.5 | mg/kg     | 0.053          | 0.073            | ND        |
|           | 1,1,2-Trichloroethane                         | 63.5 | mg/kg     | 0.023          | 0.073            | 0.031J    |
|           | 1,1-Dichloroethane                            | 63.5 | mg/kg     | 0.031          | 0.073            | ND        |
|           | 1,1-Dichloroethene                            | 63.5 | mg/kg     | 0.039          | 0.073            | ND        |
|           | 1,2,3-Trichlorobenzene                        | 63.5 | mg/kg     | 0.057          | 0.073            | ND        |
|           | 1,2,4-Trichlorobenzene                        | 63.5 | mg/kg     | 0.053          | 0.073            | ND        |
|           | 1,2-Dibromo-3-chloropropane                   | 63.5 | mg/kg     | 0.053          | 0.073            | ND ND     |
|           | 1,2-Dibromo-3-chioropropane 1,2-Dibromoethane |      |           |                |                  |           |
|           |                                               | 63.5 | mg/kg     | 0.025          | 0.073            | ND        |
|           | 1,2-Dichlorobenzene                           | 63.5 | mg/kg     | 0.024          | 0.073            | ND        |
|           | 1,2-Dichloroethane                            | 63.5 | mg/kg     | 0.047          | 0.047            | 1.8       |
|           | 1,2-Dichloropropane                           | 63.5 | mg/kg     | 0.022          | 0.073            | ND        |
|           | 1,3-Dichlorobenzene                           | 63.5 | mg/kg     | 0.028          | 0.073            | ND        |
|           | 1,4-Dichlorobenzene                           | 63.5 | mg/kg     | 0.027          | 0.073            | ND        |
|           | 1,4-Dioxane                                   | 63.5 | mg/kg     | 2.9            | 3.7              | ND        |
|           | 2-Butanone                                    | 63.5 | mg/kg     | 0.055          | 0.073            | ND        |
|           | 2-Hexanone                                    | 63.5 | mg/kg     | 0.044          | 0.073            | ND        |
|           | 4-Methyl-2-pentanone                          | 63.5 | mg/kg     | 0.035          | 0.073            | 0.59      |
|           | Acetone                                       | 63.5 | mg/kg     | 0.33           | 0.37             | ND        |
|           | Benzene                                       | 63.5 | mg/kg     | 0.022          | 0.037            | 0.034J    |
|           | Bromochloromethane                            | 63.5 | mg/kg     | 0.057          | 0.073            | ND        |
|           | Bromodichloromethane                          | 63.5 |           |                |                  | ND        |
|           |                                               |      | mg/kg     | 0.025          | 0.073            |           |
|           | Bromoform Bromomethane                        | 63.5 | mg/kg     | 0.039          | 0.073            | ND        |
|           | wromanainana                                  | 63.5 | mg/kg     | 0.037          | 0.073            | ND        |
|           |                                               |      |           |                |                  |           |
| <u> </u>  | Carbon disulfide                              | 63.5 | mg/kg     | 0.031          | 0.073            | ND        |
|           |                                               |      |           | 0.031<br>0.024 | 0.073<br>0.073   | ND<br>ND  |

| Lab#: | HSI-SB-01 (2.5-3)<br>AD19539-013<br>Soil/Terracore |      |       |       | Collection Date:<br>Receipt Date: |       |
|-------|----------------------------------------------------|------|-------|-------|-----------------------------------|-------|
|       | Chloroethane                                       | 63.5 | mg/kg | 0.042 | 0.073                             | ND    |
|       | Chloroform                                         | 63.5 | mg/kg | 0.14  | 0.14                              | ND    |
|       | Chloromethane                                      | 63.5 | mg/kg | 0.038 | 0.073                             | ND    |
|       | cis-1,2-Dichloroethene                             | 63.5 | mg/kg | 0.046 | 0.073                             | 0.35  |
|       | cis-1,3-Dichloropropene                            | 63.5 | mg/kg | 0.023 | 0.073                             | ND    |
|       | Cyclohexane                                        | 63.5 | mg/kg | 0.036 | 0.073                             | ND    |
|       | Dibromochloromethane                               | 63.5 | mg/kg | 0.017 | 0.073                             | ND    |
|       | Dichlorodifluoromethane                            | 63.5 | mg/kg | 0.045 | 0.073                             | ND    |
| ****  | Ethylbenzene                                       | 63.5 | mg/kg | 0.034 | 0.073                             | ND    |
|       | Isopropylbenzene                                   | 63.5 | mg/kg | 0.036 | 0.073                             | ND    |
|       | m&p-Xylenes                                        | 63.5 | mg/kg | 0.062 | 0.073                             | 0.11  |
|       | Methyl Acetate                                     | 63.5 | mg/kg | 0.051 | 0.073                             | ND    |
|       | Methylcyclohexane                                  | 63.5 | mg/kg | 0.045 | 0.073                             | ND    |
|       | Methylene chloride                                 | 63.5 | mg/kg | 0.021 | 0.073                             | 2.3   |
|       | Methyl-t-butyl ether                               | 63.5 | mg/kg | 0.023 | 0.037                             | ND    |
|       | o-Xylene                                           | 63.5 | mg/kg | 0.050 | 0.073                             | ND    |
| ****  | Styrene                                            | 63.5 | mg/kg | 0.040 | 0.073                             | ND    |
|       | Tetrachloroethene                                  | 63.5 | mg/kg | 0.026 | 0.073                             | 0.21  |
|       | Toluene                                            | 63.5 | mg/kg | 0.024 | 0.073                             | 0.75  |
|       | trans-1,2-Dichloroethene                           | 63.5 | mg/kg | 0.023 | 0.073                             | 0.088 |
|       | trans-1,3-Dichloropropene                          | 63.5 | mg/kg | 0.022 | 0.073                             | ND    |
|       | Trichloroethene                                    | 63.5 | mg/kg | 0.025 | 0.073                             | 4.4   |
|       | Trichlorofluoromethane                             | 63.5 | mg/kg | 0.022 | 0.073                             | ND    |
|       | Vinyl chloride                                     | 63.5 | mg/kg | 0.052 | 0.073                             | ND    |
|       | Xylenes (Total)                                    | 63.5 | mg/kg | 0.050 | 0.073                             | 0.11  |

Sample ID: HSI-SB-01 (6-6.5) Lab#: AD19539-014 Matrix: Soil/Terracore Collection Date: 9/29/2020 Receipt Date: 9/30/2020

| Analyte                                  | DF         | Units          | RL         |            | Result   |
|------------------------------------------|------------|----------------|------------|------------|----------|
| % Solids                                 | 1          | percent        |            |            | 83       |
| rcury (Soil/Waste) 7471B                 |            |                |            |            |          |
| Analyte                                  | DF         | Units          | MDL        | RL         | Result   |
| Mercury                                  | 1          | mg/kg          | 0.015      | 0.10       | 0.063J   |
| mivolatile Organics (no search) 8270     |            |                |            |            |          |
| Analyte                                  | DF         | Units          | MDL        | RL         | Result   |
|                                          |            |                |            |            |          |
| 1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene | 200<br>200 | mg/kg<br>mg/kg | 2.3<br>2.7 | 8.0<br>8.0 | ND<br>ND |
| 1,4-Dioxane                              | 200        | mg/kg          | 4.0        | 4.0        | ND       |
| 2,3,4,6-Tetrachlorophenol                | 200        | mg/kg          | 3.0        | 8.0        | ND       |
| 2,4,5-Trichlorophenol                    | 200        | mg/kg          | 2.3        | 8.0        | ND ND    |
| 2,4,6-Trichlorophenol                    | 200        | mg/kg          | 6.2        | 8.0        | ND       |
| •                                        |            |                |            |            |          |
| 2,4-Dichlorophenol                       | 200        | mg/kg<br>ma/ka | 3.0        | 3.0        | ND<br>ND |
| 2,4-Dimethylphenol                       | 200        | mg/kg          | 3.9        | 3.9        | ND<br>ND |
| 2,4-Dinitrophenol                        | 200        | mg/kg          | 35         | 40         | ND<br>ND |
| 2,4-Dinitrotoluene                       | 200        | mg/kg          | 2.5        | 8.0        | ND       |
| 2,6-Dinitrotoluene                       | 200        | mg/kg          | 4.1        | 8.0        | ND       |
| 2-Chloronaphthalene                      | 200        | mg/kg          | 3.6        | 8.0        | ND 10    |
| 2-Chlorophenol                           | 200        | mg/kg          | 2.6        | 8.0        | 13       |
| 2-Methylnaphthalene                      | 200        | mg/kg          | 2.5        | 8.0        | ND       |
| 2-Methylphenol                           | 200        | mg/kg          | 2.3        | 2.3        | ND       |
| 2-Nitroaniline                           | 200        | mg/kg          | 3.8        | 8.0        | ND       |
| 2-Nitrophenol                            | 200        | mg/kg          | 3.6        | 8.0        | ND       |
| 3&4-Methylphenoi                         | 200        | mg/kg          | 2.3        | 2.3        | ND       |
| 3,3'-Dichlorobenzidine                   | 200        | mg/kg          | 6.5        | 8.0        | ND       |
| 3-Nitroaniline                           | 200        | mg/kg          | 3.1        | 8.0        | ND       |
| 4,6-Dinitro-2-methylphenol               | 200        | mg/kg          | 28         | 40         | ND       |
| 4-Bromophenyl-phenylether                | 200        | mg/kg          | 2.2        | 8.0        | ND       |
| 4-Chloro-3-methylphenol                  | 200        | mg/kg          | 1.9        | 8.0        | ND       |
| 4-Chloroaniline                          | 200        | mg/kg          | 3.5        | 3.5        | ND       |
| 4-Chlorophenyl-phenylether               | 200        | mg/kg          | 2.5        | 8.0        | ND       |
| 4-Nitroaniline                           | 200        | mg/kg          | 3.1        | 8.0        | ND       |
| 4-Nitrophenol                            | 200        | mg/kg          | 6.1        | 8.0        | ND       |
| Acenaphthene                             | 200        | mg/kg          | 2.3        | 8.0        | ND       |
| Acenaphthylene                           | 200        | mg/kg          | 2.4        | 8.0        | ND       |
| Acetophenone                             | 200        | mg/kg          | 2.9        | 8.0        | ND       |
| Anthracene                               | 200        | mg/kg          | 2.2        | 8.0        | ND       |
| Atrazine                                 | 200        | mg/kg          | 3.2        | 8.0        | ND       |
| Benzaldehyde                             | 200        | mg/kg          | 87         | 87         |          |
| - · · · ·                                |            |                |            |            |          |
| Benzo(a)pyrene                           | 200<br>200 | mg/kg<br>mg/kg | 2.7<br>2.7 | 8.0<br>8.0 | ND<br>ND |
| Benzo[a]pyrene Benzo[b]fluoranthene      | 200        |                |            | 8.0<br>8.0 | ND<br>ND |
| Benzo[g,h,i]perylene                     |            | mg/kg          | 2.9        |            | ND ND    |
| * *                                      | 200        | mg/kg          | 0.055      | 8.0        |          |
| Benzo[k]fluoranthene                     | 200        | mg/kg          | 3.0        | 8.0        | ND       |
| bis(2-Chloroethoxy)methane               | 200        | mg/kg          | 2.3        | 8.0        | ND       |
| bis(2-Chloroethyl)ether                  | 200        | mg/kg          | 1.9        | 2.0        | ND ND    |
| bis(2-Chloroisopropyl)ether              | 200        | mg/kg<br>      | 3.2        | 8.0        | ND       |
| bis(2-Ethylhexyl)phthalate               | 200        | mg/kg          | 7.1        | 8.0        | 50       |
| Butylbenzylphthalate                     | 200        | mg/kg          | 6.2        | 8.0        | ND       |
| Caprolactam                              | 200        | mg/kg          | 6.4        | 8.0        | ND       |
| Carbazole                                | 200        | mg/kg          | 2.5        | 8.0        | ND       |
| Chrysene                                 | 200        | mg/kg          | 2.7        | 8.0        | ND       |
| Dibenzo[a,h]anthracene                   | 200        | mg/kg          | 2.9        | 8.0        | ND       |
| Dibenzofuran                             | 200        | mg/kg          | 2.0        | 2.0        | ND       |
| Diethylphthalate                         | 200        | mg/kg          | 5.2        | 8.0        | ND       |
| Dimethylphthalate                        | 200        | mg/kg          | 2.3        | 8.0        | ND       |
| Di-n-butylphthalate                      | 200        | mg/kg          | 9.2        | 9.2        | 720      |
| Di-n-octylphthalate                      | 200        | mg/kg          | 5.3        | 8.0        | ND       |
| Fluoranthene                             | 200        | mg/kg          | 3.1        | 8.0        | ND       |
| Fluorene                                 | 200        | mg/kg          | 2.2        | 8.0        | ND       |
| Hexachlorobenzene                        | 200        | mg/kg          | 3.4        | 8.0        | ND       |
| Hexachlorobutadiene                      | 200        | mg/kg          | 3.6        | 8.0        | ND       |
| Hexachlorocyclopentadiene                | 200        | mg/kg          | 26         | 26         | ND       |
| Hexachloroethane                         | 200        | mg/kg          | 3.5        | 8.0        | ND       |

| ID: HSI-SB-01 (6-6.5)                                       |                     |                       |                    | <b>Collection Date:</b> | 9/29/2020  |
|-------------------------------------------------------------|---------------------|-----------------------|--------------------|-------------------------|------------|
| b#: AD19539-014                                             |                     |                       |                    | Receipt Date:           |            |
| rix: Soil/Terracore  Indeno[1,2,3-cd]pyrene                 | 200                 | mg/kg                 | 3.6                | 8.0                     | ND ND      |
| Isophorone                                                  | 200                 | mg/kg                 | 2.6                | 8.0                     | ND         |
| Naphthalene                                                 | 200                 | mg/kg                 | 2.3                | 2.3                     | 16         |
| Nitrobenzene                                                | 200                 | mg/kg                 | 0.33               | 8.0                     | ND         |
| N-Nitroso-dí-n-propylamine                                  | 200                 | mg/kg                 | 3.0                | 3.0                     | ND         |
| N-Nitrosodiphenylamine                                      | 200                 | mg/kg                 | 27                 | 27                      | ND         |
| Pentachlorophenol                                           | 200                 | mg/kg                 | 39                 | 40                      | ND         |
| Phenanthrene                                                | 200                 | mg/kg                 | 2.6                | 8.0                     | ND         |
| Phenol                                                      | 200                 | mg/kg                 | 2.2                | 8.0                     | ND         |
| Pyrene                                                      | 200                 | mg/kg                 | 2.7                | 8.0                     | ND ND      |
| TAL Metals 6010D                                            | DF                  | llmite.               | MDI                |                         | Beauti     |
| Analyte                                                     |                     | Units                 | MDL                | RL                      | Result     |
| Aluminum                                                    | 1                   | mg/kg                 | 20                 | 240                     | 4200       |
| Barium                                                      | 1                   | mg/kg                 | 0.81               | 12                      | 75         |
| Calcium                                                     | 1                   | mg/kg                 | 120                | 1200                    | 290J       |
| Chromium                                                    | 1                   | mg/kg                 | 0.81               | 6.0                     | 60         |
| Cobalt<br>Copper                                            | 1                   | mg/kg<br>ma/ka        | 0.86<br>0.74       | 3.0<br>6.0              | 1.3J<br>12 |
| Copper<br>Iron                                              | 1                   | mg/kg<br>mg/kg        | 0.74<br>16         | 240                     | 12<br>8200 |
| tron<br>Lead                                                | 1                   | mg/kg<br>mg/kg        | 0.74               | 6.0                     | 160        |
| Magnesium                                                   | ·i                  | mg/kg                 | 23                 | 600                     | 420J       |
| Manganese                                                   | 1                   | mg/kg                 | 0.77               | 12                      | 27         |
| Nickel                                                      | 1                   | mg/kg                 | 1.3                | 6.0                     | 8.1        |
| Potassium                                                   | 1                   | mg/kg                 | 120                | 600                     | 160J       |
| Sodium                                                      | 1                   | mg/kg                 | 150                | 300                     | ND         |
| Zinc                                                        | 1                   | mg/kg                 | 1.8                | 12                      | 33         |
| TAL Metals 6020B                                            |                     |                       |                    |                         |            |
| Analyte                                                     | DF                  | Units                 | MDL                | RL                      | Result     |
| Antimony                                                    | 1                   | mg/kg                 | 0.027              | 0.96                    | 0.84J      |
| Arsenic                                                     | 1                   | mg/kg                 | 0.021              | 0.24                    | 2.3        |
| Beryllium<br>Cadmium                                        | 1                   | mg/kg                 | 0.019              | 0.24                    | 0.20J      |
| Selenium                                                    | 1                   | mg/kg                 | 0.017              | 0.48                    | 3.3        |
| Silver                                                      | 1                   | mg/kg<br>mg/kg        | 0.077              | 0.24                    | 0.062J     |
| Thallium                                                    | 1                   | mg/kg                 | 0.021              | 0.48                    | ND         |
| Vanadium                                                    | 11                  | mg/kg                 | 0.013              | 0.24                    | 18         |
| Volatile Organics (no search) 8260                          |                     |                       |                    |                         |            |
| Analyte                                                     | DF                  | Units                 | MDL                | RL                      | Result     |
| 1,1,1-Trichloroethane                                       | 1220                | mg/kg                 | 0.53               | 1.5                     | ND         |
| 1,1,2,2-Tetrachloroethane                                   | 1220                | mg/kg                 | 0.66               | 1.5                     | 58<br>NO   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane | 1220<br>1220        | mg/kg<br>mg/kg        | 1.1                | 1.5<br>1.5              | ND<br>ND   |
| 1,1,2-1 nchloroethane                                       | 1220<br>1220        | mg/kg<br>mg/kg        | 0.47               | 1.5                     | ND<br>ND   |
| 1,1-Dichloroethene                                          | 1220                | mg/kg<br>mg/kg        | 0.03               | 1.5                     | ND         |
| 1,2,3-Trichlorobenzene                                      | 1220                | mg/kg                 | 1.2                | 1.5                     | ND         |
| 1,2,4-Trichlorobenzene                                      | 1220                | mg/kg                 | 1.1                | 1.5                     | ND         |
| 1,2-Dibromo-3-chloropropane                                 | 1220                | mg/kg                 | 1.2                | 1.5                     | ND         |
| 1,2-Dibromoethane                                           | 1220                | mg/kg                 | 0.50               | 1.5                     | ND         |
| 1,2-Dichlorobenzene                                         | 1220                | mg/kg                 | 0.48               | 1.5                     | ND         |
| 1,2-Dichloroethane                                          | 1220                | mg/kg                 | 0.94               | 0.94                    | 19         |
| 1,2-Dichloropropane                                         | 1220                | mg/kg                 | 0.44               | 1.5                     | ND         |
| 1,3-Dichlorobenzene                                         | 1220                | mg/kg                 | 0.55               | 1.5                     | ND         |
| 1,4-Dichlorobenzene                                         | 1220                | mg/kg                 | 0.54               | 1.5                     | ND         |
| 1,4-Dioxane                                                 | 1220                | mg/kg                 | 58                 | 74                      | ND ND      |
| 2-Butanone                                                  | 1220                | mg/kg                 | 1.1                | 1.5                     | ND<br>ND   |
| 2-Hexanone                                                  | 1220<br><b>1220</b> | mg/kg<br>mg/kg        | 0.88               | 1.5<br>1.5              | ND<br>14   |
| 4-Methyl-2-pentanone Acetone                                | 1220                | <b>mg/kg</b><br>mg/kg | <b>0.72</b><br>6.7 | 1.5<br>7.4              | 14<br>ND   |
| Benzene                                                     | 1220                | mg/kg                 | 0.44               | 0.74                    | 2.4        |
| Bromochloromethane                                          | 1220                | mg/kg<br>mg/kg        | 1.2                | 1.5                     | ND         |
| Bromodichloromethane                                        | 1220                | mg/kg                 | 0.51               | 1.5                     | ND         |
| Bromoform                                                   | 1220                | mg/kg                 | 0.80               | 1.5                     | ND         |
| Bromomethane                                                | 1220                | mg/kg                 | 0.74               | 1.5                     | ND         |
|                                                             |                     |                       | 0.62               | 1.5                     | ND         |
| Carbon disulfide                                            | 1220                | mg/kg                 | 0.02               |                         |            |
| Carbon disulfide<br>Carbon tetrachloride                    | 1220<br>1220        | mg/kg<br>mg/kg        | 0.48               | 1.5                     | ND         |

| Lab#:        | HSI-SB-01 (6-6.5)<br>AD19539-014<br>Soil/Terracore |      |       |      | Collection Date:<br>Receipt Date: |      |
|--------------|----------------------------------------------------|------|-------|------|-----------------------------------|------|
|              | Chloroethane                                       | 1220 | mg/kg | 0.85 | 1.5                               | ND   |
|              | Chloroform                                         | 1220 | mg/kg | 2.9  | 2.9                               | ND   |
|              | Chloromethane                                      | 1220 | mg/kg | 0.76 | 1.5                               | ND   |
|              | cis-1,2-Dichloroethene                             | 1220 | mg/kg | 0.94 | 1.5                               | 9.9  |
| _            | cis-1,3-Dichloropropene                            | 1220 | mg/kg | 0.47 | 1.5                               | ND   |
|              | Cyclohexane                                        | 1220 | mg/kg | 0.72 | 1.5                               | ND   |
|              | Dibromochloromethane                               | 1220 | mg/kg | 0.35 | 1.5                               | ND   |
|              | Dichlorodifluoromethane                            | 1220 | mg/kg | 0.91 | 1.5                               | ND   |
|              | Ethylbenzene                                       | 1220 | mg/kg | 0.69 | 1.5                               | 12   |
|              | Isopropylbenzene                                   | 1220 | mg/kg | 0.72 | 1.5                               | 1.2J |
|              | m&p-Xylenes                                        | 1220 | mg/kg | 1.3  | 1.5                               | 57   |
|              | Methyl Acetate                                     | 1220 | mg/kg | 1.0  | 1.5                               | ND   |
| <del>-</del> | Methylcyclohexane                                  | 1220 | mg/kg | 0.90 | 1.5                               | 1.8  |
|              | Methylene chloride                                 | 1220 | mg/kg | 0.43 | 1.5                               | 49   |
|              | Methyl-t-butyl ether                               | 1220 | mg/kg | 0.46 | 0.74                              | ND   |
|              | o-Xylene                                           | 1220 | mg/kg | 1.0  | 1.5                               | 13   |
|              | Styrene                                            | 1220 | mg/kg | 0.80 | 1.5                               | ND   |
|              | Tetrachloroethene                                  | 1220 | mg/kg | 0.53 | 1.5                               | 29   |
|              | Toluene                                            | 1220 | mg/kg | 0.48 | 1.5                               | 570  |
|              | trans-1,2-Dichloroethene                           | 1220 | mg/kg | 0.46 | 1.5                               | 3.4  |
|              | trans-1,3-Dichloropropene                          | 1220 | mg/kg | 0.45 | 1.5                               | ND   |
|              | Trichloroethene                                    | 1220 | mg/kg | 0.51 | 1.5                               | 460  |
|              | Trichlorofluoromethane                             | 1220 | mg/kg | 0.45 | 1.5                               | ND   |
|              | Vinyl chloride                                     | 1220 | mg/kg | 1.0  | 1.5                               | ND   |
|              | Xylenes (Total)                                    | 1220 | mg/kg | 1.0  | 1.5                               | 70   |

Sample ID: HSI-SB-01 (10-10.5)

Lab#: AD19539-015 Matrix: Soil/Terracore Collection Date: 9/29/2020 Receipt Date: 9/30/2020

#### % Solids SM2540G

| DF    | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Result   |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| 1     | 1 percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |  |
| DF    | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result   |  |
| 0.616 | ma/ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0011J  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00097J |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0016   |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0073   |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0040   |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0080   |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0086   |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND NO    |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.18     |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.052    |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0028   |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0024   |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00093J |  |
|       | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0031   |  |
| 0.616 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND       |  |
| 0.616 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0019   |  |
| 0.616 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       |  |
| 0.616 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       |  |
| 0.616 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0094   |  |
| 0.616 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0027   |  |
| 0.616 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       |  |
| 0.616 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.030    |  |
| 0.010 | a.v.a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *****    |  |
| 0.616 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       |  |
| _     | 1 DF 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 | DF Units  0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg 0.616 mg/kg | DF Units MDL  0.616 mg/kg 0.00069 0.616 mg/kg 0.00034 0.616 mg/kg 0.00035 0.616 mg/kg 0.00035 0.616 mg/kg 0.00065 0.616 mg/kg 0.00065 0.616 mg/kg 0.00041 0.616 mg/kg 0.00041 0.616 mg/kg 0.00047 0.616 mg/kg 0.00041 0.616 mg/kg 0.00037 0.616 mg/kg 0.00037 0.616 mg/kg 0.00038 0.616 mg/kg 0.00031 0.616 mg/kg 0.00062 0.616 mg/kg 0.00062 0.616 mg/kg 0.00040 0.616 mg/kg 0.00040 0.616 mg/kg 0.00040 0.616 mg/kg 0.00064 0.616 mg/kg 0.00064 0.616 mg/kg 0.00051 0.616 mg/kg 0.00051 0.616 mg/kg 0.00055 0.616 mg/kg 0.00055 0.616 mg/kg 0.00055 0.616 mg/kg 0.00055 0.616 mg/kg 0.00055 0.616 mg/kg 0.00055 0.616 mg/kg 0.00055 0.616 mg/kg 0.00055 0.616 mg/kg 0.00055 0.616 mg/kg 0.00055 0.616 mg/kg 0.00055 0.616 mg/kg 0.00055 0.616 mg/kg 0.00055 0.616 mg/kg 0.00055 0.616 mg/kg 0.00055 0.616 mg/kg 0.00026 0.616 mg/kg 0.00026 0.616 mg/kg 0.00062 0.616 mg/kg 0.00090 0.616 mg/kg 0.00090 0.616 mg/kg 0.00090 0.616 mg/kg 0.00090 0.616 mg/kg 0.00090 0.616 mg/kg 0.00090 0.616 mg/kg 0.00090 0.616 mg/kg 0.00090 0.616 mg/kg 0.00090 0.616 mg/kg 0.00090 0.616 mg/kg 0.00090 0.616 mg/kg 0.00090 0.616 mg/kg 0.00090 0.616 mg/kg 0.00050 0.616 mg/kg 0.00050 0.616 mg/kg 0.00050 0.616 mg/kg 0.00050 0.616 mg/kg 0.00050 0.616 mg/kg 0.00050 0.616 mg/kg 0.00050 | DF       |  |

Xylenes (Total)

mg/kg

0.616

0.00053

0.00075

0.0043

Sample ID: HSI-SB-01 (14.5-15)

Lab#: AD19539-016 Matrix: Soil/Terracore Collection Date: 9/29/2020 Receipt Date: 9/30/2020

### % Solids SM2540G

| Analyte  | DF | Units   | RL | Result |
|----------|----|---------|----|--------|
| % Solids | 1  | percent |    | 80     |

### Volatile Organics (no search) 8260

| Analyte                               | DF    | Units | MDL     | RL      | Result   |
|---------------------------------------|-------|-------|---------|---------|----------|
| 1,1,1-Trichloroethane                 | 0.71  | mg/kg | 0.00082 | 0.0018  | ND       |
| 1,1,2,2-Tetrachloroethane             | 0.71  | mg/kg | 0.00040 | 0.0018  | 0.0024   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.71  | mg/kg | 0.0012  | 0.0018  | ND       |
| 1,1,2-Trichloroethane                 | 0.71  | mg/kg | 0.00041 | 0.0018  | ND       |
| 1,1-Dichloroethane                    | 0.71  | mg/kg | 0.00077 | 0.0018  | ND       |
| 1,1-Dichloroethene                    | 0.71  | mg/kg | 0.0010  | 0.0018  | ND       |
| 1,2,3-Trichlorobenzene                | 0.71  | mg/kg | 0.00049 | 0.0018  | ND       |
| 1,2,4-Trichlorobenzene                | 0.71  | mg/kg | 0.00056 | 0.0018  | ND       |
| 1,2-Dibromo-3-chloropropane           | 0.71  | mg/kg | 0.00049 | 0.0018  | ND       |
| 1,2-Dibromoethane                     | 0.71  | mg/kg | 0.00044 | 0.00044 | ND       |
| 1,2-Dichlorobenzene                   | 0.71  | mg/kg | 0.00045 | 0.0018  | ND       |
| 1,2-Dichloroethane                    | 0.71  | mg/kg | 0.00036 | 0.0018  | 0.010    |
| 1,2-Dichloropropane                   | 0.71  | mg/kg | 0.00073 | 0.0018  | ND       |
| 1,3-Dichlorobenzene                   | 0.71  | mg/kg | 0.00049 | 0.0018  | ND       |
| 1,4-Dichlorobenzene                   | 0.71  | mg/kg | 0.00047 | 0.0018  | ND       |
| 1,4-Dioxane                           | 0.71  | mg/kg | 0.043   | 0.089   | ND       |
| 2-Butanone                            | 0.71  | mg/kg | 0.0011  | 0.0018  | ND       |
| 2-Hexanone                            | 0.71  | mg/kg | 0.00075 | 0.0018  | ND       |
| 4-Methyl-2-pentanone                  | 0.71  | mg/kg | 0.00051 | 0.0018  | 0.00081J |
| Acetone                               | 0.71  | mg/kg | 0.0060  | 0.0089  | 0.012    |
| Benzene                               | 0.71  | mg/kg | 0.00065 | 0.00089 | 0.0030   |
| Bromochloromethane                    | 0.71  | mg/kg | 0.00062 | 0.0018  | ND       |
| Bromodichloromethane                  | 0.71  | mg/kg | 0.00042 | 0.0018  | ND       |
| Bromoform                             | 0.71  | mg/kg | 0.00029 | 0.0018  | ND       |
| Bromomethane                          | 0.71  | mg/kg | 0.0014  | 0.0018  | ND       |
| Carbon disulfide                      | 0.71  | mg/kg | 0.0030  | 0.0030  | ND       |
| Carbon tetrachloride                  | 0.71  | mg/kg | 0.00086 | 0.0018  | ND       |
| Chlorobenzene                         | 0.71  | mg/kg | 0.00055 | 0.0018  | 0.065    |
| Chloroethane                          | 0.71  | mg/kg | 0.0017  | 0.0018  | ND       |
| Chloroform                            | 0.71  | mg/kg | 0.0012  | 0.0018  | ND       |
| Chloromethane                         | 0.71  | mg/kg | 0.0011  | 0.0018  | ND       |
| cis-1,2-Dichloroethene                | 0.71  | mg/kg | 0.00072 | 0.0018  | 0.014    |
| cis-1,3-Dichloropropene               | 0.71  | mg/kg | 0.00047 | 0.0018  | ND       |
| Cyclohexane                           | 0.71  | mg/kg | 0.0011  | 0.0018  | ND       |
| Dibromochloromethane                  | 0.71  | mg/kg | 0.00038 | 0.0018  | ND       |
| Dichlorodifluoromethane               | 0.71  | mg/kg | 0.0013  | 0.0018  | ND       |
| Ethylbenzene                          | 0.71  | mg/kg | 0.00061 | 0.00089 | 0.00070J |
| Isopropylbenzene                      | 0.71  | mg/kg | 0.00074 | 0.00089 | ND       |
| m&p-Xylenes                           | 0.71  | mg/kg | 0.0011  | 0.0011  | 0.0013   |
| Methyl Acetate                        | 0.71  | mg/kg | 0.00085 | 0.0018  | ND       |
| Methylcyclohexane                     | 0.71  | mg/kg | 0.00080 | 0.0018  | ND       |
| Methylene chloride                    | 0.71  | mg/kg | 0.00067 | 0.0018  | 0.022    |
| Methyl-t-butyl ether                  | 0.71  | mg/kg | 0.00048 | 0.00089 | 0.0012   |
| o-Xylene                              | 0.71  | mg/kg | 0.00063 | 0.00089 | ND       |
| Styrene                               | 0.71  | mg/kg | 0.00049 | 0.0018  | ND       |
| Tetrachloroethene                     | 0.71  | mg/kg | 0.00087 | 0.0018  | ND       |
| Toluene                               | 0.71  | mg/kg | 0.00059 | 0.00089 | 0.035    |
| trans-1,2-Dichloroethene              | 0.71  | mg/kg | 0.0011  | 0.0018  | 0.0027   |
| trans-1,3-Dichloropropene             | 0.71  | mg/kg | 0.00042 | 0.0018  | ND       |
| Trichloroethene                       | 0.71  | mg/kg | 0.00073 | 0.0018  | 0.040    |
| Trichlorofluoromethane                | 0.71  | mg/kg | 0.0010  | 0.0018  | ND       |
| Vinyl chloride                        | 0.71  | mg/kg | 0.0010  | 0.0018  | 0.0075   |
| Xylenes (Total)                       | V., 1 | A.u.A | 0.00063 | 0.00089 | 0.0013   |

Sample ID: HSI-SB-D1 Lab#: AD19539-017 Matrix: Soil/Terracore Collection Date: 9/29/2020 Receipt Date: 9/30/2020

| Analyte                              | DF         | Units          | RL        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result    |
|--------------------------------------|------------|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| % Solids                             | 1          | percent        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84        |
| rcury (Soil/Waste) 7471B             |            |                |           | THE RESERVE TO SERVE THE SERVE TO SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SERVE THE SE |           |
|                                      | DF         | Units          | MDL       | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result    |
| Analyte                              |            |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Mercury                              |            | mg/kg          | 0.015     | 0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.14      |
| nivolatile Organics (no search) 8270 |            |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Analyte                              | DF         | Units          | MDL       | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result    |
| 1,1'-Biphenyl                        | 400        | mg/kg          | 4.6       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 1,2,4,5-Tetrachlorobenzene           | 400        | mg/kg          | 5.3       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 1,4-Dioxane                          | 400        | mg/kg          | 8.0       | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND        |
| 2,3,4,6-Tetrachlorophenol            | 400        | mg/kg          | 6.0       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 2,4,5-Trichlorophenol                | 400        | mg/kg          | 4.5       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 2,4,6-Trichlorophenol                | 400        | mg/kg          | 12        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 2,4-Dichlorophenol                   | 400        | mg/kg          | 6.0       | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND        |
| 2,4-Dimethylphenol                   | 400        | mg/kg          | 7.7<br>69 | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND ND     |
| 2,4-Dinitrophenol 2,4-Dinitrotoluene | 400<br>400 | mg/kg<br>ma/ka | 4.9       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND  |
| 2,6-Dinitrotoluene                   | 400        | mg/kg<br>mg/kg | 8.1       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 2-Chloronaphthalene                  | 400        | mg/kg          | 7.1       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 2-Chlorophenol                       | 400        | mg/kg          | 5.2       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24        |
| 2-Methylnaphthalene                  | 400        | mg/kg          | 4.9       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND ND     |
| 2-Methylphenol                       | 400        | mg/kg          | 4.6       | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND        |
| 2-Nitroaniline                       | 400        | mg/kg          | 7.5       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 2-Nitrophenol                        | 400        | mg/kg          | 7.2       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 3&4-Methylphenol                     | 400        | mg/kg          | 4.6       | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND        |
| 3,3'-Dichlorobenzidine               | 400        | mg/kg          | 13        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 3-Nitroaniline                       | 400        | mg/kg          | 6.2       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 4,6-Dinitro-2-methylphenol           | 400        | mg/kg          | 55        | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND ND     |
| 4-Bromophenyl-phenylether            | 400        | mg/kg          | 4.4       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 4-Chloro-3-methylphenol              | 400        | mg/kg          | 3.8       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 4-Chloroaniline                      | 400        | mg/kg          | 7.0       | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND        |
| 4-Chlorophenyl-phenylether           | 400        | mg/kg          | 4.9       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 4-Nitroaniline                       | 400        | mg/kg          | 6.1       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| 4-Nitrophenol                        | 400        | mg/kg          | 12        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Acenaphthene                         | 400        | mg/kg          | 4.5       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Acenaphthylene                       | 400        | mg/kg          | 4.7       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Acetophenone                         | 400        | mg/kg          | 5.7       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Anthracene                           | 400        | mg/kg          | 4.4       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Atrazine                             | 400        | mg/kg          | 6.4       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Benzaldehyde                         | 400        | mg/kg          | 170       | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND        |
| Benzo(a)anthracene                   | 400        | mg/kg          | 5.3       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Benzo(a)pyrene                       | 400        | mg/kg          | 5.4       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Benzo[b]fluoranthene                 | 400        | mg/kg          | 5.7       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Benzo[g,h,i]perylene                 | 400        | mg/kg          | 0.11      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Benzo[k]fluoranthene                 | 400        | mg/kg          | 5.8       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| bis(2-Chloroethoxy)methane           | 400        | mg/kg          | 4.5       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| bis(2-Chloroethyl)ether              | 400        | mg/kg          | 3.9       | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND        |
| bis(2-Chloroisopropyl)ether          | 400        | mg/kg          | 6.3       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| bis(2-Ethylhexyl)phthalate           | 400        | mg/kg          | 14        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58        |
| Butylbenzylphthalate                 | 400        | mg/kg          | 12        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Caprolactam                          | 400        | mg/kg          | 13        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>ND</u> |
| Carbazole                            | 400        | mg/kg          | 4.9       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Chrysene                             | 400        | mg/kg          | 5.4       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Dibenzo[a,h]anthracene               | 400        | mg/kg          | 5.8       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Dibenzofuran                         | 400        | mg/kg          | 4.0       | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND        |
| Diethylphthalate                     | 400        | mg/kg          | 10        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Dimethylphthalate                    | 400        | mg/kg          | 4.5       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Di-n-butylphthalate                  | 400        | mg/kg          | 18        | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1200      |
| Di-n-octylphthalate                  | 400        | mg/kg          | 11        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Fluoranthene                         | 400        | mg/kg          | 6.1       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Fluorene                             | 400        | mg/kg          | 4.3       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Hexachlorobenzene                    | 400        | mg/kg          | 6.6       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Hexachlorobutadiene                  | 400        | mg/kg          | 7.1       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Hexachlorocyclopentadiene            | 400        | mg/kg          | 52        | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |
| Hexachloroethane                     | 400        | mg/kg          | 7.0       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND        |

| e ID: | HSI-SB-D1                                                                                                                       |                                                      |                                                  |                                        | <b>Collection Date:</b>                 | 9/29/2020            |
|-------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|----------------------------------------|-----------------------------------------|----------------------|
|       | AD19539-017                                                                                                                     |                                                      |                                                  |                                        | Receipt Date:                           |                      |
|       | Soil/Terracore                                                                                                                  |                                                      |                                                  |                                        | recoupt Date.                           | 913012020            |
|       | Indeno[1,2,3-cd]pyrene                                                                                                          | 400                                                  | mg/kg                                            | 7.2                                    | 16                                      | ND                   |
|       | Isophorone                                                                                                                      | 400                                                  | mg/kg                                            | 5.1                                    | 16                                      | ND                   |
|       | Naphthalene                                                                                                                     | 400                                                  | mg/kg                                            | 4.6                                    | 4.6                                     | 26                   |
|       | Nitrobenzene                                                                                                                    | 400                                                  | mg/kg                                            | 0.64                                   | 16                                      | ND                   |
|       | N-Nitroso-di-n-propylamine                                                                                                      | 400                                                  | mg/kg                                            | 6.0                                    | 6.0                                     | ND ND                |
|       | N-Nitrosodiphenylamine                                                                                                          | 400                                                  | mg/kg                                            | 54                                     | 54                                      | ND                   |
|       | Pentachlorophenol                                                                                                               | 400                                                  | mg/kg                                            | 76                                     | 79                                      | ND                   |
|       | Phenanthrene                                                                                                                    | 400                                                  | mg/kg                                            | 5.1                                    | 16                                      | ND                   |
| _     | Phenol                                                                                                                          | 400                                                  | mg/kg                                            | 4.4                                    | 16                                      | ND ND                |
|       | Pyrene                                                                                                                          | 400                                                  | mg/kg                                            | 5.4                                    | 16                                      | ND                   |
| •     | TAL Metals 6010D                                                                                                                |                                                      |                                                  |                                        |                                         |                      |
| -     | Analyte                                                                                                                         | DF                                                   | Units                                            | MDL                                    | RL                                      | Result               |
|       | Aluminum                                                                                                                        | 1                                                    | mg/kg                                            | 20                                     | 240                                     | 5000                 |
|       | Barium                                                                                                                          | 1                                                    | mg/kg                                            | 0.80                                   | 12                                      | 37                   |
|       | Calcium                                                                                                                         | 1                                                    | mg/kg                                            | 120                                    | 1200                                    | 1300                 |
|       | Chromium                                                                                                                        | 1                                                    | mg/kg                                            | 0.80                                   | 6.0                                     | 49                   |
|       | Cobalt                                                                                                                          |                                                      | mg/kg                                            | 0.85                                   | 3.0                                     | 1.4J                 |
|       | Copper                                                                                                                          | 1                                                    | mg/kg                                            | 0.73                                   | 6.0                                     | 12                   |
|       | Iron                                                                                                                            | 1                                                    | mg/kg                                            | 16                                     | 240                                     | 9700                 |
|       | Lead                                                                                                                            | 1                                                    | mg/kg                                            | 0.73                                   | 6.0                                     | 140                  |
|       | Magnesium                                                                                                                       | <u>'</u>                                             | mg/kg                                            | 23                                     | 600                                     | 440J                 |
|       | Manganese                                                                                                                       | 1                                                    | mg/kg                                            | 0.76                                   | 12                                      | 27                   |
|       | Nickel                                                                                                                          | 1                                                    | mg/kg                                            | 1.3                                    | 6.0                                     | 9.0                  |
|       | Potassium                                                                                                                       | 1                                                    | mg/kg                                            | 120                                    | 600                                     | 190J                 |
|       | Sodium                                                                                                                          | 1 -                                                  | mg/kg                                            | 150                                    | 300                                     | ND                   |
|       | Zinc                                                                                                                            | 1                                                    | mg/kg                                            | 1.8                                    | 12                                      | 31                   |
| •     | TAL Metals 6020B                                                                                                                |                                                      |                                                  | 30000                                  |                                         |                      |
| •     | Analyte                                                                                                                         | DF                                                   | Units                                            | MDL                                    | RL                                      | Result               |
|       | Antimony                                                                                                                        | 1                                                    | mg/kg                                            | 0.027                                  | 0.95                                    | 1.3                  |
|       | Arsenic                                                                                                                         | 1                                                    | mg/kg                                            | 0.021                                  | 0.24                                    | 2.3                  |
|       | Beryllium                                                                                                                       | 1                                                    | mg/kg                                            | 0.019                                  | 0.24                                    | 0.17J                |
|       | Cadmium                                                                                                                         | 1                                                    | mg/kg                                            | 0.017                                  | 0.48                                    | 6.2                  |
|       | Selenium                                                                                                                        | <u>_</u>                                             | mg/kg                                            | 0.076                                  | 2.4                                     | 2.8                  |
|       | Silver                                                                                                                          | 1                                                    | mg/kg                                            | 0.031                                  | 0.24                                    | 0.064J               |
|       | Thallium                                                                                                                        | 1                                                    | mg/kg                                            | 0.021                                  | 0.48                                    | ND                   |
|       | Vanadium                                                                                                                        | 1                                                    | mg/kg                                            | 0.013                                  | 0.24                                    | 19                   |
|       | Volatile Organics (no search) 8260                                                                                              |                                                      |                                                  |                                        |                                         |                      |
| -     | Analyte                                                                                                                         | DF                                                   | Units                                            | MDL                                    | RL                                      | Result               |
|       | 1,1,1-Trichloroethane                                                                                                           | 6590                                                 | mg/kg                                            | 2.8                                    | 7.8                                     | ND                   |
|       | 1,1,2,2-Tetrachloroethane                                                                                                       | 6590                                                 | mg/kg                                            | 3.5                                    | 7.8                                     | 200                  |
|       | 1,1,2-Trichloro-1,2,2-trifluoroethane                                                                                           | 6590                                                 | mg/kg                                            | 5.7                                    | 7.8                                     | ND                   |
|       | 1.1.2-Trichloroethane                                                                                                           | 6590                                                 | mg/kg                                            | 2.5                                    | 7.8                                     | ND                   |
|       | 1,1-Dichloroethane                                                                                                              | 6590                                                 | mg/kg                                            | 3.4                                    | 7.8                                     | ND ND                |
|       | 1,1-Dichloroethene                                                                                                              | 6590                                                 | mg/kg<br>mg/kg                                   | 3.4<br>4.2                             | 7.8<br>7.8                              | ND<br>ND             |
|       | 1,1-Dictioroetriene 1,2,3-Trichlorobenzene                                                                                      | 6590                                                 | mg/kg<br>mg/kg                                   | 4.2<br>6.2                             | 7.8                                     | ND<br>ND             |
|       |                                                                                                                                 | 6590                                                 |                                                  | 6.2<br>5.7                             | 7.8<br>7.8                              | ND<br>ND             |
|       | 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane                                                                              | 6590                                                 | mg/kg                                            |                                        | 7.8                                     | ND ND                |
|       | 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane                                                                                   | 6590<br>6590                                         | mg/kg<br>mg/kg                                   | 6.5<br>2.7                             | 7.8<br>7.8                              | ND<br>ND             |
|       | 1,2-Dicromoetnane 1,2-Dichlorobenzene                                                                                           | 6590<br>6590                                         | mg/kg<br>ma/ka                                   | 2.7<br>2.5                             | 7.8<br>7.8                              | ND<br>ND             |
|       |                                                                                                                                 | 6590                                                 | mg/kg                                            |                                        | 7.8<br>5.0                              | 74                   |
| _     | 1,2-Dichloroethane                                                                                                              |                                                      | mg/kg                                            | 2.3                                    | 7.8                                     | ND                   |
|       | 1,2-Dichloropropane                                                                                                             | 6590<br>6590                                         | mg/kg                                            | 2.3<br>3.0                             | 7.8<br>7.8                              | ND<br>ND             |
|       | 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene                                                                                      | 6590<br>6590                                         | mg/kg<br>ma/ka                                   | 3.0<br>2.9                             | 7.8<br>7.8                              | ND<br>ND             |
|       | 1,4-Dioxane                                                                                                                     | 6590                                                 | mg/kg<br>ma/ka                                   | 310                                    | 7.8<br>390                              | ND                   |
|       | 1,4-DIOAGIIO                                                                                                                    |                                                      | mg/kg                                            |                                        | 7.8                                     | ND ND                |
|       | 2 Butanana                                                                                                                      | 6590                                                 | mg/kg                                            | 5.9<br>4.7                             |                                         | ND<br>ND             |
|       | 2-Butanone                                                                                                                      |                                                      | mg/kg<br><b>mg/kg</b>                            |                                        | 7.8<br>7.8                              |                      |
|       | 2-Hexanone                                                                                                                      | 6590                                                 | malka                                            | 3.8                                    | 7.8                                     | 76<br>ND             |
|       | 2-Hexanone 4-Methyl-2-pentanone                                                                                                 | 6590                                                 |                                                  |                                        | 39                                      | ND                   |
|       | 2-Hexanone 4-Methyl-2-pentanone Acetone                                                                                         | <b>6590</b><br>6590                                  | mg/kg                                            | 36                                     | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ~~                   |
|       | 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene                                                                                 | <b>6590</b><br>6590                                  | mg/kg<br><b>mg/kg</b>                            | 2.3                                    | 3.9                                     | 9.7                  |
|       | 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane                                                              | 6590<br>6590<br>6590                                 | mg/kg<br>mg/kg<br>mg/kg                          | <b>2.3</b><br>6.2                      | 7.8                                     | ND                   |
|       | 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane                                         | 6590<br>6590<br>6590<br>6590                         | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                 | 2.3<br>6.2<br>2.7                      | 7.8<br>7.8                              | ND<br>ND             |
|       | 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform                               | 6590<br>6590<br>6590<br>6590<br>6590                 | mg/kg<br><b>mg/kg</b><br>mg/kg<br>mg/kg<br>mg/kg | 2.3<br>6.2<br>2.7<br>4.2               | 7.8<br>7.8<br>7.8                       | ND<br>ND<br>ND       |
|       | 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane                  | 6590<br>6590<br>6590<br>6590<br>6590<br>6590         | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg        | 2.3<br>6.2<br>2.7<br>4.2<br>3.9        | 7.8<br>7.8<br>7.8                       | ND<br>ND<br>ND       |
|       | 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon disulfide | 6590<br>6590<br>6590<br>6590<br>6590<br>6590<br>6590 | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg              | 2.3<br>6.2<br>2.7<br>4.2<br>3.9<br>3.3 | 7.8<br>7.8<br>7.8<br>7.8<br>7.8         | ND<br>ND<br>ND<br>ND |
|       | 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane                  | 6590<br>6590<br>6590<br>6590<br>6590<br>6590         | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg        | 2.3<br>6.2<br>2.7<br>4.2<br>3.9        | 7.8<br>7.8<br>7.8                       | ND<br>ND<br>ND       |

| Lab#: | HSI-SB-D1<br>AD19539-017<br>Soil/Terracore |      |       |     | Collection Date:<br>Receipt Date: |      |
|-------|--------------------------------------------|------|-------|-----|-----------------------------------|------|
|       | Chloroethane                               | 6590 | mg/kg | 4.5 | 7.8                               | ND   |
|       | Chloroform                                 | 6590 | mg/kg | 15  | 15                                | ND   |
|       | Chloromethane                              | 6590 | mg/kg | 4.0 | 7.8                               | ND   |
|       | cis-1,2-Dichloroethene                     | 6590 | mg/kg | 5.0 | 7.8                               | 33   |
| _     | cis-1,3-Dichloropropene                    | 6590 | mg/kg | 2.5 | 7.8                               | ND   |
|       | Cyclohexane                                | 6590 | mg/kg | 3.8 | 7.8                               | ND   |
|       | Dibromochloromethane                       | 6590 | mg/kg | 1.9 | 7.8                               | ND   |
|       | Dichlorodifluoromethane                    | 6590 | mg/kg | 4.9 | 7.8                               | ND   |
| _     | Ethylbenzene                               | 6590 | mg/kg | 3.7 | 7.8                               | 44   |
|       | Isopropylbenzene                           | 6590 | mg/kg | 3.9 | 7.8                               | 5.0J |
|       | m&p-Xylenes                                | 6590 | mg/kg | 6.7 | 7.8                               | 200  |
|       | Methyl Acetate                             | 6590 | mg/kg | 5.5 | 7.8                               | ND   |
| _     | Methylcyclohexane                          | 6590 | mg/kg | 4.8 | 7.8                               | ND   |
|       | Methylene chloride                         | 6590 | mg/kg | 2.3 | 7.8                               | 160  |
|       | Methyl-t-butyl ether                       | 6590 | mg/kg | 2.4 | 3.9                               | ND   |
|       | o-Xylene                                   | 6590 | mg/kg | 5.4 | 7.8                               | 46   |
|       | Styrene                                    | 6590 | mg/kg | 4.3 | 7.8                               | ND   |
|       | Tetrachloroethene                          | 6590 | mg/kg | 2.8 | 7.8                               | 95   |
|       | Toluene                                    | 6590 | mg/kg | 2.6 | 7.8                               | 2200 |
|       | trans-1,2-Dichloroethene                   | 6590 | mg/kg | 2.4 | 7.8                               | 12   |
| _     | trans-1,3-Dichloropropene                  | 6590 | mg/kg | 2.4 | 7.8                               | ND   |
|       | Trichloroethene                            | 6590 | mg/kg | 2.7 | 7.8                               | 1700 |
|       | Trichlorofluoromethane                     | 6590 | mg/kg | 2.4 | 7.8                               | ND   |
|       | Vinyl chloride                             | 6590 | mg/kg | 5.5 | 7.8                               | ND   |
|       | Xylenes (Total)                            | 6590 | mg/kg | 5.4 | 7.8                               | 250  |

## **HC Reporting Limit Definitions/Data Qualifiers**

### REPORTING DEFINITIONS

**DF** = Dilution Factor **NA** = Not Applicable

LCS = Laboratory Control Spike ND = Not Detected

MBS = Method Blank Spike PS = Post Digestion Spike

MS = Matrix Spike RL\* = Reporting Limit

MSD = Matrix Spike Duplicate RT = Retention Time

MDL = Method Detection Limit

### **DATA QUALIFIERS**

- A- Indicates that the Tentatively Identified Compound (TIC) is suspected to be an aldolcondensation product. These compounds are by-products of acetone and methylene chloride used in the extraction process.
- B- Indicates analyte was present in the Method Blank and sample.
- **d-** For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- **E-** Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the value is estimated because it is either a Tentatively Identified Compound (TIC) or the reported concentration is greater than the MDL but less than the RL. For samples results between the MDL and RL there is a possibility of false positives or misidentification at the quantitation levels. Additionally, the acceptance criteria for QC samples may not be met.
- R- Retention Time is out.
- Y- Indicates a contaminant found in the blank at less than 10% of the concentration of a contaminant found in the sample.

<sup>\*</sup>Samples with elevated Reporting Limits (RLs) as a result of a dilution may not achieve client reporting limits in some cases. The elevated RLs are unavoidable consequences of sample dilution required to quantitate target analytes that exceed the calibration range of the instrument.

Client: Chesapeake Geosciences Inc

HC Project #: 0093024

Project: Hot Spot Investigation

| Lab#: AD19539-001                                      |                | Sample ID: HS | SI-TB-01       |                       |                                |             |
|--------------------------------------------------------|----------------|---------------|----------------|-----------------------|--------------------------------|-------------|
| Test Code                                              | Prep<br>Method | Prep<br>Date  | Ву             | Analytical<br>Method  | Analysis<br>Date               | Ву          |
| olatile Organics (no search) 8260                      | EPA5030/5035   |               |                | EPA 8260D             | 10/5/20 17:54                  | WP          |
| Lab#: AD19539-002                                      |                | Sample ID: HS | il-GW-01       |                       |                                |             |
| Test Code                                              | Prep<br>Method | Prep<br>Date  | Ву             | Analytical<br>Method  | Analysis<br>Date               | Ву          |
| olatile Organics (no search) 8260                      | EPA5030/5035   |               |                | EPA 8260D             | 10/7/20 18:54                  | RL          |
| Lab#: AD19539-003                                      |                | Sample ID: HS |                |                       |                                |             |
| Test Code                                              | Prep<br>Method | Prep<br>Date  | Ву             | Analytical<br>Method  | Analysis<br>Date               | Ву          |
| /olatile Organics (no search) 8260                     | EPA5030/5035   |               |                | EPA 8260D             | 10/7/20 19:13                  | RL          |
| Lab#: AD19539-004                                      |                | Sample ID: HS |                |                       |                                |             |
| Test Code                                              | Prep<br>Method | Prep<br>Date  | Ву             | Analytical<br>Method  | Analysis<br>Date               | Ву          |
| olatile Organics (no search) 8260                      | EPA5030/5035   |               |                | EPA 8260D             | 10/7/20 19:33                  | RL          |
| Lab#: AD19539-005                                      | ;              | Sample ID: HS | I-GW-04        |                       |                                |             |
| Test Code                                              | Prep<br>Method | Prep<br>Date  | Ву             | Analytical<br>Method  | Analysis<br>Date               | Ву          |
| olatile Organics (no search) 8260                      | EPA5030/5035   |               |                | EPA 8260D             | 10/7/20 19:53                  | RL          |
| Lab#: AD19539-006                                      | ;              | Sample ID: HS | I-SB-02(3.5-4) |                       |                                |             |
| Test Code                                              | Prep<br>Method | Prep<br>Date  | Ву             | Analytical<br>Method  | Analysis<br>Date               | Ву          |
| % Solids SM2540G<br>/olatile Organics (no search) 8260 | EPA5030/5035   |               |                | SM 2540G<br>EPA 8260D | 10/2/20 00:00<br>10/6/20 02:11 | BEENA<br>WP |

Client: Chesapeake Geosciences Inc
Project: Hot Spot Investigation

HC Project #: 0093024

| Lab#: AD19539-007 | Sample ID: HSI-SB-02(10-10.5) |
|-------------------|-------------------------------|

|                                        | Prep Prep    |                |           | Analytical | Analysis      |           |
|----------------------------------------|--------------|----------------|-----------|------------|---------------|-----------|
| Test Code                              | Method       | Date           | Ву        | Method     | Date          | Ву        |
| % Solids SM2540G                       |              |                |           | SM 2540G   | 10/2/20 00:00 | BEENA     |
| Mercury (Soil/Waste) 7471B             | EPA 7471B    | 10/06/20 08:00 | asilva    | EPA 7471B  | 10/6/20 12:01 | OA        |
| Semivolatile Organics (no search) 8270 | 3510C/3550C  | 10/06/20       | jprevilon | EPA 8270E  | 10/6/20 17:57 | AH/JKR/JB |
| TAL Metals 6010D                       | 3005&10/3050 | 10/06/20 08:00 | asilva    | EPA 6010D  | 10/6/20 13:49 | OA        |
| TAL Metals 6010D                       | 3005&10/3050 | 10/06/20 08:00 | asilva    | EPA 6010D  | 10/6/20 14:40 | OA        |
| TAL Metals 6010D                       | 3005&10/3050 | 10/06/20 08:00 | asilva    | EPA 6010D  | 10/6/20 18:57 | OA        |
| TAL Metals 6020B                       | 3005&10/3050 | 10/06/20 08:00 | asilva    | EPA 6020B  | 10/7/20 11:26 | PC        |
| TAL Metals 6020B                       | 3005&10/3050 | 10/06/20 08:00 | asilva    | EPA 6020B  | 10/7/20 11:03 | PC        |
| Volatile Organics (no search) 8260     | EPA5030/5035 |                |           | EPA 8260D  | 10/6/20 18:28 | SG        |

| Lab#: A | AD19539-008 | Sample ID: | HSI-SB-02(11-11.5) |
|---------|-------------|------------|--------------------|
|         |             | •          | •                  |

| Test Code                          | Prep<br>Method | Prep<br>Date | Bv | Analytical<br>Method | Analysis<br>Date | Bv    |
|------------------------------------|----------------|--------------|----|----------------------|------------------|-------|
| % Solids SM2540G                   | IMBUIOG        |              | Бу | SM 2540G             | 10/2/20 00:00    | BEENA |
| Volatile Organics (no search) 8260 | EPA5030/5035   |              |    | EPA 8260D            | 10/6/20 01:29    | WP    |

| Lab#: | AD19539-009 | Sample ID: HSI-SB-04 | (9.5-10) |
|-------|-------------|----------------------|----------|
|       |             |                      |          |

|                                    | Prep         | Prep |    | Analytical | Analysis      |       |
|------------------------------------|--------------|------|----|------------|---------------|-------|
| Test Code                          | Method       | Date | Ву | Method     | Date          | Ву    |
| % Solids SM2540G                   |              |      |    | SM 2540G   | 10/2/20 00:00 | BEENA |
| Volatile Organics (no search) 8260 | EPA5030/5035 |      |    | EPA 8260D  | 10/6/20 00:57 | WP    |

Lab#: AD19539-010 Sample ID: HSI-SB-03 (3.5-4)

| Test Code                          | Prep<br>Method | Prep<br>Date | Ву | Analytical<br>Method | Analysis<br>Date | Ву    |
|------------------------------------|----------------|--------------|----|----------------------|------------------|-------|
| % Solids SM2540G                   |                |              |    | SM 2540G             | 10/2/20 00:00    | BEENA |
| Volatile Organics (no search) 8260 | EPA5030/5035   |              |    | EPA 8260D            | 10/6/20 00:06    | WP    |

Client: Chesapeake Geosciences Inc

HC Project #: 0093024

Project: Hot Spot Investigation

| Lab#: AD19539-011 Sample ID: H5I-5B-03 (10-10.5 | Lab#: AD195 | 39-011 | Sample ID: HSI-SB-03 (10-10.9 | i) |
|-------------------------------------------------|-------------|--------|-------------------------------|----|
|-------------------------------------------------|-------------|--------|-------------------------------|----|

|                                        | Prep         | Prep           |           | Analytical | Analysis      |           |
|----------------------------------------|--------------|----------------|-----------|------------|---------------|-----------|
| Test Code                              | Method       | Date           | Ву        | Method     | Date          | Ву        |
| % Solids SM2540G                       |              |                |           | SM 2540G   | 10/2/20 00:00 | BEENA     |
| Mercury (Soil/Waste) 7471B             | EPA 7471B    | 10/06/20 08:00 | asilva    | EPA 7471B  | 10/6/20 12:03 | OA        |
| Semivolatile Organics (no search) 8270 | 3510C/3550C  | 10/06/20       | jprevilon | EPA 8270E  | 10/6/20 12:59 | AH/JKR/JB |
| TAL Metals 6010D                       | 3005&10/3050 | 10/06/20 08:00 | asilva    | EPA 6010D  | 10/6/20 13:53 | OA        |
| TAL Metals 6010D                       | 3005&10/3050 | 10/06/20 08:00 | asilva    | EPA 6010D  | 10/6/20 14:43 | OA        |
| TAL Metals 6010D                       | 3005&10/3050 | 10/06/20 08:00 | asilva    | EPA 6010D  | 10/6/20 19:01 | OA        |
| TAL Metals 6020B                       | 3005&10/3050 | 10/06/20 08:00 | asilva    | EPA 6020B  | 10/7/20 11:08 | PC        |
| Volatile Organics (no search) 8260     | EPA5030/5035 |                |           | EPA 8260D  | 10/5/20 23:46 | WP        |

Lab#: AD19539-012 Sample ID: HSI-SB-03 (11-11.5)

| Test Code                          | Prep<br>Method | Prep<br>Date | Ву | Analytical<br>Method | Analysis<br>Date | Ву    |
|------------------------------------|----------------|--------------|----|----------------------|------------------|-------|
| % Solids SM2540G                   |                |              |    | SM 2540G             | 10/2/20 00:00    | BEENA |
| Volatile Organics (no search) 8260 | EPA5030/5035   |              |    | EPA 8260D            | 10/9/20 13:20    | вк    |

Lab#: AD19539-013 Sample ID: HSI-SB-01 (2.5-3)

|                                        | Prep         | Prep           |           | Analytical | Analysis      |           |
|----------------------------------------|--------------|----------------|-----------|------------|---------------|-----------|
| Test Code                              | Method       | Date           | Ву        | Method     | Date          | Ву        |
| % Solids SM2540G                       |              |                |           | SM 2540G   | 10/2/20 00:00 | BEENA     |
| Mercury (Soil/Waste) 7471B             | EPA 7471B    | 10/06/20 08:00 | asilva    | EPA 7471B  | 10/6/20 12:04 | OA        |
| Semivolatile Organics (no search) 8270 | 3510C/3550C  | 10/06/20       | jprevilon | EPA 8270E  | 10/6/20 18:20 | AH/JKR/JB |
| TAL Metals 6010D                       | 3005&10/3050 | 10/06/20 08:00 | asilva    | EPA 6010D  | 10/6/20 13:57 | OA        |
| TAL Metals 6010D                       | 3005&10/3050 | 10/06/20 08:00 | asilva    | EPA 6010D  | 10/6/20 14:47 | OA        |
| TAL Metals 6010D                       | 3005&10/3050 | 10/06/20 08:00 | asilva    | EPA 6010D  | 10/6/20 19:05 | OA        |
| TAL Metals 6020B                       | 3005&10/3050 | 10/06/20 08:00 | asilva    | EPA 6020B  | 10/7/20 11:12 | PC        |
| Volatile Organics (no search) 8260     | EPA5030/5035 |                |           | EPA 8260D  | 10/6/20 00:48 | WP        |

Client: Chesapeake Geosciences Inc

HC Project #: 0093024

Project: Hot Spot Investigation

| Lab#: AD19539-014                      | Sa             | ample ID: HSI-SI |                |                      |                  |                                       |
|----------------------------------------|----------------|------------------|----------------|----------------------|------------------|---------------------------------------|
| Test Code                              | Prep<br>Method | Prep<br>Date     | Ву             | Analytical<br>Method | Analysis<br>Date | Ву                                    |
| % Solids SM2540G                       |                |                  |                | SM 2540G             | 10/2/20 00:00    | BEENA                                 |
| Mercury (Soil/Waste) 7471B             | EPA 7471B      | 10/06/20 08:00   | asilva         | EPA 7471B            | 10/6/20 12:05    | OA                                    |
| Semivolatile Organics (no search) 8270 | 3510C/3550C    | 10/06/20         | jprevilon      | EPA 8270E            | 10/7/20 16:06    | AH/JKR/JE                             |
| TAL Metals 6010D                       | 3005&10/3050   | 10/06/20 08:00   | asilva         | EPA 6010D            | 10/6/20 14:51    | OA                                    |
| TAL Metals 6010D                       | 3005&10/3050   | 10/06/20 08:00   | asilva         | EPA 6010D            | 10/6/20 19:09    | OA                                    |
| TAL Metals 6010D                       | 3005&10/3050   | 10/06/20 08:00   | asilva         | EPA 6010D            | 10/6/20 14:02    | OA                                    |
| TAL Metals 6020B                       | 3005&10/3050   | 10/06/20 08:00   | asilva         | EPA 6020B            | 10/7/20 11:17    | PC                                    |
| Volatile Organics (no search) 8260     | EPA5030/5035   |                  |                | EPA 8260D            | 10/9/20 11:57    | ВК                                    |
| Lab#: AD19539-015                      | Sa             | ample ID: HSI-SI | 3-01 (10-10.5) |                      |                  | · · · · · · · · · · · · · · · · · · · |
| Test Code                              | Prep<br>Method | Prep<br>Date     | Ву             | Analytical<br>Method | Analysis<br>Date | Ву                                    |
| % Solids SM2540G                       |                |                  |                | SM 2540G             | 10/2/20 00:00    | BEENA                                 |
| Volatile Organics (no search) 8260     | EPA5030/5035   |                  |                | EPA 8260D            | 10/6/20 11:52    | SG                                    |
| Lab#: AD19539-016                      | Sa             | ample ID: HSI-SE | 3-01 (14.5-15) |                      |                  |                                       |
| Test Code                              | Prep<br>Method | Prep<br>Date     | Ву             | Analytical<br>Method | Analysis<br>Date | Ву                                    |
| % Solids SM2540G                       |                |                  |                | SM 2540G             |                  |                                       |
| Volatile Organics (no search) 8260     | EPA5030/5035   |                  |                | EPA 8260D            |                  |                                       |
| Lab#: AD19539-017                      | Sa             | ample ID: HSI-SE | 3-D1           |                      |                  |                                       |
|                                        | Prep           | Prep             | _              | Analytical           | Analysis         | _                                     |
| Test Code                              | Method         | Date             | Ву             | Method               | Date             | Ву                                    |
| % Solids SM2540G                       |                |                  |                | SM 2540G             | 10/2/20 00:00    | BEENA                                 |
| Mercury (Soil/Waste) 7471B             | EPA 7471B      | 10/06/20 08:00   | asilva         | EPA 7471B            | 10/6/20 12:07    | OA                                    |
| Semivolatile Organics (no search) 8270 | 3510C/3550C    | 10/06/20         | jprevilon      | EPA 8270E            | 10/7/20 16:29    | AH/JKR/JE                             |
| ΓAL Metals 6010D                       | 3005&10/3050   | 10/06/20 08:00   | asilva         | EPA 6010D            | 10/6/20 14:06    | OA                                    |
| ΓAL Metals 6010D                       | 3005&10/3050   | 10/06/20 08:00   | asilva         | EPA 6010D            | 10/6/20 14:55    | OA                                    |
| TAL Metals 6010D                       | 3005&10/3050   | 10/06/20 08:00   | asilva         | EPA 6010D            | 10/6/20 19:13    | OA                                    |
| TAL Metals 6020B                       | 3005&10/3050   | 10/06/20 08:00   | asilva         | EPA 6020B            | 10/7/20 11:21    | PC                                    |
| Volatile Organics (no search) 8260     | EPA5030/5035   |                  |                | EPA 8260D            | 10/5/20 19:58    | WP                                    |

**Chain of Custody** 

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0093024 0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10) Relinchished by:  11) Sampler (print name):  Additional Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | FOR LAB USE ONLY  Batch #  AN9597  Lab Sample #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 175 Route 46 W Ph: 800-426-99: Service Center: Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv Ph (Serv P |
| bed by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28-19-19-19-19-19-19-19-19-19-19-19-19-19-                         | Matri DW - Drinking Water S GW - Ground Water S WW - Waste Water C OT - Other (please specif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | West and 9992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-1992   973-19 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>にある。</b>                                                        | Matrix Codes  Matrix Codes  Water S - Soil  Water SL - Sludge  Valer OL - Oil  ease specify under ite  5)  Sample ID  Matri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MADEL AND AND AND AND AND AND AND AND AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| annos Commo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Societies A                                                        | <u>×</u> 3 '   ÿ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1, Fairfield, New Jersey 07004 973-244-9787   973-439-1458 1973-244-9787   973-439-1458 1971   Pa #88-00463   NY #11408 1973-244-9787   973-439-1458 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408 1971   Pa #88-00463   NY #11408                                                                                                                                                                                                                                                                           |
| S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                           | Check If Contingent ===>  A - Air  Sample Type  On the contingent ===>  Sample  Type  On the contingent ===>  Sample  Type  On the contingent ===>  On the contingent ===>  Sample  Type  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the contingent ===>  On the conti | 2 Madison Road, Fairfield, New Jersey 07004 244-9770 Fax: 973-244-9787   973-439-1458 aither Drive, Mount Laurel, New Jersey 08054 ler): 856-780-6057 Fax: 856-780-6056  NELACINJ #07071   PA #88-00463   NY #11408   CT #PH-0671   KY #90124   DE HSCA Approved  ustomer.Information    Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   City/Sqate):   Column   Column   Column   Column   City/Sqate):   Column   Column   Column   City/Sqate):   Column   Column   Column   City/Sqate):   Column   Column   Column   City/Sqate):   Column   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   City/Sqate):   Column   Column   Column   City/Sqate):   Column   Column   Column   City/Sqate):   Column   Column   Column   City/Sqate):   Column   Column   C |
| Date: 9/30/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    | VOC= 8260<br>SVOC= 8270 × Analysi<br>TAL Models GOZOX ysi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHAIN OF CUSTOD RECORD  Hampton-Clarke A Women-Owned, Disadvantaged, Small Business Enterprise  H-0671   KY #90124   DE HSCA Approved  Project Information  2a) Project Mgr.  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Project Information  Pro |
| Pate Time 30120 07:25 30120 17:70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    | Analysis (specify methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHAIN OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION OF RECURSION |
| Indicate if low-level m current groundwater s VOC (8260C SPLP (BN, E 1,4 Dioxane Check if applicable: Project-Spet High Contar NJ LSRP Properse note N A fee of \$5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    | ods & parameter lists)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAIN OF CUSTODY RECORD  ged, Small Business Enterprise oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved  oved |
| Indicate if low-level methods required to meet current groundwater standards (SPLP for soil):  BN or BNA (8270D SIM)  VOC (8260C SIM or 8011)  SPLP (BN, BNA, Metals)  1,4 Dioxane  Check if applicable:  Project-Specific Reporting Limits High Contaminant Concentrations NJ LSRP Project (also check boxes above/right)  Please note NUMBERED items. If not completed your a A fee of \$5/sample will be assessed for storage should samp linternal use: sampling plan (check box) HC[] or client []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turr When 1 Business 3 Business 4 Business 5 Business 8 Business Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Notes, Special of to meet of for soil):    Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    | MeOH  En Core NaOH HCI H2SO4 HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3) Reporting Red 3) Reporting Red available: Summa Days (100%)* Result Days (50%)* Reduct Days (35%)* [ ] NJ Days (25%) Days (Stand.) NY AS Expedited TAT Not Always                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Comments, Notes, Special Requirements, HAZARDS sethods required to meet standards (SPLP for soil):  (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8270D SIM) (8 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3) Reporting Requirements (Please Circle)  Ind Report Type Electronic  Ind Report Type Electronic  Summary NJ Hazsite  (75%)* Reduced: EnviroData  (75%)* [ ] NJ [ ] NX  (25%)* [ ] PA Othe Electronic  (35%)* [ ] PA Othe EnviroData  (25%) NJ Full / NY ASP CatB  (Stand.) NY ASP CatA  Other:  (Stand.) Requirements (Please Check with L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Comments, Notes, Special Requirements, HAZARDS  e if low-level methods required to meet groundwater standards (SPLP for soil):  BN or BNA (8270D SIM)  VOC (8260C SIM or 8011)  SPLP (BN, BNA, Metals)  1,4 Dioxane if applicable:  Project-Specific Reporting Limits Project-Specific Reporting Limits High Contaminant Concentrations (Cooler Temperature NJ LSRP Project (also check boxes above/right)  Please note NUMBERED items. If not completed your analytical work may be delayed.  A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *Hold Slaw                                                         | Other:  9) Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3) Reporting Requirements (Please Circle)  around Report Type Electronic Data Deliv. Available: Summary Days (75%)* Results + QC (Waste) Days (50%)* [ ] NJ [ ] NY Days (55%)* [ ] PA WOthe EQuIS: Days (25%) NJ Full / NY ASP CatA Days (Stand.) NY ASP CatA Days (Stand.) NY ASP CatA Cither:  Expedited TAT Not Always Available. Please Check with Lab.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| erature yed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | legits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Data Deliv.  NJ/NY/PA  NJ/NY/PA  THE [ ] EZ  DEC  DEC  gion 2 or 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|                                                              |                                                                                   |                         |                                                                                 | ~       |                                       |                         |                       |                                                                                               |                                                | · <b>f</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                   |           |             |         |             |          | _                     |            |                |                                                                                             |                          |                                |                               |                    |                                                           |                                 |                          |                        |                        | 93                     | 0                      | 24                     |                                                                                         | 90                                                      | 45                                                                 | 5                                                                 |                          |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------|---------|---------------------------------------|-------------------------|-----------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------|-------------|---------|-------------|----------|-----------------------|------------|----------------|---------------------------------------------------------------------------------------------|--------------------------|--------------------------------|-------------------------------|--------------------|-----------------------------------------------------------|---------------------------------|--------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------|
|                                                              |                                                                                   | <b>Additional Notes</b> | 11) Sampler (print name):                                                       | \       | T                                     |                         |                       | TX<br>XX                                                                                      | 10) Kellingus                                  | io         | OI /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,7      | 016               | o/s       | 210         | 210     | 510         | 011      | Lab Sample #          |            | AD18389        | Batch #                                                                                     |                          | Ų V                            | USE                           | FOR LAB            |                                                           | 1d) Send Report to              | 1C) Send Invoice to:     | 1b) Email/Cell/Fax/Ph: |                        | Address: 4             | 1a) Customer: (        |                        |                                                                                         | Ph (                                                    | Ph: 800-42                                                         | 175 Route                                                         | Lamr                     |
|                                                              | (                                                                                 | les                     | rint name):                                                                     | 1       |                                       |                         |                       |                                                                                               | ng by:                                         | 4          | 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 | 20/100   | 18-8-44<br>14-8-6 | 再場の       | 1987        | 中の      | を出          | 記るの日     | 4) Customer Sample ID | :          |                | WW - Waste Water OT - Other (please                                                         | <b>GW</b> - Ground Water |                                |                               |                    |                                                           | ē.                              | <u>ਲ</u> ਼               | w/Ph:                  | olumb                  | 1 50 h                 | hesan                  | ) Custo                | NEL                                                                                     | Service Center): 1                                      | 6-9992   973-244-9                                                 | 46 West and 2 May                                                 | キシュ_つlorko               |
|                                                              | (                                                                                 | 4                       | 2 0 V 2 0 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V                                         | )       |                                       |                         |                       |                                                                                               |                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>)</b> | があり               | 1201-01/K | 01/6-65     | 0(35-3) | 201-115)    | 3(6-65)  | r Sample ID           |            |                | <b>WW</b> - Waste Water <b>OL</b> - Oil  OT - Other (please specify under item 9. Comments) |                          | Matrix Codes of Water S - Soil |                               |                    |                                                           |                                 |                          | 000 B                  | M D                    | Um Kno                 | eooko(so               | Customer Information   | NELAC/NJ #07071   PA #68-00463   NY #11408   CT #PH-0671   KY #90124   DE HSCA Approved | Ph (Service Center): 856-780-6057 Fax: 856-780-6056     | Ph: 800-426-9992   973-244-9770   Fax: 973-244-9787   973-439-1458 | 175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004 | / 57 (MR)                |
|                                                              |                                                                                   | V                       | Ray                                                                             |         |                                       | M                       |                       |                                                                                               |                                                | ÷          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                   |           |             |         |             | 1/21/8 S | Matrix Date           | 5)         |                | Oil<br>deritem 9. Comm                                                                      | dge :                    | odes<br>A - Air                | ===> Check                    |                    |                                                           | <b>X</b>                        |                          | 15 mgal 45             | 21045                  | あから                    | o clem                 | 5                      | #68-00463   NY #                                                                        | :: 856-780-6056                                         | 4-9787   973-439-                                                  | Id, New Jersey                                                    | ロラロロ/のロ                  |
|                                                              |                                                                                   |                         |                                                                                 |         |                                       | light.                  |                       |                                                                                               | Accepted b                                     |            | 8,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3        | , हांस            | 200       | ₹;30<br>0   | 88      | 0<br>0<br>0 | 2012:00  | Time o                | 6) Sample  |                |                                                                                             |                          | Sa                             | Check If Contingent ===>      |                    |                                                           | 20                              |                          | 20                     | 21:                    |                        | <b>2</b> 3             |                        | 11408   CT #PH-0                                                                        | Ţ                                                       | 9-1458                                                             | )7004                                                             | <u></u>                  |
|                                                              |                                                                                   |                         | Date:                                                                           |         |                                       | Bunch                   |                       | 9                                                                                             | ž.                                             |            | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | X                 | X         | X           | X       | ×           | X        | ⊢                     | ab (G      |                |                                                                                             |                          | Sample 7                       |                               |                    |                                                           | 2d) Quote/PO # (If Applicable): | :<br>                    | 2c) Project Location   | 2b) Project Mgr.       |                        | 2a) Project:           | _                      | 671   KY #90124   I                                                                     | A Women-Own                                             | 'n                                                                 | Ţ                                                                 |                          |
|                                                              |                                                                                   |                         | 1/30/74                                                                         |         | 1/30x                                 |                         | 7                     | 9/20/26                                                                                       | Date                                           |            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \<br>\   |                   | X         | Ŷ           | X       | •           | X        | V                     | 44         |                | ele<br>ele                                                                                  | 6                        | )<br>02 <b>E</b>               | <b>*</b>                      | 7) Analysis (spe   |                                                           | Applicable):                    | TA ALP                   | (City/State):          | Pom                    | on town                | Day!                   | Project Information    | DE HSCA Approve                                                                         | A Women-Owned, Disadvantaged, Small Business Enterprise | larke                                                              | ₽<br>                                                             |                          |
| 2                                                            |                                                                                   |                         | \<br><b>X</b>                                                                   | Chec    | 17:10                                 | 15.15                   | 4                     | ١,                                                                                            | Time                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                   |           |             |         |             |          |                       |            | - <del>-</del> | -                                                                                           |                          |                                |                               | (specify methods & |                                                           | ()                              | Way Ma                   | SACTORY.               | RI S                   | mesy Ba                | 经                      | rmation A              | ă                                                                                       | , Small Business                                        | RECOF                                                              | CHAIN OF CU                                                       |                          |
| ternal use: samp                                             | Please note                                                                       | _                       |                                                                                 | -       | SPLP (BN, E                           | VOC (8260               | BN or BNA             | ticate if low-level                                                                           |                                                | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                   |           |             |         |             |          |                       |            |                |                                                                                             |                          |                                |                               | & parameter lists) |                                                           |                                 | referre                  | 1 JC 6                 |                        | the Si                 | action of              | >                      |                                                                                         | Enterprise                                              | Ĝ                                                                  | N OF CUSTODY                                                      |                          |
| Internal use: sampling plan (check box) HC [ ] or client [ ] | Please note NUMBERED items. If not completed your analytical work may be delayed. | roject (also ch         | Project-Specific Reporting Limits  High Confaminant Concentrations 157 - 88 - 0 |         | SPLP (BN, BNA, Metals)<br>1.4 Dioxane | VOC (8260C SIM or 8011) | BN or BNA (8270D SIM) | Indicate if low-level methods required to meet current groundwater standards (SPLP for soil): | Comments,                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                   |           |             |         |             |          | No                    | ne         |                |                                                                                             |                          |                                | î                             |                    | dxa .                                                     | Other:                          | 8 Business Days (Stand.) | 5 Business Days (25%)  | 4 Business Days (35%)* | 3 Business Days (50%)* | 2 Business Days (75%)* | 1 Business Day (100%)* | When Available:                                                                         | Turnaround                                              |                                                                    | +2055&                                                            | Pro.                     |
| box) HC[] or                                                 | ms. If not comp                                                                   | neck boxes ab           | ng Limits                                                                       | -       |                                       |                         |                       | for soil):                                                                                    | Notes, Specia                                  | r ·        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                   |           |             |         |             |          | ┝                     | OH<br>Core | <b>⊣</b> ≌.    | <u>&amp;</u>                                                                                |                          |                                | == Check If C                 |                    | edited IAI Not A                                          |                                 |                          |                        |                        |                        |                        |                        |                                                                                         | und                                                     | 3) Reporting                                                       |                                                                   | Project # (Lab Use Only) |
| client [ ] F                                                 | leted your analy                                                                  | ove/right)              | 1188-0,                                                                         |         | NJDE                                  | NJDEP SRS               | NJDE                  | For NJ LSRP projects, need to be met:                                                         | Comments, Notes, Special Requirements, HAZARDS | 3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                   |           |             |         |             |          | ⊢                     | SO4        | ottles         | _                                                                                           |                          |                                | <=== Check If Contingent <=== |                    | Expedited IAI Not Always Available. Please Check with Lab |                                 | NY ASP CatA              | NJ Full / NY ASP CatB  | [ ]PA Mothe            | I JN [ JNY             | Reduced:               | Results + QC (Waste)   | Summary                                                                                 | Report Type                                             | 3) Reporting Requirements (Please Circle)                          |                                                                   | Only)                    |
| FSP#                                                         | rtical work may                                                                   | ~                       |                                                                                 | Colonia | Other (specify): I                    | PSRS                    | NJDEP GWQS            | νοjects, indicate<br>t:                                                                       | ts, HAZARDS                                    | 4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | Hold              | -         | ح           |         |             | *5       |                       | her:_      | <u> </u>       |                                                                                             |                          |                                | "<br>                         |                    | Please Check w                                            | Other:                          | _                        |                        |                        | EQuis:                 |                        | $\overline{}$          |                                                                                         | Electro                                                 | ts (Please Cir                                                     | Page 2                                                            | )                        |
| ny analysis.                                                 | be delayed.                                                                       | 2.4                     | y Temperature                                                                   | IJ      |                                       |                         |                       | indicate which standards                                                                      | , •••                                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _1       | Analysis          | -         | \<br>\<br>' |         |             | MONGP!   | 9) Comments           |            |                |                                                                                             |                          |                                |                               |                    | vith Lab.                                                 |                                 | ] Region 2 or 5          | [ ] NYDEC              | [ ] 4-File [ ] EZ      | •                      | )ata                   | Reg. NJ/NY/PA          | site                                                                                    | Electronic Data Deliv.                                  | cle)                                                               | <b>o</b>                                                          |                          |
| Ш                                                            |                                                                                   |                         |                                                                                 |         |                                       |                         |                       |                                                                                               |                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | (V)               | <u> </u>  | $\leq$      | F       | _           | 4        | <u> </u>              |            |                |                                                                                             |                          |                                |                               |                    |                                                           | •                               |                          |                        |                        |                        |                        | 2                      | ı                                                                                       | •                                                       |                                                                    |                                                                   | _                        |

## **PROJECT MODIFICATIONS**

Client: CGS HC Project #: 0093024

**Project:** Hot Spot Investigation

mkennedy192.168.1.42 10/23/2020 5:40:03 PM

Per client, sample ID for AD19539-017 should be HSI-SB-D1.

Per client, analyze the following samples for BNA and TAL Metals: HSI-SB-02(10-10.5) (AD19539-007) HSI-SB-03 (10-10.5) (AD19539-011) HSI-SB-01 (2.5-3) (AD19539-013) HSI-SB-01 (6-6.5) (AD19539-014)

HSI-SB-D1 (AD19539-017)

MK 10/23/20

mkennedy192.168.1.42 10/28/2020 11:06:31 AM

Per Meg Staines via email, HSI-SB-01 (14.5-15) @ 15:40 should be logged in for VO. MK 10/28/20

### **CONDITION UPON RECEIPT**

Batch Number AD19539

Entered By: Ricardo

Date Entered 10/1/2020 1:00:00 PM

|    |       | Outo Enterou 16 (12020 1.30.00 1.17)                                                                                        |
|----|-------|-----------------------------------------------------------------------------------------------------------------------------|
| 1  | Yes   | Is there a corresponding COC included with the samples?                                                                     |
| 2  | Yes   | Are the samples in a container such as a cooler or Ice chest?                                                               |
| 3  | No    | Are the COC seals intact?                                                                                                   |
| 4  | T-461 | < Thermometer ID. Please specify the Temperature inside the container (in degC).                                            |
| 5  | Yes   | Are the samples refrigerated (where required)/have they arrived on ice?                                                     |
| 6  | Yes   | Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:          |
| 7  | Yes   | Are all of the sample bottles intact? If no, specify sample numbers broken/leaking                                          |
| 8  | Yes   | Are all of the sample labels or numbers legible? If no specify:                                                             |
| 9  | Yes   | Do the contents match the COC? If no, specify                                                                               |
| 10 | No    | Is there enough sample sent for the analyses listed on the COC? If no, specify: TWO 40ML VIALS RECEIVED FOR TB.PH NOT TAKEN |
| 11 | Yes   | Are samples preserved correctly?                                                                                            |
| 12 | Yes   | Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?                     |
| 13 | NA    | Other commentsSpecify (TB date, sample matrix, any missing info, etc.)                                                      |
| 14 | NA    | Corrective actions (Specify item number and corrective action taken).                                                       |
| 15 | No    | Were any samples for ortho-phosphate or dissolved ferrous iron field filtered?                                              |

## PRESERVATION DOCUMENT

Batch Number AD19539

Entered By: Ricardo

Date Entered 10/1/2020 1:00:00 PM

|                      | Container | Container/Vi | al        |              | Preservative |    |          |
|----------------------|-----------|--------------|-----------|--------------|--------------|----|----------|
| Lab#:                | Size      | Check        | Parameter | Preservative | Lot#         | PH | pH Lot#  |
| AD19539-001          | NA        | NA           | NA        | NA           | NA           | NA | NA       |
| AD19539-002          | 40ml      | G            | VO        | HCL          | 329861       | 1  | HC998032 |
| AD19539-003          | 40ml      | G            | VO        | HCL          | 329861       | 1  | HC998032 |
| AD19539-004          | 40ml      | G            | VO        | HCL          | 329861       | 1  | HC998032 |
| AD19539-005          | 40ml      | G            | VO        | HCL          | 329861       | 1  | HC998032 |
| AD19539-006          | NA        | NA           | NA        | NA           | NA           | NA | NA       |
| AD19539-007          | NA        | NA           | NA        | NA           | NA           | NA | NA       |
| AD19539-008          | NA        | NA           | NA        | NA           | NA           | NA | NA       |
| AD19539-009          | NA        | NA           | NA        | NA           | NA           | NA | NA       |
| AD19539-010          | NA        | NA           | NA        | NA           | NA           | NA | NA       |
| AD19539-011          | NA        | NA           | NA        | NA           | NA           | NA | NA       |
| AD1953 <b>9</b> -012 | NA        | NA           | NA        | NA           | NA           | NA | NA       |
| AD19539-013          | NA        | NA           | NA        | NA           | NA           | NA | NA       |
| AD19539-014          | NA        | NA           | NA        | NA           | NA           | NA | NA       |
| AD19539-015          | NA        | NA           | NA        | NA           | NA           | NA | NA       |
| AD19539-016          | NA        | NA           | NA        | NA           | NA           | NA | NA       |
| AD19539-017          | NA        | NA           | NA        | NA           | NA           | NA | NA       |

|                              | . = <del>-</del>                 | Loc       | Ĺ           | T           |                  |                            |                                  | Loc          | i _ "    |                |          |
|------------------------------|----------------------------------|-----------|-------------|-------------|------------------|----------------------------|----------------------------------|--------------|----------|----------------|----------|
| 1 -1-4                       | D-16 T'                          | or        | Bot         |             |                  | 1 -1-4                     | D-4-71:                          |              | Bot      | 1              | (<br>    |
| Lab#:                        | DateTime:                        | Use       | r Nu        | <u>∣M</u>   | Analysis         | Lab#:                      | DateTime:                        | User         | Nu       | M              | Analysis |
| AD19539-001                  | 09/30/20 17:10                   | RICA      | ì           | М           | Received         | AD19539-008                | 10/01/20 21:48                   | R12          | 4        | Α              | NONE     |
| AD19539-001                  | 09/30/20 17:59                   | RICA      | 1           | M           | Login            | AD19539-008                | 10/02/20 08:46                   | вст          | 4        | Α              | % SOLIDS |
| AD19539-001                  | 09/30/20 19:13                   |           | 1           | Α           | NONE             | AD19539-008                | 10/02/20 11:04                   |              | 4        | Α              | NONE     |
| AD19539-001                  | 09/30/20 19:13                   | R31       | 2           | A           | NONE             | AD19539-009                | 09/30/20 17:10                   | RICAR        |          | M              | Received |
| AD19539-001                  | 10/05/20 15:35                   | WP        | 2           | A           | VOA              | AD19539-009                | 09/30/20 17:59                   | RICAR        | i        | M              | Login    |
| AD19539-002                  | 09/30/20 17:10                   | RICAL     |             | М           | Received         | AD19539-009                | 09/30/20 19:13                   | 1            | 1        | Α              | NONE     |
| AD19539-002                  | 09/30/20 17:59                   | RICA      | 1           | M           | Login            | AD19539-009                | 10/01/20 09:42                   | RL           | 1        | Α              | VOA      |
| AD19539-002                  | 10/01/20 14:10                   | R31P      | 1           | A           | NONE             | AD19539-009                | 10/01/20 10:43                   | R31          | 1        | A              | NONE     |
| AD19539-002                  | 10/01/20 14:10                   | R31       | 2           | Α           | NONE             | AD19539-009                | 09/30/20 19:14                   | F19          | 2        | A              | none     |
| AD19539-002<br>AD19539-002   | 10/07/20 10:34                   | RL        | 3           | A           | VOA              | AD19539-009                | 10/05/20 18:45                   | WP<br>E10    | 2        | A              | VOA      |
| AD19539-002<br>AD19539-003   | 10/01/20 14:10<br>09/30/20 17:10 | R31       | 1           | м           | NONE<br>Received | AD19539-009                | 09/30/20 19:14                   | F19          | 3        | A<br>A         | NONE     |
| AD19539-003<br>AD19539-003   | 09/30/20 17:10                   | RICA      | 1           | M           | !                | AD19539-009                | 10/01/20 13:03                   | R12          | 4        | A              |          |
| AD19539-003<br>AD19539-003   | 10/01/20 14:10                   | R31P      | 1           | A           | Login<br>NONE    | AD19539-009<br>AD19539-009 | 10/01/20 21:47<br>10/01/20 21:48 | R12          | 4        | A              | MONE     |
| AD19539-003                  | 10/01/20 14:10                   | R31       | 2           | Â           | NONE             | AD19539-009                | 10/02/20 08:46                   | <del></del>  | 4        | A              | % SOLIDS |
| AD19539-003                  | 10/07/20 10:34                   | RL        | 2           | A           | VOA              | AD19539-009                | 10/02/20 11:04                   | 1            | 4        | A              | NONE     |
| AD19539-003                  | 10/01/20 14:10                   | R31       | 3           | Â           | NONE             | AD19539-009<br>AD19539-010 | 09/30/20 17:10                   | RICAR        | 1        | м              | Received |
| AD19539-004                  | 09/30/20 17:10                   | RICAL     | 1           | м           | Received         | AD19539-010                | 09/30/20 17:59                   | RICAR        | 1        | м              | Login    |
| AD19539-004                  | 09/30/20 17:59                   | RICA      | 1           | м           | Login            | AD19539-010                | 09/30/20 19:13                   | 1            | 1        |                | NONE     |
| AD19539-004                  | 10/01/20 14:10                   | R31P      | ,           | A           | NONE             | AD19539-010                | 10/01/20 09:42                   |              | 1        | A              | VOA      |
| AD19539-004                  | 10/01/20 14:10                   | +         | 2           | Â           | NONE             | AD19539-010                | 10/01/20 10:43                   | 1            | 1        | Â              | NONE     |
| AD19539-004                  | 10/07/20 10:34                   | RL        | 2           | A           | VOA              | AD19539-010                | 10/05/20 20:45                   | WP           | 1        | ÍΑ             | VOA      |
| AD19539-004                  | 10/01/20 14:10                   | R31       | 3           | A           | NONE             | AD19539-010                | 10/05/20 20:50                   | R31          | 1        | A              | NONE     |
| AD19539-005                  | 09/30/20 17:10                   | RICAL     | 1           | м           | Received         | AD19539-010                | 09/30/20 19:14                   | F19          | 2        | A              | none     |
| AD19539-005                  | 09/30/20 17:59                   | RICA      |             | М           | Login            | AD19539-010                | 09/30/20 19:14                   | F19          | 3        | A              | none     |
| AD19539-005                  | 10/01/20 14:10                   | R31P      | -           | A           | NONE             | AD19539-010                | 10/01/20 13:03                   | R12          | 4        | A              | NONE     |
| AD19539-005                  | 10/01/20 14:10                   | R31       | 2           | Α           | NONE             | AD19539-010                | 10/01/20 21:47                   | PA           | 4        | A              | mix      |
| AD19539-005                  | 10/07/20 13:50                   | RL        | 2           | Α           | VOA              | AD19539-010                | 10/01/20 21:48                   | R12          | 4        | Α              | NONE     |
| AD19539-005                  | 10/01/20 14:10                   | R31       | 3           | A           | NONE             | AD19539-010                | 10/02/20 08:46                   | ì            | 4        | A              | % SOLIDS |
| AD19539-006                  | 09/30/20 17:10                   | RICA      | ₹ 0         | М           | Received         | AD19539-010                | 10/02/20 11:04                   | R12          | 4        | A              | NONE     |
| AD19539-006                  | 09/30/20 17:59                   | RICAL     | ₹ 0         | M           | Login            | AD19539-011                | 09/30/20 17:10                   | RICAR        | 0        | М              | Received |
| AD19539-006                  | 09/30/20 19:13                   | R31       | 1           | Α           | NONE             | AD19539-011                | 09/30/20 17:59                   | RICAR        | 0        | м              | Login    |
| AD19539-006                  | 10/01/20 09:42                   | RL        | 1           | A           | VOA              | AD19539-011                | 09/30/20 19:13                   | R31          | 1        | A              | NONE     |
| AD19539-006                  | 10/01/20 10:43                   | R31       | 1           | Α           | NONE             | AD19539-011                | 10/01/20 09:42                   | RL           | 1        | A              | VOA      |
| AD19539-006                  | 10/05/20 20:45                   | WP        | 1           | Α           | VOA              | AD19539-011                | 10/01/20 10:43                   | R31          | 1        | Α              | NONE     |
| AD19539-006                  | 10/05/20 20:50                   | R31       | 1           | A           | NONE             | AD19539-011                | 10/05/20 20:45                   | WP           | 1        | A              | VOA      |
| AD19539-006                  | 09/30/20 19:14                   | F19       | 2           | Α           | none             | AD19539-011                | 10/05/20 20:50                   | R31          | 1        | A              | NONE     |
| AD19539-006                  | 09/30/20 19:14                   | F19       | 3           | Α           | none             | AD19539-011                | 10/06/20 10:55                   | RL           | 1        | Α              | VOA      |
| AD19539-006                  | 10/01/20 13:03                   | R12       | 4           | Α           | NONE             | AD19539-011                | 10/06/20 11:27                   | R31          | 1        | Α.             | NONE     |
| AD19539-006                  | 10/01/20 21:47                   | PA        | 4           | <u> </u>    | mix              | AD19539-011                | 09/30/20 19:14                   | F19          | 2        | Α              | none     |
| AD19539-006                  | 10/01/20 21:48                   | R12       | 4           | Α           | NONE             | AD19539-011                | 10/05/20 17:47                   | WP           | 2        | Α              | VOA      |
| AD19539-006                  | 10/02/20 08:46                   | BCT       | 4           | Α           | % SOLIDS         | AD19539-011                | 10/06/20 11:06                   | SG           | 2        | Α              | VOA      |
| AD19539-006                  | 10/02/20 11:04                   | R12       | 4           | Α           | NONE             | AD19539-011                | 09/30/20 19:14                   | F19          | 3        | A              | none     |
| AD19539-007                  | 09/30/20 17:10                   | RICA      | 1           | М           | Received         | AD19539-011                | 10/01/20 13:03                   | R12          | 4        | Α              | NONE     |
| AD19539-007                  | 09/30/20 17:59                   | RICA      |             | M           | Login            | AD19539-011                | 10/06/20 07:57                   |              | 4        | Α              | TDSI/Hg  |
| AD19539-007                  | 09/30/20 19:13                   | R31       | 1           | Α           | NONE             | AD19539-011                | 10/06/20 09:14                   |              | 4        | A              | NONE     |
| AD19539-007                  | 10/01/20 09:42                   | RL        | 1           | A           | VOA              | AD19539-011                | 10/01/20 13:03                   | R12          | 5        | A              | NONE     |
| AD19539-007                  | 10/01/20 10:43                   | R31       | 1           | Α           | NONE             | AD19539-011                | 10/01/20 21:47                   | PA           | 5        | A              | mix      |
| AD19539-007                  | 10/05/20 20:45                   | WP<br>P34 | 11          | A           | VOA              | AD19539-011                | 10/01/20 21:48                   | R12          | 5        | A              | NONE     |
| AD19539-007                  | 10/05/20 20:50                   | R31       | 1-          | A.          | NONE             | AD19539-011                | 10/02/20 08:46                   | BCT          | 5        | i              | % SOLIDS |
| AD19539-007                  | 09/30/20 19:14                   | F19       | 2           | A<br>ia     | none             | AD19539-011                | 10/02/20 11:04                   | R12          | 5        | Α              | NONE     |
| AD19539-007<br>AD19539-007   | 10/05/20 17:47                   | WP        | 2           | A           | VOA              | AD19539-011                | 10/06/20 07:18                   | JP<br>P12    | 5        | A              | bna-soil |
| AD19539-007  <br>AD19539-007 | 10/06/20 13:24<br>09/30/20 19:14 | SG<br>F19 | 3           | A           | VOA              | AD19539-011<br>AD19539-012 | 10/06/20 07:19                   | R12<br>RICAR | 5        | A<br>M         | NONE     |
| AD19539-007<br>AD19539-007   | 10/01/20 13:03                   | R12       | 4           | jA<br>jA    | NONE             | AD19539-012<br>AD19539-012 | 09/30/20 17:10<br>09/30/20 17:59 | RICAR        |          | <u>М</u><br>јМ | Received |
| AD19539-007<br>AD19539-007   | 10/01/20 13:03                   | R12       | 5           | A           | NONE             | AD19539-012<br>AD19539-012 | 09/30/20 17:59                   | ì            | 1        | M              | Login    |
| AD19539-007<br>AD19539-007   | 10/01/20 21:47                   | PA        | 5           | Â           | mix              | AD19539-012                | 10/01/20 09:42                   | 1            | 1        | A              | VOA      |
| AD19539-007<br>AD19539-007   | 10/01/20 21:47                   | R12       | 5           | A           | NONE             | AD19539-012<br>AD19539-012 | 10/01/20 10:43                   | R31          | '<br>  1 | A              | NONE     |
| AD19539-007                  | 10/02/20 08:46                   | BCT       | 5           | A           | % SOLIDS         | AD19539-012                | 10/09/20 09:38                   | i            | 1        | Δ              | VOA      |
| AD19539-007                  | 10/02/20 11:04                   | R12       | 5           | A           | NONE             | AD19539-012                | 10/09/20 13:41                   | R31          | 1        | TA-            | NONE     |
| AD19539-007                  | 10/06/20 07:18                   | JP        | 5           | . <u> ^</u> | bna-soil         | AD19539-012                | 09/30/20 19:14                   | F19          | 2        | A              | none     |
| AD19539-007                  | 10/06/20 07:19                   | R12       | 5           | A           | NONE             | AD19539-012                | 10/05/20 18:45                   | WP           | 2        | A              | VOA      |
| AD19539-007                  | 10/06/20 08:37                   |           | 5           | Â           | TDSI/Hg          | AD19539-012                | 09/30/20 19:14                   | i            | j 3      | Â              | Inone    |
| AD19539-007                  | 10/06/20 09:14                   | 1         | 5           | iA          | NONE             | AD19539-012                | 10/01/20 13:03                   | R12          | . 4      | A              | NONE     |
| AD19539-008                  | 09/30/20 17:10                   | RICAL     | 1           | М           | Received         | AD19539-012                | 10/01/20 21:47                   |              | 4        | A              | mix      |
| AD19539-008                  | 09/30/20 17:59                   | RICAR     | <del></del> | м           | Login            | AD19539-012                | 10/01/20 21:48                   | i            | 4        | A              | NONE     |
| AD19539-008                  | 09/30/20 19:13                   | 1         | 1           | Α           | NONE             | AD19539-012                | 10/02/20 08:46                   | BCT          | 4        | Α              | % SOLIDS |
| AD19539-008                  | 10/01/20 09:42                   | RL        | 1           | Α           | VOA              | AD19539-012                | 10/02/20 11:04                   | ì            | 4        | Α              | NONE     |
| AD19539-008                  | 10/01/20 10:43                   | R31       | 1           | A           | NONE             | AD19539-013                | 09/30/20 17:10                   | RICAR        | 4        | м              | Received |
| AD19539-008                  | 10/05/20 20:45                   | WP        | 1           | Α           | VOA              | AD19539-013                | 09/30/20 17:59                   | RICAR        |          | M              | Login    |
| VD 19229-000                 | 10/05/20 20:50                   | R31       | 1           | Α           | NONE             | AD19539-013                | 09/30/20 19:13                   | 1            | 1        | A              | NONE     |
| AD19539-008                  | 10/00/20 20:00                   |           |             |             | i                |                            |                                  | 4            | 1        | 1              | 1        |
|                              | 09/30/20 19:14                   | F19       | 12          | Α           | none             | AD19539-013                | 10/01/20 09:42                   | RL           | 1        | Α              | VOA      |
| AD19539-008                  |                                  | ;         | 2<br>  3    | A           | none             | AD19539-013<br>AD19539-013 | 10/01/20 09:42<br>10/01/20 10:43 | 1            | 1<br>  1 | A              | NONE     |
| AD19539-008<br>AD19539-008   | 09/30/20 19:14                   | F19       |             |             |                  | ; ;                        |                                  | 1            |          | 1              | :        |

| Label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ر           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Loc           | T           | _   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [           | ************************************** | Loc         |     | 1  |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------|-------------|-----|----|----------|
| Label: Deletimes: Uger No. M. Alexaniss   Label: Deletimes: Uger No. M. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual St. Alexaniss   Manual  | l           | i<br>İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1             | Bot         | A/  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | İ           |                                        | i           | Bot | A/ | 1        |
| AD1959-01 0 000000 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lab#:       | DateTime:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |             |     | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lab#:       | DateTime:                              |             |     |    | Analysis |
| March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             | . — |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
| MORRISON 1 1001/2010 100   FIZ   A   NONE   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A   1001/2010   A  | AD19539-013 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | 1           | !   | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1         |                                        | 1           | 1   | 1  | 3        |
| Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Monte   Mont   | AD19539-013 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i             | 1           | A   | i :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . :         |                                        | 1           | ì   |    | :        |
| Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Mont   | AD19539-013 | 10/06/20 07:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ANS           | 4           | A   | TDSI/Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AD19539-017 |                                        | R12         | 5   | A  | NONE     |
| MOSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19539-013 | 10/06/20 09:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R12           | 4           | A   | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AD19539-017 | 10/06/20 07:18                         | <del></del> | 5   |    | bna-soil |
| MOSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19539-013 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>   |             |     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AD19539-017 | 10/06/20 07:19                         | R12         | 5   | Α  | NONE     |
| AD 1995-9-13   1002-20 G 1-164   101   2   2   5   A   INCHE   AD 1995-9-13   1002-20 G 1-164   102   2   5   A   INCHE   AD 1995-9-14   1002-20 G 1-164   102   2   5   A   INCHE   AD 1995-9-14   1002-20 G 1-164   102   102   102   102   102   AD 1995-9-14   1002-20 G 1-164   102   102   102   102   102   102   AD 1995-9-14   1002-20 G 1-165   102   102   102   102   102   102   AD 1995-9-14   1002-20 G 1-165   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   | :           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
| MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE   MONE      | 1           | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | ì           |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD 1959-30-31   109000-07-16   175   5   A   100-40   AD 1959-30-31   20900-07-17   175   175   A   100-40   AD 1959-30-31   20900-07-17   175   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   175   A   100-40   AD 1959-30-31   20900-07-17   20900-07-17   20900-07-17   20900-07-17   AD 1959-30-31   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07-17   20900-07- | ;           | ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | i           | !   | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                        |             |     |    |          |
| AD 1995 20-14   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   1995 20-17   19 | :           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i             |             | :   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
| AD 1959-2014   095000 17-50   RICLAFO   M. Rogerwood   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen   M. Dogen    |             | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | +           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
| ## ADD-959-2-14   0007-2011-15   R31   1   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   1   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   1   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-14   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-15   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-15   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-15   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-15   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-15   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-15   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-15   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-15   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-15   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-15   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-15   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-15   0007-2011-16   R31   I   A   MONE   ## ADD-959-2-15   0007-2011-16   R31   A   MONE   ## ADD-959-2-15   0007-2011-16   R31   A   MONE   ## | AD19539-014 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1           | 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD0950014 1001/200 642 97 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AD19539-014 | 09/30/20 17:59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RICAR         | 0           | М   | Login                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                        |             |     |    |          |
| AD19592014 10007201245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19539-014 | 09/30/20 19:13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R31           | 1           |     | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                        |             |     |    |          |
| ADD 1959 2014   1090922 00 20 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AD19539-014 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 4           |     | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |             |                                        |             |     |    |          |
| AD19592014   100920 09:50   R31   1   A   NOME   AD19592014   100920 09:56   R31   1   A   NOME   AD19592014   100920 09:56   R31   1   A   NOME   AD19592014   100920 09:56   R31   1   A   NOME   AD19592014   100920 09:56   R31   4   A   NOME   AD19592014   100920 09:56   A   R31   4   A   NOME   AD19592014   100920 09:56   A   R31   4   A   NOME   AD19592014   100920 09:56   A   R32   5   A   NOME   AD19592014   100920 09:56   A   R32   5   A   NOME   AD19592014   100920 09:56   A   R32   5   A   NOME   AD19592014   100920 09:56   A   R32   5   A   NOME   AD19592014   100920 09:56   A   R32   5   A   NOME   AD19592014   100920 09:56   A   R32   5   A   NOME   AD19592014   100920 09:56   A   R32   5   A   NOME   AD19592014   100920 09:56   A   R32   5   A   NOME   AD19592014   100920 09:56   A   R32   5   A   NOME   AD19592014   100920 09:56   A   R32   5   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592015   100920 09:57   A   R32   A   NOME   AD19592016   100920 09:57   A   R32   A   NOME   AD19592017   AD19592017   A   R32   A  | ;           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | i           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
| ADI-958-2014   000-920-9134   Fig. 1   A VOA   ADI-958-2014   000-920-914   Fig. 2   A rome   ADI-958-2014   000-920-914   Fig. 3   A rome   ADI-958-2014   000-920-914   Fig. 3   A rome   ADI-958-2014   000-920-915   A Fig. 3   A rome   ADI-958-2014   000-920-915   A Fig. 3   A rome   ADI-958-2014   000-920-915   A Fig. 3   A rome   ADI-958-2014   000-920-916   A Fig. 3   A rome   ADI-958-2014   000-920-916   A Fig. 3   A rome   A Rome   ADI-958-2014   000-920-916   A Fig. 3   A rome   A Rome   ADI-958-2014   000-920-916   A Fig. 5   A rome   A Rome   ADI-958-2014   000-920-916   A Fig. 5   A rome   A Rome   ADI-958-2014   000-920-916   A Fig. 5   A rome   A Rome   ADI-958-2014   000-920-916   A Fig. 5   A rome   A Rome   ADI-958-2014   000-920-916   A Fig. 5   A rome   A Rome   ADI-958-2014   000-920-916   A Fig. 5   A rome   A Rome   ADI-958-2014   000-920-916   A Fig. 5   A rome   A Rome   ADI-958-2014   000-920-916   A Fig. 5   A rome   A Rome   ADI-958-2014   000-920-916   A Fig. 5   A rome   ADI-958-2014   000-920-916   A Fig. 5   A rome   ADI-958-2014   000-920-916   A Fig. 5   A rome   ADI-958-2014   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   ADI-958-2015   000-920-916   A Fig. 5   A rome   AD   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i             |             |     | i control de la control de la control de la control de la control de la control de la control de la control de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                        |             |     |    |          |
| AD 1959-2014   1009-2015-14   F31   2 A NOME   AD 1959-2014   009-2015-14   F19   2 A NOME   AD 1959-2014   1009-2015-13   F12   4 A NOME   AD 1959-2014   1009-2015-13   F12   4 A NOME   AD 1959-2014   1007-2015-13   F12   4 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F12   5 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-13   F13   1 A NOME   AD 1959-2014   1007-2015-1 | 1 :         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             | 1           |     | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                        |             |     |    |          |
| AD19592014   0903020 9154   Fig. 1   3   A none   AD19592014   090720 1330   R12   4   A NONE   AD19592014   090720 1330   R12   4   A NONE   AD19592014   090720 1330   R12   4   A NONE   AD19592014   090720 1340   R12   4   A NONE   AD19592014   090720 1340   R12   5   A NONE   AD19592014   090720 1340   R12   5   A NONE   AD19592014   090720 1340   R12   5   A NONE   AD19592014   090720 1340   R12   5   A NONE   AD19592014   090720 1340   R12   5   A NONE   AD19592014   090720 1340   R12   5   A NONE   AD19592014   090720 1340   R12   5   A NONE   AD19592014   090720 1340   R12   5   A NONE   AD19592014   090720 1340   R12   5   A NONE   AD19592014   090720 1340   R12   5   A NONE   AD19592014   090720 1340   R12   5   A NONE   AD19592015   090720 1340   R12   5   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592015   090720 1340   R12   A NONE   AD19592016   090720 1340   R12   A NONE   AD19592016   090720 1340   R12   A NONE   AD19592016   090720 1340   R12   A NONE   AD19592016   090720 1340   R12   A NONE   AD19592016   090720 1340   R12   A NONE   AD19592016   090720 1340   R12   A NONE   AD19592016   090720 1340   R12   A NONE   AD19592016   090720 1340   R12   A NONE   AD19592016   090720 1340   R12   A NONE   AD19592016   090720 1340   R12   A NONE   AD19592016   090720 1340   R12   A NONE   AD19592017   090720 1340   R12   A NONE    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1           | 4   | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD195930-14   0930/20 19-14   F19   3   A rome   AD195930-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   0950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19-15   AD19593-14   O950/20 19- |             | i — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · i —         | ÷ · · — ·   |     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                        |             |     |    |          |
| AD19593-014   1001/2013-038   R12   4   A   NONE   AD19593-014   1006/20 07-87   A   A   A   A   A   A   A   A   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AD19539-014 | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             |             |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19593-014   10060200 17-7   ARS   A TOSIM-19   AD19593-014   1001/20 13-30   R12   5 A MONE   AD19593-014   1001/20 13-30   R12   5 A MONE   AD19593-014   1001/20 13-48   R12   5 A MONE   AD19593-014   1001/20 13-48   R12   5 A MONE   AD19593-014   1001/20 13-48   R12   5 A MONE   AD19593-014   1001/20 13-48   R12   5 A MONE   AD19593-014   1006/20 07-16   R12   5 A MONE   AD19593-014   1006/20 07-16   R12   5 A MONE   AD19593-014   1006/20 07-19   R12   5 A MONE   AD19593-014   1006/20 07-19   R12   5 A MONE   AD19593-015   1006/20 07-19   R12   5 A MONE   AD19593-015   1001/20 13-28   R12   5 A MONE   AD19593-015   1001/20 13-28   R12   5 A MONE   AD19593-015   1001/20 13-28   R12   5 A MONE   AD19593-015   1001/20 13-28   R12   5 A MONE   AD19593-015   1001/20 13-28   R12   5 A MONE   AD19593-015   1001/20 13-28   R12   5 A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28   R12   A MONE   AD19593-015   1001/20 13-28  | AD19539-014 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | )           | 7   | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                        |             |     |    |          |
| AD19539-014   1001/20 2148   R12   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AD19539-014 | 10/06/20 07:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 4           | A   | TDSI/Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                        |             |     |    |          |
| AD19583-01-1 1001/20 21-47 PA 5 A mix AD19583-01-1 1001/20 21-48 PCT 5 A NONE AD19583-01-1 1002/20 11-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AD19539-014 | 10/06/20 09:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R12           | 4           | A   | the same and the same are the same of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                        |             |     |    |          |
| AD19539-01-4   1001/20 21-48   R12   5   A   NONE   AD19539-01-4   1002/20 01-10-4   R12   5   A   SOLUB   AD19539-01-5   1002/20 01-10-4   R12   5   A   SOLUB   AD19539-01-5   1006/20 07-19-8   R12   5   A   SOLUB   AD19539-01-5   006/20 07-19-6   R12   5   A   NONE   AD19539-01-5   006/20 07-19-6   RICAR 0   M   Login   AD19539-01-5   006/20 07-19-6   RICAR 0   M   Login   AD19539-01-5   001/20 06-22   R1   1   A   VOA   AD19539-01-5   001/20 06-22   R1   1   A   VOA   AD19539-01-5   006/20 20-50   R1   1   A   VOA   AD19539-01-5   006/20 20-50   R1   1   A   VOA   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-4   F19   2   A   NONE   AD19539-01-5   006/20 20-11-5   RICAR 0   M   Received   AD19539-01-6   006/20 20-11-5   RICAR 0   M   Received   AD19539-01-6   006/20 20-11-5   RICAR 0   M   Received   AD19539-01-6   006/20 20-11-5   RICAR 0   M   Received   AD19539-01-6   006/20 20-11-5   RICAR 0   M   Received   AD19539-01-6   006/20 20-11-5   RICAR 0   M   Received   AD19539-01-6   006/20 20-11-5   RICAR 0   M   Received   AD19539-01-6   006/20 20-11-5   RICAR 0   M   Received   AD19539-01-7   006/20 20-11-5   RICAR 0   M   Received   AD19539-01-7   006/20 20-11-5   RICAR 0   M   Received   AD19539-01-7   006/20 20-11-5   RICAR 0   M   Received   AD19539-01-7   006/20 20-11-5   RICAR 0   M   Rece | AD19539-014 | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 1           |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Mont   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :             | ì           | 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-01-4 1006/20 07:19 R12   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ;           | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ;             |             | 1   | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                        |             |     |    |          |
| AD19839-014 1006/20 07:18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ;           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ì             | ;           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
| AD19539-01-5   0.006/20 07:19   RIZ   5   A   NONE   AD19539-01-5   0.903/20 17:59   RICAR   0   M   Legin   AD19539-01-5   0.903/20 17:59   RICAR   0   M   Legin   AD19539-01-5   1.001720 09-42   RI   1   A   VOA   AD19539-01-5   1.001720 09-42   RI   1   A   VOA   AD19539-01-5   0.903/20 19:14   F19   2   A   NoNE   AD19539-01-5   0.903/20 19:14   F19   2   A   None   AD19539-01-5   0.903/20 19:14   F19   2   A   None   AD19539-01-5   0.001720 11-8   RIZ   4   A   NoNE   AD19539-01-5   0.001720 11-8   RIZ   4   A   NoNE   AD19539-01-5   0.001720 11-8   RIZ   4   A   NoNE   AD19539-01-5   0.001720 11-8   RIZ   4   A   NoNE   AD19539-01-5   0.001720 11-8   RIZ   4   A   NoNE   AD19539-01-5   0.001720 11-8   RIZ   4   A   NoNE   AD19539-01-5   0.001720 11-8   RIZ   4   A   NoNE   AD19539-01-5   0.001720 11-8   RIZ   4   A   NoNE   AD19539-01-5   0.001720 11-8   RIZ   4   A   NoNE   AD19539-01-5   0.001720 11-8   RIZ   4   A   NoNE   AD19539-01-5   0.001720 11-8   RIZ   4   A   NoNE   AD19539-01-5   0.001720 11-8   RIZ   4   A   NoNE   AD19539-01-6   0.001720 11-9   RIZ   RIZ   A   NONE   AD19539-01-6   0.001720 11-9   RIZ   A   NONE   AD19539-01-6   0.001720 11-9   RIZ   A   NONE   AD19539-01-6   0.001720 11-9   RIZ   A   NONE   AD19539-01-6   0.000720 11-9   RIZ   A   NONE   AD19539-01-6   0.000720 11-9   RIZ   A   NONE   AD19539-01-6   0.000720 11-9   RIZ   A   NONE   AD19539-01-6   0.000720 11-9   RIZ   A   NONE   AD19539-01-6   0.000720 11-9   RIZ   A   NONE   AD19539-01-6   0.000720 11-9   RIZ   A   NONE   AD19539-01-6   0.000720 11-9   RIZ   A   NONE   AD19539-01-6   0.000720 11-9   RIZ   A   NONE   AD19539-01-6   0.000720 11-9   RIZ   A   NONE   AD19539-01-6   0.000720 11-9   RIZ   A   NONE   AD19539-01-7   0.000720 11-9   RIZ   A   NONE   AD19539-01-7   0.000720 11-9   RIZ   A   NONE   AD19539-01-7   0.000720 11-9   RIZ   A   NONE   AD19539-01-7   0.000720 11-9   RIZ   A   NONE   AD19539-01-7   0.000720 11-9   RIZ   A   NONE   AD19539-01-7   0.000720 11-9   RIZ   A   NONE   AD19539-01-7   0.000720 11-9   | ·           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             | A   | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |             |                                        |             |     |    |          |
| AD19539-015 0993/02 17:00 RICAR 0 M Received AD19539-015 0993/02 19:13 R31 1 A NONE AD19539-015 10017/02 10:43 R31 1 A NONE AD19539-015 1005/02 02:045 WP 1 A VOA AD19539-015 1005/02 02:045 WP 1 A VOA AD19539-015 1005/02 02:05 R31 1 A NONE AD19539-015 10017/02 10:44 F19 2 A NONE AD19539-015 10017/02 10:44 F19 2 A NONE AD19539-015 10017/02 10:45 R31 1 A NONE AD19539-015 10017/02 10:45 R31 1 A NONE AD19539-015 10017/02 10:45 R31 1 A NONE AD19539-015 10017/02 10:45 R31 1 A NONE AD19539-015 10017/02 10:45 R31 1 A NONE AD19539-015 10017/02 10:45 R31 1 A NONE AD19539-015 10017/02 10:45 R31 1 A NONE AD19539-015 10017/02 10:45 R31 1 A NONE AD19539-015 100017/02 10:45 R31 1 A NONE AD19539-015 100017/02 10:45 R31 1 A NONE AD19539-015 100017/02 10:45 R31 1 A NONE AD19539-015 100002/02 03:45 WP 1 A NONE AD19539-015 100002/02 10:45 R31 1 A NONE AD19539-015 100002/02 10:45 R31 1 A NONE AD19539-015 100002/02 10:45 R31 1 A NONE AD19539-015 100002/02 10:45 R31 1 A NONE AD19539-016 0993/02 17:10 R31 1 A NONE AD19539-016 0993/02 17:10 R31 1 A NONE AD19539-016 0993/02 17:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-016 100002/02 10:10 R31 1 A NONE AD19539-017 100002/02 10:10 R31 1 A NONE AD19539-017 100002/02 10:10 R31 1 A NONE AD19539-017 100002/02 10:10 R31 1 A NONE AD19539-017 100002/02 10:10 R31 1 A NONE AD19539-017 100002/02 10:10 R31 1 A NONE AD19539-017 100002/02 10:10 R31 1 A NONE AD19539-017 100002/02 10:10 R31 1 A NONE AD19539-017 100002/02 10:10 R31 1 A NONE AD19539-017 100002/0 |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ì             | i           |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19533-9-15   09/30/20 19-13   R31   A   NONE   AD19539-9-15   1001/20 04-2   R1   A   VOA   AD19539-9-15   1005/20 20-45   WP   A   VOA   AD19539-9-15   1005/20 20-45   WP   A   VOA   AD19539-9-15   1005/20 19-14   F19   2   A   NONE   AD19539-9-15   1005/20 19-14   F19   2   A   NONE   AD19539-9-15   09/30/20 19-14   F19   3   A   NONE   AD19539-9-15   09/30/20 19-14   F19   3   A   NONE   AD19539-9-15   1001/20 21-36   R12   A   NONE   AD19539-9-15   1001/20 21-37   A   A   NONE   AD19539-0-15   1001/20 21-34   R12   A   NONE   AD19539-0-15   1001/20 21-34   R12   A   NONE   AD19539-0-15   1001/20 21-34   R12   A   NONE   AD19539-0-15   1001/20 21-34   R12   A   NONE   AD19539-0-15   1001/20 21-34   R12   A   NONE   AD19539-0-15   1001/20 21-34   R12   A   NONE   AD19539-0-16   1000/20 19-13   R13   A   NONE   AD19539-0-16   09/30/20 17-50   RICARO   M   Roceived   AD19539-0-16   1000/20 20 19-13   R31   A   NONE   AD19539-0-16   1000/20 20 19-14   R13   A   NONE   AD19539-0-16   1000/20 10-43   R31   A   NONE   AD19539-0-16   1000/20 10-43   R31   A   NONE   AD19539-0-16   1000/20 10-43   R31   A   NONE   AD19539-0-16   1000/20 10-43   R31   A   NONE   AD19539-0-16   1000/20 10-43   R31   A   NONE   AD19539-0-16   1000/20 10-43   R31   A   NONE   AD19539-0-16   1000/20 10-43   R31   A   NONE   AD19539-0-16   1000/20 10-43   R31   A   NONE   AD19539-0-16   1000/20 10-43   R31   A   NONE   AD19539-0-16   1000/20 17-50   RICARO   M   Roceived   AD19539-0-16   1000/20 17-50   RICARO   M   Roceived   AD19539-0-17   1000/20 07-57   RICARO   M   Roceived   AD19539-0-17   1000/20 09-42   RL   I   A   NONE   AD19539-0-17   1000/20 09-42   RL   I   A   NONE   AD19539-0-17   1000/20 09-57   ANS   A   NONE   AD19539-0-17   1000/20 07-57   ANS   A   A   NONE   AD19539-0-17   1000/20 07-57   ANS   A   A   NONE   AD19539-0-17   1000/20 07-57   ANS   A   A   NONE   AD19539-0-17   1000/20 07-57   ANS   A   A   NONE   AD19539-0-17   1000/20 07-57   ANS   A   A   NONE   AD19539-0-17   1000/20 07-57   ANS   A   A   NONE   AD1 | AD19539-015 | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RICAF         | 0           | M   | Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                        |             |     |    |          |
| AD19539-015 1001/20 00-42 RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AD19539-015 | 09/30/20 17:59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RICAF         | ₹0          | М   | Login                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                        |             |     |    |          |
| AD19539-015 10015/20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R31 1 A NONE NOSS20 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R32 20:50 R | AD19539-015 | 09/30/20 19:13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R31           | <del></del> | . 1 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-015 10052/2 02-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AD19539-015 | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ì             | 1           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
| AD19539-015   00930/20 19:14   F19   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ;           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | ł           |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-015   09/30/20 19:14   F19   2   A   none   AD19539-015   09/30/20 19:14   F19   3   A   none   AD19539-015   09/30/20 19:14   F19   3   A   none   AD19539-015   09/30/20 19:14   F19   3   A   none   AD19539-015   1001/20 21:48   R12   4   A   lmix   AD19539-015   1001/20 21:48   R12   4   A   lmix   AD19539-015   1002/20 84   R12   4   A   NONE   AD19539-015   1002/20 11:04   R12   4   A   NONE   AD19539-015   09/30/20 17:10   RICAR 0   M   Received   AD19539-016   09/30/20 17:30   RICAR 0   M   Login   AD19539-016   09/30/20 17:30   RICAR 0   M   Login   AD19539-016   09/30/20 19:13   R31   1   A   NONE   AD19539-016   1001/20 942   RL   1   A   VOA   AD19539-016   1001/20 940   F19   2   A   NONE   AD19539-016   1001/20 90-19:14   F19   2   A   NONE   AD19539-016   1001/20 90-19:14   F19   2   A   NONE   AD19539-016   1001/20 90-19:14   F19   2   A   NONE   AD19539-016   1001/20 10:30   R31   1   A   NONE   AD19539-016   1001/20 10:30   R31   1   A   NONE   AD19539-016   1001/20 10:30   R31   1   A   NONE   AD19539-016   1001/20 10:30   R31   1   A   NONE   AD19539-016   1001/20 10:30   R31   1   A   NONE   AD19539-016   1001/20 10:30   R31   1   A   NONE   AD19539-016   1001/20 10:30   R31   1   A   NONE   AD19539-016   1001/20 10:30   R31   1   A   NONE   AD19539-016   1001/20 10:30   R31   1   A   NONE   AD19539-017   09/30/20 17:10   RICAR 0   M   Received   AD19539-017   09/30/20 17:00   RICAR 0   M   Received   AD19539-017   09/30/20 17:00   RICAR 0   M   Received   AD19539-017   09/30/20 17:01   RICAR 0   M   Received   AD19539-017   09/30/20 17:01   RICAR 0   M   Received   AD19539-017   09/30/20 17:01   RICAR 0   M   Received   AD19539-017   09/30/20 17:01   RICAR 0   M   Received   AD19539-017   09/30/20 17:01   RICAR 0   M   Received   AD19539-017   09/30/20 17:01   RICAR 0   M   Received   AD19539-017   09/30/20 17:01   RICAR 0   M   Received   AD19539-017   09/30/20 17:01   RICAR 0   M   RICAR 0   M   RICAR 0   M   RICAR 0   M   RICAR 0   M   RICAR 0   M   RICAR 0   M   RICAR 0   M   RIC | 1 .         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ł             |             | 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-015   09/09/20 11-05   SG   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ;           | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | ;           |     | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                        |             |     |    |          |
| AD19539-015   00/3/020 19:14   F19   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19539-015 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +             |             | A   | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                        |             |     |    |          |
| AD19539-015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AD19539-015 | 09/30/20 19:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F19           | ì           | A   | none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                        |             |     |    |          |
| AD19539-015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AD19539-015 | 10/01/20 13:03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R12           | 4           | 1   | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                        |             |     |    |          |
| AD19539-015 10/02/20 019:04 R12 4 A % SOLIDS AD19539-015 10/02/20 11:01 RICAR 0 M Received AD19539-016 09/30/20 17:10 RICAR 0 M Received AD19539-016 10/07/20 19:13 R31 1 A NONE AD19539-016 10/07/20 09:42 RL 1 A NONE AD19539-016 10/07/20 02:45 WP 1 A NONE AD19539-016 10/05/20 20:50 R31 1 A NONE AD19539-016 10/05/20 20:50 R31 1 A NONE AD19539-016 10/05/20 19:14 F19 2 A NONE AD19539-016 10/05/20 19:14 F19 2 A NONE AD19539-016 10/05/20 19:14 F19 3 A NONE AD19539-016 10/05/20 19:14 F19 3 A NONE AD19539-016 10/07/20 10:11 BCT 4 A SOLIDS/MIXING AD19539-016 10/07/20 17:10 RICAR 0 M Received AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:41 BT 1 A NONE AD19539-017 10/05/20 20:41 BT 1 A NONE AD19539-017 10/05/20 20:41 BT 1 A NONE AD19539-017 10/05/20 20:41 BT 1 A NONE AD19539-017 10/05/20 20:42 RL 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE                                                                                                                                                                                                                                                                       | !           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | ł           | 1   | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-015 10/02/20 11:04 R12 4 A NONE AD19539-016 09/30/20 17:59 RICAR 0 M Received AD19539-016 09/30/20 17:59 RICAR 0 M Login AD19539-016 10/07/20 19:13 R31 1 A NONE AD19539-016 10/07/20 10:43 R31 1 A NONE AD19539-016 10/07/20 20:45 WP 1 A VOA AD19539-016 10/07/20 20:50 R31 1 A NONE AD19539-016 10/07/20 19:14 F19 2 A NOA AD19539-016 10/06/20 19:14 F19 3 A NONE AD19539-016 10/07/20 19:14 F19 3 A NONE AD19539-016 10/07/20 19:14 F19 3 A NONE AD19539-016 10/07/20 19:14 F19 3 A NONE AD19539-016 10/07/20 19:14 F19 3 A NONE AD19539-016 10/07/20 19:14 F19 3 A NONE AD19539-016 10/07/20 19:14 F19 3 A NONE AD19539-017 09/30/20 17:59 RICAR 0 M Received AD19539-017 09/30/20 17:59 RICAR 0 M Received AD19539-017 10/07/20 10:13 R31 1 A NONE AD19539-017 10/07/20 10:13 R31 1 A NONE AD19539-017 10/07/20 10:13 R31 1 A NONE AD19539-017 10/07/20 10:13 R31 1 A NONE AD19539-017 10/07/20 10:13 R31 1 A NONE AD19539-017 10/07/20 10:13 R31 1 A NONE AD19539-017 10/07/20 10:13 R31 1 A NONE AD19539-017 10/07/20 10:14 R12 4 A NONE AD19539-017 10/07/20 10:14 R12 4 A NONE AD19539-017 10/07/20 10:14 R12 4 A NONE AD19539-017 10/07/20 10:14 R13 1 A NONE AD19539-017 10/07/20 10:14 F19 2 A NONE AD19539-017 10/07/20 10:14 F19 2 A NONE AD19539-017 10/07/20 10:14 F19 2 A NONE AD19539-017 10/07/20 10:14 F19 2 A NONE AD19539-017 10/07/20 10:14 F19 2 A NONE AD19539-017 10/07/20 10:14 F19 2 A NONE AD19539-017 10/07/20 10:14 F19 2 A NONE AD19539-017 10/07/20 10:14 F19 2 A NONE AD19539-017 10/07/20 10:14 F19 2 A NONE AD19539-017 10/07/20 10:14 F19 2 A NONE AD19539-017 10/07/20 10:14 F19 2 A NONE AD19539-017 10/07/20 10:14 F19 3 A NONE AD19539-017 10/07/20 10:07:57 ANS 4 A NONE AD19539-017 10/07/20 10:07:57 ANS 4 A NONE AD19539-017 10/07/20 10:07:57 ANS 4 A NONE                                                                                                                                                                                                                                                                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del> . | <del></del> |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
| AD19539-016 09/30/20 17:10 RICAR 0 M Login AD19539-016 09/30/20 19:13 R31 1 A NONE AD19539-016 10/01/20 09:42 RL 1 A NONE AD19539-016 10/05/20 20:45 WP 1 A VOA AD19539-016 10/05/20 20:50 R31 1 A NONE AD19539-016 10/05/20 20:50 R31 1 A NONE AD19539-016 10/05/20 20:50 R31 1 A NONE AD19539-016 10/05/20 17:47 WP 2 A VOA AD19539-016 10/05/20 17:47 WP 2 A VOA AD19539-016 10/05/20 17:47 WP 2 A VOA AD19539-016 10/05/20 17:47 WP 3 A NONE AD19539-016 10/05/20 17:47 WP 3 A NONE AD19539-016 10/05/20 17:47 WP 4 A NONE AD19539-016 10/05/20 17:47 WP 3 A NONE AD19539-016 10/05/20 17:47 WP 4 A NONE AD19539-016 10/05/20 17:47 WP 4 A NONE AD19539-016 10/05/20 17:47 WP 4 A NONE AD19539-016 10/05/20 17:47 WP 5 A NONE AD19539-016 10/05/20 17:47 WP 5 A NONE AD19539-016 10/05/20 17:47 WP 6 A NONE AD19539-016 10/05/20 17:47 WP 6 A NONE AD19539-016 10/05/20 17:47 WP 8 A NONE AD19539-017 10/05/20 09:42 RL 1 A NONE AD19539-017 09/30/20 17:10 RICAR 0 M Received AD19539-017 10/05/20 09:42 RL 1 A NONE AD19539-017 10/05/20 20:45 WP 1 A VOA AD19539-017 10/05/20 20:45 WP 1 A VOA AD19539-017 10/05/20 20:45 WP 1 A VOA AD19539-017 10/05/20 20:45 WP 1 A NONE AD19539-017 10/05/20 20:45 WP 1 A NONE AD19539-017 10/05/20 20:45 WP 1 A NONE AD19539-017 10/05/20 20:45 WP 1 A NONE AD19539-017 10/05/20 20:45 WP 1 A NONE AD19539-017 10/05/20 20:45 WP 1 A NONE AD19539-017 10/05/20 20:45 WP 1 A NONE AD19539-017 10/05/20 20:45 WP 1 A NONE AD19539-017 10/05/20 20:45 WP 1 A NONE AD19539-017 10/05/20 20:45 WP 1 A NONE AD19539-017 10/05/20 20:45 WP 1 A NONE AD19539-017 10/05/20 20:45 WP 1 A NONE AD19539-017 10/05/20 20:50 R31 1 1 A NONE AD19539-017 10/05/20 20:50 R31 1 1 A NONE AD19539-017 10/05/20 20:50 R31 1 1 A NONE AD19539-017 10/05/20 20:50 R31 1 1 A NONE AD19539-017 10/05/20 20:50 R31 1 1 A NONE AD19539-017 10/05/20 20:50 R31 1 1 A NONE AD19539-017 10/05/20 20:50 R31 1 1 A NONE AD19539-017 10/05/20 20:50 R31 1 1 A NONE AD19539-017 10/05/20 20:50 R31 1 1 A NONE AD19539-017 10/05/20 20:50 R31 1 1 A NONE AD19539-017 10/05/20 20:50 R31 1 1 A NONE AD19539-017 10/0 | ;           | i e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ì             | ì           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
| AD19539-016 09/30/20 17:59 RICAR 0 M Login AD19539-016 10/01/20 09-42 RL 1 A NONE AD19539-016 10/01/20 10-43 R31 1 A NONE AD19539-016 10/05/20 20-45 WP 1 A NONE AD19539-016 10/05/20 20-50 R31 1 A NONE AD19539-016 09/30/20 19:14 F19 2 A NONE AD19539-016 10/05/20 19:14 F19 2 A NONE AD19539-016 10/05/20 19:14 F19 3 A NONE AD19539-016 10/05/20 19:14 F19 3 A NONE AD19539-016 09/30/20 19:14 F19 3 A NONE AD19539-016 10/05/20 19:14 F19 3 A NONE AD19539-016 10/05/20 19:14 F19 3 A NONE AD19539-016 10/05/20 17:10 RICAR 0 M Received AD19539-017 09/30/20 19:13 R31 1 A NONE AD19539-017 09/30/20 19:13 R31 1 A NONE AD19539-017 09/30/20 19:13 R31 1 A NONE AD19539-017 09/30/20 19:13 R31 1 A NONE AD19539-017 10/01/20 10-3 R31 1 A NONE AD19539-017 10/05/20 10-3 R31 1 A NONE AD19539-017 10/05/20 10-3 R31 1 A NONE AD19539-017 10/05/20 10-3 R31 1 A NONE AD19539-017 10/05/20 10-3 R31 1 A NONE AD19539-017 10/05/20 10-3 R31 1 A NONE AD19539-017 10/05/20 10-3 R31 1 A NONE AD19539-017 10/05/20 10-3 R31 1 A NONE AD19539-017 10/05/20 20-45 WP 1 A NONE AD19539-017 10/05/20 20-45 WP 1 A NONE AD19539-017 10/05/20 20-45 WP 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE AD19539-017 10/05/20 20-50 R31 1 A NONE                                                                                                                                                                                                                    | ;           | ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i             | 1           | 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ;           | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | 1           | 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-016 10/01/20 10:43 R31 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AD19539-016 | ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ì             | 1           |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-016 10/01/20 10:43 R31 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AD19539-016 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RL            | 1           | A   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |             |                                        |             |     |    |          |
| AD19539-016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AD19539-016 | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ì             | 1           |     | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                        |             |     |    |          |
| AD19539-016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AD19539-016 | i .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ì             | i           | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
| AD19539-016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AD19539-016 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i             | 1           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
| AD19539-016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · — - —     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             | A   | the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |             |                                        |             |     |    |          |
| AD19539-016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :           | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ì             | ì           | 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i             | i           | i   | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                        |             |     |    |          |
| AD19539-016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :           | t and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | 1             | 1           | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
| AD19539-017 09/30/20 17:10 R12 4 A NONE  AD19539-017 09/30/20 17:59 RICAR 0 M Received  AD19539-017 09/30/20 19:13 R31 1 A NONE  AD19539-017 10/01/20 09:42 RL 1 A VOA  AD19539-017 10/01/20 10:43 R31 1 A NONE  AD19539-017 10/05/20 20:50 R31 1 A NONE  AD19539-017 10/05/20 20:50 R31 1 A NONE  AD19539-017 09/30/20 19:14 F19 2 A none  AD19539-017 10/01/20 13:03 R12 4 A NONE  AD19539-017 10/01/20 13:03 R12 4 A NONE  AD19539-017 10/06/20 09:14 F19 3 A none  AD19539-017 10/06/20 09:14 R12 4 A NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AD19539-016 | <b>}</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i             | ì           | 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-017 09/30/20 19:13 R31 1 A NONE AD19539-017 10/01/20 09:42 RL 1 A VOA AD19539-017 10/01/20 10:43 R31 1 A NONE AD19539-017 10/05/20 20:50 WP 1 A VOA AD19539-017 10/05/20 20:50 WP 1 A NONE AD19539-017 10/05/20 20:50 WP 1 A NONE AD19539-017 09/30/20 19:14 F19 2 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/05/20 20:50 R31 1 A NONE AD19539-017 10/06/20 09:14 F19 3 A NONE AD19539-017 10/06/20 09:57 ANS 4 A NONE AD19539-017 10/06/20 09:14 R12 4 A NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AD19539-016 | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 4           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
| AD19539-017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AD19539-017 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | ì           | М   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
| AD19539-017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AD19539-017 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | ì           | 1   | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                        |             |     |    |          |
| AD19539-017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ;           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ì             |             | 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                        |             |     |    |          |
| AD19539-017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ;           | ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ì             | :           | ì   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-017   09/30/20 19:14   F19   2   A   none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ;           | ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | 1           |     | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                        |             |     |    |          |
| AD19539-017 09/30/20 19:14 F19 3 A none  AD19539-017 10/01/20 13:03 R12 4 A NONE  AD19539-017 10/06/20 07:57 ANS 4 A TDSI/Hg  AD19539-017 10/06/20 09:14 R12 4 A NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :           | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             |             | 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AD19539-017 | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3             |             | 7   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-017   10/06/20 07:57   ANS   4   A   TDSI/Hg<br>AD19539-017   10/06/20 09:14   R12   4   A   NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AD19539-017 | · · · — · — · · — · · — · · — · · — · · — · · — · · · — · · · — · · · · — · · · · · — · · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +             | ÷           | Α   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |             |     |    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AD19539-017 | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i             | 1           |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| AD19539-017   10/01/20 13:03   R12   5   A   NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AD19539-017 | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1             | 4           |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |
| Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AD19539-017 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •             | 1           | ,   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                        |             |     |    |          |

Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login

Volatile Data

## Form<sub>1</sub>

ORGANICS VOLATILE REPORT

Sample Number: AD19539-001

Client Id: HSI-TB-01 Data File: 1M140094.D

Analysis Date: 10/05/20 17:54 Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Aqueous

Initial Vol:5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L RL Compound MDL RL Conc Compound MDL Conc Cas# Cas# 71-55-6 1,1,1-Trichloroethane 0.36 56-23-5 Carbon Tetrachloride 0.32 1.0 1.0 U U 79 34-5 1,1,2,2-Tetrachloroethane 0.45 1.0 U 108-90-7 Chlorobenzene 0.33 1.0 U U 75-00-3 Chloroethane U 76-13-1 1.1.2-Trichloro-1.2.2-trifluor 0.73 1.0 0.58 1.0 79 00-5 1,1,2-Trichloroethane 0.32 1.0 U 67-66-3 Chloroform 2.0 2.0 U 75-34-3 0.43 1.0 U 74-87-3 Chloromethane 0.52 1.0 U 1.1-Dichloroethane 75-35-4 1.1-Dichloroethene 0.53 1.0 U 156-59-2 cis-1,2-Dichloroethene 0.64 1.0 U 0.79 u 10061-01-5 0.32 U 87-61-6 1.2.3-Trichlorobenzene 1.0 cis-1,3-Dichloropropene 1.0 U 110-82-7 U 120-82-1 1,2,4-Trichlorobenzene 0.73 1.0 Cyclohexane 0.49 1.0 96-12-8 1,2-Dibromo-3-Chloropropa 0.83 1.0 U 124-48-1 Dibromochloromethane 0.24 10 u 106-93-4 1.2-Dibromoethane 0.34 1.0 U 75-71-8 Dichlorodifluoromethane 0.62 10 U U 95 50-1 1,2-Dichlorobenzene 0.32 1.0 100-41-4 Ethylbenzene 0.47 1.0 u 107-06-2 1.2-Dichloroethane 0.64 0.64 U 98-82-8 Isopropylbenzene 0.49 1.0 Ü U 179601-23-1 78-87-5 1,2 Dichloropropane 0.30 1.0 m&p-Xylenes 0.85 1.0 U U 541-73-1 1.3 Dichiorobenzene 0.38 1.0 79-20-9 Methyl Acetate 0.70 1.0 106-46-7 1.4 Dichlorobenzene 0.37 1.0 U 108-87-2 Methylcyclohexane 0.61 1.0 u 123-91-1 1,4-Dioxane 39 50 U 75-09-2 Methylene Chloride 0.29 1.0 u U 1634-04-4 78 93-3 2-Butanone 0.75 1.0 Methyl-t-butyl ether 0.31 0.50 u U 591 78-6 2-Hexanone 0.60 1.0 95-47-6 o-Xylene 0.68 1.0 U 108 10-1 4-Methyl 2-Pentanone 0.49 1.0 100-42-5 Styrene 0.54 1.0 U 67-64-1 Acetone 4.6 5.0 U 127-18-4 Tetrachloroethene 0.36 1.0 U 71-43-2 Benzene 0.30 0.50 U 108-88-3 Toluene 0.33 1.0 u 0.79 U 156-60-5 74 97-5 Bromochlorometnane 1.0 0.31 1.0 u trans-1.2-Dichloroethene 75 27-4 Bromodichloromethane 0.35 1.0 U 10061-02-6 trans-1,3-Dichloropropene 0.31 1.0 U 1.0 U 79-01-6 U 75-25-2 Bromoform 0.54 Trichloroethene 0.35 1.0 U 74-83-9 Bromomethane 0.50 1.0 75-69-4 Trichlorofluoromethane 0.31 1.0 U 75-15-0 Carbon Disulfide 0.42 1.0 U 75-01-4 Vinvl Chloride 0.71 U 1.0

Worksheet #: 569387

Xylenes (Total)

Total Target Concentration

0 R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

ColumnID: (^) Indicates results from 2nd column

1330-20-7

0.68

1.0

u

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

SampleID : AD19539-001 Data File: 1M140094.D Acq On : 10/05/20 17:54 Qt Meth : 1M\_A0909.M Qt On : 10/05/20 18:08 Qt Upd On: 09/10/20 15:58 Operator : WP Sam Mult : 1 Vial# : 11 Misc : A,5ML!2

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-05-20\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon     | Response | Conc Ur | nits Dev | (Min)  |
|-----------------------------|-------|----------|----------|---------|----------|--------|
| Internal Standards          |       |          |          |         |          |        |
| 4) Fluorobenzene            | 5.339 | 96       | 349770   | 30.00   | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.989 | 117      | 358749   | 30.00   | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.281 | 152      | 214156   | 30.00   | ug/l     | 0.00   |
| System Monitoring Compounds |       |          |          |         |          |        |
| 37) Dibromofluoromethane    | 4.947 | 111      | 102038   | 31.27   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |          | Recove   | ry =    | 104.23%  |        |
| 39) 1,2-Dichloroethane-d4   | 5.149 | 67       | 53032    | 29.84   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |          | Recove   | ry =    | 99.47%   |        |
| 66) Toluene-d8              | 6.201 | 98       | 389278   | 26.85   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |          | Recove   | ry =    | 89.50%   |        |
| 76) Bromofluorobenzene      | 7.622 | 174      | 166014   | 30.77   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |          | Recove   | ry =    | 102.57%  |        |
| Target Compounds            |       | <b>.</b> |          |         |          | Qvalue |

<sup>(#) -</sup> qualifier out of range (m) = manual integration (+) = signals summed





# Form1 ORGANICS VOLATILE REPORT

Sample Number: AD19539-002(5X)

Client Id: HSI-GW-01
Data File: 2M142841.D
Analysis Date: 10/07/20 18:54
Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Aqueous

Initial Vol:5ml

Final Vol: NA

Dilution: 5.00

Solids: 0

|                  |                                |     |     | Units: ug | <sub>J</sub> /L |                           |     |     |       |
|------------------|--------------------------------|-----|-----|-----------|-----------------|---------------------------|-----|-----|-------|
| Cas#             | Compound                       | MDL | RL  | Conc      | Cas#            | Compound                  | MDL | RL  | Conc  |
| 71-55-6          | 1,1,1-Trichloroethane          | 1.8 | 5.0 | U         | 56-23-5         | Carbon Tetrachloride      | 1.6 | 5.0 | U     |
| 79-34-5          | 1,1,2,2-Tetrachloroethane      | 2.2 | 5.0 | U         | 108-90-7        | Chlorobenzene             | 1.7 | 5.0 | 510   |
| 76- <b>13</b> -1 | 1,1,2-Trichloro-1,2,2-trifluor | 3.6 | 5.0 | U         | 75-00-3         | Chloroethane              | 2.9 | 5.0 | U     |
| 79-00-5          | 1,1,2-Trichloroethane          | 1.6 | 5.0 | U         | 67-66-3         | Chloroform                | 9.8 | 9.8 | U     |
| 75-34-3          | 1,1-Dichloroethane             | 2.1 | 5.0 | 6.9       | 74-87-3         | Chloromethane             | 2.6 | 5.0 | U     |
| 75-35-4          | 1,1-Dichloroethene             | 2.7 | 5.0 | U         | 156-59-2        | cis-1,2-Dichloroethene    | 3.2 | 5.0 | 360   |
| 87-61-6          | 1.2,3-Trichlorobenzene         | 3.9 | 5.0 | U         | 10061-01-5      | cis-1,3-Dichloropropene   | 1.6 | 5.0 | U     |
| 120-82-1         | 1,2,4-Trichlorobenzene         | 3.6 | 5.0 | U         | 110-82-7        | Cyclohexane               | 2.4 | 5.0 | U     |
| 96-12-8          | 1,2-Dibromo-3-Chloropropa      | 4.2 | 5.0 | U         | 124-48-1        | Dibromochloromethane      | 1.2 | 5.0 | U     |
| 106-93-4         | 1,2-Dibromoethane              | 1.7 | 5.0 | U         | 75-71-8         | Dichlorodifluoromethane   | 3.1 | 5.0 | U     |
| 95-50-1          | 1,2-Dichlorobenzene            | 1.6 | 5.0 | U         | 100-41-4        | Ethylbenzene              | 2.3 | 5.0 | 3.6J  |
| 107 <b>-06-2</b> | 1,2-Dichloroethane             | 3.2 | 3.2 | 35        | 98-82-8         | Isopropylbenzene          | 2.5 | 5.0 | U     |
| 78-87-5          | 1,2-Dichloropropane            | 1.5 | 5.0 | U         | 179601-23-1     | m&p-Xylenes               | 4.2 | 5.0 | 6.6   |
| 541-73-1         | 1,3-Dichlorobenzene            | 1.9 | 5.0 | U         | 79-20-9         | Methyl Acetate            | 3.5 | 5.0 | 118   |
| 106-46-7         | 1,4-Dichlorobenzene            | 1.8 | 5.0 | U         | 108-87-2        | Methylcyclohexane         | 3.1 | 5.0 | U     |
| 123-91-1         | 1,4-Dioxane                    | 200 | 250 | U         | 75-09-2         | Methylene Chloride        | 1.5 | 5.0 | U     |
| 78-93-3          | 2-Butanone                     | 3.7 | 5.0 | U         | 1634-04-4       | Methyl-t-butyl ether      | 1.6 | 2.5 | 18    |
| 591-78-6         | 2-Hexanone                     | 3.0 | 5.0 | U         | 95-47-6         | o-Xylene                  | 3.4 | 5.0 | 3.6J  |
| 108-10-1         | 4-Methyl-2-Pentanone           | 2.4 | 5.0 | U         | 100-42-5        | Styrene                   | 2.7 | 5.0 | U     |
| 67-64-1          | Acetone                        | 23  | 25  | U         | 127-18-4        | Tetrachloroethene         | 1.8 | 5.0 | U     |
| 71-43-2          | Benzene                        | 1.5 | 2.5 | 40        | 108-88-3        | Toluene                   | 1.6 | 5.0 | 2.1 J |
| 74 97-5          | Bromochloromethane             | 3.9 | 5.0 | U         | 156-60-5        | trans-1,2-Dichloroethene  | 1.5 | 5.0 | 91    |
| 75-27-4          | Bromodichloromethane           | 1.7 | 5.0 | U         | 10061-02-6      | trans-1,3-Dichloropropene | 1.5 | 5.0 | U     |
| 75-25-2          | Bromoform                      | 2.7 | 5.0 | U         | 79-01-6         | Trichloroethene           | 1.7 | 5.0 | 10    |
| 74-83-9          | Bromomethane                   | 2.5 | 5.0 | U         | 75-69-4         | Trichlorofluoromethane    | 1.5 | 5.0 | U     |
| 75-15- <b>0</b>  | Carbon Disulfide               | 2.1 | 5.0 | U         | 75-01-4         | Vinyl Chloride            | 3.5 | 5.0 | 65    |
| 1330-20-7        | Xylenes (Total)                | 3.4 | 5.0 | 10        |                 |                           |     |     |       |

Worksheet #: 569387

Total Target Concentration

1200

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

J - Indicates an estimated value when a compound is detected at less than the

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleTD : AD19539-002(5X) Operator : RL Sam Mult : 1 Vial# : 29 Misc : A,5ML!2 Qt Meth :  $2M_A0929.M$ Data File: 2M142841.D Acq On : 10/07/20 18:54 Qt On : 10/07/20 19:22 Qt Upd On: 09/30/20 18:32

Data Path : G:\GcMsData\2020\GCMS\_2\Data\10-07-20\Qt Path : G:\GCMSDATA\2020\GCMS\_2\METHODQT\Qt Resp Via : Initial Calibration

| Compound                     | R.T.  | QIon     | Response | Conc Unit | s Dev(M | in)   |
|------------------------------|-------|----------|----------|-----------|---------|-------|
| Internal Standards           |       |          |          |           |         |       |
| 4) Fluorobenzene             | 5.098 | 96       | 331281   | 30.00 ug  | /1 0    | .00   |
| 52) Chlorobenzene-d5         | 6.732 | 117      | 317809   | 30.00 ug  | /1 0    | .00   |
| 70) 1,4-Dichlorobenzene-d4   | 8.019 | 152      | 159324   | 30.00 ug  | /1 0    | .00   |
| System Monitoring Compounds  |       |          |          |           |         |       |
| 37) Dibromofluoromethane     | 4.702 | 111      | 92046    | 29.00 ug  | /1 0    | .00   |
| Spiked Amount 30.000         |       |          | Recove   | ry = 9    | 6.67%   |       |
| 39) 1,2 Dichloroethane-d4    | 4.910 | 67       | 47667    | 29.09 ug  | /1 0    | .00   |
| Spiked Amount 30.000         |       |          | Recove   | ry = 9    | 6.97%   |       |
| 66) Toluene-d8               | 5.952 | 98       | 352004   | 28.31 ug  | /1 0    | .00   |
| Spiked Amount 30.000         |       |          | Recove   | ry = 9    | 4.37%   |       |
| 76) Bromofluorobenzene       | 7.366 | 174      |          | 31.80 ug  |         | .00   |
| Spiked Amount 30.000         |       |          | Recove   | ry = 10   | 6.00%   |       |
| Target Compounds             |       |          |          |           | 0       | value |
| 9) Vinyl Chloride            | 1.953 | 62       | 53600    | 13.0263   | ug/l    | 99    |
| 25) Methyl Acetate           | 3.324 |          | 4613     | 2.2943    | ug/l    | 100   |
| 26) Methyl-t-butyl ether     | 3.641 |          | 32721    | 3.6759    | ug/l    |       |
| 27) 1.1 Dichloroethane       | 4.001 |          | 7134     |           | ug/l    |       |
| 28) trans-1,2-Dichloroethene | 3.654 |          | 57379    |           | ug/l    |       |
| 30) cis-1,2-Dichloroethene   | 4.410 |          | 378788   |           | ug/l    | 93    |
| 40) 1,2-Dichloroethane       | 4.952 | 62       | 33465    | 6.9816    | ug/l    | 98    |
| 49) Trichloroethene          | 5.300 | 130      | 7128     |           | ug/l    | 91    |
| 50) Benzene                  | 4.952 | 78       | 100029   | 8.0653    | ug/l    | 100   |
| 67) Toluene                  | 5.995 | 92       | 3517     | 0.4189    | ug/l    | 86    |
| 69) Chlorobenzene            | 6.751 | 112      | 954637   | 101.9065  | ug/1    | 100   |
| 74) Ethylbenzene             | 6.787 | 106      | 2604     | 0.7181    | ug/l    | 95    |
| 78) m&p Xylenes              | 6.848 | 106      | 7314     | 1.3251    | •       | 92    |
| 79) o-Xylene                 | 7.074 | 106      | 3735     | 0.7150    | ug/l    | 98    |
|                              |       | <b>-</b> |          |           |         |       |

(#) = qualifier out of range (m) = manual integration (+) = signals summed





2M A0929.M Sun Oct 11 22:11:40 2020 RPT1

### Form1

ORGANICS VOLATILE REPORT

Sample Number: AD19539-003(5X)

Client Id: HSI-GW-02 Data File: 2M142842.D

Analysis Date: 10/07/20 19:13 Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D Matrix: Aqueous

Initial Vol:5ml

Final Vol: NA

Dilution: 5.00

Solids: 0

|                             |                                |             |     | Units: ug | ı/L             |                           |     |     |       |
|-----------------------------|--------------------------------|-------------|-----|-----------|-----------------|---------------------------|-----|-----|-------|
| Cas#                        | Compound                       | MDL         | RL  | Conc      | Cas#            | Compound                  | MDL | RL  | Conc  |
| 71-55-6                     | 1,1,1-Trichloroethane          | 1.8         | 5.0 | U         | 56-23-5         | Carbon Tetrachloride      | 1.6 | 5.0 | U     |
| 79-34 <b>-5</b>             | 1,1,2,2-Tetrachloroethane      | 2.2         | 5.0 | 7.5       | 108-90-7        | Chlorobenzene             | 1.7 | 5.0 | 550   |
| 76-13-1                     | 1,1,2-Trichloro-1,2,2-trifluor | 3.6         | 5.0 | U         | 75-00-3         | Chloroethane              | 2.9 | 5.0 | U     |
| 79-00-5                     | 1,1,2-Trichloroethane          | 1.6         | 5.0 | U         | 67-66-3         | Chloroform                | 9.8 | 9.8 | U     |
| 75-34-3                     | 1,1-Dichloroethane             | 2.1         | 5.0 | 3.6J      | 74-87- <b>3</b> | Chloromethane             | 2.6 | 5.0 | U     |
| 75-35-4                     | 1,1-Dichloroethene             | 2.7         | 5.0 | U         | 156-59-2        | cis-1,2-Dichloroethene    | 3.2 | 5.0 | 97    |
| 87-61-6                     | 1,2,3-Trichlorobenzene         | 3.9         | 5.0 | U         | 10061-01-5      | cis-1,3-Dichloropropene   | 1.6 | 5.0 | U     |
| 120-82-1                    | 1,2,4-Trichlorobenzene         | <b>3</b> .6 | 5.0 | U         | 110-82-7        | Cyclohexane               | 2.4 | 5.0 | U     |
| 96-12-8                     | 1,2-Dibromo-3-Chloropropa      | 4.2         | 5.0 | U         | 124-48-1        | Dibromochloromethane      | 1.2 | 5.0 | U     |
| 106-93-4                    | 1,2-Dibromoethane              | 1.7         | 5.0 | U         | 75-71-8         | Dichlorodifluoromethane   | 3.1 | 5.0 | U     |
| 95-50-1                     | 1,2-Dichlorobenzene            | 1.6         | 5.0 | U         | 100-41-4        | Ethylbenzene              | 2.3 | 5.0 | 17    |
| 107-0 <b>6-2</b>            | 1,2-Dichloroethane             | 3.2         | 3.2 | 24        | 98-82-8         | Isopropylbenzene          | 2.5 | 5.0 | 2.9 J |
| 78 87-5                     | 1,2-Dichloropropane            | 1.5         | 5.0 | U         | 179601-23-1     | m&p-Xylenes               | 4.2 | 5.0 | 39    |
| 541 73-1                    | 1,3-Dichlorobenzene            | 1.9         | 5.0 | U         | 79-20-9         | Methyl Acetate            | 3.5 | 5.0 | 13B   |
| 106-46-7                    | 1,4-Dichlorobenzene            | 1.8         | 5.0 | U         | 108-87-2        | Methylcyclohexane         | 3.1 | 5.0 | U     |
| 123-91-1                    | 1.4-Dioxane                    | 200         | 250 | U         | 75-09-2         | Methylene Chloride        | 1.5 | 5.0 | U     |
| 78-93-3                     | 2-Butanone                     | 3.7         | 5.0 | U         | 1634-04-4       | Methyl-t-butyl ether      | 1.6 | 2.5 | 4.1   |
| 591-78 <b>-6</b>            | 2-Hexanone                     | 3.0         | 5.0 | U         | 95-47-6         | o-Xylene                  | 3.4 | 5.0 | 13    |
| 108-1 <b>0-1</b>            | 4-Methyl-2-Pentanone           | 2.4         | 5.0 | U         | 100-42-5        | Styrene                   | 2.7 | 5.0 | U     |
| 67-64-1                     | Acetone                        | 23          | 25  | U .       | 127-18-4        | Tetrachloroethene         | 1.8 | 5.0 | U     |
| 71-4 <b>3-2</b>             | Benzene                        | 1.5         | 2.5 | 36        | 108-88-3        | Toluene                   | 1.6 | 5.0 | 120   |
| 74-97-5                     | Bromochloromethane             | 3.9         | 5.0 | U         | 156-60-5        | trans-1,2-Dichloroethene  | 1.5 | 5.0 | 15    |
| 75-27-4                     | Bromodichloromethane           | 1.7         | 5.0 | U         | 10061-02-6      | trans-1,3-Dichloropropene | 1.5 | 5.0 | U     |
| 75-25-2                     | Bromoform                      | 2.7         | 5.0 | U         | 79-01-6         | Trichloroethene           | 1.7 | 5.0 | 16    |
| /4-83-9                     | Bromomethane                   | 2.5         | 5.0 | U         | 75-69-4         | Trichlorofluoromethane    | 1.5 | 5.0 | U     |
| 75-15-0                     | Carbon Disulfide               | 2.1         | 5.0 | U         | 75-01-4         | Vinyl Chloride            | 3.5 | 5.0 | 45    |
| 1 <b>3</b> 30- <b>20</b> -7 | Xylenes (Total)                | 3.4         | 5.0 | 52        |                 |                           |     |     |       |

Worksheet #: 569387

Total Target Concentration

1000

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Ot Meth : 2M\_A0929.M Qt On : 10/07/20 19:25 Qt Upd On: 09/30/20 18:32 

 SampleID:
 AD19539-003(5X)
 Operator:
 RL

 Data File:
 2M142842.D
 Sam Mult:
 1 Vial#:
 30

 Acq On:
 10/07/20 19:13
 Misc:
 : A,5ML!2

Data Path : G:\GcMsData\2020\GCMS\_2\Data\10-07-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_2\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                         | R.T.  | QIon | Response | Conc Units | Dev(Mi | .n)  |
|----------------------------------|-------|------|----------|------------|--------|------|
| Internal Standards               |       |      |          |            |        |      |
| 4) Fluorobenzene                 | 5.099 | 96   | 331837   | 30.00 ug/  |        | 00   |
| 52) Chlorobenzene d5             | 6.733 | 117  | 318850   | 30.00 ug/  |        | 00   |
| 70) 1,4 Dichlorobenzene-d4       | 8.019 | 152  | 163751   | 30.00 ug/  | ′1 O.  | 00   |
| System Monitoring Compounds      |       |      |          |            |        |      |
| 37) Dibromofluoromethane         | 4.702 | 111  | 93847    | 29.52 ug/  | /l 0.  | 00   |
| Spiked Amount 30.000             |       |      | Recove   | ery = 98   | 3.40%  |      |
| 39) 1,2-Dichloroethane-d4        | 4.910 | 67   | 49934    | 30.42 ug/  | 'l o.  | 00   |
| Spiked Amount 30.000             |       |      | Recove   | ery = 101  | L.40%  |      |
| 66) Toluene-d8                   | 5.952 | 98   | 365346   | 29.28 ug/  | 'l o.  | 00   |
| Spiked Amount 30.000             |       |      | Recove   | ery = 97   | 7.60%  |      |
| 76) Bromofluorobenzene           | 7.367 | 174  | 137472   | 31.96 ug/  | 'l 0.  | 00   |
| Spiked Amount 30.000             |       |      | Recove   | ery = 106  | 5.53%  |      |
|                                  |       |      |          |            |        |      |
| Target Compounds                 |       |      |          |            | Q٧     | alue |
| <ol><li>Vinyl Chloride</li></ol> | 1.959 | 62   | 36842    | 8.9387     | ug/l   | 99   |
| 25) Methyl Acetate               | 3.325 | 43   | 5354     | 2.6583     | ug/l   | 100  |
| 26) Methyl-t-butyl ether         | 3.636 | 73   | 7393     | 0.8292     | ug/l   | 93   |
| 27) 1,1-Dichloroethane           | 4.007 | 63   | 3710     | 0.7129     | ug/l   | 92   |
| 28) trans-1,2-Dichloroethene     | 3.654 | 96   | 9396     | 2.9856     | ug/l   | 97   |
| 30) cis-1,2-Dichloroethene       | 4.410 | 61   | 102574   | 19.3923    | ug/l   | 95   |
| 40) 1,2-Dichloroethane           | 4.952 | 62   | 22873    | 4.7639     | ug/l   | 100  |
| 49) Trichloroethene              | 5.300 | 130  | 11121    | 3.1697     | ug/l   | 98   |
| 50) Benzene                      | 4.952 | 78   | 88254    | 7.1039     | ug/l   | 100  |
| 67) Toluene                      | 5.989 | 92   | 208576   | 24.7640    | ug/l   | 98   |
| 69) Chlorobenzene                | 6.751 | 112  | 1041743  | 110.8419   | ug/l   | 100  |
| 74) Ethylbenzene                 | 6.787 | 106  | 12881    | 3.4563     | ug/l   | 91   |
| 75) 1,1,2,2-Tetrachloroethane    | 7.415 | 83   | 6553     | 1.4952     | ug/l   | 97   |
| 78) m&p~Xylenes                  | 6.848 | 106  | 44413    | 7.8290     | ug/l   | 92   |
| 79) o-Xylene                     | 7.068 | 106  | 13584    | 2.5300     | ug/l   | 91   |
| 84) [sopropylbenzene             | 7.263 | 105  | 7667     | 0.5854     | ug/l   | 97   |
|                                  |       |      |          |            |        |      |

<sup>(#) -</sup> qualifier out of range (m) = manual integration (+) = signals summed





2M\_A0929.M Sun Oct 11 22:11:44 2020 RPT1

Page: 1

### ORGANICS VOLATILE REPORT

Sample Number: AD19539-004(5X)

Client Id: HSI-GW-03

Data File: 2M142843.D

Analysis Date: 10/07/20 19:33 Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Aqueous

Initial Vol:5ml

Final Vol: NA

Dilution: 5.00

Solids: 0

|                  |                                |     |     | Units: ug | ı/L         |                           |     |     |      |
|------------------|--------------------------------|-----|-----|-----------|-------------|---------------------------|-----|-----|------|
| Cas #            | Compound                       | MDL | RL  | Conc      | Cas#        | Compound                  | MDL | RL  | Conc |
| 71-55-6          | 1,1,1-Trichloroethane          | 1.8 | 5.0 | U         | 56-23-5     | Carbon Tetrachloride      | 1.6 | 5.0 | U    |
| 79-34 <b>-5</b>  | 1,1,2,2-Tetrachloroethane      | 2.2 | 5.0 | 2.4J      | 108-90-7    | Chlorobenzene             | 1.7 | 5.0 | 320  |
| 76-13-1          | 1,1,2-Trichloro-1,2.2-trifluor | 3.6 | 5.0 | U         | 75-00-3     | Chloroethane              | 2.9 | 5.0 | 4.5J |
| 79-00-5          | 1,1,2-Trichloroethane          | 1.6 | 5.0 | U         | 67-66-3     | Chloroform                | 9.8 | 9.8 | U    |
| 7 <b>5-34-3</b>  | 1,1-Dichloroethane             | 2.1 | 5.0 | 2.7 J     | 74-87-3     | Chloromethane             | 2.6 | 5.0 | U    |
| 75- <b>3</b> 5-4 | 1,1-Dichloroethene             | 2.7 | 5.0 | U         | 156-59-2    | cis-1,2-Dichloroethene    | 3.2 | 5.0 | 4.7J |
| 87-61-6          | 1,2,3-Trichlorobenzene         | 3.9 | 5.0 | U         | 10061-01-5  | cis-1,3-Dichloropropene   | 1.6 | 5.0 | U    |
| 120-82-1         | 1.2.4-Trichlorobenzene         | 3.6 | 5.0 | U         | 110-82-7    | Cyclohexane               | 2.4 | 5.0 | U    |
| 96 12-8          | 1,2 Dibromo 3-Chloropropa      | 4.2 | 5.0 | U         | 124-48-1    | Dibromochloromethane      | 1.2 | 5.0 | U    |
| 106-93-4         | 1,2-Dibromoethane              | 1.7 | 5.0 | U         | 75-71-8     | Dichlorodifluoromethane   | 3.1 | 5.0 | U    |
| 95-50-1          | 1,2-Dichlorobenzene            | 1.6 | 5.0 | U         | 100-41-4    | Ethylbenzene              | 2.3 | 5.0 | U    |
| 107-06-2         | 1.2-Dichloroethane             | 3.2 | 3.2 | U         | 98-82-8     | Isopropylbenzene          | 2.5 | 5.0 | U    |
| 78-87-5          | 1,2-Dichloropropane            | 1.5 | 5.0 | U         | 179601-23-1 | m&p-Xylenes               | 4.2 | 5.0 | U    |
| 541-73-1         | 1,3-Dichlorobenzene            | 1.9 | 5.0 | U         | 79-20-9     | Methyl Acetate            | 3.5 | 5.0 | 15B  |
| 106-46-7         | 1,4-Dichlorobenzene            | 1.8 | 5.0 | U         | 108-87-2    | Methylcyclohexane         | 3.1 | 5.0 | U    |
| 123-91-1         | 1.4-Dioxane                    | 200 | 250 | U         | 75-09-2     | Methylene Chloride        | 1.5 | 5.0 | U    |
| 78-93-3          | 2-Butanone                     | 3.7 | 5.0 | U         | 1634-04-4   | Methyl-t-butyl ether      | 1.6 | 2.5 | 1.9J |
| 591-78-6         | 2-Hexanone                     | 3.0 | 5.0 | U         | 95-47-6     | o-Xylene                  | 3.4 | 5.0 | U    |
| 108-10-1         | 4-Methyl-2-Pentanone           | 2.4 | 5.0 | U         | 100-42-5    | Styrene                   | 2.7 | 5.0 | U    |
| 67- <b>64</b> -1 | Acetone                        | 23  | 25  | U         | 127-18-4    | Tetrachloroethene         | 1.8 | 5.0 | U    |
| 71-43-2          | Benzene                        | 1.5 | 2.5 | 13        | 108-88-3    | Toluene                   | 1.6 | 5.0 | U    |
| 74-97-5          | Bromochloromethane             | 3.9 | 5.0 | U         | 156-60-5    | trans-1,2-Dichloroethene  | 1.5 | 5.0 | 1.9J |
| 75-27-4          | Bromodichloromethane           | 1 7 | 5.0 | U         | 10061-02-6  | trans-1,3-Dichloropropene | 1.5 | 5.0 | U    |
| 75 25-2          | Bromoform                      | 2.7 | 5.0 | U         | 79-01-6     | Trichloroethene           | 1.7 | 5.0 | U    |
| 74-83-9          | Bromomethane                   | 2.5 | 5.0 | U         | 75-69-4     | Trichlorofluoromethane    | 1.5 | 5.0 | U    |
| 75-15 <b>-0</b>  | Carbon Disulfide               | 2.1 | 5.0 | U         | 75-01-4     | Vinyl Chloride            | 3.5 | 5.0 | 9.0  |
|                  |                                |     |     |           |             |                           |     |     |      |

Worksheet #: 569387

Xylenes (Total)

1330-20-7

Total Target Concentration

5.0

380

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

J - Indicates an estimated value when a compound is detected at less than the

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

 

 SampleiD :
 AD19539-004(5X)
 Operator :
 RL

 Data File:
 2M142843.D
 Sam Mult :
 1 Vial# :
 31

 Acq On :
 10/07/20 19:33
 Misc :
 A,5ML!2

 Qt Meth : 2M\_A0929.M Qt On : 10/07/20 19:45 Qt Upd On: 09/30/20 18:32 Data File: 2M142843.D Acq On : 1.0/07/20 19:33

| Compound                      | R.T.  | QIon | Response | Conc Units | s Dev(Mi | .n)  |
|-------------------------------|-------|------|----------|------------|----------|------|
| Internal Standards            |       |      |          |            |          |      |
| 4) Fluorobenzene              | 5.098 | 96   | 330541   | 30.00 ug/  | /1 0.    | .00  |
| 52) Chlorobenzene-d5          | 6.732 | 117  | 320747   | 30.00 ug/  | /1 0.    | .00  |
| 70) 1,4-Dichlorobenzene-d4    | 8.019 | 152  | 162666   | 30.00 ug/  | /1 0.    | .00  |
| System Monitoring Compounds   |       |      |          |            |          |      |
| 37) Dibromofluoromethane      | 4.708 | 111  | 93848    | 29.64 ug/  | /1 0.    | .00  |
| Spiked Amount 30.000          |       |      | Recove   | ry = 98    | 3.80%    |      |
| 39) 1,2-Dichloroethane-d4     | 4.909 | 67   | 48823    | 29.86 ug/  | /1 0.    | .00  |
| Spiked Amount 30.000          |       |      | Recove   | ry = 99    | 9.53%    |      |
| 66) Toluene-d8                | 5.958 | 98   | 352860   | 28.12 ug/  | /1 0.    | .00  |
| Spiked Amount 30.000          |       |      | Recove   | ry = 93    | 3.73%    |      |
| 76) Bromofluorobenzene        | 7.366 | 174  | 132537   | 31.02 ug/  | /1 0.    | 00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 103   | 3.40%    |      |
| Target Compounds              |       |      |          |            | 0.       | alue |
| 9) Vinyl Chloride             | 1.953 | 62   | 7413     | 1.8056     | ug/l     | 90   |
| 10) Chloroethane              | 2.349 | 64   | 2439     | 0.8905     | ug/l     | 90   |
| 25) Methyl Acetate            | 3.324 | 43   | 6114     | 3.0476     | ug/l     |      |
| 26) Methyl-t-butyl ether      | 3.641 | 73   | 3294     | 0.3709     | ug/l     | 90   |
| 27) 1,1-Dichloroethane        | 4.001 | 63   | 2758     | 0.5321     | ug/l     | 92   |
| 28) trans-1,2-Dichloroethene  | 3.660 | 96   | 1176     | 0.3751     | ug/l     | 76   |
| 30) cis-1,2-Dichloroethene    | 4.416 | 61   | 4988     | 0.9467     | ug/l     | 92   |
| 50) Benzene                   | 4.952 | 78   | 32496    | 2.6260     | ug/l     | 100  |
| 69) Chlorobenzene             | 6.750 | 112  | 603221   | 63.8034    | ug/l     | 99   |
| 75) 1,1,2,2-Tetrachloroethane | 7.415 | 83   | 2122     | 0.4874     | ug/l     | 77   |

(#) = qualifier out of range (m) = manual integration (+) = signals summed





### ORGANICS VOLATILE REPORT

Sample Number: AD19539-005(5X)

Client Id: HSI-GW-04
Data File: 2M142844.D
Analysis Date: 10/07/20 19:53

Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D Matrix: Aqueous Initial Vol: 5ml

Final Vol: NA
Dilution: 5.00

Solids: 0

|                  |                                |             |             | Units: ug | ı/L         |                           |     |     |       |
|------------------|--------------------------------|-------------|-------------|-----------|-------------|---------------------------|-----|-----|-------|
| Cas#             | Compound                       | MDL         | RL          | Conc      | Cas#        | Compound                  | MDL | RL  | Conc  |
| 71-55-6          | 1,1,1-Trichloroethane          | 1.8         | 5.0         | U         | 56-23-5     | Carbon Tetrachloride      | 1.6 | 5.0 | U     |
| 79-34-5          | 1,1,2,2-Tetrachioroethane      | 2.2         | 5.0         | 12        | 108-90-7    | Chlorobenzene             | 1.7 | 5.0 | 460   |
| 76-13-1          | 1,1,2-Trichloro-1,2,2-trifluor | 3.6         | 5.0         | U         | 75-00-3     | Chloroethane              | 2.9 | 5.0 | 3.6J  |
| 79-0 <b>0</b> -5 | 1,1,2-Trichloroethane          | 1.6         | 5.0         | U         | 67-66-3     | Chloroform                | 9.8 | 9.8 | U     |
| 7 <b>5-34-3</b>  | 1,1-Dichloroethane             | 2.1         | 5.0         | 4.5J      | 74-87-3     | Chloromethane             | 2.6 | 5.0 | U     |
| 75-35-4          | 1,1-Dichloroethene             | 2.7         | 5.0         | U         | 156-59-2    | cis-1,2-Dichloroethene    | 3.2 | 5.0 | 120   |
| 87-61 <b>-6</b>  | 1,2,3-Trichlorobenzene         | 3.9         | 5.0         | U         | 10061-01-5  | cis-1,3-Dichloropropene   | 1.6 | 5.0 | U     |
| 120-82-1         | 1,2,4-Trichlorobenzene         | 3.6         | 5.0         | U         | 110-82-7    | Cyclohexane               | 2.4 | 5.0 | U     |
| 96-12-8          | 1,2-Dibromo-3-Chloropropa      | 4.2         | 5.0         | U         | 124-48-1    | Dibromochloromethane      | 1.2 | 5.0 | U     |
| 106-93-4         | 1,2-Dibromoethane              | 1.7         | 5.0         | U         | 75-71-8     | Dichlorodifluoromethane   | 3.1 | 5.0 | U     |
| 95-50-1          | 1,2-Dichlorobenzene            | 1.6         | 5.0         | U         | 100-41-4    | Ethylbenzene              | 2.3 | 5.0 | U     |
| 107-06-2         | 1,2-Dichloroethane             | 3. <b>2</b> | 3. <b>2</b> | 20        | 98-82-8     | Isopropylbenzene          | 2.5 | 5.0 | U     |
| 78-87-5          | 1,2-Dichloropropane            | 1.5         | 5.0         | U         | 179601-23-1 | m&p-Xylenes               | 4.2 | 5.0 | U     |
| 541-73-1         | 1,3-Dichlorobenzene            | 1.9         | 5.0         | U         | 79-20-9     | Methyl Acetate            | 3.5 | 5.0 | 14B   |
| 106-46-7         | 1.4-Dichlorobenzene            | 1.8         | 5.0         | U         | 108-87-2    | Methylcyclohexane         | 3.1 | 5.0 | U     |
| 123-91-1         | 1,4-Dioxane                    | 200         | 250         | U         | 75-09-2     | Methylene Chloride        | 1.5 | 5.0 | 1.9J  |
| 78-93-3          | 2-Butanone                     | 3.7         | 5.0         | U         | 1634-04-4   | Methyl-t-butyl ether      | 1.6 | 2.5 | 9.6   |
| 591-78-6         | 2-Hexanone                     | 3.0         | 5.0         | U         | 95-47-6     | o-Xylene                  | 3.4 | 5.0 | U     |
| 108-10-1         | 4-Methyl-2-Pentanone           | 2.4         | 5.0         | U         | 100-42-5    | Styrene                   | 2.7 | 5.0 | U     |
| 67-64-1          | Acetone                        | 23          | 25          | U         | 127-18-4    | Tetrachloroethene         | 1.8 | 5.0 | U     |
| 71-43 <b>-2</b>  | Benzene                        | 1.5         | 2.5         | 28        | 108-88-3    | Toluene                   | 1.6 | 5.0 | 4.3 J |
| 74-97-5          | Bromochloromethane             | 3.9         | 5.0         | U         | 156-60-5    | trans-1,2-Dichloroethene  | 1.5 | 5.0 | 32    |
| 75-27-4          | Bromodichloromethane           | 1.7         | 5.0         | U         | 10061-02-6  | trans-1,3-Dichloropropene | 1.5 | 5.0 | U     |
| 75-25-2          | Bromoform                      | 2.7         | 5.0         | U         | 79-01-6     | Trichloroethene           | 1.7 | 5.0 | 26    |
| 74-83-9          | Bromomethane                   | 2.5         | 5.0         | U         | 75-69-4     | Trichlorofluoromethane    | 1.5 | 5.0 | U     |
| 75-15-0          | Carbon Disulfide               | 2.1         | 5.0         | U         | 75-01-4     | Vinyl Chloride            | 3.5 | 5.0 | 48    |
|                  |                                |             |             |           |             |                           |     |     |       |

Worksheet #: 569387

Xylenes (Total)

1330-20-7

Total Target Concentration

3.4

5.0

U

780

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $<sup>{\</sup>it E}$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19539-005(5X)
Data File: 2M142844.D
Acq On : 10/07/20 19:53 Operator : RL Sam Mult : 1 Vial# : 32 Misc : A,5ML!2 Qt Meth : 2M\_A0929.M Qt On : 10/07/20 20:12 Qt Upd On: 09/30/20 18:32

Data Path : G:\GcMsData\2020\GCMS\_2\Data\10-07-20\Qt Path : G:\GCMSDATA\2020\GCMS\_2\METHODQT\Qt Resp Via : Initial Calibration

| Compound                                       | R.T.  | QIon       | Response       | Conc Un        | its Dev( | Min)   |
|------------------------------------------------|-------|------------|----------------|----------------|----------|--------|
| Internal Standards                             |       |            |                |                |          |        |
| 4) Fluorobenzene                               | 5.099 | 96         | 326935         | 30.00          | ug/l     | 0.00   |
| 52) Chlorobenzene-d5                           | 6.732 | 117        | 312274         | 30.00          | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4                     | 8.019 | 152        | 158682         | 30.00          | ug/l     | 0.00   |
| System Monitoring Compounds                    |       |            |                |                |          |        |
| 37) Dibromofluoromethane                       | 4.702 | 111        | 91390          | 29.18          | ug/l     | 0.00   |
| Spiked Amount 30.000                           |       |            | Recove         | ry =           | 97.27%   |        |
| 39) 1,2-Dichloroethane-d4                      | 4.910 | 67         | 44046          | 27.24          | ug/l     | 0.00   |
| Spiked Amount 30.000                           |       |            | Recove         | ry =           | 90.80%   |        |
| 66) Toluene-d8                                 | 5.952 | 98         | 351999         | 28.81          | ug/l     | 0.00   |
| Spiked Amount 30.000                           |       |            | Recove         |                |          |        |
| 76) Bromofluorobenzene                         | 7.367 | 174        | 133144         | 31.94          |          | 0.00   |
| Spiked Amount 30.000                           |       |            | Recove         | ry =           | 106.47%  |        |
| Thurst Compounds                               |       |            |                |                |          | 0 1    |
| Target Compounds 9) Vinyl Chloride             | 1 053 | <b>6</b> 2 | 20022          | 0.560          |          | Qvalue |
| 10) Chloroethane                               | 1.953 | 62<br>64   | 38823<br>1948  | 9.560<br>0.719 |          |        |
|                                                |       |            |                |                |          |        |
| 15) Methylene Chloride                         | 3.416 |            | 1202           | 0.389<br>2.826 |          | 89     |
| 25) Methyl Acetate<br>26) Methyl-t-butyl ether | 3.325 | 4.3<br>73  | 5608<br>16856  |                |          |        |
| 27) 1,1-Dichloroethane                         | 4.001 | 63         | 4628           | 1.918          | J.       |        |
| 28) trans-1,2-Dichloroethene                   | 3.654 |            | 19863          | 6.406          | ٥.       |        |
| 30) cis-1,2-Dichloroethene                     | 4.410 | 61         | 129889         |                | - 3, -   |        |
| 40) 1,2-Dichloroethane                         | 4.410 | 62         | 18964          | 4.008          | ·        |        |
| 49) Trichloroethene                            | 5.300 |            |                |                | - 5, -   |        |
| 50) Benzene                                    | 4.952 | 78         | 17755<br>68808 |                | - 5, -   |        |
| 67) Toluene                                    | 5.995 |            | 7078           | _              | J .      |        |
| 69) Chlorobenzene                              |       |            | 841426         |                | J.       |        |
| 75) 1,1,2,2-Tetrachloroethane                  | 7.421 | 83         | 10462          | 2.463          |          |        |
| 75) 1,1,2,2-Tetrachioroethane                  |       | -          |                |                | J.       | 100    |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





#### ORGANICS VOLATILE REPORT

Sample Number: AD19539-006

Client Id: HSI-SB-02(3.5-4)

Data File: 1M140118.D Analysis Date: 10/06/20 02:11

Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 6.71g:10ml

Final Vol: NA

Dilution: 74.5

Solids: 83

|                    |                                |       |       | Units: mg | g/Kg        |                           |       |       |      |
|--------------------|--------------------------------|-------|-------|-----------|-------------|---------------------------|-------|-------|------|
| Cas#               | Compound                       | MDL   | RL    | Conc      | Cas#        | Compound                  | MDL   | RL    | Conc |
| 71-55-6            | 1,1,1-Trichloroethane          | 0.032 | 0.090 | U         | 56-23-5     | Carbon Tetrachloride      | 0.029 | 0.090 | U    |
| 79-34-5            | 1,1,2,2-Tetrachloroethane      | 0.040 | 0.090 | U         | 108-90-7    | Chlorobenzene             | 0.030 | 0.090 | 9.1  |
| 76-13-1            | 1,1,2-Trichloro-1,2,2-trifluor | 0.065 | 0.090 | U         | 75-00-3     | Chloroethane              | 0.052 | 0.090 | U    |
| 79-00-5            | 1.1.2-Trichloroethane          | 0.029 | 0.090 | U .       | 67-66-3     | Chloroform                | 0.18  | 0.18  | U    |
| 75-34-3            | 1,1-Dichloroethane             | 0.038 | 0.090 | U         | 74-87-3     | Chloromethane             | 0.046 | 0.090 | U    |
| 75-35-4            | 1,1-Dichloroethene             | 0.048 | 0.090 | U         | 156-59-2    | cis-1,2-Dichloroethene    | 0.057 | 0.090 | U    |
| 87-61-6            | 1,2,3-Trichlorobenzene         | 0.071 | 0.090 | U         | 10061-01-5  | cis-1,3-Dichloropropene   | 0.029 | 0.090 | U    |
| 120-82-1           | 1,2,4-Trichlorobenzene         | 0.065 | 0.090 | U         | 110-82-7    | Cyclohexane               | 0.044 | 0.090 | U    |
| 96-12-8            | 1.2-Dibromo-3-Chloropropa      | 0.075 | 0.090 | U         | 124-48-1    | Dibromochloromethane      | 0.021 | 0.090 | U    |
| 106-93-4           | 1,2-Dibromoethane              | 0.031 | 0.090 | U         | 75-71-8     | Dichlorodifluoromethane   | 0.056 | 0.090 | U    |
| 95-50-1            | 1.2 Dichlorobenzene            | 0.029 | 0.090 | U         | 100-41-4    | Ethylbenzene              | 0.042 | 0.090 | 0.78 |
| 107-06-2           | 1,2-Dichloroethane             | 0.057 | 0.057 | U         | 98-82-8     | Isopropylbenzene          | 0.044 | 0.090 | U    |
| 78-87-5            | 1.2-Dichloropropane            | 0.027 | 0.090 | U         | 179601-23-1 | m&p-Xylenes               | 0.076 | 0.090 | 4.1  |
| 541-73- <b>1</b>   | 1.3-Dichlorobenzene            | 0.034 | 0.090 | U         | 79-20-9     | Methyl Acetate            | 0.063 | 0.090 | U    |
| 106-46-7           | 1.4-Dichlorobenzene            | 0.033 | 0.090 | U         | 108-87-2    | Methylcyclohexane         | 0.055 | 0.090 | U    |
| 123-91-1           | 1.4-Dioxane                    | 3.5   | 4.5   | U         | 75-09-2     | Methylene Chloride        | 0.026 | 0.090 | U    |
| 78-9 <b>3-3</b>    | 2-Butanone                     | 0.067 | 0.090 | U         | 1634-04-4   | Methyl-t-butyl ether      | 0.028 | 0.045 | U    |
| 591-78-6           | 2-Hexanone                     | 0.054 | 0.090 | U         | 95-47-6     | o-Xylene                  | 0.061 | 0.090 | 1.3  |
| 108-10-1           | 4-Methyl-2-Pentanone           | 0.044 | 0.090 | U ,       | 100-42-5    | Styrene                   | 0.049 | 0.090 | U    |
| 67-64-1            | Acetone                        | 0.41  | 0.45  | U         | 127-18-4    | Tetrachloroethene         | 0.032 | 0.090 | U    |
| 71 43-2            | Benzene                        | 0.027 | 0.045 | U         | 108-88-3    | Toluene                   | 0.029 | 0.090 | 0.31 |
| 74-97-5            | Bromochloromethane             | 0.071 | 0.090 | U ,       | 156-60-5    | trans-1,2-Dichloroethene  | 0.028 | 0.090 | U    |
| 75 27 4            | Bromodichloromethane           | 0.031 | 0.090 | U         | 10061-02-6  | trans-1,3-Dichloropropene | 0.028 | 0.090 | U    |
| 75-25-2            | Bromoform                      | 0.049 | 0.090 | U         | 79-01-6     | Trichloroethene           | 0.031 | 0.090 | U    |
| 74-83-9            | Bromomethane                   | 0.045 | 0.090 | U         | 75-69-4     | Trichlorofluoromethane    | 0.028 | 0.090 | U    |
| 75-15-0            | Carbon Disulfide               | 0.038 | 0.090 | U         | 75-01-4     | Vinyl Chloride            | 0.063 | 0.090 | U    |
| 133 <b>0-20-</b> 7 | Xylenes (Total)                | 0.061 | 0.090 | 5.4       |             |                           |       |       |      |

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-05-20\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\

Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response       | Conc U | nits Dev | (Min)  |
|-----------------------------|-------|------|----------------|--------|----------|--------|
| Internal Standards          |       |      |                |        |          |        |
| 4) Fluorobenzene            | 5.333 | 96   | 368826         | 30.00  | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.986 | 117  | 381945         | 30.00  | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.281 | 152  | 255540         | 30.00  | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |                |        |          |        |
| 37) Dibromofluoromethane    | 4.937 | 111  | 103230         | 30.00  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove         | ry =   | 100.00%  |        |
| 39) 1,2-Dichloroethane-d4   | 5.146 | 67   | 567 <b>5</b> 0 | 30.28  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove         | ry =   | 100.93%  |        |
| 66) Toluene-d8              | 6.198 | 98   | 414833         | 26.88  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove         | ry =   | 89.60%   |        |
| 76) Bromofluorobenzene      | 7.622 | 174  | 198896         | 30.89  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove         | ry =   | 102.97%  |        |
| Target Compounds            |       |      |                |        |          | Qvalue |
| 67) Toluene                 | 6.230 | 92   | 25778          | 3.41   | 29 ug/1  | . 96   |
| 69) Chlorobenzene           | 7.002 | 112  | 891945         | 101.18 |          | . 97   |
| 74) Ethylbenzene            | 7.047 | 106  | 35472          | 8.73   | 86 ug/1  | . 100  |
| 78) m&p-Xylenes             | 7.105 | 106  | 250146         | 45.90  | 97 ug/l  | . 97   |
| 79) o Xylene                | 7.330 | 106  | 78999          | 14.15  | 95 ug/l  | . 85   |

<sup>(#)</sup> = qualifier out of range (m) = manual integration (+) = signals summed





### ORGANICS VOLATILE REPORT

Sample Number: AD19539-007

Client Id: HSI-SB-02(10-10.5)

Data File: 11M83623.D

Analysis Date: 10/06/20 18:28 Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 7.28g

Final Vol: NA

Dilution: 0.687

Solids: 80

Units: mg/Kg

| Cas #                     | Compound                       | MDL     | RL      | Conc     | Cas#        | Compound                  | MDL     | RL      | Conc   |
|---------------------------|--------------------------------|---------|---------|----------|-------------|---------------------------|---------|---------|--------|
| 71-55-6                   | 1,1,1-Trichloroethane          | 0.00079 | 0.0017  | U        | 56-23-5     | Carbon Tetrachloride      | 0.00083 | 0.0017  | U      |
| 79-34-5                   | 1,1,2,2-Tetrachloroethane      | 0.00039 | 0.0017  | 0.0063   | 108-90-7    | Chlorobenzene             | 0.00053 | 0.0017  | U      |
| 76 13-1                   | 1.1.2-Trichloro-1,2,2-trifluor | 0.0012  | 0.0017  | U        | 75-00-3     | Chloroethane              | 0.0017  | 0.0017  | U      |
| /9-00-5                   | 1.1.2-Trichloroethane          | 0.00039 | 0.0017  | U        | 67-66-3     | Chloroform                | 0.0012  | 0.0017  | U      |
| 75-34-3                   | 1,1-Dichloroethane             | 0.00075 | 0.0017  | 0.0011J  | 74-87-3     | Chloromethane             | 0.0011  | 0.0017  | U      |
| 75-35-4                   | 1.1-Dichloroethene             | 0.00099 | 0.0017  | U        | 156-59-2    | cis-1,2-Dichloroethene    | 0.00070 | 0.0017  | U      |
| 87-61-6                   | 1,2,3-Trichlorobenzene         | 0.00047 | 0.0017  | U        | 10061-01-5  | cis-1,3-Dichloropropene   | 0.00046 | 0.0017  | U      |
| 120-82-1                  | 1,2,4-Trichlorobenzene         | 0.00054 | 0.0017  | U        | 110-82-7    | Cyclohexane               | 0.0010  | 0.0017  | U      |
| 96-12-8                   | 1,2-Dibromo-3-Chloropropa      | 0.00047 | 0.0017  | U        | 124-48-1    | Dibromochloromethane      | 0.00037 | 0.0017  | U      |
| 106-93-4                  | 1,2-Dibromoethane              | 0.00042 | 0.00043 | U        | 75-71-8     | Dichlorodifluoromethane   | 0.0012  | 0.0017  | U      |
| 95-50-1                   | 1,2-Dichlorobenzene            | 0.00044 | 0.0017  | 0.0016J  | 100-41-4    | Ethylbenzene              | 0.00059 | 0.00086 | 0.074  |
| 107-06-2                  | 1,2-Dichloroethane             | 0.00035 | 0.0017  | U        | 98-82-8     | Isopropylbenzene          | 0.00071 | 0.00086 | 0.035  |
| 78-87-5                   | 1,2-Dichloropropane            | 0.00070 | 0.0017  | U        | 179601-23-1 | m&p-Xylenes               | 0.0010  | 0.0010  | 0.29   |
| 541-73-1                  | 1,3-Dichlorobenzene            | 0.00047 | 0.0017  | U        | 79-20-9     | Methyl Acetate            | 0.00082 | 0.0017  | U      |
| 106-46-7                  | 1,4-Dichlorobenzene            | 0.00046 | 0.0017  | 0.00075J | 108-87-2    | Methylcyclohexane         | 0.00077 | 0.0017  | 0.0025 |
| 123-91-1                  | 1.4-Dioxane                    | 0.042   | 0.086   | U        | 75-09-2     | Methylene Chloride        | 0.00064 | 0.0017  | 0.0024 |
| <b>78-93</b> -3           | 2-Butanone                     | 0.0010  | 0.0017  | 0.0093   | 1634-04-4   | Methyl-t-butyl ether      | 0.00046 | 0.00086 | U      |
| 591 78 6                  | 2-Hexanone                     | 0.00073 | 0.0017  | U        | 95-47-6     | o-Xylene                  | 0.00061 | 0.00086 | 0.12   |
| 108- <b>1</b> 0-1         | 4-Methyl-2-Pentanone           | 0.00050 | 0.0017  | 0.0042   | 100-42-5    | Styrene                   | 0.00047 | 0.0017  | U      |
| 67-64-1                   | Acetone                        | 0.0058  | 0.0086  | 0.034    | 127-18-4    | Tetrachloroethene         | 0.00084 | 0.0017  | U      |
| 71-43-2                   | Benzene                        | 0.00063 | 0.00086 | 0.083    | 108-88-3    | Toluene                   | 0.00057 | 0.00086 | 0.17   |
| 7 <b>4</b> -9 <b>7</b> -5 | Bromochloromethane             | 0.00060 | 0.0017  | U .      | 156-60-5    | trans-1,2-Dichloroethene  | 0.0010  | 0.0017  | U      |
| 75-27 <b>-4</b>           | Bromodichloromethane           | 0.00040 | 0.0017  | U        | 10061-02-6  | trans-1,3-Dichloropropene | 0.00040 | 0.0017  | U      |
| 75-25-2                   | Bromoform                      | 0.00028 | 0.0017  | U        | 79-01-6     | Trichloroethene           | 0.00070 | 0.0017  | U      |
| 74-83-9                   | Bromomethane                   | 0.0013  | 0.0017  | U        | 75-69-4     | Trichlorofluoromethane    | 0.0010  | 0.0017  | U      |
| 75-15-0                   | Carbon Disulfide               | 0.0029  | 0.0029  | U ,      | 75-01-4     | Vinyl Chloride            | 0.0010  | 0.0017  | U      |
| 1330-20-7                 | Xylenes (Total)                | 0.00061 | 0.00086 | 0.41     |             |                           |         |         |        |

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 11M\_S1001.M Qt On : 10/06/20 19:21 Qt Upd On: 10/02/20 09:54 

Data Path : G:\GcMsData\2020\GCMS\_11\Data\10-06-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                      | R.T.  | QIon | Response | Conc Units | Dev(N | (in)   |
|-------------------------------|-------|------|----------|------------|-------|--------|
| Internal Standards            |       |      |          |            |       |        |
| 4) Fluorobenzene              | 4.958 | 96   | 265333   | 30.00 ug,  | /1 (  | 0.00   |
| 52) Chlorobenzene-d5          | 6.559 | 117  | 367130   | 30.00 ug,  |       | 0.01   |
| 70) 1,4-Dichlorobenzene-d4    | 7.816 | 152  | 170526   | 30.00 ug,  | /1 (  | 0.00   |
| System Monitoring Compounds   |       |      |          |            |       |        |
| 37) Dibromofluoromethane      | 4.582 | 111  | 72841    | 30.03 ug,  | /1 (  | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ery = 100  | 0.10% |        |
| 39) 1,2-Dichloroethane-d4     | 4.775 | 67   | 33347    | 31.16 ug,  | /1 (  | 00.0   |
| Spiked Amount 30.000          |       |      | Recove   |            | 3.87₺ |        |
| 66) Toluene-d8                | 5.787 | 98   | 288077   | 20.16 ug,  | /1 (  | 00.0   |
| Spiked Amount 30.000          |       |      | Recove   | •          | 7.20% |        |
| 76) Bromofluorobenzene        | 7.167 | 174  | 232373   | 52.31 ug,  | /1 (  | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ery = 174  | 1.37% |        |
| Target Compounds              |       |      |          |            | Ç     | Qvalue |
| 15) Methylene Chloride        | 3.373 | 84   | 5631     | 2.7477     | ug/l  | 83     |
| 19) Acetone                   | 3.006 | 43   | 18524    | 40.1233    | ug/l  | 90     |
| 27) 1,1-Dichloroethane        | 3.923 | 63   | 3350     | 1.2549     | ug/l  | 92     |
| 41) 2 Butanone                | 4.299 | 43   | 6681     | 10.8159    | ug/l  | 96     |
| 46) Methylcyclohexane         | 5.270 | 83   | 6074     | 2.8820     | ug/l  | 98     |
| 50) Benzene                   | 4.820 | 78   | 652439   | 96.1661    | ug/l  | 100    |
| 63) 4-Methyl-2-Pentanone      | 5.704 | 43   | 10702    | 4.8523     | ug/l  | 95     |
| 67) Toluene                   | 5.823 | 92   | 1342754  | 192.9375   | ug/l  | 99     |
| 74) Ethylbenze <b>ne</b>      | 6.604 | 106  | 241041   | 85.6322    | ug/l  | 93     |
| 75) 1,1,2,2-Tetrachloroethane | 7.215 | 83   | 22689    | 7.3177     | ug/l  | 99     |
| 78) m&p-Xylenes               | 6.659 | 106  | 1351506  | 334.3908   | ug/l  | 97     |
| 79) o-Xylene                  | 6.881 | 106  | 582778   | 134.0927   | ug/l  | 100    |
| 82) 1,4-Dichlorobenzene       | 7.832 | 146  | 4778m    | 0.8714     | ug/l  |        |
| 83) 1,2-Dichlorobenzene       | 8.051 | 146  | 10125    | 1.8581     | ug/l  | 94     |
| 84) Isopropylbenzene          | 7.067 | 105  | 434571   | 40.8194    | ug/l  | 98     |

<sup>(#)</sup> = qualifier out of range (m) = manual integration (+) = signals summed





### ORGANICS VOLATILE REPORT

Sample Number: AD19539-008

Client Id: HSI-SB-02(11-11.5)

Data File: 1M140116.D Analysis Date: 10/06/20 01:29

Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 8.78g:10ml

Final Vol: NA

Dilution: 56.9

Solids: 79

|                       |       |       | Units: | mg/Kg |
|-----------------------|-------|-------|--------|-------|
| Compound              | MDL   | RL    | Conc   |       |
| 1,1,1-Trichloroethane | 0.026 | 0.072 | U      | 56-2  |

| Cas#              | Compound                       | MDL   | RL    | Conc  | Cas#        | Compound                  | MDL   | RL    | Conc    |
|-------------------|--------------------------------|-------|-------|-------|-------------|---------------------------|-------|-------|---------|
| 71-55-6           | 1,1,1-Trichloroethane          | 0.026 | 0.072 | U     | 56-23-5     | Carbon Tetrachloride      | 0.023 | 0.072 | U       |
| 79-34-5           | 1,1,2,2-Tetrachloroethane      | 0.032 | 0.072 | U     | 108-90-7    | Chlorobenzene             | 0.024 | 0.072 | 2.7     |
| 76-13-1           | 1,1,2-Trichloro-1,2,2-trifluor | 0.052 | 0.072 | U     | 75-00-3     | Chloroethane              | 0.042 | 0.072 | U       |
| 79 <b>-00</b> -5  | 1,1,2-Trichloroethane          | 0.023 | 0.072 | U     | 67-66-3     | Chloroform                | 0.14  | 0.14  | U       |
| 75- <b>34-</b> 3  | 1,1-Dichloroethane             | 0.031 | 0.072 | U     | 74-87-3     | Chloromethane             | 0.037 | 0.072 | U       |
| 75-35-4           | 1,1-Dichloroethene             | 0.038 | 0.072 | U     | 156-59-2    | cis-1,2-Dichloroethene    | 0.046 | 0.072 | U       |
| 87-61-6           | 1,2,3-Trichlorobenzene         | 0.057 | 0.072 | U     | 10061-01-5  | cis-1,3-Dichloropropene   | 0.023 | 0.072 | U       |
| 120-82-1          | 1,2,4-Trichlorobenzene         | 0.052 | 0.072 | U     | 110-82-7    | Cyclohexane               | 0.035 | 0.072 | U       |
| 96-12-8           | 1.2-Dibromo-3-Chloropropa      | 0.060 | 0.072 | U     | 124-48-1    | Dibromochloromethane      | 0.017 | 0.072 | U       |
| 106-93-4          | 1,2-Dibromoethane              | 0.025 | 0.072 | U     | 75-71-8     | Dichlorodifluoromethane   | 0.045 | 0.072 | U       |
| 95-50-1           | 1,2-Dichlorobenzene            | 0.023 | 0.072 | U     | 100-41-4    | Ethylbenzene              | 0.034 | 0.072 | 0.046 J |
| 107-06-2          | 1,2-Dichloroethane             | 0.046 | 0.046 | U     | 98-82-8     | Isopropylbenzene          | 0.035 | 0.072 | U       |
| 78-87-5           | 1,2-Dichloropropane            | 0.022 | 0.072 | U     | 179601-23-1 | m&p-Xylenes               | 0.061 | 0.072 | 0.14    |
| 541 73 1          | 1,3-Dichlorobenzene            | 0.027 | 0.072 | U     | 79-20-9     | Methyl Acetate            | 0.051 | 0.072 | U       |
| 106-46-7          | 1,4-Dichlorobenzene            | 0.026 | 0.072 | U     | 108-87-2    | Methylcyclohexane         | 0.044 | 0.072 | U       |
| 123-91-1          | 1,4-Dioxane                    | 2.8   | 3.6   | U     | 75-09-2     | Methylene Chloride        | 0.021 | 0.072 | U       |
| 78-93-3           | 2-Butanone                     | 0.054 | 0.072 | U     | 1634-04-4   | Methyl-t-butyl ether      | 0.022 | 0.036 | U       |
| 591-7 <b>8-</b> 6 | 2-Hexanone                     | 0.043 | 0.072 | U     | 95-47-6     | o-Xylene                  | 0.049 | 0.072 | U       |
| 108-10-1          | 4-Methyl-2-Pentanone           | 0.035 | 0.072 | U     | 100-42-5    | Styrene                   | 0.039 | 0.072 | U       |
| 67-64-1           | Acetone                        | 0.33  | 0.36  | U     | 127-18-4    | Tetrachloroethene         | 0.026 | 0.072 | U       |
| 71-43-2           | Benzene                        | 0.021 | 0.036 | 0.098 | 108-88-3    | Toluene                   | 0.023 | 0.072 | 1.2     |
| 74-97-5           | Bromochloromethane             | 0.057 | 0.072 | U     | 156-60-5    | trans-1,2-Dichloroethene  | 0.022 | 0.072 | U       |
| 75-27-4           | Bromodichloromethane           | 0.025 | 0.072 | U     | 10061-02-6  | trans-1,3-Dichloropropene | 0.022 | 0.072 | U       |
| 75-25-2           | Bromoform                      | 0.039 | 0.072 | U     | 79-01-6     | Trichloroethene           | 0.025 | 0.072 | U       |
| 74-83-9           | Bromomethane                   | 0.036 | 0.072 | U     | 75-69-4     | Trichlorofluoromethane    | 0.022 | 0.072 | U       |
| 75-15-0           | Carbon Disulfide               | 0.031 | 0.072 | U     | 75-01-4     | Vinyl Chloride            | 0.051 | 0.072 | U       |
| 1330-20-7         | Xylenes (Total)                | 0.049 | 0.072 | 0.14  |             |                           |       |       |         |
|                   |                                |       |       |       |             |                           |       |       |         |

Worksheet #: 569387

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column 4.2

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 1M\_A0909.M Qt On : 10/06/20 05:49 Qt Upd On: 09/10/20 15:58 

 SampleID :
 AD19539-008
 Operator :
 WP

 Data File:
 1M140116.D
 Sam Mult :
 1 Vial# :
 34

 Acq On :
 10/06/20 01:29
 Misc :
 M,MEXT!1

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-05-20\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Units | Dev(Min) |
|-----------------------------|-------|------|----------|------------|----------|
| Internal Standards          |       |      |          |            |          |
| 4) Fluorobenzene            | 5.333 | 96   | 377349   | 30.00 ug/  | 1 0.00   |
| 52) Chlorobenzene-d5        | 6.985 | 117  | 385589   | 30.00 ug/  | 1 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.281 | 152  | 239502   | 30.00 ug/  | 1 0.00   |
| System Monitoring Compounds |       |      |          |            |          |
| 37) Dibromofluoromethane    | 4.937 | 111  | 103122   | 29.29 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 97    | .63%     |
| 39) 1,2-Dichloroethane-d4   | 5.143 | 67   | 58223    | 30.37 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 101   | .23%     |
| 66) Toluene-d8              | 6.198 | 98   | 421708   | 27.06 ug/  | 1 0.00   |
| Spiked Amount 30,000        |       |      | Recove   | ry = 90    | .20%     |
| 76) Bromofluorobenzene      | 7.622 | 174  | 187890   | 31.14 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 103   | .80%     |
| Target Compounds            |       |      |          |            | Qvalue   |
| 50) Benzene                 | 5.185 | 78   | 13497    | 1.3584     | ug/l 100 |
| 67) Toluene                 | 6.233 | 92   | 128121   | 16.8026    | ug/l 93  |
| 69) Chlorobenzene           | 7.002 | 112  | 335339   | 37.6837    | ug/l 96  |
| •                           | 7.043 | 106  | 2422     | 0.6366     | ug/l 95  |
| 78) m&p-Xylenes             | 7.101 | 106  | 9583     | 1.8766     | ug/l 88  |

<sup>(#)</sup> = qualifier out of range (m) = manual integration (+) = signals summed





### ORGANICS VOLATILE REPORT

Sample Number: AD19539-009

Client Id: HSI-SB-04 (9.5-10)

Data File: 11M83578.D

Analysis Date: 10/06/20 00:57 Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 7.52g

Final Vol: NA

Dilution: 0.665

Solids: 81

Units: mg/Kg

|                  | Units: mg/kg                   |         |         |         |             |                           |         |         |          |  |  |  |  |
|------------------|--------------------------------|---------|---------|---------|-------------|---------------------------|---------|---------|----------|--|--|--|--|
| Cas#             | Compound                       | MDL     | RL      | Conc    | Cas #       | Compound                  | MDL     | RL      | Conc     |  |  |  |  |
| 71-55-6          | 1,1,1-Trichloroethane          | 0.00076 | 0.0016  | U       | 56-23-5     | Carbon Tetrachloride      | 0.00080 | 0.0016  | U        |  |  |  |  |
| 79-34-5          | 1,1.2,2-Tetrachloroethane      | 0 00037 | 0.0016  | U       | 108-90-7    | Chlorobenzene             | 0.00051 | 0.0016  | 0.097    |  |  |  |  |
| 76-13-1          | 1,1,2-Trichloro-1,2,2-trifluor | 0.0011  | 0.0016  | U       | 75-00-3     | Chloroethane              | 0.0016  | 0.0016  | U        |  |  |  |  |
| 79- <b>00</b> -5 | 1,1,2-Trichloroethane          | 0.00038 | 0.0016  | U       | 67-66-3     | Chloroform                | 0.0011  | 0.0016  | U        |  |  |  |  |
| 75-34-3          | 1,1-Dichloroethane             | 0.00071 | 0.0016  | 0.0014J | 74-87-3     | Chloromethane             | 0.0010  | 0.0016  | U        |  |  |  |  |
| 75- <b>3</b> 5-4 | 1.1-Dichloroethene             | 0.00094 | 0.0016  | U       | 156-59-2    | cis-1,2-Dichloroethene    | 0.00066 | 0.0016  | 0.030    |  |  |  |  |
| 87-61 <b>-6</b>  | 1,2,3-Trichlorobenzene         | 0.00045 | 0.0016  | U       | 10061-01-5  | cis-1,3-Dichloropropene   | 0.00044 | 0.0016  | U        |  |  |  |  |
| 120-8 <b>2-1</b> | 1,2,4-Trichlorobenzene         | 0.00052 | 0.0016  | U       | 110-82-7    | Cyclohexane               | 0.00099 | 0.0016  | U        |  |  |  |  |
| 96 12- <b>8</b>  | 1,2-Dibromo-3-Chloropropa      | 0.00045 | 0.0016  | U       | 124-48-1    | Dibromochloromethane      | 0.00035 | 0.0016  | U        |  |  |  |  |
| 106-93-4         | 1,2-Dibromoethane              | 0.00040 | 0.00041 | U       | 75-71-8     | Dichlorodifluoromethane   | 0.0012  | 0.0016  | U        |  |  |  |  |
| 95-50-1          | 1,2-Dichlorobenzene            | 0.00042 | 0.0016  | U       | 100-41-4    | Ethylbenzene              | 0.00057 | 0.00082 | U        |  |  |  |  |
| 107-06-2         | 1,2-Dichloroethane             | 0.00034 | 0.0016  | 0.0028  | 98-82-8     | Isopropylbenzene          | 0.00068 | 0.00082 | U        |  |  |  |  |
| 78-87-5          | 1,2-Dichloropropane            | 0.00067 | 0.0016  | U       | 179601-23-1 | m&p-Xylenes               | 0.00099 | 0.00099 | 0.0010   |  |  |  |  |
| 541 73-1         | 1,3-Dichlorobenzene            | 0.00045 | 0.0016  | U       | 79-20-9     | Methyl Acetate            | 0.00079 | 0.0016  | U        |  |  |  |  |
| 106-46-7         | 1.4 Dichlorobenzene            | 0.00044 | 0.0016  | U       | 108-87-2    | Methylcyclohexane         | 0.00074 | 0.0016  | U        |  |  |  |  |
| 123-91-1         | 1.4-Dioxane                    | 0.040   | 0.082   | U       | 75-09-2     | Methylene Chloride        | 0.00062 | 0.0016  | 0.0022   |  |  |  |  |
| 78 93- <b>3</b>  | 2-Butanone                     | 0.00099 | 0.0016  | U       | 1634-04-4   | Methyl-t-butyl ether      | 0.00044 | 0.00082 | 0.00070J |  |  |  |  |
| 591-78 <b>-6</b> | 2-Hexanone                     | 0.00070 | 0.0016  | U       | 95-47-6     | o-Xylene                  | 0.00058 | 0.00082 | 0.0014   |  |  |  |  |
| 108-10-1         | 4-Methyl-2-Pentanone           | 0.00048 | 0.0016  | U       | 100-42-5    | Styrene                   | 0.00045 | 0.0016  | U        |  |  |  |  |
| 67- <b>6</b> 4-1 | Acetone                        | 0.0056  | 0.0082  | U       | 127-18-4    | Tetrachloroethene         | 0.00080 | 0.0016  | U        |  |  |  |  |
| 71-43-2          | Benzene                        | 0.00060 | 0.00082 | 0.0072  | 108-88-3    | Toluene                   | 0.00054 | 0.00082 | 0.0049   |  |  |  |  |
| 74-97-5          | Bromochloromethane             | 0.00057 | 0.0016  | U       | 156-60-5    | trans-1,2-Dichloroethene  | 0.00099 | 0.0016  | 0.0033   |  |  |  |  |
| 75-27-4          | Bromodichloromethane           | 0.00039 | 0.0016  | U -     | 10061-02-6  | trans-1,3-Dichloropropene | 0.00039 | 0.0016  | U        |  |  |  |  |
| 75-25-2          | Bromoform                      | 0.00027 | 0.0016  | U       | 79-01-6     | Trichloroethene           | 0.00067 | 0.0016  | 0.0012J  |  |  |  |  |
| 74-83-9          | Bromomethane                   | 0.0013  | 0.0016  | U       | 75-69-4     | Trichlorofluoromethane    | 0.00097 | 0.0016  | U        |  |  |  |  |
| 75 15 <b>-0</b>  | Carbon Disulfide               | 0.0028  | 0.0028  | U       | 75-01-4     | Vinyl Chloride            | 0.0010  | 0.0016  | 0.14     |  |  |  |  |
| 1330-20-7        | Xylenes (Total)                | 0.00058 | 0.00082 | 0.0024  |             |                           |         |         |          |  |  |  |  |
|                  |                                |         |         |         |             |                           |         |         |          |  |  |  |  |

Worksheet #: 569387

Total Target Concentration

0.29

R - Retention Time Out

specified detection limit.

ColumnID: (^) Indicates results from 2nd column

J - Indicates an estimated value when a compound is detected at less than the

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $<sup>{\</sup>it E}$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19539-009 Qt Meth : 11M\_S1001.M Qt On : 10/06/20 06:11 Qt Upd On: 10/02/20 09:54 Operator : WP Sam Mult : 1 Vial# : 30 Misc : S,5G!2 Data File: 11M83578.D Acq On : 10/6/20 00:57

Data Path : G:\GcMsData\2020\GCMS\_11\Data\10-05-20\Qt Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\Qt Resp Via : Initial Calibration

| Compound                     | R.T.  | QIon | Response | Conc Units | Dev(M | (in)  |
|------------------------------|-------|------|----------|------------|-------|-------|
| Internal Standards           |       |      |          |            |       |       |
| 4) Fluorobenzene             | 4.961 | 96   | 261446   | 30.00 ug/  | 1 0   | .00   |
| 52) Chlorobenzene-d5         | 6.546 | 117  | 253774   | 30.00 ug/  | 1 0   | .00   |
| 70) 1,4-Dichlorobenzene-d4   | 7.816 | 152  | 139735   | 30.00 ug/  | 1 0   | .00   |
| System Monitoring Compounds  |       |      |          |            |       |       |
| 37) Dibromofluoromethane     | 4.582 | 111  | 74769    | 31.28 ug/  | 1 0   | .00   |
| Spiked Amount 30.000         |       |      | Recove   | ery = 104  | .27%  |       |
| 39) 1,2-Dichloroethane-d4    | 4.778 | 67   | 34341    | 32.56 ug/  | 1 0   | .00   |
| Spiked Amount 30.000         |       |      | Recove   |            |       |       |
| 66) Toluene-d8               | 5.787 | 98   | 284817   | 28.83 ug/  | '1 0  | .00   |
| Spiked Amount 30.000         |       |      | Recove   | - 4        | .10%  |       |
| 76) Bromofluorobenzene       | 7.167 | 174  | 106704   | 29.32 ug/  |       | .00   |
| Spiked Amount 30.000         |       |      | Recove   | ery = 97   | 7.73% |       |
| Target Compounds             |       |      |          |            | Q     | value |
| 9) Vinyl Chloride            | 1.940 | 62   | 292318   | 169.6019   | ug/l  | 97    |
| 15) Methylene Chloride       | 3.370 | 84   | 5456     | 2.7019     | ug/l  | 90    |
| 26) Methyl-t-butyl ether     | 3.591 | 73   | 3657     | 0.8527     | ug/l  | 82    |
| 27) 1,1-Dichloroethane       | 3.926 | 63   | 4514     | 1.7161     | ug/l  | 88    |
| 28) trans-1,2-Dichloroethene | 3.601 | 96   | 6872     | 4.0433     | ug/l  | 86    |
| 30) cis-1,2-Dichloroethene   | 4.305 |      | 94470    | 36.2742    | ug/1  | 88    |
| 40) 1,2-Dichloroethane       | 4.820 | 62   | 8099     | 3.4377     | ug/l  | 97    |
| 49) Trichloroethene          | 5.157 | 130  | 2837     | 1.4255     | ug/l  | 90    |
| 50) Benzene                  | 4.820 | 78   | 58674    | 8.7768     | ug/l  | 100   |
| 67) Toluene                  | 5.823 | 92   | 28670    | 5.9596     | ug/l  | 98    |
| 69) Chlorobenzene            | 6.562 | 112  | 697596   | 117.7082   | ug/l  | 99    |
| 78) m&p-Xylenes              | 6.662 |      | 4208     | 1.2706     | ug/l  | 80    |
| 79) o-Xylene                 | 6.877 | 106  | 6200     | 1.7409     | ug/l  | 99    |

<sup>(#)</sup> = qualifier out of range (m) = manual integration (+) = signals summed



ORGANICS VOLATILE REPORT

Sample Number: AD19539-010

Client Id: HSI-SB-03 (3.5-4)

Data File: 1M140112.D Analysis Date: 10/06/20 00:06

Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 7.67g:10ml

Final Vol: NA

Dilution: 65.2

Solids: 86

|   | nı | ts | • | m  | ~  | /K | _  |
|---|----|----|---|----|----|----|----|
| v |    | w  | • | •• | ıy | ۱ĸ | ١y |
|   |    |    |   |    |    |    |    |

|                 | Units: mg/kg                   |       |       |        |             |                           |       |       |        |  |  |  |
|-----------------|--------------------------------|-------|-------|--------|-------------|---------------------------|-------|-------|--------|--|--|--|
| Cas#            | Compound                       | MDL   | RL    | Conc   | Cas #       | Compound                  | MDL   | RL    | Conc   |  |  |  |
| 71-55-6         | 1,1,1-Trichloroethane          | 0.027 | 0.076 | U      | 56-23-5     | Carbon Tetrachloride      | 0.024 | 0.076 | U      |  |  |  |
| 79-34-5         | 1,1,2,2-Tetrachloroethane      | 0.034 | 0.076 | 0.43   | 108-90-7    | Chlorobenzene             | 0.025 | 0.076 | 0.057J |  |  |  |
| 76-13-1         | 1,1,2-Trichloro-1,2,2-trifluor | 0.055 | 0.076 | U      | 75-00-3     | Chloroethane              | 0.044 | 0.076 | U      |  |  |  |
| 79-00-5         | 1,1,2-Trichloroethane          | 0.024 | 0.076 | 0.025J | 67-66-3     | Chloroform                | 0.15  | 0.15  | U      |  |  |  |
| 75-34-3         | 1,1-Dichloroethane             | 0.032 | 0.076 | U      | 74-87-3     | Chloromethane             | 0.039 | 0.076 | U      |  |  |  |
| 75-35-4         | 1.1-Dichloroethene             | 0.040 | 0.076 | U      | 156-59-2    | cis-1,2-Dichloroethene    | 0.048 | 0.076 | 0.18   |  |  |  |
| 87-61-6         | 1,2,3-Trichlorobenzene         | 0.060 | 0.076 | U      | 10061-01-5  | cis-1,3-Dichloropropene   | 0.024 | 0.076 | U      |  |  |  |
| 120-82-1        | 1,2,4-Trichlorobenzene         | 0.055 | 0.076 | U      | 110-82-7    | Cyclohexane               | 0.037 | 0.076 | U      |  |  |  |
| 96-12-8         | 1,2-Dibromo-3-Chloropropa      | 0.063 | 0.076 | U      | 124-48-1    | Dibromochloromethane      | 0.018 | 0.076 | U      |  |  |  |
| 106-93-4        | 1,2-Dibromoethane              | 0.026 | 0.076 | U      | 75-71-8     | Dichlorodifluoromethane   | 0.047 | 0.076 | U      |  |  |  |
| 95-5 <b>0-1</b> | 1,2-Dichlorobenzene            | 0.025 | 0.076 | U      | 100-41-4    | Ethylbenzene              | 0.035 | 0.076 | U      |  |  |  |
| 107-06-2        | 1,2-Dichloroethane             | 0.048 | 0.048 | 0.39   | 98-82-8     | Isopropylbenzene          | 0.037 | 0.076 | U      |  |  |  |
| 78-87-5         | 1,2-Dichloropropane            | 0.023 | 0.076 | U      | 179601-23-1 | m&p-Xylenes               | 0.064 | 0.076 | U      |  |  |  |
| 541-73-1        | 1,3-Dichlorobenzene            | 0.029 | 0.076 | U      | 79-20-9     | Methyl Acetate            | 0.053 | 0.076 | U      |  |  |  |
| 106-46-7        | 1,4-Dichlorobenzene            | 0.028 | 0.076 | U      | 108-87-2    | Methylcyclohexane         | 0.047 | 0.076 | U      |  |  |  |
| 123-91-1        | 1.4-Dioxane                    | 3.0   | 3.8   | U      | 75-09-2     | Methylene Chloride        | 0.022 | 0.076 | U      |  |  |  |
| 78-93-3         | 2-Butanone                     | 0.057 | 0.076 | U      | 1634-04-4   | Methyl-t-butyl ether      | 0.024 | 0.038 | U      |  |  |  |
| 591-78-6        | 2-Hexanone                     | 0.046 | 0.076 | U      | 95-47-6     | o-Xylene                  | 0.052 | 0.076 | U      |  |  |  |
| 108-10-1        | 4-Methyl-2-Pentanone           | 0.037 | 0.076 | U      | 100-42-5    | Styrene                   | 0.041 | 0.076 | U      |  |  |  |
| 67-64-1         | Acetone                        | 0.35  | 0.38  | U      | 127-18-4    | Tetrachioroethene         | 0.027 | 0.076 | 0.17   |  |  |  |
| 71 43-2         | Benzene                        | 0.022 | 0.038 | U      | 108-88-3    | Toluene                   | 0.025 | 0.076 | 0.042J |  |  |  |
| 74-97-5         | Bromochioromethane             | 0.060 | 0.076 | U      | 156-60-5    | trans-1,2-Dichloroethene  | 0.023 | 0.076 | U      |  |  |  |
| 75 27-4         | Bromodichloromethane           | 0.026 | 0.076 | U      | 10061-02-6  | trans-1,3-Dichloropropene | 0.023 | 0.076 | U      |  |  |  |
| 75-25-2         | Bromoform                      | 0.041 | 0.076 | U      | 79-01-6     | Trichloroethene           | 0.026 | 0.076 | 2.3    |  |  |  |
| 74-83-9         | Bromomethane                   | 0.038 | 0.076 | U      | 75-69-4     | Trichlorofluoromethane    | 0.023 | 0.076 | U      |  |  |  |
| 75-15-0         | Carbon Disulfide               | 0.032 | 0.076 | U      | 75-01-4     | Vinyl Chloride            | 0.054 | 0.076 | U      |  |  |  |
| 1330-20-7       | Xylenes (Total)                | 0.052 | 0.076 | U      |             |                           |       |       |        |  |  |  |
|                 |                                |       |       |        |             |                           |       |       |        |  |  |  |

Worksheet #: 569387

Total Target Concentration

3.6 ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $<sup>{\</sup>it E}$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19539-010 Operator : WP Sam Mult : 1 Vial# : 30 Misc : M,MEXT!1 Qt Meth : 1M\_A0909.M Qt On : 10/06/20 05:48 Qt Upd On: 09/10/20 15:58 Data File: 1M140112.D Acq On : 10/06/20 00:06

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-05-20\Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\Qt Resp Via : Initial Calibration

| Compound                     | R.T.    | QIon | Response | Conc Unit | s Dev(M | in)   |
|------------------------------|---------|------|----------|-----------|---------|-------|
| Internal Standards           |         |      |          |           |         |       |
| 4) Fluorobenzene             | 5.333   | 96   | 357889   | 30.00 ug  | /1 0    | .00   |
| 52) Chlorobenzene-d5         | 6.986   | 117  | 365452   | 30.00 ug, | /1 0    | .00   |
| 70) 1,4 Dichlorobenzene-d4   | 8.281   | 152  | 226760   | 30.00 ug  | /1 0    | .00   |
| System Monitoring Compounds  |         |      |          |           |         |       |
| 37) Dibromofluoromethane     | 4.937   | 111  | 100360   | 30.05 ug  | /1 0    | .00   |
| Spiked Amount 30.000         |         |      | Recove   | ery = 100 | 0.17%   |       |
| 39) 1,2-Dichloroethane-d4    | 5.143   | 67   | 55116    | 30.31 ug  | /1 0    | .00   |
| Spiked Amount 30.000         |         |      | Recove   | ery = 10  | 1.03%   |       |
| 66) Toluene-d8               | 6.195   | 98   | 397245   | 26.90 ug  | /1 0    | .00   |
| Spiked Amount 30.000         |         |      | Recove   | ery = 8   | 9.67%   |       |
| 76) Bromofluorobenzene       | 7.622   | 174  | 179998   | 31.50 ug  | /1 0    | .00   |
| Spiked Amount 30.000         |         |      | Recove   | ery = 109 | 5.00%   |       |
| Target Compounds             |         |      |          |           | Q       | value |
| 30) cis-1,2-Dichloroethene   | 4.654   | 61   | 9905     | 2.3636    | ug/l    | 97    |
| 40) 1,2 Dichloroethane       | 5.188   | 62   | 18389    | 5.1492    | ug/l    | 100   |
| 49) Trichloroethene          | 5.539   | 130  | 84405    | 30.6189   | ug/l    | 98    |
| 60) 1,1,2-Trichloroethane    | 6.436   | 97   | 925      | 0.3249    | ug/l    | 81    |
| 65) Tetrachloroethene        | 6.539   | 164  | 5893     | 2.2345    | ug/l    | 87    |
| 67) Toluene                  | 6.236   | 92   | 3957     | 0.5475    | ug/l    | 91    |
| 69) Chlorobenzene            | 7.005   | 112  | 6351     | 0.7530    | ug/l    | 95    |
| 75) 1,1,2,2-Tetrachloroethan | e 7.670 | 83   | 25395    | 5.6729    | ug/l    | 94    |

<sup>(#)</sup> = qualifier out of range (m) = manual integration (+) = signals summed





### ORGANICS VOLATILE REPORT

Sample Number: AD19539-011

Date Rec/Extracted: 09/30/20-NA

Client Id: HSI-SB-03 (10-10.5)

Data File: 1M140111.D Analysis Date: 10/05/20 23:46

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 7.67g:10ml

Final Vol: NA

Dilution: 65.2

Solids: 84

|                         | Units: mg/Kg                   |       |       |      |             |                           |       |       |      |  |  |
|-------------------------|--------------------------------|-------|-------|------|-------------|---------------------------|-------|-------|------|--|--|
| Cas#                    | Compound                       | MDL   | RL    | Conc | Cas#        | Compound                  | MDL   | RL    | Conc |  |  |
| 71 55-6                 | 1.1.1-Trichloroethane          | 0.028 | 0.078 | U    | 56-23-5     | Carbon Tetrachloride      | 0.025 | 0.078 | U    |  |  |
| 79-34-5                 | 1,1,2,2-Tetrachloroethane      | 0.035 | 0.078 | U    | 108-90-7    | Chlorobenzene             | 0.026 | 0.078 | 0.33 |  |  |
| 76-1 <b>3</b> -1        | 1,1,2-Trichloro-1,2,2-trifluor | 0.056 | 0.078 | U    | 75-00-3     | Chloroethane              | 0.045 | 0.078 | U    |  |  |
| 79-00-5                 | 1,1,2-Trichloroethane          | 0.025 | 0.078 | U    | 67-66-3     | Chloroform                | 0.15  | 0.15  | U    |  |  |
| 75-34-3                 | 1,1-Dichloroethane             | 0.033 | 0.078 | U    | 74-87-3     | Chloromethane             | 0.040 | 0.078 | U    |  |  |
| 75- <b>35-4</b>         | 1,1-Dichloroethene             | 0.041 | 0.078 | U    | 156-59-2    | cis-1,2-Dichloroethene    | 0.049 | 0.078 | U    |  |  |
| <b>8</b> 7-61- <b>6</b> | 1,2,3-Trichlorobenzene         | 0.061 | 0.078 | U    | 10061-01-5  | cis-1,3-Dichloropropene   | 0.025 | 0.078 | U    |  |  |
| 120-82-1                | 1,2,4-Trichlorobenzene         | 0.056 | 0.078 | U    | 110-82-7    | Cyclohexane               | 0.038 | 0.078 | U    |  |  |
| 96-12- <b>8</b>         | 1,2-Dibromo-3-Chloropropa      | 0.065 | 0.078 | U    | 124-48-1    | Dibromochloromethane      | 0.019 | 0.078 | U    |  |  |
| 106-93-4                | 1,2-Dibromoethane              | 0.027 | 0.078 | U    | 75-71-8     | Dichlorodifluoromethane   | 0.048 | 0.078 | U    |  |  |
| 95-50-1                 | 1,2-Dichlorobenzene            | 0.025 | 0.078 | U    | 100-41-4    | Ethylbenzene              | 0.036 | 0.078 | U    |  |  |
| 107 06-2                | 1,2-Dichloroethane             | 0.050 | 0.050 | U    | 98-82-8     | Isopropylbenzene          | 0.038 | 0.078 | U    |  |  |
| 78-87-5                 | 1,2-Dichloropropane            | 0.023 | 0.078 | U    | 179601-23-1 | m&p-Xylenes               | 0.066 | 0.078 | U    |  |  |
| 541-73.1                | 1,3-Dichlorobenzene            | 0.029 | 0.078 | U    | 79-20-9     | Methyl Acetate            | 0.055 | 0.078 | U    |  |  |
| 106-46-7                | 1.4-Dichlorobenzene            | 0.028 | 0.078 | U    | 108-87-2    | Methylcyclohexane         | 0.048 | 0.078 | U    |  |  |
| 123-91-1                | 1,4-Dioxane                    | 3.1   | 3.9   | U    | 75-09-2     | Methylene Chloride        | 0.023 | 0.078 | U    |  |  |
| 78-9 <b>3-3</b>         | 2-Butanone                     | 0.058 | 0.078 | U    | 1634-04-4   | Methyl-t-butyl ether      | 0.024 | 0.039 | U    |  |  |
| 591-78-6                | 2-Hexanone                     | 0.047 | 0.078 | U    | 95-47-6     | o-Xylene                  | 0.053 | 0.078 | U    |  |  |
| 108-10-1                | 4-Methyl-2-Pentanone           | 0.038 | 0.078 | U    | 100-42-5    | Styrene                   | 0.042 | 0.078 | U    |  |  |
| 67-64-1                 | Acetone                        | 0.36  | 0.39  | U    | 127-18-4    | Tetrachloroethene         | 0.028 | 0.078 | U    |  |  |
| 71 43-2                 | Benzene                        | 0.023 | 0.039 | U    | 108-88-3    | Toluene                   | 0.025 | 0.078 | 0.37 |  |  |
| 74-97-5                 | Bromochloromethane             | 0.061 | 0.078 | U    | 156-60-5    | trans-1,2-Dichloroethene  | 0.024 | 0.078 | U    |  |  |
| 75-27-4                 | Bromodichloromethane           | 0.027 | 0.078 | U    | 10061-02-6  | trans-1,3-Dichloropropene | 0.024 | 0.078 | U    |  |  |
| 75-25-2                 | Bromoform                      | 0.042 | 0.078 | U    | 79-01-6     | Trichloroethene           | 0.027 | 0.078 | U    |  |  |
| 74-83-9                 | Bromomethane                   | 0.039 | 0.078 | U    | 75-69-4     | Trichlorofluoromethane    | 0.024 | 0.078 | U    |  |  |
| 75-15-0                 | Carbon Disulfide               | 0.033 | 0.078 | U    | 75-01-4     | Vinyl Chloride            | 0.055 | 0.078 | U    |  |  |

Worksheet #: 569387

Xylenes (Total)

1330-20-7

Total Target Concentration

0.078

0.053

ColumnID: (^) Indicates results from 2nd column

<sup>0.7</sup>R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

 $<sup>{\</sup>it J}$  - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 1M\_A0909.M Qt On : 10/06/20 05:48 Qt Upd On: 09/10/20 15:58 Operator : WP Sam Mult : 1 Vial# : 29 SampleID : AD19539-011 Data File: 1M140111.D Acq On : 10/05/20 23:46 : M, MEXT!1 Misc

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-05-20\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound                        | R.T.  | QIon | Response | Conc Un | its Dev | (Min)  |
|---------------------------------|-------|------|----------|---------|---------|--------|
| Internal Standards              |       |      |          |         |         |        |
| <ol><li>Fluorobenzene</li></ol> | 5.333 | 96   | 341114   | 30.00   | ug/l    | 0.00   |
| 52) Chlorobenzene-d5            | 6.985 | 117  | 344261   | 30.00   | ug/l    | 0.00   |
| 70) 1,4-Dichlorobenzene-        | 8.281 | 152  | 214777   | 30.00   | ug/l    | 0.00   |
| System Monitoring Compound      | ds    |      |          |         |         |        |
| 37) Dibromofluoromethane        | 4.941 | 111  | 96385    | 30.28   | ug/l    | 0.00   |
| Spiked Amount 30.00             | 0     |      | Recove   | ery =   | 100.93% |        |
| 39) 1,2-Dichloroethane-d        | 5.143 | 67   | 53490    | 30.86   | ug/l    | 0.00   |
| Spiked Amount 30.00             | )     |      | Recove   | ery =   | 102.87% |        |
| 66) Toluene-d8                  | 6.198 | 98   | 383790   | 27.59   | ug/l    | 0.00   |
| Spiked Amount 30.000            | כ     |      | Recove   | ery =   | 91.97%  |        |
| 76) Bromofluorobenzene          | 7.622 | 174  | 170733   | 31.55   | ug/l    | 0.00   |
| Spiked Amount 30.00             | 0     |      | Recove   | ery =   | 105.17% |        |
| Target Compounds                |       |      |          |         |         | Qvalue |
| 67) Toluene                     | 6.233 | 92   | 32090    | 4.713   | 7 ug/]  | . 90   |
| 69) Chlorobenzene               | 7.002 | 112  | 33561    | 4.224   | 2 ug/l  | . 96   |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





### ORGANICS VOLATILE REPORT

Sample Number: AD19539-012

Client Id: HSI-SB-03 (11-11.5)

Data File: 1M140341.D Analysis Date: 10/09/20 13:20

Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 7.24g:10ml

Final Vol: NA

Dilution: 69.1

Solids: 80

| Units: | mg/ł | ١g |
|--------|------|----|
|--------|------|----|

| Cas #            | Compound                       | MDL   | RL    | Conc | Cas#             | Compound                  | MDL   | RL    | Conc   |
|------------------|--------------------------------|-------|-------|------|------------------|---------------------------|-------|-------|--------|
| 71 55- <b>6</b>  | 1,1,1-Trichloroethane          | 0.031 | 0.086 | U    | 56-23-5          | Carbon Tetrachloride      | 0.028 | 0.086 | U      |
| 79-34-5          | 1,1.2,2-Tetrachioroethane      | 0.039 | 0.086 | U    | 108-90-7         | Chlorobenzene             | 0.029 | 0.086 | 0.19   |
| 76-13-1          | 1,1,2-Trichloro-1,2,2-trifluor | 0.063 | 0.086 | U    | 75-00-3          | Chloroethane              | 0.050 | 0.086 | U      |
| 79-0 <b>0-5</b>  | 1,1,2-Trichloroethane          | 0.028 | 0.086 | U    | 67 <b>-66-</b> 3 | Chloroform                | 0.17  | 0.17  | U      |
| 75-34-3          | 1,1-Dichloroethane             | 0.037 | 0.086 | U    | 74-87-3          | Chloromethane             | 0.045 | 0.086 | U      |
| 75-35-4          | 1,1-Dichloroethene             | 0.046 | 0.086 | U    | 156-59-2         | cis-1,2-Dichloroethene    | 0.055 | 0.086 | 0.079J |
| 87-61-6          | 1,2,3-Trichlorobenzene         | 0.068 | 0.086 | U    | 10061-01-5       | cis-1,3-Dichloropropene   | 0.028 | 0.086 | U      |
| 120-82-1         | 1,2,4-Trichlorobenzene         | 0.063 | 0.086 | U    | 110-82-7         | Cyclohexane               | 0.042 | 0.086 | U      |
| 96-12-8          | 1,2-Dibromo-3-Chloropropa      | 0.072 | 0.086 | U ,  | 124-48-1         | Dibromochloromethane      | 0.021 | 0.086 | U      |
| 106-93-4         | 1,2-Dibromoethane              | 0.030 | 0.086 | U    | 75-71-8          | Dichlorodifluoromethane   | 0.053 | 0.086 | U      |
| 95-50-1          | 1,2-Dichlorobenzene            | 0.028 | 0.086 | U    | 100-41-4         | Ethylbenzene              | 0.040 | 0.086 | U      |
| 107-06-2         | 1,2-Dichloroethane             | 0.055 | 0.055 | U    | 98-82-8          | Isopropylbenzene          | 0.042 | 0.086 | U      |
| 78-87-5          | 1,2-Dichloropropane            | 0.026 | 0.086 | U    | 179601-23-1      | m&p-Xylenes               | 0.073 | 0.086 | U      |
| 541-73-1         | 1,3-Dichlorobenzene            | 0.033 | 0.086 | U    | 79-20-9          | Methyl Acetate            | 0.061 | 0.086 | U      |
| 106-46-7         | 1,4-Dichlorobenzene            | 0.032 | 0.086 | U    | 108-87-2         | Methylcyclohexane         | 0.053 | 0.086 | U      |
| 123-91-1         | 1,4-Dioxane                    | 3.4   | 4.3   | U    | 75-09-2          | Methylene Chloride        | 0.025 | 0.086 | U      |
| 78-9 <b>3-3</b>  | 2-Butanone                     | 0.065 | 0.086 | U    | 1634-04-4        | Methyl-t-butyl ether      | 0.027 | 0.043 | U      |
| 591-7 <b>8-6</b> | 2-Hexanone                     | 0.052 | 0.086 | U    | 95-47-6          | o-Xylene                  | 0.059 | 0.086 | U      |
| 108-10-1         | 4-Methyl-2-Pentanone           | 0.042 | 0.086 | U    | 100-42-5         | Styrene                   | 0.047 | 0.086 | U      |
| 67- <b>64</b> -1 | Acetone                        | 0 40  | 0.43  | U    | 127-18-4         | Tetrachloroethene         | 0.031 | 0.086 | U      |
| 71-43-2          | Benzene                        | 0.026 | 0.043 | U    | 108-88-3         | Toluene                   | 0.028 | 0.086 | 0.082J |
| 74-97-5          | Bromochloromethane             | 0.068 | 0.086 | U    | 156-60-5         | trans-1,2-Dichloroethene  | 0.027 | 0.086 | U      |
| 75-27-4          | Bromodichloromethane           | 0.030 | 0.086 | U    | 10061-02-6       | trans-1,3-Dichloropropene | 0.026 | 0.086 | U      |
| 75-25- <b>2</b>  | Bromoform                      | 0 047 | 0.086 | U    | 79-01-6          | Trichloroethene           | 0.030 | 0.086 | 0.032J |
| 74-83-9          | Bromomethane                   | 0.043 | 0.086 | U    | 75-69-4          | Trichlorofluoromethane    | 0.027 | 0.086 | U      |
| 75-15- <b>0</b>  | Carbon Disulfide               | 0.037 | 0.086 | U    | 75-01-4          | Vinyl Chloride            | 0.061 | 0.086 | U      |
| 1330-20-7        | Xylenes (Total)                | 0.059 | 0.086 | U    |                  |                           |       |       |        |
|                  |                                |       |       |      |                  |                           |       |       |        |

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19539-012 Data File: 1M140341.D Acq On : 10/09/20 13:20 Operator : BK Sam Mult : 1 Vial# : 15 Misc : M,MEXT!1 Qt Meth :  $1M_A0909.M$ Qt On : 10/09/20 13:37 Qt Upd On: 09/10/20 15:58

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-09-20\Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc U | nits Dev | (Min)  |
|-----------------------------|-------|------|----------|--------|----------|--------|
| Internal Standards          |       |      |          |        |          |        |
| 4) Fluorobenzene            | 5.333 | 96   | 357563   | 30.00  | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.985 | 117  | 379066   | 30.00  | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.281 | 152  | 250948   | 30.00  | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |          |        |          |        |
| 37) Dibromofluoromethane    | 4.937 | 111  | 100336   | 30.07  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =   | 100.23%  |        |
| 39) 1,2-Dichloroethane-d4   | 5.143 | 67   | 53290    | 29.33  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recover  | ry =   | 97.77%   |        |
| 66) Toluene-d8              | 6.198 | 98   | 398148   | 25.99  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =   | 86.63%   |        |
| 76) Bromofluorobenzene      | 7.622 | 174  | 194947   | 30.83  | ug/1     | 0.00   |
| Spiked Amount 30.000        |       |      | Recover  | ry =   | 102.77%  |        |
| Target Compounds            |       |      |          |        |          | Qvalue |
| 30) cis-1,2 Dichloroethene  | 4.658 | 61   | 3838     | 0.91   | 57 ug/]  | l 94   |
| 49) Trichloroethene         | 5.539 | 130  | 1011     | 0.36   | 71 ug/]  | l 94   |
| 67) Toluene                 | 6.233 | 92   | 7143     | 0.95   | 29 ug/]  | L 88   |
| 69) Chlorobenzene           | 7.002 | 112  | 18811    | 2.15   | 03 ug/1  | l 92   |

(#)  $\sim$  qualifier out of range (m) = manual integration (+) = signals summed





### ORGANICS VOLATILE REPORT

Sample Number: AD19539-013

Client Id: HSI-SB-01 (2.5-3)

Data File: 1M140114.D

Analysis Date: 10/06/20 00:48 Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 7.87g:10ml

Final Vol: NA

Dilution: 63.5

Solids: 87

|                         |                       |       |       | Units: n | ng/Kg |
|-------------------------|-----------------------|-------|-------|----------|-------|
| Cas#                    | Compound              | MDL   | RL    | Conc     |       |
| 1 <i>-</i> 55- <b>6</b> | 1,1,1-Trichloroethane | 0.026 | 0.073 | U        | 56-2  |

| Cas#              | Compound                       | MDL   | RL    | Conc   | Cas #       | Compound                  | MDL   | RL    | Conc  |
|-------------------|--------------------------------|-------|-------|--------|-------------|---------------------------|-------|-------|-------|
| 71-55- <b>6</b>   | 1,1,1-Trichloroethane          | 0.026 | 0.073 | U      | 56-23-5     | Carbon Tetrachloride      | 0.024 | 0.073 | U     |
| 79-34-5           | 1,1,2,2-Tetrachloroethane      | 0.033 | 0.073 | 2.7    | 108-90-7    | Chiorobenzene             | 0.024 | 0.073 | 1.5   |
| 76-13-1           | 1,1,2-Trichloro-1,2,2-trifluor | 0.053 | 0.073 | U      | 75-00-3     | Chloroethane              | 0.042 | 0.073 | U     |
| 79-00-5           | 1,1,2-Trichloroethane          | 0.023 | 0.073 | 0.031J | 67-66-3     | Chloroform                | 0.14  | 0.14  | U     |
| 75-34-3           | 1,1-Dichloroethane             | 0.031 | 0.073 | U      | 74-87-3     | Chloromethane             | 0.038 | 0.073 | U     |
| 75-35-4           | 1,1-Dichloroethene             | 0.039 | 0.073 | U      | 156-59-2    | cis-1,2-Dichloroethene    | 0.046 | 0.073 | 0.35  |
| 87-61-6           | 1.2,3-Trichlorobenzene         | 0.057 | 0.073 | U      | 10061-01-5  | cis-1,3-Dichloropropene   | 0.023 | 0.073 | U     |
| 120-82-1          | 1,2,4-Trichlorobenzene         | 0.053 | 0.073 | U      | 110-82-7    | Cyclohexane               | 0.036 | 0.073 | U     |
| 96-12-8           | 1,2-Dibromo-3-Chloropropa      | 0.061 | 0.073 | U      | 124-48-1    | Dibromochloromethane      | 0.017 | 0.073 | U     |
| 106-93-4          | 1,2-Dibromoethane              | 0.025 | 0.073 | U      | 75-71-8     | Dichlorodifluoromethane   | 0.045 | 0.073 | U     |
| 95- <b>50-1</b>   | 1,2-Dichlorobenzene            | 0.024 | 0.073 | U      | 100-41-4    | Ethylbenzene              | 0.034 | 0.073 | U     |
| 107- <b>06</b> -2 | 1,2-Dichloroethane             | 0.047 | 0.047 | 1.8    | 98-82-8     | Isopropylbenzene          | 0.036 | 0.073 | U     |
| 78-87-5           | 1,2-Dichloropropane            | 0.022 | 0.073 | U      | 179601-23-1 | m&p-Xylenes               | 0.062 | 0.073 | 0.11  |
| 541-73-1          | 1.3-Dichlorobenzene            | 0.028 | 0.073 | U      | 79-20-9     | Methyl Acetate            | 0.051 | 0.073 | U     |
| 106-46-7          | 1.4-Dichlorobenzene            | 0.027 | 0.073 | U      | 108-87-2    | Methylcyclohexane         | 0.045 | 0.073 | U     |
| 123-91-1          | 1,4-Dioxane                    | 2.9   | 3.7   | U      | 75-09-2     | Methylene Chloride        | 0.021 | 0.073 | 2.3   |
| 78-93-3           | 2-Butanone                     | 0.055 | 0.073 | U      | 1634-04-4   | Methyl-t-butyl ether      | 0.023 | 0.037 | U     |
| 591-78-6          | 2-Hexanone                     | 0.044 | 0.073 | U      | 95-47-6     | o-Xylene                  | 0.050 | 0.073 | U     |
| 108-10-1          | 4-Methyl-2-Pentanone           | 0.035 | 0.073 | 0.59   | 100-42-5    | Styrene                   | 0.040 | 0.073 | U     |
| 67-64-1           | Acetone                        | 0.33  | 0.37  | U      | 127-18-4    | Tetrachloroethene         | 0.026 | 0.073 | 0.21  |
| 71-43-2           | Benzene                        | 0.022 | 0.037 | 0.034J | 108-88-3    | Toluene                   | 0.024 | 0.073 | 0.75  |
| 74-97-5           | Bromochloromethane             | 0.057 | 0.073 | U      | 156-60-5    | trans-1,2-Dichloroethene  | 0.023 | 0.073 | 0.088 |
| 75-2 <b>7-4</b>   | Bromodichloromethane           | 0.025 | 0.073 | U      | 10061-02-6  | trans-1,3-Dichloropropene | 0.022 | 0.073 | U     |
| /5 25-2           | Bromoform                      | 0.039 | 0.073 | U      | 79-01-6     | Trichloroethene           | 0.025 | 0.073 | 4.4   |
| 74-83-9           | Bromomethane                   | 0.037 | 0.073 | U      | 75-69-4     | Trichlorofluoromethane    | 0.022 | 0.073 | U     |
| 75-15-0           | Carbon Disulfide               | 0.031 | 0.073 | U      | 75-01-4     | Vinyl Chloride            | 0.052 | 0.073 | U     |
|                   |                                |       |       |        |             |                           |       |       |       |

Xylenes (Total)

1330-20-7

0.050

0.073

0.11

15

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19539-013 Data File: 1M140114.D Acq On : 10/06/20 00:48 Operator : WP Sam Mult : 1 Vial# : 32 Misc : M,MEXT!1 Qt Meth : 1M\_A0909.M Qt On : 10/06/20 05:49 Qt Upd On: 09/10/20 15:58

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-05-20\Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\Qt Resp Via : Initial Calibration

| Compound                             | R.T.  | QIon | Response | Conc Units | Dev(M | in)   |
|--------------------------------------|-------|------|----------|------------|-------|-------|
| Internal Standards                   |       |      |          |            |       |       |
|                                      | 5.336 | 96   | 374881   | 30.00 ug/  | /1 0  | .00   |
| 52) Chlorobenzene-d5                 | 6.986 | 117  | 375199   |            |       | .00   |
| 70) 1,4-Dichlorobenzene-d4           | 8.281 | 152  | 242179   | 30.00 ug/  |       | .00   |
| System Monitoring Compounds          |       |      |          |            |       |       |
| 37) Dibromofluoromethane             | 4.941 | 111  | 102546   | 29.32 ug/  | /1 0  | .00   |
| Spiked Amount 30.000                 |       |      | Recove   | ry = 97    | 7.73% |       |
| <pre>39) 1,2-Dichloroethane-d4</pre> | 5.146 | 67   | 58656    | 30.79 ug/  |       | .00   |
| Spiked Amount 30.000                 |       |      | Recove   | ry = 102   |       |       |
| 66) Toluene d8                       | 6.198 | 98   | 416756   | 27.49 ug/  |       | .00   |
| Spiked Amount 30.000                 |       |      | Recove   | 4          | L.63% |       |
| 76) Bromofluorobenzene               | 7.622 | 174  | 191125   | 31.32 ug/  |       | .00   |
| Spiked Amount 30.000                 |       |      | Recove   | ry = 104   | 1.40% |       |
| Target Compounds                     |       |      |          |            | Q     | value |
| 15) Methylene Chloride               | 3.722 | 84   | 80408    | 31.8433    | ug/l  | 93    |
| 28) trans-1,2-Dichloroethene         | 3.944 | 96   | 2787     | 1.2095     | ug/l  | 89    |
| 30) cis-1,2-Dichloroethene           | 4.654 | 61   | 20816    | 4.7422     | ug/l  | 92    |
| 40) 1,2 Dichloroethane               | 5.188 | 62   | 92269    | 24.6657    | ug/l  | 99    |
| 49) Trichloroethene                  | 5.539 | 130  | 173500   | 60.0863    | ug/l  | 98    |
| 50) Benzene                          | 5.191 | 78   | 4585     | 0.4645     | ug/l  | 100   |
| 60) 1,1,2-Trichloroethane            | 6.436 | 97   | 1225     | 0.4191     | ug/l  | 86    |
| 63) 4-Methyl-2-Pentanone             | 6.111 | 43   | 27199    |            | ug/l  | 87    |
| 65) Tetrachloroethene                | 6.539 | 164  | 7728     | 2.8542     | ug/l  | 97    |
| 67) Toluene                          | 6.233 | 92   | 76287    | 10.2818    | ug/l  | 90    |
| 69) Chlorobenzene                    | 7.002 | 112  | 176319   | 20.3625    | ug/l  | 96    |
| 75) 1,1,2,2-Tetrachloroethane        | 7.674 |      | 179252   |            | ug/1  | 99    |
| 78) m&p-Xylenes                      | 7.105 | 106  | 7911     | 1.5320     | ug/l  | 91    |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





### ORGANICS VOLATILE REPORT

Sample Number: AD19539-014(40uL)

Client Id: HSI-SB-01 (6-6.5)

Data File: 1M140337.D

Analysis Date: 10/09/20 11:57 Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 8.18g:10ml

Final Vol: NA

Dilution: 1220

Solids: 83

|                           |                                |      |      | Units: m | g/Kg        |                           |      |      |      |
|---------------------------|--------------------------------|------|------|----------|-------------|---------------------------|------|------|------|
| Cas #                     | Compound                       | MDL  | RL   | Conc     | Cas#        | Compound                  | MDL  | RL   | Conc |
| 71-55 <b>-6</b>           | 1,1,1-Trichloroethane          | 0.53 | 1.5  | U        | 56-23-5     | Carbon Tetrachloride      | 0.48 | 1.5  | U    |
| 7 <b>9-34-</b> 5          | 1,1,2,2-Tetrachloroethane      | 0.66 | 1.5  | 58       | 108-90-7    | Chlorobenzene             | 0.49 | 1.5  | 320  |
| 76-13-1                   | 1,1,2-Trichloro-1,2,2-trifluor | 1.1  | 1.5  | U        | 75-00-3     | Chloroethane              | 0.85 | 1.5  | U    |
| 79-00-5                   | 1,1,2-Trichloroethane          | 0.47 | 1.5  | U        | 67-66-3     | Chloroform                | 2.9  | 2.9  | U    |
| 75-34-3                   | 1,1-Dichloroethane             | 0.63 | 1.5  | U        | 74-87-3     | Chloromethane             | 0.76 | 1.5  | U    |
| 75-35-4                   | 1,1-Dichloroethene             | 0.78 | 1.5  | U        | 156-59-2    | cis-1,2-Dichloroethene    | 0.94 | 1.5  | 9.9  |
| 87-61-6                   | 1,2,3-Trichlorobenzene         | 1.2  | 1.5  | U        | 10061-01-5  | cis-1,3-Dichloropropene   | 0.47 | 1.5  | U    |
| 120-82-1                  | 1,2.4-Trichlorobenzene         | 1.1  | 1.5  | U        | 110-82-7    | Cyclohexane               | 0.72 | 1.5  | U    |
| 96-12- <b>8</b>           | 1,2-Dibromo-3-Chloropropa      | 1.2  | 1.5  | U        | 124-48-1    | Dibromochloromethane      | 0.35 | 1.5  | U    |
| 106-93-4                  | 1.2-Dibromoethane              | 0.50 | 1.5  | U        | 75-71-8     | Dichlorodifluoromethane   | 0.91 | 1.5  | U    |
| 95-50-1                   | 1,2-Dichlorobenzene            | 0.48 | 1.5  | U        | 100-41-4    | Ethylbenzene              | 0.69 | 1.5  | 12   |
| 107-06-2                  | 1,2-Dichloroethane             | 0.94 | 0.94 | 19       | 98-82-8     | Isopropylbenzene          | 0.72 | 1.5  | 1.2J |
| 7 <b>8-8</b> 7 <i>-</i> 5 | 1,2-Dichloropropane            | 0.44 | 1.5  | U        | 179601-23-1 | m&p-Xylenes               | 1.3  | 1.5  | 57   |
| 541-73-1                  | 1,3-Dichlorobenzene            | 0.55 | 1.5  | U        | 79-20-9     | Methyl Acetate            | 1.0  | 1.5  | U    |
| 106-46-7                  | 1,4-Dichlorobenzene            | 0.54 | 1.5  | U        | 108-87-2    | Methylcyclohexane         | 0.90 | 1.5  | 1.8  |
| 123-91-1                  | 1,4-Dioxane                    | 58   | 74   | U        | 75-09-2     | Methylene Chloride        | 0.43 | 1.5  | 49   |
| 78-93-3                   | 2-Butanone                     | 1,1  | 1.5  | U        | 1634-04-4   | Methyl-t-butyl ether      | 0.46 | 0.74 | U    |
| 591-78-6                  | 2-Hexanone                     | 0.88 | 1.5  | U        | 95-47-6     | o-Xylene                  | 1.0  | 1.5  | 13   |
| 108-10-1                  | 4-Methyl-2-Pentanone           | 0.72 | 1.5  | 14       | 100-42-5    | Styrene                   | 0.80 | 1.5  | U    |
| 67-64-1                   | Acetone                        | 6.7  | 7.4  | U        | 127-18-4    | Tetrachloroethene         | 0.53 | 1.5  | 29   |
| 71-43-2                   | Benzene                        | 0.44 | 0.74 | 2.4      | 108-88-3    | Toluene                   | 0.48 | 1.5  | 570  |
| 74-97-5                   | Bromochloromethane             | 1.2  | 1.5  | U        | 156-60-5    | trans-1,2-Dichloroethene  | 0.46 | 1.5  | 3.4  |
| 75-27-4                   | Bromodichloromethane           | 0.51 | 1.5  | U        | 10061-02-6  | trans-1,3-Dichloropropene | 0.45 | 1.5  | U    |
| 75-25-2                   | Bromoform                      | 0.80 | 1.5  | U        | 79-01-6     | Trichloroethene           | 0.51 | 1.5  | 460  |
| 74-83-9                   | Bromomethane                   | 0.74 | 1.5  | U        | 75-69-4     | Trichlorofluoromethane    | 0.45 | 1.5  | U    |
| 75-15-0                   | Carbon Disulfide               | 0.62 | 1.5  | U        | 75-01-4     | Vinyl Chloride            | 1.0  | 1.5  | U    |
| 13 <b>30-20-7</b>         | Xylenes (Total)                | 1.0  | 1.5  | 70       |             |                           |      |      |      |

Worksheet #: 569387

Total Target Concentration

1600

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

J - Indicates an estimated value when a compound is detected at less than the

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

 

 SampleID :
 AD19539-014(40uL)
 Operator :
 BK

 Data File:
 1M140337.D
 Sam Mult :
 1 Vial# :
 11

 Acq On :
 10/09/20 11:57
 Misc :
 M,MEXT!1

 Qt Meth : 1M\_A0909.M Qt On : 10/09/20 12:44 Qt Upd On: 09/10/20 15:58

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-09-20\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound                      | R.T.  | QIon | Response | Conc Ur | nits Dev | (Min)  |
|-------------------------------|-------|------|----------|---------|----------|--------|
| Internal Standards            |       |      |          |         | ,        |        |
| 4) Fluorobenzene              | 5.339 | 96   | 378004   | 30.00   | ນα/1     | 0.00   |
| 52) Chlorobenzene-d5          | 6.989 |      | 401823   | 30.00   |          | 0.00   |
| 70) 1,4-Dichlorobenzene-d4    | 8.281 | 152  | 265203   | 30.00   |          | 0.00   |
| ., .,                         |       |      |          |         |          |        |
| System Monitoring Compounds   |       |      |          |         |          |        |
| 37) Dibromofluoromethane      | 4.944 | 111  | 106318   | 30.14   | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry =    | 100.47%  |        |
| 39) 1,2-Dichloroethane-d4     | 5.150 | 67   | 58500    | 30.46   | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry =    | 101.53%  |        |
| 66) Toluene-d8                | 6.201 | 98   | 434524   | 26.76   | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry =    | 89.20%   |        |
| 76) Bromofluorobenzene        | 7.622 | 174  | 206075   | 30.84   | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry =    | 102.80%  |        |
|                               |       |      |          |         |          |        |
| Target Compounds              |       | ٠.   | 0.075    | 22 000  | - /1     | Qvalue |
| 15) Methylene Chloride        | 3.738 | 84   | 84075    | 33.020  |          |        |
| 28) trans-1,2-Dichloroethene  | 3.966 | 96   | 5350     | 2.302   |          |        |
| 30) cis-1,2-Dichloroethene    | 4.664 |      | 29815    | 6.736   | J.       |        |
| 40) 1,2-Dichloroethane        | 5.195 | -    | 49438    | 13.106  |          |        |
| 46) Methylcyclohexane         | 5.664 |      | 3514     | 1.215   | J.       |        |
| 49) Trichloroethene           | 5.542 |      | 910309   | 312.652 | J.       |        |
| 50) Benzene                   | 5.191 | 78   | 16091    | 1.616   |          |        |
| 63) 4-Methyl-2-Pentanone      | 6.111 | 43   | 33912    | 9.377   |          |        |
| 65) Tetrachloroethene         | 6.542 | 164  | 56371    | 19.440  | )4 ug/l  | . 100  |
| 67) Toluene                   | 6.236 | 92   | 3081429  | 387.791 | 13 ug/1  | . 96   |
| 69) Chlorobenzene             | 7.005 | 112  | 1996289  | 215.269 | 95 ug/1  | . 98   |
| 74) Ethylbenzene              | 7.047 | 1.06 | 34968    | 8.300   | )5 ug/l  | . 95   |
| 75) 1,1,2,2-Tetrachloroethane | 7.674 | 83   | 206811   | 39.502  | 20 ug/l  | . 99   |
| 78) m&p Xylenes               | 7.105 | 106  | 220745   | 39.037  | 75 ug/l  | . 100  |
| 79) o Xylene                  | 7.333 | 106  | 50031    | 8.640   | 6 ug/1   | . 87   |
| 84) Isopropylbenzene          | 7.526 | 105  | 11949    | 0.819   | 3 ug/l   | . 94   |
|                               |       |      |          |         |          |        |

(#) = qualifier out of range (m) = manual integration (+) = signals summed





1M A0909.M Sun Oct 11 22:12:20 2020 RPT1

#### ORGANICS VOLATILE REPORT

Units: mg/Kg

Cas #

Conc

Sample Number: AD19539-015

Client Id: HSI-SB-01 (10-10.5)

Data File: 11M83603.D

Analysis Date: 10/06/20 11:52 Date Rec/Extracted: 09/30/20-NA

Compound

2-Hexanone

Acetone

Benzene

Bromoform

Bromomethane

Carbon Disulfide

Xylenes (Total)

4-Methyl-2-Pentanone

Bromochloromethane

Bromodichloromethane

Cas #

591-78-6

108-10-1

67-64-1

71-43-2

74 97-5

75-27-4

75-25-**2** 

74-83-9

75-15-0

1330-20-7

Column: DB-624 25M 0.200mm ID 1.12um film

RL

MDL

0.00064

0.00044

0.0051

0.00055

0.00053

0.00035

0.00025

0.0012

0.0026

0.00053

0.0015

0.0015

0.0075

0.00075

0.0015

0.0015

0.0015

0.0015

0.0026

0.00075

Method: EPA 8260D

Matrix: Soil

Initial Vol: 8.12g

Final Vol: NA

Dilution: 0.616

MDL

0.00053

0.00041

0.00074

0.00050

0.00090

0.00035

0.00062

0.00089

0.00092

0.00075

0.0015

0.0015

0.00075

0.0015

0.0015

0.0015

0.0015

0.0015

RL

Conc

0.0019

0.0094

0.0027

0.030

0.084

U

U

U

U

Solids: 82

Compound

| 71-55-6                   | 1,1,1-Trichloroethane          | 0.00069 | 0.0015  | U,       | 56-23-5     | Carbon Tetrachloride    | 0.00073 | 0.0015  | U        |
|---------------------------|--------------------------------|---------|---------|----------|-------------|-------------------------|---------|---------|----------|
| 79-34-5                   | 1,1,2,2-Tetrachloroethane      | 0.00034 | 0.0015  | 0.0011J  | 108-90-7    | Chlorobenzene           | 0.00047 | 0.0015  | 0.18     |
| 76-13-1                   | 1,1,2-Trichloro-1,2,2-trifluor | 0.0010  | 0.0015  | U        | 75-00-3     | Chloroethane            | 0.0015  | 0.0015  | U        |
| 79- <b>0</b> 0- <b>5</b>  | 1,1,2-Trichloroethane          | 0.00035 | 0.0015  | U        | 67-66-3     | Chloroform              | 0.0010  | 0.0015  | U        |
| 75-34-3                   | 1,1-Dichloroethane             | 0.00065 | 0.0015  | 0.00097J | 74-87-3     | Chloromethane           | 0.00092 | 0.0015  | U        |
| 75-35-4                   | 1,1-Dichloroethene             | 0.00086 | 0.0015  | 0.0016   | 156-59-2    | cis-1,2-Dichloroethene  | 0.00061 | 0.0015  | 0.052    |
| 87-61-6                   | 1,2,3-Trichlorobenzene         | 0.00041 | 0.0015  | U        | 10061-01-5  | cis-1,3-Dichloropropene | 0.00040 | 0.0015  | U        |
| 120-82-1                  | 1,2,4-Trichlorobenzene         | 0.00047 | 0.0015  | U        | 110-82-7    | Cyclohexane             | 0.00090 | 0.0015  | U        |
| 96 12-8                   | 1,2-Dibromo-3-Chloropropa      | 0.00041 | 0.0015  | U        | 124-48-1    | Dibromochloromethane    | 0.00032 | 0.0015  | U        |
| 106-93-4                  | 1,2-Dibromoethane              | 0.00037 | 0.00038 | U        | 75-71-8     | Dichlorodifluoromethane | 0.0011  | 0.0015  | U        |
| 95-50-1                   | 1.2-Dichlorobenzene            | 0.00038 | 0.0015  | U        | 100-41-4    | Ethylbenzene            | 0.00052 | 0.00075 | 0.0028   |
| 107- <b>06-2</b>          | 1,2-Dichloroethane             | 0.00031 | 0.0015  | 0.0073   | 98-82-8     | Isopropylbenzene        | 0.00062 | 0.00075 | U        |
| 7 <b>8</b> -87-5          | 1,2-Dichloropropane            | 0.00062 | 0.0015  | U        | 179601-23-1 | m&p-Xylenes             | 0.00090 | 0.00090 | 0.0024   |
| 541-73-1                  | 1,3-Dichlorobenzene            | 0.00041 | 0.0015  | U        | 79-20-9     | Methyl Acetate          | 0.00072 | 0.0015  | U        |
| <b>10</b> 6- <b>46</b> -7 | 1,4-Dichlorobenzene            | 0.00040 | 0.0015  | U        | 108-87-2    | Methylcyclohexane       | 0.00068 | 0.0015  | 0.00093J |
| 123-91-1                  | 1,4-Dioxane                    | 0.036   | 0.075   | U        | 75-09-2     | Methylene Chloride      | 0.00056 | 0.0015  | 0.0031   |
| 7 <b>8</b> -93- <b>3</b>  | 2-Butanone                     | 0.00090 | 0.0015  | U        | 1634-04-4   | Methyl-t-butyl ether    | 0.00041 | 0.00075 | U        |
|                           |                                |         |         |          |             |                         |         |         |          |

U

u

U

U

U

0.0043

0.0040

0.0080

0.0086

95-47-6

100-42-5

127-18-4

108-88-3

156-60-5

79-01-6

75-69-4

75-01-4

0.4

10061-02-6

o-Xylene

Styrene

Toluene

Tetrachloroethene

Trichloroethene

Vinyl Chloride

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Worksheet #: 569387

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

 $<sup>{\</sup>it U}$  - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out
J - Indicates an estimated value wh

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19539 015 Data File: 11M83603.D Qt Meth : 11M\_S1001.M Qt On : 10/06/20 12:16 Qt Upd On: 10/02/20 09:54 Operator : SG Sam Mult : 1 Vial# : 15 Misc : S,5G!2 Data File: 11M83603.D Acq On : 10/6/20 11:52

Data Path : G:\GcMsData\2020\GCMS\_11\Data\10-06-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                      | R.T.  | QIon         | Response | Conc Un | its Dev( | Min)   |
|-------------------------------|-------|--------------|----------|---------|----------|--------|
| Internal Standards            |       |              |          |         |          |        |
| 4) Fluorobenzene              | 4.958 | 96           | 290760   | 30.00   | ug/l     | 0.00   |
| 52) Chlorobenzene-d5          | 6.549 | 117          | 239131   | 30.00   | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4    | 7.816 | 152          | 132671   | 30.00   | ug/l     | 0.00   |
| System Monitoring Compounds   |       |              |          |         |          |        |
| 37) Dibromofluoromethane      | 4.582 | 111          | 84454    | 31.77   | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |              | Recove   | ery =   | 105.90%  |        |
| 39) 1,2-Dichloroethane-d4     | 4.778 | 67           | 37332    | 31.83   | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |              | Recove   | ery =   | 106.10%  |        |
| 66) Toluene d8                | 5.787 | 98           | 309023   | 33.20   | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |              | Recove   | ery =   | 110.67%  |        |
| 76) Bromofluorobenzene        | 7.167 | 174          | 101860   | 29.47   | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |              | Recove   | ery =   | 98.23%   |        |
| Target Compounds              |       |              |          |         |          | Qvalue |
| 9) Vinyl Chloride             | 1.940 | 62           | 213392   | 111.327 | 0 ug/l   | 98     |
| 15) Methylene Chloride        | 3.373 | 84           | 9352     | 4.164   | 4 ug/1   | . 89   |
| 19) Acetone                   | 3.009 | 43           | 5380     | 10.634  | 1 ug/l   | . 77   |
| 24) 1,1-Dichloroethene        | 2.980 | 61           | 4368     | 2.097   | 8 ug/1   | . 83   |
| 27) 1,1-Dichloroethane        | 3.916 | 63           | 3784     | 1.293   | 5 ug/1   | . 80   |
| 28) trans-1,2-Dichloroethene  | 3.601 | 96           | 6679     | 3.533   | 5 ug/1   | 90     |
| 30) cis-1,2-Dichloroethene    | 4.305 | 61           | 202190   | 69.808  | 9 ug/1   | . 83   |
| 40) 1,2-Dichloroethane        | 4.820 | 62           | 25504    | 9.733   | 9 ug/1   | 96     |
| 46) Methylcyclohexane         | 5.270 | 83           | 2868     | 1.241   | 8 ug/1   | . 89   |
| 49) Trichloroethene           | 5.157 | 130          | 88229    | 39.863  | 5 ug/1   | 97     |
| 50) Benzene                   | 4.816 | 78           | 84918    | 11.421  | 9 ug/1   | 100    |
| 63) 4-Methyl-2-Pentanone      | 5.701 | 43           | 7616     | 5.301   | 5 ug/1   | 98     |
| 67) Toluene                   | 5.823 | 92           | 57027    | 12.580  | 1 ug/l   | 91     |
| 69) Chlorobenzene             | 6.562 | 112          | 1352054  | 242.107 | 4 ug/1   | 100    |
| 74) Ethylbenzene              | 6.604 | 106          | 8053     | 3.677   | 2 ug/1   | 97     |
| 75) 1,1,2,2-Tetrachloroethane | 7.215 | 83           | 3477     | 1.441   | 4 ug/l   | 96     |
| 78) m&p-Xylenes               | 6.662 | 106          | 10094    | 3.210   |          |        |
| 79) o Xylene                  | 6.881 | 106          | 8396     | 2.483   |          |        |
|                               |       | <b>. -</b> - |          |         |          |        |

(#) = qualifier out of range (m) = manual integration (+) = signals summed





# Form1 ORGANICS VOLATILE REPORT

Sample Number: AD19539-016

Client Id: HSI-SB-01 (14.5-15)

Data File: 11M83604.D Analysis Date: 10/06/20 12:12 Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 7.04g

Final Vol: NA

Dilution: 0.710

Solids: 80

|           |                                |         |         | Units: m | g/Kg        |                           |         |         |          |
|-----------|--------------------------------|---------|---------|----------|-------------|---------------------------|---------|---------|----------|
| Cas #     | Compound                       | MDL     | RL      | Conc     | Cas #       | Compound                  | MDL.    | RL      | Conc     |
| 71-55-6   | 1,1,1-Trichloroethane          | 0.00082 | 0.0018  | U        | 56-23-5     | Carbon Tetrachloride      | 0.00086 | 0.0018  | U        |
| 79-34-5   | 1,1,2,2-Tetrachloroethane      | 0.00040 | 0.0018  | 0.0024   | 108-90-7    | Chlorobenzene             | 0.00055 | 0.0018  | 0.065    |
| 76-13-1   | 1,1.2-Trichloro-1,2.2-trifluor | 0.0012  | 0.0018  | U        | 75-00-3     | Chloroethane              | 0.0017  | 0.0018  | U        |
| 79 00-5   | 1.1,2-Trichloroethane          | 0.00041 | 0.0018  | U        | 67-66-3     | Chloroform                | 0.0012  | 0.0018  | U        |
| 75-34-3   | 1.1-Dichloroethane             | 0 00077 | 0.0018  | U        | 74-87-3     | Chloromethane             | 0.0011  | 0.0018  | U        |
| /5-35-4   | 1,1-Dichloroethene             | 0.0010  | 0.0018  | U        | 156-59-2    | cis-1,2-Dichloroethene    | 0.00072 | 0.0018  | 0.014    |
| 87 61-6   | 1.2.3-Trichlorobenzene         | 0.00049 | 0.0018  | U        | 10061-01-5  | cis-1,3-Dichloropropene   | 0.00047 | 0.0018  | U        |
| 120 82-1  | 1.2.4-Trichlorobenzene         | 0.00056 | 0.0018  | U        | 110-82-7    | Cyclohexane               | 0 0011  | 0.0018  | U        |
| 96-12-8   | 1.2-Dibromo-3-Chloropropa      | 0.00049 | 0.0018  | U        | 124-48-1    | Dibromochloromethane      | 0.00038 | 0.0018  | U        |
| 106 93-4  | 1.2-Dibromoethane              | 0.00044 | 0.00044 | U        | 75-71-8     | Dichlorodifluoromethane   | 0.0013  | 0.0018  | U        |
| 95-50-1   | 1.2-Dichlorobenzene            | 0.00045 | 0.0018  | U        | 100-41-4    | Ethylbenzene              | 0.00061 | 0.00089 | 0.00070J |
| 107-06-2  | 1,2-Dichloroethane             | 0.00036 | 0.0018  | 0.010    | 98-82-8     | Isopropylbenzene          | 0.00074 | 0.00089 | U        |
| 78-87-5   | 1.2-Dichloropropane            | 0.00073 | 0.0018  | U        | 179601-23-1 | m&p-Xylenes               | 0.0011  | 0.0011  | 0.0013   |
| 541-73-1  | 1,3-Dichlorobenzene            | 0.00049 | 0.0018  | U        | 79-20-9     | Methyl Acetate            | 0.00085 | 0.0018  | U        |
| 106 46-7  | 1.4-Dichlorobenzene            | 0.00047 | 0.0018  | U        | 108-87-2    | Methylcyclohexane         | 0.00080 | 0.0018  | U        |
| 123-91-1  | 1,4-Dioxane                    | 0.043   | 0.089   | U        | 75-09-2     | Methylene Chloride        | 0.00067 | 0.0018  | 0.022    |
| 78-93-3   | 2-Butanone                     | 0.0011  | 0.0018  | U        | 1634-04-4   | Methyl-t-butyl ether      | 0.00048 | 0.00089 | 0.0012   |
| 591-78-6  | 2-Hexanone                     | 0.00075 | 0.0018  | U        | 95-47-6     | o-Xylene                  | 0.00063 | 0.00089 | U        |
| 108-10-1  | 4-Methyl-2-Pentanone           | 0.00051 | 0.0018  | 0.00081J | 100-42-5    | Styrene                   | 0.00049 | 0.0018  | U        |
| 67-64-1   | Acetone                        | 0.0060  | 0.0089  | 0.012    | 127-18-4    | Tetrachloroethene         | 0.00087 | 0.0018  | U        |
| 71-43-2   | Benzene                        | 0.00065 | 0.00089 | 0.0030   | 108-88-3    | Toluene                   | 0.00059 | 0.00089 | 0.035    |
| /4 97·5   | Bromochloromethane             | 0.00062 | 0.0018  | U        | 156-60-5    | trans-1,2-Dichloroethene  | 0.0011  | 0.0018  | 0.0027   |
| 75-27-4   | Bromodichloromethane           | 0.00042 | 0.0018  | U        | 10061-02-6  | trans-1,3-Dichloropropene | 0.00042 | 0.0018  | U        |
| 75-25-2   | Bromoform                      | 0.00029 | 0.0018  | U        | 79-01-6     | Trichloroethene           | 0.00073 | 0.0018  | 0.040    |
| 74 83-9   | Bromomethane                   | 0.0014  | 0.0018  | U        | 75-69-4     | Trichlorofluoromethane    | 0.0010  | 0.0018  | U        |
| 75-15-0   | Carbon Disulfide               | 0.0030  | 0.0030  | U        | 75-01-4     | Vinyl Chloride            | 0.0011  | 0.0018  | 0.0075   |
| 1330-20-7 | Xylenes (Total)                | 0.00063 | 0.00089 | 0.0013   |             | •                         |         |         |          |

Worksheet #. 569439

Total Target Concentration

0.22 ColumnID: (^) Indicates results from 2nd column

J - Indicates an estimated value when a compound is detected at less than the

R - Retention Time Out

t' - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

#### (QT Reviewed) Quantitation Report

Qt Meth : 11M\_S1001.M Qt On : 10/06/20 14:42 Qt Upd On: 10/02/20 09:54 Operator : SG Sam Mult : 1 Vial# : 16 Misc : S,5G!2 SampleID : AD19539-016 Data File: 11M83604.D Acq On : 10/6/20 12:12 Misc

Data Path : G:\GcMsData\2020\GCMS\_11\Data\10-06-20\Qt Path : G:\GCMSDATA\2020\GCMS\_11\MBTHODQT\Qt Resp Via : Initial Calibration

| Compound                      | R.T.  | QIon | Response | Conc Unit | s Dev(Min) |
|-------------------------------|-------|------|----------|-----------|------------|
| Internal Standards            |       |      |          |           |            |
| 4) Fluorobenzene              | 4.961 | 96   | 238664   | 30.00 ug. | /1 0.00    |
| 52) Chlorobenzene-d5          | 6.546 |      | 231918   | 30.00 ug  |            |
| 70) 1,4-Dichlorobenzene-d4    | 7.816 |      | 128450   | 30.00 ug  |            |
| System Monitoring Compounds   |       |      |          |           |            |
| 37) Dibromofluoromethane      | 4.582 | 111  | 69580    |           |            |
| Spiked Amount 30.000          |       |      | Recove   |           | 5.30%      |
| 39) 1,2-Dichloroethane-d4     | 4.778 | 67   | 32283    | 33.54 ug, |            |
| Spiked Amount 30.000          |       |      | Recove   |           | L.80%      |
| 66) Toluene-d8                | 5.787 | 98   | 260353   | 28.84 ug, |            |
| Spiked Amount 30.000          |       |      | Recove   |           | 5.13*      |
| 76) Bromofluorobenzene        | 7.167 | 174  | 98228    | 29.36 ug, |            |
| Spiked Amount 30.000          |       |      | Recove   | ry = 9.   | 7.87%      |
| Target Compounds              |       |      |          |           | Qvalue     |
| 9) Vinyl Chloride             | 1.943 | 62   | 13254    | 8.4240    | ug/l 99    |
| 15) Methylene Chloride        | 3.370 | 84   | 46312    | 25.1237   | ug/l 96    |
| 19) Acetone                   | 3.016 | 43   | 5394     | 12.9890   | ug/l 87    |
| 26) Methyl-t-butyl ether      | 3.595 |      | 5507     | 1.4066    | ug/l 92    |
| 28) trans-1,2-Dichloroethene  | 3.608 | 96   | 4778     | 3.0796    | ug/l 88    |
| 30) cis-1,2-Dichloroethene    | 4.308 | 61   | 37052    | 15.5851   | ug/l 91    |
| 40) 1,2 Dichloroethane        | 4.820 | 62   | 25054    | 11.6494   | ug/l 98    |
| 49) Trichloroethene           | 5.154 |      | 80835    | 44.4950   | ug/l 95    |
| 50) Benzene                   | 4.820 | 78   | 20827    | 3.4128    | ug/l 100   |
| 63) 4-Methyl-2-Pentanone      | 5.701 | 43   | 1267     | 0.9094    | ug/l 83    |
| 67) Toluene                   | 5.823 | 92   | 172446   |           | ug/l 98    |
| 69) Chlorobenzene             | 6.562 |      | 397272   | 73.3505   | ug/l 100   |
| 74) Ethylbenzene              | 6.604 |      | 1664     | 0.7848    | ug/l 82    |
| 75) 1,1,2,2-Tetrachloroethane | 7.215 |      | 6308     | 2.7009    | ug/l 95    |
| 78) m&p Xylenes               | 6.659 | 106  | 4594     | 1.5090    | ug/l 97    |

<sup>(#)</sup> = qualifier out of range (m) = manual integration (+) = signals summed





# Form1 ORGANICS VOLATILE REPORT

Sample Number: AD19539-017(8uL)

Client Id: HSI-SB-D1 Data File: 1M140100.D

Analysis Date: 10/05/20 19:58 Date Rec/Extracted: 09/30/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 7.59g:10ml

Final Vol: NA Dilution: 6590

Solids: 84

Units: mg/Kg

|                             | Units: mg/Kg                   |     |     |      |                  |                           |     |     |      |  |  |  |  |
|-----------------------------|--------------------------------|-----|-----|------|------------------|---------------------------|-----|-----|------|--|--|--|--|
| Cas #                       | Compound                       | MDL | RL  | Conc | Cas #            | Compound                  | MDL | RL  | Conc |  |  |  |  |
| 71-55-6                     | 1,1,1-Trichloroethane          | 2.8 | 7.8 | U    | 56-23-5          | Carbon Tetrachloride      | 2.5 | 7.8 | U    |  |  |  |  |
| 79-34-5                     | 1,1,2,2-Tetrachloroethane      | 3.5 | 7.8 | 200  | 108-90-7         | Chlorobenzene             | 2.6 | 7.8 | 1200 |  |  |  |  |
| 76-13-1                     | 1,1,2-Trichloro-1,2,2-trifluor | 5.7 | 7.8 | U    | 75-00-3          | Chloroethane              | 4.5 | 7.8 | U    |  |  |  |  |
| 79· <b>0</b> 0-5            | 1,1,2-Trichloroethane          | 2.5 | 7.8 | U    | 67-66-3          | Chloroform                | 15  | 15  | U    |  |  |  |  |
| 75-34 <b>-3</b>             | 1,1-Dichloroethane             | 3.4 | 7.8 | U    | 7 <b>4-8</b> 7-3 | Chloromethane             | 4.0 | 7.8 | U    |  |  |  |  |
| 75- <b>3</b> 5- <b>4</b>    | 1,1-Dichloroethene             | 4.2 | 7.8 | U    | 156-59-2         | cis-1,2-Dichloroethene    | 5.0 | 7.8 | 33   |  |  |  |  |
| 87 61-6                     | 1,2,3-Trichlorobenzene         | 6.2 | 7.8 | U    | 10061-01-5       | cis-1,3-Dichloropropene   | 2.5 | 7.8 | U    |  |  |  |  |
| 120-82-1                    | 1,2,4-Trichlorobenzene         | 5.7 | 7.8 | U    | 110-82-7         | Cyclohexane               | 3.8 | 7.8 | U    |  |  |  |  |
| 96-12- <b>8</b>             | 1.2-Dibromo-3-Chloropropa      | 6.5 | 7.8 | U    | 124-48-1         | Dibromochloromethane      | 1.9 | 7.8 | U    |  |  |  |  |
| 106-93-4                    | 1,2-Dibromoethane              | 2.7 | 7.8 | U    | 75-71-8          | Dichlorodifluoromethane   | 4.9 | 7.8 | U    |  |  |  |  |
| 95-50-1                     | 1,2-Dichlorobenzene            | 2.5 | 7.8 | U    | 100-41-4         | Ethylbenzene              | 3.7 | 7.8 | 44   |  |  |  |  |
| 107-06-2                    | 1,2-Dichloroethane             | 5.0 | 5.0 | 74   | 98-82-8          | Isopropylbenzene          | 3.9 | 7.8 | 5.0J |  |  |  |  |
| 78-87-5                     | 1,2-Dichloropropane            | 2.3 | 7.8 | U    | 179601-23-1      | m&p-Xylenes               | 6.7 | 7.8 | 200  |  |  |  |  |
| 541-7 <b>3</b> -1           | 1.3-Dichlorobenzene            | 3.0 | 7.8 | U    | 79-20-9          | Methyl Acetate            | 5.5 | 7.8 | U    |  |  |  |  |
| 106-46-7                    | 1,4-Dichlorobenzene            | 2.9 | 7.8 | U    | 108-87-2         | Methylcyclohexane         | 4.8 | 7.8 | U    |  |  |  |  |
| 123-91-1                    | 1,4-Dioxane                    | 310 | 390 | U    | 75-09-2          | Methylene Chloride        | 2.3 | 7.8 | 160  |  |  |  |  |
| 78-93-3                     | 2-Butanone                     | 5.9 | 7.8 | U    | 1634-04-4        | Methyl-t-butyl ether      | 2.4 | 3.9 | U    |  |  |  |  |
| 591-78-6                    | 2-Hexanone                     | 4.7 | 7.8 | U    | 95-47-6          | o-Xylene                  | 5.4 | 7.8 | 46   |  |  |  |  |
| 108-10-1                    | 4-Methyl-2-Pentanone           | 3.8 | 7.8 | 76   | 100-42-5         | Styrene                   | 4.3 | 7.8 | U    |  |  |  |  |
| 67-64-1                     | Acetone                        | 36  | 39  | U    | 127-18-4         | Tetrachloroethene         | 2.8 | 7.8 | 95   |  |  |  |  |
| 71-43-2                     | Benzene                        | 2.3 | 3.9 | 9.7  | 108-88-3         | Toluene                   | 2.6 | 7.8 | 2200 |  |  |  |  |
| 74-97-5                     | Bromochloromethane             | 6.2 | 7.8 | U    | 156-60-5         | trans-1,2-Dichloroethene  | 2.4 | 7.8 | 12   |  |  |  |  |
| 75-27-4                     | Bromodichloromethane           | 2.7 | 7.8 | U    | 10061-02-6       | trans-1,3-Dichloropropene | 2.4 | 7.8 | U    |  |  |  |  |
| 75-25-2                     | Bromoform                      | 4.2 | 7.8 | U    | 79-01-6          | Trichloroethene           | 2.7 | 7.8 | 1700 |  |  |  |  |
| 74-83-9                     | Bromomethane                   | 3.9 | 7.8 | U    | 75-69-4          | Trichlorofluoromethane    | 2.4 | 7.8 | U    |  |  |  |  |
| 75 -15-0                    | Carbon Disulfide               | 3.3 | 7.8 | U    | 75-01-4          | Vinyl Chloride            | 5.5 | 7.8 | U    |  |  |  |  |
| 1 <b>3</b> 30- <b>2</b> 0-7 | Xylenes (Total)                | 5.4 | 7.8 | 250  |                  |                           |     |     |      |  |  |  |  |
|                             |                                |     |     |      |                  |                           |     |     |      |  |  |  |  |

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19539-017(8uL)
Data File: 1M140100.D
Acq On : 10/05/20 19:58 Qt Meth : 1M\_A0909.M Qt On : 10/05/20 20:48 Qt Upd On: 09/10/20 15:58 Operator : WP Sam Mult : 1 Vial# : 16 Misc : M,MEXT!1

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-05-20\Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\Qt Resp Via : Initial Calibration

| Compound                                                                            | R.T.                    | QIon       | Response                   | Conc Units                          | s Dev(Min)         |
|-------------------------------------------------------------------------------------|-------------------------|------------|----------------------------|-------------------------------------|--------------------|
| Internal Standards 4) Fluorobenzene 52) Chlorobenzene-d5 70) 1,4-Dichlorobenzene-d4 | 5.339<br>6.989<br>8.281 | 117        | 436615<br>436752<br>291582 | 30.00 ug,<br>30.00 ug,<br>30.00 ug, | /1 0.00            |
|                                                                                     | 0.201                   | 152        | 231362                     | 30.00 ug,                           | /1 0.00            |
| System Monitoring Compounds 37) Dibromofluoromethane Spiked Amount 30.000           | 4.944                   | 111        | 120944<br>Recove           | J.                                  | /1 0.00<br>3.97%   |
| 39) 1,2-Dichloroethane-d4<br>Spiked Amount 30.000                                   | 5.150                   | 67         | 63708<br>Recove            | 28.72 ug                            |                    |
| 66) Toluene-d8 Spiked Amount 30.000                                                 | 6.198                   | 98         | 484245<br>Recove           | 27.44 ug,                           |                    |
| 76) Bromofluorobenzene<br>Spiked Amount 30.000                                      | 7.622                   | 174        | 221349<br>Recove           | 30.13 ug,                           |                    |
| Target Compounds                                                                    |                         |            |                            |                                     | Qvalue             |
| 15) Methylene Chloride                                                              | 3.741                   | 84         | 60568                      | 20.5948                             | ug/l 91            |
| 28) trans-1,2-Dichloroethene                                                        | 3.960                   | 96         | 3938                       | 1.4674                              | ug/l 85            |
| 30) cis 1,2-Dichloroethene                                                          | 4.667                   | 61         | 21316                      | 4.1695                              | ug/l 96            |
| 40) 1,2 Dichloroethane                                                              | 5.191                   | 62         | 41154                      | 9.4459                              | ug/l 99            |
| 49) Trichloroethene                                                                 | 5.542                   | 130        | 718315                     | 213.5923                            | ug/l 97            |
| 50) Benzene                                                                         | 5.195                   | 78         | 14236                      | 1.2383                              | ug/l 100           |
| 63) 4-Methyl-2-Pentanone                                                            | 6.114                   | 43         | 38062                      | 9.6835                              | ug/l 91            |
| 65) Tetrachloroethene                                                               | 6.539                   | 164        | 38072                      | 12.0796                             | ug/1 99            |
| 67) Toluene                                                                         | 6.236                   | 92         | 2385803                    | 276.2361                            | ug/l 94            |
| 69) Chlorobenzene                                                                   | 7.005                   | 112        | 1503842                    | 149.1974                            | ug/l 99            |
| 74) Ethylbenzene                                                                    | 7.047                   | 106        | 25774                      | 5.5646                              | ug/l 95            |
| 75) 1,1,2,2-Tetrachloroethane                                                       | 7.674                   | 83         | 148496                     | 25.7975                             | ug/l 98            |
| 78) m&p-Xylenes                                                                     | 7.105                   | 106        | 157523                     | 25.3369                             | ug/l 100           |
| 79) o-Xylene                                                                        |                         |            |                            |                                     | ~ ,_               |
| 737 O Ryrene                                                                        | 7.330                   | 106        | 37208                      | 5.8447                              | ug/l 86            |
| 84) Isopropylbenzene                                                                | 7.330<br>7.526          | 106<br>105 | 37208<br>10169             | 5.8447<br>0.6342                    | ug/l 86<br>ug/l 94 |

<sup>(#)</sup> = qualifier out of range (m) = manual integration (+) = signals summed



1M A0909.M Mon Oct 12 17:37:08 2020 RPT1

#### Form1

#### ORGANICS VOLATILE REPORT

Units: mg/Kg

Cas #

Conc

Sample Number: DAILY BLANK

Client Id:

Data File: 11M83553.D Analysis Date: 10/05/20 16:43

Date Rec/Extracted:

Compound

Cas#

67-64-1

/1-43-2

74-97-5

75 27-4

75-25-2

74-83-9

75-15-0

Acetone

Benzene

Bromoform

Bromomethane

Carbon Disulfide

Bromochloromethane

Bromodichloromethane

Column: DB-624 25M 0.200mm ID 1.12um film

RL

MDL

0 0068

0.00073

0.00070

0.00047

0.00033

0.0016

0.0034

0.010

0.0010

0.0020

0.0020

0.0020

0.0020

0.0034

Method: EPA 8260D

MDL

0.00098

0.00066

0.0012

0.00047

0.00082

0.0012

0.0012

0.0020

0.0010

0.0020

0.0020

0.0020

0.0020

0.0020

U

U

U

U

U

U

U

RL

Conc

Matrix: Soil

Initial Vol: 5g

Final Vol: NA

Dilution: 1.00

Solids: 100

Compound

Tetrachloroethene

Trichloroethene

Vinyl Chloride

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Toluene

| Ca5 #            | Compound                       | IVIDL   | 114     | OONE | Cas #       | Compound                | MIDL    | 114    | COME |
|------------------|--------------------------------|---------|---------|------|-------------|-------------------------|---------|--------|------|
| 71- <b>5</b> 5-6 | 1,1,1-Trichloroethane          | 0.00092 | 0.0020  | U    | 56-23-5     | Carbon Tetrachloride    | 0.00097 | 0.0020 | U    |
| 79-34-5          | 1,1,2,2-Tetrachloroethane      | 0.00045 | 0.0020  | U    | 108-90-7    | Chlorobenzene           | 0.00062 | 0.0020 | U    |
| 76-13-1          | 1,1,2-Trichloro-1,2,2-trifluor | 0.0014  | 0.0020  | U    | 75-00-3     | Chloroethane            | 0.0020  | 0.0020 | U    |
| 79- <b>00-</b> 5 | 1.1,2-Trichloroethane          | 0.00046 | 0.0020  | U    | 67-66-3     | Chloroform              | 0.0014  | 0.0020 | U    |
| 75-34-3          | 1,1-Dichloroethane             | 0.00087 | 0.0020  | U    | 74-87-3     | Chloromethane           | 0.0012  | 0.0020 | U    |
| 75- <b>35-4</b>  | 1.1-Dichloroethene             | 0.0012  | 0.0020  | U    | 156-59-2    | cis-1,2-Dichloroethene  | 0.00081 | 0.0020 | U    |
| 87-61-6          | 1,2,3-Trichlorobenzene         | 0.00055 | 0.0020  | U    | 10061-01-5  | cis-1,3-Dichloropropene | 0.00053 | 0.0020 | U    |
| 120-82-1         | 1,2,4-Trichlorobenzene         | 0.00063 | 0.0020  | U    | 110-82-7    | Cyclohexane             | 0.0012  | 0.0020 | U    |
| 96-12-8          | 1,2-Dibromo-3-Chloropropa      | 0.00055 | 0.0020  | U    | 124-48-1    | Dibromochloromethane    | 0.00043 | 0.0020 | U    |
| 106-93-4         | 1.2-Dibromoethane              | 0.00049 | 0.00050 | U    | 75-71-8     | Dichlorodifluoromethane | 0.0014  | 0.0020 | U    |
| 95-5 <b>0</b> -1 | 1,2-Dichlorobenzene            | 0.00051 | 0.0020  | U    | 100-41-4    | Ethylbenzene            | 0.00069 | 0.0010 | U    |
| 107-06-2         | 1,2-Dichloroethane             | 0.00041 | 0.0020  | U    | 98-82-8     | Isopropylbenzene        | 0.00083 | 0.0010 | U    |
| 78-87-5          | 1,2-Dichloropropane            | 0.00082 | 0.0020  | U    | 179601-23-1 | m&p-Xylenes             | 0.0012  | 0.0012 | U    |
| 541-73-1         | 1.3-Dichlorobenzene            | 0.00055 | 0.0020  | U    | 79-20-9     | Methyl Acetate          | 0.00096 | 0.0020 | U    |
| 106-46-7         | 1,4-Dichlorobenzene            | 0.00053 | 0.0020  | U    | 108-87-2    | Methylcyclohexane       | 0.00090 | 0.0020 | U    |
| 12 <b>3-91-1</b> | 1,4-Dioxane                    | 0.049   | 0.10    | U    | 75-09-2     | Methylene Chloride      | 0.00075 | 0.0020 | U    |
| 78-93-3          | 2-Butanone                     | 0.0012  | 0.0020  | U    | 1634-04-4   | Methyl-t-butyl ether    | 0.00054 | 0.0010 | U    |
| 591-78-6         | 2-Hexanone                     | 0.00085 | 0.0020  | U    | 95-47-6     | o-Xylene                | 0.00071 | 0.0010 | U    |
| 108-10-1         | 4-Methyl-2-Pentanone           | 0.00058 | 0.0020  | U    | 100-42-5    | Styrene                 | 0.00055 | 0.0020 | U    |

U

U

U

u

U

υ

U

127-18-4

108-88-3

156-60-5

79-01-6

75-69-4

75-01-4

10061-02-6

Worksheet #: 569387

**Total Target Concentration** 

ColumnID: (^) Indicates results from 2nd column

0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Quantitation Report (QT Reviewed) 0093024 0101

SampleID : DAILY BLANK Qt Meth : 11M\_S1001.M Qt On : 10/05/20 17:14 Qt Upd On: 10/02/20 09:54 Operator : WP Sam Mult : 1 Vial# : 10 Misc : S,5G Data File: 11M83553.D Acq On : 10/ 5/20 16:43

| Compound                    | R.T.  | QIon | Response | Conc Ur | nits Dev | (Min)  |
|-----------------------------|-------|------|----------|---------|----------|--------|
| Internal Standards          |       |      |          |         |          |        |
| 4) Fluorobenzene            | 4.961 | 96   | 276519   | 30.00   | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.546 | 117  | 256924   | 30.00   | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 7.816 | 152  | 138354   | 30.00   | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |          |         |          |        |
| 37) Dibromofluoromethane    | 4.578 | 111  | 76993    | 30.45   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 101.50%  |        |
| 39) 1,2-Dichloroethane-d4   | 4.778 | 67   | 33989    | 30.47   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 101.57%  |        |
| 66) Toluene-d8              | 5.787 | 98   | 295532   | 29.55   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 98.50%   |        |
| 76) Bromofluorobenzene      | 7.167 | 174  | 104127   | 28.89   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 96.30%   |        |
| Target Compounds            |       |      |          |         |          | Qvalue |

<sup>(#)</sup> = qualifier out of range (m) = manual integration (+) = signals summed



### Form1

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 11M83601.D

Analysis Date: 10/06/20 11:13

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 5g

Final Vol: NA

Dilution: 1.00

Solids: 100

| U | Inits: | mg/ | Kg |
|---|--------|-----|----|
|---|--------|-----|----|

| Cas#             | Compound                       | MDL     | RL      | Conc | Cas#        | Compound                  | MDL     | RL     | Conc |
|------------------|--------------------------------|---------|---------|------|-------------|---------------------------|---------|--------|------|
| 71-55-6          | 1,1,1-Trichloroethane          | 0.00092 | 0.0020  | U    | 56-23-5     | Carbon Tetrachloride      | 0.00097 | 0.0020 | U    |
| 79-34-5          | 1,1,2,2-Tetrachloroethane      | 0.00045 | 0.0020  | U    | 108-90-7    | Chlorobenzene             | 0.00062 | 0.0020 | U    |
| 76-13-1          | 1,1,2-Trichloro-1,2,2-trifluor | 0.0014  | 0.0020  | U    | 75-00-3     | Chloroethane              | 0.0020  | 0.0020 | U    |
| 79-00-5          | 1.1.2-Trichloroethane          | 0.00046 | 0.0020  | U    | 67-66-3     | Chloroform                | 0.0014  | 0.0020 | U    |
| 75- <b>34-3</b>  | 1.1-Dichloroethane             | 0 00087 | 0.0020  | U    | 74-87-3     | Chloromethane             | 0.0012  | 0.0020 | U    |
| 75-35-4          | 1,1-Dichloroethene             | 0.0012  | 0.0020  | U    | 156-59-2    | cis-1,2-Dichloroethene    | 0.00081 | 0.0020 | U    |
| 87-61-6          | 1,2,3-Trichlorobenzene         | 0.00055 | 0.0020  | U    | 10061-01-5  | cis-1,3-Dichloropropene   | 0.00053 | 0.0020 | U    |
| 120-82-1         | 1,2,4-Trichlorobenzene         | 0.00063 | 0.0020  | U    | 110-82-7    | Cyclohexane               | 0.0012  | 0.0020 | U    |
| 96-12-8          | 1,2-Dibromo-3-Chloropropa      | 0.00055 | 0.0020  | U    | 124-48-1    | Dibromochloromethane      | 0.00043 | 0.0020 | U    |
| 106-93-4         | 1.2-Dibromoethane              | 0.00049 | 0.00050 | U    | 75-71-8     | Dichlorodifluoromethane   | 0.0014  | 0.0020 | U    |
| 95-50-1          | 1,2-Dichlorobenzene            | 0.00051 | 0.0020  | U    | 100-41-4    | Ethylbenzene              | 0.00069 | 0.0010 | U    |
| 107-06-2         | 1,2-Dichloroethane             | 0.00041 | 0.0020  | U    | 98-82-8     | Isopropylbenzene          | 0.00083 | 0.0010 | U    |
| /8- <b>87</b> -5 | 1,2-Dichloropropane            | 0.00082 | 0.0020  | U    | 179601-23-1 | m&p-Xylenes               | 0.0012  | 0.0012 | U    |
| 541 73 1         | 1,3-Dichlorobenzene            | 0.00055 | 0.0020  | U    | 79-20-9     | Methyl Acetate            | 0.00096 | 0.0020 | U    |
| 106-46-7         | 1,4-Dichlorobenzene            | 0.00053 | 0.0020  | U    | 108-87-2    | Methylcyclohexane         | 0.00090 | 0.0020 | U    |
| 123-91-1         | 1,4-Dioxane                    | 0.049   | 0.10    | U    | 75-09-2     | Methylene Chloride        | 0.00075 | 0.0020 | U    |
| 7 <b>8</b> 93-3  | 2-Butanone                     | 0.0012  | 0.0020  | U    | 1634-04-4   | Methyl-t-butyl ether      | 0.00054 | 0.0010 | U    |
| 591-78-6         | 2-Hexanone                     | 0.00085 | 0.0020  | U    | 95-47-6     | o-Xylene                  | 0.00071 | 0.0010 | U    |
| 108-10-1         | 4-Methyl-2-Pentanone           | 0.00058 | 0.0020  | U    | 100-42-5    | Styrene                   | 0.00055 | 0.0020 | U    |
| 67-64-1          | Acetone                        | 0.0068  | 0.010   | U    | 127-18-4    | Tetrachloroethene         | 0.00098 | 0.0020 | U    |
| 71 43-2          | Benzene                        | 0.00073 | 0.0010  | U    | 108-88-3    | Toluene                   | 0.00066 | 0.0010 | U    |
| 74-97-5          | Bromochioromethane             | 0.00070 | 0.0020  | U    | 156-60-5    | trans-1,2-Dichloroethene  | 0.0012  | 0.0020 | U    |
| 75-27-4          | Bromodichloromethane           | 0.00047 | 0.0020  | U    | 10061-02-6  | trans-1,3-Dichloropropene | 0.00047 | 0.0020 | U    |
| 75-25-2          | Bromoform                      | 0.00033 | 0.0020  | U    | 79-01-6     | Trichloroethene           | 0.00082 | 0.0020 | U    |
| 74-83-9          | Bromomethane                   | 0.0016  | 0.0020  | U    | 75-69-4     | Trichlorofluoromethane    | 0.0012  | 0.0020 | U    |
| 75-15-0          | Carbon Disulfide               | 0.0034  | 0.0034  | U    | 75-01-4     | Vinyl Chloride            | 0.0012  | 0.0020 | U    |

Worksheet #: 569387

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

<sup>0</sup> R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Quantitation Report (QT Reviewed) 0093024 0104

SampleID : DAILY BLANK Qt Meth : 11M\_S1001.M Qt On : 10/06/20 12:15 Qt Upd On: 10/02/20 09:54 Operator : SG Sam Mult : 1 Vial# : 13 Misc : S,5G Data File: 11M83601.D Acq On : 10/6/20 11:13

Data Path : G:\GcMsData\2020\GCMS\_11\Data\10-06-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_11\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Ur | nits Dev | (Min)  |
|-----------------------------|-------|------|----------|---------|----------|--------|
| Internal Standards          |       |      |          |         |          |        |
| 4) Fluorobenzene            | 4.958 | 96   | 252434   | 30.00   | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.546 | 117  | 239899   | 30.00   | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 7.816 | 152  | 131022   | 30.00   | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |          |         |          |        |
| 37) Dibromofluoromethane    | 4.582 | 111  | 72944    | 31.61   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 105.37%  |        |
| 39) 1,2-Dichloroethane-d4   | 4.775 | 67   | 29922    | 29.39   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 97.97%   |        |
| 66) Toluene-d8              | 5.787 | 98   | 272731   | 29.21   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 97.37%   |        |
| 76) Bromofluorobenzene      | 7.167 | 174  | 99089    | 29.03   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 96.77%   |        |
| Target Compounds            |       |      |          |         |          | Qvalue |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





## Form1

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 1M140092.D Analysis Date: 10/05/20 17:13

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

0.42

1.0

Method: EPA 8260D

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

|                 |                                |      |      | Units: ug | ı/L         |                           |      |      |      |
|-----------------|--------------------------------|------|------|-----------|-------------|---------------------------|------|------|------|
| Cas #           | Compound                       | MDL  | RL   | Conc      | Cas#        | Compound                  | MDL  | RL   | Conc |
| 71- <b>55-6</b> | 1,1,1-Trichloroethane          | 0.36 | 1.0  | U         | 56-23-5     | Carbon Tetrachloride      | 0.32 | 1.0  | U    |
| 79-34-5         | 1,1,2,2-Tetrachloroethane      | 0.45 | 1.0  | U         | 108-90-7    | Chlorobenzene             | 0.33 | 1.0  | U    |
| 76-13-1         | 1,1,2-Trichloro-1,2,2-trifluor | 0.73 | 1.0  | U         | 75-00-3     | Chloroethane              | 0.58 | 1.0  | U    |
| 79-00-5         | 1,1,2-Trichloroethane          | 0.32 | 1.0  | U         | 67-66-3     | Chloroform                | 2.0  | 2.0  | U    |
| 75-34-3         | 1,1-Dichloroethane             | 0.43 | 1.0  | U         | 74-87-3     | Chloromethane             | 0.52 | 1.0  | U    |
| 75-35-4         | 1,1-Dichloroethene             | 0.53 | 1.0  | U         | 156-59-2    | cis-1,2-Dichloroethene    | 0.64 | 1.0  | U    |
| 87-61-6         | 1,2,3-Trichlorobenzene         | 0.79 | 1.0  | υ         | 10061-01-5  | cis-1,3-Dichloropropene   | 0.32 | 1.0  | U    |
| 120-82-1        | 1,2,4-Trichlorobenzene         | 0.73 | 1.0  | U         | 110-82-7    | Cyclohexane               | 0.49 | 1.0  | U    |
| 96-12-8         | 1,2-Dibromo-3-Chloropropa      | 0.83 | 1.0  | U         | 124-48-1    | Dibromochloromethane      | 0.24 | 1.0  | U    |
| 106-93-4        | 1,2-Dibromoethane              | 0.34 | 1.0  | U         | 75-71-8     | Dichlorodifluoromethane   | 0.62 | 1.0  | U    |
| 95-50-1         | 1,2-Dichlorobenzene            | 0.32 | 1.0  | U         | 100-41-4    | Ethylbenzene              | 0.47 | 1.0  | U    |
| 107-06-2        | 1,2-Dichloroethane             | 0.64 | 0.64 | U         | 98-82-8     | Isopropylbenzene          | 0.49 | 1.0  | U    |
| 78-87-5         | 1,2-Dichloropropane            | 0.30 | 1.0  | U         | 179601-23-1 | m&p-Xylenes               | 0.85 | 1.0  | U    |
| 541-73-1        | 1,3-Dichlorobenzene            | 0.38 | 1.0  | U         | 79-20-9     | Methyl Acetate            | 0.70 | 1.0  | U    |
| 106-46-7        | 1.4-Dichlorobenzene            | 0.37 | 1.0  | U         | 108-87-2    | Methylcyclohexane         | 0.61 | 1.0  | U    |
| 123-91-1        | 1,4-Dioxane                    | 39   | 50   | U         | 75-09-2     | Methylene Chloride        | 0.29 | 1.0  | U    |
| 78-9 <b>3-3</b> | 2-Butanone                     | 0.75 | 1.0  | U :       | 1634-04-4   | Methyl-t-butyl ether      | 0.31 | 0.50 | U    |
| 591-78-6        | 2-Hexanone                     | 0.60 | 1.0  | U         | 95-47-6     | o-Xylene                  | 0.68 | 1.0  | U    |
| 108 10-1        | 4-Methyl-2-Pentanone           | 0 49 | 1.0  | U         | 100-42-5    | Styrene                   | 0.54 | 1.0  | U    |
| 67-64-1         | Acetone                        | 4.6  | 5 0  | U         | 127-18-4    | Tetrachloroethene         | 0.36 | 1.0  | U    |
| 71-43-2         | Benzene                        | 0.30 | 0.50 | U         | 108-88-3    | Toluene                   | 0.33 | 1.0  | U    |
| 74 97-5         | Bromochloromethane             | 0.79 | 1.0  | U         | 156-60-5    | trans-1,2-Dichloroethene  | 0.31 | 1.0  | U    |
| 75-27-4         | Bromodichloromethane           | 0.35 | 1.0  | U         | 10061-02-6  | trans-1,3-Dichloropropene | 0.31 | 1.0  | U    |
| 75-25-2         | Bromoform                      | 0.54 | 1.0  | U         | 79-01-6     | Trichloroethene           | 0.35 | 1.0  | U    |
| 74-83-9         | Bromomethane                   | 0.50 | 1.0  | U         | 75-69-4     | Trichlorofluoromethane    | 0.31 | 1.0  | U    |

75-01-4

Worksheet #: 569387

Carbon Disulfide

75-15-0

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column R - Retention Time Out

Vinyl Chloride

0.71

1.0

U

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Quantitation Report (QT Reviewed) 0093024 0107

Qt Meth : 1M\_A0909.M Qt On : 10/05/20 18:08 Qt Upd On: 09/10/20 15:58 SampleID : DATLY BLANK
Data File: 1M140092.D
Acq On : 10/05/20 17:13 Operator : WP Sam Mult : 1 Vial# : 9 Misc : A,5ML

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-05-20\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Ur | nits Dev | (Min)  |
|-----------------------------|-------|------|----------|---------|----------|--------|
| Internal Standards          |       |      |          |         |          |        |
| 4) Fluorobenzene            | 5.339 | 96   | 353375   | 30.00   | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.989 | 117  | 351678   | 30.00   | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.281 | 152  | 213944   | 30.00   | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |          |         |          |        |
| 37) Dibromofluoromethane    | 4.944 | 111  | 100098   | 30.36   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove:  | ry =    | 101.20%  |        |
| 39) 1,2-Dichloroethane-d4   | 5.150 | 67   | 53143    | 29.60   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove:  | ry =    | 98.67%   |        |
| 66) Toluene d8              | 6.201 | 98   | 384404   | 27.05   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove:  | ry =    | 90.17%   |        |
| 76) Bromofluorobenzene      | 7.622 | 174  | 163197   | 30.27   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 100.90%  |        |
| Target Compounds            |       |      |          |         |          | Qvalue |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





### Form1

#### **ORGANICS VOLATILE REPORT**

Sample Number: DAILY BLANK

Client Id:

Data File: 1M140093.D

Analysis Date: 10/05/20 17:33

Date Rec/Extracted:

Column:DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 5g:10ml

Final Vol: NA

Dilution: 100

Solids: 100

|                  |                                |       |       | Units: mg | g/Kg        |                           |       |       |      |
|------------------|--------------------------------|-------|-------|-----------|-------------|---------------------------|-------|-------|------|
| Cas#             | Compound                       | MDL   | RL    | Conc      | Cas#        | Compound                  | MDL   | RL    | Conc |
| /1-55-6          | 1,1,1-Trichloroethane          | 0.036 | 0.10  | U         | 56-23-5     | Carbon Tetrachloride      | 0.032 | 0.10  | U    |
| /9 <b>3</b> 4-5  | 1,1.2.2-Tetrachloroethane      | 0.045 | 0.10  | U         | 108-90-7    | Chlorobenzene             | 0.033 | 0.10  | U    |
| /6 13-1          | 1,1,2-Trichloro-1,2,2-trifluor | 0.073 | 0.10  | U         | 75-00-3     | Chloroethane              | 0.058 | 0.10  | U    |
| 79- <b>00-</b> 5 | 1,1,2-Trichloroethane          | 0.032 | 0.10  | U         | 67-66-3     | Chloroform                | 0.20  | 0.20  | U    |
| 75-34-3          | 1,1-Dichloroethane             | 0.043 | 0.10  | U         | 74-87-3     | Chloromethane             | 0.052 | 0.10  | U    |
| 75-35-4          | 1,1-Dichloroethene             | 0.053 | 0.10  | U         | 156-59-2    | cis-1,2-Dichloroethene    | 0.064 | 0.10  | U    |
| 87-61-6          | 1,2,3-Trichlorobenzene         | 0.079 | 0.10  | U         | 10061-01-5  | cis-1,3-Dichloropropene   | 0.032 | 0.10  | U    |
| 120-82-1         | 1,2,4-Trichlorobenzene         | 0.073 | 0.10  | U         | 110-82-7    | Cyclohexane               | 0.049 | 0.10  | U    |
| 96-12-8          | 1,2-Dibromo-3-Chloropropa      | 0.083 | 0.10  | U         | 124-48-1    | Dibromochloromethane      | 0.024 | 0.10  | U    |
| 106-93-4         | 1,2-Dibromoethane              | 0.034 | 0.10  | U         | 75-71-8     | Dichlorodifluoromethane   | 0.062 | 0.10  | U    |
| 95 50-1          | 1.2-Dichlorobenzene            | 0.032 | 0.10  | U         | 100-41-4    | Ethylbenzene              | 0.047 | 0.10  | U    |
| 107-06-2         | 1,2-Dichloroethane             | 0.064 | 0.064 | U         | 98-82-8     | Isopropylbenzene          | 0.049 | 0.10  | U    |
| / <b>8</b> 87-5  | 1,2-Dichloropropane            | 0.030 | 0.10  | U         | 179601-23-1 | m&p-Xylenes               | 0.085 | 0.10  | U    |
| 541-73-1         | 1,3-Dichlorobenzene            | 0.038 | 0.10  | U         | 79-20-9     | Methyl Acetate            | 0.070 | 0.10  | U    |
| 106-46-7         | 1.4-Dichlorobenzene            | 0.037 | 0.10  | U         | 108-87-2    | Methylcyclohexane         | 0.061 | 0.10  | U    |
| 123-91-1         | 1,4-Dioxane                    | 3.9   | 5.0   | U         | 75-09-2     | Methylene Chloride        | 0.029 | 0.10  | U    |
| 78-93-3          | 2-Butanone                     | 0.075 | 0.10  | U         | 1634-04-4   | Methyl-t-butyl ether      | 0.031 | 0.050 | U    |
| 591-78-6         | 2-Hexanone                     | 0.060 | 0.10  | U         | 95-47-6     | o-Xylene                  | 0.068 | 0.10  | U    |
| 108-10-1         | 4-Methyl-2-Pentanone           | 0.049 | 0.10  | U         | 100-42-5    | Styrene                   | 0.054 | 0.10  | U    |
| 67-64-1          | Acetone                        | 0.46  | 0.50  | U         | 127-18-4    | Tetrachloroethene         | 0.036 | 0.10  | U    |
| 71 43-2          | Benzene                        | 0.030 | 0.050 | U         | 108-88-3    | Toluene                   | 0.033 | 0.10  | U    |
| 74-97-5          | Bromochloromethane             | 0.079 | 0.10  | U         | 156-60-5    | trans-1,2-Dichloroethene  | 0.031 | 0.10  | U    |
| 75 27-4          | Bromodichloromethane           | 0.035 | 0.10  | U         | 10061-02-6  | trans-1,3-Dichloropropene | 0.031 | 0.10  | U    |
| 75-25-2          | Bromoform                      | 0.054 | 0.10  | U         | 79-01-6     | Trichloroethene           | 0.035 | 0.10  | U    |
| 74-83-9          | Bromomethane                   | 0.050 | 0.10  | U         | 75-69-4     | Trichlorofluoromethane    | 0.031 | 0.10  | U    |
| 75-15-0          | Carbon Disulfide               | 0.042 | 0.10  | U         | 75-01-4     | Vinyl Chloride            | 0.071 | 0.10  | U    |
|                  |                                |       |       |           |             |                           |       |       |      |

Worksheet #: 569387

Total Target Concentration

U

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out
J - Indicates an estimated value when a compound is detected at less than the
specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Quantitation Report (QT Reviewed) 0093024 0110

 

 Sample[I] : DAILY BLANK
 Operator : WP

 Data File: 1M140093.D
 Sam Mult : 1 Vial# : 10

 Acq On : 10/05/20 17:33
 Misc : M,MEOH

 Qt Meth : 1M\_A0909.M Qt On : 10/05/20 18:08 Qt Upd On: 09/10/20 15:58

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-05-20\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc U | nits Dev | (Min)  |
|-----------------------------|-------|------|----------|--------|----------|--------|
| Internal Standards          |       |      |          |        |          |        |
| 4) Fluorobenzene            | 5.336 | 96   | 332905   | 30.00  | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.986 | 117  | 338178   | 30.00  | ug/l     | 0.00   |
| 70) 1,4 Dichlorobenzene-d4  | 8.281 | 152  | 201374   | 30.00  | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |          |        |          |        |
| 37) Dibromofluoromethane    | 4.941 | 111  | 94703    | 30.49  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =   | 101.63%  |        |
| 39) 1,2-Dichloroethane-d4   | 5.146 | 67   | 49953    | 29.53  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =   | 98.43%   |        |
| 66) Toluene-d8              | 6.198 | 98   | 368163   | 26.94  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =   | 89.80%   |        |
| 76) Bromofluorobenzene      | 7.622 | 174  | 156208   | 30.79  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =   | 102.63%  |        |
| Target Compounds            |       |      |          |        |          | Qvalue |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





1M\_A0909.M Sun Oct 11 22:11:28 2020 RPT1

## Form1

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Extraction Ratio: 5g: 10ml Data File: 1M140333.D

Analysis Date: 10/09/20 10:26

Final Vol: NA

Date Rec/Extracted:

Dilution: 100

Column: DB-624 25M 0.200mm ID 1.12um film

0.042

0.10

Solids: 100

Method: EPA 8260D

Matrix: Methanol

|                   |                                |       |       | Units: m | g/Kg        |                           |       |       |      |
|-------------------|--------------------------------|-------|-------|----------|-------------|---------------------------|-------|-------|------|
| Cas#              | Compound                       | MDL   | RL    | Conc     | Cas#        | Compound                  | MDL   | RL    | Conc |
| 71-55-6           | 1,1,1-Trichloroethane          | 0.036 | 0.10  | U        | 56-23-5     | Carbon Tetrachloride      | 0.032 | 0.10  | U    |
| 79-34-5           | 1,1.2,2-Tetrachloroethane      | 0.045 | 0.10  | U        | 108-90-7    | Chlorobenzene             | 0.033 | 0.10  | U    |
| 76-13-1           | 1,1,2-Trichloro-1,2,2-trifluor | 0.073 | 0.10  | U        | 75-00-3     | Chloroethane              | 0.058 | 0.10  | U    |
| 79- <b>00-</b> 5  | 1,1,2-Trichloroethane          | 0.032 | 0.10  | U        | 67-66-3     | Chloroform                | 0.20  | 0.20  | U    |
| 75 34-3           | 1,1-Dichloroethane             | 0.043 | 0.10  | U        | 74-87-3     | Chloromethane             | 0.052 | 0.10  | U    |
| 75-35-4           | 1,1-Dichloroethene             | 0.053 | 0.10  | U        | 156-59-2    | cis-1,2-Dichloroethene    | 0.064 | 0.10  | U    |
| 87 61-6           | 1,2,3-Trichlorobenzene         | 0.079 | 0.10  | U        | 10061-01-5  | cis-1,3-Dichloropropene   | 0.032 | 0.10  | U    |
| 120-82-1          | 1,2,4-Trichlorobenzene         | 0.073 | 0.10  | U        | 110-82-7    | Cyclohexane               | 0.049 | 0.10  | U    |
| 96 12-8           | 1,2-Dibromo-3-Chloropropa      | 0.083 | 0.10  | U        | 124-48-1    | Dibromochloromethane      | 0.024 | 0.10  | U    |
| 106 <b>-9</b> 3-4 | 1.2-Dibromoethane              | 0.034 | 0.10  | U        | 75-71-8     | Dichlorodifluoromethane   | 0.062 | 0.10  | U    |
| 95-50-1           | 1,2-Dichlorobenzene            | 0.032 | 0.10  | U        | 100-41-4    | Ethylbenzene              | 0.047 | 0.10  | U    |
| 107-06-2          | 1,2-Dichloroethane             | 0.064 | 0.064 | U        | 98-82-8     | Isopropylbenzene          | 0.049 | 0.10  | U    |
| 78-87-5           | 1,2-Dichloropropane            | 0.030 | 0.10  | U        | 179601-23-1 | m&p-Xylenes               | 0.085 | 0.10  | U    |
| 541-73-1          | 1,3-Dichlorobenzene            | 0.038 | 0.10  | U        | 79-20-9     | Methyl Acetate            | 0.070 | 0.10  | U    |
| 106-46-7          | 1.4-Dichlorobenzene            | 0.037 | 0.10  | U        | 108-87-2    | Methylcyclohexane         | 0.061 | 0.10  | U    |
| 123-91-1          | 1,4-Dioxane                    | 3.9   | 5.0   | U        | 75-09-2     | Methylene Chloride        | 0.029 | 0.10  | U    |
| 78-9 <b>3-3</b>   | 2-Butanone                     | 0.075 | 0.10  | U        | 1634-04-4   | Methyl-t-butyl ether      | 0.031 | 0.050 | U    |
| 591-78 <b>-6</b>  | 2-Hexanone                     | 0.060 | 0.10  | U        | 95-47-6     | o-Xylene                  | 0.068 | 0.10  | U    |
| 108-10-1          | 4-Methyl-2-Pentanone           | 0.049 | 0.10  | U        | 100-42-5    | Styrene                   | 0.054 | 0.10  | U    |
| 67 64-1           | Acetone                        | 0.46  | 0.50  | U        | 127-18-4    | Tetrachloroethene         | 0.036 | 0.10  | U    |
| 71-43-2           | Benzene                        | 0.030 | 0.050 | U        | 108-88-3    | Toluene                   | 0.033 | 0.10  | U    |
| 74-97-5           | Bromochloromethane             | 0.079 | 0.10  | U        | 156-60-5    | trans-1,2-Dichloroethene  | 0.031 | 0.10  | U    |
| 75-27-4           | Bromodichloromethane           | 0.035 | 0.10  | U        | 10061-02-6  | trans-1,3-Dichloropropene | 0.031 | 0.10  | U    |
| 75-25-2           | Bromoform                      | 0.054 | 0.10  | U        | 79-01-6     | Trichloroethene           | 0.035 | 0.10  | U    |
| 7 <b>4-83-9</b>   | Bromomethane                   | 0.050 | 0.10  | U        | 75-69-4     | Trichlorofluoromethane    | 0.031 | 0.10  | U    |
|                   |                                |       |       |          |             |                           |       |       |      |

Carbon Disulfide

Total Target Concentration

Vinyl Chloride

75-01-4

ColumnID: (^) Indicates results from 2nd column

0.071

0.10

U

75-15-0

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Quantitation Report (QT Reviewed) 0093024 0113

Qt Meth : 1M\_A0909.M Qt On : 10/09/20 10:37 Qt Upd On: 09/10/20 15:58 Operator : BK Sam Mult : 1 Vial# : 7 Misc : M,MEOH SampleID : DAILY BLANK Data File: 1M140333.D Acq On : 10/09/20 10:26

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-09-20\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound            |           | R.T.  | QIon | Response | Conc U | nits Dev | (Min)  |
|---------------------|-----------|-------|------|----------|--------|----------|--------|
| Internal Standards  |           |       |      |          |        |          |        |
| 4) Fluorobenzene    |           | 5.339 | 96   | 365030   | 30.00  | ug/1     | 0.00   |
| 52) Chlorobenzene-  | ·d5       | 6.989 | 117  | 396377   | 30.00  | ug/l     | 0.00   |
| 70) 1,4-Dichlorobe  | enzene-d4 | 8.281 | 152  | 254182   | 30.00  | ug/l     | 0.00   |
| System Monitoring ( | Compounds |       |      |          |        |          |        |
| 37) Dibromofluorom  | nethane   | 4.944 | 111  | 106315   | 31.21  | ug/l     | 0.00   |
| Spiked Amount       | 30.000    |       |      | Recove   | ry =   | 104.03%  |        |
| 39) 1,2-Dichloroet  | hane-d4   | 5.146 | 67   | 57783    | 31.15  | ug/l     | 0.00   |
| Spiked Amount       | 30.000    |       |      | Recove   | ry =   | 103.83%  |        |
| 66) Toluene-d8      |           | 6.201 | 98   | 415052   | 25.91  | ug/l     | 0.00   |
| Spiked Amount       | 30.000    |       |      | Recove   | ry =   | 86.37%   |        |
| 76) Bromofluorober  | izene     | 7.625 | 174  | 201372   | 31.44  | ug/l     | 0.00   |
| Spiked Amount       | 30.000    |       |      | Recove   | ry =   | 104.80%  |        |
| Target Compounds    |           |       |      |          |        |          | Qvalue |

<sup>(#) -</sup> qualifier out of range (m) = manual integration (+) = signals summed





# Form1 ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 2M142817.D Analysis Date: 10/07/20 10:37

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

|                          | Onto, ug/L                     |      |      |      |             |                           |      |      |      |  |  |  |  |
|--------------------------|--------------------------------|------|------|------|-------------|---------------------------|------|------|------|--|--|--|--|
| Cas #                    | Compound                       | MDL  | RL   | Conc | Cas #       | Compound                  | MDL  | RL   | Conc |  |  |  |  |
| 71-55-6                  | 1,1,1-Trichloroethane          | 0.36 | 1.0  | U    | 56-23-5     | Carbon Tetrachloride      | 0.32 | 1.0  | U    |  |  |  |  |
| 79-34-5                  | 1.1.2.2-Tetrachloroethane      | 0.45 | 1.0  | U    | 108-90-7    | Chlorobenzene             | 0.33 | 1.0  | U    |  |  |  |  |
| 76-13-1                  | 1,1,2-Trichloro-1,2,2-trifluor | 0.73 | 1.0  | U    | 75-00-3     | Chloroethane              | 0.58 | 1.0  | U    |  |  |  |  |
| 79-0 <b>0-</b> 5         | 1,1,2-Trichloroethane          | 0.32 | 1.0  | U    | 67-66-3     | Chloroform                | 2.0  | 2.0  | U    |  |  |  |  |
| 75- <b>34-3</b>          | 1,1-Dichloroethane             | 0.43 | 1.0  | U    | 74-87-3     | Chloromethane             | 0.52 | 1.0  | U    |  |  |  |  |
| 75- <b>3</b> 5- <b>4</b> | 1,1-Dichloroethene             | 0.53 | 1.0  | U    | 156-59-2    | cis-1,2-Dichloroethene    | 0.64 | 1.0  | U    |  |  |  |  |
| 87-61-6                  | 1,2,3-Trichlorobenzene         | 0.79 | 1.0  | U    | 10061-01-5  | cis-1,3-Dichloropropene   | 0.32 | 1.0  | U    |  |  |  |  |
| 120-82-1                 | 1,2,4-Trichlorobenzene         | 0.73 | 1.0  | U    | 110-82-7    | Cyclohexane               | 0.49 | 1.0  | U    |  |  |  |  |
| 96-12-8                  | 1,2-Dibromo-3-Chloropropa      | 0.83 | 1.0  | U    | 124-48-1    | Dibromochloromethane      | 0.24 | 1.0  | U    |  |  |  |  |
| 106-93-4                 | 1,2-Dibromoethane              | 0.34 | 1.0  | U    | 75-71-8     | Dichlorodifluoromethane   | 0.62 | 1.0  | U    |  |  |  |  |
| 95-5 <b>0</b> -1         | 1,2-Dichlorobenzene            | 0.32 | 1.0  | U    | 100-41-4    | Ethylbenzene              | 0.47 | 1.0  | U    |  |  |  |  |
| 107-06-2                 | 1,2-Dichloroethane             | 0.64 | 0.64 | U    | 98-82-8     | Isopropylbenzene          | 0.49 | 1.0  | U    |  |  |  |  |
| 78-87-5                  | 1,2-Dichloropropane            | 0.30 | 1.0  | U    | 179601-23-1 | m&p-Xylenes               | 0.85 | 1.0  | U    |  |  |  |  |
| 541-73-1                 | 1,3-Dichlorobenzene            | 0.38 | 1.0  | U    | 79-20-9     | Methyl Acetate            | 0.70 | 1.0  | 2.0  |  |  |  |  |
| 106-46-7                 | 1,4-Dichlorobenzene            | 0.37 | 1.0  | U    | 108-87-2    | Methylcyclohexane         | 0.61 | 1.0  | U    |  |  |  |  |
| 123-91-1                 | 1.4 Dioxane                    | 39   | 50   | U    | 75-09-2     | Methylene Chloride        | 0.29 | 1.0  | U    |  |  |  |  |
| 78-93-3                  | 2-Butanone                     | 0.75 | 1.0  | U    | 1634-04-4   | Methyl-t-butyl ether      | 0.31 | 0.50 | U    |  |  |  |  |
| 591 7 <b>8-6</b>         | 2-Hexanone                     | 0 60 | 1.0  | U    | 95-47-6     | o-Xylene                  | 0.68 | 1.0  | U    |  |  |  |  |
| 108-10-1                 | 4-Methyl-2-Pentanone           | 0.49 | 1.0  | U    | 100-42-5    | Styrene                   | 0.54 | 1.0  | U    |  |  |  |  |
| 67-64-1                  | Acetone                        | 4.6  | 5.0  | U    | 127-18-4    | Tetrachloroethene         | 0.36 | 1.0  | U    |  |  |  |  |
| 71-43-2                  | Benzene                        | 0.30 | 0.50 | U    | 108-88-3    | Toluene                   | 0.33 | 1.0  | U    |  |  |  |  |
| 74 97-5                  | Bromochloromethane             | 0.79 | 1.0  | U    | 156-60-5    | trans-1,2-Dichloroethene  | 0.31 | 1.0  | U    |  |  |  |  |
| 75-27-4                  | Bromodichloromethane           | 0.35 | 1.0  | U    | 10061-02-6  | trans-1,3-Dichloropropene | 0.31 | 1.0  | U    |  |  |  |  |
| 75-25-2                  | Bromoform                      | 0.54 | 1.0  | U    | 79-01-6     | Trichloroethene           | 0.35 | 1.0  | U    |  |  |  |  |
| 74-83-9                  | Bromomethane                   | 0.50 | 1.0  | U    | 75-69-4     | Trichlorofluoromethane    | 0.31 | 1.0  | U    |  |  |  |  |
| 75-15-0                  | Carbon Disulfide               | 0.42 | 1.0  | U    | 75-01-4     | Vinyl Chloride            | 0.71 | 1.0  | U    |  |  |  |  |

Worksheet #: 569387

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

(QT Reviewed) Quantitation Report 0093024 0116

SampleID : DAILY BLANK
Data File: 2M142817.D
Acq On : 10/07/20 10:37 Operator : RL Sam Mult : 1 Vial# : 5 Misc : A,5ML Qt Meth :  $2M_A0929.M$ Qt On : 10/07/20 11:09 Qt Upd On: 09/30/20 18:32

Data Path : G:\GcMsData\2020\GCMS\_2\Data\10-07-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_2\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon      | Response | Conc U | nits Dev | (Min)  |
|-----------------------------|-------|-----------|----------|--------|----------|--------|
| Internal Standards          |       |           |          |        |          |        |
| 4) Fluorobenzene            | 5.099 | 96        | 368054   | 30.00  | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.732 | 117       | 343626   | 30.00  | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.019 | 152       | 177124   | 30.00  | ug/l     | 0.00   |
| System Monitoring Compounds |       |           |          |        |          |        |
| 37) Dibromofluoromethane    | 4.702 | 111       | 103511   | 29.36  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |           | Recove   | ery =  | 97.87%   |        |
| 39) 1,2-Dichloroethane-d4   | 4.910 | 67        | 51403    | 28.24  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |           | Recove   | ery =  | 94.13%   |        |
| 66) Toluene-d8              | 5.952 | 98        | 396996   | 29.53  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |           | Recove   | ery ≃  | 98.43%   |        |
| 76) Bromofluorobenzene      | 7.366 | 174       | 149166   | 32.06  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |           | Recove   | ery =  | 106.87%  |        |
| Target Compounds            |       |           |          |        |          | Qvalue |
| 25) Methyl Acetate          | 3.324 | 43        | 4406m    | 1.97   | 24 ug/   | 1      |
|                             |       | <b></b> - |          |        |          |        |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





FORM2

Surrogate Recovery

Method: EPA 8260D

|            |                      |         |                                  |        | Dilute | Column1   | Column1  | Column1 | Column1 | Column0 | Column0 |
|------------|----------------------|---------|----------------------------------|--------|--------|-----------|----------|---------|---------|---------|---------|
|            | •                    |         | 5.4 ==                           | Surr   | Out    | \$1       | S2       | \$3     | S4      | S5      | S6      |
| Dfile      | Sample# N            | /latrix | Date/Time                        | Dil    | Flag   | Recov     | Recov    | Recov   | Recov   | Recov   | Recov   |
| 11M83553.0 | DDAILY BLANK         | S       | 10/05/20 16:43                   | 1      |        | 102       | 102      | 99      | 96      |         |         |
| 11M83601.E | DDAILY BLANK         | S       | 10/06/20 11:13                   | 1      |        | 105       | 98       | 97      | 97      |         |         |
| 1M140092.0 | DDAILY BLANK         | Α       | 10/05/20 17:13                   | 1      |        | 101       | 99       | 90      | 101     |         |         |
| 1M140093.E | DDAILY BLANK         | М       | 10/05/20 17:33                   | 1      |        | 102       | 98       | 90      | 103     |         |         |
| 1M140333.0 | DDAILY BLANK         | М       | 10/09/20 10:26                   | 1      |        | 104       | 104      | 86      | 105     |         |         |
| 2M142817.0 | DAILY BLANK          | Α       | 10/07/20 10:37                   | 1      |        | 98        | 94       | 98      | 107     |         |         |
| 1M140094.E | DAD19539-001         | Α       | 10/05/20 17:54                   | 1      |        | 104       | 99       | 90      | 103     |         |         |
| 2M142841.0 | DAD19539-002(5X)     | Α       | 10/07/20 18:54                   | 1      |        | 97        | 97       | 94      | 106     |         |         |
| 2M142842.0 | DAD19539-003(5X)     | Α       | 10/07/20 19:13                   | 1      |        | 98        | 101      | 98      | 107     |         |         |
| 2M142843.0 | DAD19539-004(5X)     | Α       | 10/07/20 19:33                   | 1      |        | 99        | 100      | 94      | 103     |         |         |
| 2M142844.0 | DAD19539-005(5X)     | Α       | 10/07/20 19:53                   | 1      |        | 97        | 91       | 96      | 106     |         |         |
| 1M140118.0 | DAD19539-006         | M       | 10/06/20 02:11                   | 1      |        | 100       | 101      | 90      | 103     |         |         |
| 11M83623.0 | DAD19539-007         | S       | 10/06/20 18:28                   | 1      |        | 100       | 104      | 67*     | 174*    |         |         |
| 11M83672.0 | DAD19539-007         | S       | 10/07/20 16:53                   | 1      |        | 103       | 105      | 69      | 171*    |         |         |
| 1M140116.0 | DAD19539-008         | М       | 10/06/20 01:29                   | 1      |        | 98        | 101      | 90      | 104     |         |         |
| 11M83578.E | DAD19539-009         | S       | 10/06/20 00:57                   | 1      |        | 104       | 109      | 96      | 98      |         |         |
| 1M140112.0 | OAD19539-010         | М       | 10/06/20 00:06                   | 1      |        | 100       | 101      | 90      | 105     |         |         |
| 1M140111.E | AD19539-011          | М       | 10/05/20 23:46                   | 1      |        | 101       | 103      | 92      | 105     |         |         |
|            | DAD19539-012         | М       | 10/09/20 13:20                   | 1      |        | 100       | 98       | 87      | 103     |         |         |
|            | DAD19539-013         | М       | 10/06/20 00:48                   | 1      |        | 98        | 103      | 92      | 104     |         |         |
|            | DAD19539-014(40uL)   | M       | 10/09/20 11:57                   | 1      |        | 100       | 102      | 89      | 103     |         |         |
|            | DAD19539-015         | S       | 10/06/20 11:52                   | 1      |        | 106       | 106      | 111     | 98      |         |         |
|            | DAD19539-016         | Š       | 10/06/20 12:12                   | 1      |        | 106       | 112      | 96      | 98      |         |         |
|            | DAD19539-017(8uL)    | M       | 10/05/20 19:58                   | 1      |        | 99        | 96       | 91      | 100     |         |         |
|            | DAD19562-003(MS:AD19 |         | 10/05/20 18:02                   | 1      |        | 99        | 93       | 100     | 102     |         |         |
|            | AD19562-005(MSD:AD   |         | 10/05/20 19:01                   | 1      |        | 101       | 97       | 99      | 103     |         |         |
|            | MBS89425             | s       | 10/05/20 19:21                   | 1      |        | 98        | 96       | 100     | 100     |         |         |
|            | DAD19562-001         | Š       | 10/05/20 20:20                   | 1      |        | 103       | 103      | 101     | 99      |         |         |
|            | MBS89437             | Š       | 10/06/20 12:32                   | i      |        | 102       | 102      | 101     | 97      |         |         |
|            | AD19581-008(MS)      | s       | 10/06/20 12:52                   | 1      |        | 105       | 107      | 102     | 108     |         |         |
|            | DAD19581-008(MSD)    | s       | 10/06/20 13:11                   | i      |        | 108       | 107      | 100     | 104     |         |         |
|            | DAD19581-008         | S       | 10/06/20 14:11                   | i      |        | 104       | 110      | 99      | 98      |         |         |
|            | AD19565-016          | Ă       | 10/05/20 18:56                   | i      |        | 104       | 99       | 90      | 102     |         |         |
|            | MBS89426             | M       | 10/05/20 10:30                   | i      |        | 97        | 96       | 93      | 102     |         |         |
|            | OMBS89427            | A       | 10/05/20 20:40                   | 1      |        | 100       | 97       | 93      | 105     |         |         |
|            | DAD19539-009(MS)     | M       | 10/05/20 20:40                   | i      |        | 99        | 98       | 94      | 106     |         |         |
|            | DAD19539-009(MSD)    | M       | 10/05/20 21:21                   | 1      |        | 100       | 99       | 93      | 103     |         |         |
| <u>-</u>   |                      | A       | 10/05/20 21:42                   | 1      |        | 102       | 100      | 94      | 103     |         |         |
|            | DAD19565-016(MS)     | Â       |                                  | 1      |        | 102       | 101      | 94      | 103     |         |         |
|            | DAD19565-016(MSD)    |         | 10/05/20 22:02                   | 1      |        | 104       | 101      | 90      | 103     |         |         |
|            | DAD19539-009         | M       | 10/05/20 22:23                   | _      |        |           |          | 1.1     |         |         |         |
|            | DAD19654-001         | M       | 10/09/20 10:55<br>10/09/20 12:18 | 1<br>1 |        | 102       | 105      | 87      | 106     |         |         |
|            | OMBS89475            | M       |                                  |        |        | 100       | 101      | 91      | 103     |         |         |
|            | DAD19654-001(MS)     | M       | 10/09/20 16:06                   | 1      |        | 99        | 99       | 90      | 104     |         |         |
|            | DAD19654-001(MSD)    | M       | 10/09/20 16:26                   | 1      |        | 98<br>101 | 99<br>97 | 90      | 102     |         |         |
|            | DAD19574-001         | A       | 10/07/20 14:39                   | 1      |        | 101       | 97       | 99      | 105     |         |         |
|            | OMBS89447            | A       | 10/07/20 14:59                   | 1      |        | 100       | 99       | 98      | 105     |         |         |
|            | DAD19574-001(MS)     | A       | 10/07/20 15:38                   | 1      |        | 99        | 98       | 97      | 105     |         |         |
| ZM142832.L | DAD19574-001(MSD)    | Α       | 10/07/20 15:58                   | 1      |        | 100       | 99       | 99      | 103     |         |         |

Flags: SD=Surrogate diluted out

\*=Surrogate out

Method: EPA 8260D

#### **Soil Laboratory Limits**

| Compound                 | Spike<br>Amt | Limits |
|--------------------------|--------------|--------|
| S1=Dibromofluoromethane  | 30           | 63-140 |
| S2=1,2-Dichloroethane-d4 | 30           | 63-143 |
| S3=Toluene-d8            | 30           | 68-122 |
| S4=Bromofluorobenzene    | 30           | 64-129 |

#### **Aqueous Laboratory Limits**

|                          | Spike |        |
|--------------------------|-------|--------|
| Compound                 | Amt   | Limits |
| S1=Dibromofluoromethane  | 30    | 73-131 |
| S2=1,2-Dichloroethane-d4 | 30    | 78-128 |
| S3=Toluene-d8            | 30    | 79-111 |
| S4=Bromofluorobenzene    | 30    | 82-112 |

Data File

Sample ID:

Analysis Date

Spike or Dup: 11M83561.D

MBS89425

10/5/2020 7:21:00 PM

Non Spike(If applicable):

Inst Blank(If applicable): Units: mg/Kg Method: 8260D Matrix: Soil QC Type: MBS Spike Expected Sample Lower Upper Recovery Analyte: Col Conc Conc Conc Limit Limit Chlorodifluoromethane 70.5184 0 50 141\* 20 130 130 **Dichlorodifluoromethane** 1 58.439 0 <u>50</u> 117 <u>20</u> 0 <u>50</u> 107 20 <u>130</u> **Chloromethane** 53.5968 **Bromomethane** 48.2592 0 <u>50</u> 97 <u>20</u> 130 1 Vinyl Chloride 1 0 <u>50</u> <u>126</u> <u> 20</u> 130 62.8067 0 **Chloroethane** 53.7478 <u>50</u> 107 <u>20</u> 130 Q <u>50</u> 111 <u>20</u> 130 **Trichlorofluoromethane** <u>1</u> 55.5836 Ethyl ether 44.3328 0 50 89 50 130 55.2765 50 50 130 0 Furan 111 1,1,2-Trichloro-1,2,2-trifluoroethane 60.4853 0 50 <u>121</u> 50 130 <u>1</u> Methylene Chloride 43.4503 0 50 <u>87</u> 130 20 130 0 200 121 Acrolein 242.394 Acrylonitrile 1 42.4002 0 50 85 20 130 lodomethane 47.149 0 50 94 50 130 200 100 <u>20</u> 130 **Acetone** 200.7981 0 Carbon Disulfide 130 <u>55.9749</u> 0 50 112 <u>50</u> 200 107 20 130 t-Butyl Alcohol 213.7577 50 130 n-Hexane 64.2748 0 50 129 47.0769 0 50 94 50 130 Di-isopropyl-ether 1 50 130 1,1-Dichloroethene 56.4256 Q 50 113 1 **Methyl Acetate** 38.0797 0 <u>50</u> <u>76</u> <u>50</u> <u>130</u> 130 0 <u>50</u> <u>50</u> 44.8264 <u>90</u> Methyl-t-butyl ether 1,1-Dichloroethane 50.3337 0 <u>50</u> 101 <u>50</u> 130 trans-1,2-Dichloroethene 54.2984 <u>50</u> 109 <u>50</u> <u>130</u> ō 50 50 130 45.267 91 Ethyl-t-butyl ether cis-1,2-Dichloroethene 50 50 1 50.0736 0 100 130 **Bromochloromethane** 45.351 Q <u>50</u> <u>91</u> <u>50</u> 130 1 2,2-Dichloropropane 59.6608 0 50 119 50 130 50 130 Ethyl acetate 38.3329 0 50 **7**7 <u>0</u> **2500** 89 <u>130</u> 1,4-Dioxane 2221.889 1 Ó 50 130 50 113 1,1-Dichloropropene 56.3202 49.6716 <u>0</u> 50 <u>50</u> 130 **Chloroform** 1 99 Cyclohexane 1 60.7033 0 50 121 50 130 <u>50</u> 130 1,2-Dichloroethane 42.668 Q <u>50</u> <u>85</u> 43.8709 <u>0</u> <u>50</u> <u>88</u> <u>20</u> <u>130</u> 2-Butanone 1,1,1-Trichloroethane 54.3384 0 50 109 <u>50</u> 130 1 <u>50</u> <u>50</u> 130 Carbon Tetrachloride 57.0283 114 50 50 0 90 130 Vinyl Acetate 45.1285 50 <u>50</u> **Bromodichloromethane** 1 45.0327 0 90 130 **Methylcyclohexane** 64.2183 0 <u>50</u> <u>128</u> <u>50</u> 130 0 50 130 Dibromomethane 94 47.1164 1,2-Dichloropropane <u>50</u> 48.0918 0 <u>50</u> <u>96</u> <u>130</u> 1 <u>50</u> <u>Trichloroethene</u> 1 **55.8038** <u>0</u> <u>50</u> 112 <u>130</u> Õ <u>50</u> <u>50</u> <u>130</u> 50.9214 102 **Benzene** tert-Amyl methyl ether 44.5974 0 50 89 50 130 50 50 130 Iso-propylacetate 41.433 0 83 39.95 0 50 80 50 130 Methyl methacrylate **Dibromochloromethane** 44.347 0 <u>50</u> 89 <u>50</u> 130 1 2-Chloroethylvinylether 44.0101 0 50 88 50 130 0 <u>50</u> <u>96</u> <u>50</u> <u>130</u> cis-1,3-Dichloropropene <u>47.7905</u> trans-1,3-Dichloropropene Q <u>50</u> <u>91</u> <u>50</u> 130 45.5931 44.5708 0 50 89 50 130 Ethyl methacrylate 43.0771 0 <u>50</u> <u>86</u> <u>50</u> <u>130</u> 1,1,2-Trichloroethane 44.0658 <u>50</u> 130 1,2-Dibromoethane 0 <u>88</u> <u>50</u> 1,3-Dichloropropane 43.1473 0 50 86 50 130 0 <u>50</u> <u>20</u> 42.115 <u>84</u> <u>130</u> 4-Methyl-2-Pentanone 40.9464 0 <u>50</u> <u>82</u> <u>20</u> <u>130</u> 2-Hexanone 0 50 114 <u>50</u> 130 **Tetrachioroethene** 57.0205 50 <u>50</u> 130 49.5335 0 <u>99</u> **Toluene** 0 50 92 50 130 1,1,1,2-Tetrachloroethane 45.8519 47.5839 0 50 95 <u>130</u> Chlorobenzene 1

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix           | c Soil          |                      | Units: mg/K | g QC Typ    | QC Type: MBS  |            |
|-----------------------------|------------------|-----------------|----------------------|-------------|-------------|---------------|------------|
|                             |                  | Spike           | Sample               | Expected    |             | Lower         | Upper      |
| Analyte:                    | Col              | Conc            | Conc                 | Conc        | Recovery    | Limit         | Limit      |
| n-Butyl acrylate            | 1                | 42.8416         | 0                    | 50          | 86          | 50            | 130        |
| n-Amyl acetate              | 1                | 35.5506         | 0                    | 50          | 71          | 50            | 130        |
| Bromoform                   | 1                | 40.6219         | <u>o</u>             | <u>50</u>   | <u>81</u>   | <u>20</u>     | 130        |
| Ethylbenzene                | 1                | <u>50.4849</u>  | <u>0</u>             | <u>50</u>   | <u> 101</u> | <u>50</u>     | <u>130</u> |
| 1,1,2,2-Tetrachloroethane   | 1                | <u>40.4869</u>  | <u>0</u>             | <u>50</u>   | <u>81</u>   | <u>50</u>     | <u>130</u> |
| Styrene                     | 1                | <u>43.7639</u>  | <u>0</u>             | <u>50</u>   | <u>88</u>   | <u>50</u>     | <u>130</u> |
| m&p-Xylenes                 | 1                | <u>103.7184</u> | <u>o</u>             | <u>100</u>  | <u>104</u>  | <u>50</u>     | <u>130</u> |
| o-Xylene                    | 1                | 46.7367         | <u>0</u>             | <u>50</u>   | <u>93</u>   | <u>50</u>     | <u>130</u> |
| trans-1,4-Dichloro-2-butene | 1                | 48.5217         | 0                    | 50          | 97          | 20            | 130        |
| 1,3-Dichlorobenzene         | <u>1</u>         | <u>46.9578</u>  | <u>0</u>             | <u>50</u>   | <u>94</u>   | <u>50</u>     | <u>130</u> |
| 1,4-Dichlorobenzene         | 1<br>1<br>1<br>1 | 48.3074         | 0                    | <u>50</u>   | <u>97</u>   | <u>50</u>     | <u>130</u> |
| 1,2-Dichlorobenzene         | 1                | 45.3743         | <u>0</u><br><u>0</u> | <u>50</u>   | <u>91</u>   | <u>50</u>     | <u>130</u> |
| Isopropylbenzene            |                  | 49.2124         | Q                    | <u>50</u>   | <u>98</u>   | <u>50</u>     | <u>130</u> |
| Cyclohexanone               | 1                | 217.0036        | 0                    | 250         | 87          | 50            | 130        |
| Camphene                    | 1                | 57.8936         | 0                    | 50          | 116         | 50            | 130        |
| 1,2,3-Trichloropropane      | 1                | 42.5741         | 0                    | 50          | 85          | 50            | 130        |
| 2-Chlorotoluene             | 1                | 45.5255         | 0                    | 50          | 91          | 50            | 130        |
| p-Ethyltoluene              | 1                | 51.3516         | 0                    | 50          | 103         | 50            | 130        |
| 4-Chlorotoluene             | 1                | 45.2101         | 0                    | 50          | 90          | 50            | 130        |
| n-Propylbenzene             | 1                | 52.8687         | 0                    | 50          | 106         | 50            | 130        |
| Bromobenzene                | 1                | 48.152          | 0                    | 50          | 96          | 50            | 130        |
| 1,3,5-Trimethylbenzene      | 1                | 49.1907         | 0                    | 50          | 98          | 50            | 130        |
| Butyl methacrylate          | 1                | 41.0963         | 0                    | 50          | 82          | 50            | 130        |
| t-Butylbenzene              | 1                | 47.4218         | 0                    | 50          | 95          | 50            | 130        |
| 1,2,4-Trimethylbenzene      | 1                | 46.8523         | 0                    | 50          | 94          | 50            | 130        |
| sec-Butylbenzene            | 1                | 49.3702         | 0                    | 50          | 99          | 50            | 130        |
| 4-Isopropyltoluene          | 1                | 55.806          | 0                    | 50          | 112         | 50            | 130        |
| n-Butylbenzene              | 1                | 50.3542         | 0                    | 50          | 101         | 50            | 130        |
| p-Diethylbenzene            | 1                | 51.3362         | 0                    | 50          | 103         | 50            | 130        |
| 1,2,4,5-Tetramethylbenzene  | 1                | 55.2858         | 0                    | 50          | 111         | 50            | 130        |
| 1,2-Dibromo-3-Chloropropane | 1                | 40.6995         | <u>0</u>             | 50          | 81          | 50            | 130        |
| Camphor                     | ī                | 460.0097        | ō                    | 500         | 92          | 50            | 130        |
| Hexachlorobutadiene         | 1                | 62.7137         | 0                    | 50          | 125         | 50            | 130        |
| 1,2,4-Trichlorobenzene      | <u>1</u>         | 54.0047         | <u>0</u>             | 50          | 108         | 50            | 130        |
| 1.2.3-Trichlorobenzene      | <u>1</u>         | 52.2512         | <u>0</u>             | 50          | 105         | <del>50</del> | 130        |
| Naphthalene                 | 1                | 46.7978         | ō                    | 50          | 94          | 50            | 130        |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Data File

Sample ID:

AD19562-001

Analysis Date

Spike or Dup: 11M83557.D Non Spike(If applicable): 11M83564.D AD19562-003(MS:AD19562-001

10/5/2020 6:02:00 PM 10/5/2020 8:20:00 PM

Inst Blank(If applicable):

Method: 8260D Matrix: Soil Units: mg/Kg QC Type: MS Expected Upper Spike Sample Lower Col Conc Recovery Limit Limit Analyte: Conc Conc Chlorodifluoromethane 72.5589 0 50 145\* 20 130 Dichlorodifluoromethane <u>50</u> <u>20</u> <u>130</u> <u>59.4941</u> 0 119 Chloromethane 54.8283 0 <u>50</u> 110 <u>20</u> 130 <u>50</u> <u> 20</u> 130 **Bromomethane** 49.6643 0 <u>99</u> 1 <u>50</u> <u>20</u> Vinyl Chloride 62.2222 0 <u>124</u> <u>130</u> 1 0 <u>50</u> <u> 20</u> <u>130</u> **Chloroethane** 53.3907 107 0 <u>50</u> <u>20</u> **Trichlorofluoromethane** 59.0881 118 130 50 50 ō Ethyl ether 40.3131 81 130 48.8285 0 50 98 50 130 Furan 1,1,2-Trichloro-1,2,2-trifluoroethane 60.0218 0 <u>50</u> 120 <u>50</u> 130 1 **Methylene Chloride** 43.7203 50 <u>87</u> <u>50</u> <u>130</u> 90 20 0 200 130 180.8405 Acrolein 50 67 20 Acrylonitrile 33.5204 0 130 Iodomethane 47.7501 0 50 96 50 130 0 200 <u>75</u> <u>20</u> <u>130</u> Acetone <u>149.281</u> Carbon Disulfide 107 <u>130</u> 53.6573 0 <u>50</u> <u>50</u> t-Butyl Alcohol 132.0166 0 200 66 20 130 0 50 123 50 n-Hexane 61.5398 130 Di-isopropyl-ether 44.3463 0 50 89 50 130 50 116 50 130 1.1-Dichloroethene 57.7537 0 1 **Methyl Acetate** 30.7999 0 <u>50</u> <u>62</u> <u>50</u> <u>130</u> 0 <u>50</u> <u>80</u> <u>50</u> <u>130</u> Methyl-t-butyl ether <u>39.9828</u> 1,1-Dichloroethane 49.2292 0 50 98 50 130 <u>50</u> trans-1,2-Dichloroethene 52.9487 <u>106</u> <u>50</u> <u>130</u> 1 0 50 85 50 130 Ethyl-t-butyl ether 42.4873 50 50 cis-1,2-Dichloroethene 47.4488 0 95 130 1 **Bromochloromethane** 42.2958 0 <u>50</u> <u>85</u> <u>50</u> <u>130</u> 50 50 2,2-Dichloropropane 60.7436 0 121 130 50 130 Ethyl acetate 31.8733 50 64 1,4-Dioxane 1494.409 <u>2500</u> <u>60</u> <u>50</u> 130 1 0 50 113 50 130 1,1-Dichloropropene 56.5002 Chloroform 48.0774 0 50 96 <u>50</u> 130 1 Cyclohexane 1 59.4755 0 <u>50</u> 119 <u>50</u> 130 <u>50</u> <u>40.2394</u> 0 <u>50</u> <u>80</u> <u>130</u> 1,2-Dichloroethane 2-Butanone 27.5578 0 <u>50</u> <u>55</u> <u>20</u> <u>130</u> 1,1,1-Trichloroethane 1 53.4363 <u>50</u> 107 <u>50</u> **130** <u>50</u> <u>50</u> <u>130</u> Carbon Tetrachloride 56.4015 <u>113</u> 50 50 40.7741 0 82 130 Vinyl Acetate <u>50</u> 87 <u>50</u> <u>130</u> **Bromodichloromethane** 1 43.3988 0 **Methylcyclohexane** 60.9285 0 <u>50</u> 122 <u>50</u> <u>130</u> 41.3455 0 50 83 50 130 Dibromomethane <u>50</u> <u>50</u> 1,2-Dichloropropane 45.377 0 <u>91</u> 130 1 <u>50</u> <u>50</u> **Trichloroethene** 52.8047 0 106 <u>130</u> 0 <u>50</u> <u>98</u> 50 <u>130</u> <u>49.0363</u> **Benzene** tert-Amyl methyl ether 41.5632 0 50 83 50 130 50 67 50 130 Iso-propylacetate 33.638 0 Methyl methacrylate 32.3171 0 50 65 50 130 **Dibromochloromethane** 40.1117 0 50 80 50 130 1 50 2-Chloroethylvinylether 36.9293 0 74 50 130 cis-1,3-Dichloropropene 44.2119 0 <u>50</u> <u>88</u> 50 <u>130</u> 1 trans-1,3-Dichloropropene 41.404 0 50 <u>83</u> <u>50</u> 130 Ethyl methacrylate 38.5526 0 50 77 50 130 38.6246 <u>50</u> **77** <u>50</u> <u>130</u> 1,1,2-Trichloroethane 1 0 50 78 <u>50</u> **130** 1,2-Dibromoethane 39.1156 50 76 1,3-Dichloropropane 37.**7**773 0 50 130 0 <u>50</u> <u>62</u> <u>20</u> 31.1844 <u>130</u> 4-Methyl-2-Pentanone 32.4735 0 <u>50</u> <u>65</u> <u>20</u> 130 2-Hexanone <u>50</u> 105 <u>50</u> <u>130</u> Tetrachloroethene 52.298 0 <u>94</u> <u>50</u> <u>50</u> <u>130</u> Toluene <u>46.858</u> 1,1,1,2-Tetrachloroethane 41.6403 50 83 50 130 Chlorobenzene 43.8385 Q <u>50</u> 88 <u>130</u> 1

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits

Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix: Soil |               |                | Units: mg/K      | g QC Typ      | QC Type: MS    |                |  |
|-----------------------------|--------------|---------------|----------------|------------------|---------------|----------------|----------------|--|
| Analyte:                    | Col          | Spike<br>Conc | Sample<br>Conc | Expected<br>Conc | Recovery      | Lower<br>Limit | Upper<br>Limit |  |
| n-Butyl acrylate            | 1            | 37.4645       | 0              | 50               | 75            | 50             | 130            |  |
| n-Amyl acetate              | 1            | 28.084        | Ö              | 50               | 56            | 50             | 130            |  |
| Bromoform                   | <u>1</u>     | 36.3758       | <u>o</u>       | 50               | <u>73</u>     | 20             | 130            |  |
| Ethylbenzene                | <u>1</u>     | 48.7219       | Q              | 50               | 97            | <del>50</del>  | 130            |  |
| 1,1,2,2-Tetrachloroethane   | <u>1</u>     | 35.8571       | Q              | 50               | 72            | 50             | 130            |  |
| Styrene                     | <u>1</u>     | 40.7956       | Q              | <u>50</u>        | <u>82</u>     | <u>50</u>      | 130            |  |
| m&p-Xylenes                 | 1            | 97.3631       | <u>o</u>       | <u>100</u>       | <del>97</del> | <del>50</del>  | 130            |  |
| o-Xylene                    | <u>1</u>     | 43.4255       | Ō              | 50               | 87            | 50             | 130            |  |
| trans-1,4-Dichloro-2-butene | 1            | 40.5436       | ō              | 50               | 81            | 20             | 130            |  |
| 1,3-Dichlorobenzene         | 1            | 38.9288       | <u>0</u>       | 50               | <u>78</u>     | 50             | 130            |  |
| 1,4-Dichlorobenzene         | <u>1</u>     | 40.5736       | <u> </u>       | <u>50</u>        | <u>81</u>     | <u>50</u>      | 130            |  |
| 1,2-Dichlorobenzene         | 1            | 38.3468       | Q              | 50               | <del>77</del> | <del>5</del> 0 | 130            |  |
| Isopropylbenzene            | 1            | 44.6515       | Q              | 50               | 89            | 50             | 130            |  |
| Cyclohexanone               | 1            | 154.2419      | ō              | 250              | 62            | 50             | 130            |  |
| Camphene                    | 1            | 48.8993       | 0              | 50               | 98            | 50             | 130            |  |
| 1,2,3-Trichloropropane      | 1            | 36.7065       | 0              | 50               | 73            | 50             | 130            |  |
| 2-Chlorotoluene             | 1            | 40.2213       | 0              | 50               | 80            | 50             | 130            |  |
| p-Ethyltoluene              | 1            | 43.5101       | 0              | 50               | 87            | 50             | 130            |  |
| 4-Chlorotoluene             | 1            | 40.8418       | 0              | 50               | 82            | 50             | 130            |  |
| n-Propylbenzene             | 1            | 45.6292       | 0              | 50               | 91            | 50             | 130            |  |
| Bromobenzene                | 1            | 43.6839       | 0              | 50               | 87            | 50             | 130            |  |
| 1,3,5-Trimethylbenzene      | 1            | 41.6453       | 0              | 50               | 83            | 50             | 130            |  |
| Butyl methacrylate          | 1            | 35.9739       | 0              | 50               | 72            | 50             | 130            |  |
| t-Butylbenzene              | 1            | 40.3626       | 0              | 50               | 81            | 50             | 130            |  |
| 1,2,4-Trimethylbenzene      | 1            | 38.9623       | 0              | 50               | 78            | 50             | 130            |  |
| sec-Butylbenzene            | 1            | 40.0767       | 0              | 50               | 80            | 50             | 130            |  |
| 4-Isopropyltoluene          | 1            | 44.7717       | 0              | 50               | 90            | 50             | 130            |  |
| n-Butylbenzene              | 1            | 38.2341       | 0              | 50               | 76            | 50             | 130            |  |
| p-Diethylbenzene            | 1            | 39.3555       | Ó              | 50               | 79            | 50             | 130            |  |
| 1,2,4,5-Tetramethylbenzene  | 1            | 39.9331       | 0              | 50               | 80            | 50             | 130            |  |
| 1,2-Dibromo-3-Chloropropane | 1            | 31.0181       | Q              | 50               | 62            | 50             | 130            |  |
| Camphor                     | <u>1</u>     | 309.4433      | ō              | 500              | 62            | 50             | 130            |  |
| Hexachlorobutadiene         | 1            | 34.1702       | Ö              | 50               | 68            | 50             | 130            |  |
| 1,2,4-Trichlorobenzene      | 1            | 38.0368       | <u>o</u>       | 50               | 76            | 50             | 130            |  |
| 1,2,3-Trichlorobenzene      | 1            | 34.4001       | Ō              | 50               | 69            | 50             | 130            |  |
| Naphthalene                 | 1            | 33.1608       | ō              | 50               | 66            | 50             | 130            |  |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Data File

Sample ID:

Analysis Date

Spike or Dup: 11M83560.D Non Spike(If applicable): 11M83564.D AD19562-005(MSD:AD19562-0 AD19562-001

10/5/2020 7:01:00 PM 10/5/2020 8:20:00 PM

| Inst Blank(If applicable):                  |               |                           |                      |                  |                  |                 |                   |
|---------------------------------------------|---------------|---------------------------|----------------------|------------------|------------------|-----------------|-------------------|
| Method: 8260D                               | Matrix        | c: Soil                   |                      | Units: mg/K      | g QC Typ         | QC Type: MSD    |                   |
| Analyte:                                    | Col           | Spike<br>Conc             | Sample<br>Conc       | Expected<br>Conc | Recovery         | Lower<br>Limit  | Upper<br>Limit    |
| Chlorodifluoromethane                       | 1             | 77.8875                   | 0                    | 50               | 156*             | 20              | 130               |
| Dichlorodifluoromethane                     | 1             | <u>54.2634</u>            | <u>0</u>             | <u>50</u>        | <u>109</u>       | <u>20</u>       | 130               |
| Chloromethane                               | 1             | <u>48.3536</u>            | <u>0</u>             | <u>50</u>        | <u>97</u>        | <u>20</u>       | <u>130</u>        |
| <b>Bromomethane</b>                         | 1             | 42.3547                   | <u>0</u>             | <u>50</u>        | <u>85</u>        | <u>20</u>       | <u>130</u>        |
| Vinyl Chloride                              | 1             | <u>54.3254</u>            | <u>0</u>             | <u>50</u>        | <u>109</u>       | <u>20</u>       | <u>130</u>        |
| Chloroethane                                | 1             | <u>48.2174</u>            | <u>0</u>             | <u>50</u>        | <u>96</u>        | <u>20</u>       | <u>130</u>        |
| <u>Trichlorofluoromethane</u>               | 1             | <u>52.3439</u>            | <u>0</u>             | <u>50</u>        | <u>105</u>       | <u>20</u>       | <u>130</u>        |
| Ethyl ether<br>Furan                        | 1             | 36.8474<br>42.953         | 0<br>0               | 50<br>50         | 7 <b>4</b><br>86 | 50<br>50        | 130<br>130        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane       |               | 53.4584                   | <u>0</u>             | 50<br>50         | <u>107</u>       | <u>50</u>       | 130               |
| Methylene Chloride                          | 1             | 40.0852                   | Q                    | <u>50</u>        | 80               | <u>50</u>       | 130               |
| Acrolein                                    | <u>†</u>      | 161.9108                  | Ŏ                    | 200              | 81               | <del>20</del>   | 130               |
| Acrylonitrile                               | 1             | 32.3811                   | Ö                    | 50               | 65               | 20              | 130               |
| Iodomethane                                 | 1             | 41.2043                   | 0                    | 50               | 82               | 50              | 130               |
| Acetone                                     | 1             | 162.8074                  | Ō                    | <u>200</u>       | <u>81</u>        | <u>20</u>       | <u>130</u>        |
| Carbon Disulfide                            | <u>1</u>      | 42.4743                   | <u>0</u>             | <u>50</u>        | <u>85</u>        | <u>50</u>       | <u>130</u>        |
| t-Butyl Alcohol                             | 1             | 144.6289                  | 0                    | 200              | 72               | 20              | 130               |
| n-Hexane                                    | 1             | 56.5158                   | 0                    | 50<br>50         | 113              | 50              | 130               |
| Di-isopropyl-ether                          | 1             | 40.5629                   | 0                    | 50               | 81               | 50              | 130               |
| 1,1-Dichloroethene                          | 1             | <u>49.8577</u>            | Ō                    | <u>50</u>        | <u>100</u>       | <u>50</u>       | <u>130</u>        |
| Methyl Acetate                              | <u>1</u><br>1 | <u>37.271</u><br>37.9399  | <u>0</u><br><u>0</u> | <u>50</u><br>50  | <u>75</u><br>76  | <u>50</u>       | <u>130</u><br>130 |
| Methyl-t-butyl ether 1,1-Dichloroethane     | 1             | 44.365                    | <u>0</u>             | <u>50</u><br>50  | <u>76</u><br>89  | <u>50</u><br>50 | 130<br>130        |
| trans-1,2-Dichloroethene                    | 1             | 46.4123                   | <u>o</u>             | <u>50</u>        | 93               | <u>50</u><br>50 | 130               |
| Ethyl-t-butyl ether                         | <u>†</u>      | 39.1798                   | Ŏ                    | 50               | 78               | <u>50</u>       | 130               |
| cis-1,2-Dichloroethene                      | 1             | 42.2031                   | Q                    | <u>50</u>        | 84               | <u>50</u>       | 130               |
| Bromochloromethane                          | <u>1</u>      | 39.3154                   | Q                    | <u>50</u>        | <del>79</del>    | <u>50</u>       | 130               |
| 2,2-Dichloropropane                         | 1             | 52.9943                   | 0                    | 50               | 106              | 50              | 130               |
| Ethyl acetate                               | 1             | 29.2323                   | 0                    | 50               | 58               | 50              | 130               |
| 1,4-Dioxane                                 | 1             | <u>1571.471</u>           | 0                    | <u>2500</u>      | <u>63</u>        | <u>50</u>       | <u>130</u>        |
| 1,1-Dichloropropene                         | 1             | 48.0412                   | 0                    | 50               | 96               | 50<br>50        | 130               |
| <u>Chloroform</u>                           | 1             | <u>43.1563</u>            | <u>0</u>             | <u>50</u>        | <u>86</u>        | <u>50</u>       | <u>130</u><br>130 |
| Cyclohexane<br>1,2-Dichloroethane           | 4             | <u>51.6779</u><br>37.2932 | <u>0</u>             | <u>50</u><br>50  | <u>103</u><br>75 | <u>50</u><br>50 | 130<br>130        |
| 2-Butanone                                  | 1<br>1<br>1   | 28.5428                   | <u>o</u>             | <u>50</u>        | <u>57</u>        | <u>20</u>       | 130<br>130        |
| 1,1,1-Trichloroethane                       |               | 46.9803                   | <u>o</u>             | <u>50</u>        | 9 <u>4</u>       | <u>50</u>       | 130               |
| Carbon Tetrachloride                        | <u>1</u><br>1 | 48.4859                   | Q                    | 50               | 97               | 50              | 130               |
| Vinyl Acetate                               | 1             | 31.3053                   | õ                    | <del>50</del>    | <del>63</del>    | <del>50</del>   | 130               |
| Bromodichloromethane                        | 1             | <u>37.8568</u>            | Q                    | <u>50</u>        | <u>76</u>        | <u>50</u>       | <u>130</u>        |
| Methylcyclohexane                           | 1             | <u>54.0115</u>            | Ō                    | <u>50</u>        | <u>108</u>       | <u>50</u>       | <u>130</u>        |
| Dibromomethane                              | 1             | 39.2566                   | 0                    | 50               | 79               | 50              | 130               |
| 1,2-Dichloropropane                         | 1             | 40.2208                   | <u>0</u>             | <u>50</u>        | <u>80</u>        | <u>50</u>       | <u>130</u>        |
| <u>Trichloroethene</u>                      | 1             | <u>45.2721</u>            | <u>0</u>             | <u>50</u>        | <u>91</u>        | <u>50</u>       | <u>130</u>        |
| Benzene                                     | 1             | 43.6943                   | 0                    | <u>50</u>        | <u>87</u>        | <u>50</u>       | <u>130</u><br>130 |
| tert-Amyl methyl ether<br>Iso-propylacetate | 1             | 38.3507<br>31.7158        | 0                    | 50<br>50         | 77<br>63         | 50<br>50        | 130               |
| Methyl methacrylate                         | 1             | 35.7082                   | 0                    | 50               | 71               | 50              | 130               |
| Dibromochloromethane                        | 1             | 36.1634                   | Q                    | <u>50</u>        | <u>72</u>        | <u>50</u>       | 130               |
| 2-Chloroethylvinylether                     | <u>†</u>      | 35.2359                   | Ŏ                    | <u>50</u>        | 70               | <u>50</u>       | 130               |
| cis-1,3-Dichloropropene                     | 1             | 39.4917                   | <u>0</u>             | <u>50</u>        | <u>79</u>        | <u>50</u>       | 130               |
| trans-1,3-Dichloropropene                   | 1             | 35.7276                   | <u> </u>             | <u>50</u>        | <u>71</u>        | <u>50</u>       | 130               |
| Ethyl methacrylate                          | 1             | 35.24                     | 0                    | 50               | 70               | 50              | 130               |
| 1,1,2-Trichloroethane                       | 1             | <u>34.8953</u>            | <u>0</u>             | <u>50</u>        | <u>70</u>        | <u>50</u>       | <u>130</u>        |
| 1,2-Dibromoethane                           | 1             | <u>35.6951</u>            | Q                    | <u>50</u>        | <u>71</u>        | <u>50</u>       | <u>130</u>        |
| 1,3-Dichloropropane                         | 1             | 35.2843                   | 0                    | 50               | 71               | 50              | 130               |
| 4-Methyl-2-Pentanone                        | 1             | <u>32.9313</u>            | <u>0</u>             | <u>50</u>        | <u>66</u>        | <u>20</u>       | <u>130</u>        |
| 2-Hexanone                                  | 1             | <u>30.8144</u>            | <u>0</u>             | <u>50</u>        | <u>62</u>        | <u>20</u>       | <u>130</u>        |
| <u>Tetrachloroethene</u>                    | 1             | 41.846<br>40.5031         | <u>0</u>             | <u>50</u>        | 84<br>81         | <u>50</u>       | 130<br>130        |
| Toluene 1,1,1,2-Tetrachloroethane           | <u>1</u><br>1 | <u>40.5031</u><br>36.3568 | <u>o</u><br>o        | <u>50</u><br>50  | <u>81</u><br>73  | <u>50</u><br>50 | <u>130</u><br>130 |
| Chlorobenzene                               | 1             | 35.7844                   | <u>Q</u>             | 50<br>50         | 73<br>72         | 50<br>50        | 130<br>130        |
|                                             | -             |                           |                      | ite but within r |                  |                 |                   |

<sup># -</sup> Indicates outside of standard limits but within method exceedance limits \* - Indicates outside of limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix: Soil  |                  |                                | Units: mg/Kg QC Type: MSD |               |                |               |
|-----------------------------|---------------|------------------|--------------------------------|---------------------------|---------------|----------------|---------------|
| Analyte:                    | Col           | Spike<br>Conc    | Sample<br>Conc                 | Expected<br>Conc          | Recovery      | Lower<br>Limit | Uppe<br>Limit |
| n-Butyl acrylate            | 1             | 28.9996          | 0                              | 50                        | 58            | 50             | 130           |
| n-Amyl acetate              | 1             | 19.7779          | Ō                              | 50                        | 40*           | 50             | 130           |
| Bromoform                   | 1             | 33.0253          | Q                              | 50                        | 66            | 20             | 130           |
| Ethylbenzene                | <u>1</u>      | 37.4005          | Õ                              | 50                        | <u>75</u>     | 50             | 130           |
| 1,1,2,2-Tetrachloroethane   | 1             | 33.8706          | Q                              | <u>50</u>                 | <del>68</del> | 50             | 130           |
| Styrene                     | <u>1</u>      | 31.9601          | Õ                              | <del>50</del>             | 64            | <u>50</u>      | 130           |
| m&p-Xylenes                 | $\bar{1}$     | 75.7805          | Ō                              | 100                       | <del>76</del> | 50             | 130           |
| o-Xylene                    |               | 34.3769          | $\bar{\underline{\mathbf{o}}}$ | 50                        | 69            | 50             | 130           |
| trans-1,4-Dichloro-2-butene | <u>1</u><br>1 | 35.5291          | ō                              | <del>50</del>             | 71            | 20             | 130           |
| 1,3-Dichlorobenzene         | 1             | 26.8645          | <u>0</u>                       | 50                        | <u>54</u>     | <u>50</u>      | 130           |
| 1,4-Dichlorobenzene         | <u>1</u><br>1 | 28.8809          | <u> </u>                       | <u>50</u>                 | <u>58</u>     | 50             | 130           |
| 1,2-Dichlorobenzene         | 1             | 28.3564          | <u>0</u>                       | <del>50</del>             | <u>57</u>     | 50             | 130           |
| Isopropylbenzene            | <u>1</u><br>1 | 32.4123          | <u> </u>                       | 50                        | 65            | 50             | 130           |
| Cyclohexanone               | 1             | 162.1099         | ō                              | 250                       | 65            | 50             | 130           |
| Camphene                    | 1             | 35.471           | 0                              | 50                        | <b>7</b> 1    | 50             | 130           |
| 1,2,3-Trichloropropane      | 1             | 33.6332          | 0                              | 50                        | 67            | 50             | 130           |
| 2-Chlorotoluene             | 1             | 29.114           | 0                              | 50                        | 58            | 50             | 130           |
| p-Ethyltoluene              | 1             | 31.7643          | 0                              | 50                        | 64            | 50             | 130           |
| 4-Chlorotoluene             | 1             | 27.9318          | 0                              | 50                        | 56            | 50             | 130           |
| n-Propylbenzene             | 1             | 31.233           | 0                              | 50                        | 62            | 50             | 130           |
| Bromobenzene                | 1             | 33.8964          | 0                              | 50                        | 68            | 50             | 130           |
| 1,3,5-Trimethylbenzene      | 1             | 29.1598          | 0                              | 50                        | 58            | 50             | 130           |
| Butyl methacrylate          | 1             | 27.6332          | 0                              | 50                        | 55            | 50             | 130           |
| t-Butylbenzene              | 1             | 27.4135          | 0                              | 50                        | 55            | 50             | 130           |
| 1,2,4-Trimethylbenzene      | 1             | 28.1144          | 0                              | 50                        | 56            | 50             | 130           |
| sec-Butylbenzene            | 1             | 25.5606          | 0                              | 50                        | 51            | 50             | 130           |
| 4-Isopropyltoluene          | 1             | 28.8722          | 0                              | 50                        | 58            | 50             | 130           |
| n-Butylbenzene              | 1             | 22.5587          | 0                              | 50                        | 45*           | 50             | 130           |
| p-Diethylbenzene            | 1             | 24.5597          | 0                              | 50                        | 49*           | 50             | 130           |
| 1,2,4,5-Tetramethylbenzene  | 1             | 25.5848          | 0                              | 50                        | 51            | 50             | 130           |
| 1,2-Dibromo-3-Chloropropane | 1             | 30.078           | <u>0</u>                       | <u>50</u>                 | <u>60</u>     | <u>50</u>      | <u>130</u>    |
| Camphor                     | 1             | 325.2783         | ō                              | 500                       | <del>65</del> | 50             | 130           |
| Hexachlorobutadiene         | 1             | 19.8 <b>7</b> 29 | 0                              | 50                        | 40*           | 50             | 130           |
| 1,2,4-Trichlorobenzene      | 1             | 23.5379          | Q                              | <u>50</u>                 | 47 <b>*</b>   | <u>50</u>      | 130           |
| 1,2,3-Trichlorobenzene      | 1             | 23.2014          | <u>o</u>                       | 50                        | 46*           | 50             | 130           |
| Naphthalene                 | ī             | 26.6983          | ō                              | 50                        | 53            | 50             | 130           |

### Form3 **RPD Data Laboratory Limits**

QC Batch: MBS89425

Data File

Sample ID:

Analysis Date

Spike or Dup: 11M83560.D Duplicate(If applicable): 11M83557.D AD19562-005(MSD:AD19562-0

10/5/2020 7:01:00 PM AD19562-003(MS:AD19562-001 10/5/2020 6:02:00 PM

Inst Blank(If applicable):

Method: 8260D Matrix: Soil Units: mg/Kg QC Type: MSD Dup/MSD/MBSD Sample/MS/MBS Column Conc **RPD** Limit Analyte: Conc 72.5589 30 77.8875 Chlorodifluoromethane 1 7.1 54.2634 59.4941 30 **Dichlorodifluoromethane** 1 <u>9.2</u> Chloromethane 1 48.3536 54.8283 13 30 <u>30</u> **Bromomethane** 1 42.3547 <u>49.6643</u> <u>16</u> 62.2222 <u>40</u> 54.3254 Vinyl Chloride 1 <u>14</u> 30 **Chloroethane** 1 48.2174 53.3907 10 <u>30</u> **Trichlorofluoromethane** 1 52.3439 59.0881 12 30 1 36.8474 9 Ethyl ether 40.3131 13 30 **Furan** 42.953 48.8285 <u>30</u> 1,1,2-Trichloro-1,2,2-trifluoroethane 53.4584 60.0218 <u>12</u> 1 <u>8.7</u> <u>30</u> Methylene Chloride 40.0852 43.7203 30 Acrolein 161.9108 180.8405 11 Acrylonitrile 32.3811 33.5204 3.5 30 30 lodomethane 41.2043 47.7501 15 1 162.8074 <u>8.7</u> 30 1 149.281 <u>Acetone</u> Carbon Disulfide 1 42.4743 53.6573 23 30 30 9.1 t-Butyl Alcohol 144.6289 132.0166 1 56.5158 61.5398 8.5 30 n-Hexane 40.5629 44.3463 8.9 30 Di-isopropyl-ether <u>40</u> 1,1-Dichloroethene 1 <u>49.8577</u> <u>57.7537</u> <u>15</u> <u>30</u> **Methyl Acetate** 1 <u>37.271</u> <u>30.7999</u> <u>19</u> <u>30</u> 1 37.9399 39.9828 5.2 Methyl-t-butyl ether 1 <u>44.365</u> 49.2292 <u>10</u> <u>40</u> 1,1-Dichloroethane <u>30</u> 46.4123 <u>52.9487</u> <u>13</u> trans-1,2-Dichloroethene 30 Ethyl-t-butyl ether 39.1798 42.4873 8.1 <u>30</u> cis-1,2-Dichloroethene 1 42.2031 47.4488 12 <u>30</u> <u>7.3</u> 42.2958 **Bromochloromethane** <u>39.3154</u> 30 2,2-Dichloropropane 52.9943 60.7436 14 8.6 30 Ethyl acetate 29.2323 31.8733 <u>30</u> **1571.471** 1494.409 <u>5</u> 1,4-Dioxane 1 16 30 1,1-Dichloropropene 48.0412 56.5002 <u>40</u> <u>43.1563</u> 48.0774 11 **Chloroform** 1 <u>30</u> Cyclohexane 51.6779 <u>59.4755</u> 14 1,2-Dichloroethane 1 <u>7.6</u> 40 37.2932 40.2394 1 <u>40</u> 2-Butanone 28.5428 27.5578 <u>3.5</u> <u>30</u> 1,1,1-Trichloroethane <u>46.9803</u> <u>53.4363</u> <u>13</u> Carbon Tetrachloride 1 <u>40</u> <u>15</u> <u>48.4859</u> 56.4015 30 Vinyl Acetate 31.3053 40.7741 26 <u>30</u> 14 **Bromodichloromethane** 1 37.8568 <u>43.3988</u> <u>54.0115</u> 12 <u>30</u> Methylcyclohexane 1 <u>60.9285</u> 5.2 30 Dibromomethane 39.2566 41.3455 <u>30</u> 1,2-Dichloropropane 1 40.2208 45.377 12 45.2721 52.8047 <u>15</u> <u>40</u> **Trichloroethene** 1 43.6943 49.0363 12 <u>40</u> **Benzene** tert-Amyl methyl ether 38.3507 41.5632 8 30 30 Iso-propylacetate 31.7158 33.638 5.9 30 Methyl methacrylate 35.7082 32.3171 10 Dibromochloromethane 1 36.1634 40.1117 <u>10</u> <u>30</u> 30 4.7 2-Chloroethylvinylether 35.2359 36.9293 cis-1,3-Dichloropropene 1 39.4917 44.2119 11 <u>30</u> <u>30</u> 41.404 <u>15</u> trans-1,3-Dichloropropene 1 35.7276 30 9 Ethyl methacrylate 35.24 38.5526 <u>30</u> 1,1,2-Trichloroethane 1 38.6246 <u>10</u> 34.8953 9.1 <u>30</u> 1,2-Dibromoethane 1 35.6951 39.1156 30 1,3-Dichloropropane 35.2843 37.7773 6.8 30 32.9313 31.1844 4-Methyl-2-Pentanone 1 <u>5.4</u> <u>30</u> 2-Hexanone 1 30.8144 32.4735 <u>5.2</u> 22 <u>40</u> **Tetrachloroethene** 1 <u>41.846</u> 52.298 1 46.858 15 40 40.5031 Toluene 1,1,1,2-Tetrachloroethane 36.3568 41.6403 14 30 <u>20</u> <u>40</u> Chlorobenzene <u>35.7844</u> 43.8385 1

<sup>\* -</sup> Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

| Method: 8260D              | Matrix: Soil | Units:         | QC Type: MSE   | )           |           |
|----------------------------|--------------|----------------|----------------|-------------|-----------|
|                            |              | Dup/MSD/MBSD   | Sample/MS/N    | MBS         |           |
| Analyte:                   | Column       | Conc           | Conc           | RPD         | Limit     |
| n-Butyl acrylate           | 1            | 28.9996        | 37.4645        | 25          | 30        |
| n-Amyl acetate             | 1            | 19.7779        | 28.084         | 35*         | 30        |
| Bromoform                  | <u>1</u>     | 33.0253        | 36.3758        | 9.7         | <u>30</u> |
| Ethylbenzene               |              | 37.4005        | 48.7219        | 26          | 30        |
| 1,1,2,2-Tetrachloroethane  | 1 1          | 33.8706        | 35.8571        | 5.7         | 30        |
| Styrene                    | <u>1</u>     | 31.9601        | 40.7956        | 24          | 30        |
| m&p-Xylenes                | <u>1</u>     | 75.7805        | 97.3631        | <u>25</u>   | 30        |
| o-Xylene                   | 1<br>1       | 34.3769        | 43.4255        | 23          | <u>30</u> |
| rans-1,4-Dichloro-2-butene | 1            | 35.5291        | 40.5436        | 13          | 30        |
| 1,3-Dichlorobenzene        | <u>1</u>     | <u>26.8645</u> | <u>38.9288</u> | <u>37*</u>  | <u>30</u> |
| 1,4-Dichlorobenzene        | 1<br>1<br>1  | 28.8809        | 40.5736        | 34          | 40        |
| 1,2-Dichlorobenzene        | <u>1</u>     | 28.3564        | 38.3468        | 30          | 40        |
| sopropylbenzene            | <u> </u>     | 32.4123        | 44.6515        | <u>32</u> * | 30        |
| Cyclohexanone              | <u>1</u>     | 162.1099       | 154.2419       | 5           | 30        |
| Camphene                   | 1            | 35.471         | 48.8993        | 32*         | 30        |
| 1,2,3-Trichloropropane     | 1            | 33.6332        | 36.7065        | 8.7         | 30        |
| 2-Chlorotoluene            | 1            | 29.114         | 40.2213        | 32*         | 30        |
| o-Ethyltoluene             | 1            | 31.7643        | 43.5101        | 31*         | 30        |
| 1-Chlorotoluene            | 1            | 27.9318        | 40.8418        | 38*         | 30        |
| n-Propylbenzene            | 1            | 31.233         | 45.6292        | 37          | 40        |
| Bromobenzene               | 1            | 33.8964        | 43.6839        | 25          | 30        |
| 1,3,5-Trimethylbenzene     | 1            | 29.1598        | 41.6453        | 35*         | 30        |
| Butyl methacrylate         | 1            | 27.6332        | 35.9739        | 26          | 30        |
| -Butylbenzene              | 1            | 27.4135        | 40.3626        | 38*         | 30        |
| 1,2,4-Trimethylbenzene     | 1            | 28.1144        | 38.9623        | 32*         | 30        |
| sec-Butylbenzene           | 1            | 25.5606        | 40.0767        | 44*         | 40        |
| 1-Isopropyltoluene         | 1            | 28.8722        | 44.7717        | 43*         | 30        |
| n-Butylbenzene             | 1            | 22.5587        | 38.2341        | 52 <b>*</b> | 30        |
| p-Diethylbenzene           | 1            | 24.5597        | 39.3555        | 46*         | 30        |
| ,2,4,5-Tetramethylbenzene  | 1            | 25.5848        | 39.9331        | 44*         | 30        |
| ,2-Dibromo-3-Chloropropane | <u>1</u>     | <u>30.078</u>  | <u>31.0181</u> | <u>3.1</u>  | <u>30</u> |
| Camphor                    | 1            | 325.2783       | 309.4433       | 5           | 30        |
| lexachlorobutadiene        | 1            | 19.8729        | 34.1702        | 53*         | 30        |
| 1,2,4-Trichlorobenzene     | <u>1</u>     | <u>23.5379</u> | <u>38.0368</u> | <u>47*</u>  | <u>30</u> |
| 1,2,3-Trichlorobenzene     | <u>1</u>     | 23.2014        | 34.4001        | <u>39*</u>  | <u>30</u> |
| Naphthalene                | 1            | 26.6983        | 33.1608        | 22          | 30        |

Spike or Dup: 1M140101.D

Data File

Sample ID: MBS89426 Analysis Date 10/5/2020 8:19:00 PM

Non Spike(If applicable):

| Method: 8260D                                                      | Matrix          | Matrix: Methanol          |                      | Units: mg/Kg QC Type: MBS |                  |                  |                   |
|--------------------------------------------------------------------|-----------------|---------------------------|----------------------|---------------------------|------------------|------------------|-------------------|
| Analyte:                                                           | Col             | Spike<br>Conc             | Sample<br>Conc       | Expected<br>Conc          | Recovery         | Lower<br>Limit   | Uppe<br>Limit     |
| Chlorodifluoromethane                                              | 1               | 17.7989                   | 0                    | 20                        | 89               | 50               | 150               |
| Dichlorodifluoromethane                                            | 1               | <u> 26.8961</u>           | <u>0</u>             | <u>20</u>                 | <u>134</u>       | <u>50</u>        | <u>150</u>        |
| <u>Chloromethane</u>                                               | 1               | <u>20.2807</u>            | 0                    | <u>20</u>                 | <u>101</u>       | <u>50</u>        | <u>150</u>        |
| <u>Bromomethane</u>                                                | 1               | <u>16.1231</u>            | <u>0</u>             | <u>20</u>                 | <u>81</u>        | <u>50</u>        | <u>150</u>        |
| Vinyl Chloride                                                     | <u>1</u><br>1   | <u>22.7102</u>            | <u>0</u>             | <u>20</u>                 | <u>114</u>       | <u>50</u>        | <u>150</u>        |
| Chloroethane                                                       |                 | <u>21.9816</u>            | <u>0</u>             | <u>20</u>                 | <u>110</u>       | <u>50</u>        | <u>150</u>        |
| Trichlorofluoromethane                                             | <u>1</u><br>1   | 23.0211                   | <u>o</u><br>0        | <b>20</b><br>20           | <u>115</u><br>95 | <u>50</u><br>50  | <u>150</u><br>150 |
| Ethyl ether<br>Furan                                               | 1               | 19.0156<br>18.6435        | 0                    | 20                        | 93               | 50<br>50         | 150               |
|                                                                    |                 | 23.0788                   | <u>0</u>             | 20                        | 115              | <b>50</b>        | 150               |
| <u>1,1,2-Trichloro-1,2,2-trifluoroethane</u><br>Methylene Chloride | 2 <u>1</u><br>1 | 19.8618                   | <u>o</u>             | <u>20</u><br>20           | 99               | <u>30</u><br>70  | 130               |
| Acrolein                                                           | <u> </u>        | 105.9885                  | 0                    | 100                       | 106              | <u>70</u><br>50  | 150               |
| Acrylonitrile                                                      | 1               | 20.7859                   | 0                    | 20                        | 104              | 50               | 150               |
| lodomethane                                                        | 1               | 11.4264                   | 0                    | 20                        | 57               | 50               | 150               |
| Acetone                                                            | 1               | 92.3286                   | <u>0</u>             | 100                       | 92               | 50               | 150               |
| Carbon Disulfide                                                   | <u>†</u>        | 20.1017                   | ŏ                    | 20                        | 1 <u>01</u>      | <u>50</u>        | 150               |
| t-Butyl Alcohol                                                    | 1               | 102.9656                  | <u>o</u><br>0        | 100                       | 103              | <del>50</del>    | 150               |
| n-Hexane                                                           | 1               | 23.7472                   | Ŏ                    | 20                        | 119              | 70               | 130               |
| Di-isopropyl-ether                                                 | 1               | 18.625                    | ŏ                    | 20                        | 93               | 70               | 130               |
| 1,1-Dichloroethene                                                 | 1               | 21.2018                   | <u>o</u>             | <u>20</u>                 | 106              | 70               | 130               |
| Methyl Acetate                                                     | 1               | 20.2661                   | <u>o</u>             | 20                        | 101              | <del>50</del>    | 150               |
| Methyl-t-butyl ether                                               | <u>1</u>        | 20.5601                   | Q                    | 20                        | 103              | <del>70</del>    | 130               |
| 1,1-Dichloroethane                                                 | <u>1</u>        | 18.6834                   | <u>o</u>             | 20                        | 93               | 70               | 130               |
| trans-1,2-Dichloroethene                                           | 1               | 21.2872                   | <u>0</u>             | 20                        | 106              | 70               | 130               |
| Ethyl-t-butyl ether                                                | 1               | 18.6347                   | ō                    | 20                        | 93               | 70               | 130               |
| cis-1,2-Dichloroethene                                             | 1               | 18.998                    | <u>0</u>             | <u>20</u>                 | <u>95</u>        | 70               | <u>130</u>        |
| Bromochloromethane                                                 | <u>1</u>        | 15.7933                   | <u></u>              | <u>20</u>                 | <del>79</del>    | 70               | 130               |
| 2,2-Dichloropropane                                                | 1               | 19.0159                   | ō                    | 20                        | 95               | 70               | 130               |
| Ethyl acetate                                                      | 1               | 16.6872                   | 0                    | 20                        | 83               | 50               | 150               |
| 1,4-Dioxane                                                        | 1               | 960.0303                  | <u>o</u>             | 1000                      | <u>96</u>        | <u>50</u>        | <u>150</u>        |
| 1,1-Dichloropropene                                                | 1               | 20.976                    | 0                    | 20                        | 105              | 70               | 130               |
| Chloroform                                                         | <u>1</u>        | <u>19.03</u>              | <u>0</u>             | <u>20</u>                 | <u>95</u>        | <u>70</u>        | <u>130</u>        |
| Cyclohexane                                                        | 1               | <u>21.9395</u>            | <u>0</u>             | <u>20</u>                 | <u>110</u>       | <u>70</u>        | <u>130</u>        |
| 1,2-Dichloroethane                                                 | 1               | <u>18.8434</u>            | <u>0</u>             | <u>20</u>                 | <u>94</u>        | <u>70</u>        | <u>130</u>        |
| <u>2-Butanone</u>                                                  | 1               | <u>16.1126</u>            | <u>0</u>             | <u>20</u>                 | <u>81</u>        | <u>50</u>        | <u>150</u>        |
| 1,1,1-Trichloroethane                                              | <u>1</u>        | <u> 19.7554</u>           | <u>0</u>             | <u>20</u>                 | <u>99</u>        | <u>70</u>        | <u>130</u>        |
| Carbon Tetrachloride                                               | 1               | <u> 19.9941</u>           | <u>0</u>             | <u>20</u>                 | <u>100</u>       | <u>50</u>        | <u>150</u>        |
| Vinyl Acetate                                                      | 1               | 17.8727                   | 0                    | 20                        | 89               | 50               | 150               |
| <u>Bromodichloromethane</u>                                        | 1               | <u> 18.0927</u>           | <u>0</u>             | <u>20</u>                 | <u>90</u>        | <u>70</u>        | <u>130</u>        |
| <u>Methylcyclohexane</u>                                           | 1               | <u>22.6063</u>            | <u>0</u>             | <u>20</u>                 | <u>113</u>       | <u>70</u>        | <u>130</u>        |
| Dibromomethane                                                     | 1               | 19.9681                   | 0                    | 20                        | 100              | 70               | 130               |
| 1,2-Dichloropropane                                                | 1               | <u>18.2835</u>            | Q                    | <u>20</u>                 | . <u>91</u>      | <u>70</u>        | 130               |
| <u>Trichloroethene</u>                                             | 1               | <u>22.7405</u>            | <u>0</u>             | <u>20</u>                 | <u>114</u>       | <u>70</u>        | 130               |
| Benzene                                                            | 1               | 20.0545                   | Ō                    | <u>20</u>                 | <u>100</u>       | <u>70</u>        | 130               |
| tert-Amyl methyl ether                                             | 1               | 18.8864                   | 0                    | 20                        | 94               | 70<br><b>7</b> 0 | 130               |
| lso-propylacetate                                                  | 1               | 15.9813                   | 0                    | 20                        | 80<br>76         | <b>7</b> 0       | 130               |
| Methyl methacrylate                                                | 1               | 15.2578                   | 0                    | 20                        | 76               | 70<br>70         | 130               |
| <u>Dibromochloromethane</u>                                        | 1               | <u>15.9792</u>            | <u>0</u>             | <u>20</u>                 | <u>80</u>        | <u>70</u>        | <u>130</u>        |
| 2-Chloroethylvinylether                                            | 1               | 11.7274                   | 0                    | 20                        | 59*              | 70<br><b>70</b>  | 130               |
| cis-1,3-Dichloropropene                                            | 1               | <u>16.6823</u>            | 0                    | <u>20</u>                 | <u>83</u>        | <u>70</u>        | <u>130</u><br>130 |
| trans-1,3-Dichloropropene Ethyl methacrylate                       | <u>1</u><br>1   | <u>15.4454</u><br>16.4354 | <u>0</u><br>0        | <u>20</u><br>20           | <u>77</u><br>82  | <u>70</u><br>70  | 130               |
|                                                                    |                 | 16.634                    | <u>0</u>             | 20<br>20                  | 82<br>83         | 70<br>70         | 130               |
| 1,1,2-Trichloroethane                                              | 1               |                           | <u>ō</u>             | <u>20</u><br>20           | <u>83</u><br>82  | <u>70</u><br>70  | 130<br>130        |
| 1,2-Dibromoethane                                                  | <u>1</u><br>1   | <b>16.3139</b><br>16.2677 | Ö                    | <u>20</u><br>20           | <u>82</u><br>81  | 70<br>70         | 130               |
| 1,3-Dichloropropane                                                |                 | 16.2677<br>16.3225        | <u>o</u>             | 20<br>20                  | 82               | <u>50</u>        | 150<br>150        |
| 4-Methyl-2-Pentanone                                               | <u>1</u><br>1   | 18.4292                   | V<br>Ā               | <u>20</u><br>20           | <u>92</u><br>92  | <u>50</u><br>50  | 150<br>150        |
| 2-Hexanone<br>Tetrachloroethene                                    | 1               | <u>10.4292</u><br>20.1103 | <u>0</u><br><u>0</u> | <u>20</u><br>20           | <u>92</u><br>101 | <u>50</u>        | 150<br>150        |
| <u>Tetrachloroethene</u><br>Toluene                                | 1               | 28.9603                   | <u>0</u>             | <u>20</u><br>20           | 101<br>145*      | <u>50</u><br>70  | 130<br>130        |
| 1,1,1,2-Tetrachloroethane                                          | 1               | 16.8215                   | 0                    | <u>20</u><br>20           | 84               | 70               | 130               |
| Chlorobenzene                                                      | 1               | 24.9235                   | <u>0</u>             | 20<br>20                  | 125              | 70<br>70         | 130               |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix      | : Methanol      |          | Units: mg/Kg | QC Ty         | QC Type: MBS |            |  |
|-----------------------------|-------------|-----------------|----------|--------------|---------------|--------------|------------|--|
|                             |             | Spike           | Sample   | Expected     |               | Lower        | Upper      |  |
| Analyte:                    | Col         | Conc            | Conc     | Conc         | Recovery      | Limit        | Limit      |  |
| n-Butyl acrylate            | 1           | 14.5593         | 0        | 20           | 73            | 70           | 130        |  |
| n-Amyl acetate              | 1           | 14.1871         | 0        | 20           | 71            | 70           | 130        |  |
| <u>Bromoform</u>            | <u>1</u>    | <u>14.7411</u>  | <u>o</u> | <u>20</u>    | <u>74</u>     | <u>70</u>    | <u>130</u> |  |
| <u>Ethylbenzene</u>         | <u>1</u>    | <u>17.0734</u>  | <u>0</u> | <u>20</u>    | <u>85</u>     | <u>70</u>    | <u>130</u> |  |
| 1,1,2,2-Tetrachioroethane   | <u>1</u>    | <u>15.1362</u>  | <u>o</u> | <u>20</u>    | <u>76</u>     | <u>70</u>    | <u>130</u> |  |
| Styrene                     |             | <u> 17.6336</u> | <u>0</u> | <u>20</u>    | <u>88</u>     | <u>70</u>    | <u>130</u> |  |
| m&p-Xylenes                 | 1<br>1      | <u>38.6373</u>  | <u>o</u> | <u>40</u>    | <u>97</u>     | <u>70</u>    | <u>130</u> |  |
| o-Xylene                    | <u>1</u>    | <u> 18.7732</u> | <u>0</u> | <u>20</u>    | <u>94</u>     | <u>70</u>    | <u>130</u> |  |
| trans-1,4-Dichloro-2-butene | 1           | 15.1007         | 0        | 20           | 76            | 50           | 150        |  |
| 1,3-Dichlorobenzene         | 1           | <u>16.5771</u>  | <u>0</u> | <u>20</u>    | <u>83</u>     | <u>70</u>    | <u>130</u> |  |
| 1,4-Dichlorobenzene         | <u>1</u>    | <u>16.867</u>   | <u>0</u> | <u>20</u>    | <u>84</u>     | <u>70</u>    | 130        |  |
| 1,2-Dichlorobenzene         | 1<br>1<br>1 | <u>16.4746</u>  | <u>0</u> | <u>20</u>    | <u>82</u>     | <u>70</u>    | <u>130</u> |  |
| Isopropylbenzene            | 1           | <u>18.1463</u>  | <u>o</u> | <u>20</u>    | <u>91</u>     | <u>70</u>    | <u>130</u> |  |
| Cyclohexanone               | 1           | 70.5548         | Ō        | 100          | 71            | 50           | 150        |  |
| Camphene                    | 1           | 18.0899         | 0        | 20           | 90            | 70           | 130        |  |
| 1,2,3-Trichloropropane      | 1           | 14.3667         | 0        | 20           | 72            | 70           | 130        |  |
| 2-Chlorotoluene             | 1           | 16.6559         | 0        | 20           | 83            | 70           | 130        |  |
| p-Ethyltoluene              | 1           | 18.1354         | 0        | 20           | 91            | 70           | 130        |  |
| 4-Chlorotoluene             | 1           | 17.1003         | 0        | 20           | 86            | 70           | 130        |  |
| n-Propylbenzene             | 1           | 17.337          | 0        | 20           | 87            | 70           | 130        |  |
| Bromobenzene                | 1           | 14.7775         | 0        | 20           | 74            | 70           | 130        |  |
| 1,3,5-Trimethylbenzene      | 1           | 17.1054         | 0        | 20           | 86            | 70           | 130        |  |
| Butyl methacrylate          | 1           | 15.1231         | 0        | 20           | 76            | 70           | 130        |  |
| t-Butylbenzene              | 1           | 18.4676         | 0        | 20           | 92            | 70           | 130        |  |
| 1,2,4-Trimethylbenzene      | 1           | 17.1971         | 0        | 20           | 86            | 70           | 130        |  |
| sec-Butylbenzene            | 1           | 18.0288         | 0        | 20           | 90            | 70           | 130        |  |
| 4-Isopropyltoluene          | 1           | 18.3372         | 0        | 20           | 92            | 70           | 130        |  |
| n-Butylbenzene              | 1           | 17.8484         | 0        | 20           | 89            | 70           | 130        |  |
| p-Diethylbenzene            | 1           | 18.664          | 0        | 20           | 93            | 70           | 130        |  |
| 1,2,4,5-Tetramethylbenzene  | 1           | 15.4527         | 0        | 20           | 77            | 70           | 130        |  |
| 1,2-Dibromo-3-Chloropropane | 1           | 14.3333         | <u>0</u> | 20           | <u>72</u>     | <u>50</u>    | 150        |  |
| Camphor                     | 1           | 136.7144        | ō        | 200          | <del>68</del> | 20           | 150        |  |
| Hexachlorobutadiene         | 1           | 17.7447         | 0        | 20           | 89            | 50           | 150        |  |
| 1,2,4-Trichlorobenzene      | <u>1</u>    | 17.4033         | <u>0</u> | 20           | 87            | 70           | 130        |  |
| 1,2,3-Trichlorobenzene      | 1           | 16.6546         | Ō        | 20           | 83            | 70           | 130        |  |
| Naphthalene                 | 1           | 17.5962         | Ŏ        | 20           | 88            | 50           | 150        |  |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M140103.D Non Spike(If applicable): 1M140107.D AD19539-009(MS) AD19539-009

10/5/2020 9:00:00 PM 10/5/2020 10:23:00 PM

Inst Blank(If applicable):

| Method: 8260D                                 | Matrix        | c: Methanol                        |                    | Units: mg/k            | (g QC Typ        | e: MS           |                   |
|-----------------------------------------------|---------------|------------------------------------|--------------------|------------------------|------------------|-----------------|-------------------|
|                                               |               | Spike                              | Sample             | Expected               |                  | Lower           | Upper             |
| Analyte:                                      | Col           | Conc                               | Conc               | Conc                   | Recovery         | Limit           | Limit             |
| Chlorodifluoromethane                         | 1             | 17.0446                            | 0                  | 20                     | 85               | 50              | 150               |
| <u>Dichlorodifluoromethane</u>                | 1             | <u>27.3423</u>                     | <u>0</u>           | <u>20</u>              | <u>137</u>       | <u>50</u>       | <u>150</u>        |
| Chloromethane                                 | 1             | 9.817                              | <u>0</u>           | <u>20</u>              | <u>49*</u>       | <u>50</u>       | <u>150</u>        |
| Bromomethane                                  | 1             | <u>17.3567</u><br>24.563           | <u>0</u><br>1.3708 | <u>20</u>              | <u>87</u><br>116 | <u>50</u>       | <u>150</u><br>150 |
| Vinyl Chloride<br>Chloroethane                | 1 1           | <u>24.563</u><br>18.2447           |                    | <u>20</u><br>20        | 91               | <u>50</u><br>50 | 150<br>150        |
| Trichlorofluoromethane                        | 1 1           | 24.3814                            | <u>0</u><br>0      | <u>20</u><br>20        | 122              | <u>50</u>       | 150<br>150        |
| Ethyl ether                                   | 1             | 19.9952                            | 0                  | <u>20</u><br>20        | 100              | <del>50</del>   | 150               |
| Furan                                         | i             | 20.0125                            | ŏ                  | 20                     | 100              | 50              | 150               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane         | 1             | 24.3855                            | <u>0</u>           | <u>20</u>              | 122              | <u>50</u>       | 150               |
| Methylene Chloride                            | 1             | 20.7622                            | Q                  | 20                     | 104              | 70              | 130               |
| Acrolein                                      | ī             | 109.7816                           | ō                  | 100                    | 110              | 50              | 150               |
| Acrylonitrile                                 | 1             | 21.9278                            | 0                  | 20                     | 110              | 50              | 150               |
| lodomethane                                   | 1             | 15.2291                            | 0                  | 20                     | 76               | 50              | 150               |
| Acetone                                       | <u>1</u>      | <u>98.4047</u>                     | <u>6.166</u>       | <u>100</u>             | <u>92</u>        | <u>50</u>       | <u>150</u>        |
| Carbon Disulfide                              | 1             | <u>21.1867</u>                     | <u>0</u>           | <u>20</u>              | <u>106</u>       | <u>50</u>       | <u>150</u>        |
| t-Butyl Alcohol                               | 1             | 26.7088                            | 0                  | 100                    | 27*              | 50              | 150               |
| n-Hexane                                      | 1             | 24.1543                            | 0                  | 20                     | 121              | 70              | 130               |
| Di-isopropyl-ether                            | 1             | 19.6804                            | 0                  | 20                     | 98               | 70<br>70        | 130               |
| 1,1-Dichloroethene                            | 1             | <u>22.165</u>                      | <u>0</u>           | <u>20</u>              | <u>111</u>       | <u>70</u>       | 130<br>150        |
| Methyl Acetate                                | 1             | 20.5699<br>21.9914                 | 0                  | <u>20</u>              | <u>103</u>       | <u>50</u>       | <u>150</u><br>130 |
| Methyl-t-butyl ether 1,1-Dichloroethane       | <u>1</u><br>1 | <u>21.8914</u><br>19.6348          | <u>0</u>           | <u>20</u><br>20        | <u>109</u><br>98 | <u>70</u><br>70 | 130<br>130        |
| trans-1,2-Dichloroethene                      | 1             | <u> 13.0348</u><br><u> 22.3901</u> | <u>0</u>           | <u>20</u><br>20        | 112              | <u>70</u>       | 130               |
| Ethyl-t-butyl ether                           | 1             | 19.6807                            | Ŏ                  | <del>20</del><br>20    | 98               | <del>70</del>   | 130               |
| cis-1,2-Dichloroethene                        | 1             | 20.344                             | <u>o</u>           | <u>20</u>              | <u>102</u>       | 70              | 130               |
| Bromochloromethane                            | 1             | 19.815                             | Ž                  | 20                     | 99               | 70              | 130               |
| 2,2-Dichloropropane                           | 1             | 20.8605                            | ō                  | 20                     | 104              | 70              | 130               |
| Ethyl acetate                                 | 1             | 18.7426                            | 0                  | 20                     | 94               | 50              | 150               |
| 1,4-Dioxane                                   | 1             | 1025.066                           | <u>0</u>           | <u>1000</u>            | <u>103</u>       | <u>50</u>       | <u>150</u>        |
| 1,1-Dichloropropene                           | 1             | 22.5228                            | 0                  | 20                     | 113              | 70              | 130               |
| <u>Chloroform</u>                             | <u>1</u>      | <u>20.0631</u>                     | <u>0</u>           | <u>20</u>              | <u>100</u>       | <u>70</u>       | <u>130</u>        |
| Cyclohexane                                   | 1             | <u>22.7272</u>                     | Q                  | <u>20</u>              | <u>114</u>       | <u>70</u>       | <u>130</u>        |
| 1,2-Dichloroethane                            | 1             | 20.2558                            | <u>0</u>           | <u>20</u>              | <u>101</u>       | <u>70</u>       | <u>130</u>        |
| 2-Butanone                                    | 1             | <u>18.1796</u>                     | <u>0</u>           | <u>20</u>              | <u>91</u>        | <u>50</u>       | <u>150</u>        |
| 1,1,1-Trichloroethane                         | 1             | 21.0169                            | 0                  | <u>20</u>              | <u>105</u>       | <u>70</u>       | 130<br>150        |
| Carbon Tetrachloride Vinyl Acetate            | <u>1</u><br>1 | <b>20.9965</b><br>19.5368          | <u>o</u><br>0      | <u><b>20</b></u><br>20 | <u>105</u><br>98 | <u>50</u><br>50 | <u>150</u><br>150 |
| Bromodichloromethane                          | 1             | 19.5500<br>19.1514                 | <u>0</u>           | <u>20</u>              | 96               | <u>70</u>       | 130<br>130        |
| Methylcyclohexane                             | 1             | 23.3254                            | <u>o</u>           | <u>20</u><br>20        | <u> 117</u>      | <u>70</u>       | 130<br>130        |
| Dibromomethane                                | 1             | 20.7806                            | Ŏ                  | <u>20</u><br>20        | 104              | <del>70</del>   | 130               |
| 1,2-Dichloropropane                           | 1             | 18.6309                            | <u>0</u>           | <u>20</u>              | 93               | <u>70</u>       | 130               |
| Trichloroethene                               | <u> </u>      | 21.6674                            | Q                  | <u>20</u>              | 108              | <u>70</u>       | 130               |
| Benzene                                       | 1             | 21.3074                            | <u>o</u>           | <u>20</u>              | 107              | 70              | 130               |
| tert-Amyl methyl ether                        | 1             | 19.9476                            | 0                  | 20                     | 100              | 70              | 130               |
| Iso-propylacetate                             | 1             | 17.1608                            | 0                  | 20                     | 86               | 70              | 130               |
| Methyl methacrylate                           | 1             | 16.3632                            | 0                  | 20                     | 82               | 70              | 130               |
| Dibromochloromethane                          | 1             | <u>17.1882</u>                     | <u>0</u>           | <u>20</u>              | <u>86</u>        | <u>70</u>       | <u>130</u>        |
| 2-Chloroethylvinylether                       | 1             | 12.711                             | 0                  | 20                     | 64*              | 70              | 130               |
| cis-1,3-Dichloropropene                       | 1             | <u>17.7671</u>                     | 0                  | <u>20</u>              | <u>89</u>        | <u>70</u>       | <u>130</u>        |
| trans-1,3-Dichloropropene                     | 1             | 16.8451                            | <u>0</u><br>0      | <u><b>20</b></u><br>20 | <b>84</b><br>87  | <u>70</u>       | 130               |
| Ethyl methacrylate 1,1,2-Trichloroethane      | 1             | 17.3314                            |                    |                        |                  | 70<br><b>70</b> | 130<br>130        |
| 1,1,2-1ricnioroethane 1,2-Dibromoethane       | <u>1</u><br>1 | <u>16.8386</u><br><u>17.0611</u>   | <u>0</u>           | <u>20</u><br>20        | <u>84</u><br>85  | <u>70</u><br>70 | <u>130</u><br>130 |
| 1,3-Dichloropropane                           | 1             | 17.3451                            | 0                  | <u>20</u><br>20        | 87               | 70<br>70        | 130               |
| 4-Methyl-2-Pentanone                          | 1             | 17.0654                            | <u>0</u>           | <u>20</u>              | 85               | <u>50</u>       | 150<br>150        |
| 2-Hexanone                                    | <u> </u>      | 16.6741                            | <u>o</u>           | <u>20</u>              | <u>83</u>        | <u>50</u>       | 150<br>150        |
| Tetrachloroethene                             | <u> </u>      | 21.0609                            | <u>o</u>           | <u>20</u>              | <u>105</u>       | <u>50</u>       | <u>150</u>        |
| Toluene                                       | 1             | 20.8138                            | 1.3634             | <u>20</u>              | 97               | <del>70</del>   | 130               |
| 1,1,1,2-Tetrachloroethane                     | 1             | 17.749                             | 0                  | 20                     | <del>89</del>    | 70              | 130               |
| Chlorobenzene                                 | 1             | 22.1236                            | 2.6962             | <u>20</u>              | 97               | 70              | 130               |
| * - Indicates outside of limits # - Indicates | licates       | outside of                         | standard lin       | nits but within        | method excee     |                 |                   |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix   | : Methanol      |               | Units: mg/Kg | QC Ty     | e: MS         |            |  |
|-----------------------------|----------|-----------------|---------------|--------------|-----------|---------------|------------|--|
|                             |          | Spike           | Sample        | Expected     | _         | Lower         | Uppe       |  |
| Analyte:                    | Col      | Conc            | Conc          | Conc         | Recovery  | Limit         | Limit      |  |
| n-Butyl acrylate            | 1        | 15.7016         | 0             | 20           | 79        | 70            | 130        |  |
| n-Amyl acetate              | 1        | 16.0297         | 0             | 20           | 80        | 70            | 130        |  |
| <u>Bromoform</u>            | <u>1</u> | 15.7981         | Q             | <u>20</u>    | <u>79</u> | <u>70</u>     | <u>130</u> |  |
| Ethylbenzene                | <u>1</u> | <u>17.5954</u>  | <u>o</u>      | <u>20</u>    | <u>88</u> | <u>70</u>     | 130        |  |
| 1,1,2,2-Tetrachloroethane   | 1        | 14.9922         | <u>o</u>      | <u>20</u>    | <u>75</u> | <u>70</u>     | <u>130</u> |  |
| Styrene                     | 1        | <u>19.342</u>   | <u>o</u>      | <u>20</u>    | <u>97</u> | <u>70</u>     | <u>130</u> |  |
| m&p-Xylenes                 | 1        | <u>40.4444</u>  | <u>2.0131</u> | <u>40</u>    | <u>96</u> | <u>70</u>     | <u>130</u> |  |
| o-Xylene                    | <u>1</u> | <u> 19.3593</u> | <u>0</u>      | <u>20</u>    | <u>97</u> | <u>70</u>     | <u>130</u> |  |
| trans-1,4-Dichloro-2-butene | 1        | 16.5796         | 0             | 20           | 83        | 50            | 150        |  |
| 1,3-Dichlorobenzene         | 1        | <u>17.8241</u>  | <u>0</u>      | <u>20</u>    | <u>89</u> | <u>70</u>     | <u>130</u> |  |
| 1,4-Dichlorobenzene         | <u>1</u> | <u>17.8726</u>  | <u>o</u>      | <u>20</u>    | 89        | <u>70</u>     | <u>130</u> |  |
| 1,2-Dichlorobenzene         | 1<br>1   | 17.4497         | <u>o</u>      | 20           | 87        | <u>70</u>     | 130        |  |
| Isopropylbenzene            | <u>1</u> | 19.672          | Q             | 20           | <u>98</u> | <u>70</u>     | 130        |  |
| Cyclohexanone               | 1        | 87.0869         | Ö             | 100          | 87        | 50            | 150        |  |
| Camphene                    | 1        | 19.8532         | 0             | 20           | 99        | 70            | 130        |  |
| 1,2,3-Trichloropropane      | 1        | 15.4687         | 0             | 20           | 77        | 70            | 130        |  |
| 2-Chlorotoluene             | 1        | 18.09           | 0             | 20           | 90        | 70            | 130        |  |
| p-Ethyltoluene              | 1        | 18.75           | 0             | 20           | 94        | 70            | 130        |  |
| 4-Chlorotoluene             | 1        | 17.8293         | 0             | 20           | 89        | 70            | 130        |  |
| n-Propylbenzene             | 1        | 18.6487         | 0             | 20           | 93        | 70            | 130        |  |
| Bromobenzene                | 1        | 17.7563         | 0             | 20           | 89        | 70            | 130        |  |
| 1,3,5-Trimethylbenzene      | 1        | 18.9108         | 0             | 20           | 95        | 70            | 130        |  |
| Butyl methacrylate          | 1        | 16.7621         | 0             | 20           | 84        | 70            | 130        |  |
| t-Butylbenzene              | 1        | 19.534          | 0             | 20           | 98        | 70            | 130        |  |
| 1,2,4-Trimethylbenzene      | 1        | 18.26           | 0             | 20           | 91        | 70            | 130        |  |
| sec-Butylbenzene            | 1        | 19.251          | 0             | 20           | 96        | 70            | 130        |  |
| 4-Isopropyltoluene          | 1        | 19.4968         | 0             | 20           | 97        | 70            | 130        |  |
| n-Butylbenzene              | 1        | 18.6305         | 0             | 20           | 93        | 70            | 130        |  |
| p-Diethylbenzene            | 1        | 19.407          | 0             | 20           | 97        | 70            | 130        |  |
| 1,2,4,5-Tetramethylbenzene  | 1        | 15.424          | 0             | 20           | 77        | 70            | 130        |  |
| 1,2-Dibromo-3-Chloropropane | 1        | 15.311          | Q             | 20           | <u>77</u> | <u>50</u>     | 150        |  |
| Camphor                     | 1        | 133.6388        | õ             | 200          | 67        | 20            | 150        |  |
| Hexachlorobutadiene         | 1        | 20.0651         | 1.001         | 20           | 95        | 50            | 150        |  |
| 1,2,4-Trichlorobenzene      | 1        | 18.5272         | 0             | 20           | 93        | 70            | 130        |  |
| 1,2,3-Trichlorobenzene      | <u>1</u> | 17.9497         | 1.1368        | 20           | <u>84</u> | <del>70</del> | 130        |  |
| Naphthalene                 | 1        | 17.996          | 0             | 20           | 90        | 50            | 150        |  |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M140104.D Non Spike(If applicable): 1M140107.D AD19539-009(MSD) AD19539-009

10/5/2020 9:21:00 PM 10/5/2020 10:23:00 PM

Inst Blank(If applicable):

| Method: 8260D                                            | Matrix          | x: Methanol                |                     | Units: mg/K       | g QC Typ          | e: MSD                 |                   |
|----------------------------------------------------------|-----------------|----------------------------|---------------------|-------------------|-------------------|------------------------|-------------------|
| Analyte:                                                 | Col             | Spike<br>Conc              | Sample<br>Conc      | Expected<br>Conc  | Recovery          | Lower<br>Limit         | Upper<br>Limit    |
| Chlorodifluoromethane                                    | 1               | 15.5541                    | 0                   | 20                | 78                | 50                     | 150               |
| <b>Dichlorodifluoromethane</b>                           | <u>1</u>        | <u>25.0965</u>             | <u>o</u>            | <u>20</u>         | <u>125</u>        | <u>50</u>              | <u>150</u>        |
| <u>Chloromethane</u>                                     | <u>1</u>        | <u>18.1329</u>             | <u>0</u>            | <u>20</u>         | <u>91</u>         | <u>50</u>              | <u>150</u>        |
| <u>Bromomethane</u>                                      | 1               | <u>15.745</u>              | <u>0</u>            | <u>20</u>         | <u>79</u>         | <u>50</u>              | <u>150</u>        |
| Vinyl Chloride                                           | 1               | <u>21.587</u>              | <u>1.3708</u>       | <u>20</u>         | <u>101</u>        | <u>50</u>              | <u>150</u>        |
| Chloroethane                                             | 1               | <u>15.3094</u>             | Q                   | <u>20</u>         | 77                | <u>50</u>              | <u>150</u>        |
| Trichlorofluoromethane                                   | 1               | <u>21.8311</u>             | <u>0</u>            | <u>20</u>         | <u>109</u>        | <u>50</u>              | <u>150</u>        |
| Ethyl ether                                              | 1               | 18.2903<br>18.0934         | 0<br>0              | 20<br>20          | 91<br>90          | 50<br>50               | 150<br>150        |
| Furan                                                    |                 |                            |                     |                   |                   |                        |                   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane Methylene Chloride | ₽ <u>1</u><br>1 | <u>21.4302</u><br>18.9979  | <u>o</u><br>o       | <u>20</u><br>20   | <u>107</u><br>95  | <u>50</u><br>70        | <u>150</u><br>130 |
| Acrolein                                                 | 1               | 98.1352                    | 0                   | <u>20</u><br>100  | 98                | <u>70</u><br>50        | 150<br>150        |
| Acrylonitrile                                            | i               | 19.2715                    | Ö                   | 20                | 96                | 50                     | 150               |
| Iodomethane                                              | i               | 15.176                     | Ö                   | 20                | 76                | 50                     | 150               |
| Acetone                                                  | 1               | 89.5003                    | <u>6.166</u>        | 100               | <u>83</u>         | 50                     | <u>150</u>        |
| Carbon Disulfide                                         | <u>.</u>        | 18.2502                    | <u>0.100</u>        | 20                | 9 <u>1</u>        | <u>50</u>              | 150               |
| t-Butyl Alcohol                                          | <u>†</u>        | 29.8954                    | ŏ                   | 100               | <u>31</u> *       | <u>50</u>              | 150               |
| n-Hexane                                                 | 1               | 22.7126                    | Ŏ                   | 20                | 114               | 70                     | 130               |
| Di-isopropyl-ether                                       | 1               | 18.0311                    | ŏ                   | 20                | 90                | 70                     | 130               |
| 1,1-Dichloroethene                                       | <u>1</u>        | 19.6599                    | <u>0</u>            | 20                | 98                | 70                     | 130               |
| Methyl Acetate                                           | 1               | 18.3307                    | Q                   | 20                | 92                | 50                     | 150               |
| Methyl-t-butyl ether                                     | 1               | 20.1591                    | <u>ō</u>            | <del>20</del>     | <u>101</u>        | 70                     | 130               |
| 1,1-Dichloroethane                                       | <u>1</u>        | 17.4942                    | <u> </u>            | 20                | 87                | <del>70</del>          | 130               |
| trans-1,2-Dichloroethene                                 | 1               | 19.7259                    | <u> </u>            | <u>20</u>         | 99                | 70                     | 130               |
| Ethyl-t-butyl ether                                      | 1               | 18.5301                    | 0                   | 20                | 93                | 70                     | 130               |
| cis-1,2-Dichloroethene                                   | <u>1</u>        | <u>18.7572</u>             | <u>o</u>            | <u>20</u>         | <u>94</u>         | <u>70</u>              | <u>130</u>        |
| <b>Bromochloromethane</b>                                | 1               | <u>17.7758</u>             | <u>0</u>            | <u>20</u>         | <u>89</u>         | <u>70</u>              | <u>130</u>        |
| 2,2-Dichloropropane                                      | 1               | 18.9267                    | 0                   | 20                | 95                | 70                     | 130               |
| Ethyl acetate                                            | 1               | 15.0463                    | 0                   | 20                | 75                | 50                     | 150               |
| 1,4-Dioxane 1,1-Dichloropropene                          | <u>1</u><br>1   | <b>925.5415</b><br>20.1857 | <u>o</u><br>o       | <u>1000</u><br>20 | <b>93</b><br>101  | <u><b>50</b></u><br>70 | <u>150</u><br>130 |
| Chloroform                                               | 1               | 18.1569                    | <u>0</u>            | 20                | <u>91</u>         | <u>70</u>              | <u>130</u>        |
| Cyclohexane                                              | 1               | 21.1019                    | <u>0</u>            | 20                | 106               | 70                     | 130               |
| 1,2-Dichloroethane                                       | 1               | 18.7388                    | <u>o</u>            | 20                | 94                | <u>70</u>              | 130               |
| 2-Butanone                                               | 1               | <u>17.0136</u>             | <u>0</u>            | <u>20</u>         | <u>85</u>         | <u>50</u>              | <u>150</u>        |
| 1,1,1-Trichloroethane                                    | <u>1</u>        | <u>19.1049</u>             | <u>o</u>            | <u>20</u>         | <u>96</u>         | <u>70</u>              | <u>130</u>        |
| Carbon Tetrachloride                                     | 1               | 19.1461                    | <u>0</u>            | <u>20</u>         | <u>96</u>         | <u>50</u>              | <u>150</u>        |
| Vinyl Acetate                                            | 1               | 17.6768                    | 0                   | 20                | 88                | 50                     | 150               |
| <b>Bromodichloromethane</b>                              | 1               | <u> 17.3236</u>            | Ō                   | <u>20</u>         | <u>87</u>         | <u>70</u>              | <u>130</u>        |
| <u>Methylcyclohexane</u>                                 | 1               | <u>21.489</u>              | <u>0</u>            | <u>20</u>         | <u>107</u>        | <u>70</u>              | <u>130</u>        |
| Dibromomethane                                           | 1               | 18.9994                    | 0                   | 20                | 95                | 70                     | 130               |
| 1,2-Dichloropropane                                      | 1               | 16.9427                    | <u>0</u>            | <u>20</u>         | <u>85</u>         | <u>70</u>              | <u>130</u>        |
| Trichloroethene                                          | 1               | <u>18.9604</u>             | <u>Q</u>            | <u>20</u>         | <u>95</u>         | <u>70</u>              | <u>130</u>        |
| Benzene                                                  | 1               | <u>18.2889</u>             | <u>0</u>            | <u>20</u>         | <u>91</u>         | <u>70</u>              | <u>130</u>        |
| tert-Amyl methyl ether                                   | 1               | 18.0118                    | 0                   | 20                | 90                | 70                     | 130               |
| Iso-propylacetate                                        | 1               | 14.8621                    | 0                   | 20                | 74<br>60 *        | 70<br>70               | 130               |
| Methyl methacrylate                                      | 1               | 13.8615                    | 0                   | 20                | 69 *              | 70<br>70               | 130               |
| Dibromochloromethane                                     | <u>1</u><br>1   | <u>15.7601</u><br>11.4694  | <u>0</u>            | <u>20</u>         | <u>79</u><br>57 * | <u>70</u>              | 130<br>130        |
| 2-Chloroethylvinylether                                  |                 |                            | 0                   | 20                |                   | 70<br><b>70</b>        | 130<br><b>130</b> |
| cis-1,3-Dichloropropene<br>trans-1,3-Dichloropropene     | <u>1</u><br>1   | <u>16.3396</u><br>14.3779  | <u>0</u>            | <u>20</u><br>20   | <u>82</u><br>72   | <u>70</u><br>70        | 130<br>130        |
| Ethyl methacrylate                                       | 1               | 15.5653                    | 0                   | <u>20</u><br>20   | <u>72</u><br>78   | 70<br>70               | 130<br>130        |
| 1.1.2-Trichloroethane                                    | <u>1</u>        | 15.8109                    | <u>0</u>            | <u>20</u>         | 79                | 70                     | 130<br>130        |
| 1,2-Dibromoethane                                        | 1               | 15.5877                    | <u>o</u>            | <u>20</u><br>20   | 7 <u>9</u><br>78  | <u>70</u><br>70        | 130<br>130        |
| 1,3-Dichloropropane                                      | 1               | 15.6312                    | Ö                   | <u>20</u><br>20   | 78                | <del>70</del>          | 130               |
| 4-Methyl-2-Pentanone                                     | <u>i</u>        | 15.2624                    | <u>0</u>            | <u>20</u>         | <u>76</u>         | <u>50</u>              | <u>150</u>        |
| 2-Hexanone                                               | <u>†</u>        | 15.4623                    | <u>ŏ</u>            | <u>20</u>         | <del>77</del>     | <u>50</u>              | <u>150</u>        |
| Tetrachloroethene                                        | 1 1             | 18.7395                    | <u>o</u>            | <u>20</u>         | 9 <u>4</u>        | <u>50</u>              | 150<br>150        |
| Toluene                                                  | 1               | 18.2555                    | 1.3 <del>6</del> 34 | <u>20</u>         | <u>84</u>         | <del>20</del><br>70    | 130               |
|                                                          | 1               | 16.0842                    | 0                   | 20                | 80                | 70                     | 130               |
| 1,1,1,2-Tetrachloroethane                                | •               |                            | •                   | 20                | <u>84</u>         | 70                     | 130               |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix        | :: Methanol   |                | Units: mg/Kg QC Type: M |                 |                |                |
|-----------------------------|---------------|---------------|----------------|-------------------------|-----------------|----------------|----------------|
| Analyte:                    | Col           | Spike<br>Conc | Sample<br>Conc | Expected<br>Conc        | Recovery        | Lower<br>Limit | Upper<br>Limit |
| n-Butyl acrylate            | 1             | 13.8866       | 0              | 20                      | 69*             | 70             | 130            |
| n-Amyl acetate              | 1             | 13.6134       | 0              | 20                      | 68*             | 70             | 130            |
| Bromoform                   | <u>1</u>      | 13.3909       | <u>o</u>       | <u>20</u>               | <u>67 *</u>     | <u>70</u>      | <u>130</u>     |
| Ethylbenzene                | $\bar{1}$     | 16.6415       | <u>o</u>       | 20                      | 83              | 70             | 130            |
| 1,1,2,2-Tetrachloroethane   |               | 13.4206       | <u> </u>       | 20                      | <del>67</del> * | <del>70</del>  | 130            |
| Styrene                     | <u>1</u><br>1 | 16.9986       | 0              | 20                      | 85              | 70             | 130            |
| m&p-Xylenes                 | <u>1</u>      | 35.8244       | 2.0131         | 40                      | <u>85</u>       | 70             | 130            |
| o-Xylene                    | <u>1</u>      | 17.3843       | <u>o</u>       | 20                      | 87              | 70             | 130            |
| trans-1,4-Dichloro-2-butene | 1             | 14.7522       | ō              | 20                      | <del>74</del>   | 50             | 150            |
| 1,3-Dichlorobenzene         | <u>1</u>      | 16.3676       | <u>o</u>       | <u>20</u>               | 82              | 70             | 130            |
| 1,4-Dichlorobenzene         | <u>1</u>      | 16.178        | <u></u>        | 20                      | <u>81</u>       | <del>70</del>  | 130            |
| 1,2-Dichlorobenzene         | 1<br>1<br>1   | 15.5109       | <u>0</u>       | 20                      | <del>78</del>   | <del>70</del>  | 130            |
| Isopropylbenzene            | $\bar{1}$     | 17.6838       | Q              | 20                      | 88              | 70             | 130            |
| Cyclohexanone               | <u>1</u>      | 71.8118       | ō              | 100                     | 72              | 50             | 150            |
| Camphene                    | 1             | 18.0605       | 0              | 20                      | 90              | 70             | 130            |
| 1,2,3-Trichloropropane      | 1             | 13.5202       | 0              | 20                      | 68*             | 70             | 130            |
| 2-Chlorotoluene             | 1             | 16.1537       | 0              | 20                      | 81              | 70             | 130            |
| p-Ethyltoluene              | 1             | 17.5466       | 0              | 20                      | 88              | 70             | 130            |
| 4-Chlorotoluene             | 1             | 16.1628       | 0              | 20                      | 81              | 70             | 130            |
| n-Propylbenzene             | 1             | 16.8251       | 0              | 20                      | 84              | 70             | 130            |
| Bromobenzene                | 1             | 15.8112       | 0              | 20                      | 79              | 70             | 130            |
| 1,3,5-Trimethylbenzene      | 1             | 16.5519       | 0              | 20                      | 83              | 70             | 130            |
| Butyl methacrylate          | 1             | 14.8191       | 0              | 20                      | 74              | 70             | 130            |
| t-Butylbenzene              | 1             | 17.4904       | 0              | 20                      | 87              | 70             | 130            |
| 1,2,4-Trimethylbenzene      | 1             | 16.504        | 0              | 20                      | 83              | 70             | 130            |
| sec-Butylbenzene            | 1             | 17.3719       | 0              | 20                      | 87              | 70             | 130            |
| 4-Isopropyltoluene          | 1             | 17.5475       | 0              | 20                      | 88              | 70             | 130            |
| n-Butylbenzene              | 1             | 16.8163       | 0              | 20                      | 84              | 70             | 130            |
| p-Diethylbenzene            | 1             | 17.442        | 0              | 20                      | 87              | 70             | 130            |
| 1,2,4,5-Tetramethylbenzene  | 1             | 13.7466       | 0              | 20                      | 69*             | 70             | 130            |
| 1,2-Dibromo-3-Chloropropane | 1             | 12.8256       | <u>0</u>       | 20                      | 64              | 50             | 150            |
| Camphor                     | 1             | 115.0728      | ō              | 200                     | 58              | 20             | 150            |
| Hexachlorobutadiene         | 1             | 17.1752       | 1.001          | 20                      | 81              | 50             | 150            |
| 1,2,4-Trichlorobenzene      | 1             | 16.8476       | Q              | <u>20</u>               | <u>84</u>       | 70             | 130            |
| 1,2,3-Trichlorobenzene      | <u>1</u>      | 16.3336       | 1.1368         | <u>20</u>               | <del>76</del>   | 70             | 130            |
| Naphthalene                 | 1             | 15.781        | 0              | <del>20</del>           | <del>79</del>   | 50             | 150            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

#### Form3 **RPD Data Laboratory Limits**

QC Batch: MBS89426

Data File

Sample ID:

AD19539-009(MSD)

Analysis Date

10/5/2020 9:21:00 PM

Duplicate(If applicable): 1M140103.D

AD19539-009(MS)

10/5/2020 9:00:00 PM

Inst Blank(If applicable):

Method: 8260D Matrix: Methanol

Spike or Dup: 1M140104.D

Units: mg/Kg

QC Type: MSD

| . :<br>-                                  |                  |                                  |                           |                  |                     |
|-------------------------------------------|------------------|----------------------------------|---------------------------|------------------|---------------------|
| Analyte:                                  | Column           | Dup/MSD/MBSD<br>Conc             | Sample/MS/MBS<br>Conc     | RPD              | Limit               |
| Chlorodifluoromethane                     | 1                | 15.5541                          | 17.0446                   | 9.1              | 30                  |
| Dichlorodifluoromethane                   | 1                | 25.0965                          | 27.3423                   | 8.6              | 30                  |
| Chloromethane                             | <u> </u>         | <u>18.1329</u>                   | 9.817                     | <u>60</u> *      | <u>30</u>           |
| Bromomethane                              |                  | 15.745                           | 17.3567                   | 9.7              | <u>30</u>           |
| Vinyl Chloride                            | 1<br>1<br>1      | 21.587                           | 24.563                    | 13               | <u>40</u>           |
| Chloroethane                              | 1                | 15.3094                          | 18.2447                   | 17               | <u>30</u>           |
| Trichlorofluoromethane                    | <u>1</u>         | 21.8311                          | 24.3814                   | 11               | <del>30</del>       |
| Ethyl ether                               | ī                | 18.2903                          | 19.9952                   | 8.9              | 30                  |
| Furan                                     | 1                | 18.0934                          | 20.0125                   | 10               | 30                  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane     | 1                | 21.4302                          | 24.3855                   | <u>13</u>        | <u>30</u>           |
| Methylene Chloride                        | <u>1</u>         | 18.9979                          | 20.7622                   | 8.9              | <u>30</u>           |
| Acrolein                                  | 1                | 98.1352                          | 109.7816                  | 11               | 30                  |
| Acrylonitrile                             | 1                | 19.2715                          | 21.9278                   | 13               | 30                  |
| lodomethane                               | 1                | 15.176                           | 15.2291                   | 0.35             | 30                  |
| Acetone                                   | <u>1</u>         | <u>89.5003</u>                   | <u>98.4047</u>            | <u>9.5</u>       | <u>30</u>           |
| Carbon Disulfide                          | <u>1</u>         | <u>18.2502</u>                   | <u>21.1867</u>            | <u>15</u>        | <u>30</u>           |
| t-Butyl Alcohol                           | 1                | 29.8954                          | 26.7088                   | 11               | 30                  |
| n-Hexane                                  | 1                | 22.7126                          | 24.1543                   | 6.2              | 30                  |
| Di-isopropyl-ether                        | 1                | 18.0311                          | 19.6804                   | 8.7              | 30                  |
| 1,1-Dichloroethene                        | <u>1</u>         | <u> 19.6599</u>                  | <u>22.165</u>             | <u>12</u>        | <u>40</u>           |
| Methyl Acetate                            | <u>1</u>         | <u>18.3307</u>                   | <u>20.5699</u>            | <u>12</u>        | <u>30</u>           |
| Methyl-t-butyl ether                      | <u>1</u>         | <u>20.1591</u>                   | <u>21.8914</u>            | <u>8.2</u>       | <u>30</u>           |
| 1,1-Dichloroethane                        | <u>1</u>         | <u>17.4942</u>                   | <u>19.6348</u>            | <u>12</u>        | <u>40</u>           |
| trans-1,2-Dichloroethene                  | <u>1</u>         | <u>19.7259</u>                   | <u>22.3901</u>            | <u>13</u>        | <u>30</u>           |
| Ethyl-t-butyl ether                       | 1                | 18.5301                          | 19.6807                   | 6                | 30                  |
| cis-1,2-Dichloroethene                    | 1                | <u>18.7572</u>                   | <u>20.344</u>             | <u>8.1</u>       | <u>30</u>           |
| <u>Bromochloromethane</u>                 | 1                | <u>17.7758</u>                   | <u>19.815</u>             | <u>11</u>        | <u>30</u>           |
| 2,2-Dichloropropane                       | 1                | 18.9267                          | 20.8605                   | 9.7              | 30                  |
| Ethyl acetate                             | 1                | 15.0463                          | 18.7426                   | 22*              | 20                  |
| 1,4-Dioxane                               | 1                | <u>925.5415</u>                  | <u>1025.066</u>           | <u>10</u>        | <u>30</u>           |
| 1,1-Dichloropropene                       | 1                | 20.1857                          | 22.5228                   | 11               | 30                  |
| Chloroform                                | 1                | <u>18.1569</u>                   | <u>20.0631</u>            | <u>10</u>        | <u>40</u>           |
| Cyclohexane                               | 1                | <u>21.1019</u>                   | <u>22.7272</u>            | <u>7.4</u>       | <u>30</u>           |
| 1,2-Dichloroethane                        | 1                | <u>18.7388</u>                   | <u>20.2558</u>            | 7.8              | <u>40</u>           |
| 2-Butanone                                | 1                | <u>17.0136</u>                   | 18.1796                   | <u>6.6</u>       | <u>40</u><br>30     |
| 1,1,1-Trichloroethane                     | <u>1</u><br>1    | <u>19.1049</u>                   | <u>21.0169</u><br>20.0065 | 9.5<br>9.2       | <u>30</u><br>40     |
| Carbon Tetrachloride Vinyl Acetate        | 1                | <u>1<b>9.1461</b></u><br>17.6768 | <u>20.9965</u><br>19.5368 | <u>9.2</u><br>10 | <del>40</del><br>30 |
| •                                         | 1                | 17.3236                          | 19.1514                   | 10               | <u>30</u>           |
| Bromodichloromethane<br>Methylcyclohexane | <u>1</u><br>1    | 21.489                           | 23.3254                   | 8.2              | <u>30</u>           |
| Dibromomethane                            | <u>†</u>         | 18.9994                          | 20.7806                   | 9                | <u>30</u><br>30     |
| 1,2-Dichloropropane                       | 1                | 16.9427                          | 18.6309                   | 9.5              | <u>30</u>           |
| Trichloroethene                           | 1                | 18.9604                          | 21.6674                   | <u>3.3</u><br>13 | <u>50</u><br>40     |
| Benzene                                   | 1                | <u>18.2889</u>                   | <u>21.3074</u>            | 1 <u>5</u>       | <u>40</u>           |
| tert-Amyl methyl ether                    | <u>†</u>         | 18.0118                          | 19.9476                   | 10               | 30                  |
| Iso-propylacetate                         | 1                | 14.8621                          | 17.1608                   | 14               | 30                  |
| Methyl methacrylate                       | 1                | 13.8615                          | 16.3632                   | 17               | 30                  |
| Dibromochloromethane                      | <u>1</u>         | 15.7601                          | 17.1882                   | 8.7              | <u>30</u>           |
| 2-Chloroethylvinylether                   | 1                | 11.4694                          | 12.711                    | 10               | 30                  |
| cis-1,3-Dichloropropene                   | 1                | 16.3396                          | 17.7671                   | 8.4              | <u>30</u>           |
| trans-1,3-Dichloropropene                 | ī                | 14.3779                          | 16.8451                   | 16               | <u>30</u>           |
| Ethyl methacrylate                        | 1<br>1           | 15.5653                          | 17.3314                   | 11               | 30                  |
| 1,1,2-Trichloroethane                     |                  | <u>15.8109</u>                   | 16.8386                   | <u>6.3</u>       | <u>30</u>           |
| 1,2-Dibromoethane                         | 1<br>1<br>1      | 15.5877                          | 17.0611                   | 9                | <u>30</u>           |
| 1,3-Dichloropropane                       | ī                | 15.6312                          | 17.3451                   | 10               | 30                  |
| 4-Methyl-2-Pentanone                      | <u>1</u>         | <u>15.2624</u>                   | <u>17.0654</u>            | <u>11</u>        | <u>30</u>           |
| 2-Hexanone                                | 1<br>1<br>1<br>1 | 15.4623                          | 16.6741                   | <u>7.5</u>       | <u>30</u>           |
| Tetrachloroethene                         | <u>1</u>         | 18.7395                          | 21.0609                   | 12               | 40                  |
| Toluene                                   | <u>1</u>         | 18.2555                          | 20.8138                   | <u>13</u>        | <u>40</u>           |
| 1,1,1,2-Tetrachloroethane                 | 1                | 16.0842                          | 17.749                    | 9.8              | 30                  |
| <u>Chlorobenzene</u>                      | 1                | <u> 19.3979</u>                  | <u>22.1236</u>            | <u>13</u>        | <u>40</u>           |
| * - Indicates outside of limits           |                  |                                  | ations=0 no result o      | an he calcu      | ulated              |

<sup>\* -</sup> Indicates outside of limits

|                             | QC Bat                | CN: MBS89426    |                 |              |                 |
|-----------------------------|-----------------------|-----------------|-----------------|--------------|-----------------|
| Method: 8260D               | Matrix: Meth          | anol Units:     | mg/Kg           | QC Type: MSD |                 |
|                             |                       | Dup/MSD/MBSD    | Sample/MS/I     |              | *****           |
| Analyte:                    | Column                | Conc            | Conc            | RPD          | Limit           |
| n-Butyl acrylate            | 1                     | 13.8866         | 15.7016         | 12           | 30              |
| n-Amyl acetate              | 1                     | 13.6134         | 16.0297         | 16           | 30              |
| <u>Bromoform</u>            | <u>1</u>              | <u>13.3909</u>  | <u>15.7981</u>  | <u>16</u>    | <u>30</u>       |
| Ethylbenzene                | 1<br>1<br>1<br>1<br>1 | 16.6415         | 17.5954         | <u>5.6</u>   | <u>30</u>       |
| 1,1,2,2-Tetrachloroethane   | <u>1</u>              | <u>13.4206</u>  | 14.9922         | <u>11</u>    | <u>30</u>       |
| <u>Styrene</u>              | <u>1</u>              | <u>16.9986</u>  | <u> 19.342</u>  | <u>13</u>    | <u>30</u>       |
| m&p-Xylenes                 | <u>1</u>              | <u>35.8244</u>  | <u>40.4444</u>  | <u>12</u>    | <u>30</u>       |
| o-Xylene                    |                       | <u>17.3843</u>  | <u> 19.3593</u> | <u>11</u>    | <u>30</u><br>30 |
| trans-1,4-Dichloro-2-butene | 1                     | 14.7522         | 16.5796         | 12           |                 |
| 1,3-Dichlorobenzene         | <u>1</u>              | <u>16.3676</u>  | <u>17.8241</u>  | <u>8.5</u>   | <u>30</u>       |
| 1,4-Dichlorobenzene         | <u>1</u>              | <u>16.178</u>   | <u>17.8726</u>  | <u>10</u>    | <u>40</u>       |
| 1,2-Dichlorobenzene         | 1<br>1<br>1<br>1      | <u>15.5109</u>  | <u> 17.4497</u> | <u>12</u>    | <u>40</u>       |
| <u>Isopropylbenzene</u>     |                       | <u>17.6838</u>  | <u> 19.672</u>  | <u>11</u>    | <u>30</u>       |
| Cyclohexanone               | 1                     | 71.8118         | 87.0869         | 19           | 30              |
| Camphene                    | 1                     | 18.0605         | 19.8532         | 9.5          | 30              |
| 1,2,3-Trichloropropane      | 1                     | 13.5202         | 15.4687         | 13           | 30              |
| 2-Chlorotoluene             | 1                     | 16.1537         | 18.09           | 11           | 30              |
| p-Ethyltoluene              | 1                     | 17.5466         | 18.75           | 6.6          | 30              |
| 4-Chlorotoluene             | 1                     | 16.1628         | 17.8293         | 9.8          | 30              |
| n-Propylbenzene             | 1                     | 16.8251         | 18.6487         | 10           | 40              |
| Bromobenzene                | 1                     | 15.8112         | 17.7563         | 12           | 30              |
| 1,3,5-Trimethylbenzene      | 1                     | 16.5519         | 18.9108         | 13           | 30              |
| Butyl methacrylate          | 1                     | 14.8191         | 16.7621         | 12           | 30              |
| t-Butylbenzene              | 1                     | 17.4904         | 19.534          | 11           | 30              |
| 1,2,4-Trimethylbenzene      | 1                     | 16.504          | 18.26           | 10           | 30              |
| sec-Butylbenzene            | 1                     | 17.3719         | 19.251          | 10           | 40              |
| 4-Isopropyltoluene          | 1                     | 17.5475         | 19.4968         | 11           | 30              |
| n-Butylbenzene              | 1                     | 16.8163         | 18.6305         | 10           | 30              |
| p-Diethylbenzene            | 1                     | 17.442          | 19.407          | 11           | 30              |
| 1,2,4,5-Tetramethylbenzene  | 1                     | 13.7466         | 15.424          | 12           | 30              |
| 1,2-Dibromo-3-Chloropropane | <u>1</u>              | <u>12.8256</u>  | <u>15.311</u>   | <u>18</u>    | <u>30</u>       |
| Camphor                     | 1                     | 115.0728        | 133.6388        | 15           | 30              |
| Hexachlorobutadiene         | 1                     | 17.1752         | 20.0651         | 16           | 30              |
| 1,2,4-Trichlorobenzene      | <u>1</u><br>1         | <u>16.8476</u>  | <u>18.5272</u>  | <u>9.5</u>   | <u>30</u>       |
| 1,2,3-Trichlorobenzene      |                       | <u> 16.3336</u> | <u> 17.9497</u> | <u>9.4</u>   | <u>30</u>       |
| Naphthalene                 | 1                     | 15.781          | 17.996          | 13           | 30              |

Data File

Spike or Dup: 1M140102.D

Sample ID: MBS89427 Analysis Date 10/5/2020 8:40:00 PM

Non Spike(If applicable):

Inst Blank(If applicable):

| Method: 8260D                              |               | k: Aqueous               |                | Units: ug/L      |                 |                 | QC Type: MBS |  |  |
|--------------------------------------------|---------------|--------------------------|----------------|------------------|-----------------|-----------------|--------------|--|--|
| Analyte:                                   | Col           | Spike<br>Conc            | Sample<br>Conc | Expected<br>Conc | Recovery        | Lower<br>Limit  | Uppe<br>Limi |  |  |
| Chlorodifluoromethane                      | 1             | 17.7158                  | 0              | 20               | 89              | 50              | 150          |  |  |
| <u>Dichlorodifluoromethane</u>             | 1             | 20.9377                  | <u>0</u>       | <u>20</u>        | <u>105</u>      | <u>50</u>       | <u>150</u>   |  |  |
| <u>Chloromethane</u>                       | <u>1</u>      | <u>16.0202</u>           | <u>0</u>       | <u>20</u>        | <u>80</u>       | <u>50</u>       | <u>150</u>   |  |  |
| <u>Bromomethane</u>                        | 1             | <u>16.3237</u>           | <u>0</u>       | <u>20</u>        | <u>82</u>       | <u>50</u>       | <u>150</u>   |  |  |
| <u>Vinyl Chloride</u>                      | 1             | <u> 18.4895</u>          | Q              | <u>20</u>        | <u>92</u>       | <u>50</u>       | <u>150</u>   |  |  |
| <u>Chloroethane</u>                        | 1             | <u> 19.6783</u>          | <u>0</u><br>0  | <u>20</u>        | <u>98</u>       | <u>50</u>       | <u>150</u>   |  |  |
| <u>Trichlorofluoromethane</u>              | 1             | <u>19.3914</u>           | Q              | <u>20</u>        | <u>97</u>       | <u>50</u>       | <u>150</u>   |  |  |
| Ethyl ether                                | 1             | 16.0661                  | 0              | 20               | 80              | 50              | 150          |  |  |
| Furan                                      | 1             | 15.8839                  | 0              | 20               | 79              | 50              | 150          |  |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane      |               | <u>17.8006</u>           | <u>0</u>       | <u>20</u>        | <u>89</u>       | <u>50</u>       | 150          |  |  |
| Methylene Chloride                         | 1             | <u>16.7739</u>           | <u>0</u>       | <u>20</u>        | <u>84</u>       | <u>70</u>       | 130          |  |  |
| Acrolein                                   | 1             | 83.9639                  | 0              | 100              | 84              | 50              | 150          |  |  |
| Acrylonitrile                              | 1             | 17.9237                  | 0<br>0         | 20<br>20         | 90<br>70        | 50<br>50        | 150<br>150   |  |  |
| lodomethane                                |               | 14.0189                  |                |                  |                 |                 | 150<br>150   |  |  |
| Acetone<br>Coshon Diguifido                | <u>1</u><br>1 | <u>85.111</u><br>17.1325 | <u>0</u><br>0  | <u>100</u><br>20 | <u>85</u><br>86 | <u>50</u><br>50 | 150<br>150   |  |  |
| <u>Carbon Disulfide</u><br>t-Butyl Alcohol | 1             | 85.2415                  | 0              | 100              | 85              | <u>50</u><br>50 | 150          |  |  |
| n-Hexane                                   | 1             | 17.6993                  | 0              | 20               | 88              | 70              | 130          |  |  |
| Di-isopropyl-ether                         | 1             | 15.9282                  | 0              | 20               | 80              | 70              | 130          |  |  |
| 1,1-Dichloroethene                         | 1             | 17.9545                  | <u>0</u>       | <u>20</u>        | <u>90</u>       | 70<br>70        | 130          |  |  |
| Methyl Acetate                             | 1             | 7.2015                   | <u>0</u>       | <u>20</u>        | 36 <u>*</u>     | <u>50</u>       | 150          |  |  |
| Methyl-t-butyl ether                       | 1             | 17.7828                  | <u>0</u>       | <u>20</u>        | <u>89</u>       | <u>70</u>       | 130          |  |  |
| 1,1-Dichloroethane                         | 1             | 15.5019                  | <u>o</u>       | <u>20</u>        | <u>78</u>       | <u>70</u>       | 130          |  |  |
| trans-1,2-Dichloroethene                   | 1             | 17.7 <b>5</b> 4          | <u>0</u>       | <u>20</u><br>20  | 89              | <del>70</del>   | 130          |  |  |
| Ethyl-t-butyl ether                        | <b>i</b>      | 15.9322                  | Ŏ              | <u>20</u>        | 80              | <del>70</del>   | 130          |  |  |
| cis-1,2-Dichloroethene                     | 1             | 16.2596                  | <u>0</u>       | 20               | <u>81</u>       | 70              | 130          |  |  |
| Bromochloromethane                         | 1             | 15.8353                  | <u>v</u>       | 20               | <del>79</del>   | <del>70</del>   | 130          |  |  |
| 2,2-Dichloropropane                        | 1             | 15.8428                  | Ŏ              | 20               | <del>79</del>   | <del>7</del> 0  | 130          |  |  |
| Ethyl acetate                              | 1             | 14.3822                  | Ŏ              | 20               | 72              | 50              | 150          |  |  |
| 1,4-Dioxane                                | 1             | 769.5223                 | <u>0</u>       | 1000             | 77              | 50              | 150          |  |  |
| 1,1-Dichloropropene                        | 1             | 17.0893                  | Ō              | 20               | 85              | 70              | 130          |  |  |
| Chloroform                                 | 1             | 15.9564                  | <u>0</u>       | <u>20</u>        | 80              | 70              | 130          |  |  |
| Cyclohexane                                | 1             | 17.0569                  | Q              | 20               | <u>85</u>       | <del>70</del>   | 130          |  |  |
| 1,2-Dichloroethane                         | 1             | 15.8921                  | Q              | 20               | <del>79</del>   | <del>70</del>   | 130          |  |  |
| 2-Butanone                                 | 1             | 14.6075                  | Q              | 20               | <del>73</del>   | 50              | 150          |  |  |
| 1,1,1-Trichloroethane                      | <u>1</u>      | 16.6684                  | <u> </u>       | 20               | <u>83</u>       | <del>70</del>   | 130          |  |  |
| Carbon Tetrachloride                       | <u>1</u>      | 17.0288                  | Q              | <u>20</u>        | <u>85</u>       | <u>50</u>       | 150          |  |  |
| Vinyl Acetate                              | 1             | 14.1298                  | ō              | 20               | 71              | 50              | 150          |  |  |
| <u>Bromodichloromethane</u>                | 1             | <u>15.5101</u>           | Q              | <u>20</u>        | <u>78</u>       | <u>70</u>       | 130          |  |  |
| Methylcyclohexane                          | 1             | 17.684                   | <u> </u>       | 20               | 88              | 70              | 130          |  |  |
| Dibromomethane                             | 1             | 16.3403                  | Ō              | 20               | 82              | 70              | 130          |  |  |
| 1,2-Dichloropropane                        | <u>1</u>      | <u>14.7115</u>           | <u>0</u>       | <u>20</u>        | <u>74</u>       | <u>70</u>       | 130          |  |  |
| Trichloroethene                            | 1             | <u>17.4581</u>           | Q              | <u>20</u>        | <u>87</u>       | <u>70</u>       | <u>130</u>   |  |  |
| Benzene                                    | 1             | 16.1708                  | <u>0</u>       | <u>20</u>        | <u>81</u>       | <u>70</u>       | <u>130</u>   |  |  |
| tert-Amyl methyl ether                     | 1             | 15.9491                  | 0              | 20               | 80              | 70              | 130          |  |  |
| Iso-propylacetate                          | 1             | 14.2407                  | 0              | 20               | 71              | 70              | 130          |  |  |
| Methyl methacrylate                        | 1             | 13.6524                  | 0              | 20               | 68*             | 70              | 130          |  |  |
| <u>Dibromochloromethane</u>                | <u>1</u>      | <u>13.9467</u>           | Q              | <u>20</u>        | <u>70</u>       | <u>70</u>       | <u>130</u>   |  |  |
| 2-Chloroethylvinylether                    | 1             | 10.3554                  | 0              | 20               | 52 *            | 70              | 130          |  |  |
| cis-1,3-Dichloropropene                    | <u>1</u>      | <u>13.8636</u>           | <u>o</u>       | <u>20</u>        | <u>69 *</u>     | <u>70</u>       | <u>130</u>   |  |  |
| trans-1,3-Dichloropropene                  | 1             | 12.7452                  | <u>o</u>       | <u>20</u>        | <u>64 *</u>     | <u>70</u>       | <u>130</u>   |  |  |
| Ethyl methacrylate                         | 1             | 14.0144                  | 0              | 20               | 70              | 70              | 130          |  |  |
| 1,1,2-Trichloroethane                      | 1             | <u>14.9496</u>           | <u>0</u>       | <u>20</u>        | <u>75</u>       | <u>70</u>       | 130          |  |  |
| 1,2-Dibromoethane                          | 1             | <u>13.6427</u>           | <u>0</u>       | <u>20</u>        | <u>68*</u>      | <u>70</u>       | 130          |  |  |
| 1,3-Dichloropropane                        | 1             | 13.4524                  | 0              | 20               | 67*             | 70              | 130          |  |  |
| 4-Methyl-2-Pentanone                       | 1             | <u>14.1168</u>           | <u>0</u>       | <u>20</u>        | <u>71</u>       | <u>50</u>       | 150          |  |  |
| 2-Hexanone                                 | 1             | 15.2179                  | <u>0</u>       | <u>20</u>        | <u>76</u>       | <u>50</u>       | <u>150</u>   |  |  |
| <u>Tetrachloroethene</u>                   | 1             | <u>16.6387</u>           | <u>0</u>       | <u>20</u>        | <u>83</u>       | <u>50</u>       | <u>150</u>   |  |  |
| Toluene                                    | 1             | <u>18.5593</u>           | <u>0</u>       | <u>20</u>        | <u>93</u>       | <u>70</u>       | 130          |  |  |
| 1,1,1,2-Tetrachloroethane                  | 1             | 14.4773                  | Ō              | 20               | 72              | 70              | 130          |  |  |
| Chlorobenzene                              | 1             | <u>17.4181</u>           | 0              | 20               | 87              | 70              | 130          |  |  |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix   | :: Aqueous     |          | Units: ug/L | QC Typ             | e: MBS        |            |
|-----------------------------|----------|----------------|----------|-------------|--------------------|---------------|------------|
|                             |          | Spike          | Sample   | Expected    |                    | Lower         | Upper      |
| Analyte:                    | Col      | Conc           | Conc     | Conc        | Recovery           | Limit         | Limit      |
| n-Butyl acrylate            | 1        | 12.9304        | 0        | 20          | 65*                | 70            | 130        |
| n-Amyl acetate              | 1        | 12.8954        | 0        | 20          | 64*                | 70            | 130        |
| <u>Bromoform</u>            | <u>1</u> | <u>14.3602</u> | <u>0</u> | <u>20</u>   | <u>72</u>          | <u>70</u>     | <u>130</u> |
| Ethylbenzene                | <u>1</u> | <u>14.7805</u> | <u>0</u> | <u>20</u>   | <u>74</u>          | <u>70</u>     | <u>130</u> |
| 1,1,2,2-Tetrachioroethane   | <u>1</u> | <u>12.278</u>  | <u>0</u> | <u>20</u>   | <u>61 *</u>        | <u>70</u>     | <u>130</u> |
| Styrene                     | <u>1</u> | <u>15.0177</u> | <u>0</u> | <u>20</u>   | <u>75</u>          | <u>70</u>     | <u>130</u> |
| m&p-Xylenes                 | 1        | 32.6123        | Q        | <u>40</u>   | <u>82</u>          | <u>70</u>     | <u>130</u> |
| o-Xylene                    | <u>1</u> | <u>15.6355</u> | <u>0</u> | <u>20</u>   | <u>78</u>          | <u>70</u>     | <u>130</u> |
| trans-1,4-Dichloro-2-butene | 1        | 13.2089        | 0        | 20          | 66                 | 50            | 150        |
| 1,3-Dichlorobenzene         | <u>1</u> | <u>13.9007</u> | <u>0</u> | <u>20</u>   | <u>70</u>          | <u>70</u>     | <u>130</u> |
| 1,4-Dichlorobenzene         | 1        | <u>13.905</u>  | Q        | <u>20</u>   | <u>70</u>          | <u>70</u>     | <u>130</u> |
| 1,2-Dichlorobenzene         | 1        | <u>13.5756</u> | <u>0</u> | <u>20</u>   | <u>68 *</u>        | <u>70</u>     | <u>130</u> |
| <u>Isopropylbenzene</u>     | 1        | <u>15.4631</u> | <u>o</u> | <u>20</u>   | <u>77</u>          | <u>70</u>     | <u>130</u> |
| Cyclohexanone               | 1        | 68.652         | 0        | 100         | 69                 | 50            | 150        |
| Camphene                    | 1        | 14.6114        | 0        | 20          | 73                 | 70            | 130        |
| 1,2,3-Trichloropropane      | 1        | 12.4072        | 0        | 20          | 62*                | 70            | 130        |
| 2-Chlorotoluene             | 1        | 14.2471        | 0        | 20          | 71                 | 70            | 130        |
| p-Ethyltoluene              | 1        | 15.1522        | 0        | 20          | 76                 | 70            | 130        |
| 4-Chlorotoluene             | 1        | 14.4116        | 0        | 20          | 72                 | 70            | 130        |
| n-Propylbenzene             | 1        | 14.4303        | 0        | 20          | 72                 | 70            | 130        |
| Bromobenzene                | 1        | 13.6329        | 0        | 20          | 68*                | 70            | 130        |
| 1,3,5-Trimethylbenzene      | 1        | 14.3659        | 0        | 20          | 72                 | 70            | 130        |
| Butyl methacrylate          | 1        | 13.6831        | 0        | 20          | 68*                | 70            | 130        |
| t-Butylbenzene              | 1        | 15.2805        | 0        | 20          | 76                 | 70            | 130        |
| 1,2,4-Trimethylbenzene      | 1        | 14.2754        | 0        | 20          | 71                 | 70            | 130        |
| sec-Butylbenzene            | 1        | 14.8649        | 0        | 20          | 74                 | 70            | 130        |
| 4-Isopropyltoluene          | 1        | 15.02          | 0        | 20          | 75                 | 70            | 130        |
| n-Butylbenzene              | 1        | 13.9636        | 0        | 20          | 70                 | 70            | 130        |
| p-Diethylbenzene            | 1        | 14.9465        | 0        | 20          | 75                 | 70            | 130        |
| 1,2,4,5-Tetramethylbenzene  | 1        | 12.0476        | 0        | 20          | 60*                | 70            | 130        |
| 1,2-Dibromo-3-Chloropropane | <u>1</u> | 12.5425        | <u>0</u> | <u>20</u>   | <u>63</u>          | <u>50</u>     | <u>150</u> |
| Camphor                     | ī        | 103.2317       | ō        | 200         | 52                 | 20            | 150        |
| Hexachlorobutadiene         | 1        | 14.1066        | 0        | 20          | 71                 | 50            | 150        |
| 1,2,4-Trichlorobenzene      | <u>1</u> | <u>14.1118</u> | <u>0</u> | <u>20</u>   | <u>71</u>          | <u>70</u>     | <u>130</u> |
| 1,2,3-Trichlorobenzene      | <u>1</u> | 13.8288        | <u> </u> | <u>20</u>   | <u>69</u> <u>*</u> | <del>70</del> | 130        |
| Naphthalene                 | ī        | 14.5019        | ō        | 20          | 73                 | 50            | 150        |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

## Form3 Recovery Data Laboratory Limits

QC Batch: MBS89427

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M140105.D Non Spike(If applicable): 1M140097.D

AD19565-016(MS) AD19565-016 10/5/2020 9:42:00 PM 10/5/2020 6:56:00 PM

Inst Blank(If applicable):

| Method: 8260D                            | Matrix        | k: Aqueous                |                 | Units: ug/L            | QC Type: MS          |                        |                   |
|------------------------------------------|---------------|---------------------------|-----------------|------------------------|----------------------|------------------------|-------------------|
| Analyte:                                 | Col           | Spike<br>Conc             | Sample<br>Conc  | Expected<br>Conc       | Recovery             | Lower<br>Limit         | Upper<br>Limit    |
| Chlorodifluoromethane                    | 1             | 18.1942                   | 0               | 20                     | 91                   | 50                     | 150               |
| <u>Dichlorodifluoromethane</u>           | <u>1</u>      | 26.9766                   | <u>0</u>        | 20                     | <u>135</u>           | <u>50</u>              | <u>150</u>        |
| Chloromethane                            | <u>1</u>      | 20.8413                   | <u>o</u>        | 20                     | 104                  | 50                     | 150               |
| <u>Bromomethane</u>                      | <u>1</u>      | 21.1733                   | <u>o</u>        | <u>20</u>              | <u>106</u>           | <u>50</u>              | <u>150</u>        |
| Vinyl Chloride                           | 1             | 22.78                     | <u>0</u>        | <u>20</u>              | <u>114</u>           | <u>50</u>              | <u>150</u>        |
| <u>Chloroethane</u>                      | <u>1</u>      | <u>24.6388</u>            | Q               | <u>20</u>              | <u>123</u>           | <u>50</u>              | <u>150</u>        |
| <u>Trichlorofluoromethane</u>            | 1             | <u>25.4743</u>            | <u>0</u>        | <u>20</u>              | <u>127</u>           | <u>50</u>              | <u>150</u>        |
| Ethyl ether                              | 1             | 19.9845                   | 0               | 20                     | 100                  | 50                     | 150               |
| Furan                                    | 1             | 19.7351                   | 0               | 20                     | 99                   | 50                     | 150               |
| 1,1,2-Trichloro-1,2,2-trifluoroetha      |               | 23.2841                   | <u>0</u>        | <u>20</u>              | <u>116</u>           | <u>50</u>              | <u>150</u>        |
| Methylene Chloride                       | 1             | <u>20.4648</u>            | <u>o</u><br>0   | <u>20</u>              | <u>102</u>           | <u>70</u>              | 130<br>150        |
| Acrolein                                 | 1<br>1        | 111.2411<br>21.3629       | 0               | 100<br>20              | 111<br>107           | 50                     | 150               |
| Acrylonitrile<br>lodomethane             | 1             | 20.4168                   | 0               | 20                     | 107                  | 50<br>50               | 150<br>150        |
| Acetone                                  | 1             | 97.1453                   | <u>0</u>        | 100                    | 97                   | 50<br>50               | 150<br>150        |
| Carbon Disulfide                         | 1             | 22.2342                   | <u>o</u>        | <u>20</u>              | 111                  | <u>50</u>              | 150<br>150        |
| t-Butyl Alcohol                          | 1             | 56.6165                   | Ö               | 100                    | <del>111</del><br>57 | <u>50</u><br>50        | 150<br>150        |
| n-Hexane                                 | 1             | 23.9969                   | Ö               | 20                     | 120                  | 70                     | 130               |
| Di-isopropyl-ether                       | i             | 20.0641                   | Ŏ               | 20                     | 100                  | 70                     | 130               |
| 1,1-Dichloroethene                       | 1             | 22.8547                   | <u>o</u>        | 20                     | 114                  | 70                     | 130               |
| Methyl Acetate                           | <u>1</u>      | 19.3257                   | <u>0</u>        | 20                     | 97                   | <u>50</u>              | 150               |
| Methyl-t-butyl ether                     | 1             | 22.2721                   | Q               | <u>20</u>              | 111                  | 70                     | 130               |
| 1,1-Dichloroethane                       | 1             | 19.5198                   | <u>ō</u>        | <u>20</u>              | 98                   | <del>70</del>          | 130               |
| trans-1,2-Dichloroethene                 | 1             | 22.341                    | Q               | <u>20</u>              | 112                  | <u>70</u>              | 130               |
| Ethyl-t-butyl ether                      | 1             | 19.9428                   | 0               | 20                     | 100                  | 70                     | 130               |
| cis-1,2-Dichloroethene                   | 1             | <u>20.7514</u>            | <u>0</u>        | <u>20</u>              | <u>104</u>           | <u>70</u>              | <u>130</u>        |
| <u>Bromochloromethane</u>                | 1             | <u>19.5275</u>            | <u>o</u>        | <u>20</u>              | <u>98</u>            | <u>70</u>              | <u>130</u>        |
| 2,2-Dichloropropane                      | 1             | 21.1147                   | Ō               | 20                     | 106                  | 70                     | 130               |
| Ethyl acetate                            | 1             | 18.8454                   | 0               | 20                     | 94                   | 50                     | 150               |
| 1,4-Dioxane                              | 1             | <u>996.4219</u>           | Q               | <u>1000</u>            | <u>100</u>           | <u>50</u>              | <u>150</u>        |
| 1,1-Dichloropropene                      | 1             | 22.1176                   | 0               | 20                     | 111                  | 70                     | 130               |
| Chloroform                               | 1             | <u>20.2317</u>            | <u>0</u>        | <u>20</u>              | <u>101</u>           | <u>70</u>              | <u>130</u>        |
| Cyclohexane                              | 1             | 22.2202                   | <u>0</u>        | <u>20</u>              | <u>111</u>           | <u>70</u>              | <u>130</u>        |
| 1,2-Dichloroethane                       | 1             | <u>20.276</u>             | <u>0</u>        | <u>20</u>              | <u>101</u>           | <u>70</u>              | 130               |
| 2-Butanone                               | 1             | 19.8241                   | 0               | <u>20</u>              | <u>99</u>            | <u>50</u>              | <u>150</u>        |
| 1.1.1-Trichloroethane                    | 1             | 21.0741                   | 0               | <u>20</u>              | <u>105</u><br>110    | <u>70</u>              | 130<br>150        |
| Carbon Tetrachloride Vinyl Acetate       | <u>1</u><br>1 | <b>22.0081</b><br>19.1337 | <u>0</u><br>0   | <u><b>20</b></u><br>20 | 96                   | <u><b>50</b></u><br>50 | <u>150</u><br>150 |
| Bromodichloromethane                     | 1             | 19.1337                   | Õ               | <u>20</u>              | 96                   | 70                     | 130               |
| Methylcyclohexane                        | 1             | 22.8331                   | Õ               | <u>20</u>              | <u>90</u><br>114     | <u>70</u>              | 130               |
| Dibromomethane                           | 1             | 20.4726                   | Ŏ               | 20                     | 102                  | <del>70</del>          | 130               |
| 1,2-Dichloropropane                      | 1             | 18.5847                   | Õ               | <u>20</u>              | 93                   | <u>70</u>              | 130               |
| Trichloroethene                          | 1             | 21.3209                   | <u><u> </u></u> | <u>20</u>              | <u>107</u>           | <del>70</del>          | 130               |
| Benzene                                  | 1             | 20.6489                   | <u>o</u>        | 20                     | 103                  | 70                     | 130               |
| tert-Amyl methyl ether                   | 1             | 20.7559                   | ō               | 20                     | 104                  | 70                     | 130               |
| Iso-propylacetate                        | 1             | 17.3976                   | 0               | 20                     | 87                   | 70                     | 130               |
| Methyl methacrylate                      | 1             | 16.5184                   | 0               | 20                     | 83                   | 70                     | 130               |
| Dibromochloromethane                     | 1             | <u>16.9141</u>            | <u>0</u>        | <u>20</u>              | <u>85</u>            | <u>70</u>              | <u>130</u>        |
| 2-Chloroethylvinylether                  | 1             | 0                         | 0               | 20                     | 0*                   | 70                     | 130               |
| cis-1,3-Dichloropropene                  | <u>1</u>      | <u>17.319</u>             | <u>0</u>        | <u>20</u>              | <u>87</u>            | <u>70</u>              | <u>130</u>        |
| trans-1,3-Dichloropropene                | 1             | <u>16.0388</u>            | <u>0</u>        | <u>20</u>              | <u>80</u>            | <u>70</u>              | <u>130</u>        |
| Ethyl methacrylate                       | 1             | 17.7411                   | 0               | 20                     | 89                   | 70                     | 130               |
| 1,1,2-Trichloroethane                    | 1             | <u>16.9898</u>            | <u>0</u>        | <u>20</u>              | <u>85</u>            | <u>70</u>              | <u>130</u>        |
| 1,2-Dibromoethane                        | 1             | <u>16.752</u>             | <u>0</u>        | <u>20</u>              | <u>84</u>            | <u>70</u>              | <u>130</u>        |
| 1,3-Dichloropropane                      | 1             | 16.7518                   | 0               | 20                     | 84                   | 70                     | 130               |
| 4-Methyl-2-Pentanone                     | 1             | <u>17.7529</u>            | ō               | <u>20</u>              | <u>89</u>            | <u>50</u>              | <u>150</u>        |
| 2-Hexanone                               | 1             | <u>17.4061</u>            | <u>0</u>        | <u>20</u>              | <u>87</u>            | <u>50</u>              | 150<br>150        |
| <u>Tetrachloroethene</u>                 | 1             | <u>22.2098</u>            | 3.000 <u>5</u>  | <u>20</u>              | <u>96</u>            | <u>50</u>              | 150<br>120        |
| <u>Toluene</u> 1,1,1,2-Tetrachloroethane | 1 1           | <b>19.6264</b><br>17.2794 | <u>0</u><br>0   | <u><b>20</b></u><br>20 | <u>98</u><br>86      | <u><b>70</b></u><br>70 | <u>130</u><br>130 |
| i.i.i.z-renachioroemane                  | 1             | 17.2794                   | U               | ZU                     | 00                   | /11                    | LOU               |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix        | : Aqueous       |               | Units: ug/L | QC Type: MS |               |            |
|-----------------------------|---------------|-----------------|---------------|-------------|-------------|---------------|------------|
|                             |               | Spike           | Sample        | Expected    |             | Lower         | Upper      |
| Analyte:                    | Col           | Conc            | Conc          | Conc        | Recovery    | Limit         | Limit      |
| n-Butyl acrylate            | 1             | 15.6783         | 0             | 20          | 78          | 70            | 130        |
| n-Amyl acetate              | 1             | 16.0985         | 0             | 20          | 80          | 70            | 130        |
| <u>Bromoform</u>            | 1             | <u>15.5451</u>  | <u>0</u>      | <u>20</u>   | <u>78</u>   | <u>70</u>     | <u>130</u> |
| <u>Ethylbenzene</u>         | 1             | <u>17.869</u>   | Q             | <u>20</u>   | <u>89</u>   | <u>70</u>     | <u>130</u> |
| 1,1,2,2-Tetrachloroethane   | 1             | <u>14.8354</u>  | <u>o</u>      | <u>20</u>   | <u>74</u>   | <u>70</u>     | <u>130</u> |
| <u>Styrene</u>              | <u>1</u><br>1 | <u> 18.6449</u> | <u>0</u>      | <u>20</u>   | <u>93</u>   | <u>70</u>     | <u>130</u> |
| m&p-Xylenes                 | <u>1</u>      | <u>39.471</u>   | <u>0</u>      | <u>40</u>   | <u>99</u>   | <u>70</u>     | <u>130</u> |
| <u>o-Xylene</u>             | <u>1</u>      | <u> 18.7854</u> | <u>o</u>      | <u>20</u>   | <u>94</u>   | <u>70</u>     | <u>130</u> |
| trans-1,4-Dichloro-2-butene | 1             | 12.8102         | 0             | 20          | 64          | 50            | 150        |
| 1,3-Dichlorobenzene         | 1             | <u>17.3696</u>  | <u>0</u>      | <u>20</u>   | <u>87</u>   | <u>70</u>     | <u>130</u> |
| 1,4-Dichlorobenzene         | <u>1</u><br>1 | 17.1505         | <u>o</u>      | <u>20</u>   | <u>86</u>   | <u>70</u>     | <u>130</u> |
| 1,2-Dichlorobenzene         | <u>1</u><br>1 | <u>16.7473</u>  | <u>0</u><br>0 | <u>20</u>   | <u>84</u>   | <u>70</u>     | <u>130</u> |
| Isopropylbenzene            | 1             | 19.2926         | <u>0</u>      | <u>20</u>   | <u>96</u>   | <u>70</u>     | <u>130</u> |
| Cyclohexanone               | 1             | 74.1653         | Ō             | 100         | 74          | 50            | 150        |
| Camphene                    | 1             | 5.8485          | 0             | 20          | 29*         | 70            | 130        |
| 1,2,3-Trichloropropane      | 1             | 14.8412         | 0             | 20          | 74          | 70            | 130        |
| 2-Chlorotoluene             | 1             | 17.4967         | 0             | 20          | 87          | 70            | 130        |
| p-Ethyltoluene              | 1             | 19.0354         | 0             | 20          | 95          | 70            | 130        |
| 4-Chlorotoluene             | 1             | 17.2172         | 0             | 20          | 86          | 70            | 130        |
| n-Propylbenzene             | 1             | 18.0381         | 0             | 20          | 90          | 70            | 130        |
| Bromobenzene                | 1             | 15.3382         | 0             | 20          | 77          | 70            | 130        |
| 1,3,5-Trimethylbenzene      | 1             | 17.9324         | 0             | 20          | 90          | 70            | 130        |
| Butyl methacrylate          | 1             | 16.3538         | 0             | 20          | 82          | 70            | 130        |
| t-Butylbenzene              | 1             | 18.7799         | 0             | 20          | 94          | 70            | 130        |
| 1,2,4-Trimethylbenzene      | 1             | 17.9536         | 0             | 20          | 90          | 70            | 130        |
| sec-Butylbenzene            | 1             | 18.478          | 0             | 20          | 92          | 70            | 130        |
| 4-Isopropyltoluene          | 1             | 18.6868         | 0             | 20          | 93          | 70            | 130        |
| n-Butylbenzene              | 1             | 18.0268         | 0             | 20          | 90          | 70            | 130        |
| p-Diethylbenzene            | 1             | 18.4411         | 0             | 20          | 92          | 70            | 130        |
| 1,2,4,5-Tetramethylbenzene  | 1             | 14.2411         | Ó             | 20          | 71          | 70            | 130        |
| 1,2-Dibromo-3-Chloropropane | 1             | 15.3289         | <u>0</u>      | <u>20</u>   | 77          | <u>50</u>     | 150        |
| Camphor                     | 1             | 125.6282        | ō             | 200         | 63          | 20            | 150        |
| Hexachlorobutadiene         | 1             | 18.73 <b>7</b>  | 0             | 20          | 94          | 50            | 150        |
| 1,2,4-Trichlorobenzene      | <u>1</u>      | 17.5302         | <u>0</u>      | 20          | 88          | 70            | 130        |
| 1,2,3-Trichlorobenzene      | 1             | 17.0545         | Ō             | <u>20</u>   | <u>85</u>   | <del>70</del> | 130        |
| Naphthalene                 | 1             | 17.6604         | ō             | 20          | 88          | <del>50</del> | 150        |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

## Form3 Recovery Data Laboratory Limits

QC Batch: MBS89427

Data File Samp

Sample ID:

Analysis Date

Spike or Dup: 1M140106.D Non Spike(If applicable): 1M140097.D

AD19565-016(MSD) AD19565-016 10/5/2020 10:02:00 PM 10/5/2020 6:56:00 PM

| Method: 8260D                               | Matrix        | : Aqueous          |                | Units: ug/L QC Type: MSD |                         |                        |                   |  |
|---------------------------------------------|---------------|--------------------|----------------|--------------------------|-------------------------|------------------------|-------------------|--|
| nalyte:                                     | Col           | Spike<br>Conc      | Sample<br>Conc | Expected<br>Conc         | Recovery                | Lower<br>Limit         | Uppe<br>Limi      |  |
| Chlorodifluoromethane                       | 1             | 16.1283            | 0              | 20                       | 81                      | 50                     | 150               |  |
| Dichlorodifluoromethane                     | 1             | 24.2863            | <u>0</u>       | <u>20</u>                | <u>121</u>              | <u>50</u>              | 150               |  |
| Chloromethane                               | 1             | 18.1974            | <u>0</u>       | <u>20</u>                | <u>91</u>               | <u>50</u>              | <u>150</u>        |  |
| Bromomethane                                | 1             | 7.9194             | <u>0</u><br>0  | <u>20</u>                | <u>40*</u>              | <u>50</u>              | <u>150</u>        |  |
| /inyl Chloride                              | 1             | 20.2281            | ō              | <u>20</u>                | <u>101</u>              | <u>50</u>              | <u>150</u>        |  |
| Chloroethane<br>Trichlorofluoromethane      | 1             | 22.3554            | 0              | <u>20</u>                | <u>112</u>              | <u>50</u>              | 150               |  |
| thyl ether                                  | 1             | 23.1768<br>18.0972 | <u>o</u><br>0  | <u><b>20</b></u><br>20   | <u>116</u><br>90        | <u><b>50</b></u><br>50 | <u>150</u><br>150 |  |
| uran                                        | 1             | 18.7955            | 0              | 20                       | 94                      | 50                     | 150               |  |
| ,1,2-Trichloro-1,2,2-trifluoroethane        | •             | 21.4316            | Q              | <u>20</u>                | 107                     | <b>50</b>              | 150               |  |
| Methylene Chloride                          | 1             | 18.9417            | <u>0</u>       | <u>20</u>                | <u>95</u>               | <del>70</del>          | 130               |  |
| Acrolein                                    | 1             | 97.4876            | Ŏ              | 100                      | 97                      | <del>50</del>          | 150               |  |
| Acrylonitrile                               | 1             | 19.0709            | ŏ              | 20                       | 95                      | 50                     | 150               |  |
| odomethane                                  | 1             | 18.9089            | ŏ              | 20                       | 95                      | 50                     | 150               |  |
| Acetone                                     | 1             | 82.7855            | <u>0</u>       | 100                      | 83                      | 50                     | 150               |  |
| Carbon Disulfide                            | 1             | 19.7667            | <u>0</u>       | 20                       | 99                      | <del>50</del>          | 150               |  |
| -Butyl Alcohol                              | i             | 32.0863            | Ō              | 100                      | 32 *                    | <del>50</del>          | 150               |  |
| -Hexane                                     | 1             | 22.2653            | Ŏ              | 20                       | 111                     | 70                     | 130               |  |
| Di-isopropyl-ether                          | 1             | 18.2855            | Ö              | 20                       | 91                      | 70                     | 130               |  |
| ,1-Dichloroethene                           | 1             | 20.5983            | <u>0</u>       | 20                       | 103                     | 70                     | 130               |  |
| lethyl Acetate                              | 1             | 17.3355            | Q              | <u>20</u>                | 87                      | 50                     | 150               |  |
| Nethyl-t-butyl ether                        | 1             | 20.6626            | <u>0</u>       | 20                       | 103                     | 70                     | 130               |  |
| ,1-Dichloroethane                           | 1             | 18.2139            | <u>o</u>       | <u>20</u>                | 91                      | <u>70</u>              | 130               |  |
| rans-1,2-Dichloroethene                     | 1             | 20.2987            | Q              | <u>20</u>                | <u>101</u>              | <u>70</u>              | <u>130</u>        |  |
| thyl-t-butyl ether                          | 1             | 18.1546            | 0              | 20                       | 91                      | 70                     | 130               |  |
| is-1,2-Dichloroethene                       | 1             | <u> 19.0796</u>    | <u>Q</u>       | <u>20</u>                | <u>95</u>               | <u>70</u>              | <u>130</u>        |  |
| Bromochloromethane                          | <u>1</u>      | 17.9142            | Ō              | <u>20</u>                | <u>90</u>               | <u>70</u>              | 130               |  |
| ,2-Dichloropropane                          | 1             | 19.123             | 0              | 20                       | 96                      | 70                     | 130               |  |
| thyl acetate                                | 1             | 16.4229            | 0              | 20                       | 82                      | 50                     | 150               |  |
| <u>,4-Dioxane</u>                           | <u>1</u>      | <u>846.0999</u>    | <u>0</u>       | <u>1000</u>              | <u>85</u>               | <u>50</u>              | <u>150</u>        |  |
| 1-Dichloropropene                           | 1             | 19.4551            | 0              | 20                       | 97                      | 70                     | 130               |  |
| Chloroform                                  | 1             | <u>18.6015</u>     | Ō              | <u>20</u>                | <u>93</u>               | <u>70</u>              | 130               |  |
| Cyclohexane                                 | 1             | <u>20.3538</u>     | <u>Q</u>       | <u>20</u>                | <u>102</u>              | <u>70</u>              | 130               |  |
| ,2-Dichloroethane                           | 1             | <u>18.8121</u>     | Q              | <u>20</u>                | <u>94</u>               | <u>70</u>              | 130               |  |
| -Butanone                                   | 1             | <u>16.3287</u>     | <u>0</u>       | <u>20</u>                | <u>82</u>               | <u>50</u>              | 150               |  |
| 1.1-Trichloroethane                         | 1             | <u>19.6188</u>     | <u>0</u>       | <u>20</u>                | <u>98</u>               | <u>70</u>              | 130               |  |
| Carbon Tetrachloride                        | 1             | 20.0371            | <u>o</u><br>0  | <u>20</u>                | <u>100</u>              | <u>50</u>              | 150               |  |
| /inyl Acetate                               | 1             | 17.0932            |                | 20                       | 85                      | 50                     | 150               |  |
| romodichloromethane                         | 1             | <u>17.732</u>      | 0              | <u>20</u>                | <u>89</u>               | <u>70</u>              | 130               |  |
| Methylcyclohexane                           | <u>1</u><br>1 | 21.5222<br>18.3174 | <u>o</u><br>0  | <b>20</b><br>20          | <u>1<b>08</b></u><br>92 | <u><b>70</b></u><br>70 | 130<br>130        |  |
| ibromomethane<br>, <b>2-Dichloropropane</b> | 1             | 16.7163            | <u>o</u>       | <u>20</u>                | 84                      | 70<br>70               | 130               |  |
| richloroethene                              | 1             | 19.1903            | Q              | <u>20</u><br>20          | 9 <u>6</u>              | 70<br>70               | 130               |  |
| enzene                                      | 1 1           | 18.2021            | <u> </u>       | <u>20</u><br>20          | 9 <u>1</u>              | 70<br>70               | 130               |  |
| ert-Amyl methyl ether                       | 1             | 18.8385            | ŏ              | <u>20</u><br>20          | 94                      | <del>70</del>          | 130               |  |
| so-propylacetate                            | 1             | 15.5618            | ŏ              | 20                       | 78                      | 70                     | 130               |  |
| lethyl methacrylate                         | 1             | 14.2601            | Ö              | 20                       | 71                      | 70                     | 130               |  |
| ibromochloromethane                         | 1             | 15.5124            | <u>0</u>       | <u>20</u>                | <u>78</u>               | 70                     | 130               |  |
| -Chloroethylvinylether                      | 1             | 0                  | Ŏ              | <u>20</u>                | <u></u>                 | <del>70</del>          | 130               |  |
| is-1,3-Dichloropropene                      | 1             | 15.7326            | Q              | 20                       | <u>79</u>               | <u>70</u>              | 130               |  |
| rans-1,3-Dichloropropene                    | <u>i</u>      | 14.8433            | <u>0</u>       | 20                       | <del>74</del>           | <del>70</del>          | 130               |  |
| thyl methacrylate                           | 1             | 16.082             | Ō              | 20                       | 80                      | <del>70</del>          | 130               |  |
| 1,2-Trichloroethane                         | 1             | 15.2906            | <u>o</u>       | 20                       | <u>76</u>               | 70                     | 130               |  |
| .2-Dibromoethane                            | <u>1</u>      | 15.1934            | <u>o</u>       | <u>20</u>                | <del>76</del>           | <del>70</del>          | 130               |  |
| ,3-Dichloropropane                          | 1             | 15.3677            | Ō              | 20                       | <del>77</del>           | <del>70</del>          | 130               |  |
| -Methyl-2-Pentanone                         |               | 15.5515            | <u>o</u>       | <u>20</u>                | <u>78</u>               | 50                     | 150               |  |
| -Hexanone                                   | 1             | 15.0049            | Q              | 20                       | <del>75</del>           | 50                     | 150               |  |
| etrachloroethene                            | 1<br>1<br>1   | 20.7303            | 3.0005         | <u>20</u>                | 89                      | 50                     | 150               |  |
| oluene                                      | 1             | 17,5186            | <u>0</u>       | 20                       | 88                      | 70                     | 130               |  |
| ,1,1,2-Tetrachloroethane                    | 1             | 15.8102            | ō              | 20                       | 79                      | 70                     | 130               |  |
| hlorobenzene                                | 1             | 17.3205            | 0              | 20                       | 87                      | 70                     | 130               |  |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix        | : Aqueous       |          | Units: ug/L | QC Type: MSD   |           |            |
|-----------------------------|---------------|-----------------|----------|-------------|----------------|-----------|------------|
|                             |               | Spike           | Sample   | Expected    |                | Lower     | Upper      |
| Analyte:                    | Col           | Conc            | Conc     | Conc        | Recovery       | Limit     | Limit      |
| n-Butyl acrylate            | 1             | 14.6104         | 0        | 20          | 73             | 70        | 130        |
| n-Amyl acetate              | 1             | 14.5297         | 0        | 20          | 73             | 70        | 130        |
| <u>Bromoform</u>            | <u>1</u>      | <u> 14.1114</u> | Ō        | <u>20</u>   | <u>71</u>      | <u>70</u> | <u>130</u> |
| Ethylbenzene                | 1             | <u> 16.4196</u> | <u>0</u> | <u>20</u>   | <u>82</u>      | <u>70</u> | <u>130</u> |
| 1,1,2,2-Tetrachloroethane   | <u>1</u><br>1 | <u>13.1042</u>  | Ō        | <u>20</u>   | <u>66 *</u>    | <u>70</u> | <u>130</u> |
| Styrene                     | 1             | <u>16.7462</u>  | <u>0</u> | <u>20</u>   | <u>84</u>      | <u>70</u> | <u>130</u> |
| m&p-Xylenes                 | 1             | <u> 36.0392</u> | Q        | <u>40</u>   | <u>90</u>      | <u>70</u> | <u>130</u> |
| o-Xylene                    | 1             | <u>16.9822</u>  | <u>0</u> | <u>20</u>   | <u>85</u>      | <u>70</u> | <u>130</u> |
| trans-1,4-Dichloro-2-butene | 1             | 11.0163         | 0        | 20          | 55             | 50        | 150        |
| 1,3-Dichlorobenzene         | 1             | <u>15.7222</u>  | <u>0</u> | <u>20</u>   | <u>79</u>      | <u>70</u> | <u>130</u> |
| 1,4-Dichlorobenzene         | 1<br>1<br>1   | <u>15.7158</u>  | <u>0</u> | <u>20</u>   | <u>79</u>      | <u>70</u> | <u>130</u> |
| 1,2-Dichlorobenzene         |               | <u>15.3583</u>  | <u>o</u> | <u>20</u>   | <u>77</u>      | <u>70</u> | <u>130</u> |
| <u>Isopropylbenzene</u>     | 1             | <u> 17.7094</u> | <u>o</u> | <u>20</u>   | <u>89</u>      | <u>70</u> | <u>130</u> |
| Cyclohexanone               | 1             | 67.3504         | ō        | 100         | 67             | 50        | 150        |
| Camphene                    | 1             | 4.5856          | 0        | 20          | 23*            | 70        | 130        |
| 1,2,3-Trichloropropane      | 1             | 12.6233         | 0        | 20          | 63*            | 70        | 130        |
| 2-Chlorotoluene             | 1             | 16.0296         | 0        | 20          | 80             | 70        | 130        |
| p-Ethyltoluene              | 1             | 16.714          | 0        | 20          | 84             | 70        | 130        |
| 4-Chlorotoluene             | 1             | 16.3186         | 0        | 20          | 82             | 70        | 130        |
| n-Propylbenzene             | 1             | 16.8274         | 0        | 20          | 84             | 70        | 130        |
| Bromobenzene                | 1             | 12.8704         | 0        | 20          | 64*            | 70        | 130        |
| 1,3,5-Trimethylbenzene      | 1             | 17.4823         | 0        | 20          | 87             | 70        | 130        |
| Butyl methacrylate          | 1             | 15.65           | 0        | 20          | 78             | 70        | 130        |
| t-Butylbenzene              | 1             | 17.5787         | 0        | 20          | 88             | 70        | 130        |
| 1,2,4-Trimethylbenzene      | 1             | 16.4636         | 0        | 20          | 82             | 70        | 130        |
| sec-Butylbenzene            | 1             | 17.5111         | 0        | 20          | 88             | 70        | 130        |
| 4-Isopropyltoluene          | 1             | 17.8401         | 0        | 20          | 89             | 70        | 130        |
| n-Butylbenzene              | 1             | 17.061          | 0        | 20          | 85             | 70        | 130        |
| p-Diethylbenzene            | 1             | 17.435          | 0        | 20          | 87             | 70        | 130        |
| 1,2,4,5-Tetramethylbenzene  | 1             | 13.3881         | 0        | 20          | 67*            | 70        | 130        |
| 1,2-Dibromo-3-Chloropropane | <u>1</u>      | 13.5397         | <u>0</u> | <u>20</u>   | <u>68</u>      | <u>50</u> | <u>150</u> |
| Camphor                     | 1             | 102.3951        | ō        | 200         | <del>5</del> 1 | 20        | 150        |
| Hexachlorobutadiene         | 1             | 16.5884         | 0        | 20          | 83             | 50        | 150        |
| 1,2,4-Trichlorobenzene      | <u>1</u>      | 16.2181         | <u>0</u> | <u>20</u>   | <u>81</u>      | <u>70</u> | <u>130</u> |
| 1,2,3-Trichlorobenzene      | <u>1</u>      | 15.4277         | <u> </u> | <u>20</u>   | 77             | 70        | 130        |
| Naphthalene                 | ī             | 15.3928         | ō        | 20          | 77             | 50        | 150        |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

### Form3 RPD Data Laboratory Limits

QC Batch: MBS89427

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M140106.D

Duplicate(If applicable): 1M140105.D

AD19565-016(MSD) AD19565-016(MS) 10/5/2020 10:02:00 PM 10/5/2020 9:42:00 PM

Inst Blank(If applicable):

Method: 8260D

Matrix: Aqueous

Units: ug/L

QC Type: MSD

| ·                                     |                  | Dup/MSD/MBSD              | Sample/MS/MBS             |                    |                        |
|---------------------------------------|------------------|---------------------------|---------------------------|--------------------|------------------------|
| Analyte:                              | Column           | Conc                      | Conc                      | RPD                | Limit                  |
| Chlorodifluoromethane                 | 1                | 16.1283                   | 18.1942                   | 12                 | 30                     |
| Dichlorodifluoromethane               | 1                | 24.2863                   | 26.9766                   | 10                 | 30                     |
| Chloromethane                         | $\bar{1}$        | 18.1974                   | 20.8413                   | 14                 | <u>30</u>              |
| Bromomethane                          | <u>1</u>         | 7.9194                    | 21.1733                   | <u>91 *</u>        | 30                     |
| Vinyl Chloride                        | 1<br>1<br>1<br>1 | <u>20.2281</u>            | <u>22.78</u>              | <u>12</u>          | <u>40</u>              |
| Chloroethane                          | 1                | <u>22.3554</u>            | <u>24.6388</u>            | <u>9.7</u>         | <u>30</u>              |
| <u>Trichlorofluoromethane</u>         |                  | 23.1768                   | <b>25.4743</b>            | <u>9.4</u>         | <u>30</u>              |
| Ethyl ether                           | 1                | 18.0972                   | 19.9845                   | 9.9                | 30                     |
| Furan                                 | 1                | 18.7955                   | 19.7351                   | 4.9                | 30                     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1                | <u>21.4316</u>            | 23.2841                   | <u>8.3</u>         | <u>30</u>              |
| Methylene Chloride                    | 1                | <u>18.9417</u>            | <u>20.4648</u>            | <u>7.7</u>         | <u>30</u>              |
| Acrolein                              | 1                | 97.4876                   | 111.2411                  | 13                 | 30                     |
| Acrylonitrile                         | 1                | 19.0709                   | 21.3629                   | 11                 | 30                     |
| lodomethane                           | -                | 18.9089                   | 20.4168                   | 7.7                | 30                     |
| Acetone<br>Carbon Digulfido           | <u>1</u><br>1    | 82.7855<br>40.7667        | <u>97.1453</u><br>22.2342 | <u>16</u><br>12    | <u>30</u><br>30        |
| Carbon Disulfide<br>t-Butyl Alcohol   | <u>1</u><br>1    | <u>19.7667</u><br>32.0863 | <u>22.2342</u><br>56.6165 | 1 <u>2</u><br>55 * | <u>30</u><br>30        |
| n-Hexane                              | 1                | 22.2653                   | 23.9969                   | 7.5                | 30                     |
| Di-isopropyl-ether                    | 1                | 18.2855                   | 20.0641                   | 9.3                | 30                     |
| 1,1-Dichloroethene                    | 1                | 20.5983                   | 22.8547                   | 10                 | <u>40</u>              |
| Methyl Acetate                        | <u> </u>         | 17.3355                   | 19.3257                   | 11                 | <u>30</u>              |
| Methyl-t-butyl ether                  | <u> 1</u>        | 20.6626                   | 22.2721                   | 7.5                | <u>30</u>              |
| 1.1-Dichloroethane                    | 1                | 18.2139                   | 19.5198                   | 6.9                | 40                     |
| trans-1,2-Dichloroethene              | 1                | 20.2987                   | 22.341                    | 9.6                | 30                     |
| Ethyl-t-butyl ether                   | 1                | 18.1546                   | 19.9428                   | 9.4                | 30                     |
| cis-1,2-Dichloroethene                | 1                | <u> 19.0796</u>           | <u>20.7514</u>            | <u>8.4</u>         | <u>30</u>              |
| <b>Bromochloromethane</b>             | 1                | <u>17.9142</u>            | <u> 19.5275</u>           | <u>8.6</u>         | <u>30</u>              |
| 2,2-Dichloropropane                   | 1                | 19.123                    | 21.1147                   | 9.9                | 30                     |
| Ethyl acetate                         | 1                | 16.4229                   | 18.8454                   | 14                 | 30                     |
| 1.4-Dioxane                           | 1                | <u>846.0999</u>           | <u>996.4219</u>           | <u>16</u>          | <u>30</u>              |
| 1,1-Dichloropropene                   | 1                | 19.4551                   | 22.1176                   | 13                 | 30                     |
| Chloroform                            | 1<br>1<br>1      | <u>18.6015</u>            | <u>20.2317</u>            | <u>8.4</u>         | <u>40</u>              |
| Cyclohexane                           | 1                | <u>20.3538</u>            | 22.2202                   | <u>8.8</u>         | <u>30</u>              |
| 1,2-Dichloroethane                    |                  | <u>18.8121</u>            | <u>20.276</u>             | <u>7.5</u>         | <u>40</u>              |
| 2-Butanone                            | 1<br>1<br>1      | <u>16.3287</u>            | <u>19.8241</u>            | <u>19</u>          | <u>40</u>              |
| 1,1,1-Trichloroethane                 | 1                | <u>19.6188</u><br>20.0371 | <u>21.0741</u><br>22.0081 | <u>7.2</u>         | <u>30</u><br>40        |
| Carbon Tetrachloride Vinyl Acetate    | 1                | 17.0932                   | 19.1337                   | <u>9.4</u><br>11   | 30                     |
| Bromodichloromethane                  | <u>1</u>         | 17.732                    | 19.2872                   | 8.4                | <u>30</u>              |
| Methylcyclohexane                     | 1                | 21.5222                   | 22.8331                   | 5.9                | <u>30</u>              |
| Dibromomethane                        | <u>†</u>         | 18.3174                   | 20.4726                   | 11                 | <u>30</u>              |
| 1,2-Dichloropropane                   | <u>1</u>         | 16.7163                   | 18.5847                   | 11                 | <u>30</u>              |
| Trichloroethene                       | <u> </u>         | 19.1903                   | 21.3209                   | 11                 | <u>40</u>              |
| Benzene                               | 1                | 18.2021                   | 20.6489                   | <u>13</u>          | 40                     |
| tert-Amyl methyl ether                | ī                | 18.8385                   | 20.7559                   | 9.7                | 30                     |
| Iso-propylacetate                     | 1                | 15.5618                   | 17.3976                   | 11                 | 30                     |
| Methyl methacrylate                   | 1                | 14.2601                   | 16.5184                   | 15                 | 30                     |
| <u>Dibromochloromethane</u>           | 1                | <u>15.5124</u>            | <u>16.9141</u>            | <u>8.6</u>         | <u>30</u>              |
| 2-Chloroethylvinylether               | 1                | 0                         | 0                         | NA                 | 30                     |
| cis-1,3-Dichloropropene               | 1                | <u>15.7326</u>            | <u>17.319</u>             | <u>9.6</u>         | <u>30</u>              |
| trans-1,3-Dichloropropene             | 1                | <u>14.8433</u>            | <u>16.0388</u>            | 7.7                | <u>30</u>              |
| Ethyl methacrylate                    | 1                | 16.082                    | 17.7411                   | 9.8                | 30                     |
| 1,1,2-Trichloroethane                 | 1                | <u>15.2906</u>            | <u>16.9898</u>            | <u>11</u>          | <u>30</u>              |
| 1,2-Dibromoethane                     | 1                | <u>15.1934</u>            | <u>16.752</u>             | <u>9.8</u>         | <u>30</u>              |
| 1,3-Dichloropropane                   | 1                | 15.3677                   | 16.7518<br>47.7520        | 8.6                | 30                     |
| 4-Methyl-2-Pentanone                  | 1                | <u>15.5515</u>            | <u>17.7529</u>            | <u>13</u>          | <u>30</u>              |
| 2-Hexanone                            | 1                | <u>15.0049</u><br>20.7303 | <u>17.4061</u><br>22.2098 | <u>15</u><br>6.9   | <u>30</u><br><u>40</u> |
| <u>Tetrachloroethene</u><br>Toluene   | 1<br>1<br>1<br>1 | <u>20.7303</u><br>17.5186 | <u>22.2096</u><br>19.6264 | <u>9.9</u><br>11   | <u>40</u><br>40        |
| 1,1,1,2-Tetrachloroethane             | 1                | 15.8102                   | 17.2794                   | 8.9                | <del>30</del><br>30    |
| Chlorobenzene                         | 1                | <u>17.3205</u>            | 19.4803                   | 12                 | 40                     |
| * Indicates sutaids of limits         | -                |                           | ations=0 no recult        |                    |                        |

<sup>\* -</sup> Indicates outside of limits

# RPD Data Laboratory Limits QC Batch: MBS89427

| Method: 8260D               | Matrix: Aqu   | ieous Units:         | ug/L QC               | Type: MSI  |           |
|-----------------------------|---------------|----------------------|-----------------------|------------|-----------|
| Analyte:                    | Column        | Dup/MSD/MBSD<br>Conc | Sample/MS/MBS<br>Conc | RPD        | Limit     |
| n-Butyl acrylate            | 1             | 14.6104              | 15.6783               | 7.1        | 30        |
| n-Amyl acetate              | i             | 14.5297              | 16.0985               | 10         | 30        |
| Bromoform                   | 1             | 14.1114              | <u>15.5451</u>        | 9.7        | <u>30</u> |
| Ethylbenzene                | 1             | 16.4196              | 17.869                | 8.5        | <u>30</u> |
| 1,1,2,2-Tetrachloroethane   | <u>1</u><br>1 | 13.1042              | 14.8354               | <u>12</u>  | <u>30</u> |
| Styrene                     | 1             | 16.7462              | 18.6449               | 11         | <u>30</u> |
| m&p-Xylenes                 | 1<br>1<br>1   | 36.0392              | 39.471                | <u>9.1</u> | <u>30</u> |
| o-Xylene                    | 1             | 16.9822              | 18.7854               | <u>10</u>  | <u>30</u> |
| trans-1,4-Dichloro-2-butene | 1             | 11.0163              | 12.8102               | 15         | 30        |
| 1,3-Dichlorobenzene         | 1             | 15.7222              | 17.3696               | 10         | <u>30</u> |
| 1,4-Dichlorobenzene         | 1<br>1<br>1   | 15.7158              | 17.1505               | 8.7        | 40        |
| 1,2-Dichlorobenzene         | 1             | 15.3583              | 16.7473               | 8.7        | 40        |
| Isopropylbenzene            | ĩ             | 17.7094              | 19.2926               | 8.6        | <u>30</u> |
| Cyclohexanone               | ī             | 67.3504              | 74.1653               | 9.6        | 30        |
| Camphene                    | 1             | 4.5856               | 5.8485                | 24         | 30        |
| 1,2,3-Trichloropropane      | 1             | 12.6233              | 14.8412               | 16         | 30        |
| 2-Chlorotoluene             | 1             | 16.0296              | 17.4967               | 8.8        | 30        |
| p-Ethyltoluene              | 1             | 16.714               | 19.0354               | 13         | 30        |
| 4-Chlorotoluene             | 1             | 16.3186              | 17.2172               | 5.4        | 30        |
| n-Propylbenzene             | 1             | 16.8274              | 18.0381               | 6.9        | 40        |
| Bromobenzene                | 1             | 12.8704              | 15.3382               | 17         | 30        |
| 1,3,5-Trimethylbenzene      | 1             | 17.4823              | 17.9324               | 2.5        | 30        |
| Butyl methacrylate          | 1             | 15.65                | 16.3538               | 4.4        | 30        |
| t-Butylbenzene              | 1             | 17.5787              | 18.7799               | 6.6        | 30        |
| 1,2,4-Trimethylbenzene      | 1             | 16.4636              | 17.9536               | 8.7        | 30        |
| sec-Butylbenzene            | 1             | 17.5111              | 18.478                | 5.4        | 40        |
| 4-Isopropyltoluene          | 1             | 17.8401              | 18.6868               | 4.6        | 30        |
| n-Butylbenzene              | 1             | 17.061               | 18.0268               | 5.5        | 30        |
| p-Diethylbenzene            | 1             | 17.435               | 18.4411               | 5.6        | 30        |
| 1,2,4,5-Tetramethylbenzene  | 1             | 13.3881              | 14.2411               | 6.2        | 30        |
| 1,2-Dibromo-3-Chloropropane | 1             | <u>13.5397</u>       | <u>15.3289</u>        | <u>12</u>  | <u>30</u> |
| Camphor                     | 1             | 102.3951             | 125.6282              | 20         | 30        |
| Hexachlorobutadiene         | 1             | 16.5884              | 18.737                | 12         | 30        |
| 1,2,4-Trichlorobenzene      | <u>1</u><br>1 | <u>16.2181</u>       | <u>17.5302</u>        | <u>7.8</u> | <u>30</u> |
| 1,2,3-Trichlorobenzene      |               | <u>15.4277</u>       | <u>17.0545</u>        | <u>10</u>  | <u>30</u> |
| Naphthalene                 | 1             | 15.3928              | 17.6604               | 14         | 30        |

## Form3

Recovery Data Laboratory Limits QC Batch: MBS89437 Data File Sample ID: Analysis Date Spike or Dup: 11M83605.D MBS89437 10/6/2020 12:32:00 PM Non Spike(If applicable): Inst Blank(If applicable): Method: 8260D Units: mg/Kg Matrix: Soil QC Type: MBS Spike Expected Sample Lower Upper Analyte: Col Conc Conc Conc Recovery Limit Limit Chlorodifluoromethane 77.568 0 50 1551 20 130 <u>50</u> Dichlorodifluoromethane <u>53.5884</u> Q <u> 107</u> <u>20</u> <u>130</u> 104 Chloromethane 51.9308 0 <u>50</u> <u>20</u> <u>130</u> <u>50</u> **Bromomethane** 48.8119 0 98 <u>20</u> 130 1 <u>50</u> Vinyl Chloride <u>58.9686</u> 0 <u>118</u> <u>20</u> <u>130</u> Q <u>50</u> 107 <u>20</u> <u>130</u> **Chloroethane** 1 <u>53.3523</u> <u>50</u> <u>20</u> 50 <u>57.3199</u> <u>0</u> **Trichlorofluoromethane** <u>115</u> 130 Ethyl ether 41.2312 0 50 82 130 46.5452 0 50 93 50 130 Furan 58.8158 1,1,2-Trichloro-1,2,2-trifluoroethane 0 <u>50</u> 118 <u>50</u> <u>130</u> 1 **Methylene Chloride** 43.8301 50 <u>88</u> <u>50</u> 130 ō 105 20 130 200 209.6777 Acrolein Acrylonitrile 40.8836 0 50 82 20 130 Iodomethane 37.6546 0 50 75 50 130 200 <u>87</u> <u>20</u> <u>130</u> <u>Acetone</u> <u>173.8448</u> 0 Carbon Disulfide 130 56.6392 0 50 <u>113</u> <u>50</u> t-Butyl Alcohol 172.8681 0 200 20 130 86 0 50 n-Hexane 65.4581 131 50 130

45.2655 0 50 91 50 130 Di-isopropyl-ether 0 50 50 1,1-Dichloroethene 55.6655 111 130 1 **Methyl Acetate** 36.9114 <u>0</u> <u>50</u> <u>74</u> <u>50</u> <u>130</u> 130 42.0828 0 <u>50</u> 84 <u>50</u> Methyl-t-butyl ether 1,1-Dichloroethane 48.9497 0 50 98 50 130 <u>50</u> trans-1,2-Dichloroethene 52.6825 105 <u>50</u> <u>130</u> 43.8062 ō 50 88 50 130 Ethyl-t-butyl ether 50 50 cis-1,2-Dichloroethene 50.1009 0 100 130 1 **Bromochloromethane** 44.7924 0 <u>50</u> <u>90</u> <u>50</u> 130 59.0836 50 2,2-Dichloropropane 0 118 50 130 50 130 Ethyl acetate 40.8694 0 50 82 1,4-Dioxane 1797.668 Q 2500 <u>72</u> <u>50</u> 130 0 114 50 130 1,1-Dichloropropene 57.1549 50 48.7815 0 <u>50</u> 98 <u>50</u> 130 Chloroform 1 Cyclohexane 1 62.4757 0 50 125 50 130 Q <u>50</u> <u>50</u> 130 1,2-Dichloroethane <u>43.3747</u> <u>87</u> 2-Butanone 1 35.2565 0 <u>50</u> <u>71</u> <u>20</u> 130 1,1,1-Trichloroethane 53.1388 0 <u>50</u> 106 <u>50</u> 130 1 <u>50</u> <u>50</u> 130 Carbon Tetrachloride 56.4748 <u>113</u> ō 50 50 46.0324 92 130 Vinyl Acetate 0 <u>50</u> <u>50</u> 130 **Bromodichloromethane** 46.2447 92 **Methylcyclohexane** <u>66.915</u> 0 <u>50</u> 134 <u>50</u> <u>130</u> 50 0 87 50 130 43,5036 Dibromomethane <u>50</u> <u>50</u> 1,2-Dichloropropane 47.0692 Q <u>94</u> <u>130</u> **Trichloroethene** 54.1602 <u>0</u> <u>50</u> <u>108</u> <u>50</u> <u>130</u> 0 <u>50</u> 101 <u>50</u> <u>130</u> 50.5717 **Benzene** tert-Amyl methyl ether 44.603 0 50 89 50 130 39.6661 50 79 50 Iso-propylacetate 0 130 41.3893 0 50 83 50 130 Methyl methacrylate **Dibromochloromethane** 44.2055 0 <u>50</u> 88 <u>50</u> 130 1 2-Chloroethylvinylether 42.6556 0 50 85 50 130 0 <u>50</u> <u>96</u> <u>50</u> 130 cis-1,3-Dichloropropene <u>47.9393</u> 0 50 130 trans-1,3-Dichloropropene 47.3337 <u>95</u> <u>50</u> Ethyl methacrylate 43.8346 0 50 88 50 130 42.9238 <u>0</u> <u>50</u> <u>86</u> <u>50</u> 130 1,1,2-Trichloroethane <u>0</u> 130 1,2-Dibromoethane 44.4604 <u>50</u> <u>89</u> <u>50</u> 1,3-Dichloropropane 43.6017 0 50 87 50 130 0 <u>50</u> <u>80</u> <u>20</u> 130 4-Methyi-2-Pentanone <u>39.9957</u> 1 38.1783 0 50 76 <u>20</u> 130 2-Hexanone 0 50 <u>50</u> 130 Tetrachloroethene 55.4299 111 <u>50</u> <u>50</u> <u>130</u> Toluene 1 51.0474 0 <u>102</u> 1,1,1,2-Tetrachloroethane 44.656 0 50 89 50 130 Chlorobenzene 50.0491 0 <u>50</u> 100 50 <u>130</u> 1

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix        | c Soil         |          | Units: mg/k | g QC Typ      | e: MBS    |            |
|-----------------------------|---------------|----------------|----------|-------------|---------------|-----------|------------|
|                             |               | Spike          | Sample   | Expected    |               | Lower     | Uppe       |
| Analyte:                    | Col           | Conc           | Conc     | Conc        | Recovery      | Limit     | Limit      |
| n-Butyl acrylate            | 1             | 41.4245        | 0        | 50          | 83            | 50        | 130        |
| n-Amyl acetate              | 1             | 34.0804        | 0        | 50          | 68            | 50        | 130        |
| <u>Bromoform</u>            | <u>1</u>      | <u> 39.931</u> | <u>o</u> | <u>50</u>   | <u>80</u>     | <u>20</u> | <u>130</u> |
| Ethylbenzene                | 1             | <u>51.2454</u> | <u>o</u> | <u>50</u>   | <u>102</u>    | <u>50</u> | <u>130</u> |
| 1,1,2,2-Tetrachloroethane   | <u>1</u><br>1 | <u>41.3331</u> | <u>0</u> | <u>50</u>   | <u>83</u>     | <u>50</u> | <u>130</u> |
| Styrene                     | 1             | 44.4482        | <u>o</u> | <u>50</u>   | <u>89</u>     | <u>50</u> | <u>130</u> |
| m&p-Xylenes                 | <u>1</u>      | 102.5564       | <u>o</u> | <u>100</u>  | <u>103</u>    | <u>50</u> | <u>130</u> |
| o-Xylene                    | 1             | <u>45.3515</u> | <u>o</u> | <u>50</u>   | <u>91</u>     | <u>50</u> | <u>130</u> |
| trans-1,4-Dichloro-2-butene | 1             | 49.7748        | 0        | 50          | 100           | 20        | 130        |
| 1,3-Dichlorobenzene         | 1             | <u>47.0094</u> | <u>0</u> | <u>50</u>   | <u>94</u>     | <u>50</u> | <u>130</u> |
| 1,4-Dichlorobenzene         | 1             | <u>49.6531</u> | <u>o</u> | <u>50</u>   | <u>99</u>     | <u>50</u> | <u>130</u> |
| 1,2-Dichlorobenzene         | <u>1</u>      | <u>45.5727</u> | <u>0</u> | <u>50</u>   | <u>91</u>     | <u>50</u> | <u>130</u> |
| Isopropyibenzene            | 1             | <u>50.0973</u> | <u>0</u> | <u>50</u>   | <u>100</u>    | <u>50</u> | <u>130</u> |
| Cyclohexanone               | 1             | 180.4929       | 0        | 250         | 72            | 50        | 130        |
| Camphene                    | 1             | 58.8199        | 0        | 50          | 118           | 50        | 130        |
| 1,2,3-Trichloropropane      | 1             | 42.7615        | 0        | 50          | 86            | 50        | 130        |
| 2-Chlorotoluene             | 1             | 47.3065        | 0        | 50          | 95            | 50        | 130        |
| p-Ethyltoluene              | 1             | 50.8223        | 0        | 50          | 102           | 50        | 130        |
| 4-Chlorotoluene             | 1             | 47.4267        | 0        | 50          | 95            | 50        | 130        |
| n-Propylbenzene             | 1             | 54.4153        | 0        | 50          | 109           | 50        | 130        |
| Bromobenzene                | 1             | 49.2042        | 0        | 50          | 98            | 50        | 130        |
| 1,3,5-Trimethylbenzene      | 1             | 49.5305        | 0        | 50          | 99            | 50        | 130        |
| Butyl methacrylate          | 1             | 38.9679        | 0        | 50          | 78            | 50        | 130        |
| t-Butylbenzene              | 1             | 47.9269        | 0        | 50          | 96            | 50        | 130        |
| 1,2,4-Trimethylbenzene      | 1             | 46.6171        | 0        | 50          | 93            | 50        | 130        |
| sec-Butylbenzene            | 1             | 50.367         | 0        | 50          | 101           | 50        | 130        |
| 4-Isopropyltoluene          | 1             | 57.0881        | 0        | 50          | 114           | 50        | 130        |
| n-Butylbenzene              | 1             | 53.2127        | 0        | 50          | 106           | 50        | 130        |
| p-Diethylbenzene            | 1             | 51.9149        | 0        | 50          | 104           | 50        | 130        |
| 1,2,4,5-Tetramethylbenzene  | 1             | 55.627         | 0        | 50          | 111           | 50        | 130        |
| 1,2-Dibromo-3-Chloropropane | 1             | 38.0211        | <u>o</u> | 50          | <u>76</u>     | 50        | 130        |
| Camphor                     | 1             | 377.7961       | ō        | 500         | <del>76</del> | 50        | 130        |
| Hexachlorobutadiene         | 1             | 62.0531        | 0        | 50          | 124           | 50        | 130        |
| 1,2,4-Trichlorobenzene      | <u>1</u>      | 55.7168        | <u>0</u> | 50          | 111           | 50        | 130        |
| 1,2,3-Trichlorobenzene      | 1             | 51.6516        | <u>0</u> | 50          | 103           | 50        | 130        |
| Naphthalene                 | Ť             | 45.6051        | Ŏ        | 50          | 91            | 50        | 130        |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Data File Spike or Dup: 11M83606.D Sample ID: AD19581-008(MS) Analysis Date

Non Spike(If applicable): 11M83610.D

AD19581-008

10/6/2020 12:52:00 PM 10/6/2020 2:11:00 PM

Inst Blank(If applicable): Method: 8260D Matrix: Soil Units: mg/Kg QC Type: MS Spike Upper Sample Expected Lower Analyte: Col Conc Conc Conc Recovery Limit Chlorodifluoromethane 63,6128 0 50 127 20 130 **Dichlorodifluoromethane** 49.804 0 50 100 20 130 1 **Chloromethane** 45.3081 0 <u>50</u> <u>91</u> <u>20</u> **130** 1 **Bromomethane** 0 <u>50</u> <u>80</u> <u>20</u> <u>130</u> <u>40.1196</u> <u>20</u> Vinyl Chloride 51.5215 0 <u>50</u> 103 130 0 <u>50</u> <u>91</u> <u>20</u> 130 **Chloroethane** 45.6529 <u>20</u> 0 <u>50</u> <u>98</u> <u>130</u> **Trichlorofluoromethane** 49.0757 Ethyl ether 0 50 71 50 130 35.4424 50 50 82 130 Furan 40.8513 0 0 130 1,1,2-Trichloro-1,2,2-trifluoroethane 45.3986 <u>50</u> <u>91</u> <u>50</u> **Methylene Chloride** 33.4968 0 <u>50</u> <u>67</u> 50 130 135.6347 0 200 68 20 130 Acrolein Acrylonitrile n 50 62 20 130 30.973 34.8868 0 50 70 50 130 Iodomethane Acetone 168.533 0 200 <u>84</u> <u>20</u> 130 1 Carbon Disulfide 32.9356 0 <u>50</u> <u>66</u> <u>50</u> <u>130</u> 0 200 83 20 130 t-Butyl Alcohol 166.807 30.3746 50 61 50 130 n-Hexane 0 50 76 50 130 Di-isopropyl-ether 37.8674 0 <u>95</u> 130 47.6455 <u>50</u> <u>50</u> 1,1-Dichloroethene 39.6238 Q <u>50</u> <u>79</u> <u>50</u> <u>130</u> **Methyl Acetate** <u>50</u> <u>71</u> <u>50</u> 35.5374 0 <u>130</u> Methyl-t-butyl ether 41.917 0 <u>50</u> 84 <u>50</u> 130 1,1-Dichloroethane 50 79 50 trans-1,2-Dichloroethene 39.5127 130 50 73 50 Ethyl-t-butyl ether 36.4899 0 130 <u>50</u> <u>75</u> 37.6664 0 <u>50</u> <u>130</u> cis-1,2-Dichloroethene **Bromochloromethane** 33.4037 0 50 67 <u>50</u> 130 2,2-Dichloropropane 49.5906 0 50 99 50 130 46 50 0 50 130 Ethyl acetate 23.1654 2056.231 1,4-Dioxane <u> 2500</u> <u>82</u> 130 <u>50</u> 1,1-Dichloropropene 42.4548 0 50 85 50 130 0 <u>50</u> <u>77</u> <u>50</u> <u>130</u> Chloroform 38.4345 0 <u>50</u> 74 50 130 36.7569 **Cyclohexane** 0 50 66 50 1,2-Dichloroethane 33.1191 130 <u>50</u> <u>20</u> <u> 27.6795</u> 0 <u>55</u> <u>130</u> 2-Butanone 85 <u>50</u> 130 1,1,1-Trichloroethane 42.5047 0 <u>50</u> 50 85 <u>50</u> 130 Carbon Tetrachloride 42.3359 50 0 50 50 130 Vinyl Acetate 24.7653 0 <u>50</u> <u>67</u> <u>50</u> <u>130</u> 33.4904 **Bromodichloromethane** 1 <u>50</u> 28.8702 0 50 <u>58</u> 130 **Methylcyclohexane** Dibromomethane 31.1515 0 50 62 50 130 <u>50</u> <u>74</u> <u>50</u> 130 1,2-Dichloropropane 36.7552 0 **Trichloroethene** 38,6086 50 **77** <u>50</u> 130 <u>50</u> <u>79</u> <u>50</u> 130 **Benzene** <u>39.6857</u> 0 50 73 50 130 tert-Amyl methyl ether 36.5315 50 55 50 130 Iso-propylacetate 27.6892 0 50 68 50 Methyl methacrylate 34.2259 0 130 130 29.4945 <u>50</u> <u>59</u> <u>50</u> **Dibromochloromethane** 2-Chloroethylvinylether 31.5338 50 63 50 130 <u>50</u> cis-1,3-Dichloropropene 33.5317 <u>67</u> <u>50</u> **130** 1 <u>50</u> trans-1,3-Dichloropropene **29.4039** <u>50</u> <u>59</u> <u>130</u> 50 32.3995 0 50 65 130 Ethyl methacrylate 1,1,2-Trichloroethane 30.5938 <u>50</u> <u>61</u> <u>50</u> 130 1,2-Dibromoethane 29.6027 <u>50</u> <u>59</u> <u>50</u> <u>130</u> 0 50 63 50 130 31.496 1,3-Dichloropropane <u>50</u> <u>61</u> <u>20</u> 130 4-Methyl-2-Pentanone 30.5413 <u>50</u> <u>20</u> <u>61</u> <u>130</u> 30.3706 2-Hexanone 32.8792 0 50 <u>66</u> <u>50</u> <u>130</u> <u>Tetrachloroethene</u> 50 72 <u>50</u> **130** Toluene 1 35.8936 0 50 56 50 130 1,1,1,2-Tetrachloroethane 28.2133 0 29.2558 130 <u>50</u> 0 <u>59</u> <u>50</u>

1\_\_

Chlorobenzene

<sup># -</sup> Indicates outside of standard limits but within method exceedance limits \* - Indicates outside of limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix           | c: Soil       |                      | Units: mg/K      | g QC Typ      | e: MS          |               |
|-----------------------------|------------------|---------------|----------------------|------------------|---------------|----------------|---------------|
| Analyte:                    | Col              | Spike<br>Conc | Sample<br>Conc       | Expected<br>Conc | Recovery      | Lower<br>Limit | Uppe<br>Limit |
| n-Butyl acrylate            | 1                | 27.8252       | 0                    | 50               | 56            | 50             | 130           |
| n-Amyl acetate              | 1                | 15.0233       | Ó                    | 50               | 30*           | 50             | 130           |
| Bromoform                   | 1                | 27.5533       | Q                    | 50               | 55            | 20             | 130           |
| Ethylbenzene                | <u>1</u>         | 35.3871       | <u>o</u>             | 50               | 71            | <del>50</del>  | 130           |
| 1,1,2,2-Tetrachloroethane   | <u>1</u>         | 29.4239       | <u> </u>             | <u>50</u>        | <u>59</u>     | <u>50</u>      | 130           |
| Styrene                     | 1                | 27.3642       | Ō                    | 50               | <u>55</u>     | 50             | 130           |
| m&p-Xylenes                 | <u>1</u>         | 66.1421       | <u> </u>             | 100              | <u>66</u>     | <u>50</u>      | 130           |
| o-Xylene                    | $\bar{1}$        | 30.2509       | <u></u>              | 50               | <u>61</u>     | <del>50</del>  | 130           |
| trans-1,4-Dichloro-2-butene | ī                | 29.5247       | ō                    | 50               | <del>59</del> | 20             | 130           |
| 1,3-Dichlorobenzene         | 1                | 20.3261       | <u>0</u>             | <u>50</u>        | <u>41 °</u>   | <u>50</u>      | 130           |
| 1,4-Dichlorobenzene         | 1<br>1<br>1<br>1 | 21.1709       | <u>ō</u>             | <u>50</u>        | 42*           | 50             | 130           |
| 1,2-Dichlorobenzene         | 1                | 19.1137       | ō                    | 50               | 38*           | 50             | 130           |
| Isopropylbenzene            | 1                | 29.0838       | <u>0</u><br><u>0</u> | 50               | 58            | <u>50</u>      | 130           |
| Cyclohexanone               | 1                | 238.1763      | ō                    | 250              | <del>95</del> | 50             | 130           |
| Camphene                    | 1                | 23.8662       | 0                    | 50               | 48*           | 50             | 130           |
| 1,2,3-Trichloropropane      | 1                | 28.9165       | 0                    | 50               | 58            | 50             | 130           |
| 2-Chlorotoluene             | 1                | 24.654        | 0                    | 50               | 49*           | 50             | 130           |
| p-Ethyltoluene              | 1                | 26.096        | 0                    | 50               | 52            | 50             | 130           |
| 4-Chlorotoluene             | 1                | 24.8794       | 0                    | 50               | 50            | 50             | 130           |
| n-Propylbenzene             | 1                | 28.3795       | 0                    | 50               | 57            | 50             | 130           |
| Bromobenzene                | 1                | 27.9138       | 0                    | 50               | 56            | 50             | 130           |
| 1,3,5-Trimethylbenzene      | 1                | 25.0632       | 0                    | 50               | 50            | 50             | 130           |
| Butyl methacrylate          | 1                | 34.1465       | 0                    | 50               | 68            | 50             | 130           |
| t-Butylbenzene              | 1                | 23.2086       | 0                    | 50               | 46*           | 50             | 130           |
| 1,2,4-Trimethylbenzene      | 1                | 22.9269       | 0                    | 50               | 46*           | 50             | 130           |
| sec-Butylbenzene            | 1                | 21.8548       | 0                    | 50               | 44*           | 50             | 130           |
| 4-Isopropyltoluene          | 1                | 25.223        | 0                    | 50               | 50            | 50             | 130           |
| n-Butylbenzene              | 1                | 20.1028       | 0                    | 50               | 40*           | 50             | 130           |
| p-Diethylbenzene            | 1                | 20.2894       | 0                    | 50               | 41*           | 50             | 130           |
| 1,2,4,5-Tetramethylbenzene  | 1                | 19.4588       | 0                    | 50               | 39*           | 50             | 130           |
| 1,2-Dibromo-3-Chloropropane | 1                | 22.2516       | Q                    | 50               | 45*           | 50             | 130           |
| Camphor                     | 1                | 330.3438      | Õ                    | 500              | 66            | 50             | 130           |
| Hexachlorobutadiene         | 1                | 14.0105       | Ö                    | 50               | 28*           | 50             | 130           |
| 1,2,4-Trichlorobenzene      | <u>1</u>         | 14.7182       | <u>0</u>             | 50               | <u>29 *</u>   | <u>50</u>      | 130           |
| 1,2,3-Trichlorobenzene      | 1                | 13.5627       | <u>o</u>             | <del>50</del>    | 27 *          | 50             | 130           |
| Naphthalene                 | 1                | 15.622        | ō                    | 50               | 31*           | 50             | 130           |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

## Form3 Recovery Data Laboratory Limits

QC Batch: MBS89437

Data File

Sample ID:

Analysis Date

Spike or Dup: 11M83607.D Non Spike(If applicable): 11M83610.D

AD19581-008(MSD) AD19581-008 10/6/2020 1:11:00 PM 10/6/2020 2:11:00 PM

| Method: 8260D                                 | Matrix        | c Soil                           |                      | Units: mg/Kg QC         |                        | QC Type: MSD           |                   |
|-----------------------------------------------|---------------|----------------------------------|----------------------|-------------------------|------------------------|------------------------|-------------------|
| Analyte:                                      | Col           | Spike<br>Conc                    | Sample<br>Conc       | Expected<br>Conc        | Recovery               | Lower<br>Limit         | Upper<br>Limit    |
| Chlorodifluoromethane                         | 1             | 61.9909                          | 0                    | 50                      | 124                    | 20                     | 130               |
| Dichlorodifluoromethane                       | 1             | 50.8261                          | <u>o</u>             | <u>50</u>               | 102                    | 20                     | 130               |
| Chloromethane                                 | <u>1</u>      | 46.2118                          | Q                    | 50                      | 92                     | 20                     | 130               |
| <b>Bromomethane</b>                           | 1 1           | 41.6653                          | <u>o</u>             | <u>50</u>               | <u>83</u>              | 20                     | <u>130</u>        |
| Vinyl Chloride                                |               | <u>50.8914</u>                   | <u> </u>             | <u>50</u>               | <u>102</u>             | <u>20</u>              | <u>130</u>        |
| Chloroethane                                  | 1             | <u>47.2382</u>                   | <u>0</u>             | <u>50</u>               | <u>94</u>              | <u>20</u>              | <u>130</u>        |
| Trichlorofluoromethane Ethyl ether            | 1             | <b>51.1415</b><br>35.8168        | <u>o</u><br>o        | <u><b>50</b></u><br>50  | <u>102</u><br>72       | <u>20</u><br>50        | <u>130</u><br>130 |
| Furan                                         | 1             | 41.5266                          | 0                    | 50                      | 83                     | 50                     | 130               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane         |               | 46.542                           | <u>0</u>             | <u>50</u>               | 93                     | <u>50</u>              | 130               |
| Methylene Chloride                            | 1             | 35.9595                          | Ō                    | <u>50</u>               | <del>72</del>          | <u>50</u>              | 130               |
| Acrolein                                      | 1             | 128.1387                         | 0                    | 200                     | 64                     | 20                     | 130               |
| Acrylonitrile                                 | 1             | 32.2049                          | 0                    | 50                      | 64                     | 20                     | 130               |
| Iodomethane                                   | 1             | 37.3528                          | 0                    | 50                      | 75                     | 50                     | 130               |
| Acetone                                       | 1             | <u>166.5234</u>                  | <u>0</u>             | <u>200</u>              | <u>83</u>              | <u>20</u>              | <u>130</u>        |
| Carbon Disulfide                              | <u>1</u><br>1 | <b>32.6021</b><br>162.3655       | <u>0</u><br>0        | <u><b>50</b></u><br>200 | <u>65</u><br>81        | <u>50</u><br>20        | <u>130</u><br>130 |
| t-Butyl Alcohol<br>n-Hexane                   | 1             | 30.9758                          | 0                    | 50<br>50                | 62                     | 50<br>50               | 130               |
| Di-isopropyl-ether                            | i             | 40.1001                          | Ö                    | 50                      | 80                     | 50                     | 130               |
| 1,1-Dichloroethene                            | 1             | 48.3917                          | <u>0</u>             | <u>50</u>               | 97                     | <u>50</u>              | 130               |
| Methyl Acetate                                | <u>1</u>      | 43.8993                          | <u> </u>             | <u>50</u>               | <u>88</u>              | <u>50</u>              | <u>130</u>        |
| Methyl-t-butyl ether                          | <u>1</u><br>1 | 38.3966                          | Q                    | <u>50</u>               | <u>77</u>              | <u>50</u>              | <u>130</u>        |
| 1,1-Dichloroethane                            | <u>1</u>      | <u>43.0371</u>                   | <u>0</u>             | <u>50</u>               | <u>86</u>              | <u>50</u>              | <u>130</u>        |
| trans-1,2-Dichloroethene                      | 1             | <u>39.4986</u>                   | <u>0</u>             | <u>50</u>               | <u>79</u>              | <u>50</u>              | 130               |
| Ethyl-t-butyl ether                           | 1             | 38.5848                          | 0                    | 50<br>50                | 77                     | 50                     | 130               |
| cis-1,2-Dichloroethene Bromochloromethane     | 11            | <u>38.3614</u><br>34.2171        | <u>0</u><br>0        | <u>50</u><br>50         | <u>77</u><br><u>68</u> | <u>50</u><br>50        | <u>130</u><br>130 |
| 2,2-Dichloropropane                           | 1             | 51.0784                          | 0                    | <u>50</u><br>50         | 102                    | <u>50</u><br>50        | 130               |
| Ethyl acetate                                 | i             | 20.5274                          | Ŏ                    | 50                      | 41*                    | 50                     | 130               |
| 1,4-Dioxane                                   | <u>1</u>      | 2091.449                         | <u>0</u>             | 2500                    | 84                     | 50                     | 130               |
| 1,1-Dichloropropene                           | 1             | 42.0036                          | ō                    | 50                      | 84                     | 50                     | 130               |
| Chloroform                                    | <u>1</u>      | <u>40.3512</u>                   | 0                    | <u>50</u>               | <u>81</u>              | <u>50</u>              | <u>130</u>        |
| Cyclohexane                                   | 1             | <u>36.6843</u>                   | <u>0</u>             | <u>50</u>               | <u>73</u>              | <u>50</u>              | <u>130</u>        |
| 1,2-Dichloroethane                            | 1             | <u>33.7069</u>                   | <u>0</u>             | <u>50</u>               | <u>67</u>              | <u>50</u>              | 130               |
| 2-Butanone                                    | 1 1           | 30.1425                          | <u>0</u>             | <u>50</u>               | <u>60</u>              | <u>20</u>              | 130               |
| 1,1,1-Trichloroethane Carbon Tetrachloride    | 1             | <u>44.6729</u><br>42.9627        | <u>0</u><br><u>0</u> | <u>50</u><br>50         | <u>89</u><br>86        | <u>50</u><br>50        | <u>130</u><br>130 |
| Vinyl Acetate                                 | 1             | 23.0711                          | 0                    | <u>50</u><br>50         | 46 *                   | <u>50</u><br>50        | 130               |
| Bromodichloromethane                          | 1             | 34.5966                          | <u>o</u>             | <u>50</u>               | <u>69</u>              | <u>50</u>              | 130               |
| Methylcyclohexane                             | 1             | 30.0371                          | Ō                    | <u>50</u>               | <u>60</u>              | <u>50</u>              | 130               |
| Dibromomethane                                | 1             | 31.0797                          | ō                    | 50                      | 62                     | 50                     | 130               |
| 1,2-Dichloropropane                           | 1             | <u>37.6126</u>                   | Q                    | <u>50</u>               | <u>75</u>              | <u>50</u>              | <u>130</u>        |
| <u>Trichloroethene</u>                        | 1             | <u> 38.9105</u>                  | <u>0</u>             | <u>50</u>               | <u>78</u>              | <u>50</u>              | <u>130</u>        |
| Benzene                                       | 1             | 41.0714                          | Õ                    | <u>50</u>               | <u>82</u>              | <u>50</u>              | <u>130</u>        |
| tert-Amyl methyl ether                        | 1             | 38.095<br>25.1516                | 0<br>0               | 50<br>50                | 76<br>50               | 50<br>50               | 130<br>130        |
| Iso-propylacetate Methyl methacrylate         | 1             | 40.7145                          | 0                    | 50<br>50                | 81                     | 50<br>50               | 130               |
| Dibromochloromethane                          | 1             | 30.2015                          | <u>0</u>             | <u>50</u>               | <u>60</u>              | <u>50</u>              | 130               |
| 2-Chloroethylvinylether                       | <u>†</u>      | 31.8668                          | Ŏ                    | <del>50</del>           | <del>50</del><br>64    | 50                     | 130               |
| cis-1,3-Dichloropropene                       | 1             | 33.6566                          | <u>0</u>             | <u>50</u>               | <u>67</u>              | <u>50</u>              | 130               |
| trans-1,3-Dichloropropene                     | 1             | 29.1333                          | <u>0</u>             | <u>50</u>               | <u>58</u>              | <u>50</u>              | 130               |
| Ethyl methacrylate                            | 1             | 29.9356                          | 0                    | 50                      | 60                     | 50                     | 130               |
| 1,1,2-Trichloroethane                         | 1             | <u>32.0341</u>                   | <u>0</u>             | <u>50</u>               | <u>64</u>              | <u>50</u>              | <u>130</u>        |
| 1,2-Dibromoethane                             | 1             | 30.6145                          | <u>Q</u>             | <u>50</u>               | <u>61</u>              | <u>50</u>              | 130<br>130        |
| 1,3-Dichloropropane                           | 1             | 31.0659                          | 0                    | 50<br>50                | 62<br>64               | 50<br>20               | 130               |
| 4-Methyl-2-Pentanone<br>2-Hexanone            | 1             | <u>32.0603</u><br><u>29.6946</u> | <u>ō</u><br>ō        | <u>50</u><br>50         | <u>64</u><br>59        | <u>20</u><br>20        | <u>130</u><br>130 |
| <u>Z-nexamone</u><br><u>Tetrachloroethene</u> | <u>1</u><br>1 | <u>29.6946</u><br><u>32.5848</u> | <u>0</u>             | <u>50</u><br><u>50</u>  | <u>59</u><br><u>65</u> | <u>20</u><br><u>50</u> | 130<br>130        |
| Toluene                                       | 1             | <u>35.3334</u>                   | <u>o</u>             | <u>50</u><br>50         | <u>55</u><br>71        | <u>50</u>              | 130<br>130        |
| 1,1,1,2-Tetrachloroethane                     | <u>†</u>      | 28.7605                          | Ŏ                    | 50                      | <del>58</del>          | <del>50</del>          | 130               |
| Chlorobenzene                                 | 1             | 28.8097                          | 0                    | <u>50</u>               | 58                     | 50                     | 130               |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix        | c Soil          |               | Units: mg/Kg  | QC Typ          | Гуре: MSD |            |
|-----------------------------|---------------|-----------------|---------------|---------------|-----------------|-----------|------------|
|                             |               | Spike           | Sample        | Expected      |                 | Lower     | Upper      |
| Analyte:                    | Col           | Conc            | Conc          | Conc          | Recovery        | Limit     | Limit      |
| n-Butyl acrylate            | 1             | 22.5519         | 0             | 50            | 45*             | 50        | 130        |
| n-Amyl acetate              | 1             | 8.6198          | 0             | 50            | 17*             | 50        | 130        |
| Bromoform                   | <u>1</u>      | <u>25.9298</u>  | <u>0</u>      | <u>50</u>     | <u>52</u>       | <u>20</u> | <u>130</u> |
| Ethylbenzene                | 1             | <u>33.3743</u>  | <u>0</u>      | <u>50</u>     | <u>67</u>       | <u>50</u> | <u>130</u> |
| 1,1,2,2-Tetrachioroethane   | 1             | <u>27.8157</u>  | <u>0</u>      | <u>50</u>     | <u>56</u>       | <u>50</u> | <u>130</u> |
| Styrene                     | <u>1</u>      | <b>25.2041</b>  | <u>0</u>      | <u>50</u>     | <u>50</u>       | <u>50</u> | <u>130</u> |
| m&p-Xylenes                 | 1             | <u>63.7189</u>  | <u>o</u>      | <u>100</u>    | <u>64</u>       | <u>50</u> | <u>130</u> |
| o-Xylene                    | <u>1</u>      | <u> 28.6366</u> | <u>0</u><br>0 | <u>50</u>     | <u>57</u>       | <u>50</u> | <u>130</u> |
| trans-1,4-Dichloro-2-butene | 1             | 29.3521         | 0             | 50            | 59              | 20        | 130        |
| 1,3-Dichlorobenzene         | 1             | <u>18.1708</u>  | <u>o</u>      | <u>50</u>     | <u>36 *</u>     | <u>50</u> | <u>130</u> |
| 1,4-Dichlorobenzene         | <u>1</u><br>1 | 19.0139         | <u>Q</u><br>Q | <u>50</u>     | <u>38 *</u>     | <u>50</u> | <u>130</u> |
| 1,2-Dichlorobenzene         | 1             | <u>16.9975</u>  | Q             | <u>50</u>     | <u>34 *</u>     | <u>50</u> | <u>130</u> |
| Isopropylbenzene            | <u>1</u>      | 26.4737         | <u>0</u>      | <u>50</u>     | <u>53</u>       | <u>50</u> | <u>130</u> |
| Cyclohexanone               | 1             | 192.6824        | ō             | 250           | 77              | 50        | 130        |
| Camphene                    | 1             | 22.42           | 0             | 50            | 45*             | 50        | 130        |
| 1,2,3-Trichloropropane      | 1             | 28.4396         | 0             | 50            | 57              | 50        | 130        |
| 2-Chlorotoluene             | 1             | 22.4572         | 0             | 50            | 45*             | 50        | 130        |
| p-Ethyltoluene              | 1             | 23.8436         | 0             | 50            | 48*             | 50        | 130        |
| 4-Chlorotoluene             | 1             | 21.8282         | 0             | 50            | 44*             | 50        | 130        |
| n-Propylbenzene             | 1             | 25.9276         | 0             | 50            | 52              | 50        | 130        |
| Bromobenzene                | 1             | 25.6496         | 0             | 50            | 51              | 50        | 130        |
| 1,3,5-Trimethylbenzene      | 1             | 22.6276         | 0             | 50            | 45*             | 50        | 130        |
| Butyl methacrylate          | 1             | 29.1625         | 0             | 50            | 58              | 50        | 130        |
| t-Butylbenzene              | 1             | 21.2795         | 0             | 50            | 43*             | 50        | 130        |
| 1,2,4-Trimethylbenzene      | 1             | 20.6737         | 0             | 50            | 41*             | 50        | 130        |
| sec-Butylbenzene            | 1             | 19.6632         | 0             | 50            | 39*             | 50        | 130        |
| 4-Isopropyltoluene          | 1             | 22.9714         | 0             | 50            | 46*             | 50        | 130        |
| n-Butylbenzene              | 1             | 17.5518         | 0             | 50            | 35*             | 50        | 130        |
| p-Diethylbenzene            | 1             | 17.9173         | 0             | 50            | 36*             | 50        | 130        |
| 1,2,4,5-Tetramethylbenzene  | 1             | 16.922 <b>7</b> | 0             | 50            | 34*             | 50        | 130        |
| 1,2-Dibromo-3-Chloropropane | 1             | 22.0251         | <u>0</u>      | <u>50</u>     | <u>44 *</u>     | <u>50</u> | 130        |
| Camphor                     | 1             | 339.2293        | ō             | 500           | <del>68</del> - | 50        | 130        |
| Hexachlorobutadiene         | 1             | 12.998          | 0             | 50            | 26*             | 50        | 130        |
| 1,2,4-Trichlorobenzene      | 1             | 12.2791         | <u>o</u>      | <u>50</u>     | <u>25*</u>      | <u>50</u> | <u>130</u> |
| 1,2,3-Trichlorobenzene      | <u>1</u>      | 11.3284         | <u> </u>      | <u>50</u>     | 23*             | <u>50</u> | 130        |
| Naphthalene                 | 1             | 12.9344         | ō             | <del>50</del> | 26*             | 50        | 130        |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

### Form3 RPD Data Laboratory Limits

QC Batch: MBS89437

Data File

Sample ID:

AD19581-008(MSD)

Analysis Date

Spike or Dup: 11M83607.D Duplicate(If applicable): 11M83606.D

AD19581-008(MS)

10/6/2020 1:11:00 PM 10/6/2020 12:52:00 PM

Inst Blank(If applicable):

Method: 8260D Matrix: Soil Units: mg/Kg QC Type: MSD

|                                                        |               | Dun/MCD/MPCD              | Sample/MS/MBS                       |                       |                     |
|--------------------------------------------------------|---------------|---------------------------|-------------------------------------|-----------------------|---------------------|
| Analyte:                                               | Column        | Dup/MSD/MBSD<br>Conc      | Conc                                | RPD                   | Limit               |
| Chlorodifluoromethane                                  | 1             | 61.9909                   | 63.6128                             | 2.6                   | 30                  |
| Dichlorodifluoromethane                                | 1             | 50.8261                   | 49.804                              | <u>2</u>              | <u>30</u>           |
| Chloromethane                                          | <u> </u>      | 46.2118                   | 45.3081                             | <u>=</u>              | <u>30</u>           |
| Bromomethane                                           | <u>1</u>      | 41.6653                   | 40.1196                             | 3. <u>8</u>           | <u>30</u>           |
| Vinyl Chloride                                         |               | 50.8914                   | 51.5215                             | 1.2                   | 40                  |
| Chloroethane                                           | <u>1</u><br>1 | 47.2382                   | 45.6529                             | 3.4                   | 30                  |
| Trichlorofluoromethane                                 | 1             | 51.1415                   | 49.0757                             | 4.1                   | 30                  |
| Ethyl ether                                            | ī             | 35. <b>8</b> 168          | 35.4424                             | 1.1                   | 30                  |
| Furan                                                  | 1             | 41.5266                   | 40.8513                             | 1.6                   | 30                  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane                  | 1             | 46.542                    | 45.3986                             | <u>2.5</u>            | <u>30</u>           |
| Methylene Chloride                                     | <u>1</u>      | 35.9595                   | 33.4968                             | 7.1                   | <u>30</u>           |
| Acrolein                                               | ī             | 128.1387                  | 135.6347                            | 5.7                   | <del>30</del>       |
| Acrylonitrile                                          | 1             | 32.2049                   | 30.973                              | 3.9                   | 30                  |
| Iodomethane                                            | 1             | 37.3528                   | 34.8868                             | 6.8                   | 30                  |
| Acetone                                                | <u>1</u>      | 166.5234                  | 168.533                             | 1.2                   | <u>30</u>           |
| Carbon Disulfide                                       | 1             | 32.6021                   | 32.9356                             | 1                     | 30                  |
| t-Butyl Alcohol                                        | Ī             | 162.3655                  | 166.807                             | 2.7                   | 30                  |
| n-Hexane                                               | 1             | 30.9758                   | 30.3746                             | 2                     | 30                  |
| Di-isopropyl-ether                                     | 1             | 40.1001                   | 37.8674                             | 5.7                   | 30                  |
| 1,1-Dichloroethene                                     | 1             | <u>48.3917</u>            | <u>47.6455</u>                      | <u>1.6</u>            | <u>40</u>           |
| Methyl Acetate                                         | <u>1</u>      | <u>43.8993</u>            | <u>39.6238</u>                      | <u>10</u>             | <u>30</u>           |
| Methyl-t-butyl ether                                   | 1             | <u>38.3966</u>            | <u>35.5374</u>                      | <u>7.7</u>            | <u>30</u>           |
| 1,1-Dichloroethane                                     | 1             | <u>43.0371</u>            | <u>41.917</u>                       | <u>2.6</u>            | <u>40</u>           |
| trans-1,2-Dichloroethene                               | 1             | <u>39.4986</u>            | <u>39.5127</u>                      | 0.04                  | <u>30</u>           |
| Ethyl-t-butyl ether                                    | 1             | 38.5848                   | 36.4899                             | 5.6                   | 30                  |
| cis-1,2-Dichloroethene                                 | <u>1</u>      | <u>38.3614</u>            | <u>37.6664</u>                      | <u>1.8</u>            | <u>30</u>           |
| <b>Bromochloromethane</b>                              | <u>1</u>      | <u>34.2171</u>            | <u>33.4037</u>                      | <u>2.4</u>            | <u>30</u>           |
| 2,2-Dichloropropane                                    | 1             | 51.0784                   | 49.5906                             | 3                     | 30                  |
| Ethyl acetate                                          | 1             | 20.5274                   | 23.1654                             | 12                    | 30                  |
| 1,4-Dioxane                                            | <u>1</u>      | <u>2091.449</u>           | <u>2056.231</u>                     | <u>1.7</u>            | <u>30</u>           |
| 1,1-Dichloropropene                                    | 1             | 42.0036                   | 42.4548                             | 1.1                   | 30                  |
| <u>Chloroform</u>                                      | 1             | <u>40.3512</u>            | <u>38.4345</u>                      | <u>4.9</u>            | <u>40</u>           |
| Cyclohexane                                            | 1             | <u>36.6843</u>            | <u>36.7569</u>                      | <u>0.2</u>            | <u>30</u>           |
| 1,2-Dichloroethane                                     | 1             | <u>33.7069</u>            | <u>33.1191</u>                      | <u>1.8</u>            | <u>40</u>           |
| 2-Butanone                                             | 1             | <u>30.1425</u>            | <u>27.6795</u>                      | <u>8.5</u>            | <u>40</u>           |
| 1,1,1-Trichloroethane                                  | 1             | 44.6729                   | <u>42.5047</u>                      | <u>5</u>              | <u>30</u>           |
| Carbon Tetrachloride                                   | 1             | <u>42.9627</u>            | <u>42.3359</u>                      | <u>1.5</u>            | <u>40</u>           |
| Vinyl Acetate                                          | 1             | 23.0711                   | 24.7653                             | 7.1                   | 30                  |
| Bromodichloromethane                                   | 1             | <u>34.5966</u>            | <u>33.4904</u>                      | <u>3.2</u>            | <u>30</u>           |
| Methylcyclohexane                                      | <u>1</u>      | <u>30.0371</u>            | <u>28.8702</u>                      | <u>4</u>              | <u>30</u>           |
| Dibromomethane                                         | •             | 31.0797                   | 31.1515                             | 0.23                  | 30                  |
| 1,2-Dichloropropane                                    | 1             | <u>37.6126</u>            | 36.7552                             | 2.3                   | <u>30</u>           |
| <u>Trichloroethene</u>                                 | 1             | <u>38.9105</u>            | 38.6086<br>30.6857                  | 0.78                  | <u>40</u>           |
| Benzene                                                | 1<br>1        | 41.0714                   | <u>39.6857</u>                      | <u>3.4</u>            | <u>40</u>           |
| tert-Amyl methyl ether                                 | 1             | 38.095                    | 36.5315<br>27.6892                  | 4.2<br>9.6            | 30<br>30            |
| Iso-propylacetate                                      | 1             | 25.1516<br>40.7145        | 34.2259                             | 9.6<br>17             | 30                  |
| Methyl methacrylate                                    |               |                           |                                     |                       |                     |
| <u>Dibromochloromethane</u><br>2-Chloroethylvinylether | <u>1</u><br>1 | <u>30.2015</u><br>31.8668 | <b>29.4945</b><br>31.5338           | <u>2.4</u><br>1.1     | <u>30</u><br>30     |
| cis-1,3-Dichloropropene                                |               | 33.6566                   | 33.5317                             | <u>0.37</u>           | <u>30</u>           |
| trans-1,3-Dichloropropene                              | <u>1</u><br>1 | <u> </u>                  | <u> 29.4039</u>                     | 0.92                  | <u>30</u><br>30     |
| Ethyl methacrylate                                     | 1             | 29.9356                   | 32.3995                             | <u>v.sz</u><br>7.9    | <u>30</u><br>30     |
| 1,1,2-Trichloroethane                                  | <u>1</u>      | 32.0341                   | 30.5938                             | 4.6                   | 30<br>30            |
| 1,1,2-111cmoroethane                                   | <u>1</u><br>1 | 30.6145                   | <u> 30.5938</u><br>29.60 <u>2</u> 7 | <del>4.0</del><br>3.4 | <u>30</u>           |
| 1,3-Dichloropropane                                    | 1             | 31.0659                   | 31.496                              | <u>3.4</u><br>1.4     | <u>30</u><br>30     |
| 4-Methyl-2-Pentanone                                   | 1             | 32.0603                   | 30.5413                             | 4.9                   | <u>30</u>           |
| 2-Hexanone                                             | 1             | <u> 29.6946</u>           | 30.3706                             | 2.3                   | <u>30</u><br>30     |
| Tetrachloroethene                                      | 1             | 32.5848                   | 32.8792                             | <u>2.3</u><br>0.9     | <u> </u>            |
| Toluene                                                | 1 1           | 35.3334                   | <u>35.8936</u>                      | <u>0.5</u><br>1.6     | <del>40</del><br>40 |
| 1,1,1,2-Tetrachloroethane                              | 1             | 28.7605                   | 28.2133                             | 1.9                   | 30                  |
| Chlorobenzene                                          | 1             | <u>28.8097</u>            | <u>29.2558</u>                      | 1.5                   | 40                  |
| * - Indicates outside of limits                        |               |                           | ations=0 no result o                |                       | <del></del>         |
| - Indicates cutside of limits                          |               | NA - HOTH CONCASTS        | ations = () = an result o           | an ne caic            | III 2TEA            |

<sup>\* -</sup> Indicates outside of limits

## RPD Data Laboratory Limits QC Batch: MBS89437

| Method: 8260D               | Matrix: Soil                           | Units:          | mg/Kg           | QC Type: MSD |           |
|-----------------------------|----------------------------------------|-----------------|-----------------|--------------|-----------|
|                             | ······································ | Dup/MSD/MBSD    | Sample/MS/N     | MBS          |           |
| Analyte:                    | Column                                 | Conc            | Conc            | RPD          | Limit     |
| n-Butyl acrylate            | 1                                      | 22.5519         | 27.8252         | 21           | 30        |
| n-Amyl acetate              | 1                                      | 8.6198          | 15.0233         | 54*          | 30        |
| Bromoform .                 | <u>1</u>                               | 25.9298         | <u>27.5533</u>  | <u>6.1</u>   | <u>30</u> |
| Ethylbenzene                | <u>1</u>                               | 33.3743         | 35.3871         | 5.9          | 30        |
| 1,1,2,2-Tetrachloroethane   | <u>1</u>                               | <u> 27.8157</u> | <u> 29.4239</u> | <u>5.6</u>   | <u>30</u> |
| <u>Styrene</u>              | <u>1</u>                               | <u>25.2041</u>  | <u>27.3642</u>  | <u>8.2</u>   | <u>30</u> |
| m&p-Xylenes                 | <u>1</u>                               | <u>63.7189</u>  | <u>66.1421</u>  | <u>3.7</u>   | <u>30</u> |
| o-Xylene                    | <u>1</u>                               | <u>28.6366</u>  | 30.2509         | <u>5.5</u>   | 30<br>30  |
| rans-1,4-Dichloro-2-butene  | 1                                      | 29.3521         | 29.5247         | 0.59         |           |
| 1,3-Dichlorobenzene         | <u>1</u>                               | <u>18.1708</u>  | <u>20.3261</u>  | <u>11</u>    | <u>30</u> |
| 1,4-Dichlorobenzene         | <u>1</u>                               | <u>19.0139</u>  | <u>21.1709</u>  | <u>11</u>    | <u>40</u> |
| 1,2-Dichlorobenzene         | 1<br>1<br>1<br>1                       | <u>16.9975</u>  | <u>19.1137</u>  | <u>12</u>    | <u>40</u> |
| <u>sopropylbenzene</u>      |                                        | <u> 26.4737</u> | <u> 29.0838</u> | <u>9.4</u>   | <u>30</u> |
| Cyclohexanone               | 1                                      | 192.6824        | 238.1763        | 21           | 30        |
| Camphene                    | 1                                      | 22.42           | 23.8662         | 6.2          | 30        |
| 1,2,3-Trichloropropane      | 1                                      | 28.4396         | 28.9165         | 1.7          | 30        |
| 2-Chlorotoluene             | 1                                      | 22.4572         | 24.654          | 9.3          | 30        |
| o-Ethyltoluene              | 1                                      | 23.8436         | 26.096          | 9            | 30        |
| 1-Chlorotoluene             | 1                                      | 21.8282         | 24.8794         | 13           | 30        |
| n-Propylbenzene             | 1                                      | 25.9276         | 28.3795         | 9            | 40        |
| Bromobenzene                | 1                                      | 25.6496         | 27.9138         | 8.5          | 30        |
| 1,3,5-Trimethylbenzene      | 1                                      | 22.6276         | 25.0632         | 10           | 30        |
| Butyl methacrylate          | 1                                      | 29.1625         | 34.1465         | 16           | 30        |
| -Butylbenzene               | 1                                      | 21.2795         | 23.2086         | 8.7          | 30        |
| 1,2,4-Trimethylbenzene      | 1                                      | 20.6737         | 22.9269         | 10           | 30        |
| sec-Butylbenzene            | 1                                      | 19.6632         | 21.8548         | 11           | 40        |
| 1-Isopropyltoluene          | 1                                      | 22.9714         | 25.223          | 9.3          | 30        |
| n-Butylbenzene              | 1                                      | 17.5518         | 20.1028         | 14           | 30        |
| o-Diethylbenzene            | 1                                      | 17.9173         | 20.2894         | 12           | 30        |
| ,2,4,5-Tetramethylbenzene   | 1                                      | 16.9227         | 19.4588         | 14           | 30        |
| 1,2-Dibromo-3-Chloropropane | 1                                      | 22.0251         | <u>22.2516</u>  | <u>1</u>     | <u>30</u> |
| Camphor                     | 1                                      | 339.2293        | 330.3438        | 2.7          | 30        |
| lexachlorobutadiene         | 1                                      | 12.998          | 14.0105         | 7.5          | 30        |
| 1,2,4-Trichlorobenzene      | <u>1</u>                               | 12.2791         | 14.7182         | <u>18</u>    | <u>30</u> |
| 1,2,3-Trichlorobenzene      | <u>1</u>                               | 11.3284         | 13.5627         | <u>18</u>    | <u>30</u> |
| Naphthalene                 | 1                                      | 12.9344         | 15.622          | 19           | 30        |

Sample ID: Data File

MBS89447 Spike or Dup: 2M142829.D

**Analysis Date** 10/7/2020 2:59:00 PM

Non Spike(If applicable):

inst Blank(If applicable): Method: 8260D Matrix: Aqueous Units: ug/L QC Type: MBS Spike Sample Expected Lower Upper Col Conc Conc Conc Recovery Limit Limit Analyte: Chlorodifluoromethane 19.9809 0 20 100 50 150 Dichlorodifluoromethane 10.8854 0 <u>20</u> <u>50</u> <u>150</u> 1 54 <u> 20</u> <u>53</u> **Chloromethane** 10.6384 0 <u>50</u> <u>150</u> 0 <u>20</u> <u>55</u> <u>50</u> 150 11.0371 **Bromomethane** 0 <u> 20</u> <u>62</u> <u>50</u> Vinyl Chloride 12,4227 150 12.8881 <u> 20</u> <u>50</u> Chloroethane 0 <u>64</u> <u>150</u> <u>20</u> <u>50</u> 14.3627 0 <u>72</u> <u>150</u> **Trichlorofluoromethane** 20 81 50 150 Ethyl ether 16.1413 20 81 50 150 **Furan** 16.1557 0 1,1,2-Trichloro-1,2,2-trifluoroethane 0 <u>20</u> 89 <u>50</u> 150 <u>17.8485</u> Methylene Chloride 0 20 <u>84</u> 70 130 <u>16.8484</u> Acrolein 76.1184 0 100 76 50 150 Acrylonitrile 17.5754 0 20 88 50 150 Iodomethane 15.9907 0 20 80 50 150 100 <u>50</u> <u>150</u> Acetone 84.321 0 <u>84</u> <u>150</u> **Carbon Disulfide** 16.2046 <u>20</u> <u>81</u> <u>50</u> t-Butyl Alcohol 90.053 0 100 90 50 150 17.2376 20 86 70 130 n-Hexane 0 20 85 70 130 Di-isopropyl-ether 16.9425 0 <u>20</u> 130 16.2486 0 <u>81</u> 70 1,1-Dichloroethene 1 150 26 20 130 50 **Methyl Acetate** Methyl-t-butyl ether 15.4463 <u>20</u> **77** <u>70</u> <u>130</u> 20 84 <u>70</u> 130 16.8706 1,1-Dichloroethane trans-1,2-Dichloroethene 0 <u>20</u> 82 <u>70</u> 130 16.4398 17.1547 0 20 86 70 130 Ethyl-t-butyl ether 16.2878 0 20 <u>81</u> <u>70</u> 130 cis-1,2-Dichloroethene 1 **Bromochloromethane** 18.1281 20 <u>91</u> 70 130 2,2-Dichloropropane 15.8518 0 20 79 70 130 20 94 50 18.819 0 150 Ethyl acetate 0 1000 92 50 150 1,4-Dioxane 1 921.475 16.8 0 20 84 70 130 1,1-Dichloropropene <u>87</u> <u>70</u> **Chloroform** 17.4309 0 <u> 20</u> <u>130</u> 20 <u>87</u> <u>70</u> <u>130</u> 17.4567 **Cyclohexane** 1,2-Dichloroethane 16.2425 20 <u>81</u> <u>70</u> <u>130</u> <u>20</u> 2-Butanone 17.1176 86 <u>50</u> **150** 20 <u>86</u> <u>70</u> 130 1,1,1-Trichloroethane <u>17.2987</u> <u> 20</u> <u>85</u> <u>150</u> Carbon Tetrachloride 17.0845 <u>50</u> <del>2</del>0 50 67 150 Vinyl Acetate 13.3301 0 15.8077 **Bromodichloromethane** <u> 20</u> 79 70 130 20 **Methylcyclohexane** 17.5649 88 70 130 20 ō 85 70 Dibromomethane 17.0509 130 <u>85</u> 17.0978 <u> 20</u> <u>70</u> <u>0</u> 130 1,2-Dichloropropane 17.2469 0 <u> 20</u> 86 70 130 **Trichloroethene** 16.7104 <u>20</u> <u>84</u> <u>70</u> <u>130</u> Benzene 20 ō 85 70 16.9968 130 tert-Amyl methyl ether Iso-propylacetate 17.1466 20 86 70 130 20 86 70 Methyl methacrylate 17.21 0 130 <u> 20</u> <u>70</u> <u>130</u> **Dibromochloromethane** 17.5159 0 <u>88</u> 2-Chloroethylvinylether 20 70 62.1178 0 311 130 <u> 20</u> <u>84</u> <u>70</u> <u>130</u> cis-1,3-Dichloropropene **16.8871** 0 <u>20</u> <u>70</u> trans-1,3-Dichloropropene 16.8819 <u>84</u> <u>130</u> 20 70 16.5476 0 83 130 Ethyl methacrylate 20 87 70 130 1,1,2-Trichloroethane 17.3958 0 <u> 20</u> 1,2-Dibromoethane 1 17.2043 Q <u>86</u> <u>70</u> <u>130</u> 20 70 0 84 130 16.8363 1,3-Dichloropropane 4-Methyl-2-Pentanone 17.7188 0 20 89 <u>50</u> 150 <u> 20</u> <u>83</u> <u>50</u> **150** 2-Hexanone <u>16.613</u> <u>20</u> <u>83</u> <u>50</u> <u>150</u> <u>Tetrachloroethene</u> 16.5168 16.8448 20 <u>84</u> <u>70</u> 130 **Toluene** 1 85 20 70 130 1,1,1,2-Tetrachloroethane 17.0337 n 17.0747 0 20 <u>85</u> <u>130</u> <u>Chlorobenzene</u> 1

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               |               | :: Aqueous    |                | Units: ug/L      | QC Typ    | e: MBS         |                |
|-----------------------------|---------------|---------------|----------------|------------------|-----------|----------------|----------------|
| Analyte:                    | Col           | Spike<br>Conc | Sample<br>Conc | Expected<br>Conc | Recovery  | Lower<br>Limit | Upper<br>Limit |
| n-Butyl acrylate            | 1             | 18.6409       | 0              | 20               | 93        | 70             | 130            |
| n-Amyl acetate              | 1             | 18.0576       | 0              | 20               | 90        | 70             | 130            |
| Bromoform                   | <u>1</u>      | 19.1684       | <u>o</u>       | 20               | 96        | <u>70</u>      | 130            |
| Ethylbenzene                | 1             | 18.86         | <u> </u>       | 20               | 94        | 70             | 130            |
| 1,1,2,2-Tetrachloroethane   | ĩ             | 17.9452       | Q              | <u>20</u>        | 90        | <del>70</del>  | 130            |
| Styrene                     | <u> </u>      | 18.7302       | Ō              | 20               | 94        | 70             | 130            |
| m&p-Xylenes                 | 1<br>1<br>1   | 35.8283       | Ō              | 40               | 90        | <u>70</u>      | 130            |
| o-Xylene                    | <u>1</u>      | 18.3375       | <u> </u>       | 20               | 92        | 70             | 130            |
| trans-1,4-Dichloro-2-butene | <u>1</u>      | 18.8628       | ō              | 20               | 94        | 50             | 150            |
| 1,3-Dichlorobenzene         | <u>1</u>      | 17.3029       | <u>o</u>       | <u>20</u>        | <u>87</u> | <u>70</u>      | 130            |
| 1,4-Dichlorobenzene         | <u>1</u>      | 17.1453       | Ō              | <u>20</u>        | 86        | 70             | 130            |
| 1,2-Dichlorobenzene         | <u>1</u><br>1 | 17.2737       | <u> </u>       | <u>20</u>        | 86        | 70             | 130            |
| Isopropylbenzene            | 1             | 18.9607       | Ō              | <u>20</u>        | <u>95</u> | <del>70</del>  | 130            |
| Cyclohexanone               | ī             | 90.8408       | ō              | 100              | 91        | 50             | 150            |
| Camphene                    | 1             | 16.3891       | 0              | 20               | 82        | 70             | 130            |
| 1,2,3-Trichloropropane      | 1             | 16.8247       | 0              | 20               | 84        | 70             | 130            |
| 2-Chlorotoluene             | 1             | 18.8861       | 0              | 20               | 94        | 70             | 130            |
| p-Ethyltoluene              | 1             | 18.7616       | 0              | 20               | 94        | 70             | 130            |
| 4-Chlorotoluene             | 1             | 18.7931       | 0              | 20               | 94        | 70             | 130            |
| n-Propylbenzene             | 1             | 18.5261       | 0              | 20               | 93        | 70             | 130            |
| Bromobenzene                | 1             | 17.0569       | 0              | 20               | 85        | 70             | 130            |
| 1,3,5-Trimethylbenzene      | 1             | 18.5075       | 0              | 20               | 93        | 70             | 130            |
| Butyl methacrylate          | 1             | 17.4802       | 0              | 20               | 87        | 70             | 130            |
| t-Butylbenzene              | 1             | 18.5969       | 0              | 20               | 93        | 70             | 130            |
| 1,2,4-Trimethylbenzene      | 1             | 18.1469       | 0              | 20               | 91        | 70             | 130            |
| sec-Butylbenzene            | 1             | 18.778        | 0              | 20               | 94        | 70             | 130            |
| 4-Isopropyltoluene          | 1             | 18.4831       | 0              | 20               | 92        | 70             | 130            |
| n-Butylbenzene              | 1             | 18.7989       | 0              | 20               | 94        | 70             | 130            |
| p-Diethylbenzene            | 1             | 18.1759       | 0              | 20               | 91        | 70             | 130            |
| 1,2,4,5-Tetramethylbenzene  | 1             | 17.3667       | 0              | 20               | 87        | <b>7</b> 0     | 130            |
| 1,2-Dibromo-3-Chloropropane | <u>1</u>      | 18.5874       | <u>0</u>       | <u>20</u>        | <u>93</u> | <u>50</u>      | <u>150</u>     |
| Camphor                     | 1             | 181.6946      | ō              | 200              | 91        | 20             | 150            |
| Hexachlorobutadiene         | 1             | 17.0625       | 0              | 20               | 85        | 50             | 150            |
| 1,2,4-Trichlorobenzene      | 1             | 16.4236       | <u>0</u>       | <u>20</u>        | <u>82</u> | <u>70</u>      | <u>130</u>     |
| 1,2,3-Trichlorobenzene      | <u>1</u>      | 16.7729       | Q              | 20               | <u>84</u> | <del>70</del>  | <u>130</u>     |
| Naphthalene                 | 1             | 16.3493       | ō              | 20               | 82        | 50             | 150            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Sample ID: Data File

Analysis Date

AD19574-001(MS) Spike or Dup: 2M142831.D 10/7/2020 3:38:00 PM Non Spike(If applicable): 2M142828.D AD19574-001 10/7/2020 2:39:00 PM

| Inst Blank(If applicable): 2M 1426            |               | AD195                           |                | 10///2020 2:39:00 PM   |                  |                        |                          |  |
|-----------------------------------------------|---------------|---------------------------------|----------------|------------------------|------------------|------------------------|--------------------------|--|
| Method: 8260D                                 | Matrix        | c: Aqueous                      |                | Units: ug/L            | QC Typ           | e: MS                  |                          |  |
| Analyte:                                      | Col           | Spike<br>Conc                   | Sample<br>Conc | Expected<br>Conc       | Recovery         | Lower<br>Limit         | Upper<br>Limit           |  |
| Chlorodifluoromethane                         | 1             | 18.6162                         | 0              | 20                     | 93               | 50                     | 150                      |  |
| <b>Dichlorodifluoromethane</b>                | 1             | <u>9.1016</u>                   | <u>0</u>       | <u>20</u>              | <u>46 *</u>      | <u>50</u>              | <u>150</u>               |  |
| Chloromethane                                 | 1             | <u>10.5017</u>                  | <u>0</u>       | <u>20</u>              | <u>53</u>        | <u>50</u>              | <u>150</u>               |  |
| Bromomethane                                  | 1             | <u>14.882</u>                   | <u>0</u>       | <u>20</u>              | <u>74</u>        | <u>50</u>              | <u>150</u>               |  |
| Vinyl Chloride                                | 1             | 12.893                          | 0              | <u>20</u>              | <u>64</u>        | <u>50</u>              | <u>150</u>               |  |
| Chloroethane                                  | 1             | 14.4501<br>46.2752              | <u>0</u>       | <u>20</u>              | <u>72</u>        | <u>50</u>              | <u>150</u>               |  |
| Trichlorofluoromethane Ethyl ether            | <u>1</u><br>1 | 16.3752<br>17.976               | <u>o</u><br>o  | <b>20</b><br>20        | <b>82</b><br>90  | <u><b>50</b></u><br>50 | <u>1<b>50</b></u><br>150 |  |
| Furan                                         | 1             | 17.6659                         | 0              | 20                     | 90<br>88         | 50                     | 150                      |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane         |               | 20.2701                         | <u>0</u>       | <u>20</u>              | <u> 101</u>      | <u>50</u>              | 150                      |  |
| Methylene Chloride                            | 1             | 18.3422                         | <u>0</u>       | <u>20</u>              | 92               | <del>70</del>          | 130                      |  |
| Acrolein                                      | <u>†</u>      | 85.3592                         | Ŏ              | 100                    | 85               | <u>50</u>              | 150                      |  |
| Acrylonitrile                                 | 1             | 19.4346                         | Ŏ              | 20                     | 97               | 50                     | 150                      |  |
| Iodomethane                                   | 1             | 18.6852                         | Ö              | 20                     | 93               | 50                     | 150                      |  |
| Acetone                                       | 1             | 92.5304                         | <u>0</u>       | <u>100</u>             | 93               | <u>50</u>              | 150                      |  |
| Carbon Disulfide                              | 1             | 18.7878                         | <u> </u>       | 20                     | 94               | <u>50</u>              | 150                      |  |
| t-Butyl Alcohol                               | 1             | 113.5953                        | 0              | 100                    | 114              | 50                     | 150                      |  |
| n-Hexane                                      | 1             | 21.1874                         | 0              | 20                     | 106              | 70                     | 130                      |  |
| Di-isopropyl-ether                            | 1             | 19.0861                         | 0              | 20                     | 95               | 70                     | 130                      |  |
| 1,1-Dichloroethene                            | 1             | <u>18.6063</u>                  | Q              | <u>20</u>              | <u>93</u>        | <u>70</u>              | <u>130</u>               |  |
| Methyl Acetate                                | 1             | <u>33.6661</u>                  | <u>1.4856</u>  | <u>20</u>              | <u>161 *</u>     | <u>50</u>              | <u>150</u>               |  |
| Methyl-t-butyl ether                          | 1             | <u>17.5596</u>                  | <u>0</u>       | <u>20</u>              | <u>88</u>        | <u>70</u>              | <u>130</u>               |  |
| 1,1-Dichloroethane                            | 1             | 19.4272                         | <u>0</u>       | <u>20</u>              | <u>97</u>        | <u>70</u>              | <u>130</u>               |  |
| trans-1,2-Dichloroethene                      | 11            | <u>19.0427</u><br>19.7043       | <u>o</u><br>o  | <u><b>20</b></u><br>20 | <b>95</b><br>99  | <u><b>70</b></u><br>70 | <u>130</u><br>130        |  |
| Ethyl-t-butyl ether cis-1,2-Dichloroethene    | 1             | 19.7043                         | <u>0</u>       | 20<br>20               | 99<br>97         | 70<br>70               | 130<br>130               |  |
| Bromochloromethane                            | 1             | 20.0005                         | <u>o</u>       | <u>20</u><br>20        | 100              | <u>70</u><br>70        | 130<br>130               |  |
| 2,2-Dichloropropane                           | 1             | 21.037                          | Ö              | <del>20</del><br>20    | 105              | 70                     | 130                      |  |
| Ethyl acetate                                 | 1             | 29.185                          | Ö              | 20                     | 146              | 50                     | 150                      |  |
| 1,4-Dioxane                                   | 1             | 1198.785                        | <u>o</u>       | 1000                   | 120              | <u>50</u>              | 150                      |  |
| 1,1-Dichloropropene                           | 1             | 19.6764                         | Ō              | 20                     | 98               | 70                     | 130                      |  |
| Chloroform                                    | 1             | 23.0966                         | 4.6113         | <u>20</u>              | 92               | <u>70</u>              | 130                      |  |
| Cyclohexane                                   | 1             | 20.9317                         | <u>0</u>       | <u>20</u>              | 105              | <u>70</u>              | 130                      |  |
| 1,2-Dichloroethane                            | 1             | 17.9916                         | <u>0</u>       | <u>20</u>              | 90               | <u>70</u>              | 130                      |  |
| 2-Butanone                                    | 1             | Q                               | <u>0</u>       | <u>20</u>              | <u>0</u> *       | <u>50</u>              | <u>150</u>               |  |
| 1,1,1-Trichloroethane                         | 1             | <u>20.6591</u>                  | <u>0</u>       | <u>20</u>              | <u>103</u>       | <u>70</u>              | <u>130</u>               |  |
| Carbon Tetrachloride                          | 1             | <u>19.6101</u>                  | Ō              | <u>20</u>              | <u>98</u>        | <u>50</u>              | <u>150</u>               |  |
| Vinyl Acetate                                 | 1             | 15.5419                         | 0              | 20                     | 78               | 50                     | 150                      |  |
| <u>Bromodichloromethane</u>                   | 1             | <u>18.7219</u>                  | 1.0458         | <u>20</u>              | 88               | <u>70</u>              | <u>130</u>               |  |
| Methylcyclohexane                             | 1             | <u>20.4686</u>                  | Ō              | <u>20</u>              | <u>102</u>       | <u>70</u>              | <u>130</u>               |  |
| Dibromomethane                                | 1             | 19.8195                         | 0              | 20                     | 99               | 70<br><b>7</b> 0       | 130                      |  |
| 1,2-Dichloropropane Trichloroethene           | 1             | 19.5234                         | 0              | <u>20</u>              | <u>98</u>        | <u>70</u>              | <u>130</u><br>130        |  |
|                                               | <u>1</u><br>1 | <u>20.0319</u><br><u>18.963</u> | <u>0</u>       | <u>20</u><br>20        | <u>100</u>       | <u>70</u>              | 130<br>130               |  |
| Benzene<br>tert-Amyl methyl ether             | 1             | 19.1114                         | 0              | <u>20</u><br>20        | <b>95</b><br>96  | <u>70</u><br>70        | 130<br>130               |  |
| Iso-propylacetate                             | i             | 19.0428                         | Ŏ              | 20                     | 95               | 70                     | 130                      |  |
| Methyl methacrylate                           | i             | 20.2985                         | Ŏ              | 20                     | 101              | 70                     | 130                      |  |
| Dibromochloromethane                          | 1             | 20.4145                         | <u>ŏ</u>       | <u>20</u>              | 102              | <u>70</u>              | 130                      |  |
| 2-Chloroethylvinylether                       | 1             | 0                               | Ŏ              | 20                     | <u> </u>         | <del>7</del> 0         | 130                      |  |
| cis-1,3-Dichloropropene                       | 1             | <u> 19.814</u>                  | <u>0</u>       | 20                     | 99               | <u>70</u>              | 130                      |  |
| trans-1,3-Dichloropropene                     | <u>1</u>      | 19.3395                         | Q              | <u>20</u>              | <del>97</del>    | <del>70</del>          | 130                      |  |
| Ethyl methacrylate                            | 1             | 19.3564                         | 0              | 20                     | 97               | 70                     | 130                      |  |
| 1,1,2-Trichloroethane                         | 1             | <u>19.5449</u>                  | <u>0</u>       | <u>20</u>              | <u>98</u>        | <u>70</u>              | <u>130</u>               |  |
| 1,2-Dibromoethane                             | 1             | <u> 19.778</u>                  | <u>Q</u>       | <u>20</u>              | <u>99</u>        | <u>70</u>              | <u>130</u>               |  |
| 1,3-Dichloropropane                           | 1             | 18.8304                         | 0              | 20                     | 94               | 70                     | 130                      |  |
| 4-Methyl-2-Pentanone                          | 1             | <u>19.8718</u>                  | <u>0</u>       | <u>20</u>              | <u>99</u>        | <u>50</u>              | <u>150</u>               |  |
| 2-Hexanone                                    | 1             | <u>18.8268</u>                  | <u>0</u>       | <u>20</u>              | <u>94</u>        | <u>50</u>              | <u>150</u>               |  |
| <u>Tetrachloroethene</u>                      | 1             | <u>20.4136</u>                  | 0              | <u>20</u>              | <u>102</u>       | <u>50</u>              | <u>150</u>               |  |
| Toluene                                       | 1 1           | 18.9723                         | <u>0</u>       | <u>20</u>              | <u>95</u>        | <u>70</u>              | 130                      |  |
| 1,1,1,2-Tetrachloroethane                     | 1             | 19.2209                         | 0<br><b>0</b>  | 20<br><b>20</b>        | 96<br><b>100</b> | 70<br><b>70</b>        | 130<br><b>130</b>        |  |
| * - Indicates outside of limits # - Indicates |               | 19.9761                         |                |                        |                  |                        |                          |  |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Method: 8260D Matrix: Aqueous Units: ug/L QC Type: MS Spike Sample Expected Lower Upper Col Conc Recovery Analyte: Conc Conc Limit Limit 21.1734 20 130 n-Butyl acrylate 0 106 70 n-Amyl acetate 20.1911 0 20 101 70 130 1 <u> 20</u> **Bromoform** 20.8376 0 104 <u>70</u> 130 1 20 Ethylbenzene 1 21.28 0 106 <u>70</u> 130 <u>20</u> 1,1,2,2-Tetrachloroethane <u>0</u> <u>70</u> 18.9719 <u>95</u> <u>130</u> 0 <u>20</u> 1 20.6819 103 <u>70</u> 130 <u>Styrene</u> m&p-Xylenes 1 40.6679 0 <u>40</u> 102 <u>70</u> 130 <u>20</u> 20 <u>70</u> Q 103 <u>130</u> o-Xylene <u> 20.5001</u> trans-1,4-Dichloro-2-butene ō 50 150 16.6603 83 <u>20</u> 20 0 99 <u>70</u> 130 1,3-Dichlorobenzene 1 19.8479 70 1,4-Dichlorobenzene <u>19.203</u> 0 <u>96</u> <u>130</u> <u>0</u> <u>20</u> <u>94</u> <u>70</u> <u>130</u> 18.8683 1,2-Dichlorobenzene Isopropylbenzene 0 <u>20</u> <u>107</u> <u>70</u> 130 1 21.412 50 100 114 150 Cyclohexanone 113.8996 130 Camphene 1 10.0277 0 20 501 70 1,2,3-Trichloropropane 18.9059 0 20 95 70 130 20 106 70 130 2-Chlorotoluene 21.2648 0 p-Ethyltoluene 21.1561 0 20 106 70 130 1 4-Chlorotoluene 21.1979 0 20 106 70 130 20 n-Propylbenzene 20.7713 0 104 70 130 20 70 Bromobenzene 17.8118 0 89 130 20 130 1,3,5-Trimethylbenzene 21.2568 0 106 70 **Butyl** methacrylate 20.2203 0 20 101 70 130 t-Butylbenzene 21.3976 0 20 107 70 130 0 20 70 130 1,2,4-Trimethylbenzene 1 20.5053 103 sec-Butylbenzene 21.809 0 20 109 70 130 21.5366 20 108 70 130 0 4-Isopropyltoluene n-Butylbenzene 21.9613 0 20 110 70 130 p-Diethylbenzene 21.642 0 20 108 70 130 1,2,4,5-Tetramethylbenzene 0 20 70 130 101 20.273 1,2-Dibromo-3-Chloropropane 0 <u>20</u> 102 <u>150</u> 1 20.3075 <u>50</u> 233.0959 0 200 117 20 150 Camphor Hexachlorobutadiene 21.3847 0 20 107 50 150 <u> 20</u> 1,2,4-Trichlorobenzene 19.3332 <u>97</u> <u>70</u> <u>130</u> 1 0 <u> 20</u> 70 1,2,3-Trichlorobenzene 1 <u> 20.5397</u> 0 103 <u>130</u> 20 150 Naphthalene 19.6972 0 98

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

## Form3 Recovery Data Laboratory Limits

QC Batch: MBS89447

Data File

Sample ID:

Analysis Date

Spike or Dup: 2M142832.D Non Spike(If applicable): 2M142828.D AD19574-001(MSD) AD19574-001 10/7/2020 3:58:00 PM 10/7/2020 2:39:00 PM

Inst Blank(If applicable):

Method: 8260D Matrix: Aqueous Units: ug/L QC Type: MSD Spike Sample **Expected** Lower Upper Analyte: Col Conc Conc Conc Recovery Limit Limit 150 Chlorodifluoromethane 18.2935 0 20 50 <u>150</u> Dichlorodifluoromethane 8.6463 <u> 20</u> 43\* <u>50</u> 0 <u> 20</u> Chloromethane 10.6455 0 <u>53</u> <u>50</u> <u>150</u> <u> 20</u> **Bromomethane** 13.9902 0 <u>70</u> <u>50</u> <u>150</u> <u>150</u> <u>20</u> Vinyl Chloride 12.5611 0 <u>63</u> <u>50</u> 0 <u> 20</u> <u>69</u> <u>50</u> Chloroethane 13.7047 150 <u>20</u> **Trichlorofluoromethane** 15.3586 0 <u>77</u> <u>50</u> <u>150</u>  $\overline{20}$ <del>50</del> 17.7416 ō 89 150 Ethyl ether **Furan** 16.6309 0 20 83 50 150 1,1,2-Trichloro-1,2,2-trifluoroethane 19.8547 <u>20</u> <u>99</u> <u>50</u> <u>150</u> 0 <u>20</u> <u>90</u> <u>70</u> <u>130</u> **Methylene Chloride** 17.9662 Acrolein 85.1325 0 100 85 150 88 Acrylonitrile 17.6592 0 20 50 150 19.2855 0 20 96 50 150 Iodomethane Acetone 87.2903 0 100 87 50 150 <u>50</u> Carbon Disulfide 16.9282 <u>20</u> <u>85</u> <u>150</u> 0 111 50 150 t-Butyl Alcohol 111.2917 100 n-Hexane 21.5123 0 20 108 70 130 18.8915 20 94 70 130 Di-isopropyl-ether 0 1,1-Dichloroethene 17.8475 0 <u> 20</u> <u>89</u> <u>70</u> <u>130</u> 1 <u>20</u> <u>150</u> <u>1.4856</u> 127 <u>50</u> **Methyl Acetate** <u> 26.89</u> Methyl-t-butyl ether 16.9253 0 <u> 20</u> <u>85</u> 70 130 1 <u>20</u> 1,1-Dichloroethane 18.7876 0 <u>94</u> <u>70</u> 130 91 <u>20</u> <u>70</u> 130 trans-1,2-Dichloroethene 18.2007 0 20 98 70 130 Ethyl-t-butyl ether 19.5043 0 <u>20</u> cis-1,2-Dichloroethene 18.3699 Q 92 <u>70</u> <u>130</u> 20 70 **Bromochloromethane** 19.8743 0 99 <u>130</u> 20 98 130 2,2-Dichloropropane 19.6663 0 50 150 Ethyl acetate 28.7433 0 20 144 1000 1,4-Dioxane 1117.596 0 112 <u>50</u> <u>150</u> 70 130 1,1-Dichloropropene 18.7284 0 20 94 22.3981 <u>20</u> <u>89</u> <u>70</u> <u>130</u> Chloroform 4.6113 <u> 20</u> <u>105</u> <u>70</u> 130 Cyclohexane **20.9147** 0 20 <u>90</u> <u>70</u> 130 1,2-Dichloroethane 17.9312 0 <u> 20</u> 0. <u>50</u> <u>150</u> 2-Butanone 0 <u>20</u> <u>70</u> **130** 1,1,1-Trichloroethane <u>19.4275</u> 0 97 <u>20</u> Carbon Tetrachloride 0 <u>97</u> <u>50</u> <u>150</u> <u>19.3921</u> 20 50 0 75 150 Vinyl Acetate 14.9516 <u> 20</u> <u>89</u> <u>70</u> 130 **Bromodichloromethane** 18.8003 1.0458 107 **Methylcyclohexane** 21.3087 0 <u> 20</u> <u>70</u> <u>130</u> 20 0 70 130 Dibromomethane 19.2096 96 1,2-Dichloropropane 19.3168 0 <u> 20</u> <u>97</u> <u>70</u> <u>130</u> <u>20</u> 70 <u>130</u> 0 <u>96</u> 19.1334 **Trichloroethene** <u> 20</u> 70 Benzene 1 18.3095 0 92 130 20 70 tert-Amyl methyl ether 19.0865 0 95 130 20 94 70 130 Iso-propylacetate 18.7175 0 20 99 130 Methyl methacrylate 19.7397 0 70 **Dibromochloromethane** 20.4413 <u>20</u> 102 <u>70</u> 130 1 0 20 5.31 70 130 2-Chloroethylvinylether 1.0669 cis-1,3-Dichloropropene 19.3685 0 20 97 <u>70</u> 130 1 18.9896 20 <u>95</u> <u>70</u> <u>130</u> trans-1,3-Dichloropropene Q 20 91 70 Ethyl methacrylate 18.1531 n 130 19,2264 20 96 70 130 1,1,2-Trichloroethane 1,2-Dibromoethane <u> 20</u> 94 <u>70</u> 130 1 18.7992 20 ō 93 70 130 18.6281 1,3-Dichloropropane 19.2601 0 <u> 20</u> 96 <u>50</u> 150 4-Methyl-2-Pentanone 2-Hexanone 18.4956 0 <u> 20</u> 92 <u>50</u> <u>150</u> <u>20</u> <u>150</u> <u>96</u> <u>50</u> Tetrachloroethene 19.2779 <u>20</u> <u>70</u> 18.7471 <u>94</u> <u>130</u> Toluene 1,1,1,2-Tetrachloroethane 18.715 20 94 70 130 Chlorobenzene 1 19.4773 <u>20</u> <u>97</u> <u>130</u>

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix        | : Aqueous     |                      | Units: ug/L      | QC Typ     | e: MSD         |               |
|-----------------------------|---------------|---------------|----------------------|------------------|------------|----------------|---------------|
| Analyte:                    | Col           | Spike<br>Conc | Sample<br>Conc       | Expected<br>Conc | Recovery   | Lower<br>Limit | Uppe<br>Limit |
| n-Butyl acrylate            | 1             | 20.8667       | 0                    | 20               | 104        | 70             | 130           |
| n-Amyl acetate              | 1             | 19.4039       | 0                    | 20               | 97         | 70             | 130           |
| Bromoform                   | 1             | 20.3368       | <u>0</u>             | <u>20</u>        | <u>102</u> | <u>70</u>      | <u>130</u>    |
| Ethylbenzene                | 1             | 21.275        | <u>0</u>             | <u>20</u>        | <u>106</u> | <u>70</u>      | <u>130</u>    |
| 1,1,2,2-Tetrachloroethane   | 1             | 18.6676       | <u></u>              | <u>20</u>        | 93         | 70             | 130           |
| Styrene                     | <u>1</u><br>1 | 20.529        | <u></u>              | 20               | 103        | 70             | 130           |
| m&p-Xylenes                 | 1             | 39.5269       | <u> </u>             | <del>40</del>    | 99         | 70             | 130           |
| o-Xylene                    | 1             | 20.3916       | <u>0</u>             | 20               | 102        | 70             | 130           |
| trans-1,4-Dichloro-2-butene | 1             | 16.1555       | ō                    | 20               | 81         | 50             | 150           |
| 1,3-Dichlorobenzene         | 1             | 19.7992       | <u>o</u>             | <u>20</u>        | <u>99</u>  | <u>70</u>      | <u>130</u>    |
| 1,4-Dichlorobenzene         | 1             | 19.2751       | <u>0</u><br><u>0</u> | 20               | 96         | 70             | 130           |
| 1,2-Dichlorobenzene         | 1             | 19.2889       | <u> </u>             | 20               | 96         | <del>70</del>  | 130           |
| Isopropylbenzene            | <u>1</u>      | 21.569        | Ō                    | <u>20</u>        | 108        | <del>70</del>  | 130           |
| Cyclohexanone               | 1             | 102.6054      | ō                    | 100              | 103        | 50             | 150           |
| Camphene                    | 1             | 8.2899        | 0                    | 20               | 41 *       | 70             | 130           |
| 1,2,3-Trichloropropane      | 1             | 18.6479       | 0                    | 20               | 93         | 70             | 130           |
| 2-Chlorotoluene             | 1             | 21.5335       | 0                    | 20               | 108        | 70             | 130           |
| p-Ethyltoluene              | 1             | 21.7126       | 0                    | 20               | 109        | 70             | 130           |
| 4-Chlorotoluene             | 1             | 20.5217       | 0                    | 20               | 103        | 70             | 130           |
| n-Propylbenzene             | 1             | 21.4245       | 0                    | 20               | 107        | 70             | 130           |
| Bromobenzene                | 1             | 17.263        | 0                    | 20               | 86         | 70             | 130           |
| 1,3,5-Trimethylbenzene      | 1             | 21.5552       | 0                    | 20               | 108        | 70             | 130           |
| Butyl methacrylate          | 1             | 19.5807       | 0                    | 20               | 98         | 70             | 130           |
| t-Butylbenzene              | 1             | 22.0083       | 0                    | 20               | 110        | 70             | 130           |
| 1,2,4-Trimethylbenzene      | 1             | 20.688        | 0                    | 20               | 103        | 70             | 130           |
| sec-Butylbenzene            | 1             | 22.7658       | 0                    | 20               | 114        | 70             | 130           |
| 4-Isopropyltoluene          | 1             | 22.4553       | 0                    | 20               | 112        | 70             | 130           |
| n-Butylbenzene              | 1             | 23.1212       | 0                    | 20               | 116        | 70             | 130           |
| p-Diethylbenzene            | 1             | 22.7307       | 0                    | 20               | 114        | 70             | 130           |
| 1,2,4,5-Tetramethylbenzene  | 1             | 21.1872       | 0                    | 20               | 106        | 70             | 130           |
| 1,2-Dibromo-3-Chloropropane | 1             | 20.3737       | <u>o</u>             | 20               | 102        | <u>50</u>      | <u>150</u>    |
| Camphor                     | 1             | 225.9154      | ō                    | 200              | 113        | 20             | 150           |
| Hexachlorobutadiene         | 1             | 20.6443       | 0                    | 20               | 103        | 50             | 150           |
| 1,2,4-Trichlorobenzene      | 1             | 20.4895       | <u>o</u>             | <u>20</u>        | <u>102</u> | <u>70</u>      | <u>130</u>    |
| 1,2,3-Trichlorobenzene      | <u>1</u>      | 20.693        | <u> </u>             | <u>20</u>        | 103        | <u>70</u>      | 130           |
| Naphthalene                 | 1             | 20.0798       | ō                    | 20               | 100        | 50             | 150           |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

#### Form3 **RPD Data Laboratory Limits**

QC Batch: MBS89447

Data File

Sample ID:

AD19574-001(MSD)

Spike or Dup: 2M142832.D Duplicate(If applicable): 2M142831.D

AD19574-001(MS)

Analysis Date 10/7/2020 3:58:00 PM 10/7/2020 3:38:00 PM

Inst Blank(If applicable):

Method: 8260D Units: ug/L QC Type: MSD Matrix: Aqueous

|                                       |               | Dup/MSD/MBSD              | Sample/MS/MBS             | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                        |  |  |  |
|---------------------------------------|---------------|---------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|
| Analyte:                              | Column        | Conc                      | Conc                      | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limit                  |  |  |  |
| Chlorodifluoromethane                 | 1             | 18.2935                   | 18.6162                   | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                     |  |  |  |
| <b>Dichlorodifluoromethane</b>        | 1             | <u>8.6463</u>             | <u>9.1016</u>             | <u>5.1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>30</u>              |  |  |  |
| <u>Chloromethane</u>                  | 1             | <u>10.6455</u>            | <u>10.5017</u>            | <u>1.4</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>30</u>              |  |  |  |
| <u>Bromomethane</u>                   | <u>1</u>      | <u>13.9902</u>            | <u>14.882</u>             | <u>6.2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>30</u>              |  |  |  |
| Vinyl Chloride                        | <u>1</u>      | <u>12.5611</u>            | <u>12.893</u>             | <u>2.6</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>40</u>              |  |  |  |
| <u>Chloroethane</u>                   | <u>1</u>      | <u>13.7047</u>            | <u>14.4501</u>            | <u>5.3</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>30</u>              |  |  |  |
| <u>Trichlorofluoromethane</u>         | 1             | <u>15.3586</u>            | <u>16.3752</u>            | <u>6.4</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>30</u>              |  |  |  |
| Ethyl ether                           | 1             | 17.7416                   | 17.976                    | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                     |  |  |  |
| Furan                                 | 1             | 16.6309                   | 17.6659                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                     |  |  |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1             | <u>19.8547</u>            | <u>20.2701</u>            | <u>2.1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>30</u>              |  |  |  |
| Methylene Chloride                    | 1             | <u>17.9662</u>            | <u>18.3422</u>            | <u>2.1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>30</u>              |  |  |  |
| Acrolein                              | 1             | 85.1325                   | 85.3592                   | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                     |  |  |  |
| Acrylonitrile                         | 1             | 17.6592                   | 19.4346                   | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                     |  |  |  |
| Iodomethane                           | 1             | 19.2855                   | 18.6852                   | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                     |  |  |  |
| <u>Acetone</u>                        | 1             | <u>87.2903</u>            | <u>92.5304</u>            | <u>5.8</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>30</u>              |  |  |  |
| Carbon Disulfide                      | 1             | <u>16.9282</u>            | <u>18.7878</u>            | <u>10</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>30</u>              |  |  |  |
| t-Butyl Alcohol                       | 1             | 111.2917                  | 113.5953                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                     |  |  |  |
| n-Hexane                              | 1             | 21.5123                   | 21.1874                   | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                     |  |  |  |
| Di-isopropyl-ether                    | 1             | 18.8915                   | 19.0861                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                     |  |  |  |
| 1,1-Dichloroethene                    | 1             | <u>17.8475</u>            | <u>18.6063</u>            | <u>4.2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>40</u>              |  |  |  |
| Methyl Acetate                        | 1             | <u>26.89</u>              | <u>33.6661</u>            | <u>22</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>30</u>              |  |  |  |
| Methyl-t-butyl ether                  | 1             | <u>16.9253</u>            | <u>17.5596</u>            | <u>3.7</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>30</u>              |  |  |  |
| 1,1-Dichloroethane                    | 1             | <u>18.7876</u>            | <u>19.4272</u>            | <u>3.3</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>40</u>              |  |  |  |
| trans-1,2-Dichloroethene              | 1             | <u>18.2007</u>            | <u>19.0427</u>            | <u>4.5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>30</u>              |  |  |  |
| Ethyl-t-butyl ether                   | 1             | 19.5043                   | 19.7043                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                     |  |  |  |
| cis-1,2-Dichloroethene                | 1             | <u>18.3699</u>            | <u>19.4762</u>            | <u>5.8</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>30</u>              |  |  |  |
| Bromochloromethane                    | <u>1</u>      | <u>19.8743</u>            | <u>20.0005</u>            | <u>0.63</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>30</u>              |  |  |  |
| 2,2-Dichloropropane                   | 1             | 19.6663                   | 21.037                    | 6.7<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>30               |  |  |  |
| Ethyl acetate                         | •             | 28.7433                   | 29.185                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| 1.4-Dioxane                           | <u>1</u><br>1 | <u>1117.596</u>           | 1198.785                  | <u>7</u><br>4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>30</b><br>30        |  |  |  |
| 1,1-Dichloropropene                   | -             | 18.7284                   | 19.6764                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |
| Chloroform<br>Chalabayana             | 1             | <u>22.3981</u>            | <u>23.0966</u>            | <u>3.1</u><br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>40</u>              |  |  |  |
| Cyclohexane                           | 1             | <u>20.9147</u>            | <u>20.9317</u><br>17.9916 | 0.08<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>30</u><br><u>40</u> |  |  |  |
| 1,2-Dichloroethane                    | <u>1</u><br>1 | <u>17.9312</u>            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>40</u><br>40        |  |  |  |
| 2-Butanone<br>1,1,1-Trichloroethane   | <u>1</u><br>1 | <u>0</u><br>19.4275       | <u>0</u><br>20.6591       | <u>NA</u><br>6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>40</u><br>30        |  |  |  |
|                                       | <u>1</u><br>1 | 19.3921                   | <u> 20.0391</u>           | <u>9.1</u><br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>               |  |  |  |
| Carbon Tetrachloride Vinyl Acetate    | 1             | 14.9516                   | 15.5419                   | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>30</del><br>30    |  |  |  |
| Bromodichloromethane                  | <u>'</u>      | 18.8003                   | 18.7219                   | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>30</u>              |  |  |  |
| Methylcyclohexane                     | 1             | <u>10.3003</u><br>21.3087 | 20.4686                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>30</u>              |  |  |  |
| Dibromomethane                        | 1             | 19.2096                   | 19.8195                   | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>30</u><br>30        |  |  |  |
| 1,2-Dichloropropane                   | 1             | <u>19.3168</u>            | 19.5234                   | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>30</u>              |  |  |  |
| Trichloroethene                       | 1             | 19.1334                   | 20.0319                   | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>40</u>              |  |  |  |
| Benzene                               | <u> </u>      | 18.3095                   | <u>18.963</u>             | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>40</del>          |  |  |  |
| tert-Amyl methyl ether                | 1             | 19.0865                   | 19.1114                   | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                     |  |  |  |
| Iso-propylacetate                     | 1             | 18.7175                   | 19.0428                   | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                     |  |  |  |
| Methyl methacrylate                   | 1             | 19.7397                   | 20.2985                   | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                     |  |  |  |
| Dibromochloromethane                  | 1             | 20.4413                   | 20.4145                   | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>30</u>              |  |  |  |
| 2-Chloroethylvinylether               | 1             | 1.0669                    | 0                         | 200*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>30</del><br>30    |  |  |  |
| cis-1,3-Dichloropropene               | <u>i</u>      | 19.3685                   | <u>19.814</u>             | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>30</u>              |  |  |  |
| trans-1,3-Dichloropropene             | <u> </u>      | 18.9896                   | 19.3395                   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>30</u>              |  |  |  |
| Ethyl methacrylate                    | 1             | 18.1531                   | 19.3564                   | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                     |  |  |  |
| 1,1,2-Trichloroethane                 | 1             | 19.2264                   | 19.5449                   | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>30</u>              |  |  |  |
| 1,2-Dibromoethane                     | <u> </u>      | 18.7992                   | 19.778                    | <u>5.1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>30</u>              |  |  |  |
| 1,3-Dichloropropane                   | <u>†</u>      | 18.6281                   | 18.8304                   | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                     |  |  |  |
| 4-Methyl-2-Pentanone                  | 1             | 19.2601                   | 19.8718                   | <u>3.1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>30</u>              |  |  |  |
| 2-Hexanone                            |               | 18.4956                   | 18.8268                   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>30</u>              |  |  |  |
| <u>Tetrachloroethene</u>              | <u>1</u><br>1 | 19.2779                   | 20.4136                   | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                     |  |  |  |
| Toluene                               | į             | 18.7471                   | 18.9723                   | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                     |  |  |  |
| 1,1,1,2-Tetrachloroethane             | Ť             | 18.715                    | 19.2209                   | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                     |  |  |  |
| Chlorobenzene                         | 1             | 19.4773                   | 19.9761                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                     |  |  |  |
| * - Indicates outside of limits       |               |                           | ntions=0 no result o      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ulated                 |  |  |  |

<sup>\* -</sup> Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

| Method: 8260D               | Matrix: Aqu      | ueous Units     | s: ug/L          | QC Type: MSE |           |
|-----------------------------|------------------|-----------------|------------------|--------------|-----------|
|                             |                  | Dup/MSD/MBSD    | Sample/MS/N      | <b>I</b> BS  |           |
| Analyte:                    | Column           | Conc            | Conc             | RPD          | Limit     |
| n-Butyl acrylate            | 1                | 20.8667         | 21.1734          | 1.5          | 30        |
| n-Amyl acetate              | 1                | 19.4039         | 20.1911          | 4            | 30        |
| <u>Bromoform</u>            | <u>1</u>         | <u>20.3368</u>  | 20.8376          | <u>2.4</u>   | <u>30</u> |
| Ethylbenzene                |                  | 21.275          | 21.28            | 0.02         | 30        |
| 1,1,2,2-Tetrachloroethane   | <u>1</u>         | 18.6676         | 18.9719          | <u>1.6</u>   | 30        |
| <u>Styrene</u>              | 1<br>1<br>1<br>1 | <u>20.529</u>   | <u>20.6819</u>   | 0.74         | <u>30</u> |
| m&p-Xylenes                 | <u>1</u>         | <u>39.5269</u>  | <u>40.6679</u>   | <u>2.8</u>   | <u>30</u> |
| <u>o-Xylene</u>             | 1                | <u>20.3916</u>  | <u> 20.5001</u>  | <u>0.53</u>  | <u>30</u> |
| trans-1,4-Dichloro-2-butene | 1                | 16.1555         | 16.6603          | 3.1          | 30        |
| 1,3-Dichlorobenzene         | 1                | <u> 19.7992</u> | <u>19.8479</u>   | <u>0.25</u>  | <u>30</u> |
| 1,4-Dichlorobenzene         | 1<br>1<br>1      | <u>19.2751</u>  | <u>19.203</u>    | 0.37         | <u>40</u> |
| 1,2-Dichlorobenzene         | <u>1</u>         | <u>19.2889</u>  | <u>18.8683</u>   | <u>2.2</u>   | <u>40</u> |
| Isopropylbenzene            |                  | <u>21.569</u>   | <u>21.412</u>    | <u>0.73</u>  | <u>30</u> |
| Cyclohexanone               | 1                | 102.6054        | 113.8996         | 10           | 30        |
| Camphene                    | 1                | 8.2899          | 10.0277          | 19           | 30        |
| 1,2,3-Trichloropropane      | 1                | 18.6479         | 18.9059          | 1.4          | 30        |
| 2-Chlorotoluene             | 1                | 21.5335         | 21.2648          | 1.3          | 30        |
| p-Ethyltoluene              | 1                | 21.7126         | 21.1561          | 2.6          | 30        |
| 4-Chlorotoluene             | 1                | 20.5217         | 21.1979          | 3.2          | 30        |
| n-Propylbenzene             | 1                | 21.4245         | 20.7713          | 3.1          | 40        |
| Bromobenzene                | 1                | 17.263          | 17.8118          | 3.1          | 30        |
| 1,3,5-Trimethylbenzene      | 1                | 21.5552         | 21.2568          | 1.4          | 30        |
| Butyl methacrylate          | 1                | 19.5807         | 20.2203          | 3.2          | 30        |
| t-Butylbenzene              | 1                | 22.0083         | 21.3976          | 2.8          | 30        |
| 1,2,4-Trimethylbenzene      | 1                | 20.688          | 20.5053          | 0.89         | 30        |
| sec-Butylbenzene            | 1                | 22.7658         | 21.809           | 4.3          | 40        |
| 4-Isopropyltoluene          | 1                | 22.4553         | 21.5366          | 4.2          | 30        |
| n-Butylbenzene              | 1                | 23.1212         | 21.9613          | 5.1          | 30        |
| p-Diethylbenzene            | 1                | 22.7307         | 21.642           | 4.9          | 30        |
| 1,2,4,5-Tetramethylbenzene  | 1                | 21.1872         | 20.273           | 4.4          | 30        |
| 1,2-Dibromo-3-Chloropropane | <u>1</u>         | <u>20.3737</u>  | <u>20.3075</u>   | <u>0.33</u>  | <u>30</u> |
| Camphor                     | 1                | 225.9154        | 233.0959         | 3.1          | 30        |
| Hexachlorobutadiene         | 1                | 20.6443         | 21.3847          | 3.5          | 30        |
| 1,2,4-Trichlorobenzene      | <u>1</u>         | <u>20.4895</u>  | <u>19.3332</u>   | <u>5.8</u>   | <u>30</u> |
| 1,2,3-Trichlorobenzene      | 1                | <u>20.693</u>   | <u>20.5397</u>   | <u>0.74</u>  | <u>30</u> |
| Naphthalene                 | 1                | 20.0798         | 19.69 <b>7</b> 2 | 1.9          | 30        |

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M140338.D

MBS89475

10/9/2020 12:18:00 PM

Non Spike(If applicable):

| and a second of the second of the second |          |                 |                |                  |             |                |             |
|------------------------------------------|----------|-----------------|----------------|------------------|-------------|----------------|-------------|
| Analyte:                                 | Col      | Spike<br>Conc   | Sample<br>Conc | Expected<br>Conc | Recovery    | Lower<br>Limit | Upp<br>Lim  |
| Chlorodifluoromethane                    | 1        | 16.3437         | 0              | 20               | 82          | 50             | 150         |
| <u>Dichlorodifluoromethane</u>           | 1        | <u>1.6083</u>   | <u>o</u>       | <u>20</u>        | <u>8*</u>   | <u>50</u>      | <u>150</u>  |
| <u>Chloromethane</u>                     | <u>1</u> | <u>6.8355</u>   | <u>0</u>       | <u>20</u>        | <u>34 *</u> | <u>50</u>      | <u>150</u>  |
| <u> Bromomethane</u>                     | 1        | <u>12.2111</u>  | <u>0</u>       | <u>20</u>        | <u>61</u>   | <u>50</u>      | 150         |
| <u> /inyl Chloride</u>                   | 1        | <u>10.8249</u>  | <u>0</u>       | <u>20</u>        | <u>54</u>   | <u>50</u>      | <u>150</u>  |
| <u>Chloroethane</u>                      | 1        | <u>17.5107</u>  | <u>0</u>       | <u>20</u>        | <u>88</u>   | <u>50</u>      | <u>150</u>  |
| <u> Frichlorofluoromethane</u>           | 1        | <u> 19.1737</u> | Ō              | <u>20</u>        | <u>96</u>   | <u>50</u>      | 150         |
| Ethyl ether                              | 1        | 20.6542         | 0              | 20               | 103         | 50             | 150         |
| uran                                     | 1        | 17.9763         | 0              | 20               | 90          | 50             | 150         |
| 1,1,2-Trichloro-1,2,2-trifluoroethane    | _        | <u>22.8111</u>  | <u>Q</u>       | <u>20</u>        | <u>114</u>  | <u>50</u>      | <u>150</u>  |
| Methylene Chloride                       | 1        | <u>21.4514</u>  | <u>0</u>       | <u>20</u>        | <u>107</u>  | <u>70</u>      | 130         |
| Acrolein                                 | 1        | 105.8326        | 0              | 100              | 106         | 50             | 150         |
| Acrylonitrile                            | 1        | 22.8419         | 0              | 20               | 114         | 50             | 150         |
| odomethane                               | 1        | 10.1343         | 0              | 20               | 51          | 50             | 150         |
| <u>Acetone</u>                           | <u>1</u> | <u>98.4305</u>  | Q              | <u>100</u>       | <u>98</u>   | <u>50</u>      | <u>150</u>  |
| Carbon Disulfide                         | 1        | 16.0963         | <u>0</u>       | <u>20</u>        | 80          | <u>50</u>      | 150         |
| -Butyl Alcohol                           | 1        | 125.4374        | 0              | 100              | 125         | 50             | 15          |
| ı-Hexane                                 | 1        | 20.1288         | 0              | 20               | 101         | 70             | 13          |
| Di-isopropyl-ether                       | 1        | 19.676          | 0              | 20               | 98          | 70             | 13          |
| <u>,1-Dichloroethene</u>                 | <u>1</u> | <u>18.9801</u>  | <u>Q</u>       | <u>20</u>        | <u>95</u>   | <u>70</u>      | <u>13</u>   |
| Methyl Acetate                           | 1        | <u> 29.312</u>  | <u>0</u>       | <u>20</u>        | <u>147</u>  | <u>50</u>      | <u>15</u>   |
| Methyl-t-butyl ether                     | 1        | <u>24.1366</u>  | <u>0</u>       | <u>20</u>        | <u>121</u>  | <u>70</u>      | 13          |
| <u>l,1-Dichloroethane</u>                | 1        | <u>18.9285</u>  | <u>Q</u>       | <u>20</u>        | <u>95</u>   | <u>70</u>      | 13          |
| rans-1,2-Dichloroethene                  | 1        | <u>21.603</u>   | <u>0</u>       | <u>20</u>        | <u>108</u>  | <u>70</u>      | 130         |
| Ethyl-t-butyl ether                      | 1        | 21.2555         | 0              | 20               | 106         | 70             | 13          |
| <u>:is-1,2-Dichloroethene</u>            | 1        | 20.0092         | <u>0</u>       | <u>20</u>        | <u>100</u>  | <u>70</u>      | 13          |
| <u>Bromochloromethane</u>                | 1        | <u>17.5262</u>  | <u>0</u>       | <u>20</u>        | 88          | <u>70</u>      | 13          |
| 2,2-Dichloropropane                      | 1        | 20.6425         | 0              | 20               | 103         | 70             | 13          |
| Ethyl acetate                            | 1        | 24.0715         | 0              | 20               | 120         | 50             | 15          |
| I <u>,4-Dioxane</u>                      | 1        | <u>1035.309</u> | Ō              | <u>1000</u>      | <u>104</u>  | <u>50</u>      | 15          |
| 1,1-Dichloropropene                      | 1        | 20.9777         | 0              | 20               | 105         | 70             | 13          |
| <u>Chloroform</u>                        | <u>1</u> | <u>20.8717</u>  | <u>0</u>       | <u>20</u>        | <u>104</u>  | <u>70</u>      | 13          |
| <u>Cyclohexane</u>                       | <u>1</u> | <u>20.5027</u>  | <u>0</u>       | <u>20</u>        | <u>103</u>  | <u>70</u>      | <u>13</u>   |
| <u>,2-Dichloroethane</u>                 | 1        | <u>21.762</u>   | <u>0</u>       | <u>20</u>        | <u>109</u>  | <u>70</u>      | <u>13</u>   |
| 2-Butanone                               | 1        | <u>31.9944</u>  | Q              | <u>20</u>        | <u>160*</u> | <u>50</u>      | <u>15</u>   |
| I <u>,1,1-Trichloroethane</u>            | 1        | <u>21.071</u>   | <u>0</u>       | <u>20</u>        | <u>105</u>  | <u>70</u>      | <u>13</u>   |
| Carbon Tetrachloride                     | 1        | <u>21.5444</u>  | Q              | <u>20</u>        | <u>108</u>  | <u>50</u>      | <u>15</u>   |
| /inyl Acetate                            | 1        | 14.2143         | 0              | 20               | 71          | 50             | 15          |
| <u>Bromodichloromethane</u>              | <u>1</u> | <u>20.4592</u>  | <u>0</u>       | <u>20</u>        | <u>102</u>  | <u>70</u>      | <u>13</u>   |
| <u>flethylcyclohexane</u>                | 1        | <u>21.7654</u>  | <u>0</u>       | <u>20</u>        | <u>109</u>  | <u>70</u>      | <u>13</u>   |
| Dibromomethane                           | 1        | 22.4848         | 0              | 20               | 112         | 70             | 13          |
| 1,2-Dichloropropane                      | 1        | <u> 19.5714</u> | <u>0</u>       | <u>20</u>        | <u>98</u>   | <u>70</u>      | <u>13</u>   |
| <u> Frichloroethene</u>                  | 1        | <u>22.9514</u>  | <u>0</u>       | <u>20</u>        | <u>115</u>  | <u>70</u>      | 13          |
| <u>Benzene</u>                           | 1        | <u> 20.3592</u> | <u>0</u>       | <u>20</u>        | <u>102</u>  | <u>70</u>      | 13          |
| ert-Amyl methyl ether                    | 1        | 21.8399         | 0              | 20               | 109         | 70             | 13          |
| so-propylacetate                         | 1        | 17.5629         | 0              | 20               | 88          | 70             | 13          |
| Methyl methacrylate                      | 1        | 16.9604         | 0              | 20               | 85          | 70             | 13          |
| <u>Dibromochloromethane</u>              | 1        | <u>18.0132</u>  | Q              | <u>20</u>        | <u>90</u>   | <u>70</u>      | <u>13</u>   |
| -Chloroethylvinylether                   | 1        | 50.5661         | 0              | 20               | 253*        | 70             | 13          |
| :is-1,3-Dichloropropene                  | 1        | <u> 18.3427</u> | <u>0</u>       | <u>20</u>        | <u>92</u>   | <u>70</u>      | <u>13</u>   |
| rans-1,3-Dichloropropene                 | 1        | <u>16.9026</u>  | <u>Q</u>       | <u>20</u>        | <u>85</u>   | <u>70</u>      | 13          |
| Ethyl methacrylate                       | 1        | 19.5985         | 0              | 20               | 98          | 70             | 13          |
| ,1,2-Trichloroethane                     | 1        | <u>17.9872</u>  | <u>0</u>       | <u>20</u>        | <u>90</u>   | <u>70</u>      | 13          |
| ,2-Dibromoethane                         | 1        | <u>18.0395</u>  | <u>0</u>       | <u>20</u>        | <u>90</u>   | <u>70</u>      | <u>13</u>   |
| ,3-Dichloropropane                       | 1        | 17.92           | 0              | 20               | 90          | 70             | 130         |
| -Methyl-2-Pentanone                      | <u>1</u> | <u> 17.977</u>  | <u>0</u>       | <u>20</u>        | <u>90</u>   | <u>50</u>      | <u>15</u>   |
| 2-Hexanone                               | 1        | <u>17.3114</u>  | <u>0</u>       | <u>20</u>        | <u>87</u>   | <u>50</u>      | <u>15</u>   |
| <u>letrachloroethene</u>                 | 1        | 19.6433         | Q              | 20               | 98          | <u>50</u>      | <u>15</u> 0 |
| <u> Toluene</u>                          | <u>1</u> | 27.5575         | <u>o</u>       | <u>20</u>        | 138*        | <u>70</u>      | 13          |
| I,1,1,2-Tetrachloroethane                | 1        | 18.3563         | Ō              | 20               | 92          | 70             | 130         |
| Chlorobenzene                            | 1        | 25.1047         | <u>0</u>       | 20               | 126         | 70             | 130         |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix        | Matrix: Methanol |                |                  | (g QC Ty      | C Type: MBS    |                |
|-----------------------------|---------------|------------------|----------------|------------------|---------------|----------------|----------------|
| Analyte:                    | Col           | Spike<br>Conc    | Sample<br>Conc | Expected<br>Conc | Recovery      | Lower<br>Limit | Upper<br>Limit |
| n-Butyl acrylate            | 1             | 16.0201          | 0              | 20               | 80            | 70             | 130            |
| n-Amyl acetate              | 1             | 16.1255          | 0              | 20               | 81            | 70             | 130            |
| Bromoform                   | <u>1</u>      | 15.7257          | Q              | <u>20</u>        | <u>79</u>     | <u>70</u>      | 130            |
| Ethylbenzene                |               | 16.8626          | Q              | 20               | 84            | 70             | 130            |
| 1,1,2,2-Tetrachloroethane   | <u>1</u><br>1 | 16.0213          | Q              | 20               | <u>80</u>     | 70             | 130            |
| Styrene                     | <u>1</u>      | 18.1009          | <u>o</u>       | 20               | <u>91</u>     | <del>70</del>  | 130            |
| m&p-Xylenes                 | 1<br>1        | 38.2612          | Ō              | 40               | 96            | <del>70</del>  | 130            |
| o-Xylene                    | <u>1</u>      | 18.2803          | Ō              | 20               | 91            | <del>70</del>  | 130            |
| trans-1,4-Dichloro-2-butene | ī             | 15.1538          | ō              | 20               | <del>76</del> | 50             | 150            |
| 1,3-Dichlorobenzene         | 1             | 17.4642          | Q              | 20               | <u>87</u>     | <u>70</u>      | 130            |
| 1,4-Dichlorobenzene         | 1<br>1<br>1   | 17.3872          | Ō              | 20               | <u>87</u>     | <del>70</del>  | 130            |
| 1,2-Dichlorobenzene         | <u>1</u>      | 17.3575          | Ō              | 20               | <del>87</del> | <del>70</del>  | <u>130</u>     |
| Isopropylbenzene            | <u>1</u>      | 18.7332          | Ō              | <del>20</del>    | 94            | 70             | 130            |
| Cyclohexanone               | <u>1</u>      | 78.7178          | õ              | 100              | <del>79</del> | <del>50</del>  | 150            |
| Camphene                    | 1             | 17.0166          | 0              | 20               | 85            | 70             | 130            |
| 1,2,3-Trichloropropane      | 1             | 14.5972          | 0              | 20               | 73            | 70             | 130            |
| 2-Chlorotoluene             | 1             | 16.9228          | 0              | 20               | 85            | 70             | 130            |
| p-Ethyltoluene              | 1             | 18.5859          | 0              | 20               | 93            | 70             | 130            |
| 4-Chlorotoluene             | 1             | 17.4444          | 0              | 20               | 87            | 70             | 130            |
| n-Propylbenzene             | 1             | 17.4119          | 0              | 20               | 87            | 70             | 130            |
| Bromobenzene                | 1             | 14.9998          | 0              | 20               | 75            | 70             | 130            |
| 1,3,5-Trimethylbenzene      | 1             | 17.4792          | 0              | 20               | 87            | 70             | 130            |
| Butyl methacrylate          | 1             | 17.2062          | 0              | 20               | 86            | 70             | 130            |
| t-Butylbenzene              | 1             | 18.2251          | 0              | 20               | 91            | 70             | 130            |
| 1,2,4-Trimethylbenzene      | 1             | 17.8257          | 0              | 20               | 89            | 70             | 130            |
| sec-Butylbenzene            | 1             | 18.073           | 0              | 20               | 90            | 70             | 130            |
| 4-Isopropyltoluene          | 1             | 18.6287          | 0              | 20               | 93            | 70             | 130            |
| n-Butylbenzene              | 1             | 17.5934          | 0              | 20               | 88            | 70             | 130            |
| p-Diethylbenzene            | 1             | 18.9095          | 0              | 20               | 95            | 70             | 130            |
| 1,2,4,5-Tetramethylbenzene  | 1             | 14.3674          | 0              | 20               | 72            | 70             | 130            |
| 1,2-Dibromo-3-Chloropropane | 1             | 15.6931          | Q              | 20               | <u>78</u>     | 50             | 150            |
| Camphor                     | 1             | 120.3586         | ō              | 200              | 60            | 20             | 150            |
| Hexachlorobutadiene         | 1             | 17.4462          | 0              | 20               | 87            | 50             | 150            |
| 1,2,4-Trichlorobenzene      | <u>1</u>      | 17.6923          | <u>0</u>       | 20               | 88            | 70             | 130            |
| 1,2,3-Trichlorobenzene      | 1             | 16.574           | Q              | <u>20</u>        | <u>83</u>     | <del>70</del>  | 130            |
| Naphthalene                 | 1             | 17.2641          | Õ              | 20               | 86            | 50             | 150            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M140349.D

Non Spike(If applicable): 1M140334.D

AD19654-001(MS) AD19654-001 10/9/2020 4:06:00 PM 10/9/2020 10:55:00 AM

Inst Blank(If applicable):

Method: 8260D Matrix: Methanol Units: mg/Kg QC Type: MS

| Mictiliaa. O200D                                | Maci          | IVICTIATIO                       |                | Onics. mg/m            | ·9 · •• · · / ·   |                 |                   |
|-------------------------------------------------|---------------|----------------------------------|----------------|------------------------|-------------------|-----------------|-------------------|
| Analyte:                                        | Col           | Spike<br>Conc                    | Sample<br>Conc | Expected<br>Conc       | Recovery          | Lower<br>Limit  | Upper<br>Limit    |
|                                                 |               | 21.1017                          | 0              |                        | 106               | 50              | 150               |
| Chlorodifluoromethane                           | 1             |                                  |                | 20                     |                   |                 |                   |
| <u>Dichlorodifluoromethane</u><br>Chloromethane | 1             | <u>0</u><br>6.5106               | <u>0</u>       | <u>20</u><br>20        | <u>0*</u><br>33*  | <u>50</u><br>50 | <u>150</u><br>150 |
| Bromomethane                                    | <u>1</u><br>1 | 9.6073                           | <u>o</u>       | <u>20</u><br>20        | 48 <u>*</u>       | <u>50</u>       | 150<br>150        |
| Vinyl Chloride                                  | 1             | <u>9.0075</u><br>11.4355         | <u>o</u>       | <u>20</u><br>20        | <del>57</del>     | <u>50</u>       | 150<br>150        |
| Chloroethane                                    | 1 1           | 11.8418                          | <u>0</u>       | <u>20</u><br>20        | <u>57</u><br>59   | <u>50</u>       | 150<br>150        |
| Trichlorofluoromethane                          | 1             | 17.9205                          | <u>o</u>       | <u>20</u>              | 90                | <u>50</u>       | 150<br>150        |
| Ethyl ether                                     | <u>†</u>      | 20.7551                          | Ŏ              | 20                     | 1 <u>04</u>       | <del>50</del>   | 150               |
| Furan                                           | 1             | 17.3775                          | Ŏ              | 20                     | 87                | 50              | 150               |
| 1,1,2-Trichloro-1,2,2-trifluoroethan            |               | 21.981                           | <u>0</u>       | 20                     | <u>110</u>        | <u>50</u>       | 150               |
| Methylene Chloride                              | 1             | 21.5482                          | Õ              | <u>20</u>              | 108               | <del>70</del>   | 130               |
| Acrolein                                        | Ť             | 110.7009                         | Õ              | 100                    | 111               | 50              | 150               |
| Acrylonitrile                                   | 1             | 24.9355                          | Ô              | 20                     | 125               | 50              | 150               |
| Iodomethane                                     | 1             | 9.5645                           | 0              | 20                     | 48*               | 50              | 150               |
| Acetone                                         | 1             | 110.5759                         | <u>0</u>       | <u>100</u>             | 111               | <u>50</u>       | <u>150</u>        |
| Carbon Disulfide                                | <u>1</u>      | 15.9888                          | <u> </u>       | 20                     | 80                | 50              | 150               |
| t-Butyl Alcohol                                 | <u>1</u>      | 55.7934                          | ō              | 100                    | 56                | 50              | 150               |
| n-Hexane                                        | 1             | 20.937                           | 0              | 20                     | 105               | 70              | 130               |
| Di-isopropyl-ether                              | 1             | 20.0127                          | 0              | 20                     | 100               | 70              | 130               |
| 1,1-Dichloroethene                              | <u>1</u>      | 18.9949                          | Q              | <u>20</u>              | <u>95</u>         | <u>70</u>       | <u>130</u>        |
| Methyl Acetate                                  | 1             | 30.3167                          | <u>0</u>       | <u>20</u>              | <u>152*</u>       | <u>50</u>       | <u>150</u>        |
| Methyl-t-butyl ether                            | 1             | 23.6304                          | <u>0.958</u>   | <u>20</u>              | <u>113</u>        | <u>70</u>       | <u>130</u>        |
| 1,1-Dichloroethane                              | 1             | 18.9154                          | <u>0</u>       | <u>20</u>              | <u>95</u>         | <u>70</u>       | <u>130</u>        |
| trans-1,2-Dichloroethene                        | <u>1</u>      | 21.4017                          | <u>0</u>       | <u>20</u>              | <u>107</u>        | <u>70</u>       | <u>130</u>        |
| Ethyl-t-butyl ether                             | 1             | 21.0541                          | 0              | 20                     | 105               | 70              | 130               |
| cis-1,2-Dichloroethene                          | <u>1</u>      | <u>20.4228</u>                   | <u>0</u>       | <u>20</u>              | <u>102</u>        | <u>70</u>       | <u>130</u>        |
| <u>Bromochloromethane</u>                       | 1             | <u> 20.1477</u>                  | <u>0</u>       | <u>20</u>              | <u>101</u>        | <u>70</u>       | <u>130</u>        |
| 2,2-Dichloropropane                             | 1             | 18.9813                          | 0              | 20                     | 95                | 70              | 130               |
| Ethyl acetate                                   | 1             | 25.9632                          | 0              | 20                     | 130               | 50              | 150               |
| 1,4-Dioxane                                     | <u>1</u>      | <u>474.7633</u>                  | <u>0</u>       | <u>1000</u>            | <u>47*</u>        | <u>50</u>       | <u>150</u>        |
| 1,1-Dichloropropene                             | 1             | 21.57                            | 0              | 20                     | 108               | 70              | 130               |
| Chloroform                                      | 1             | <u>20.3488</u>                   | <u>0</u>       | <u>20</u>              | <u>102</u>        | <u>70</u>       | <u>130</u>        |
| Cyclohexane                                     | 1             | <u>21.4426</u>                   | <u>0</u>       | <u>20</u>              | <u>107</u>        | <u>70</u>       | <u>130</u>        |
| 1,2-Dichloroethane                              | <u>1</u><br>1 | <u>21.1912</u>                   | <u>0</u>       | <u>20</u>              | <u>106</u>        | <u>70</u>       | <u>130</u>        |
| 2-Butanone                                      | 1             | 34.5088                          | <u>0</u>       | <u>20</u>              | <u>173*</u>       | <u>50</u>       | <u>150</u>        |
| 1,1,1-Trichloroethane                           | 1             | 20.9688                          | <u>0</u>       | <u>20</u>              | <u>105</u>        | <u>70</u>       | <u>130</u>        |
| Carbon Tetrachloride                            | 1             | 20.8195                          | <u>0</u>       | <u>20</u>              | <u>104</u>        | <u>50</u>       | <u>150</u>        |
| Vinyl Acetate                                   | 1             | 13.8379                          | 0              | 20                     | 69                | 50              | 150               |
| Bromodichloromethane                            | 1             | 20.3805                          | <u>0</u>       | <u>20</u>              | <u>102</u>        | <u>70</u>       | <u>130</u>        |
| Methylcyclohexane                               | 1             | <b>21.8967</b><br>22.0516        | <u>o</u><br>0  | <u>20</u><br>20        | <u>109</u><br>110 | <u>70</u><br>70 | <u>130</u><br>130 |
| Dibromomethane                                  |               |                                  |                |                        | 97                |                 |                   |
| 1,2-Dichloropropane Trichloroethene             | 1             | <u>19.3817</u><br>21.0735        | <u>0</u><br>0  | <u>20</u><br>20        | <u>97</u><br>105  | <u>70</u><br>70 | <u>130</u><br>130 |
|                                                 | <u>1</u><br>1 | <u>21.0735</u><br><u>20.1586</u> | <u>0</u>       | <u>20</u><br><u>20</u> | 105<br>101        | <u>70</u><br>70 | 130<br>130        |
| Benzene<br>tert-Amyl methyl ether               | 1             | 21.354                           | 0              | <u>20</u><br>20        | 101<br>107        | 70              | 130               |
| Iso-propylacetate                               | i             | 17.5601                          | Ö              | 20                     | 88                | 70              | 130               |
| Methyl methacrylate                             | i             | 17.6552                          | Ö              | 20                     | 88                | 70              | 130               |
| <u>Dibromochloromethane</u>                     | 1             | 17.8925                          | <u>o</u>       | <u>20</u>              | <u>89</u>         | <u>70</u>       | 130<br>130        |
| 2-Chloroethylvinylether                         | 1             | 47.2867                          | Ö              | <u>20</u><br>20        | 2 <u>36</u> *     | 70              | 130               |
| cis-1,3-Dichloropropene                         | <u>i</u>      | <u>17.6534</u>                   | <u>0</u>       | 20                     | 88                | <u>70</u>       | 130               |
| trans-1,3-Dichloropropene                       | <u> </u>      | 16.1808                          | Q              | <u>20</u>              | <u>81</u>         | <u>70</u>       | 130               |
| Ethyl methacrylate                              | 1             | 20.3089                          | Õ              | <u>20</u>              | 1 <u>02</u>       | <del>70</del>   | 130               |
| 1,1,2-Trichloroethane                           | 1             | 18.5285                          | <u>0</u>       | 20                     | 93                | <u>70</u>       | 130               |
| 1,2-Dibromoethane                               | <u> </u>      | 18.0075                          | <u>o</u>       | <u>20</u>              | 90                | <u>70</u>       | 130               |
| 1,3-Dichloropropane                             | 1             | 18.3382                          | Ö              | <u>20</u>              | 92                | 70              | 130               |
| 4-Methyl-2-Pentanone                            | 1             | 19.643                           | <u>o</u>       | <u>20</u>              | 98                | <u>50</u>       | <u>150</u>        |
| 2-Hexanone                                      | 1             | 19.2144                          | <u>o</u>       | <u>20</u>              | 96                | 50              | 150               |
| <u>Tetrachloroethene</u>                        | 1             | 20.076                           | <u>o</u>       | 20                     | 100               | 50              | 150               |
| Toluene                                         | <u>†</u>      | 18.9198                          | <u>0</u>       | 20                     | 95                | <del>70</del>   | 130               |
| 1,1,1,2-Tetrachloroethane                       | ī             | 18.1177                          | ō              | 20                     | 91                | 70              | 130               |
| Chlorobenzene                                   | 1_            | 19.7747                          | 0              | 20                     | 99                | 70              | 130               |
|                                                 | ndicates      |                                  | standard li    | mits but within        |                   | dance lir       |                   |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits
Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix: Methanol |               |                | Units: mg/K      | (g QC Ty      | QC Type: MS    |                |  |
|-----------------------------|------------------|---------------|----------------|------------------|---------------|----------------|----------------|--|
| Analyte:                    | Col              | Spike<br>Conc | Sample<br>Conc | Expected<br>Conc | Recovery      | Lower<br>Limit | Upper<br>Limit |  |
| n-Butyl acrylate            | 1                | 15.876        | 0              | 20               | 79            | 70             | 130            |  |
| n-Amyl acetate              | 1                | 16.1645       | 0              | 20               | 81            | 70             | 130            |  |
| Bromoform                   | 1                | 15.444        | Q              | 20               | 77            | 70             | <u>130</u>     |  |
| Ethylbenzene                | 1                | 17.394        | <u>o</u>       | 20               | 87            | 70             | 130            |  |
| 1,1,2,2-Tetrachloroethane   | 1                | 15.7126       | Ō              | 20               | 79            | <del>70</del>  | 130            |  |
| Styrene                     | 1                | 19.1253       | <u>0</u><br>0  | <del>20</del>    | 96            | <del>70</del>  | 130            |  |
| m&p-Xylenes                 | 1                | 38.6043       | <u>o</u>       | 40               | 97            | 70             | 130            |  |
| o-Xylene                    | $\bar{1}$        | 18.572        | Ō              | 20               | 93            | <del>70</del>  | 130            |  |
| trans-1,4-Dichloro-2-butene | 1                | 15.0851       | ō              | 20               | 75            | 50             | 150            |  |
| 1,3-Dichlorobenzene         | 1                | 17.8777       | <u>0</u>       | 20               | <u>89</u>     | <u>70</u>      | 130            |  |
| 1,4-Dichlorobenzene         | <u>1</u>         | 17.9564       | <u> </u>       | 20               | 90            | 70             | 130            |  |
| 1,2-Dichlorobenzene         | 1                | 17.6245       | <u> </u>       | 20               | 88            | <del>70</del>  | 130            |  |
| Isopropylbenzene            | 1                | 19.5377       | <u> </u>       | <del>20</del>    | 98            | 70             | 130            |  |
| Cyclohexanone               | 1                | 89.7964       | ō              | 100              | 90            | 50             | 150            |  |
| Camphene                    | 1                | 17.7531       | 0              | 20               | 89            | 70             | 130            |  |
| 1,2,3-Trichloropropane      | 1                | 15.3064       | 0              | 20               | 77            | 70             | 130            |  |
| 2-Chlorotoluene             | 1                | 17.9022       | 0              | 20               | 90            | 70             | 130            |  |
| p-Ethyltoluene              | 1                | 18.0451       | 0              | 20               | 90            | 70             | 130            |  |
| 4-Chlorotoluene             | 1                | 18.0952       | 0              | 20               | 90            | 70             | 130            |  |
| n-Propylbenzene             | 1                | 17.95         | 0              | 20               | 90            | 70             | 130            |  |
| Bromobenzene                | 1                | 17.3407       | 0              | 20               | 87            | 70             | 130            |  |
| 1,3,5-Trimethylbenzene      | 1                | 18.8558       | Ö              | 20               | 94            | 70             | 130            |  |
| Butyl methacrylate          | 1                | 17.1211       | 0              | 20               | 86            | 70             | 130            |  |
| t-Butylbenzene              | 1                | 19.1266       | 0              | 20               | 96            | 70             | 130            |  |
| 1,2,4-Trimethylbenzene      | 1                | 18.046        | 0              | 20               | 90            | 70             | 130            |  |
| sec-Butylbenzene            | 1                | 18.8235       | Ō              | 20               | 94            | 70             | 130            |  |
| 4-Isopropyltoluene          | 1                | 19.3173       | Ö              | 20               | 97            | 70             | 130            |  |
| n-Butylbenzene              | 1                | 18.39         | 0              | 20               | 92            | 70             | 130            |  |
| p-Diethylbenzene            | 1                | 19.2631       | Ö              | 20               | 96            | 70             | 130            |  |
| 1,2,4,5-Tetramethylbenzene  | 1                | 14.3041       | Ö              | 20               | 72            | 70             | 130            |  |
| 1,2-Dibromo-3-Chloropropane | 1                | 15.0525       | <u>0</u>       | 20               | 75            | 50             | 150            |  |
| Camphor                     | Ť                | 129.371       | Ö              | 200              | 65            | 20             | 150            |  |
| Hexachlorobutadiene         | 1                | 19.9953       | Ö              | 20               | 100           | 50             | 150            |  |
| 1,2,4-Trichlorobenzene      | 1                | 18.0395       | Q              | 20               | 90            | 70             | 130            |  |
| 1,2,3-Trichlorobenzene      | 1                | 17.4954       | Õ              | 20               | <u>87</u>     | <u>70</u>      | 130            |  |
| Naphthalene                 | 1                | 17.4715       | <u>o</u><br>0  | 20               | <del>87</del> | 50             | 150            |  |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M140350.D Non Spike(If applicable): 1M140334.D

AD19654-001(MSD) AD19654-001 10/9/2020 4:26:00 PM 10/9/2020 10:55:00 AM

Inst Blank(If applicable):

| Inst Blank(If applicable):  Method: 8260D | Matrix        | c: Methanol                      |                | Units: mg/K            | g QC Typ        | e: MSD              |                   |
|-------------------------------------------|---------------|----------------------------------|----------------|------------------------|-----------------|---------------------|-------------------|
| Analyte:                                  | Col           | Spike<br>Conc                    | Sample<br>Conc | Expected<br>Conc       | Recovery        | Lower<br>Limit      | Upper<br>Limit    |
| Chlorodifluoromethane                     | 1             | 18.8133                          | 0              | 20                     | 94              | 50                  | 150               |
| Dichlorodifluoromethane                   | 1             | 3.0755                           | <u>o</u>       | 20                     | <u>15*</u>      | 50                  | 150               |
| Chloromethane                             | 1             | 5.9199                           | Q              | 20                     | 30 *            | 50                  | 150               |
| Bromomethane                              | 1             | 8.1158                           | Ō              | <del>20</del>          | 41:             | 50                  | 150               |
| Vinyl Chloride                            | <u>1</u>      | 5.6087                           | Ō              | <u>20</u>              | 28*             | <u>50</u>           | 150               |
| Chloroethane                              | 1             | 9.9808                           | Ō              | <del>20</del>          | 50              | <u>50</u>           | 150               |
| Trichlorofluoromethane                    | <u>1</u>      | <u></u>                          | Q              | 20                     | <u>_0</u> *     | 50                  | 150               |
| Ethyl ether                               | ĩ             | 17.6997                          | ō              | 20                     | 88              | 50                  | 150               |
| Furan                                     | 1             | 15.6497                          | 0              | 20                     | 78              | 50                  | 150               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane     | 1             | 20.0104                          | Q              | <u>20</u>              | <u>100</u>      | <u>50</u>           | <u>150</u>        |
| Methylene Chloride                        | 1             | <u> 19.4049</u>                  | <u>o</u>       | <u>20</u>              | <u>97</u>       | <u>70</u>           | <u>130</u>        |
| Acrolein                                  | 1             | 97.2982                          | 0              | 100                    | 97              | 50                  | 150               |
| Acrylonitrile                             | 1             | 22.5835                          | 0              | 20                     | 113             | 50                  | 150               |
| lodomethane                               | 1             | 10.4425                          | 0              | 20                     | 52              | 50                  | 150               |
| Acetone                                   | 1             | <u>96.1393</u>                   | <u>0</u>       | <u>100</u>             | <u>96</u>       | <u>50</u>           | <u>150</u>        |
| Carbon Disulfide                          | 1             | <u>13.4225</u>                   | Q              | <u>20</u>              | <u>67</u>       | <u>50</u>           | <u>150</u>        |
| t-Butyl Alcohol                           | 1             | 55.9815                          | 0              | 100                    | 56              | 50                  | 150               |
| n-Hexane                                  | 1             | 20.1434                          | 0              | 20                     | 101             | 70                  | 130               |
| Di-isopropyl-ether                        | 1             | 18.3917                          | 0              | 20                     | 92              | 70                  | 130               |
| 1,1-Dichloroethene                        | 1             | <u>17.1609</u>                   | 0              | <u>20</u>              | <u>86</u>       | <u>70</u>           | <u>130</u>        |
| Methyl Acetate                            | 1             | <u>27.3412</u>                   | <u>0</u>       | <u>20</u>              | <u>137</u>      | <u>50</u>           | <u>150</u>        |
| Methyl-t-butyl ether                      | 1             | <u>21,4991</u>                   | <u>0.958</u>   | <u>20</u>              | <u>103</u>      | <u>70</u>           | <u>130</u>        |
| 1,1-Dichloroethane                        | 1             | <u>16.9959</u>                   | <u>0</u>       | <u>20</u>              | <u>85</u>       | <u>70</u>           | <u>130</u>        |
| trans-1,2-Dichloroethene                  | <u>1</u><br>1 | <u>19.5351</u>                   | <u>0</u>       | <u>20</u>              | <b>98</b><br>97 | <u>70</u><br>70     | <u>130</u><br>130 |
| Ethyl-t-butyl ether                       |               | 19.3418                          | 0              | 20                     |                 |                     |                   |
| cis-1,2-Dichloroethene                    | 1             | 18.3196<br>18.5446               | <u>0</u>       | <u>20</u>              | <u>92</u>       | <u>70</u>           | 130<br>130        |
| Bromochloromethane                        | 1 1           | <u>18.<b>5446</b></u><br>16.756  | <u>o</u><br>o  | <u><b>20</b></u><br>20 | <u>93</u><br>84 | <u>70</u><br>70     | <u>130</u><br>130 |
| 2,2-Dichloropropane Ethyl acetate         | 1             | 22.8855                          | 0              | 20                     | 114             | 50                  | 150               |
| 1,4-Dioxane                               | 1             | 395.5967                         | <u>0</u>       | 1000                   | 40*             | <u>50</u>           | 150               |
| 1,1-Dichloropropene                       | 1             | 18.7824                          | 0              | 20                     | 94              | <del>30</del><br>70 | 130               |
| Chloroform                                | 1             | 18.4747                          | <u>o</u>       | 20                     | 92              | <u>70</u>           | 130               |
| Cyclohexane                               | 1             | 19.4517                          | <u>o</u>       | <u>20</u>              | 9 <u>7</u>      | <u>70</u>           | 130               |
| 1,2-Dichloroethane                        | 1             | 19.6661                          | <u>o</u>       | 20                     | 98              | 70                  | 130               |
| 2-Butanone                                | 1             | 30.4181                          | Ō              | <u>20</u>              | <u>152</u> *    | <u>50</u>           | 150               |
| 1,1,1-Trichloroethane                     | 1             | 18.7995                          | Ō              | 20                     | 94              | 70                  | 130               |
| Carbon Tetrachloride                      | 1             | 18.6879                          | <u> </u>       | <u>20</u>              | <u>93</u>       | <u>50</u>           | 150               |
| Vinyl Acetate                             | 1             | 12.5666                          | ō              | 20                     | 63              | 50                  | 150               |
| Bromodichloromethane                      | 1             | <u>17.9689</u>                   | <u>0</u>       | <u>20</u>              | <u>90</u>       | <u>70</u>           | <u>130</u>        |
| Methylcyclohexane                         | 1             | 20.6754                          | <u>0</u>       | 20                     | 103             | <u>70</u>           | 130               |
| Dibromomethane                            | 1             | 19.8323                          | 0              | 20                     | 99              | 70                  | 130               |
| 1,2-Dichloropropane                       | 1             | <u>17.5897</u>                   | <u>0</u>       | <u>20</u>              | <u>88</u>       | <u>70</u>           | <u>130</u>        |
| <u>Trichloroethene</u>                    | 1             | 19.2606                          | <u>0</u>       | <u>20</u>              | <u>96</u>       | <u>70</u>           | <u>130</u>        |
| Benzene                                   | <u>1</u>      | <u>18.229</u>                    | Q              | <u>20</u>              | <u>91</u>       | <u>70</u>           | <u>130</u>        |
| tert-Amyl methyl ether                    | 1             | 19.6078                          | 0              | 20                     | 98              | 70                  | 130               |
| Iso-propylacetate                         | 1             | 15.9341                          | 0              | 20                     | 80              | 70                  | 130               |
| Methyl methacrylate                       | 1             | 16.2681                          | 0              | 20                     | 81              | 70                  | 130               |
| <u>Dibromochloromethane</u>               | 1             | <u>16.0405</u>                   | <u>0</u>       | <u>20</u>              | <u>80</u>       | <u>70</u>           | <u>130</u>        |
| 2-Chloroethylvinylether                   | 1             | 45.5427                          | 0              | 20                     | 228*            | 70                  | 130               |
| cis-1,3-Dichloropropene                   | 1             | <u>15.7891</u>                   | Ō              | <u>20</u>              | <u>79</u>       | <u>70</u>           | <u>130</u>        |
| trans-1,3-Dichloropropene                 | 1             | <u>14.8531</u>                   | <u>0</u>       | <u>20</u>              | <u>74</u>       | <u>70</u>           | <u>130</u>        |
| Ethyl methacrylate                        | 1             | 17.2436                          | 0              | 20                     | 86              | 70<br><b>7</b> 0    | 130               |
| 1.1.2-Trichloroethane                     | <u>1</u><br>1 | 16.2753                          | Ō              | <u>20</u>              | <u>81</u>       | <u>70</u>           | <u>130</u><br>130 |
| 1,2-Dibromoethane 1,3-Dichloropropane     | 1             | <u>16.3442</u><br>16.7281        | <u>o</u><br>0  | <u><b>20</b></u><br>20 | <u>82</u><br>84 | <u>70</u><br>70     | 130<br>130        |
| 4-Methyl-2-Pentanone                      |               | 10.7201<br>17.1771               | <u>0</u>       | 20<br>20               | 86              | <u>50</u>           | 150<br>150        |
| 2-Hexanone                                | 1             | 17.0154                          | <u>ō</u>       | <u>20</u><br>20        | <u>85</u>       | <u>50</u>           | 150<br>150        |
| <u>Tetrachloroethene</u>                  | 1             | <u>17.0134</u><br><u>17.4875</u> | <u>ō</u>       | <u>20</u><br>20        | <u>87</u>       | <u>50</u>           | 150<br>150        |
| Toluene                                   | 1<br>1<br>1   | 16.9129                          | <u>0</u>       | <u>20</u>              | <u>85</u>       | <u>70</u>           | 130               |
| 1,1,1,2-Tetrachloroethane                 | <u>†</u>      | 16.5834                          | Ŏ              | <u>20</u><br>20        | 83              | <del>70</del>       | 130               |
| Chlorobenzene                             |               |                                  | <u>0</u>       | <u>20</u>              | <u>91</u>       | <u>70</u>           | 130               |
| + 1-41-4                                  | •             |                                  |                |                        |                 | <b>کنه</b>          | . <del></del>     |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

### Form3 Recovery Data Laboratory Limits QC Batch: MBS89475

| Method: 8260D               | Matrix   | :: Methanol     |          | Units: mg/l | (g QC Typ   | e: MSD    | <u>-</u>   |
|-----------------------------|----------|-----------------|----------|-------------|-------------|-----------|------------|
|                             |          | Spike           | Sample   | Expected    |             | Lower     | Upper      |
| Analyte:                    | Col      | Conc            | Conc     | Conc        | Recovery    | Limit     | Limit      |
| n-Butyl acrylate            | 1        | 14.6922         | 0        | 20          | 73          | 70        | 130        |
| n-Amyl acetate              | 1        | 14.4364         | 0        | 20          | 72          | 70        | 130        |
| <u>Bromoform</u>            | 1        | 13.5391         | Q        | <u>20</u>   | <u>68 *</u> | <u>70</u> | <u>130</u> |
| <u>Ethylbenzene</u>         | <u>1</u> | <u>15.4948</u>  | <u>o</u> | <u>20</u>   | <u>77</u>   | <u>70</u> | <u>130</u> |
| 1,1,2,2-Tetrachloroethane   | 1        | 14.0187         | Q        | <u>20</u>   | <u>70</u>   | <u>70</u> | <u>130</u> |
| <u>Styrene</u>              | 1        | <u>17.1792</u>  | <u>0</u> | <u>20</u>   | <u>86</u>   | <u>70</u> | <u>130</u> |
| m&p-Xylenes                 | 1        | <u>35.155</u>   | Q        | <u>40</u>   | <u>88</u>   | <u>70</u> | <u>130</u> |
| <u>o-Xylene</u>             | <u>1</u> | <u>17.063</u>   | <u>0</u> | <u>20</u>   | <u>85</u>   | <u>70</u> | <u>130</u> |
| trans-1,4-Dichloro-2-butene | 1        | 13.4328         | 0        | 20          | 67          | 50        | 150        |
| 1,3-Dichlorobenzene         | 1        | <u>16.441</u>   | <u>0</u> | <u>20</u>   | <u>82</u>   | <u>70</u> | <u>130</u> |
| 1,4-Dichlorobenzene         | <u>1</u> | <u>16.4946</u>  | <u>0</u> | <u>20</u>   | <u>82</u>   | <u>70</u> | <u>130</u> |
| 1,2-Dichlorobenzene         | 1        | <u>16.1699</u>  | <u>o</u> | <u>20</u>   | <u>81</u>   | <u>70</u> | <u>130</u> |
| <u>Isopropylbenzene</u>     | 1        | <u>17.8376</u>  | <u>o</u> | <u>20</u>   | <u>89</u>   | <u>70</u> | <u>130</u> |
| Cyclohexanone               | 1        | 82.9164         | 0        | 100         | 83          | 50        | 150        |
| Camphene                    | 1        | 17.0285         | 0        | 20          | 85          | 70        | 130        |
| 1,2,3-Trichloropropane      | 1        | 13.6922         | 0        | 20          | 68*         | 70        | 130        |
| 2-Chlorotoluene             | 1        | 16.1085         | 0        | 20          | 81          | 70        | 130        |
| p-Ethyltoluene              | 1        | 16.820 <b>7</b> | 0        | 20          | 84          | 70        | 130        |
| 4-Chlorotoluene             | 1        | 16.1632         | 0        | 20          | 81          | 70        | 130        |
| n-Propylbenzene             | 1        | 16.4798         | 0        | 20          | 82          | 70        | 130        |
| Bromobenzene                | 1        | 15.8868         | 0        | 20          | 79          | 70        | 130        |
| 1,3,5-Trimethylbenzene      | 1        | 17.4244         | 0        | 20          | 87          | 70        | 130        |
| Butyl methacrylate          | 1        | 15.2468         | 0        | 20          | 76          | 70        | 130        |
| t-Butylbenzene              | 1        | 17.8232         | 0        | 20          | 89          | 70        | 130        |
| 1,2,4-Trimethylbenzene      | 1        | 16.6933         | 0        | 20          | 83          | 70        | 130        |
| sec-Butylbenzene            | 1        | 17.5415         | 0        | 20          | 88          | 70        | 130        |
| 4-Isopropyltoluene          | 1        | 17.7047         | 0        | 20          | 89          | 70        | 130        |
| n-Butylbenzene              | 1        | 17.1214         | 0        | 20          | 86          | 70        | 130        |
| p-Diethylbenzene            | 1        | 17.9225         | 0        | 20          | 90          | 70        | 130        |
| 1,2,4,5-Tetramethylbenzene  | 1        | 13.2982         | 0        | 20          | 66*         | 70        | 130        |
| 1,2-Dibromo-3-Chloropropane | 1        | <u>13.2101</u>  | Ō        | 20          | <u>66</u>   | <u>50</u> | <u>150</u> |
| Camphor                     | 1        | 110.1634        | 0        | 200         | 55          | 20        | 150        |
| Hexachlorobutadiene         | 1        | 17.1469         | 0        | 20          | 86          | 50        | 150        |
| 1,2,4-Trichlorobenzene      | 1        | 16.6717         | <u>0</u> | <u>20</u>   | <u>83</u>   | <u>70</u> | <u>130</u> |
| 1,2,3-Trichlorobenzene      | <u>1</u> | <u> 15.951</u>  | <u>0</u> | <u>20</u>   | <u>80</u>   | <u>70</u> | <u>130</u> |
| Naphthalene                 | 1        | 15.5997         | 0        | 20          | 78          | 50        | 150        |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

### Form3 RPD Data Laboratory Limits

QC Batch: MBS89475

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M140350.D Duplicate(If applicable): 1M140349.D

AD19654-001(MSD) AD19654-001(MS) 10/9/2020 4:26:00 PM 10/9/2020 4:06:00 PM

Inst Blank(If applicable):

Method: 8260D Matrix: Methanol Units: mg/Kg QC Type: MSD

| Analyte:   Column   Conc   Conc   RPD   Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |        | Dup/MSD/MBSD                          | Sample/MS/MBS                         |              |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|---------------------------------------|---------------------------------------|--------------|-----------|
| Dichlorodiflucromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyte:                              | Column |                                       |                                       | RPD          | Limit     |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chlorodifluoromethane                 | 1      | 18.8133                               | 21.1017                               | 11           | 30        |
| Brommethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |        | <u>3.0755</u>                         |                                       | <u>200 *</u> |           |
| Vintro Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1      |                                       |                                       |              |           |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 1      |                                       |                                       |              |           |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | 1      |                                       |                                       |              |           |
| Ethylether   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | 1      |                                       |                                       |              |           |
| Furan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |        |                                       |                                       |              |           |
| 1.1.2-Trichloro-1.2.2-trifluoroethane   1   20.0104   21.981   9.4   30   Methylene Chloride   1   19.4049   21.5482   10   30   Acrolein   1   97.2982   110.7009   13   30   Acrolein   1   97.2982   110.7009   13   30   Acrolein   1   22.5835   24.9355   9.9   30   Acrolein   1   10.4425   9.5645   8.8   30   Acetone   1   99.1393   110.5759   14   30   Acetone   1   99.1393   110.5759   14   30   Acetone   1   13.4225   15.9888   17   30   15.9141   Acohol   1   55.9815   55.7934   0.34   30   no.14exane   1   20.1434   20.937   3.9   30   Di-isopropyl-ether   1   18.3917   20.0127   8.4   30   1.1-Dichloroethene   1   17.1609   18.9949   10   40   Methyl-k-butyl ether   1   21.4991   23.6304   9.4   30   1.1-Dichloroethene   1   17.23412   30.3167   10   30   Methyl-k-butyl ether   1   21.4991   23.6304   9.4   30   1.1-Dichloroethene   1   19.5351   21.4017   9.1   30   Ethyl-t-butyl ether   1   19.5351   21.4017   9.1   30   Ethyl-t-butyl ether   1   19.5351   21.4017   9.1   30   Ethyl-t-butyl ether   1   18.3919   20.4228   11   30   Ethyl-toethene   1   18.5446   20.1477   8.3   30   2.2-Dichloroethene   1   18.5446   20.1477   8.3   30   2.2-Dichloropropane   1   16.766   18.9813   12   30   Ethyl-toethene   1   18.5446   20.1477   8.3   30   2.2-Dichloroethene   1   18.7824   21.57   14   30   Ethyl-toethene   1   18.7824   21.57   14   30   Ethyl-toethene   1   18.7824   21.57   14   30   Ethyl-toethene   1   19.6661   21.1912   30   Ethyl-toethene   1   19.6661   21.1912   30   Ethyl-toethene   1   19.6661   21.1912   30   Ethyl-toethene   1   19.6661   21.1912   30   Ethyl-toethene   1   19.6661   31.3379   9.6   30   Methyl-cyclohexane   1   19.6661   31.3379   9.6   30   Methyl-cyclohexane   1   19.6661   31.3379   9.6   30   Methyl-cyclohexane   1   19.6661   31.3379   9.6   30   Methyl-cyclohexane   1   19.6661   31.3379   9.6   30   Methyl-cyclohexane   1   19.6661   31.3379   9.6   30   Methyl-cyclohexane   1   19.6078   21.354   8.5   30   Methyl-cyclohexane   1   19.6078   21.354   8.5      | •                                     |        |                                       |                                       |              |           |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | •      |                                       |                                       | -            |           |
| Acrolein 1 97.2982 110.7009 13 30 Acrylonitrile 1 22.5835 24.9355 9.9 30 lodomethane 1 10.4425 9.5645 8.8 30 Acatone 1 98.1323 110.5759 14 30 Acatone 1 98.1323 110.5759 14 30 Acatone 1 15.9815 55.7934 0.34 30 Network of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of th |                                       | 1      |                                       |                                       | _            |           |
| Indomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |        |                                       |                                       | _            |           |
| Acatone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acrylonitrile                         | 1      | 22.5835                               | 24.9355                               | 9.9          | 30        |
| Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lodomethane                           | 1      | 10.4425                               | 9.5645                                | 8.8          | 30        |
| t-Butyl Alcohol  n-Hexane  1 55,9815  55,7934  30  Di-Isopropyl-ether  1 18,3917  20,0127  8.4  30  1,1-Dichloroethene  1 17,1609  18,9949  10 40  Methyl-L-butyl ether  1 21,4991  23,6304  9,4  30  1,1-Dichloroethane  1 16,9959  18,9154  11 40  1,1-Dichloroethane  1 19,5351  21,4017  9,1  30  Ethyl-t-butyl ether  1 19,3418  21,0541  8,5  8,1  8,1  8,2  1,1-Dichloroethane  1 18,5446  20,1477  8,3  30  2,2-Dichloropropane  1 16,756  18,9813  12  30  Ethyl-tokyl ether  1 18,5446  20,1477  8,3  30  2,2-Dichloropropane  1 16,756  18,9813  12  30  Ethyl-tokyl ether  1 18,5446  20,1477  8,3  30  2,2-Dichloropropane  1 16,756  18,9813  12  30  Ethyl-tokyl ether  1 18,747  20,3488  9,7  40  Cyclohexane  1 18,4747  20,3488  9,7  40  Cyclohexane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4666  1,1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4661  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4666  1,1-1-Tichloroethane  1 19,4676  1,1-1-Tichloroethane  1 19,4676  1,1-1-Tichloroethane  1 19,4676   | <u>Acetone</u>                        |        | <u>96.1393</u>                        | <u>110.5759</u>                       | <u>14</u>    | <u>30</u> |
| n-Hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |        |                                       |                                       |              |           |
| Di-isopropyl-ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | -      |                                       |                                       |              |           |
| 1.1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |        |                                       |                                       |              |           |
| Methyl Acetate         1         27.3412         30.3167         10         30           Methyl-L-butyl ether         1         21.4991         23.5304         9.4         30           I.1-Dichloroethane         1         19.9595         18.9154         11         40           trans-1,2-Dichloroethene         1         19.5351         21.4017         9.1         30           Ethyl-L-butyl ether         1         19.5351         21.4017         9.1         30           Ethyl-L-butyl ether         1         19.5351         21.4017         9.1         30           Bromochloromethane         1         18.5446         20.1477         8.3         30           Bromochloromethane         1         16.756         18.9813         12         30           2.2-Dichloropapane         1         16.756         18.9813         12         30           1.1-Dichloropapane         1         395.5967         474.7633         18         30           1.4-Dichloropapane         1         18.7447         20.3488         9.7         40           Cyclohexane         1         19.4517         21.4426         9.7         30           1.2-Dichloroethane         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | -      |                                       |                                       |              |           |
| Methyl-t-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · · |        |                                       |                                       |              |           |
| 1.1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 1      |                                       |                                       |              |           |
| Tans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                           | 1/1    |                                       |                                       |              |           |
| Ethyl-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |        |                                       |                                       |              |           |
| cis-1.2-Dichloroethene         1         18.3196         20.4228         11         30           Bromochloromethane         1         18.5446         20.1477         8.3         30           2.2-Dichloropropane         1         16.756         18.9813         12         30           Ethyl acetate         1         22.8855         25.9632         13         20           1,4-Dichoropropene         1         18.7824         21.57         14         30           Chloroform         1         18.7824         21.57         14         30           Chloroform         1         18.4747         20.3488         9.7         40           Cyclohexane         1         19.4517         21.4426         9.7         30           1,2-Dichloroethane         1         19.4517         21.4426         9.7         30           1,2-Dichloroethane         1         19.4517         21.4426         9.7         30           1,1-Trichloroethane         1         19.7955         20.9688         11         30           2-Butanone         1         18.8679         20.9688         11         30           1,1-1-Trichloroethane         1         12.5666         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |        |                                       |                                       |              |           |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 1      |                                       |                                       |              |           |
| 2.2-Dichloropropane         1         16,756         18,9813         12         30           Ethyl acetate         1         22,8855         25,9632         13         20           1,4-Dioxane         1         395,5967         474,7633         18         30           1,1-Dichloropropene         1         18,7824         21,57         14         30           Chloroform         1         18,4747         20,3488         9,7         40           Cyclohexane         1         19,4517         21,4426         9,7         30           1,2-Dichloroethane         1         19,6661         21,1912         7,5         40           2-Butanone         1         30,4181         34,5088         13         40           1,1,1-Trichloroethane         1         18,7995         20,9688         11         30           Carbon Tetrachloride         1         18,6879         20,8195         11         40           Vinyl Acetate         1         12,5666         13,8379         9,6         30           Bromodichloromethane         1         17,9689         20,3805         13         30           Methylcyclohexane         1         17,9689         20,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 1      |                                       |                                       | _            |           |
| 1.4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,2-Dichloropropane                   |        | 16.756                                | 18.9813                               |              |           |
| 1.1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ethyl acetate                         | 1      | 22.8855                               | 25.9632                               | 13           | 20        |
| Chloroform         1         18,4747         20,3488         9.7         40           Cyclohexane         1         19,4517         21,4426         9.7         30           1,2-Dichloroethane         1         19,6661         21,1912         7.5         40           2-Butanone         1         19,6661         21,1912         7.5         40           2-Butanone         1         18,6979         20,808         11         30           Carbon Tetrachloride         1         18,6879         20,8195         11         40           Vinyl Acetate         1         12,5666         13,8379         9.6         30           Bromodichloromethane         1         17,5897         20,3805         13         30           Methylcyclohexane         1         20,6754         21,8967         5.7         30           Dibromomethane         1         19,8323         22,0516         11         30           1,2-Dichloropropane         1         17,5897         19,3817         9.7         30           Benzene         1         19,2606         21,0735         9         40           tert-Amyl methyl ether         1         19,6078         21,354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |        |                                       |                                       | _            |           |
| Cyclohexane         1         19.4517         21.4426         9.7         30           1,2-Dichloroethane         1         19.6661         21.1912         7.5         40           2-Butanone         1         30.4181         34.5088         13         40           1,1,1-Trichloroethane         1         18.7995         20.9688         11         30           Carbon Tetrachloride         1         18.6879         20.8195         11         40           Vinyl Acetate         1         12.5666         13.8379         9.6         30           Bromodichloromethane         1         17.5889         20.3805         13         30           Methylcyclohexane         1         20.6754         21.8967         5.7         30           Dibromomethane         1         19.8323         22.0516         11         30           1,2-Dichloropropane         1         17.5897         19.3817         9.7         30           Dibromotheme         1         19.2606         21.0735         9         40           Benzene         1         19.2606         21.0735         9         40           Iso-propylacetate         1         15.9341         17.5601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |        |                                       |                                       |              |           |
| 1.2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 1      |                                       |                                       |              |           |
| 2-Butanone         1         30.4181         34.5088         13         40           1.1.1-Trichloroethane         1         18.7995         20.9698         11         30           Carbon Tetrachloride         1         18.6879         20.8195         11         40           Vinyl Acetate         1         12.5666         13.8379         9.6         30           Bromodichloromethane         1         17.9689         20.3805         13         30           Methylcyclohexane         1         19.689         20.3805         13         30           Dibromomethane         1         19.8323         22.0516         11         30           1,2-Dichloropropane         1         17.5897         19.3817         9.7         30           Trichloroethene         1         19.6206         21.0735         9         40           Benzere         1         18.229         20.1586         10         40           tert-Amyl methyl ether         1         19.6078         21.354         8.5         30           Iso-propylacetate         1         15.9341         17.5601         9.7         30           Methyl methacrylate         1         16.0405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 1      |                                       |                                       |              |           |
| 1.1.1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 1      |                                       |                                       |              |           |
| Carbon Tetrachloride         1         18.6879         20.8195         11         40           Vinyl Acetate         1         12.5666         13.8379         9.6         30           Bromodichloromethane         1         17.9689         20.3805         13         30           Methylcyclohexane         1         20.6754         21.8967         5.7         30           Dibromomethane         1         19.8323         22.0516         11         30           1,2-Dichloropropane         1         17.5897         19.3817         9.7         30           Trichloroethene         1         19.2606         21.0735         9         40           Benzene         1         18.229         20.1586         10         40           tert-Amyl methyl ether         1         19.6078         21.354         8.5         30           Iso-propylacetate         1         15.9341         17.5601         9.7         30           Methyl methacrylate         1         16.2881         17.6552         8.2         30           Dibromochloromethane         1         16.0405         17.8925         11         30           2-Chloroethylvinylether         1         15.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 1 1    |                                       |                                       |              |           |
| Vinyl Acetate         1         12.5666         13.8379         9.6         30           Bromodichloromethane         1         17.9689         20.3805         13         30           Methylcyclohexane         1         20.6754         21.8967         5.7         30           Dibromomethane         1         19.8323         22.0516         11         30           1,2-Dichloropropane         1         17.5897         19.3817         9.7         30           Trichloroethene         1         19.2606         21.0735         9         40           Benzene         1         19.2606         21.0735         9         40           Benzene         1         19.2606         21.0735         9         40           Benzene         1         19.2606         21.0735         9         40           Benzene         1         19.2606         21.0735         9         40           Benzene         1         19.2606         21.0735         9         40           Benzene         1         19.2606         21.0735         9.7         30           Iso-propoplicated         1         16.0781         17.5501         9.7         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 1      |                                       |                                       | _            |           |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |        |                                       |                                       |              |           |
| Methylcyclohexane         1         20.6754         21.8967         5.7         30           Dibromomethane         1         19.8323         22.0516         11         30           1,2-Dichloropropane         1         17.5897         19.3817         9.7         30           Trichloroethene         1         19.2606         21.0735         9         40           Benzene         1         18.229         20.1586         10         40           tert-Amyl methyl ether         1         19.6078         21.354         8.5         30           Iso-propylacetate         1         15.9341         17.5601         9.7         30           Methyl methacrylate         1         16.2681         17.6552         8.2         30           Dibromochloromethane         1         16.0405         17.8925         11         30           2-Chloroethylvinylether         1         45.5427         47.2867         3.8         30           cis-1,3-Dichloropropene         1         15.7891         17.6534         11         30           trans-1,3-Dichloropropene         1         14.8531         16.1808         8.6         30           Ethyl methacrylate         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                     | 1      |                                       |                                       |              |           |
| Dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · |        |                                       |                                       | _            |           |
| Trichloroethene         1         19.2606         21.0735         9         40           Benzene         1         18.229         20.1586         10         40           tert-Amyl methyl ether         1         19.6078         21.354         8.5         30           Iso-propylacetate         1         15.9341         17.5601         9.7         30           Methyl methacrylate         1         16.2681         17.6552         8.2         30           Dibromochloromethane         1         16.0405         17.8925         11         30           2-Chloroethylvinylether         1         45.5427         47.2867         3.8         30           cis-1,3-Dichloropropene         1         15.7891         17.6534         11         30           trans-1,3-Dichloropropene         1         14.8531         16.1808         8.6         30           Ethyl methacrylate         1         17.2436         20.3089         16         30           1,1,2-Trichloroethane         1         16.2753         18.5285         13         30           1,2-Dibromoethane         1         16.7281         18.3382         9.2         30           1,3-Dichloropropane         1 <td>Dibromomethane</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dibromomethane                        |        |                                       |                                       |              |           |
| Benzene         1         18.229         20.1586         10         40           tert-Amyl methyl ether         1         19.6078         21.354         8.5         30           Iso-propylacetate         1         15.9341         17.5601         9.7         30           Methyl methacrylate         1         16.2681         17.6552         8.2         30           Dibromochloromethane         1         16.0405         17.8925         11         30           2-Chloroethylvinylether         1         45.5427         47.2867         3.8         30           cis-1,3-Dichloropropene         1         15.7891         17.6534         11         30           trans-1,3-Dichloropropene         1         14.8531         16.1808         8.6         30           Ethyl methacrylate         1         17.2436         20.3089         16         30           Ethyl methacrylate         1         17.2436         20.3089         16         30           1,1,2-Trichloroethane         1         16.2753         18.5285         13         30           1,2-Dibromoethane         1         16.7281         18.3082         9.2         30           1,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-Dichloropropane                   | 1      | 17.5897                               | <u> 19.3817</u>                       | <u>9.7</u>   | <u>30</u> |
| tert-Amyl methyl ether         1         19.6078         21.354         8.5         30           Iso-propylacetate         1         15.9341         17.5601         9.7         30           Methyl methacrylate         1         16.2681         17.6552         8.2         30           Dibromochloromethane         1         16.0405         17.8925         11         30           2-Chloroethylvinylether         1         45.5427         47.2867         3.8         30           cis-1,3-Dichloropropene         1         15.7891         17.6534         11         30           trans-1,3-Dichloropropene         1         14.8531         16.1808         8.6         30           Ethyl methacrylate         1         17.2436         20.3089         16         30           trans-1,3-Dichloropropene         1         16.2753         18.5285         13         30           thyl methacrylate         1         16.2753         18.5285         13         30           1,2-Dibromoethane         1         16.3442         18.0075         9.7         30           1,3-Dichloropropane         1         16.7281         18.3382         9.2         30           4-Methyl-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trichloroethene                       | 1      | <u>19.2606</u>                        | <u>21.0735</u>                        | <u>9</u>     | <u>40</u> |
| So-propylacetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |        |                                       |                                       |              |           |
| Methyl methacrylate       1       16.2681       17.6552       8.2       30         Dibromochloromethane       1       16.0405       17.8925       11       30         2-Chloroethylvinylether       1       45.5427       47.2867       3.8       30         cis-1,3-Dichloropropene       1       15.7891       17.6534       11       30         trans-1,3-Dichloropropene       1       14.8531       16.1808       8.6       30         Ethyl methacrylate       1       17.2436       20.3089       16       30         1,1,2-Trichloroethane       1       16.2753       18.5285       13       30         1,2-Dibromoethane       1       16.3442       18.0075       9.7       30         1,3-Dichloropropane       1       16.7281       18.3382       9.2       30         4-Methyl-2-Pentanone       1       17.1771       19.643       13       30         2-Hexanone       1       17.0154       19.2144       12       30         Tetrachloroethene       1       17.4875       20.076       14       40         Toluene       1       16.5834       18.1177       8.8       30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                     |        |                                       |                                       |              |           |
| Dibromochloromethane         1         16,0405         17.8925         11         30           2-Chloroethylvinylether         1         45.5427         47.2867         3.8         30           cis-1,3-Dichloropropene         1         15.7891         17.6534         11         30           trans-1,3-Dichloropropene         1         14.8531         16.1808         8.6         30           Ethyl methacrylate         1         17.2436         20.3089         16         30           1,1,2-Trichloroethane         1         16.2753         18.5285         13         30           1,2-Dibromoethane         1         16.3442         18.0075         9.7         30           1,3-Dichloropropane         1         16.7281         18.3382         9.2         30           4-Methyl-2-Pentanone         1         17.1771         19.643         13         30           2-Hexanone         1         17.0154         19.2144         12         30           Tetrachloroethene         1         17.4875         20.076         14         40           Toluene         1         16.5834         18.1177         8.8         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * **                                  | •      |                                       |                                       |              |           |
| 2-Chloroethylvinylether     1     45.5427     47.2867     3.8     30       cis-1,3-Dichloropropene     1     15.7891     17.6534     11     30       trans-1,3-Dichloropropene     1     14.8531     16.1808     8.6     30       Ethyl methacrylate     1     17.2436     20.3089     16     30       1,1,2-Trichloroethane     1     16.2753     18.5285     13     30       1,2-Dibromoethane     1     16.3442     18.0075     9.7     30       1,3-Dichloropropane     1     16.7281     18.3382     9.2     30       4-Methyl-2-Pentanone     1     17.1771     19.643     13     30       2-Hexanone     1     17.0154     19.2144     12     30       Tetrachloroethene     1     17.4875     20.076     14     40       Toluene     1     16.9129     18.9198     11     40       1,1,1,2-Tetrachloroethane     1     16.5834     18.1177     8.8     30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                              |        |                                       |                                       |              |           |
| cis-1,3-Dichloropropene         1         15.7891         17.6534         11         30           trans-1,3-Dichloropropene         1         14.8531         16.1808         8.6         30           Ethyl methacrylate         1         17.2436         20.3089         16         30           1,1,2-Trichloroethane         1         16.2753         18.5285         13         30           1,2-Dibromoethane         1         16.3442         18.0075         9.7         30           1,3-Dichloropropane         1         16.7281         18.3382         9.2         30           4-Methyl-2-Pentanone         1         17.1771         19.643         13         30           2-Hexanone         1         17.0154         19.2144         12         30           Tetrachloroethene         1         17.4875         20.076         14         40           Toluene         1         16.5834         18.1177         8.8         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |        |                                       |                                       |              |           |
| trans-1,3-Dichloropropene         1         14.8531         16.1808         8.6         30           Ethyl methacrylate         1         17.2436         20.3089         16         30           1,1,2-Trichloroethane         1         16.2753         18.5285         13         30           1,2-Dibromoethane         1         16.3442         18.0075         9.7         30           1,3-Dichloropropane         1         16.7281         18.3382         9.2         30           4-Methyl-2-Pentanone         1         17.1771         19.643         13         30           2-Hexanone         1         17.0154         19.2144         12         30           Tetrachloroethene         1         17.4875         20.076         14         40           Toluene         1         16.9129         18.9198         11         40           1,1,1,2-Tetrachloroethane         1         16.5834         18.1177         8.8         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | -      |                                       |                                       |              |           |
| Ethyl methacrylate       1       17.2436       20.3089       16       30         1,1,2-Trichloroethane       1       16.2753       18.5285       13       30         1,2-Dibromoethane       1       16.3442       18.0075       9.7       30         1,3-Dichloropropane       1       16.7281       18.3382       9.2       30         4-Methyl-2-Pentanone       1       17.1771       19.643       13       30         2-Hexanone       1       17.0154       19.2144       12       30         Tetrachloroethene       1       17.4875       20.076       14       40         Toluene       1       16.9129       18.9198       11       40         1,1,1,2-Tetrachloroethane       1       16.5834       18.1177       8.8       30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |        |                                       |                                       |              |           |
| 1,1,2-Trichloroethane     1     16.2753     18.5285     13     30       1,2-Dibromoethane     1     16.3442     18.0075     9.7     30       1,3-Dichloropropane     1     16.7281     18.3382     9.2     30       4-Methyl-2-Pentanone     1     17.1771     19.643     13     30       2-Hexanone     1     17.0154     19.2144     12     30       Tetrachloroethene     1     17.4875     20.076     14     40       Toluene     1     16.9129     18.9198     11     40       1,1,1,2-Tetrachloroethane     1     16.5834     18.1177     8.8     30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |        | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |              |           |
| 1,2-Dibromoethane     1     16.3442     18.0075     9.7     30       1,3-Dichloropropane     1     16.7281     18.3382     9.2     30       4-Methyl-2-Pentanone     1     17.1771     19.643     13     30       2-Hexanone     1     17.0154     19.2144     12     30       Tetrachloroethene     1     17.4875     20.076     14     40       Toluene     1     16.9129     18.9198     11     40       1,1,1,2-Tetrachloroethane     1     16.5834     18.1177     8.8     30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | -      |                                       |                                       |              |           |
| 1,3-Dichloropropane       1       16.7281       18.3382       9.2       30         4-Methyl-2-Pentanone       1       17.1771       19.643       13       30         2-Hexanone       1       17.0154       19.2144       12       30         Tetrachloroethene       1       17.4875       20.076       14       40         Toluene       1       16.9129       18.9198       11       40         1,1,1,2-Tetrachloroethane       1       16.5834       18.1177       8.8       30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |        |                                       |                                       |              | <u>30</u> |
| 2-Hexanone     1     17.0154     19.2144     12     30       Tetrachloroethene     1     17.4875     20.076     14     40       Toluene     1     16.9129     18.9198     11     40       1,1,1,2-Tetrachloroethane     1     16.5834     18.1177     8.8     30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,3-Dichloropropane                   | 1      | 16.7281                               |                                       |              | 30        |
| Tetrachloroethene         1         17.4875         20.076         14         40           Toluene         1         16.9129         18.9198         11         40           1,1,1,2-Tetrachloroethane         1         16.5834         18.1177         8.8         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-Methyl-2-Pentanone                  | 1      | <u>17.1771</u>                        | <u>19.643</u>                         | <u>13</u>    |           |
| Toluene         1         16.9129         18.9198         11         40           1,1,1,2-Tetrachloroethane         1         16.5834         18.1177         8.8         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 1      |                                       |                                       |              |           |
| 1,1,1,2-Tetrachloroethane 1 16.5834 18.1177 8.8 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 1      |                                       |                                       |              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |                                       |                                       |              |           |
| <u>Unioropenzene 1 18.1011 19.7747 8.8 40</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |        |                                       |                                       |              |           |
| * Indicates outside of limits NA - Rath concentrations=0 - no result can be calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |        |                                       |                                       |              |           |

<sup>\* -</sup> Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

### Form3 RPD Data Laboratory Limits

QC Batch: MBS89475

| Method: 8260D               | Matrix: Me       | thanol Units:        | mg/Kg Q0              | Type: MSI   | <b>)</b>  |
|-----------------------------|------------------|----------------------|-----------------------|-------------|-----------|
| Analyte:                    | Column           | Dup/MSD/MBSD<br>Conc | Sample/MS/MBS<br>Conc | RPD         | Limit     |
| n-Butyl acrylate            | 1                | 14.6922              | 15.876                | 7.7         | 30        |
| n-Amyl acetate              | 1                | 14.4364              | 16.1645               | 11          | 30        |
| Bromoform                   | <u>1</u>         | <u>13.5391</u>       | <u>15.444</u>         | <u>13</u>   | <u>30</u> |
| Ethylbenzene                | 1                | 15.4948              | 17.394                | 12          | <u>30</u> |
| 1,1,2,2-Tetrachloroethane   | 1<br>1<br>1<br>1 | 14.0187              | 15.7126               | <u>11</u>   | <u>30</u> |
| Styrene                     | <u>1</u>         | 17.1792              | 19.1253               | <u>11</u>   | <u>30</u> |
| m&p-Xylenes                 | 1                | 35.155               | 38.6043               | 9.4         | <u>30</u> |
| o-Xylene                    | <u>1</u>         | 17.063               | 18.572                | <u>8.5</u>  | <u>30</u> |
| trans-1,4-Dichloro-2-butene | ī                | 13.4328              | 15.0851               | 12          | 30        |
| 1,3-Dichlorobenzene         | 1                | 16.441               | 17.8777               | <u>8.4</u>  | <u>30</u> |
| 1,4-Dichlorobenzene         | 1<br>1<br>1<br>1 | 16.4946              | 17.9564               | 8. <u>5</u> | <u>40</u> |
| 1,2-Dichlorobenzene         | <u> </u>         | 16.1699              | 17.6245               | <u>8.6</u>  | <u>40</u> |
| Isopropylbenzene            | ī                | 17.8376              | 19.5377               | 9.1         | <u>30</u> |
| Cyclohexanone               | ī                | 82.9164              | 89.7964               |             | 30        |
| Camphene                    | 1                | 17.0285              | 17.7531               | 4.2         | 30        |
| 1,2,3-Trichloropropane      | 1                | 13.6922              | 15.3064               | 11          | 30        |
| 2-Chlorotoluene             | 1                | 16.1085              | 17.9022               | 11          | 30        |
| p-Ethyltoluene              | 1                | 16.8207              | 18.0451               | 7           | 30        |
| 4-Chlorotoluene             | 1                | 16.1632              | 18.0952               | 11          | 30        |
| n-Propylbenzene             | 1                | 16.4798              | 17.95                 | 8.5         | 40        |
| Bromobenzene                | 1                | 15.8868              | 17.3407               | 8.8         | 30        |
| 1,3,5-Trimethylbenzene      | 1                | 17.4244              | 18.8558               | 7.9         | 30        |
| Butyl methacrylate          | 1                | 15.2468              | 17.1211               | 12          | 30        |
| t-Butylbenzene              | 1                | 17.8232              | 19.1266               | 7.1         | 30        |
| 1,2,4-Trimethylbenzene      | 1                | 16.6933              | 18.046                | 7.8         | 30        |
| sec-Butylbenzene            | 1                | 17.5415              | 18.8235               | 7.1         | 40        |
| 4-Isopropyltoluene          | 1                | 17. <b>7</b> 047     | 19.3173               | 8.7         | 30        |
| n-Butylbenzene              | 1                | 17.1214              | 18.39                 | 7.1         | 30        |
| p-Diethylbenzene            | 1                | 17.9225              | 19.2631               | 7.2         | 30        |
| 1,2,4,5-Tetramethylbenzene  | 1                | 13.2982              | 14.3041               | 7.3         | 30        |
| 1,2-Dibromo-3-Chloropropane | 1                | 13.2101              | 15.0525               | <u>13</u>   | <u>30</u> |
| Camphor                     | 1                | 110.1634             | 129.371               | 16          | 30        |
| Hexachlorobutadiene         | 1                | 17.1469              | 19.9953               | 15          | 30        |
| 1,2,4-Trichlorobenzene      | 1                | 16.6717              | 18.0395               | 7.9         | <u>30</u> |
| 1,2,3-Trichlorobenzene      | 1                | 15.951               | 17.4954               | 9.2         | <u>30</u> |
| Naphthalene                 | ī                | 15.5997              | 17.4715               | 11          | 30        |
|                             | •                |                      |                       |             |           |

Blank Number: DAILY BLANK Blank Data File: 11M83553.D

Matrix: Soil

Blank Analysis Date: 10/05/20 16:43

Blank Extraction Date: NA (If Applicable)

| Sample Number   | Data File           | Analysis Date  |  |
|-----------------|---------------------|----------------|--|
| AD19539-009     | 11M83578.D          | 10/06/20 00:57 |  |
| AD19562-003(MS: | 11M83557.D          | 10/05/20 18:02 |  |
| AD19562-005(MSD | 11 <b>M</b> 83560.D | 10/05/20 19:01 |  |
| MB\$89425       | 11M83561.D          | 10/05/20 19:21 |  |
| AD19562-001     | 11M83564.D          | 10/05/20 20:20 |  |

Blank Number: DAILY BLANK Blank Data File: 1M140092.D

Matrix: Aqueous

Blank Analysis Date: 10/05/20 17:13

Blank Extraction Date: NA (If Applicable)

| Sample Number | er Data File   | Analysis Date  |
|---------------|----------------|----------------|
| AD19539-001   | 1M140094.D     | 10/05/20 17:54 |
| AD19565-016(I | MS) 1M140105.D | 10/05/20 21:42 |
| MBS89427      | 1M140102.D     | 10/05/20 20:40 |
| AD19565-016(F | MSD 1M140106.D | 10/05/20 22:02 |
| AD19565-016   | 1M140097.D     | 10/05/20 18:56 |

Blank Number: DAILY BLANK Blank Data File: 1M140093.D

Matrix: Methanol

Blank Analysis Date: 10/05/20 17:33

Blank Extraction Date: NA (If Applicable)

| Sample Number    | Data File  | Analysis Date  |  |
|------------------|------------|----------------|--|
| AD19539-006      | 1M140118.D | 10/06/20 02:11 |  |
| AD19539-008      | 1M140116.D | 10/06/20 01:29 |  |
| AD19539-010      | 1M140112.D | 10/06/20 00:06 |  |
| AD19539-011      | 1M140111.D | 10/05/20 23:46 |  |
| AD19539-013      | 1M140114.D | 10/06/20 00:48 |  |
| AD19539-017(8uL) | 1M140100.D | 10/05/20 19:58 |  |
| AD19539-009(MSD  | 1M140104.D | 10/05/20 21:21 |  |
| MBS89426         | 1M140101.D | 10/05/20 20:19 |  |
| AD19539-009(MS)  | 1M140103.D | 10/05/20 21:00 |  |
| AD19539-009      | 1M140107.D | 10/05/20 22:23 |  |

Blank Number: DAILY BLANK Blank Data File: 11M83601.D

Matrix: Soil

Blank Analysis Date: 10/06/20 11:13

Blank Extraction Date: NA (If Applicable)

| Sample Number   | Data File  | Analysis Date  |  |
|-----------------|------------|----------------|--|
| AD19539-007     | 11M83623.D | 10/06/20 18:28 |  |
| AD19539-015     | 11M83603.D | 10/06/20 11:52 |  |
| AD19539-016     | 11M83604.D | 10/06/20 12:12 |  |
| AD19581-008(MSD | 11M83607.D | 10/06/20 13:11 |  |
| AD19581-008     | 11M83610.D | 10/06/20 14:11 |  |
| AD19581-008(MS) | 11M83606.D | 10/06/20 12:52 |  |
| MBS89437        | 11M83605.D | 10/06/20 12:32 |  |

Blank Number: DAILY BLANK Blank Data File: 2M142817.D Matrix: Aqueous Blank Analysis Date: 10/07/20 10:37 Blank Extraction Date: NA

iank Extraction Date: N (if Applicable)

|   | Sample Number   | Data File  | Analysis Date  |  |
|---|-----------------|------------|----------------|--|
| - | AD19539-002(5X) | 2M142841.D | 10/07/20 18:54 |  |
|   | AD19539-003(5X) | 2M142842.D | 10/07/20 19:13 |  |
|   | AD19539-004(5X) | 2M142843.D | 10/07/20 19:33 |  |
|   | AD19539-005(5X) | 2M142844.D | 10/07/20 19:53 |  |
|   | AD19574-001     | 2M142828.D | 10/07/20 14:39 |  |
|   | AD19574-001(MSD | 2M142832.D | 10/07/20 15:58 |  |
|   | MBS89447        | 2M142829.D | 10/07/20 14:59 |  |
|   | AD19574-001(MS) | 2M142831.D | 10/07/20 15:38 |  |

Blank Number: DAILY BLANK Blank Data File: 1M140333.D Matrix: Methanol Blank Analysis Date: 10/09/20 10:26

Blank Extraction Date: NA (If Applicable)

| Sample Nui | mber Data File     | Analysis Date  |  |
|------------|--------------------|----------------|--|
| AD19539-0  | 12 1M140341.D      | 10/09/20 13:20 |  |
| AD19539-0  | 14(40uL 1M140337.D | 10/09/20 11:57 |  |
| AD19654-0  | 01 1M140334.D      | 10/09/20 10:55 |  |
| MBS89475   | 1M140338.D         | 10/09/20 12:18 |  |
| AD19654-0  | 01(MS) 1M140349.D  | 10/09/20 16:06 |  |
| AD19654-0  | 01(MSD 1M140350.D  | 10/09/20 16:26 |  |

#### Form 5

Tune Name: BFB TUNE

**Data File:** 1M139257.D Instrument: GCMS 1 Analysis Date: 09/09/20 18:32
Method: EPA 8260D
Tune Scan/Time Range: Average of 7.599 to 7.635 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/ |
|------|------|------|-------|-------|-------|-------|
| Mass | Mass | Lim  |       | Abund | Abund | Fail  |
| 50   | 95   | 15   | 40    | 15.4  | 2307  | PASS  |
| 75   | 95   | 30   | 60    | 49.5  | 7412  | PASS  |
| 95   | 95   | 100  | 100   | 100.0 | 14974 | PASS  |
| 96   | 95   | 5    | 9     | 6.9   | 1036  | PASS  |
| 173  | 174  | 0.00 | 2     | 1.3   | 171   | PASS  |
| 174  | 95   | 50   | 100   | 90.9  | 13612 | PASS  |
| 175  | 174  | 5    | 9     | 7.3   | 996   | PASS  |
| 176  | 174  | 95   | 101   | 97.3  | 13246 | PASS  |
| 177  | 176  | 5    | 9     | 7.0   | 928   | PASS  |

| Data File  | Sample Number | Analysis Date: |
|------------|---------------|----------------|
| 1M139258.D | BLK           | 09/09/20 18:46 |
| 1M139260.D | CAL @ 0.5 PPB | 09/09/20 19:28 |
| 1M139261.D | CAL @ 1 PPB   | 09/09/20 19:48 |
| 1M139262.D | CAL @ 5 PPB   | 09/09/20 20:09 |
| 1M139263.D | CAL @ 10 PPB  | 09/09/20 20:30 |
| 1M139264.D | CAL @ 20 PPB  | 09/09/20 20:51 |
| 1M139266.D | CAL @ 50 PPB  | 09/09/20 21:33 |
| 1M139268.D | CAL @ 500 PPB | 09/09/20 22:14 |
| 1M139271.D | CAL @ 250 PPB | 09/09/20 23:16 |
| 1M139272.D | BLK           | 09/09/20 23:37 |
| 1M139274.D | CAL @ 100 PPB | 09/10/20 00:19 |
| 1M139275.D | BLK           | 09/10/20 00:40 |
| 1M139279.D | ICV           | 09/10/20 02:02 |

Data Path : G:\GcMsData\2020\GCMS\_1\Data\09-09-20\

Data File: 1M139257.D

Acq On : 09 Sep 2020 18:32

Operator : WP

Sample : BFB TUNE Misc : A,5ML

ALS Vial : 4 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GcMsData\2020\GCMS\_1\MethodQt\1M\_A0710.M

Title : @GCMS 1,ug,624,8260

Last Update : Frī Jul 10 13:55:20 2020



Spectrum Information: Average of 7.599 to 7.635 min.

|     | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result  <br>  Pass/Fail |
|-----|----------------|-----------------|-----------------|-----------------|--------------|------------|-------------------------|
| Ī   | 50             | 95              | 15              | 40              | 15.4         | 2307       | PASS                    |
|     | 75             | 95              | 30              | 60              | 49.5         | 7412       | PASS                    |
| - [ | 95             | 95              | 100             | 100             | 100.0        | 14974      | PASS                    |
|     | 96             | 95              | 5               | 9               | 6.9          | 1036       | PASS                    |
|     | 173            | 174             | 0.00            | 2               | 1.3          | 171        | PASS                    |
|     | 174            | 95              | 50              | 100             | 90.9         | 13612      | PASS                    |
| ı   | 175            | 174             | 5               | 9               | 7.3          | 996        | PASS                    |
| ı   | 176            | 174             | 95              | 101             | 97.3         | 13246      | PASS                    |
| İ   | 177            | 176             | 5               | 9               | 7.0          | 928        | PASS                    |
| ·   |                |                 | · ·             | . <b></b>       | ·            |            |                         |

#### Form 5

Tune Name: BFB TUNE Data File: 2M142484.D Instrument: GCMS 2 Analysis Date: 09/29/20 14:14
Method: EPA 8260D
Tune Scan/Time Range: Average of 7.336 to 7.379 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/ |
|------|------|------|-------|-------|-------|-------|
| Mass | Mass | Lim  |       | Abund | Abund | Fail  |
| 50   | 95   | 15   | 40    | 18.6  | 3176  | PASS  |
| 75   | 95   | 30   | 60    | 48.8  | 8328  | PASS  |
| 95   | 95   | 100  | 100   | 100.0 | 17082 | PASS  |
| 96   | 95   | 5    | 9     | 6.7   | 1137  | PASS  |
| 173  | 174  | 0.00 | 2     | 1.2   | 175   | PASS  |
| 174  | 95   | 50   | 100   | 87.8  | 15005 | PASS  |
| 175  | 174  | 5    | 9     | 7.3   | 1088  | PASS  |
| 176  | 174  | 95   | 101   | 97.0  | 14548 | PASS  |
| 177  | 176  | 5    | 9     | 5.8   | 850   | PASS  |

| Sample Number | Analysis Date:                                                                                                                       |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------|
| CAL @ 0.5 PPB | 09/29/20 15:09                                                                                                                       |
| CAL @ 1 PPB   | 09/29/20 15:28                                                                                                                       |
| CAL @ 5 PPB   | 09/29/20 15:48                                                                                                                       |
| CAL @ 10 PPB  | 09/29/20 16:08                                                                                                                       |
| CAL @ 20 PPB  | 09/29/20 16:47                                                                                                                       |
| CAL @ 50 PPB  | 09/29/20 17:26                                                                                                                       |
| CAL @ 100 PPB | 09/29/20 18:05                                                                                                                       |
| CAL @ 250 PPB | 09/29/20 19:04                                                                                                                       |
| CAL @ 500 PPB | 09/29/20 20:03                                                                                                                       |
| ICV           | 09/29/20 22:00                                                                                                                       |
|               | CAL @ 0.5 PPB CAL @ 1 PPB CAL @ 5 PPB CAL @ 10 PPB CAL @ 20 PPB CAL @ 50 PPB CAL @ 100 PPB CAL @ 250 PPB CAL @ 250 PPB CAL @ 500 PPB |

CLPBFB

Data Path : G:\GcMsData\2020\GCMS\_2\Data\09-29-20\

Data File: 2M142484.D

Acq On : 29 Sep 2020 14:14

Operator : JR

Sample : BFB TUNE Misc : A,5ML

ALS Vial : 6 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GCMSDATA\2020\GCMS 2\METHODQT\2M A0909.M

Title : @GCMS 2,ug,624,8260

Last Update : Thu Sep 10 14:44:02 2020



Spectrum Information: Average of 7.336 to 7.379 min.

|   | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |      |
|---|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|------|
| 1 | 50             | 95              | 15              | 40              | 18.6         | 3176       | PASS                | Ī    |
| 1 | 75             | 95              | 30              | 60              | 48.8         | 8328       | PASS                | İ    |
| j | 95             | 95              | 100             | 100             | 100.0        | 17082      | PASS                | j    |
| İ | 96             | 95              | 5               | 9               | 6.7          | j 1137     | PASS                | ŀ    |
| j | 173            | 174             | 0.00            | 2               | 1.2          | j 175      | PASS                |      |
| - | 174            | 95              | 50              | 100             | 87.8         | 15005      | PASS                | ŀ    |
| İ | 175            | 174             | 5               | 9               | 7.3          | 1088       | PASS                | - 1  |
|   | 176            | 174             | 95              | 101             | 97.0         | 14548      | PASS                | i    |
| İ | 177            | 176             | 5               | 9               | 5.8          | 850        | PASS                | ાં ∢ |
| _ |                |                 | · ·             |                 |              |            | '<br>               |      |

#### Form 5

Tune Name: BFB TUNE
Instrument: GCMS 11
Analysis Date: 10/01/20 22:49
Method: EPA 8260D
Tune Scan/Time Range: Average of 7.151 to 7.173 min

| Tgt   | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/        |
|-------|------|------|-------|-------|-------|--------------|
| Mass_ | Mass | Lim  |       | Abund | Abund | <u> Fail</u> |
| 50    | 95   | 15   | 40    | 15.2  | 9352  | PASS         |
| 75    | 95   | 30   | 60    | 47.2  | 28956 | PASS         |
| 95    | 95   | 100  | 100   | 100.0 | 61346 | PASS         |
| 96    | 95   | 5    | 9     | 6.4   | 3935  | PASS         |
| 173   | 174  | 0.00 | 2     | 0.9   | 472   | PASS         |
| 174   | 95   | 50   | 100   | 83.8  | 51417 | PASS         |
| 175   | 174  | 5    | 9     | 7.5   | 3867  | PASS         |
| 176   | 174  | 95   | 101   | 95.6  | 49141 | PASS         |
| 177   | 176  | 5    | 9     | 6.8   | 3356  | PASS         |

| e: |
|----|
| 9  |
| •  |
| •  |
| 3  |
| 3  |
| 3  |
| 3  |
| 7  |
| 7  |
| 3  |
|    |

Data Path : G:\GcMsData\2020\GCMS 11\Data\10-0120\

Data File : 11M83448.D

Acq On : 1 Oct 2020 22:49

Operator : WP

Sample : BFB TUNE

Misc : S,5G

ALS Vial : 5 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GCMSDATA\2020\GCMS 11\METHODQT\11M S0805.M

Title : @GCMS 11,ug,624,8260

Last Update : Thu Aug 06 07:16:09 2020



Spectrum Information: Average of 7.151 to 7.173 min.

| Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |   |
|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|---|
| 50             | 95              | 15              | 40              | 15.2         | 9352       | PASS                |   |
| 75             | 95              | 30              | 60              | 47.2         | 28956      | PASS                |   |
| 95             | 95              | 100             | 100             | 100.0        | 61346      | PASS                | İ |
| 96             | 95              | 5               | 9               | 6.4          | 3935       | PASS                | İ |
| 173            | 174             | 0.00            | 2               | 0.9          | 472        | PASS                |   |
| 174            | 95              | 50              | 100             | 83.8         | 51417      | PASS                |   |
| 175            | 174             | 5               | 9               | 7.5          | 3867       | PASS                | İ |
| 176            | 174             | 95              | 101             | 95.6         | 49141      | PASS                | İ |
| 177            | 176             | 5               | 9               | 6.8          | 3356       | PASS                |   |

#### Form 5

Tune Name: BFB TUNE Data File: 1M140085.D
Instrument: GCMS 1 Analysis Date: 10/05/20 14:18
Method: EPA 8260D
Tune Scan/Time Range: Average of 7.603 to 7.622 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/ |
|------|------|------|-------|-------|-------|-------|
| Mass | Mass | Lim  |       | Abund | Abund | Fail  |
| 50   | 95   | 15   | 40    | 19.1  | 5773  | PASS  |
| 75   | 95   | 30   | 60    | 49.0  | 14774 | PASS  |
| 95   | 95   | 100  | 100   | 100.0 | 30179 | PASS  |
| 96   | 95   | 5    | 9     | 5.5   | 1655  | PASS  |
| 173  | 174  | 0.00 | 2     | 0.7   | 186   | PASS  |
| 174  | 95   | 50   | 100   | 94.0  | 28355 | PASS  |
| 175  | 174  | 5    | 9     | 7.9   | 2251  | PASS  |
| 176  | 174  | 95   | 101   | 95.2  | 26992 | PASS  |
| 177  | 176  | 5    | 9     | 6.8   | 1836  | PASS  |

| Sample Number    | Analysis Date:                                                                                                                                                                                                             |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20 PPB           | 10/05/20 14:33                                                                                                                                                                                                             |
| CAL @ 20 PPB     | 10/05/20 14:58                                                                                                                                                                                                             |
| BLK-HCL(100520)  | 10/05/20 15:18                                                                                                                                                                                                             |
| BLK              | 10/05/20 15:51                                                                                                                                                                                                             |
| BLK              | 10/05/20 16:12                                                                                                                                                                                                             |
| BLK              | 10/05/20 16:52                                                                                                                                                                                                             |
| DAILY BLANK      | 10/05/20 17:13                                                                                                                                                                                                             |
| DAILY BLANK      | 10/05/20 17:33                                                                                                                                                                                                             |
| AD19539-001      | 10/05/20 17:54                                                                                                                                                                                                             |
| AD19529-001      | 10/05/20 18:15                                                                                                                                                                                                             |
| AD19565-009      | 10/05/20 18:36                                                                                                                                                                                                             |
| AD19565-016      | 10/05/20 18:56                                                                                                                                                                                                             |
| AD19498-001      | 10/05/20 19:17                                                                                                                                                                                                             |
| AD19539-014(80uL | 10/05/20 19:38                                                                                                                                                                                                             |
| AD19539-017(8uL) | 10/05/20 19:58                                                                                                                                                                                                             |
| MBS89426         | 10/05/20 20:19                                                                                                                                                                                                             |
| MBS89427         | 10/05/20 20:40                                                                                                                                                                                                             |
| AD19539-009(MS)  | 10/05/20 21:00                                                                                                                                                                                                             |
| AD19539-009(MSD  | 10/05/20 21:21                                                                                                                                                                                                             |
| AD19565-016(MS)  | 10/05/20 21:42                                                                                                                                                                                                             |
| AD19565-016(MSD  | 10/05/20 22:02                                                                                                                                                                                                             |
|                  | 10/05/20 22:23                                                                                                                                                                                                             |
|                  | 10/05/20 22:43                                                                                                                                                                                                             |
|                  | 10/05/20 23:04                                                                                                                                                                                                             |
|                  | 10/05/20 23:25                                                                                                                                                                                                             |
|                  | 10/05/20 23:46                                                                                                                                                                                                             |
|                  | 10/06/20 00:06                                                                                                                                                                                                             |
|                  | 10/06/20 00:27                                                                                                                                                                                                             |
|                  | 10/06/20 00:48                                                                                                                                                                                                             |
|                  | 10/06/20 01:08                                                                                                                                                                                                             |
|                  | 10/06/20 01:29                                                                                                                                                                                                             |
|                  | 10/06/20 01:50                                                                                                                                                                                                             |
|                  | 10/06/20 02:11                                                                                                                                                                                                             |
|                  | 10/06/20 02:31                                                                                                                                                                                                             |
|                  | 10/06/20 02:52                                                                                                                                                                                                             |
|                  | 10/06/20 03:13                                                                                                                                                                                                             |
| AD19587-007      | 10/06/20 03:33                                                                                                                                                                                                             |
|                  | 20 PPB CAL @ 20 PPB BLK-HCL(100520) BLK BLK BLK DAILY BLANK DAILY BLANK AD19539-001 AD19565-009 AD19565-016 AD1948-001 AD19539-014(80uL AD19539-017(8uL) MBS89426 MBS89427 AD19539-009(MS) AD19539-009(MS) AD19565-016(MS) |

Data Path : G:\GcMsData\2020\GCMS 1\Data\10-05-20\

Data File : 1M140085.D

Acq On : 05 Oct 2020 14:18

Operator : WP

Sample : BFB TUNE Misc : A,5ML

ALS Vial : 15 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GcMsData\2020\GCMS\_1\MethodQt\1M\_A0909.M

Title : @GCMS 1, ug, 624, 8260

Last Update : Thu Sep 10 15:56:53 2020



Spectrum Information: Average of 7.603 to 7.622 min.

|     | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|-----|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
| 1   | 50             | 95              | 15              | 40              | 19.1         | 5773       | PASS                |
| - 1 | 75             | 95              | 30              | 60              | 49.0         | 14774      | PASS                |
| -   | 95             | 95              | 100             | 100             | 100.0        | 30179      | PASS                |
| ]   | 96             | 95              | 5               | 9               | 5.5          | 1655       | PASS                |
| į   | 173            | 174             | 0.00            | 2               | 0.7          | 186        | PASS                |
| İ   | 174            | 95              | 50              | 100             | 94.0         | 28355      | PASS                |
|     | 175            | 174             | 5               | 9               | 7.9          | 2251       | PASS                |
| İ   | 176            | 174             | 95              | 101             | 95.2         | 26992      | PASS                |
| İ   | 177            | 176             | 5               | 9               | 6.8          | 1836       | PASS                |

Form 5

Tune Name: BFB TUNE Data File: 11M83548.D Instrument: GCMS 11 Analysis Date: 10/05/20 15:04 Method: EPA 8260D

Tune Scan/Time Range: Average of 7.154 to 7.163 min

| Tgt             | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/       |
|-----------------|------|------|-------|-------|-------|-------------|
| <br><b>Aass</b> | Mass | Lim  |       | Abund | Abund | <u>Fail</u> |
| 50              | 95   | 15   | 40    | 15.3  | 10757 | PASS        |
| 75              | 95   | 30   | 60    | 46.3  | 32667 | PASS        |
| 95              | 95   | 100  | 100   | 100.0 | 70502 | PASS        |
| 96              | 95   | 5    | 9     | 7.3   | 5172  | PASS        |
| 173             | 174  | 0.00 | 2     | 0.5   | 324   | PASS        |
| 174             | 95   | 50   | 100   | 84.7  | 59718 | PASS        |
| 175             | 174  | 5    | 9     | 7.7   | 4580  | PASS        |
| 176             | 174  | 95   | 101   | 95.1  | 56776 | PASS        |
| 177             | 176  | 5    | 9     | 7.4   | 4209  | PASS        |

| Data File           | Sample Number   | Analysis Date: |
|---------------------|-----------------|----------------|
| 11M83549.D          | 50 PPB          | 10/05/20 15:24 |
| 11M83550.D          | CAL @ 50 PPB    | 10/05/20 15:44 |
| 11M83551.D          | BLK             | 10/05/20 16:03 |
| 11M83552.D          | BLK             | 10/05/20 16:23 |
| 11M83553.D          | DAILY BLANK     | 10/05/20 16:43 |
| 11M83554.D          | AD19581-007     | 10/05/20 17:03 |
| 11M83555.D          | AD19581-011(5X) | 10/05/20 17:23 |
| 11M83556.D          | AD19581-007(MS) | 10/05/20 17:42 |
| 11M83557.D          | AD19562-003(MS: | 10/05/20 18:02 |
| 11M83558.D          | AD19581-011(5X) | 10/05/20 18:22 |
| 11M83559.D          | AD19542-001     | 10/05/20 18:42 |
| 11M83560.D          | AD19562-005(MSD | 10/05/20 19:01 |
| 11M83561.D          | MBS89425        | 10/05/20 19:21 |
| 11M83562.D          | BLK             | 10/05/20 19:41 |
| 11M83563.D          | BLK             | 10/05/20 20:00 |
| 11M83564.D          | AD19562-001     | 10/05/20 20:20 |
| 11M83565.D          | AD19562-007     | 10/05/20 20:40 |
| 11M83566.D          | AD19587-001     | 10/05/20 21:00 |
| 11M83567.D          | AD19587-002     | 10/05/20 21:20 |
| 11M83568.D          | AD19587-003     | 10/05/20 21:39 |
| 11 <b>M</b> 83569.D | AD19587-004     | 10/05/20 21:59 |
| 11M83570.D          | AD19587-005     | 10/05/20 22:19 |
| 11M83571.D          | AD19587-006     | 10/05/20 22:39 |
| 11M83572.D          | AD19582-002     | 10/05/20 22:58 |
| 11M83573.D          | AD19563-001     | 10/05/20 23:18 |
| 11M83574.D          | AD19563-003     | 10/05/20 23:38 |
| 11M83575.D          | AD19563-005     | 10/05/20 23:58 |
| 11M83576.D          | AD19563-007     | 10/06/20 00:17 |
| 11M83577.D          | AD19539-012     | 10/06/20 00:37 |
| 11M83578.D          | AD19539-009     | 10/06/20 00:57 |
| 11M83579.D          | AD19542-001     | 10/06/20 01:16 |
| 11M83580.D          | AD19560-002     | 10/06/20 01:36 |
| 11M83581.D          | AD19581-007(MSD | 10/06/20 01:56 |
| 11M83582.D          | MBS89431        | 10/06/20 02:15 |
| 11M83583.D          | BLK             | 10/06/20 02:35 |
| 11M83584.D          | BLK             | 10/06/20 02:55 |
| 11M83585.D          | BLK             | 10/06/20 03:15 |
| 11M83586.D          | BLK             | 10/06/20 03:34 |
| 11M83587.D          | BLK             | 10/06/20 03:54 |
| 11M83588.D          | BLK             | 10/06/20 04:14 |

Data Path : G:\GcMsData\2020\GCMS 11\Data\10-05-20\

Data File : 11M83548.D

Acq On : 5 Oct 2020 15:04

Operator : WP

Sample : BFB TUNE Misc : S,5G

ALS Vial : 5 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GCMSDATA\2020\GCMS\_11\METHODQT\11M\_S1001.M

Title : @GCMS\_11,ug,624,8260

Last Update : Fri Oct 02 09:51:09 2020



Spectrum Information: Average of 7.154 to 7.163 min.

| Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
| 50             | 95              | 15              | 40              | 15.3         | 10757      | PASS                |
| 75             | 95              | 30              | 60              | 46.3         | 32667      | PASS                |
| 95             | 95              | 100             | 100             | 100.0        | 70502      | PASS                |
| 96             | 95              | 5               | 9               | 7.3          | 5172       | PASS                |
| 173            | 174             | 0.00            | 2               | 0.5          | 324        | PASS                |
| 174            | 95              | 50              | 100             | 84.7         | 59718      | PASS                |
| 175            | 174             | 5               | 9               | 7.7          | 4580       | PASS                |
| 176            | 174             | 95              | 101             | 95.1         | 56776      | PASS                |
| 177            | 176             | 5               | 9               | 7.4          | 4209       | PASS                |

#### Form 5

Tune Name: BFB TUNE Data File: 11M83596.D
Instrument: GCMS 11 Analysis Date: 10/06/20 09:34
Method: EPA 8260D
Tune Scan/Time Range: Average of 7.131 to 7.163 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/ |
|------|------|------|-------|-------|-------|-------|
| Mass | Mass | Lim  |       | Abund | Abund | Fail  |
| 50   | 95   | 15   | 40    | 15.2  | 3755  | PASS  |
| 75   | 95   | 30   | 60    | 48.0  | 11856 | PASS  |
| 95   | 95   | 100  | 100   | 100.0 | 24702 | PASS  |
| 96   | 95   | 5    | 9     | 7.5   | 1847  | PASS  |
| 173  | 174  | 0.00 | 2     | 1.1   | 213   | PASS  |
| 174  | 95   | 50   | 100   | 79.0  | 19524 | PASS  |
| 175  | 174  | 5    | 9     | 8.7   | 1707  | PASS  |
| 176  | 174  | 95   | 101   | 99.3  | 19385 | PASS  |
| 177  | 176  | 5    | 9     | 8.4   | 1626  | PASS  |

| Data File  | Sample Number   | Analysis Date: |
|------------|-----------------|----------------|
| 11M83597.D | CAL @ 50 PPB    | 10/06/20 09:54 |
| 11M83599.D | BLK             | 10/06/20 10:33 |
| 11M83600.D | BLK             | 10/06/20 10:53 |
| 11M83601.D | DAILY BLANK     | 10/06/20 11:13 |
| 11M83602.D | AD19539-011     | 10/06/20 11:33 |
| 11M83603.D | AD19539-015     | 10/06/20 11:52 |
| 11M83604.D | AD19539-016     | 10/06/20 12:12 |
| 11M83605.D | MBS89437        | 10/06/20 12:32 |
| 11M83606.D | AD19581-008(MS) | 10/06/20 12:52 |
| 11M83607.D | AD19581-008(MSD | 10/06/20 13:11 |
| 11M83608.D | BLK             | 10/06/20 13:31 |
| 11M83609.D | AD19517-003     | 10/06/20 13:51 |
| 11M83610.D | AD19581-008     | 10/06/20 14:11 |
| 11M83611.D | AD19563-009     | 10/06/20 14:30 |
| 11M83612.D | AD19563-011     | 10/06/20 14:50 |
| 11M83613.D | AD19563-013     | 10/06/20 15:10 |
| 11M83614.D | AD19563-015     | 10/06/20 15:30 |
| 11M83615.D | AD19563-017     | 10/06/20 15:50 |
| 11M83616.D | AD19563-019     | 10/06/20 16:09 |
| 11M83617.D | AD19563-027     | 10/06/20 16:29 |
| 11M83618.D | AD19563-029     | 10/06/20 16:49 |
| 11M83619.D | AD19563-031     | 10/06/20 17:09 |
| 11M83620.D | AD19563-033     | 10/06/20 17:29 |
| 11M83621.D | AD19563-035     | 10/06/20 17:49 |
| 11M83622.D | AD19563-037     | 10/06/20 18:08 |
| 11M83623.D | AD19539-007     | 10/06/20 18:28 |
|            |                 |                |

Data Path : G:\GcMsData\2020\GCMS\_11\Data\10-06-20\

Data File : 11M83596.D

Acq On : 6 Oct 2020 9:34

Operator : SG Sample : BFB TUNE

Misc

ALS Vial : 8 Sample Multiplier: 1

Integration File: RTEINT.P

: S,5G

Method : G:\GCMSDATA\2020\GCMS 11\METHODQT\11M S1001.M

Title : @GCMS\_11,ug,624,8260

Last Update : Fri Oct 02 09:51:09 2020



Spectrum Information: Average of 7.131 to 7.163 min.

| Target<br>  Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result  <br>  Pass/Fail |
|------------------|-----------------|-----------------|-----------------|--------------|------------|-------------------------|
| 50               | 95              | 15              | 40              | 15.2         | 3755       | PASS                    |
| 75               | 95              | 30              | 60              | 48.0         | 11856      | PASS                    |
| 95               | 95              | 100             | 100             | 100.0        | 24702      | PASS                    |
| 96               | 95              | 5               | 9               | 7.5          | 1847       | PASS                    |
| 173              | 174             | 0.00            | 2               | 1.1          | 213        | PASS                    |
| 174              | 95              | 50              | 100             | 79.0         | 19524      | PASS                    |
| 175              | 174             | 5               | 9               | 8.7          | 1707       | PASS                    |
| 176              | 174             | 95              | 101             | 99.3         | 19385      | PASS                    |
| 177              | 176             | 5               | 9               | 8.4          | 1626       | PASS                    |

#### Form 5

Tune Name: BFB TUNE **Data File: 2M142813.D** Instrument: GCMS 2 Analysis Date: 10/07/20 09:09
Method: EPA 8260D
Tune Scan/Time Range: Average of 7.348 to 7.361 min

| Tgt         | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/ |
|-------------|------|------|-------|-------|-------|-------|
| <u>Mass</u> | Mass | Lim  |       | Abund | Abund | Fail  |
| 50          | 95   | 15   | 40    | 19.1  | 7823  | PASS  |
| 75          | 95   | 30   | 60    | 52.0  | 21250 | PASS  |
| 95          | 95   | 100  | 100   | 100.0 | 40857 | PASS  |
| 96          | 95   | 5    | 9     | 6.8   | 2776  | PASS  |
| 173         | 174  | 0.00 | 2     | 0.2   | 77    | PASS  |
| 174         | 95   | 50   | 100   | 82.3  | 33611 | PASS  |
| 175         | 174  | 5    | 9     | 7.9   | 2665  | PASS  |
| 176         | 174  | 95   | 101   | 97.6  | 32815 | PASS  |
| 177         | 176  | 5    | 9     | 6.8   | 2229  | PASS  |

| Data File                | Sample Number              | Analysis Date:                   |
|--------------------------|----------------------------|----------------------------------|
| 2M142814.D               | CAL @ 20 PPB               | 10/07/20 09:39                   |
| 2M142815.D               | 20 PPB                     | 10/07/20 09:58                   |
| 2M142816.D               | BLK                        | 10/07/20 10:18                   |
| 2M142817.D               | DAILY BLANK                | 10/07/20 10:37                   |
| 2M142818.D               | DAILY BLANK                | 10/07/20 10:57                   |
| 2M142819.D               | BLK                        | 10/07/20 11:16                   |
| 2M142820.D               | AD19447-014                | 10/07/20 11:36                   |
| 2M142821.D               | AD19447-015                | 10/07/20 11:55                   |
| 2M142822.D               | AD19539-002                | 10/07/20 12:15                   |
| 2M142823.D               | AD19539-003                | 10/07/20 12:35                   |
| 2M142824.D               | STD                        | 10/07/20 13:01                   |
| 2M142825.D               | BLK                        | 10/07/20 13:21                   |
| 2M142826.D               | BLK                        | 10/07/20 13:40                   |
| 2M142827.D               | AD19614-001                | 10/07/20 14:20                   |
| 2M142828.D               | AD19574-001                | 10/07/20 14:39                   |
| 2M142829.D               | MBS89447                   | 10/07/20 14:59                   |
| 2M142830.D               | MBS89448                   | 10/07/20 15:19                   |
| 2M142831.D               | AD19574-001(MS)            | 10/07/20 15:38                   |
| 2M142832.D               | AD19574-001(MSD            | 10/07/20 15:58                   |
| 2M142833.D               | AD19587-005(MS)            | 10/07/20 16:17                   |
| 2M142834.D<br>2M142835.D | AD19587-005(MSD<br>BLK     | 10/07/20 16:36<br>10/07/20 16:56 |
| 2M142835.D<br>2M142836.D | BLK                        | 10/07/20 10:36                   |
| 2M142837.D               | AD19572-003                | 10/07/20 17:16                   |
| 2M142837.D<br>2M142838.D | AD19572-003<br>AD19572-004 | 10/07/20 17:55                   |
| 2M142839.D               | AD19572-004<br>AD19574-002 | 10/07/20 17:55                   |
| 2M142839.D<br>2M142840.D | AD19574-002<br>AD19574-003 | 10/07/20 18:34                   |
| 2M142841.D               | AD19539-002(5X)            | 10/07/20 18:54                   |
| 2M142842.D               | AD19539-002(5X)            | 10/07/20 19:13                   |
| 2M142843.D               | AD19539-004(5X)            | 10/07/20 19:33                   |
| 2M142844.D               | AD19539-005(5X)            | 10/07/20 19:53                   |
| 2M142845.D               | AD19587-005                | 10/07/20 10:00                   |
| 2M142846.D               | AD19568-003                | 10/07/20 20:32                   |
| 2M142847.D               | AD19570-005(50X)           | 10/07/20 20:52                   |
| 2M142848.D               | AD19570-001(100X           | 10/07/20 21:11                   |
| 2M142849.D               | 19662-002(50X)             | 10/07/20 21:31                   |
|                          |                            | · · · · · ·                      |

CLPBFB

Data Path : G:\GcMsData\2020\GCMS 2\Data\10-07-20\

Data File : 2M142813.D

Acq On : 07 Oct 2020 09:09

Operator : RL Sample : BFB TUNE Misc : A,5ML

ALS Vial : 1 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GCMSDATA\2020\GCMS 2\METHODQT\2M A0929.M

Title : @GCMS\_2,ug,624,8260

Last Update : Wed Sep 30 10:28:52 2020



Spectrum Information: Average of 7.348 to 7.361 min.

| Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
| 50             | 95              | 15              | 40              | 19.1         | 7823       | PASS                |
| 75             | 95              | 30              | 60              | 52.0         | 21250      | PASS                |
| 95             | 95              | 100             | 100             | 100.0        | 40857      | PASS                |
| 96             | 95              | 5               | 9               | 6.8          | 2776       | PASS                |
| 173            | 174             | 0.00            | 2               | 0.2          | 77         | PASS                |
| 174            | 95              | 50              | 100             | 82.3         | 33611      | PASS                |
| 175            | 174             | 5               | 9               | 7.9          | 2665       | PASS                |
| 176            | 174             | 95              | 101             | 97.6         | 32815      | PASS                |
| 177            | 176             | 5               | 9               | 6.8          | 2229       | PASS                |

Form 5

 Tune Name:
 BFB TUNE
 Data File:
 11M83664.D

 Instrument:
 GCMS 11
 Analysis Date:
 10/07/20 14:20

 Method:
 EPA 8260D

 Tune Scan/Time Range:
 Average of 7.154 to 7.157 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/ |
|------|------|------|-------|-------|-------|-------|
| Mass | Mass | Lim  |       | Abund | Abund | Fail  |
| 50   | 95   | 15   | 40    | 15.2  | 4290  | PASS  |
| 75   | 95   | 30   | 60    | 49.5  | 13984 | PASS  |
| 95   | 95   | 100  | 100   | 100.0 | 28276 | PASS  |
| 96   | 95   | 5    | 9     | 7.8   | 2192  | PASS  |
| 173  | 174  | 0.00 | 2     | 0.9   | 225   | PASS  |
| 174  | 95   | 50   | 100   | 86.6  | 24480 | PASS  |
| 175  | 174  | 5    | 9     | 7.1   | 1727  | PASS  |
| 176  | 174  | 95   | 101   | 95.1  | 23284 | PASS  |
| 177  | 176  | 5    | 9     | 6.7   | 1565  | PASS  |

| Data File  | Sample Number   | Analysis Date: |
|------------|-----------------|----------------|
| 11M83666.D | CAL @ 50 PPB    | 10/07/20 14:53 |
| 11M83667.D | 50 PPB          | 10/07/20 15:13 |
| 11M83669.D | BLK             | 10/07/20 15:53 |
| 11M83670.D | DAILY BLANK     | 10/07/20 16:13 |
| 11M83671.D | BLK             | 10/07/20 16:33 |
| 11M83672.D | AD19539-007     | 10/07/20 16:53 |
| 11M83673.D | AD19612-003(MS) | 10/07/20 17:13 |
| 11M83674.D | AD19612-003(MSD | 10/07/20 17:33 |
| 11M83675.D | MBS89452        | 10/07/20 17:53 |
| 11M83676.D | BLK             | 10/07/20 18:13 |
| 11M83677.D | AD19612-001     | 10/07/20 18:33 |
| 11M83678.D | AD19612-002     | 10/07/20 18:53 |
| 11M83679.D | AD19612-003     | 10/07/20 19:13 |
| 11M83680.D | AD19551-002     | 10/07/20 19:33 |
| 11M83681.D | AD19551-001     | 10/07/20 19:53 |
| 11M83682.D | AD19618-002     | 10/07/20 20:13 |
| 11M83683.D | AD19618-004     | 10/07/20 20:33 |
| 11M83684.D | AD19618-006     | 10/07/20 20:53 |
| 11M83685.D | AD19618-008     | 10/07/20 21:13 |
| 11M83686.D | AD19618-010     | 10/07/20 21:33 |
| 11M83687.D | AD19618-012     | 10/07/20 21:53 |
| 11M83688.D | AD19618-014     | 10/07/20 22:13 |
| 11M83689.D | AD19618-016     | 10/07/20 22:33 |
| 11M83690.D | 19595-003       | 10/07/20 22:53 |
| 11M83691.D | 19595-009       | 10/07/20 23:13 |
| 11M83692.D | 19595-010       | 10/07/20 23:33 |
| 11M83693.D | 19595-001       | 10/07/20 23:53 |
| 11M83694.D | 19595-005       | 10/08/20 00:13 |
| 11M83695.D | 19619-001       | 10/08/20 00:33 |
| 11M83696.D | AD19619-002     | 10/08/20 00:52 |
| 11M83697.D | AD19620-001     | 10/08/20 01:12 |
| 11M83698.D | AD19581-003(5X) | 10/08/20 01:32 |
| 11M83699.D | AD19581-001(5X) | 10/08/20 01:52 |
| 11M83700.D | AD19581-001(5X) | 10/08/20 02:12 |
| 11M83701.D | AD19581-003(5X) | 10/08/20 02:32 |
| 11M83702.D | BLK             | 10/08/20 02:52 |
| 11M83703.D | BLK             | 10/08/20 03:12 |
| 11M83704.D | BLK             | 10/08/20 03:32 |
| 11M83705.D | BLK             | 10/08/20 03:52 |
| 11M83706.D | BLK             | 10/08/20 04:12 |
| 11M83707.D | BLK             | 10/08/20 04:32 |
| 11M83708.D | BLK             | 10/08/20 04:52 |
| 11M83709.D | BLK             | 10/08/20 05:12 |
| 11M83710.D | BLK             | 10/08/20 05:32 |
| 11M83711.D | BLK             | 10/08/20 05:52 |
| 11M83712.D | BLK             | 10/08/20 06:12 |
| 11M83713.D | BLK             | 10/08/20 06:32 |
|            |                 |                |

CLPBFB

Data Path : G:\GcMsData\2020\GCMS\_11\Data\10-07-20\

Data File : 11M83664.D

Acq On : 7 Oct 2020 14:20

Operator : WP

Sample : BFB TUNE

Misc : S,5G

ALS Vial : 2 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GCMSDATA\2020\GCMS\_11\METHODQT\11M S1001.M

Title : @GCMS\_11,ug,624,8260

Last Update : Fri Oct 02 09:51:09 2020



Spectrum Information: Average of 7.154 to 7.157 min.

| Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |       |
|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|-------|
| 50             | 95              | 15              | 40              | 15.2         | 4290       | PASS                | -<br> |
| 75             | 95              | 30              | 60              | 49.5         | 13984      | PASS                | İ     |
| 95             | 95              | 100             | 100             | 100.0        | 28276      | PASS                | İ     |
| 96             | 95              | 5               | 9               | 7.8          | 2192       | PASS                | İ     |
| 173            | 174             | 0.00            | 2               | 0.9          | 225        | PASS                | İ     |
| 174            | 95              | 50              | 100             | 86.6         | 24480      | PASS                |       |
| 175            | 174             | 5               | 9               | 7.1          | 1727       | PASS                | ĺ     |
| 176            | 174             | 95              | 101             | 95.1         | 23284      | PASS                | İ     |
| 177            | 176             | 5               | 9               | 6.7          | 1565       | PASS                | ĺ     |

Form 5

Tune Name: BFB TUNE **Data File:** 1M140327.D Instrument: GCMS I Analysis Date: 10/09/20 08:01
Method: EPA 8260D
Tune Scan/Time Range: Average of 7.612 to 7.619 min

| Tgt  | Tgt Rel |      | li Lim | Rel   | Raw   | Pass/ |
|------|---------|------|--------|-------|-------|-------|
| Mass | Mass    | Lim  |        | Abund | Abund | Fail  |
| 50   | 95      | 15   | 40     | 19.9  | 11282 | PASS  |
| 75   | 95      | 30   | 60     | 51.9  | 29459 | PASS  |
| 95   | 95      | 100  | 100    | 100.0 | 56771 | PASS  |
| 96   | 95      | 5    | 9      | 7.3   | 4151  | PASS  |
| 173  | 174     | 0.00 | 2      | 0.4   | 198   | PASS  |
| 174  | 95      | 50   | 100    | 95.3  | 54075 | PASS  |
| 175  | 174     | 5    | 9      | 8.1   | 4361  | PASS  |
| 176  | 174     | 95   | 101    | 97.2  | 52539 | PASS  |
| 177  | 176     | 5    | 9      | 6.6   | 3478  | PASS  |

| Data File  | Sample Number    | Analysis Date: |
|------------|------------------|----------------|
| 1M140328.D | 20 PPB           | 10/09/20 08:15 |
| 1M140329.D | CAL @ 20 PPB     | 10/09/20 08:41 |
| 1M140330.D | BLK              | 10/09/20 09:11 |
| 1M140331.D | BLK              | 10/09/20 09:31 |
| 1M140332.D | DAILY BLANK      | 10/09/20 09:56 |
| 1M140333.D | DAILY BLANK      | 10/09/20 10:26 |
| 1M140334.D | AD19654-001      | 10/09/20 10:55 |
| 1M140335.D | AD19616-001      | 10/09/20 11:16 |
| 1M140336.D | AD19539-012(400u | 10/09/20 11:36 |
| 1M140337.D | AD19539-014(40uL | 10/09/20 11:57 |
| 1M140338.D | MBS89475         | 10/09/20 12:18 |
| 1M140339.D | MBS89476         | 10/09/20 12:39 |
| 1M140340.D | AD19598-012      | 10/09/20 12:59 |
| 1M140341.D | AD19539-012      | 10/09/20 13:20 |
| 1M140342.D | AD19595-002      | 10/09/20 13:41 |
| 1M140343.D | AD19595-004      | 10/09/20 14:01 |
| 1M140344.D | 19595-007        | 10/09/20 14:22 |
| 1M140345.D | AD19595-006      | 10/09/20 14:43 |
| 1M140346.D | AD19595-012      | 10/09/20 15:03 |
| 1M140347.D | AD19616-002(MS:  | 10/09/20 15:24 |
| 1M140348.D | AD19616-003(MSD  | 10/09/20 15:45 |
| 1M140349.D | AD19654-001(MS)  | 10/09/20 16:06 |
| 1M140350.D | AD19654-001(MSD  | 10/09/20 16:26 |
| 1M140351.D | BLK              | 10/09/20 16:47 |
| 1M140352.D | BLK              | 10/09/20 17:07 |
| 1M140353.D | AD19592-002      | 10/09/20 17:28 |
| 1M140354.D | AD19592-003      | 10/09/20 17:49 |
| 1M140355.D | AD19591-003      | 10/09/20 18:10 |
| 1M140356.D | AD19591-004      | 10/09/20 18:30 |
| 1M140357.D | AD19616-006      | 10/09/20 18:51 |
| 1M140358.D | AD19592-001      | 10/09/20 19:12 |
| 1M140359.D | AD19593-001      | 10/09/20 19:33 |
| 1M140360.D | AD19593-003      | 10/09/20 19:54 |
| 1M140361.D | AD19616-004      | 10/09/20 20:14 |
| 1M140362.D | AD19616-005      | 10/09/20 20:35 |
| 1M140363.D | 19517-004        | 10/09/20 20:56 |
| 1M140364.D | MBS89482         | 10/09/20 21:16 |
| 1M140365.D | BLK              | 10/09/20 21:37 |
| 1M140366.D | BLK              | 10/09/20 21:58 |
| 1M140367.D | BLK              | 10/09/20 22:18 |
| 1M140368.D | BLK              | 10/09/20 22:39 |
| 1M140369.D | BLK              | 10/09/20 23:00 |
| 1M140370.D | BLK              | 10/09/20 23:21 |
| 1M140371.D | BLK              | 10/09/20 23:41 |
|            |                  |                |

CLPBFB

Data Path : G:\GcMsData\2020\GCMS 1\Data\10-09-20\

Data File: 1M140327.D

Acq On : 09 Oct 2020 08:01

Operator : BK

Sample : BFB TUNE Misc : A,5ML

ALS Vial : 1 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GcMsData\2020\GCMS\_1\MethodQt\1M\_A0909.M

Title : @GCMS\_1,ug,624,8260

Last Update : Thu Sep 10 15:56:53 2020



Spectrum Information: Average of 7.612 to 7.619 min.

|     | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |   |
|-----|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|---|
| Ī   | 50             | 95              | 15              | 40              | 19.9         | 11282      | PASS                | ĺ |
| İ   | 75             | 95              | 30              | 60              | 51.9         | 29459      | PASS                | ĺ |
| Ì   | 95             | 95              | 100             | 100             | 100.0        | 56771      | PASS                | ĺ |
| -   | 96             | 95              | 5               | 9               | 7.3          | 4151       | PASS                | ĺ |
| ł   | 173            | 174             | 0.00            | 2               | 0.4          | 198        | PASS                | ĺ |
| - [ | 174            | 95              | 50              | 100             | 95.3         | 54075      | PASS                | ĺ |
| İ   | 175            | 174             | 5               | 9               | 8.1          | 4361       | PASS                | ĺ |
| ì   | 176            | 174             | 95              | 101             | 97.2         | 52539      | PASS                | ĺ |
| ١   | 177            | 176             | 5               | 9               | 6.6          | 3478       | PASS                | ĺ |
|     |                |                 |                 |                 |              |            |                     |   |

M

# Form 6 Initial Calibration

Instrument: GCMS\_1

|             | Bromo                | Vinyl Acetate | Carboi                                                  | 1,1,1-1                                                 | 2-Butanone                  | 1.2-Dic                     | 1.2-Dic                     | Cyclohexane                 | Dibron                      | Chloroform                  | 1.1-Dic                                                 | 1.4-Dioxane                                             | Ethyl acetate                                           | 2.2-Dic                     | Bromo                       | cis-1.2                                                 | Ethyl-t                     | trans-1                     | 1.1-Dic                     | Methyl                                                  | Methyl                      | 1.1-Dic                     | Di-isop                                                 | n-Hexane                                                | t-Butyl                     | Carbor                                                  | Acetone                                                 | lodomethane                 | Acrylonitrile               | Acrolein                    | Methyl                                                  | 1,1,2-7                                                 | Furan                                                   | Ethyl ether                                             | Trichlo                     | Chloroethane                                            | Vinyl C              | Bromo                       | Chloro                      | Dichlor                                                 | Chloro                      | <b>O</b> ompound         | 9                                     | 3 (            | 92             | 2 4            |                 | 0 1                |
|-------------|----------------------|---------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------|-----------------------------|---------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------------------------------------|-----------------------------|-----------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------|---------------------------------------------------------|----------------------|-----------------------------|-----------------------------|---------------------------------------------------------|-----------------------------|--------------------------|---------------------------------------|----------------|----------------|----------------|-----------------|--------------------|
|             | Bromodichloromethan  | cetate        | Carbon Tetrachloride                                    | ,1,1-Trichloroethane                                    | none                        | .2-Dichloroethane           | .2-Dichloroethane-d4        | exane                       | Dibromofluoromethan         | form                        | 1,1-Dichloropropene                                     | xane                                                    | cetate                                                  | 2.2-Dichloropropane         | Bromochloromethane          | cis-1.2-Dichloroethene                                  | Ethyl-t-butyl ether         | trans-1,2-Dichloroethe      | 1, 1-Dichloroethane         | Methyl-t-butyl ether                                    | Methyl Acetate              | .1-Dichloroethene           | Di-isopropyl-ether                                      | ine                                                     | -Butyl Alcohol              | Carbon Disulfide                                        | ō                                                       | ethane                      | nitrile                     | 5                           | Methylene Chloride                                      | 1,1,2-Trichloro-1,2,2-ti                                | ,                                                       | ther                                                    | Trichlorofluoromethan       | ethane                                                  | Vinyl Chloride       | Bromomethane                | Chloromethane               | Dichlorodifluorometha                                   | Chlorodifluoromethane       | ound<br>-                |                                       |                |                | ı w            |                 | Level#             |
| Elanc       | ian 10 Avg           | ٠.            |                                                         |                                                         | 1 0 Avg                     | 1 0 Avg                     | d4 1 0 Avg                  | 1 0 Avg                     | an 10 Avg                   | 1 0 Avg                     | 1 0                                                     | 1 0 Avg                                                 | 1 0 Avg                                                 | e 10 Avg                    | ne 10 Avg                   | ene 10 Avq                                              | _                           |                             | 1 0 Avg                     | 1 0 Avg                                                 | 1 0 Avg                     | 1 0 Avg                     | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                     | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avq                     | 1 0 Avg                     | 1 0 Avg                     | 1<br>0                                                  |                                                         | 1 0 Avg                                                 | _<br>                                                   | 10                          | 1 0 Avg                                                 | 1 0 Avg              | 1 0 Avg                     | _<br>0                      | <br>O (                                                 | ane 10 Avo                  | Col Mr Fit:              | INITOSZOU.D                           | 1M139268.D     | IM1392/4.D     | 1M139263.D     | 1M139264.D      |                    |
|             | _                    | }             |                                                         |                                                         |                             | 'q 0.2958                   | ĺ                           |                             |                             |                             |                                                         |                                                         |                                                         |                             |                             |                                                         |                             |                             |                             |                                                         |                             |                             |                                                         |                                                         |                             |                                                         |                                                         |                             |                             |                             | i                                                       | :<br>I                                                  |                                                         |                                                         |                             |                                                         |                      |                             |                             |                                                         |                             | .∓<br>RF1                | , č                                   | Ò              | 4 0            | <br>           | <b>4</b> .      | Data File          |
|             | 0.2891 0.2778 0.2817 | 93 0.644      | 96 0.268                                                | 68 0.317                                                | 53 0.20                     | 58 0.283                    | 38 0.15                     | 27 0.20                     | 52 0.282                    | 08 0.358                    | 55 0.238                                                | 41 0.003                                                | 38 0.258                                                | 92 0.284                    | 76 0.195                    | 25 0.319                                                | 0.5106 0.4295               | 77 0.172                    | 92 0.333                    | 49 0.443                                                | 57 0.186                    | 26 0.246                    | 59 0.497                                                | 18 0.159                                                | 28 0.02                     | 40 0.477                                                | 59 0.079                                                | 79 0.189                    | 26 0.093                    | 32 0.029                    | 05 0.188                                                | 66 0.115                                                | 37 0.28                                                 | 64 0.130                                                | 72 0.259                    | 27 0.125                                                | 0.2196 0.2025        | 64 0.110                    | 61 0.270                    | 67 0.175                                                | 73 0 382                    | RF2                      | (A)                                   |                |                |                | (8)             | 0                  |
|             | 78 0.281             | 10 0.669      | 31 0.298                                                | 73 0.332                                                | 10 0.192                    | 30 0.298                    | 15 0.149                    | 16 0.248                    | 22 0.279                    | 57 0.367                    | 33 0.265                                                | 34 0.003                                                | 35 0.295                                                | 15 0.300                    | 53 0.181                    | 95 0.336                                                | 35 0.471                    | 22 0.184                    | 35 0.362                    | 30 0.450                                                | 52 0.156                    | 34 0.256                    | 71 0.531                                                | 36 0.186                                                | 12 0.021                    | 74 0.517                                                | 97 0.078                                                | 91 0.223                    | 39 0.092                    | 95 0.030                    | 39 0.200                                                | 53 0.135                                                | 17 0.291                                                | 0.142                                                   | 4 0.293                     | 50 0.131                                                | 25 0.222             | 00 0.114                    | )3 0 287                    | 57 0.194                                                | 14 0 423                    | RF3                      | @ 0.5 PPB                             | @ 500 PPB      | @ 100 PPB      | 944 0L         | 20 PPB          | Cal Identifier:    |
|             | 7 0.274              | 9 0.665       | 9 0.283                                                 | 2 0.308                                                 | 0.2053 0.2040 0.1926 0.2469 | 0.2830 0.2980 0.2749        | 0.1538 0.1515 0.1492 0.1500 | 0.2227 0.2046 0.2488 0.2485 | 0.2752 0.2822 0.2798 0.2749 | 0.3808 0.3557 0.3679 0.3510 | 2 0.263                                                 | 7 0.003                                                 | 1 0.287                                                 | 0.2892 0.2845 0.3004 0.2716 | 0.2176 0.1953 0.1818 0.2015 | 2 0.329                                                 | 0.4716 0.4943               | 0.1877 0.1722 0.1840 0.1706 | 0.3692 0.3335 0.3629 0.3393 | 3 0.433                                                 | 0.1557 0.1862 0.1562 0.1489 | 0.2526 0.2464 0.2566 0.2356 | 1 0.5274                                                | 6 0.157                                                 | 0.0228 0.0242 0.0217 0.0202 | 6 0.492                                                 | 5 0.068                                                 | 0.2479 0.1891 0.2236 0.2407 | 0.0926 0.0939 0.0921 0.0826 | 0.0332 0.0295 0.0309 0.0305 | 6 0.184                                                 | 1 0.118                                                 | 0 0.276;                                                | 9 0.129                                                 | 0.2772 0.2594 0.2930 0.2630 | 7 0 120                                                 | 0.2227 0.1988        | 0.1164 0.1100 0.1142 0.1120 | 0.2861 0.2703 0.2873 0.2445 | 6 0.183                                                 | 0 3873 0 3844 0 4236 0 3679 | RF 4                     | i -                                   | · u            | · u            | ,              |                 | E .                |
|             | 0.2741 0.3018        | 9 0.7176      | 5 0.3152                                                | 7 0.3426                                                | 0.2450                      | 0.2996                      | 0.1468                      | 5 0.2957                    | 9 0.2726                    | 0.3823                      | 10.2963                                                 | 0.0042                                                  | 5 0.3129                                                | 5 0.2898                    | 5 0.2156                    | 6 0.3657                                                | 3 0.5666                    | 0.1843                      | 3 0.3635                    | 7 0.4856                                                | 9 0.1612                    | 0.2621                      | 1 0.5971                                                | 7 0.1801                                                | 0.0219                      | 2 0.5602                                                | 0.0765                                                  | 7 0.2448                    | 0.0892                      | 5 0.0324                    | 1 0.1976                                                | 2 0.1307                                                | 2 0.3108                                                | 3 0.1452                                                | 0.3149                      | 3 0 1309                                                | 0.2280               | 0.1418                      | 0.2718                      | 0.2138                                                  | 0 4144                      | RF5                      | 09/09/                                | 09/09/         | 09/10/         | 09/09/         | 09/09/20        | ≥                  |
|             |                      |               | 0.2896 0.2681 0.2989 0.2835 0.3152 0.3235 0.3234 0.2862 | 0.3268 0.3173 0.3322 0.3087 0.3426 0.3525 0.3537 0.3306 | 0.2450 0.2515 0.2157 0.1924 | 0.2996 0.3070 0.3125 0.3154 | 0.1468 0.1495 0.1513 0.1615 | 0.2957 0.3165 0.3100 0.2068 | 0.2726 0.2713 0.2802 0.2926 | 0.3823 0.3915 0.3876 0.3756 | 0.2655 0.2383 0.2652 0.2634 0.2963 0.3047 0.3020 0.2285 | 0.0041 0.0034 0.0037 0.0031 0.0042 0.0043 0.0042 0.0030 | 0.2938 0.2585 0.2951 0.2876 0.3129 0.3223 0.3102 0.2503 | 0.2898 0.3049 0.3099 0.2927 | 0.2156 0.2199 0.2191 0.2399 | 0.3525 0.3195 0.3362 0.3296 0.3657 0.3774 0.3926 0.3363 | 0.5666 0.5894 0.5731 0.4374 | 0.1843 0.1862 0.1845 0.2053 | 0.3635 0.3756 0.4046 0.3515 | 0.4649 0.4430 0.4503 0.4337 0.4856 0.5095 0.4848 0.4951 | 0.1612 0.1685 0.1567 0.2300 | 0.2621 0.2928 0.2833 0.2621 | 0.5659 0.4971 0.5311 0.5274 0.5971 0.6018 0.5743 0.5315 | 0.1518 0.1596 0.1866 0.1577 0.1801 0.1906 0.1856 0.1725 | 0.0219 0.0231 0.0212 0.0237 | 0.5240 0.4774 0.5176 0.4922 0.5602 0.5804 0.5592 0.5677 | 0.0759 0.0797 0.0785 0.0681 0.0765 0.0780 0.0714 0.1024 | 0.2726                      | 0.0892 0.0909 0.0865 0.0748 | 0.0324 0.0345 0.0332 0.0331 | 0.2005 0.1889 0.2006 0.1844 0.1976 0.2011 0.1968 0.2464 | 0.1166 0.1153 0.1351 0.1182 0.1307 0.1365 0.1258 0.1389 | 0.3037 0.2847 0.2910 0.2762 0.3108 0.3246 0.3081 0.3354 | 0.1464 0.1304 0.1429 0.1293 0.1452 0.1491 0.1392 0.1537 | 0.3149 0.3519 0.3382 0.2914 | 0.1327 0.1250 0.1317 0.1203 0.1309 0.1314 0.1183 0.1485 | 0.2411               | 0.1418 0.1458               | 0.2718 0.2797 0.2580 0.2894 | 0.1967 0.1757 0.1946 0.1832 0.2138 0.2260 0.2132 0.1820 | 0 4144 0 4430 0 4172        | RF6                      | — — — — — — — — — — — — — — — — — — — | 09/09/20 22:14 | 6L:00 07/0L/60 | 09/09/20 20:30 | 20 20:51        | Analysis Date/Time |
|             | 0.3169 0.3265 0.2742 | 0.7364        | 0.3234 (                                                | 0.3537 (                                                | 0.2157 (                    | 0.3125 (                    | 0.1513 (                    | 0.3100 (                    | 0.2802 (                    | 0.3876 (                    | 0.3020 (                                                | 0.0042                                                  | 0.3102 (                                                | 0.3099 (                    | 0.2191 (                    | 0.3926 (                                                | 0.5731 (                    | 0.1845 (                    | 0.4046 (                    | 0.4848 (                                                | 0.1567 (                    | 0.2833 (                    | 0.5743 (                                                | 0.1856 (                                                | 0.0212 (                    | 0.5592                                                  | 0.0714 (                                                | 0.2726 0.2630 0.1769        | 0.0865 (                    | 0.0332 (                    | 0.1968 (                                                | 0.1258 (                                                | 0.3081 (                                                | 0.1392 (                                                | 0.3382 (                    | 0.1183                                                  | 0.2411 0.2315 0.2234 | 0.1337 0.1352               | 0.2580 (                    | 0.2132 (                                                | 0 4172 (                    | RF7                      | [<br>[                                |                |                |                |                 | ate/Time           |
| Inda        | ).2742               | ).6836 -      | ).2862                                                  | ).3306                                                  | ). 1924                     |                             |                             | ).2068                      |                             | ).3756                      | ).2285                                                  | 0030 -                                                  | ).2503                                                  | ).2927 -                    | ).2399                      | ).3363                                                  | .4374 -                     | ).2053                      | .3515                       |                                                         | ).2300 -                    | 2621 -                      | ).5315                                                  | ).1725                                                  | ).0237 -                    | ).5677                                                  | ) 1024                                                  | ). 1769                     | .0748                       | ).0331                      | .2464                                                   | ). 1389 -                                               | ).3354                                                  | ). 1537 —                                               | .2914                       | . 1485                                                  | .2234                | . 1352 -                    | 2894                        | ). 1820                                                 | 0 4290                      | RF8                      | 1                                     |                |                |                |                 | i                  |
| !<br>  !    | ı                    |               | 1                                                       | 1                                                       | 1                           | 0.3077                      | 0.1579                      | 1                           | 0.2902                      | !                           | 1                                                       | ;!<br> -<br> C                                          | 1                                                       | 1                           | 1                           | 1                                                       | <b> </b><br> -              | 1                           | 1                           | 0.3564                                                  | 1                           | . <b> </b><br>:             | 1                                                       | 1                                                       | 1                           | 1 ,                                                     | . !                                                     | l                           | 1                           | !                           | 1                                                       |                                                         | 1                                                       | 1                                                       | i                           | 1 ;                                                     | 1                    | !                           | 1                           | 1                                                       | •                           | RF9 A                    | :                                     | α              | σ              | 4 (            | . 2             | Level #            |
| !           | 0.293 5              | 0.6964.30     | 0.299 5.08                                              | 0.3334.98                                               | 0.2194.68                   | 0.299 5.19                  | 0.1525.15                   | 0.257 5.03                  | 0.280 4.95                  | 0.3744.85                   | 0.271 5.07                                              | 00380 5.73                                              | 0.2914.69                                               | 0.293 4.67                  | 0.2114.82                   | 0.3514.66                                               | 0.5094.56                   | 0.1843.96                   | 0.3634.28                   | 0.4583.96                                               | 0.1703.64                   | 0.2613.36                   | 0.5534.31                                               | 0.1734.17                                               | 0.02243.80                  | 0.535 3.57                                              | 0.07893.38                                              | 0.2323.50                   | 0.08793.92                  | 0.0322 3.27                 | 0.2023.74                                               | 0.127 3.35                                              | 0.304 3.20                                              | 0.1423.17                                               | 0.299 2.96                  | 0.1302.74                                               | 0.2212.37            | 0.1262.66                   | 0.2732.30                   | 0.1982.12                                               | 0 408 2 14                  | AvgRf F                  | i                                     | IN.            | 3              | N.             | 1<br>1          |                    |
|             |                      | _             | ·                                                       | ۔۔                                                      | _                           | _                           | 5.15 -1                     | 0                           | 1.95 -1                     | _                           | ·                                                       |                                                         | _                                                       | Ċ                           |                             | _                                                       |                             |                             | _                           | _                                                       | _                           |                             | _                                                       |                                                         | _                           |                                                         |                                                         | _                           | _                           |                             |                                                         |                                                         | _                                                       | _                                                       | _                           |                                                         | _                    | 0                           | 0                           | 0 9                                                     | _                           | RT Co                    |                                       | 1M139261.L     |                |                | 1M139262.D      | Data               |
| Ava Bed     | 1.0                  | داً           |                                                         |                                                         | 0.994 0.999                 | .00 1.00                    | <u> </u>                    | .999 1.00                   | <u>.</u>                    |                             |                                                         | 0.999                                                   |                                                         |                             | 1.00                        |                                                         |                             |                             |                             |                                                         | 0.999 1.00                  | 0.999                       | w                                                       |                                                         |                             |                                                         | l                                                       |                             | w                           |                             | - 1                                                     |                                                         |                                                         |                                                         |                             | - 1                                                     |                      |                             |                             |                                                         | 999 0 999                   | orr1 Corr2               |                                       | CAL            |                |                |                 | ta File:           |
| 8 758       | 00 6.9               | ا<br>ان       | , o                                                     |                                                         |                             | 0 4.5                       | 3.0                         | 0 18                        | 2.7                         | 0 3.9                       | 0 11                                                    | 99 14                                                   | 0 8.8                                                   |                             | 0 8.4                       |                                                         |                             |                             | _                           |                                                         |                             | ì                           |                                                         |                                                         |                             | 0 7.0                                                   |                                                         |                             |                             |                             | ا<br>اور                                                |                                                         |                                                         | 0 6.1                                                   | 99 11                       | 1                                                       | 0<br>6.4             | <u>.</u>                    |                             | 9                                                       | 99<br>5.3                   | r2 %Rsd                  | <br>                                  | 8              | <b>@</b>       | <b>@</b>       | 8               | Cal                |
| !           | 0.20                 | į             | 0.10                                                    |                                                         |                             |                             | !                           | 0.10                        | •                           | 0.20                        |                                                         |                                                         | -                                                       |                             | _                           |                                                         |                             |                             |                             |                                                         |                             | 0.10                        | •                                                       | •                                                       | •                           |                                                         | 0.10                                                    | •                           | _                           | -                           | i                                                       |                                                         |                                                         | 0.50                                                    | 0.10                        | 0.10                                                    | 0 10                 |                             | 0                           |                                                         | 010                         | Č.                       |                                       | בי<br>ק        | מידים טכע      | 20 778         | B <sub>dd</sub> | Cal Identifier:    |
|             | 20.00                | 20.00         | 20.00                                                   | 20.00                                                   | 20.00                       | 20.00                       | 30.00                       | 20.00                       | 30.00                       | 20.00                       | 20.00                                                   | 1000                                                    | 20.00                                                   | 20.00                       | 20.00                       | 20.00                                                   | a 20.00                     | 20.00                       | 20.00                       | 20.00                                                   | 20.00                       | 20.00                       | 20.00                                                   | 20.00                                                   | 100.0                       | 20.00                                                   | a 100.0                                                 | 20.00                       | 20.00                       | 100.0                       | 20.00                                                   | i.                                                      |                                                         | a 20.00                                                 | 20.00                       | 20.00                                                   | 20.00                | 20.00                       | 20.00                       | 20.00                                                   | 20 00                       | <u>.</u>                 |                                       | ç              | 2 5            | 2 5            | 2 2             | !                  |
|             | 5.00                 | ijσ           | 20.00 5.00                                              | 5.00                                                    | 5.00                        | 5.00                        | 30.00                       | 5.00                        | 0                           |                             | 5.00                                                    | 250.0                                                   | 20.00 5.00                                              | 20.00 5.00                  | 5.00                        | 20.00 5.00                                              | 5.00                        | 20.00 5.00                  | 20.00 5.00                  | 20.00 5.00                                              | 20.00 5.00                  | ì                           |                                                         |                                                         | 0                           |                                                         | 25.00                                                   | 5.00                        |                             | 0                           | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 5.00                        | 5.00                                                    | 5.00                 | 5.00                        | 50                          | 5.00                                                    | 5                           | 1 Lvi2                   |                                       | 09/09/20 19:48 | 09/09/20 23:16 | 09/09/20 21:33 | 09/09/20 20:09  | Analy              |
|             | 10.00 50             |               | 10.00 50.00                                             | 10.00 50                                                | 10.00 50.00                 | 10.00 50                    | 30.00 30.00                 | 10.00 50.00                 | 30.00 30.00                 | 10.00 50.00                 | 10.00 50.00                                             | 500.0 2500.                                             | 10.00 50                                                | 10.00 50.00                 | 10.00 50.00                 | 10.00 50.00                                             | 10.00 50                    | 10.00 50                    | 10.00 50.00                 | 10.00 50.00                                             | 10.00 50.00                 | 10.00 50.00                 | 10.00 50.00                                             | 10.00 50.00                                             | 50.00 250.0                 | 10.00 50                                                | 50.00 250.0                                             | 10.00 50                    | 10.00 50.00                 | 50.00 250.0                 | 10.00 50.00                                             | 10.00 50.00                                             | 10.00 50.00                                             | 10.00 50.00                                             | 10.00 50.00                 | 10.00 50.00                                             | 10.00 50.00          | 10.00 50.00                 | 10.00 50.00                 | 10.00 50.00                                             | 10 00 50                    | Lvi3 Lvi4 Lvi5 Lvi6 Lvi7 |                                       | 19:48          | 5 5            | 21:33          | 0:09            | Analysis Date/Time |
|             | 50.00 100.0          |               |                                                         | 50.00 100.0                                             | 0.00 100.0                  | 50.00 100.0                 | 00 30.00                    | 0.00 100.0                  | 00.00                       | 0.00 100.0                  | 0.00 100.0                                              | 5000                                                    | 50.00 100.0                                             | 00 100.0                    | 00 100.0                    |                                                         | 50.00 100.0                 |                             |                             |                                                         | .00 100.0                   | .00 100.0                   | .00 100.0                                               | .00 100.0                                               |                             | 50.00 100.0                                             | 0.0 500.0                                               |                             | 0.00 100.0                  | 0.0 500.0                   | 00 100.0                                                | 00 100.0                                                | 0.00 100.0                                              | 0.00 100.0                                              |                             |                                                         |                      |                             |                             |                                                         | 50 00 100 0                 | LVI4 LVI5                |                                       |                |                |                |                 | Time               |
|             | 0 250.0              | 1             |                                                         |                                                         |                             | 0 250.0                     | 0 30.00                     | 0 250.0                     | 0 30.00                     | 0 250.0                     | 0 250.0                                                 | 0. 12500                                                | 0 250.0                                                 | 0 250.0                     | 0 250.0                     |                                                         | 0 250.0                     |                             |                             | 0 250.0                                                 | 0 250.0                     | 0 250.0                     |                                                         | 0 250.0                                                 |                             |                                                         | •                                                       |                             |                             | 0 1250.                     |                                                         |                                                         |                                                         |                                                         |                             | - 1                                                     |                      |                             |                             |                                                         | v                           | Concent                  |                                       |                |                |                |                 |                    |
| Page        | 500.0                | 500.0         |                                                         |                                                         | 500.0                       | 500.0 1.00                  | 30.00 30.00                 | 500.0 1.00                  | 30.00 30.00                 | 500.0 1.00                  | 500.0 1.00                                              | 2500050.00                                              | 500.0 1.00                                              | 500.0 1.00                  | 500.0                       | 500.0                                                   | 500.0                       | 500.0                       | 500.0                       | 500.0                                                   | 500.0                       | 500.0                       | 500.0                                                   | 500.0                                                   | 2500.                       | 500.0                                                   | 2500.                                                   | 500.0                       | 500.0                       | 2500                        | 500.0                                                   | 500.0                                                   | 500.0                                                   | 500.0                                                   | 500.0                       | 500.0                                                   | 500.0                | 500.0                       | 500.0                       | 500.0                                                   | 5000                        | LvI7                     |                                       |                |                |                |                 |                    |
| Page 1 of 3 | 1.00                 | 1.00          | 2.00                                                    | 1.00                                                    | .8                          |                             |                             | 1.00                        |                             | 1.00                        | 1.00                                                    | 50.00                                                   | 8                                                       | 1.00                        | 8                           | 1.00                                                    | 1.00                        | 1.00                        |                             | 1.00 0.                                                 | 1.00                        | 1.8                         | 1.<br>8                                                 | 1.00                                                    | 5.00                        | 0                                                       | 5.00                                                    | 1.00                        | 1.00                        | 5.00                        | 200                                                     | 1.00                                                    | 1.00                                                    | 1.00                                                    | <u>1</u> .8                 | 8                                                       | 0                    | 0                           | 8                           | 1.00                                                    | 3                           | ראופ רי                  |                                       |                |                |                |                 |                    |
|             |                      | 1             |                                                         |                                                         |                             | 0.50                        | 30.00                       |                             | 30.00                       |                             |                                                         |                                                         |                                                         |                             |                             |                                                         | !<br>                       |                             |                             | 0.50                                                    |                             | ĺ                           |                                                         |                                                         |                             |                                                         |                                                         |                             |                             |                             | į                                                       | i<br>!                                                  |                                                         |                                                         |                             | į                                                       |                      |                             |                             |                                                         |                             | <u>Lvi</u> 9             | !                                     |                |                |                |                 |                    |

Flags a - failed the min rf criteria

Flags
a - failed the min rf criteria
Corr 2 = Correlation Coefficient for linear Eq.
Corr 2 = Correlation Coefficient for quad Eq.
c - failed the minimum correlation coeff criteria(if applicable)
Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Form 6 Initial Calibration

|                                                                                                                                                                                              |             | 2-Chlorotoluene                | 1.2.3-Trichloropropane                                  | Camphene                                               | Cycloboxagore                                           | 1,2-Dichlorobenzene                                     | 1,4-Dichlorobenzene                                     | 1,3-Dichlorobenzene                                     | trans-1,4-Dichloro-2-b                                  | m&p-Xylenes                                                                                                        | Styrene                                   | Bromofluorobenzene                                      | 1.1.2.2-Tetrachloroeth                                  | Bromoform<br>Fthylhenzene                          | n-Amyl acetate                                                 | n-Butyl acrylate                                        | Chlorobenzene                                           | 1,1,1,2-Tetrachloroeth                                 | Toluene-d8                                                                                                      | Tetrachloroethene                                      | 2-Hexanone                     | 4-Methyl-2-Pentanone                                    | 1.3-Dichloropropane         | 1.1.2-Trichloroethane                                   | Ethyl methacrylate                                      | trans-1,3-Dichloroprop                                  | 2-Chloroethylvinylethe                                           | Dibromochloromethan            | Methyl methacrylate            | iso-propylacetate                                                                                                  | Benzene                                                 | Trichloroethene                                         | 1,2-Dichloropropane            | Methylcyclohexane Dibromomethane                           | <b>S</b> ompound         | 9              |                | 5 .            | <b>4</b><br>ω - | N 1                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------|---------------------------------------------------------|-----------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------|------------------------------------------------------------|--------------------------|----------------|----------------|----------------|-----------------|--------------------|
| c - failed the                                                                                                                                                                               | Flags       | 1 0 Avg                        | 1 0 Avq                                                 | 1 0 Ava                                                |                                                         | A<br>M                                                  | !                                                       | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                                                                            | Avq                                       | 1 0 Avg                                                 | 1 0 Ava                                                 | 1 0 Avg                                            | ļ                                                              | _                                                       | 1 0 Avg                                                 | 1 0 Avg                                                | 1 O AVQ                                                                                                         | 1 0 Avg (                                              | 1 0 Avg                        | 1 0 Avg                                                 | 1 0 AVG                     | _                                                       | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                          | 1 0 Avg                        |                                | 1 0 Avg                                                                                                            | 1 0 Avg                                                 | 1 0 Avg (                                               |                                | 1 0 Avg (                                                  |                          | 1M139260.D     | 1M139268.D     | 1M139274.D     | 1M139263 D      | Data File          |
| a - Jailed the min'rJ criteria<br>c - failed the minimum correlation co                                                                                                                      |             | 1.1665 1.0354 1.1522 1.0906    | 0.7382 0.7074 0.7201 0.69                               | 0.0229 0.0130 0.0220 0.02<br>0.4118 0.3948 0.4759 0.44 | 1.6209 1.3926 1.3867 1.63                               | 0.9899 0.9123 0.9881 0.92                               | 1.0385 0.9920 1.0448 0.96                               | 1.0187 0.9494 1.0109 0.94                               | 0.2131 0.1997 0.2148 0.20                               | 0.6832                                                                                                             | 1.2049 0.9635 1.1086 1.14                 | 0.7353 0.7384 0.7399 0.74                               | 0.5926 0.5820 0.5843 0.53                               | 0.3569                                             | 0.8011 0.6638 0.7252 0.75                                      | 0.7654 0.6133 0.6768 0.76                               | 0.7099 0.6515 0.7119 0.65                               | 0.2612 0.2339 0.2573 0.24                              | 1.2585 1.242U 1.2649 1.24<br>0.6336 0.5733 0.6160 0.53                                                          | 0.2138 0.2106 0.2267 0.20                              | 0.2156 0.1803 0.1902 0.2070    | 0.2873 0.2403 0.2558 0.27                               | 0.4174 0.3828 0.4056 0.3874 | 0.2401 0.2249 0.2463 0.22                               | 0.2363 0.1856 0.2061 0.22                               | 0.3722                                                  | 0.0594 0.0473 0.0535 0.0597                                      | 0.2939 0.2629 0.2758 0.2740    | 0.2546 0.1901 0.2147 0.2426    | 0.4764                                                                                                             | 0.8430 0.7706 0.8042 0.78                               | 0.2285 0.2207 0.2201 0.21                               | 0.2171 0.1998 0.2070 0.2033    | 0.1912 0.1790 0.2181 0.2191<br>0.1709 0.1553 0.1636 0.1557 | RF1 RF2 RF3 RF4          | CAL @ 0.5 PPB  |                | <b>@</b> (     | CAL @ 10 PPR    | <u>}</u> i         |
| failed the min rf criteria  Corr 1 = Correlation Coefficient  Corr 2 = Correlation Coefficient  failed the minimum correlation coeff criteria(if applicable) Fit = Indicates whether Avg RF, |             | 06 1.1791 1.2253 1.1366 1.1868 | 0.7382 0.7074 0.7201 0.6910 0.7463 0.7785 0.7440 0.8067 | 0.4118                                                 | 1.5209 1.3926 1.5867 1.5399 1.8321 1.9385 1.8725 1.3141 | 0.9899 0.9123 0.9881 0.9284 0.9994 1.0173 0.9621 0.9848 | 1.0385 0.9920 1.0448 0.9688 1.0456 1.0712 1.0134 1.0830 | 1.0187 0.9494 1.0109 0.9406 1.0208 1.0446 0.9888 0.9041 | 0.2131 0.1997 0.2148 0.2090 0.2346 0.2577 0.2545 0.2200 | 0.6832 0.5682 0.6548 0.6583 0.7010 0.7136 0.6990 0.6183<br>0.6924 0.5902 0.6558 0.6555 0.6938 0.7175 0.7020 0.5325 | 1.1086 1.1444 1.2293 1.2658 1.2206 0.9782 | 0.7353 0.7384 0.7399 0.7491 0.7568 0.7737 0.8013 0.7639 | 0.5926 0.5820 0.5843 0.5347 0.5733 0.5996 0.5862 0.6850 | 0.3569                                             | <u>0.8011 0.6638 0.7252 0.7573 0.8273 0.8585 0.8298 0.5792</u> | 0.7654 0.6133 0.6768 0.7684 0.8869 0.9466 0.9217 0.6136 | 0.7099 0.6515 0.7119 0.6569 0.7023 0.7175 0.7005 0.6879 | .2612 0.2339 0.2573 0.2417 0.2599 0.2712 0.2685 0.2605 | .2585 1.2420 1.2649 1.2473 1.2102 1.1664 1.1161 1.2021<br>6336 0 5733 0 6160 0 5777 0 6115 0 6037 0 5650 0 5761 | .2138 0.2106 0.2267 0.2087 0.2262 0.2245 0.2123 0.2088 | 70 0.2301 0.2317 0.2134 0.1734 | 0.2873 0.2403 0.2558 0.2725 0.2986 0.2995 0.2795 0.2260 | 0.4174                      | 0.2401 0.2249 0.2463 0.2263 0.2362 0.2361 0.2262 0.2333 | 0.2363 0.1856 0.2061 0.2277 0.2521 0.2504 0.2413 0.1938 | 0.3722 0.3310 0.3494 0.3628 0.3877 0.4004 0.3903 0.3468 | 97 0.0693 0.0697 0.0660 0.0362<br>73 0.3671 0.4007 0.3831 0.3678 | 40 0.2983 0.3087 0.3063 0.2409 | 26 0.2659 0.2662 0.2332 0.2241 | 0:4764 0:3856 0:4327 0:4839 0:5435 0:5557 0:5884 0:4341<br>0:4523 0:4180 0:4318 0:4373 0:4709 0:4620 0:4113 0:3976 | 0.8430 0.7706 0.8042 0.7898 0.8450 0.8496 0.8306 0.7922 | 0.2285 0.2207 0.2201 0.2111 0.2359 0.2497 0.2533 0.2289 | 33 0.2185 0.2291 0.2304 0.2125 | 0.2678 0.2859 0.2836<br>0.1707 0.1763 0.1796               | RF5 RF6 RF7              | 09/09/20 19:28 | 09/09/20 22:14 | 09/10/20 00:19 | 09/09/20 20:30  | Analysis_Date/Time |
| Corr I = Correlai<br>Corr 2 = Correlai<br>Fit = Indicates wh                                                                                                                                 | I!          | .1868                          | .8067                                                   | 4618                                                   | 3141                                                    | 9848                                                    | 0830                                                    | 9041                                                    | 2200                                                    | 5325                                                                                                               |                                           | 7639 0.7444                                             | 6850                                                    | 5210                                               | 5792                                                           | 6136                                                    | 6879                                                    | 2605                                                   | 5761                                                                                                            |                                                        | 1734                           | 2260                                                    | 3792                        | 2333                                                    | 1938                                                    | 3468                                                    |                                                                  | 1                              | 2241                           | 3976                                                                                                               | 7922 0.5840                                             | 2289                                                    | 2125                           | 0.1912<br>0.1526                                           | RF8 RF9 A                |                | 8              | თ -            | 4 4             | Level #            |
| Correlation Coefficient Correlation Coefficient Coefficient Cates whether Avg RF,                                                                                                            |             | 1.157.82 (                     | 1                                                       | 0.4817.70                                              |                                                         |                                                         | -                                                       |                                                         | 0.225 7.70 1                                            | 0.6407.11 1                                                                                                        | ļ                                         | 0.7567.63                                               |                                                         | 0.3687.46 0                                        | ļ                                                              |                                                         |                                                         | 0.2577.04 1                                            | - 1 -                                                                                                           | 0.216 6.54 (                                           | -                              |                                                         | 0.3996.54 (                 | 0.234 6.44 1                                            | 0.2246.36 1                                             | 0.368 6.33 1                                            | 1                                                                |                                | 5.69                           | 0.435 5.19 (                                                                                                       | - 1                                                     |                                                         |                                | 0.230 5.66 1<br>0.166 5.73 1                               |                          |                | 1M139261.D     | 1M139271.D     | 1M139266 D      |                    |
|                                                                                                                                                                                              |             |                                | 1                                                       | 0.999 1.00                                             |                                                         | _                                                       | 8                                                       | Ψ                                                       |                                                         | 1.00                                                                                                               | İ.                                        |                                                         |                                                         | 0.999 1.00<br>1.00 1.00                            |                                                                |                                                         | 1.00 1.00                                               | 1.00 1.00                                              | 1                                                                                                               | ).999 1.00                                             |                                |                                                         | 0.999 1.00                  | 1.00                                                    |                                                         | 1.00 1.00                                               | 1                                                                |                                |                                | 0.996 1.00                                                                                                         | <br>                                                    | 1.00 1.00                                               |                                | 1.00<br>1.00<br>1.00                                       | Corr1 Corr2              |                |                |                |                 | File               |
| ar Eq.<br>d Eq.<br>or Quadi                                                                                                                                                                  | 1: 8.758    |                                | 0 5.1                                                   | 0 0                                                    |                                                         |                                                         |                                                         |                                                         |                                                         | 0 13                                                                                                               | 1                                         | 2.8                                                     |                                                         | 0 8.8                                              | ĺ                                                              |                                                         |                                                         | 0 5.0                                                  | ì                                                                                                               |                                                        |                                |                                                         | 0 38                        |                                                         |                                                         | 0 6.6                                                   |                                                                  |                                |                                | 0 5.9                                                                                                              |                                                         | _                                                       |                                | 0<br>0<br>6.2                                              | <b>%</b>                 |                | \L@1 PPB       | CAL @ 250 PPB  | ე.<br>ე. დ      | 9   _              |
| atic Cur                                                                                                                                                                                     |             |                                | i<br>!<br>!                                             |                                                        | 0.10                                                    | 0.40                                                    | 0.50                                                    | 0.60                                                    | 6                                                       | 0.10                                                                                                               | 0.30                                      | ;                                                       | 0.10                                                    | 0.10                                               | 0.50                                                           | 0.50                                                    | 0.50                                                    | 0.40                                                   | 3                                                                                                               | 0.20                                                   | 0.10                           | 0.10                                                    | 0.10                        | 0.10                                                    | 0.50 a                                                  | 0.10                                                    | 3                                                                | 0.10                           | 0.50 a                         | 0.50 a                                                                                                             | 0.50                                                    | 0.20                                                    | 0.10                           | 0.10                                                       | !                        | !              | Ř              | PPB            |                 | Cal Identifier     |
| for linear Eq.<br>for quad Eq.<br>Linear, or Quadratic Curve was used for compound.                                                                                                          |             | 20.00 5.00                     | ŧ                                                       | 20.00 5.00                                             |                                                         |                                                         | !                                                       |                                                         |                                                         | 20.00 10.00                                                                                                        | . 1                                       | 0                                                       |                                                         | 20.00 5.00                                         | 1.                                                             |                                                         |                                                         | 20.00 5.00                                             | 30.00 30.00                                                                                                     | 20.00 5.00                                             | 20.00 5.00                     |                                                         | 20.00 5.00                  |                                                         | 5.00                                                    | 20.00 5.00                                              | i.                                                               |                                |                                | 20.00 5.00                                                                                                         | 1                                                       |                                                         | 5.00                           | 20.00 5.00                                                 | LvI2                     |                | 09/09/20 19:48 | 09/09/20 23:16 | 09/09/20 20:09  | Analy              |
| r compound.                                                                                                                                                                                  |             | 10.00 50.00 100.0 250.0        |                                                         | 10.00 50.00 100.0 250.0                                |                                                         |                                                         |                                                         |                                                         |                                                         | 20.00 100.0 200.0 500.0<br>10.00 50.00 100.0 250.0                                                                 | 10.00 50.00 100.0 250.0                   |                                                         |                                                         | 10.00 50.00 100.0 250.0<br>10.00 50.00 100.0 250.0 |                                                                |                                                         | 100.0                                                   | 10.00 50.00 100.0 250.0                                |                                                                                                                 | 10.00 50.00 100.0 250.0                                | 100.0                          |                                                         | 10.00 50.00 100.0 250.0     |                                                         | 100.0                                                   | 10.00 50.00 100.0 250.0                                 |                                                                  |                                |                                | 10.00 50.00 100.0 250.0                                                                                            | 100                                                     | 10.00 50.00 100.0 250.0                                 | 100.0                          | 10.00 50.00 100.0 250.0<br>10.00 50.00 100.0 250.0         | Lvi3 Lvi4 Lvi5 Lvi6 Lvi7 |                | 19:48          | 23:16          | 21:33           | Analysis Date/Time |
|                                                                                                                                                                                              | Page 2 of 3 |                                | 1                                                       | ),0 500,0 1,00                                         |                                                         |                                                         |                                                         |                                                         |                                                         | 0.0 1000. 2.00 1.00                                                                                                | 500.0 1.00                                |                                                         |                                                         | ) 0 500.0 1.00<br>500.0 1.00                       | 500.0                                                          | 500.0                                                   |                                                         | ).0 500.0 1.00<br>).0 500.0 1.00                       | 00 30.00 30.00 30.00                                                                                            | 500.0 1.00                                             | 500.0                          | 500.0                                                   | 0.0 500.0 1.00              | 500.0                                                   | 500.0                                                   | 0.0 500.0 1.00                                          |                                                                  | 0.0 500.0 1.00                 | 500.0                          | 0.0 500.0 1.00                                                                                                     | 500.0                                                   | 500.0                                                   | 500.0                          | ).0 500.0 1.00<br>).0 500.0 1.00                           | vi6 Lvi7 Lvi8 Lvi9       |                |                |                |                 |                    |

## Form 6 Initial Calibration

Instrument: GCMS\_1

| Nap                                                     |                                                                                                                    | 1                                                       | He i                                                   | Can                                                     | 1.2-                                                    | 1.2.                                                   | <u> </u>                                                | <b>л-В</b> с                                            | 4-Is               | sec-                        | 1.2.                        | t-Bu                                                   | But                                              | 1.3                   | Bror                                             | ŋ-Pr                                                    | 4-CI                                             | p-Et                                                   | <b>0,0</b>               | 93                    | 0              | 2              | 4              |                | 0 1                | 9 ا                 |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------|-----------------------------|-----------------------------|--------------------------------------------------------|--------------------------------------------------|-----------------------|--------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|--------------------------|-----------------------|----------------|----------------|----------------|----------------|--------------------|---------------------|
| Naphthalene                                             | 2 3-Trichlorobenzen                                                                                                | 2 4-Trichlorohenzen                                     | Hexachlorobutadiene                                    | Camphor                                                 | .2-Dibromo-3-Chloro                                     | .2.4.5-Tetramethylbe                                   | p-Diethylbenzene                                        | n-Butylbenzene                                          | 4-isopropyttoluene | sec-Butylbenzene            | .2,4-Trimethylbenzen        | t-Butylbenzene                                         | Butyl methacrylate                               | 1.3.5-Trimethylbenzen | Bromobenzene                                     | n-Propylbenzene                                         | 4-Chlorotoluene                                  | p-Ethyttoluene                                         | ompound C                | 9                     | 7              | Сī             | ω              | _              | Level #:           | Vicinos. Li Stocoo  |
|                                                         |                                                                                                                    |                                                         |                                                        | 1 0 Qua                                                 | 1 0 Avg (                                               | 1 0 Qua                                                | 1 0 Avg (                                               | 1 0 Avg                                                 | 1 0 Avg            | 1 0 Avg                     | 1 0 Avg                     | 1 0 Avg                                                |                                                  | 1 0 Avg               | 1 0 Avg                                          | 1 0 Avg :                                               | 1 0 Avg                                          | 1 0 Avg                                                | Col Mr Fit:              | 1M139260.D            | 1M139268.D     | 1M139274.D     | 1M139263.D     | 1M139264.D     | Data File          |                     |
| 1.7064 1.272                                            | 0.01010.000                                                                                                        | 0.6761.0.555                                            | 0.2847 0.267                                           | 0.0666 0.045                                            | 0.1620 0.151;                                           | 1.2716 0.876                                           | 0.8574 0.684                                            | 1.7386 1.465                                            | 1.5212 1.243       | 1.7088 1.4499               | 1.6021 1.311:               | 1.3485 1.161;                                          | 0.6097 0.488;                                    | 1.5327 1.381;         | 1.1504 1.091:                                    | 2.0890 1.914;                                           | 1.1573 1.127                                     | 1.7532 1.502:                                          | RF1 RF2                  | CAL @ 0.5 PPB         | CAL @ 500 PPB  | CAL @ 1        | CAL @ 1        | CAL@2          | .,                 |                     |
| 8 1.5139 1.73                                           | 2 0 5646 0 57                                                                                                      | 0 0 6347 0 64                                           | 1 0.3023 0.28                                          | 1 0.0541 0.07                                           | 2 0.1566 0.15                                           | 8 1.0787 1.39                                          | 8 0.8049 0.90                                           | 6 1.7391 1.74                                           | 8 1.5053 1.56      | .7088 1.4499 1.7186 1.7469  | 1.6021 1.3113 1.5381 1.5620 | 2 1.3213 1.40                                          | 0.4882 0.5561 0.5600                             | 2 1.5427 1.47         | 3 1.1763 1.08                                    | 2 2.0944 2.02                                           | 5 1.1800 1.09                                    | 3 1.7302 1.72                                          | RF3 RF4                  | ).5 PPB               | 00 PPB         | @ 100 PPB      | @ 10 PPB       | @ 20 PPB       | Cal Identifier:    |                     |
| 1.7064 1.2728 1.5139 1.7305 1.9502 1.8956 1.7245 1.1797 | 0.5101 0.5030 0.5031 0.5762 0.6366 0.6201 0.5036 0.5602<br>0.5007 0.5032 0.5646 0.5762 0.6366 0.6201 0.5026 0.5602 | 0 6761 0 5550 0 6347 0 6448 0 6965 0 6776 0 6353 0 5276 | 0.2847 0.2671 0.3023 0.2831 0.3126 0.3067 0.2923 0.277 | 0.0666 0.0451 0.0541 0.0715 0.0851 0.0855 0.0834 0.0447 | 0.1620 0.1512 0.1566 0.1595 0.1769 0.1794 0.1657 0.1606 | .2716 0.8768 1.0787 1.3943 1.6251 1.6484 1.5055 0.8930 | 0.8574 0.6848 0.8049 0.9035 1.0320 1.0606 0.9849 0.6668 | 1.7386 1.4656 1.7391 1.7444 1.9201 1.9371 1.7642 1.4282 | 90 1.7712 1.8      | 69 1.9874 2.0               | 20 1.7149 1.7               | .3485 1.1612 1.3213 1.4036 1.5745 1.6580 1.5849 1.1234 | 0.4882 0.5561 0.5600 0.6167 0.6000 0.6039 0.4915 | 00 1.6057 1.5         | 1.0913 1.1763 1.0879 1.1865 1.2520 1.1489 1.1688 | 2.0890 1.9142 2.0944 2.0200 2.2275 2.3088 2.1481 1.9328 | 1.1275 1.1800 1.0949 1.1893 1.2361 1.1622 1.0712 | .7532 1.5023 1.7302 1.7287 1.8820 2.0542 1.8689 1.4515 | RF5                      | 09/09/20 19:28        | 09/09/20 22:14 | 09/10/20 00:19 | 09/09/20 20:30 | 09/09/20 20:51 | Analy              |                     |
| 3956 1.7245 1                                           | 3201 0 5926 0                                                                                                      | 3776 0 6353 0                                           | 3067 0.2923 0                                          | )855 0.0834 C                                           | 1794 0.1657 0                                           | 3484 1.5055 C                                          | )606 0.9849 C                                           | )371 1.7642 1                                           | 3092 1.6738 1      | 1.9874 2.0480 1.9082 1.3809 | 1.7149 1.7535 1.6331 1      | <b>580 1.5849 1</b>                                    | 3000 0.6039 C                                    | 433 1.4780 1          | 2520 1.1489 1                                    | 3088 2.1481 1                                           | 361 1.1622 1                                     | )542 1.8689 1                                          | RF6 RF7                  | 19:28                 | 2:14           | )0:19          | 0:30           | 20:51          | Analysis Date/Time |                     |
| 1797                                                    | 5602                                                                                                               | 5276                                                    | _                                                      | 0447 0.0385                                             | . 1606                                                  | .8930                                                  | .6668                                                   | .4282                                                   | 0820               | 3809                        | 1.1645                      | .1234                                                  | .4915                                            | 2648                  | 1688                                             | 9328                                                    | .0712                                            | .4515                                                  | RF8 RF9                  |                       | ~              | •              |                | •              | Level              | initial Calibration |
| 1.62 9.62                                               | 0.582 9 76                                                                                                         | 0.631.9.46                                              | 0.291 9.5                                              | 0.0639 9.41                                             | 0.164 8.97                                              | 1.29 8.91                                              | 0.874 8.45                                              | 1.728.47                                                | 1.528.23           | 1.74 8.16                   | 1.53 8.06                   | 1.40 8.04                                              | 0.566 7.85                                       | 1.48 7.84             | 1.167.72                                         | 2.097.75                                                | 1.157.88                                         | 1.757.81                                               | AvgRf RT                 |                       | 8 1M139        | 6 1M139        | 1M139266.D     | ? 1M139262.    | *                  | libration           |
| 2 0.997 1.00                                            | 0 000                                                                                                              | 9                                                       | 0.999                                                  | <u>1</u> .00                                            | 0.998                                                   | 0.998                                                  | 0.998                                                   | 0.998                                                   | _0.998             | 0.999                       | 0.999                       | 0.999                                                  | 1.00                                             | 0.999                 | 0.998                                            | 0.999                                                   | 0.999                                            | 0.998                                                  | Corr1 Corr2              |                       |                |                |                |                | a File             |                     |
|                                                         | 7 1                                                                                                                |                                                         |                                                        |                                                         |                                                         |                                                        |                                                         |                                                         | ļ                  |                             |                             |                                                        | 9.2                                              | 0 7.4                 |                                                  |                                                         |                                                  | _                                                      | r2 %Rsd                  |                       | \L@ 1 PPB      | ۱L @ 250 PPB   | CAL @ 50 PPB   | CAL @ 5 PPB    | Cal Identifi       |                     |
| 20.00 5.00                                              |                                                                                                                    |                                                         | 20.00 5.0                                              | 200.0 50.                                               |                                                         | 20.00 5.0                                              | 20.00 5.0                                               | 20.00 5.0                                               | 20.00 5.0          | 20.00 5.0                   | 20.00 5.0                   | 20.00 5.0                                              | 0.50 a 20.00 5.0                                 | 20.00 5.00            | 20.00 5.0                                        | 20.00 5.00                                              | 20.00 5.0                                        | 20.00 5.00                                             | נאוז נ                   | [<br>[<br>]<br>]<br>! |                |                |                |                | !                  |                     |
| 0 10.00 50.0                                            | 0 10 00 50 0                                                                                                       | 0 10 00 50 0                                            | 0 10.00 50.0                                           | 00 100.0 500                                            | 0 10.00 50.0                                            | 0 10.00 50.0                                           | 0 10.00 50.0                                            | 0 10.00 50.0                                            | 0 10.00 50.0       | 0 10.00 50.0                | 0 10.00 50.0                | 0 10.00 50.0                                           | 0 10.00 50.0                                     | 0 10.00 50.0          | 0 10.00 50.0                                     | 0 10.00 50.0                                            | 0 10.00 50.0                                     | 0 10.00 50.0                                           | Calibration Le           | )<br>!<br>!           | 09/09/20 19:48 | 09/09/20 23:16 | 09/09/20 21:33 | 20 20:09       | Analysis Date/Time |                     |
| 0 100.0 250.                                            | 0 100 0 250                                                                                                        | 0 100 0 250 0                                           | 0 100.0 250.0                                          | 0 1000. 250C                                            | 0 100.0 250.0                                           | 0 100.0 250.                                           | 0 100.0 250.0                                           | 0 100.0 250.0                                           | 0 100.0 250.       | 0 100.0 250.0               | 0 100.0 250.0               | 0 100.0 250.                                           | 0 100.0 250.0                                    | 0 100.0 250.          | 0 100.0 250.0                                    | 0 100.0 250.0                                           | 0 100.0 250.0                                    | 0 100.0 250.                                           | Lvi3 Lvi4 Lvi5 Lvi6 Lvi7 |                       |                |                |                |                | me                 |                     |
| 10.00 50.00 100.0 250.0 500.0 1.00                      | 500 n 1 00                                                                                                         | 500 0 1 00                                              | 500.0 1.00                                             | . 5000. 10.00                                           | 0 500.0 1.00                                            | 0 500.0 1.00                                           | 0 500.0 1.00                                            | 0 500.0 1.00                                            | 0 500.0 1.00       | 0 500.0 1.00                | 0 500.0 1.00                | 0 500.0 1.00                                           | 0 500.0 1.00                                     | 0 500.0 1.00          | 0 500.0 1.00                                     | 0 500.0 1.00                                            | 0 500.0 1.00                                     | 0 500.0 1.00                                           | itrations<br>6 Lv17 Lv18 |                       |                |                |                |                |                    | ı                   |
|                                                         |                                                                                                                    |                                                         | !                                                      | 10.00 5.00                                              |                                                         |                                                        |                                                         |                                                         |                    |                             |                             |                                                        |                                                  | !<br>:                |                                                  |                                                         |                                                  |                                                        | LvI9                     |                       |                |                |                |                |                    |                     |

Flags a - failed the min rf criteria

Flags
a - failed the min rf criteria
Corr 2 = Correlation Coefficient for linear Eq.
Corr 2 = Correlation Coefficient for quad Eq.
Corr 2 = Correlation Coefficient for quad Eq.
Corr 2 = Correlation Coefficient for quad Eq.
Corr 2 = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Avg Rsd: 8.758

0194 Method: EPA 8260D

> Initial Calibration Form 6

Instrument: GCMS\_2

| ı              | (Tr                                                     | ı je                                              | ٠,                        | <b>.</b>                                                | _                                                       | N                                                       | _                                                       | ۱                                                              | 0                                                       | _                                                       | _                                                       | _                                                       | د:                                                      | . (177                                                  | N                                                       | œ                                                       | ဂ                                                       | ;[TT]                                                   | <b>=</b>                                                | _                                                       | ~                                                       | 7                                                       | :                                                       | _                                                       | <b>5</b>                                                | 7                                                       | C:                                               | <b>&gt;</b>                               | ≂ '                                       | ▶,                                                      | <b>&gt;</b> :                                           | ₹ .                                              |                                                         | ηn                     | n -                    | . C                                              | · : <                                                   | <b>0</b> 7                                | C                                         | _                           | C                                                | 90                       | 9:             | 3 0             | 12                | 4              | 6              | 1                    |
|----------------|---------------------------------------------------------|---------------------------------------------------|---------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|------------------------|------------------------|--------------------------------------------------|---------------------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------|--------------------------------------------------|--------------------------|----------------|-----------------|-------------------|----------------|----------------|----------------------|
|                | Bromodichloromethan                                     | AlliAl Acelale                                    | And Anatota               | Carbon Tetrachloride                                    | 1 1-Trichloroethane                                     | 2-Butanone                                              | .2-Dichloroethane                                       | 1.2-Dichloroethane-d4                                          | Cyclohexane                                             | Dibromofluoromethan                                     | Chloroform                                              | 1,1-Dichloropropene                                     | 1.4-Dioxane                                             | Ethyl acetate                                           | 2.2-Dichloropropane                                     | Bromochloromethane                                      | cis-1.2-Dichloroethene                                  | Ethyl-t-butyl ether                                     | trans-1.2-Dichloroethe                                  | 1.1-Dichloroethane                                      | Methyl-t-butyl ether                                    | Methyl Acetate                                          | 1.1-Dichloroethene                                      | Di-isopropyl-ether                                      | n-Hexane                                                | t-Butyl Alcohol                                         | Carbon Disulfide                                 | Acetone                                   | odomethane                                | Acrylonitrile                                           | Acrolein                                                | Methylene Chloride                               | r diair<br>1.1.2-Trichloro-1.2.2-tr                     | בוויאו פנוופו          | i richiorofluoromethan | Chloroethane                                     | Vinyl Chloride                                          | Bromomethane                              | Chloromethane                             | Dichlorodifluorometha       | Chlorodifluoromethane                            | Compound                 |                |                 |                   | ω              | 1              | Level #:             |
| Flags          | 1 0 LinF                                                | DAY O                                             |                           | 1 0 Ava                                                 | 1 0 Ava                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                        | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 |                                                         | 1 0 Avq                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 LinF                                                | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                          | 1 0 Avg                                   | 1 0 Qua                                   | 1 0 Ava                                                 | 1 0 Ava                                                 | 1                                                | <u>.</u> -                                              |                        | 1 O AVQ                | 1 0 Avg                                          | 1 0 Avq                                                 | 1 0 Avg                                   | 1 0 Avg                                   | 10                          | 9 1 0 Avq                                        | Col Mr Fit:              | ZM14Z487.D     | 2M142502.D      | 2M142496.D        | 2M142490.D     | 2M142492.D     | Data                 |
|                | 0.3920 0.4190 0.3781 0                                  | 0.7420 0.7040 0.7013 0                            | 0.2428 0.2848 0.2045 0    | 0 3753 0 3704 0 3392 0                                  | 0.4457 0.4577 0.4112 0                                  | 0.1134 0.1161 0.1032 0                                  | 0.3888 0.4296 0.3712 0                                  | 0.1495 0.1453 0.1515 0                                         | 0.3426 0.3485 0.3316 0                                  | 0.2832 0.2901 0.2899 0                                  | 0.5013 0.5330 0.4704 0                                  | 0.3798 0.4031 0.3497 0                                  | 0.0032 0.0032 0.0034 0                                  | 0.2318 0.2533 0.2229 0                                  | 0.4060 0.4388 0.3852 0                                  | 0.2157 0.2288 0.2019 0                                  | 0.4472 0.4819 0.4211 0                                  | 0.7025 0.7205 0.6735 0                                  | 0.2717 0.2935 0.2517 0                                  | 0.4511 0.4789 0.4094 0                                  | 0.6903 0.7095 0.6580 0                                  | 0.1654 0.1951 0.1782 0                                  | 0.3732 0.3939 0.3528 0                                  | 0.6484 0.6639 0.6085 0                                  | 0.2239 0.2349 0.2319 0                                  | 0.0240 0.0260 0.0247 0                                  | 0.7173 0.8037 0.6973 0                           | 0.0724 0.0805 0.0736 0.0819 0.0811 0.0803 | 0.1842 0.1649 0.1597 0.2148 0.2704 0.2893 | 0.0909 0.1026 0.0899 0                                  | 0 0436 0 0448 0 0416 0                                  | 0 2692 0 2961 0 2518 0                           | 0.1928 0.2050 0.1789 0                                  | 0.1034 0.2013 0.1610 0 | 0.5649 0.5937 0.5441 0 | 0.2427 0.2454 0.2330 0                           | 0.3712 0.3975 0.3370 0                                  | 0.1427 0.1504 0.1402 0.1526 0.1877 0.2192 | 0.3208 0.3455 0.3030 0.3431 0.3602 0.3483 | 0.3267 0.3071 0.2716 0.3305 | 0.3084 0.3044 0.2719 0                           | RF1 RF2 RF3 F            | CAL @ 0.5 PPB  | ς<br>2 <u>2</u> | ς<br><sub>E</sub> | CAL            | CAL @          | File: Cal Identifier |
|                | 0.3920 0.4190 0.3781 0.4240 0.4488 0.4432 0.4635 0.3515 | 0.7420 0.7040 0.7010 0.7010 0.841.0 0.7710 0.7710 | 7551 0 8068 0 7080 0 7750 | 0 3753 N 3704 N 3392 N 3899 N 4128 N 4227 N 4417 N 3237 | 0.4457 0.4577 0.4112 0.4660 0.4886 0.4816 0.4928 0.3898 | 0.1134 0.1161 0.1032 0.1334 0.1389 0.1533 0.1562 0.0868 | 0.3888 0.4296 0.3712 0.4102 0.4423 0.4534 0.4858 0.3889 | 0.1495 0.1453 0.1515 0.1499 0.1544 0.1467 0.1430 0.1463 0.1486 | 0.3426 0.3485 0.3316 0.3563 0.3747 0.3794 0.3957 0.2989 | 0.2832 0.2901 0.2899 0.2896 0.2919 0.2861 0.2726 0.2918 | 0.5013 0.5330 0.4704 0.5194 0.5417 0.5271 0.5376 0.4676 | 0.3798 0.4031 0.3497 0.3978 0.4190 0.4300 0.4551 0.3564 | 0.0032 0.0032 0.0034 0.0035 0.0036 0.0038 0.0039 0.0026 | 0.2318 0.2533 0.2229 0.2446 0.2531 0.2523 0.2546 0.2435 | 0.4060 0.4388 0.3852 0.4197 0.4452 0.4418 0.4433 0.3919 | 0.2157 0.2288 0.2019 0.2157 0.2198 0.1993 0.2032 0.2145 | 0.4472 0.4819 0.4211 0.4700 0.4999 0.5089 0.5261 0.4699 | 0.7025 0.7205 0.6735 0.7352 0.7971 0.7992 0.8129 0.6313 | 0.2717 0.2935 0.2517 0.2806 0.2979 0.3025 0.3091 0.2687 | 0.4511 0.4789 0.4094 0.4701 0.4999 0.4976 0.5042 0.4522 | 0.6903 0.7095 0.6580 0.7318 0.7958 0.7997 0.8090 0.6631 | 0.1654 0.1951 0.1782 0.1758 0.1829 0.1831 0.1793 0.1966 | 0.3732 0.3939 0.3528 0.3913 0.4108 0.4089 0.4224 0.3327 | 0.6484 0.6639 0.6085 0.6783 0.7334 0.7412 0.7590 0.5936 | 0.2239 0.2349 0.2319 0.2427 0.2551 0.2505 0.2547 0.2015 | 0.0240 0.0260 0.0247 0.0264 0.0274 0.0284 0.0273 0.0236 | 0.7173 0.8037 0.6973 0.7494 0.7799 0.7709 0.7692 | .0819 0.0811 0.0803 0.0782                | 2148 0.2704 0.2893                        | 0.0909 0.1026 0.0899 0.0973 0.1005 0.1059 0.1059 0.0931 | 0 0436 0 0448 0 0416 0 0449 0 0472 0 0477 0 0495 0 0427 | 0.2692 0.2961 0.2518 0.2796 0.2975 0.2895 0.2877 | 0.1928 0.2050 0.1789 0.2064 0.2137 0.2108 0.2197 0.1739 | 0.1654                 | 0.5649                 | 0.2427 0.2454 0.2330 0.2520 0.2602 0.2632 0.2708 | 0.3712 0.3975 0.3370 0.3874 0.4038 0.3891 0.3690 0.3256 | .1526 0.1877 0.2192                       |                                           | .3305 0.3409 0.3349 0.3272  | 0.3084 0.3044 0.2719 0.3264 0.3317 0.3264 0.3218 | RF4 RF5 RF6 RF7          | 60:51:02/62/60 | 09/29/20 20:03  | 09/29/20 18:05    | 09/29/20 16:08 | 09/2           | Analvsis Date/Time   |
| Note:          | 0.3515                                                  | BCBO                                              | 0.000                     | 0 3337                                                  | 0.3898                                                  | 0.0868                                                  | 0.3889 0.5360                                           | 0.1463 0.1486                                                  | 0.2989                                                  | 0.2918 0.2911                                           |                                                         | 0.3564                                                  | 0.0026                                                  | 0.2435                                                  | 0.3919                                                  | 0.2145                                                  | 0.4699                                                  | 0.6313                                                  | 0.2687                                                  | 0.4522                                                  | 0.6631 0.6760                                           | 0.1966                                                  | 0.3327                                                  | 0.5936                                                  | 0.2015                                                  | 0.0236                                                  | 0.8299                                           |                                           | 0.1873                                    | 0.0931                                                  | 0.0427                                                  | 0.2943                                           | 0.1739                                                  | 0.3281                 | 0.459/                 | 0.2210                                           | 0.3256                                                  | 0.1737                                    | 0.3434 0.3809                             | 0.2258                      | 0.2561                                           | RF8 RF9                  |                | œ               | ത                 | 4              |                | ne Level#            |
|                | 0.415 5.57                                              |                                                   | 0.764.4.03                | 0 385 4 83                                              | 0.4544.73                                               | 0.1254.40                                               | 0.434 4.95                                              | 0.148 4.91                                                     | 0.354 4.77                                              | 0.287 4.70                                              | 0.512 4.60                                              | 0.399 4.82                                              | 0.00344 5.50                                            | 0.245 4.43                                              | 0.4224.42                                               | 0.2124.57                                               | 0.4784.41                                               | 0.7344.29                                               | 0.285 3.65                                              | 0.470 4.00                                              | 0.726 3.64                                              | 0.1823.32                                               | 0.386 3.01                                              | 0.678 4.03                                              | 0.237 3.87                                              | 0.0260 3.48                                             | 0.765 3.21                                       | 0.0807 3.04                               | 0.2103.15                                 | 0.0983 3.62                                             | 0.04532.92                                              | 0.283 3.42                                       | 0.2003.00                                               | 0.1902.00              | 0.5/12.5/              | 0.249 2.34                                       | 0.373 1.95                                              | 0.167 2.25                                | 0.343 1.85                                | 0.308 1.68                  | 0.306 1.69                                       | AvgRf RT                 |                | 2M142488        | 2M142499          | 2M142494       | 2M142          | •                    |
| Avg            | 1.00                                                    | 2                                                 | 3 8                       | 3                                                       | 200                                                     | <u>.</u>                                                | 0.999                                                   | <u>                                     </u>                   | 1.00                                                    | <u>-</u>                                                | 1.00                                                    | 0.999                                                   | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | .8                                                      | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 2                                                | 1.00                                      | 0.985                                     | 1.00                                                    | 1 2                                                     | 100                                              | 2 2                                                     | 3 8                    | 3 5                    | 1.00                                             | 0.999                                                   | 0.995                                     | 1.00                                      | 1.00                        | 1.00                                             | Corr1                    | !              |                 |                   | 040            |                | Data File            |
| Avg Rsd: 10.08 | 1.00                                                    | 2                                                 | 3 8                       | 3                                                       | 8                                                       | <u>1</u> .8                                             | 1.00                                                    | -                                                              | 1.00                                                    | <u>.</u>                                                | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | <u>.</u> 8                                       | 1.00                                      | 0.996                                     | 1.00                                                    | 100                                                     | 100                                              | 2 6                                                     | 3 5                    | 3 8                    | 1.00                                             | 1.00                                                    | 1.00                                      | 1.00                                      | 1.00                        | 1.00                                             | Corr2                    |                | CAL             |                   |                | CAL            | ķΨ                   |
| 0.08           | 9.2                                                     | e.                                                | D :                       | <b>:</b> ;                                              | 8                                                       | 20                                                      | 12                                                      | 2.3                                                            | 8.6                                                     | 2.2                                                     | 5.8                                                     | 9.1                                                     | 12                                                      | 4.7                                                     |                                                         | 4.8                                                     | 7.1                                                     | 8.9                                                     | 6.9                                                     | 6.8                                                     | 8.4                                                     | 5.6                                                     | 8.0                                                     | 9.1                                                     | 7.7                                                     | 6.6                                                     | 5.7                                              | 9.4                                       | 24                                        | 6 6<br>6                                                | 6 C                                                     | ა :<br>თ :                                       | ω (<br>ω (                                              | э (                    | ο<br>2 α               | 6.<br>6.<br>6.                                   | 7.6                                                     | 17                                        | 6.8                                       | 13                          | 9.1                                              | %Rsd                     |                | @ 1 PPB         | @ 250 PPB         | @ 50 PPB       | @ 5 PPB        | Cal Identifier:      |
|                | 0.20                                                    |                                                   |                           | 0 1                                                     | 0.10                                                    | 0.10 a                                                  | 0.10                                                    | i<br>!<br>!                                                    | 0.10                                                    |                                                         | 0.20                                                    |                                                         |                                                         |                                                         |                                                         |                                                         | 0.10                                                    | 0.50                                                    | 0.10                                                    | 0.20                                                    | 0.10                                                    | 0.10                                                    | 0.10                                                    |                                                         |                                                         |                                                         | 0.10                                             | 0.10 a                                    |                                           |                                                         |                                                         | 010                                              | 0.10                                                    | 20.00                  | 0.10                   | 0.10                                             | 0.10                                                    | 0.10                                      | 0.10                                      | 0.10                        | 0.10                                             |                          |                | w               | ğ                 | В              |                | ntifier:             |
|                | 20.00 5.00                                              | 0                                                 | 20.00 5.00                | 20 00 5 00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 30.00 30.00                                                    | 20.00 5.00                                              | 30.00 30.00                                             | 20.00 5.00                                              | 20.00 5.00                                              | 1000. 250.0                                             | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 100.0 25.00                                             | 20.00 5.00                                       | 100.0 25.00                               | 20.00 5.00                                | 20.00 5.00                                              | 100 0 25 00                                             | 20.00 5.00                                       | 20.00 5.00                                              | 20.00 5.00             | 20.00 5.00             | 20.00 5.00                                       | 20.00 5.00                                              | 20.00 5.00                                | 20.00 5.00                                | 20.00 5.00                  | 20.00 5.00                                       | LvI1 LvI2                | -  <br>        | 09/29/20 15:28  | 09/29/20 19:04    | 09/29/20 17:26 | 09/29/20       | Analy                |
|                | 10.00 50.00 10                                          | 00.00                                             |                           | 5000                                                    | 50.00                                                   | 10.00 50.00 10                                          | 10.00 50.00 10                                          | 30.00 30.00 30                                                 | 10.00 50.00 10                                          | 30.00 30.00 30                                          |                                                         | 50.00                                                   | 2500                                                    | 50.00                                                   | 50.00                                                   | 50.00                                                   | 50.00                                                   | 50.00                                                   | 10.00 50.00 10                                          | 10.00 50.00 10                                          | 10.00 50.00 10                                          | 10.00 50.00 10                                          | 50.00                                                   |                                                         |                                                         |                                                         |                                                  | 50.00 250.0 50                            | 10.00 50.00 10                            | 10.00 50.00 10                                          | 250 O                                                   | 10.00 50.00 10                                   | 50.00                                                   | 10.00 50.00 10         | 50.00                  | 10.00 50.00 10                                   | 10.00 50.00 10                                          | 10.00 50.00 10                            | 10.00 50.00 10                            | 10.00 50.00 10              | 10.00 50.00 10                                   |                          |                | 15:28           | 19:04             | 17:26          | 09/29/20 15:48 | /sis Date/Time       |
| Pag            | 100.0 250.0 500.0                                       | 0.002                                             | 3 6 6 6                   | 2500                                                    | 250.0                                                   | 100.0 250.0 500.0                                       | 100.0 250.0 500.0                                       | 30.00 30.00 30.00                                              | 100.0 250.0 500.0                                       | 30.00 30.00 30.00                                       |                                                         | 250.0                                                   | 12500                                                   | 250.0                                                   | 250.0                                                   |                                                         | 250.0                                                   | 100.0 250.0 500.0                                       | 100.0 250.0 500.0                                       | 100.0 250.0 500.0                                       | 100.0 250.0 500.0                                       | 100.0 250.0 500.0                                       | 100.0 250.0 500.0                                       | 100.0 250.0 500.0                                       | 250.0                                                   | 1250.                                                   | 250.0                                            |                                           | 250.0                                     | 250.0                                                   | 1250                                                    | 250.0                                            | 250.0                                                   | 100.0 250.0 500.0      | 250.0                  | 250.0                                            |                                                         |                                           | 100.0 250.0 500.0                         | 100.0 250.0 500.0           | 100.0 250.0 500.0                                | Lvi3 Lvi4 Lvi5 Lvi6 Lvi7 |                |                 |                   |                |                |                      |
| Page 1 of 3    | 1.00                                                    |                                                   | 3                         | 3                                                       | 1.00                                                    | 1.00                                                    | 0.50                                                    | 30.00 30.00 30.00                                              | 500.0 1.00                                              | 30.00 30.00 30.00                                       | 500.0 1.00                                              | 500.0 1.00                                              | 25000 50.00                                             | 500.0 1.00                                              | 500.0 1.00                                              | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00 0.50                                               | 1.00                                                    | 1.00                                                    | 1.00                                                    | 1.00                                                    | . 5.00                                                  | 1.00                                             |                                           | 1.00                                      | 1.00                                                    | 500                                                     | 1.00                                             | 1.00                                                    | 100                    | 3 6                    | 1.00                                             | 1.00                                                    | 1.00                                      | 1.00                                      | 1.00                        | 1.00                                             | LvI8 LvI9                |                |                 |                   |                |                |                      |

a - failed the min rf criteria

a - failed the min rf criteria

Corr I = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

c - failed the minimum correlation coeff criteria(if applicable) Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Note:

| Method: EPA 8260D      |               |                                                                                        | In                                                                                                                 | FOrm 6 Initial Calibration | O<br>ation  |                  |           |                 |                              | Instrum                                                         | instrument: GCMS_2                     |
|------------------------|---------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|------------------|-----------|-----------------|------------------------------|-----------------------------------------------------------------|----------------------------------------|
| 119                    | 7             |                                                                                        | Assessing Date Clima                                                                                               | -<br>-<br>-<br>-           | 7           | 1<br>1<br>1<br>1 | ,         | Cal Identifier  |                              | alisis Data Timo                                                |                                        |
|                        | 2M142492.D    | CAL ®                                                                                  | 09/29/20 16:47                                                                                                     | 2                          | 2M142489    | 0                | CAL @     | 5 PPB           |                              | 09/29/20 15:48                                                  |                                        |
| <b>4</b><br>ω          | 2M142490.D    | CAL @ 10 PPB                                                                           | 09/29/20 16:08                                                                                                     | 4                          | 2M142494    | Ö                | CAL @     | 50 PPB          | 09/29/2                      | 09/29/20 17:26                                                  |                                        |
| <b>12</b>              | 2M142496.D    | (8)                                                                                    | 09/29/20 18:05                                                                                                     | ით                         | 2M142499    | 0                |           | @ 250 PPB       | 09/29/2                      | 09/29/20 19:04                                                  |                                        |
| 931<br>°°              | 2M142487.D    | CAL @ 0.5 PPB                                                                          | 09/29/20 15:09                                                                                                     | o                          | ZW142400.   | Ċ                | (e)       | -<br>קר         | 09/29/                       | 03/23/20 13.20                                                  |                                        |
| ompound                | Col Mr Fit: F | RF1 RF2 RF3 RF4                                                                        | 4 RF5 RF6 RF7 RF8                                                                                                  | RF9 Av                     | vgRf RT     | Corr1 C          | Corr2 %   | %Rsd            | ַ רַאַן רַ                   | Calibration Level Concentrations  Lvi2 Lvi3 Lvi4 Lvi5 Lvi6 Lvi7 | Concentrations  15 Lvt6 Lvt7 Lvt8 Lvt9 |
| Methylcyclohexane      | 1 0 Avg 0     | 0.3212 0.3500 0.3057 0.33                                                              | 0.3390 0.3640 0.3671 0.3909 0.3040                                                                                 |                            | 0.343 5.42  | 0.999 1          | 8         | 9.1 0.10        | 0 20.00 5.00                 | 10.00 50.00 100.0                                               | 0 250.0 500.0 1.00                     |
| Dibromomethane         |               | 0.1971 0.2030 0.1811 0.2042 0.2169 0.2219                                              | 0.2320                                                                                                             |                            | 0.206 5.50  | _                |           | w               | 20.00                        | 10.00 50.00                                                     | 0 250.0 500.0 1.00                     |
| 1.2-Dichloropropane    | A A           | ).2630 0.2805 0.2534 0.27                                                              | 0.2630                                                                                                             |                            | 0.282 5.43  |                  |           | ON              | 20.00<br>20.00               | 10.00 50.00                                                     | 250.0 500.0                            |
| Benzene                | 1 0 Avg 1     | 1.0566 1.1138 1.0147 1.11                                                              | 1.0566 1.1138 1.0147 1.1109 1.2035 1.2372 1.2892 1.0142                                                            | 1.0677                     | 1.124.95    | 1.00             | 8 8       | 8.8 0.50        | 20.00 5.00                   | 10.00 50.00 100.0                                               | 0 250.0 500.0 1.00 0.50                |
| tert-Amyl methyl ether | 1 0 Avg 0     | ).7223 0.7775 0.6761 0.77                                                              | 0.7223 0.7775 0.6761 0.7784 0.8586 0.8567 0.9875 0.6615                                                            |                            | 0.7904.99   | 0.996 1          | 8         | 14              | 20.00 5.00                   | 10.00 50.00                                                     | 250.0                                  |
| Iso-propylacetate      |               | 0.4767 0.4834 0.4634 0.52                                                              | 0.4767 0.4834 0.4634 0.5264 0.5658 0.5730 0.6223 0.4683                                                            | -                          | 0.5224.95   | w                |           |                 | a 20.00                      | 10.00 50.00                                                     | 250.0 500.0                            |
| Dibromochloromethan    | 1 0 AVG       | ) 3365 0 3563 0 3267 0 35                                                              | 0.2432 0.2604 0.2316 0.2544 0.2694 0.2609 0.2713 0.2225<br>0.3365 0.3563 0.3267 0.3584 0.3898 0.3725 0.3978 0.2746 |                            | 0.252 5.45  | 2                | 3 8       | 11 010          | 0 20.00 5.00<br>0 20.00 5.00 | 10.00 50.00 100.0                                               | 0 250.0 500.0 1.00                     |
| 2-Chloroethylvinylethe | ļ             | 0.0366 0.0366 0.0303 0.04                                                              | 0.0366 0.0366 0.0303 0.0412 0.0451 0.0436 0.0460 0.0276                                                            | i                          | 0.0384 5.71 | _                | 8         |                 | 20.00                        | 10.00 50.00                                                     | 250.0 500.0                            |
| cis-1,3-Dichloropropen |               | ).4659 0.4908 0.4463 0.47                                                              | 0.4659 0.4908 0.4463 0.4725 0.5119 0.4931 0.5049 0.4587                                                            | i                          | 0.481 5.81  |                  |           |                 |                              |                                                                 | 250.0 500.0                            |
| Ethyl methacrylate     | 1 0 Avg 0     | ).2412                                                                                 | 0.2412 0.2608 0.2334 0.2628 0.2845 0.2806 0.3345 0.2182                                                            |                            | 0.265 6.10  | 0.994 1          | 8         | 14 0.50         | 0 a 20.00 5.00               | 10.00 50.00 100.0                                               | 0 250.0 500.0 1.00                     |
| 1,1,2-Trichloroethane  |               | ).2825 0.2949 0.2767 0.29                                                              | 0.2825 0.2949 0.2767 0.2959 0.3139 0.3048 0.3393 0.2668                                                            |                            | 0.297 6.20  |                  |           |                 |                              | 10.00 50.00                                                     | 250.0 500.0                            |
| 1,2-Dibromoethane      | À             | 0.3028 0.3235 0.2770 0.31                                                              | 0.3028                                                                                                             |                            | 0.3136.49   | i                | •         | 6.0 0.10        |                              | 10.00 50.00                                                     | 250.0 500.0                            |
| 4-Methyl-2-Pentanone   | 1 0 Avg 0     | ).2679 0.2873 0.2564 0.28                                                              | 0.2679 0.2873 0.2564 0.2800 0.2930 0.2921 0.3042 0.2595                                                            |                            | 0.280 5.87  | 1.00             | 1.00      | 6.2 0.10        | 0 20.00 5.00                 | 10.00 50.00 100.0                                               | 0 250.0 500.0 1.00                     |
| 2-Hexanone             | ΡVQ           | 0.1896 0.2087 0.1802 0.20                                                              | 0.2480                                                                                                             |                            | 0.208 6.30  |                  |           |                 | 20.00                        | 10.00 50.00                                                     | 250.0 500.0                            |
| Toluene-d8             | 1 0 Avg 1     | 1.1861 1.1986 1.1924 1.1932 1.1755 1.1297                                              | )32 1.1755 1.1297 1.1090 1.1941                                                                                    | 1.1851                     | 1.17 5.95   | -1 -             | <u></u> 5 | 9.9 0.20<br>2.7 | 30.00 30.00                  | 00 30.00 30.00 30.00                                            | 0 30.00 30.00 30.00 30.00              |
| Toluene                |               | ).7568 0.8301 0.6967 0.78                                                              | 0.8811                                                                                                             |                            | 0.792 5.99  | 0.999 1          | 1.00      | 7.6 0.40        | 20.00                        |                                                                 | 250.0 500.0 1.00                       |
| 1.1.1.2-Tetrachloroeth | PVQ           | 0.2858 0.3239 0.2828 0.3050 0.3414 0.3426                                              | 0.3885                                                                                                             | 1                          | 0.318 6.78  | •                |           |                 |                              | 10.00 50.00                                                     | 250.0 500.0                            |
| n-Butyl acrylate       | 1 0 Avg 1     | 1.0368 1.0495 0.9831 1.1125 1.2049 0.9964                                              | 125 1.2049 0.9964 0.8195 0.8936                                                                                    |                            | 1.01 6.99   | 0.985            | 0.999     | 12 0.50         | 0 20.00 5.00                 | 0 10.00 50.00 100.0                                             | 0 250.0 500.0 1.00                     |
| n-Amyl acetate         | Avq           | 0.8680 0.8958 0.8281 0.9223 1.0274 0.9167                                              |                                                                                                                    |                            | 0.8917.11   |                  | i         | 1               | į<br>Į                       | 10.00 50.00                                                     | 250.0                                  |
| Bromoform              | 1 0 Avg 0     | 0.4460 0.4727 0.4144 0.4635 0.4951 0.4802                                              | 0.4182                                                                                                             | I                          | 0.4487.20   |                  |           |                 |                              | 10.00 50.00                                                     | 250.0 500.0                            |
| Ethylbenzene           | 1 0 Avg 0     | 0.7215 0.7124 0.6496 0.7088 0.7993 0.6198<br>0.7637 0.8266 0.7271 0.7848 0.8123 0.6413 | )88                                                                                                                |                            | 0.683 6.79  | 0.987 0          | 0.998     | 18 0.10         | 0 20.00 5.00                 | 10.00 50.00 100.0                                               | 0 250.0 1.00                           |
| Bromofluorobenzene     | AVQ :         | 0.8056 0.8174 0.8159 0.80                                                              | 0.8012 0.7872 0.6645 0.7653 0.8229                                                                                 | 0.8116                     | 0.788 7.37  |                  |           |                 |                              | 0 30.00 30.00                                                   | 30.00                                  |
| Styrene                | 1             | 1.7747 1.8889 1.6569 1.83                                                              | .7747 1.8889 1.6569 1.8301 2.0008 1.8243 1.0632 1.6717                                                             |                            | 1.717.07    |                  | 7         | İ               | ļ<br>                        | 10.00 50.00                                                     | 250.0 500.0 1.00                       |
| m&p-Xylenes            | 1 0 Avg 1     | 1.0340 1.0939 0.9659 1.04                                                              | 1.0939 0.9659 1.0408 1.1392 0.9889 0.8696 1.0283                                                                   | 3 1.1927                   | 1.04 6.85   | 0.994            | 100       | 9.2 0.10        | 0 40.00 10.00                | 0 20.00 100.0 200.0                                             | 0 500.0 1000 2.00 1.00                 |
| trans-1,4-Dichloro-2-b | AVQ.          | 0.1883 0.1749 0.1528 0.20                                                              | 0.2032                                                                                                             |                            | 0.1907.44   |                  | 0.998     |                 |                              | 10.00 50.00                                                     | 250.0                                  |
| 1.3-Dichlorobenzene    | Avq           | 1.1796 1.2835 1.1410 1.20                                                              | 1.2308                                                                                                             | 1                          | 1.227.99    |                  |           | 4.2 0.60        |                              | 10.00 50.00                                                     | 250.0 500.0                            |
| 1,4-Dichlorobenzene    | AVQ           | 1.1768 1.2810 1.1266 1.2036 1.3079 1.2265                                              | <u>)36 1.3079 1.2265 1.3834 1.2848</u>                                                                             |                            | 1.25 8.04   |                  | 0.999     | i               | į                            | 10.00 50.00                                                     | 250.0 500.0                            |
| 1.2-Dichlorobenzene    | Š             | 1.0779 1.1950 1.0384 1.09<br>2 5331 2 7005 2 3666 2 56                                 | 1.0779 1.1950 1.0384 1.0979 1.2106 1.1601 1.2217 1.2032<br>2 5331 2 7005 2 3666 2 5515 2 7377 2 3023 1 5864 2 3166 | , 10                       | 1.158.26    |                  | 1.00      | 5.1 0.40        | 0 20.00 5.00                 | 10.00 50.00                                                     | 0 250.0 500.0 1.00                     |
| Cyclohexanone          | 1 0 Avg 0     | 2.3331 2.7633 2.3666 2.3313<br>0.0216 0.0272 0.0214 0.0218                             | 0.0216 0.0272 0.0214 0.0218 0.0213 0.0189 0.0142 0.0191                                                            |                            | 0.0207 7.34 | 0.975 1          | 1.00      |                 | _                            | 0                                                               | 1250                                   |
| Camphene               |               | ).6702 0.7217 0.6523 0.68                                                              | 0.6702 0.7217 0.6523 0.6872 0.7358 0.5838 0.9876 0.6258                                                            | -                          | 0.7087.43   |                  | 0.994     | 17              | 20.00 5.00                   | 10.00 50.00                                                     | 250.0 500.0                            |
| 1.2.3-Trichloropropane | 1 0 Avg       | 0.7874 0.8061 0.7283 0.84                                                              | 0.7874 0.8061 0.7283 0.8437 0.9464 0.8308 1.2755 0.7426                                                            | !                          | 0.8707.46   |                  | 0.997     | 20              | 20.00 5.00                   | 10.00 50.00                                                     | 250.0 500.0                            |
|                        | 2 7 7 7       | 1.4101 1.0211 1.4000 1.3000                                                            | 330 1:0933 1:4410 0:3231 1:3323                                                                                    | ,                          | 1.44 7.30   | 0.900            | .555      | i               | 20.00 0.00                   | 10:00 30:00 100:0                                               | 200.0                                  |
|                        |               |                                                                                        |                                                                                                                    |                            |             |                  |           |                 |                              |                                                                 | Page 2 of 3                            |

Flags
a - failed the min rf criteria
Corr 1 = Correlation Coefficient for linear Eq.
Corr 2 = Correlation Coefficient for quad Eq.
c - failed the minimum correlation coeff criteria(if applicable)
Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Page 2 of 3

# Form 6 Initial Calibration

Instrument: GCMS\_2

| Data F                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analysis Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Level #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Data I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al Identifier:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analysis Date∕Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2M142492.D                                                    | CAL @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 09/29/20 16:47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2M142489.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAL @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 09/29/20 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5:48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2M142490.D                                                    | CAL@ 10 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09/29/20 16:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2M142494.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAL @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 09/29/20 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2M142496.D                                                    | CAL @ 100 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 09/29/20 18:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | თ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2M142499.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAL @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 09/29/20 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2M142502.D                                                    | CAL @ 500 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 09/29/20 20:03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2M142488.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAL @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 09/29/20 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2M142487.D                                                    | CAL @ 0.5 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 09/29/20 15:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| M. Fit                                                        | RF2 RF3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RF6 RF7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RF 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 진<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Corr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %Rsd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calibration Level Concentrations  Lvi2 Lvi3 Lvi4 Lvi5 Lvi6 Lvi7 Lvi8 Lvi9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                               | 4062 2.6874 2.3407 2.499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 2.7248 2.7429 1.6090 2.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.55 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.00 5.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 0 Avg 1.                                                    | 4959 1.6231 1.4308 1.580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.477.62 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1 0 Avg 2.                                                    | 9227 3.1237 2.8066 3.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 3.2240 2.9041 2.1478 2.968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.897.49 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>=</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 50.00 100.0 250.0 500.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 0 Avg 1.                                                    | 4792 1.6627 1.4345 1.551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 1.7064 1.4734 2.0297 1.510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) <del>5</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.617.46 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33 0.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 50.00 100.0 250.0 500.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 0 Avg                                                       | 9328 2.0335 1.8301 2.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 50.00 100.0 250.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| _                                                             | 7041 0.7555 0.6700 0.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 0.8501 0.653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.00 5.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00 50.00 100.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1 0 Avg 1                                                     | 8937 2.0928 1.8163 1.920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99 0.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.00 5.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00 50.00 100.0 250.0 500.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                               | 2265 2 5682 2 2446 2 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 3 5814 3 3460 1 3003 3 385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # 6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.00 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00 50.00 100.0 250.0 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                               | 9862 2 0940 1 8405 2 017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 2 1777 2 0361 1 3000 1 868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37 0 998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.00 5.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 00 50 00 100 0 250 0 500 0 1 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| _ !                                                           | 0370 2.1798 1.9305 2.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 2.2571 2.0506 1.2200 2.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12 0.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.00 5.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00 50.00 100.0 250.0 500.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| _                                                             | 0661 1.1629 1.0199 1.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 1.1892 1.0958 0.9058 1.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.08 8.19 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.00 5.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00 50.00 100.0 250.0 500.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 0 Avg                                                       | 5303 1.6348 1.4365 1.592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 1.7098 1.2843 2.1031 1.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.588.65 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55 0.993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.00 5.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00 50.00 100.0 250.0 500.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 0 Avg                                                       | 1708 0.1749 0.1496 0.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.00 5.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00 50.00 100.0 250.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1_0 Avg 0                                                     | 0627 0.0604 0.0591 0.071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 0.0773 0.0654 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200.0 50.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00.0 500.0 1000. 2500. 10.00 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 0 Avg 0.                                                    | 2327 0.2736 0.2236 0.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0.2424 0.1645 0.3030 0.307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51 0.990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.00 5.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00 50.00 100.0 250.0 500.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 0 Avg                                                       | .5644 0.5925 0.5389 0.573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 0.6091 0.4389 0.8041 0.607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.00 5.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00 50.00 100.0 250.0 500.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 0 Avg                                                       | .4534 0.5003 0.4542 0.485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 0.5073 0.3617 0.6368 0.523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>б</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.00 5.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00 50.00 100.0 250.0 500.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 0 Avg 1.                                                    | 5393 1.5307 1.4269 1.673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1.8176 1.3629 2.3710 1.448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.65 9.36 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58 0.993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.00 5.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.00 50.00 100.0 250.0 500.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Level #:  1 3 3 4 3 5 7 9 9 9 9 1 9 1 9 9 1 9 1 9 1 9 1 9 1 9 | Data<br>2M142490.D<br>2M142496.D<br>2M142502.D<br>2M142502.D<br>2M142487.D<br>2M142487.D<br>2M1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq | Data 2M142490.D 2M142490.D 2M142496.D 2M142502.D 2M142487.D 2M142487.D 2M1 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg 1 0 Awg | Data File: Cal Identifier: Analysis Date/Tim 2M142492.D CAL @ 20 PPB 09/29/20 16:08 2M142490.D CAL @ 10 PPB 09/29/20 16:08 2M142496.D CAL @ 100 PPB 09/29/20 16:08 2M142502.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M142487.D CAL @ 0.5 PPB 09/29/20 15:09 2M1 | Data File:       Cal Identifier:       Analysis Date/Time       Level #:         2M142492.D       CAL @ 20 PPB       99/29/20 16:47       2         2M142496.D       CAL @ 100 PPB       99/29/20 16:08       4         2M142502.D       CAL @ 500 PPB       99/29/20 18:05       6         2M142487.D       CAL @ 0.5 PPB       09/29/20 15:09       8         2M142487.D       CAL @ 0.5 PPB       09/29/20 15:09       8         2M142487.D       CAL @ 0.5 PPB       09/29/20 15:09       8         2M142487.D       CAL @ 0.5 PPB       09/29/20 15:09       8         2M142487.D       CAL @ 0.5 PPB       09/29/20 15:09       8         2M142487.D       CAL @ 0.5 PPB       09/29/20 15:09       8         2M142487.D       CAL @ 0.5 PPB       09/29/20 15:09       8         2M142487.D       CAL @ 0.5 PPB       09/29/20 15:09       8         2M142487.D       CAL @ 0.5 PPB       09/29/20 15:09       8         2M142487.D       CAL @ 0.5 PPB       09/29/20 15:09       8         2M142487.D       CAL @ 0.5 PPB       09/29/20 15:09       16:09       2.3031         1 | Data File:         Cal Identifier:         Analysis Date/Time         Level #         Date/Time           2M142492.D         CAL @ 20 PPB         09/29/20 16:08         4         2M142488           2M142496.D         CAL @ 10 PPB         09/29/20 16:08         4         2M142489           2M142496.D         CAL @ 100 PPB         09/29/20 18:09         6         2M142499           2M142495.D         CAL @ 500 PPB         09/29/20 20:03         8         2M142499           2M142497.D         CAL @ 0.5 PPB         09/29/20 20:03         8         2M142488           2M142487.D         CAL @ 0.5 PPB         09/29/20 20:03         8         2M142488           2M142487.D         CAL @ 0.5 PPB         09/29/20 20:03         8         2M142488           2M142487.D         CAL @ 0.5 PPB         09/29/20 20:03         8         2M142488           2M142488.D         CAL @ 0.5 PPB         09/29/20 20:03         8         2M142488           2M142487.D         CAL @ 0.5 PPB         09/29/20 20:03         8         2M142488           2M142488         2M142488         2M142488         2M142488         2M142488           2M142488         2M142488         2M142488         2M142488         2M142488         2M142488 | Data File:         Cal Identifier         Analysis Date/Time         Level #         Data File:           2M142492D         CAL @ 20 PPB         09/29/20 16:47         2         2M142489.D         CAL @           2M142490.D         CAL @ 100 PPB         09/29/20 18:05         4         2 M142499.D         CAL @           2M142490.D         CAL @ 100 PPB         09/29/20 18:05         6         2M142499.D         CAL @           2M142497.D         CAL @ 0.5 PPB         09/29/20 18:05         6         2M142499.D         CAL @           2M142487.D         CAL @ 0.5 PPB         09/29/20 18:09         8         2M142488.D         CAL @           2M142487.D         CAL @ 0.5 PPB         09/29/20 18:09         8         2M142488.D         CAL @           2M142487.D         CAL @ 0.5 PPB         09/29/20 18:09         8         2M142488.D         CAL @           2M142487.D         CAL @ 0.5 PPB         09/29/20 18:09         1.87         RFS         RFF         RFS         RFF         RFS         RFF         NA         2.2033.1         1.0         A         2.2032.1         1.0         1.4889         1.477.62         0.885         0.992         1.0         1.0         1.0         1.0         1.0         1.0         1 | Data File:         Cal Identifier:         Analysis Date/Time         Level #:         Data File:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier:         Cal Identifier: | Data File:         Cal Identifier:         Analysis Date/Time         Level #:         Data File:         Cal Identifier         Analysis Date/Time         Level #:         Data File:         Cal Identifier         Analysis Date/Time         Analysis Date/Time         CAL @ 5PPB         O9/29/20 16:08         Analysis Date/Time         CAL @ 5PPB         O9/29/20 16:08         Analysis Date/Time         CAL @ 5PPB         O9/29/20 06:08         Analysis Date/Time         CAL @ 50 PPB         O9/29/20 07:09         Analysis Date/Time         CAL @ 50 PPB         O9/29/20 07:09         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis |

Flags
a - failed the min rf criteria
Corr 1 = Correlation Coefficient for linear Eq.
Corr 2 = Correlation Coefficient for quad Eq.
c - failed the minimum correlation coeff criteria(if applicable) Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Page 3 of 3

# Form 6 Initial Calibration

| 7 Method: EPA 8260D    |            |                                                                                                      | in.                                                | F OFM 6<br>Initial Calibration | oration      |          |             |                 |            |                |                    | instr                                                      | ument       | Instrument: GCMS_11 | <u> </u> |             |
|------------------------|------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|--------------|----------|-------------|-----------------|------------|----------------|--------------------|------------------------------------------------------------|-------------|---------------------|----------|-------------|
| 915<br>                | Data File  | File: Cal Identifier                                                                                 | Analvsis Date/Time                                 | Level #                        | #<br>Dai     | File:    | ູດ          | Cal identifier: | ךְ         | Analys         | Analvsis Date/Time | Time                                                       |             |                     |          |             |
|                        | 11M83453.D | CAL @                                                                                                | 10/02/20 00:28                                     | 2                              | 11M83        | 0        | CAL @ 5     | @ 5 PPB         | :          | 10/02/20 00:08 | 0:08               |                                                            |             |                     |          |             |
| ω                      | 11M83451.D | CAL @ 2 PPB                                                                                          | 10/01/20 23:49                                     | 4                              | 11M83454     | Ö        | (8)         | 50 PPB          |            | 10/02/20 00:48 | 0:48               |                                                            |             |                     |          |             |
| ıσı                    | 11M83459.D | <b>@</b>                                                                                             | 10/02/20 02:27                                     | , o                            | 11M83457     | 9 0      | <b>(9</b> ) | 250 PPB         |            | 10/02/20 01:47 | 1:47               |                                                            |             |                     |          |             |
|                        | 11M83449.D | CAL @ 0.5 PPB                                                                                        | 10/01/20 23:09                                     | o                              | - INIOCHOO   | Ċ        | @<br>       | 7               |            | 10/01/20 23.29 | 0.23               |                                                            |             |                     |          |             |
| Sompound Col           | Mr Fit:    | RF1 RF2 RF3 RF4                                                                                      | RF5 RF6 RF7 RF8                                    | RF9 A                          | AvgRf RT     | orri C   | Corr2 %     | %Rsd            | !<br>!     | LVI1 LVI2      | Calibrat<br>Lvi3   | Calibration Level Concentrations  Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 | LVIS<br>Con | Lyl6 [              | i        | LvI8 LvI9   |
| Chlorodifluoromethane  |            | 0.1725 0.1820 0.1116 0.1754 0.1626                                                                   | 54 0.1626 0.1710 0.1784                            |                                | 0.165 1.68   | _        |             | 15 0.1          | 10 20      |                | 2.00 5             | 50.00 100.0                                                | N           |                     |          |             |
| Dichlorodifluorometha  | Avq        | 0.1927 0.2044 0.1782 0.2049 0.1896 0.1946                                                            | 49 0.1896 0.1946 0.2118                            |                                | 0.197 1.67   |          |             | 8 0.            |            | 5.00           |                    | 50.00 10                                                   |             |                     | 500.0    |             |
| Chloromethane          |            | 0.1883 0.1973 0.1640 0.1798 0.1711 0.1763 0.1776                                                     | 98 0.1711 0.1763 0.1776                            | İ                              | 0.179 1.84   |          |             | . 0             |            | 5.00           |                    | 50.00 10                                                   |             |                     | 500.0    |             |
| Bromomethane           | À          | 0.1691 0.1983 0.2025 0.1748 0.2115 0.2359                                                            | 48 0.2115 0.2359                                   | 1                              | 0.1992.23    |          | 0.999       | , c             |            | 3.0            |                    | 50.00 1                                                    |             |                     | 5        |             |
| Chloroethane           | 1 0 Ava 0  | 0.2016 0.2113 0.1004 0.2000 0.1076 0.1330 0.2000<br>0.1509 0.1521 0.1467 0.1585 0.1478 0.1545 0.1724 | 85 0 1478 0 1545 0 1724                            |                                | 0.1552.32    | 0.997 1  | 8 8         | 01              | 10 20      | i              | 200 5              | 50.00 1                                                    | 100 0 2     | 250.0 50            | 5000     | !           |
| Trichlorofluoromethan  | A<br>P     | 0.3754 0.3809 0.3399 0.3714 0.3390 0.3551 0.4000                                                     | 14 0.3390 0.3551 0.4000                            |                                | 0.366 2.54   |          | 1.00        | 0               |            | 5.00           |                    | 50.00 10                                                   |             |                     | 500.0    |             |
| Ethyl ether            | Avq        | 0.1587 0.1398 0.1328 0.1374 0.1412 0.1498 0.1323                                                     | 74 0.1412 0.1498 0.1323                            | i                              | 0.1422.77    |          |             |                 |            | 5.00           |                    | 50.00 10                                                   |             |                     | 500.0    |             |
| Furan                  | 1 O Avg    | 0.1915                                                                                               | 61 0.1704 0.1944 0.1826<br>90 0.1204 0.1353 0.1398 |                                | 0.184 2.81   | 0.999 0  | 100 6       | - σ             | . a        | 20.00 5.00     | 2 S                | 50.00                                                      | 100.0       | 250.0 50            | 500.0    |             |
| Methylene Chloride     | A<br>A     | 0.2550 0.2322 0.2426 0.2227 0.2095 0.2386 0.2209                                                     | 27 0.2095 0.2386 0.2209                            |                                | 0.2323.37    |          | <b>u</b>    | တ               |            | - 1            | - 1                | 50.00 1                                                    |             |                     | 500.0    |             |
| Acrolein               | 1 0 Avg 0  | 0.0262 0.0195 0.0187 0.0269 0.0258 0.0295 0.0290                                                     | 69 0.0258 0.0295 0.0290                            |                                | 0.0251 2.88  | 0.999 0  | 0.999       | 17              | <b>1</b> 0 | 0              | O                  | 250.0 5                                                    |             |                     | 2500.    |             |
| Acrylonitrile          | 1 0 Ava    | 0.0648                                                                                               | 68 0.0616 0.0661 0.0682                            | İ                              | 0.06203.57   | 1.00     | 1.00        | <b>4</b>        | 3 8        | 20.00 5.00     | 2.00               | 50.00 1                                                    | 100.0       | 250.0 50            | 500.0    |             |
| Acetone                |            | 0.0533 0.0583 0.0625 0.0491 0.0436 0.0507 0.0476                                                     | 91 0.0436 0.0507 0.0476                            | 1                              | 0.0522 3.01  |          |             | 12 0.10         | Ø          | 25.00          | 0                  | 250.0 5                                                    |             |                     | 2500.    |             |
| Carbon Disulfide       |            | 0.4894 0.5171 0.4655 0.5165 0.4729 0.5671 0.5661                                                     | 65 0.4729 0.5671 0.5661                            | 1                              | 0.514 3.18   |          |             |                 |            | 5.00           | 2.00 5             | 50.00 1                                                    |             |                     | 500.0    |             |
| t-Butyl Alcohol        |            | 0.0225 0.0226 0.0182 0.0224 0.0204 0.0241 0.0243                                                     | 24 0.0204 0.0241 0.0243                            | 1                              | 0.0221 3.43  |          | Œ           | 9.6             | 3 5        | 25.00          | C                  | 250.0 5                                                    |             |                     | 2500.    |             |
| Di-isopropyl-ether     | 1 0 Ava 0  | 0.1942 0.1963 0.1444 0.1626 0.1393 0.1442 0.1623<br>0.3919 0.3730 0.3468 0.4002 0.4044 0.4340 0.4285 | 02 0.4044 0.4340 0.4285                            |                                | 0.3973.95    | 1.00     |             | 7.7             | 2 2        | 20.00 5.00 2   | 2.00               | 50.00                                                      | 100.0 2     | 250.0 50            | 500.0    |             |
| 1,1-Dichloroethene     | ļ          | 0.2148 0.2127 0.1931 0.2204 0.1978 0.2310 0.2336                                                     | 04 0.1978 0.2310 0.2336                            |                                | 0.2152.98    | 1        |             | 0               | 10 20      | 5.00           |                    | 50.00 100.0                                                |             |                     | 500.0    |             |
| Methyl Acetate         |            | 0.1170 0.1244 0.1069 0.1172 0.1080 0.1223 0.1128                                                     |                                                    | -                              | 0.1163.27    |          |             |                 |            | 5 8            |                    | 50.00 100.0                                                |             |                     |          | 3           |
| 1.1-Dichloroethane     | 1 0 Ava 0  | 0.4774 0.4034 0.4311 0.4613 0.3031 0.3023 0.3400                                                     | 13 0.3898 0.3140 0.3290                            |                                | 0.3023.92    | 0.999 1  | 1.00        | 6.8 0.20        |            | 20.00 5.00     | 200                | 50.00 1                                                    | 100.0 2     | 250.0 50            | 500.0    |             |
| trans-1.2-Dichloroethe |            | 0.1819 0.1911 0.1831 0.1989 0.1900 0.2050 0.2150                                                     | 89 0.1900 0.2050 0.2150                            | İ                              | 0.1953.60    |          |             |                 |            |                |                    | 50.00 1                                                    | 100.0 2     |                     | 500.0    |             |
| Ethyl-t-butyl ether    | 1 0 Avg 0  | 0.4586 0.4382 0.4216 0.4744 0.4899 0.5337 0.5127                                                     | 44 0.4899 0.5337 0.5127                            |                                | 0.4764.19    | 1        | !           |                 | en l       |                |                    | 50.00 1                                                    | i           |                     | 500.0    |             |
| Cis-1.2-Dichloroethene |            | 0.2972                                                                                               | 49 0.2916 0.3190 0.3331<br>53 0 1318 0 1360 0 1331 |                                | 0.2994.31    | 100      | 3 8         | 2.5<br>0.1      | 200        | 20.00 5.00     | 3 6                | 50.00                                                      | 100.0       | 250.0 50            | 500.0    |             |
| 2,2-Dichloropropane    | 1 0 Ava 0  | 0.2332 0.2319 0.2022 0.2458 0.2342 0.2588 0.2829                                                     | 58 0.2342 0.2588 0.2829                            | •                              | 0.241 4.31   | ω        |             | <b>1</b> 0      | 2 5        | 5.00           |                    | 50.00 1                                                    |             |                     | 500.0    |             |
| Ethyl acetate          | 1 0 Avg 0  | 0.1607 0.1681 0.1715 0.17                                                                            | 0.1681 0.1715 0.1708 0.1589 0.1711 0.1758          |                                | 0.168 4.32   |          |             | 3.7             | 20         | 5.00           |                    |                                                            |             | 250.0 50            | 500.0    |             |
| 1.4-Dioxane            | AVQ        | 0.0036                                                                                               | 38 0.0033 0.0036 0.0039                            |                                | 0.00356 5.33 | 0.998 1  |             | 30              | 3 0        | 1000. 250.0    | ျပ                 | 2500. 5                                                    | 5000.       | 12500 2             | 25000    |             |
| Chloroform             | 1 0 Ava 0  | 0.3491 0.3485 0.3237 0.3597 0.3512 0.3771 0.3890                                                     | 97 0.3512 0.3771 0.3890                            |                                | 0.357 4.49   |          | 1.8         | 0               | 20 20      |                | 2.00               | 50.00 1                                                    |             |                     | 500.0    |             |
| Dibromofluoromethan    |            | 0.2731 0.2721 0.2775 0.2707 0.2689 0.2759 0.2720                                                     | 07 0.2689 0.2759 0.2720 0.2775                     | 0.2805                         | 0.274 4.58   | <u> </u> |             | 1.4             | 30         | 30.00          | O                  | 30.00 3                                                    |             |                     |          | 30.00 30.00 |
| Cyclohexane            | A          | 0.1985 0.1995 0.1773 0.21                                                                            |                                                    | 1                              | 0.203 4.65   | 0.997 1  | 1.00        | 8.3 0.10        |            |                |                    | 50.00 1                                                    |             |                     | 500.0    | 30 20       |
| 1.2-Dichloroethane     | 1000       | 0.1179 0.1210 0.1204 0.1204 0.1167 0.1160 0.1171<br>0.2668 0.2708 0.2685 0.2618 0.2618 0.2844 0.2881 |                                                    | 0.1231 0.1232                  | 0.1214.70    | 3        | 3 -         | 43 01           | 20         | 20.00 5.00     | 200                | 50.00                                                      | 1000        | 250.00              | 5000     | 30.00       |
| 2-Butanone             | <b>₽</b> ; | 0.0785 0.0792 0.0554 0.0674 0.0640 0.0715 0.0725                                                     | 74 0.0640 0.0715 0.0725                            | !                              | 0.0698 4.30  | ₩<br>    |             | 0               | Ø          |                |                    | 50.00 1                                                    |             |                     | 500.0    |             |
| 1,1,1-Trichloroethane  | Ava        | 0.2989 0.2867 0.2794 0.3084 0.2887 0.3104 0.3342                                                     | 84 0.2887 0.3104 0.3342                            |                                | 0.301 4.61   | _        | _           |                 |            |                |                    | 50.00 100.0                                                |             |                     | 500.0    |             |
| Carbon Tetrachloride   | Ava        | 0.2648 0.2509 0.2242 0.2795 0.2592 0.2826 0.3167                                                     | 95 0.2592 0.2826 0.3167                            |                                | 0.268 4.71   |          | 1.00        | 11 0.10         |            | 5.00           |                    | 50.00 1                                                    |             |                     | 500.0    |             |
| Vinyi Acetate          | Ì          | 2016 0 2787 0 2817                                                                                   | 42 U.48U8 U.5288 U.53U3                            |                                | 0.4703.94    | 3 8      | 3 8         | % =<br>         | 20         | 20.00 5.00     | 200                | 200                                                        | 1000        | 250.0 5             |          |             |
| Dicinocicinocidinan    | - O AVG    | 2910 0.2101 0.2011                                                                                   | 0.2323 0.2030 0.3103 0.3111                        |                                |              |          | 6           |                 |            | 0.00           |                    | 1.                                                         |             |                     | !        |             |
| _                      |            |                                                                                                      |                                                    |                                |              |          |             |                 |            |                |                    |                                                            |             |                     | מממק     | 1 of 3      |

Flags
a - failed the min rf criteria
Corr 2 = Correlation Coefficient for linear Eq.
Corr 2 = Correlation Coefficient for quad Eq.
c - failed the minimum correlation coeff criteria(if applicable)
Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

98 Method: EPA 8260D

Form 6 Initial Calibration

Instrument: GCMS\_11

| Page 2 of 3              |                                                            |          |                                         |          | )         | ;<br>-<br> - |            |             |               |                                    |                                                                                                     |             |                          |
|--------------------------|------------------------------------------------------------|----------|-----------------------------------------|----------|-----------|--------------|------------|-------------|---------------|------------------------------------|-----------------------------------------------------------------------------------------------------|-------------|--------------------------|
| 500.0                    | 50.00 100.0 250.0                                          | 2.00     | 20.00 5.00                              |          | .6<br>6   | 1.00         | 0.994      | 1.14 7.36   | 1             | 91 1.0131 1.1463 1.3404            | 1.1041 1.1118 1.1363 1.1591 1.0131 1.1463 1.3404                                                    | 1 0 Avg     | 2-Chlorotoluene          |
| 500.0                    | 100.0 250.0                                                | 2.00     | 20.00 5.00                              |          | 7.3       | 8 0.999      | 0          | 0.625 7.25  |               | 44 0.6203 0.5424 0.5912            | 0.6691 0.6582 0.6265 0.6644 0.6203 0.5424 0.5912                                                    | 1 0 Avg (   | 1.2.3-Trichloropropane   |
| 500.0                    | 250.0                                                      |          | 20.00 5.00                              |          | 12        |              | 0          | 0.554 7.24  | ļ             | 35 0.5354 0.4449 0.5773            | 0.5789 0.6028 0.5015 0.6335 0.5354 0.4449 0.5773                                                    | 1 0 Avg (   | Camphene                 |
| 2500.                    | 1250.                                                      | 10.00    | 100.0 25.00                             |          | 16        |              |            | 0.0176 7.14 | 1             | 79 0.0146 0.0158 0.0225            | 0.0183 0.0191 0.0144 0.0179 0.0146 0.0158 0.0225                                                    | 1 0 Avg (   | Cyclohexanone            |
| 500.0 1.00               | 100.0 250.0                                                | 2.00     | 20.00 5.00                              | 0.10     | 15        |              | 0          | 1.877.07    | 00            | 70 1.7024 1.8430 2.5406 1.6258     | 1.8163 1.8283 1.6798 1.9470 1.7024 1.8430 2.5406                                                    | 1 0 Avg 1   | Isopropylbenzene         |
|                          | 100.0 250.0                                                |          | 20.00 5.00                              | 0.40     | 6.5       |              | 0          | 0.9598.05   | -             |                                    | 0.9160 0.9000 0.9476 0.9648 0.9255 0.9691 1.0870                                                    | 1 0 Avg (   | 1,2-Dichlorobenzene      |
| 500.0                    | 50.00 100.0 250.0                                          | 2.00     | 20.00 5.00                              | 0.50     | 3.4       | 1.00         | 0          | 0.9657.83   |               | 60 0.9351 0.9111 0.9779            | 0.9546 0.9761 1.0011 0.9960 0.9351 0.9111 0.9779                                                    | 1 0 Avg (   | 1,4-Dichlorobenzene      |
| 500.0                    | 50.00 100.0 250.0                                          | 2.00     | 20.00 5.00                              | 0.60     | 8.5       | 5 1.00       | 3 0.996    | 0.997 7.78  |               | 0.9792 0.9924 0.9236 1.0297 1.1705 | 0.9538 0.9276 0.9792 0.99                                                                           |             | 1.3-Dichlorobenzene      |
| 500.0                    | 50.00 100.0 250.0                                          | 2.00     | 20.00 5.00                              |          | 8.0       | 5 0.999      | 1 0.995    | 0.1697.24   | 1             | 65 0.1662 0.1503 0.1743            | 0.1745 0.1801 0.1528 0.1865 0.1662 0.1503                                                           | 1 0 Avg (   | trans-1,4-Dichloro-2-b   |
| 500.0 1.00               | 50.00 100.0 250.0                                          | 2.00     | 20.00 5.00                              | 0.30     | 17        |              | 0          | 0.765 6.88  | 1             | 27 0.7035 0.7428 1.0770 0.6371     | 0.7452 0.7525 0.6856 0.7727 0.7035 0.7428 1.0770                                                    |             | o-Xvlene                 |
| 1000. 2.00 1.00          | 100.0 200.0 500.0                                          | 4.00     | 10.00                                   | 0.10     | 8.0       |              | 0          | 0.711 6.66  | 0.6934 0.7167 | 26 0.6899 0.5903 0.7916 0.693      | 0.7230 0.7073 0.7141 0.7726 0.6899 0.5903 0.7916                                                    |             | m&p-Xylenes              |
| 500.0                    | 50.00 100.0 250.0                                          | 2.00     | 20.00 5.00                              | 0.30     | 17        | 0.999        | 3 0.981    | 1.39 6.88   |               | 34 1.2610 1.3824 1.9150            | 1.3052 1.2519 1.2170 1.36                                                                           | 1 0 Avg     | Styrene                  |
| 30.00 30.00 30.00        | 30.00 30.00 30.00                                          | 30.00    | 30.00 30.00                             |          | 9.3       | <u>.</u>     | <u>.</u>   | 0.7817.17   | 0.7642 0.7663 | 81 0.7617 0.7674 0.9741 0.764      | 0.7515 0.7396 0.7497 0.7581 0.7617 0.7674 0.9741                                                    | 1 0 Avg (   | Bromofluorobenzene       |
| 500.0                    | 50.00 100.0 250.0                                          | 2.00     | 20.00 5.00                              | 0.10     | 9.4       | 5 0.998      | 2 0.996    | 0.5457.22   | 1             | 90 0.5283 0.4548 0.5153            | 0.5622 0.6016 0.5968 0.5590 0.5283 0.4548 0.5153                                                    | 1 0 Avg (   | 1,1,2,2-Tetrachloroeth   |
| 500.0 1.00               | 50.00 100.0 250.0                                          | 2.00     | 20.00 5.00                              | 0.10     | 8.7       | 0.996        | 0          | 0.495 6.60  | 3             | 24 0.4930 0.3975 0.4964 0.4883     | 0.5096 0.5199 0.5142 0.5424 0.4930 0.3975                                                           |             | Ethylbenzene             |
| 500.0                    | 50.00 100.0 250.0                                          | 2.00 !   | 20.00 5.00                              | 0.10     | 13        | 7 1.00       | 0.997      | 0.374 7.01  | -             | 33 0.3650 0.4152 0.4644            | 0.3437 0.3320 0.3363 0.3633 0.3650 0.4152                                                           | 1 0 Avg (   | Bromoform                |
| 500.0                    |                                                            | ļ        | 20.00 5.00                              | 0.50 a   | 23        | 1            | 0          | 0.5426.9    |               | 11 0.5044 0.6973 0.7333            | 0.4898 0.4484 0.4222 0.5011 0.5044 0.6973                                                           | !-          | n-Amyl acetate           |
| 500.0                    | 50.00 100.0 250.0                                          | 2.00 !   | 20.00 5.00                              | 0.50     | 15        | 5 0.999      | 0.986      | 0.6426.80   | -             | 07 0.6601 0.6246 0.8291            | 0.6175 0.5616 0.5435 0.6607 0.6601 0.6246 0.8291                                                    | 1 0 Avg (   | n-Butyl acrylate         |
| 500.0                    | 250.0                                                      |          | 20.00 5.00                              | 0.50     | 4.1       |              | 0          | 0.7016.56   | 1             | 52 0.6886 0.7084 0.7591            | 0.6815 0.6759 0.6851 0.7052 0.6886 0.7084 0.7591                                                    |             | Chlorobenzene            |
| 500.0                    | 50.00 100.0 250.0                                          | 2.00     | 20.00 5.00                              |          | 9.0       |              | 0          | 0.2596.59   | İ             | 37 0.2588 0.2746 0.3022            | 0.2387 0.2333 0.2500 0.2537 0.2588 0.2746 0.3022                                                    |             | 1.1.1.2-Tetrachloroeth   |
| 1.00                     | 250.0                                                      | 200      | 20.00 5.00                              | 0.40     | 3.9       | 1.00         | 2 0.998    | 0.569 5.82  | 1             | 0.6127                             | 0.5614 0.5491 0.5492 0.5834 0.5533 0.5610                                                           |             | Toluene                  |
| 30.00 30.00 30.00        | 30.00 30.00 30.00                                          | 30.00    | 30.00 30.00                             |          | 2.6       | <u>_</u>     | <u>.</u>   | 1.17 5.79   | 1.1965 1.1896 | 1.1186                             | 1.1967 1.1840 1.1637 1.1813 1.1558 1.1227 1.1186                                                    |             | Toluene-d8               |
| 500.0                    | 250.0                                                      |          | 20.00 5.00                              | 0.20 a   | 9.7       | _            | 0          | 0.1946.11   |               | 80 0.1904 0.1976 0.2316            | 0.1805 0.1830 0.1751 0.1980 0.1904 0.1976                                                           |             | Tetrachloroethene        |
| 500.0                    | 250.0                                                      |          | 20.00 5.00                              | 0.10     | 7.2       | 1.00         | _          | 0.134 6.12  | -             | 87 0.1304 0.1396 0.1400            | 0.1413 0.1314 0.1142 0.1387 0.1304 0.1396                                                           |             | 2-Hexanone               |
| 500.0                    | 250.0                                                      |          | 20.00 5.00                              | 0.10     | 6.5       | 1.00         | _          | 0.180 5.70  | 1             | 45 0 1802 0 1870 0 1858            | 0.1908 0.1773 0.1558 0.1845 0.1802 0.1870                                                           |             | 4-Methyl-2-Pentanone     |
| ļ:<br>ļ:                 | 100.0 250.0                                                |          | 20.00 5.00                              |          | 3.9       | 1.00         | _          | 0.3776.11   |               |                                    | 0.3745 0.3771 0.3542 0.3680 0.3739 0.3954 0.3956                                                    |             | 1,3-Dichloropropane      |
| 500.0 1.00 0.50          | 250.0                                                      |          | 20.00 5.00                              | 0.10     | ထ         | .0           | _          | 0.2426.31   | 0.2220 0.2087 |                                    | 0.2464 0.2422 0.2242 0.2504 0.2515                                                                  |             | 1,2-Dibromoethane        |
| 500.0                    | 50.00 100.0 250.0                                          | 200      | 20.00 5.00                              | 0.10     | 26        | 1.00         | 1.00       | 0.13306.02  |               | 22 0 2266 0 2406 0 2343            | 0 2266 0 2284 0 2314 0 2222 0 2266 0 2406 0 2343                                                    | 1 0 Ava     | 1.1.2-Trichloroethane    |
| 500.0                    | 100.0 250.0                                                |          | 20.00 5.00                              | 7 6      | 1 6       | 3 5          |            | 0.331 3.91  | į             | 26 0 1518 0 1600 0 1554            | 0.3200 0.3013 0.2340 0.3347 0.3403 0.3624 0.3630                                                    |             | Ethyl mothacrylate       |
| 500.0                    | 250.0                                                      | 3 6      | 20.00 5.00                              | 200      | » o       | 3 5          | · -        | 0.330 3.64  |               | 13 0.3605 0.3666 0.3907            | 0.3440 0.3294 0.3061 0.3713 0.3603 0.3668 0.3907<br>0.3208 0.3015 0.3066 0.337 0.3405 0.3638 0.3638 |             | trans-1 3-Dichloropropen |
| 500.0                    | 100.0 250.0                                                | - !      | 20.00 5.00                              | 3        | 5 =       | 3 8          |            | 0.03355.54  |               | 34 0.0356 0.0390 0.0379            | 0.034 0.0328 0.0215 0.034 0.038 0.0390 0.0379                                                       | -           | 2-Chloroethylvinylethe   |
| 500.0                    | 100.0 250.0                                                |          | 20.00 5.00                              | 0.10     | , œ       | 3 6          | _          | 0.28/ 6.24  | į             | /4 0.29/2 0.31/3 0.3131            | 0.2779 0.2506 0.2643 0.2874 0.2972                                                                  |             | O Chicagh him lab        |
| 500.0                    | 100.0 250.0                                                |          | 20.00 5.00                              | 0.50 a   | 9.6       | 3 2          | -          | 0.151 5.30  | Ì             | 50 0.1572 0.1664 0.1609            | 0.1313 0.1386 0.1385 0.1650 0.1572 0.1664 0.1609                                                    |             | Methyl methacrylate      |
| 500.0                    | 100.0 250.0                                                |          | 20.00 5.00                              | 0.50 a   | 4.1       | 1.00         | . <u>.</u> | 0.303 4.81  | i             | 15 0.3015 0.3198 0.3162            | 0.2973 0.2824 0.3016 0.3015 0.3015 0.3198 0.3162                                                    |             | Iso-propylacetate        |
| 500.0                    | 250.0                                                      | 2.00     | 20.00 5.00                              |          | 12        | 1.00         | 1.00       | 0.509 4.86  | 1             |                                    | 0.4815 0.4472 0.4278 0.5091 0.5407 0.5866 0.5695                                                    | 1 0 Avg (   | tert-Amyl methyl ether   |
| 500.0 1.00               | 50.00 100.0 250.0                                          | 2.00     | 20.00 5.00                              | 0.50     | 8.0       | <u> </u>     | 0          | 0.767 4.82  | 4             | 46 0.7478 0.8125 0.8847 0.7304     | 0.7540 0.7434 0.6790 0.7846 0.7478 0.8125 0.8847                                                    |             | Benzene                  |
| 500.0                    | 250.0                                                      |          | 20.00 5.00                              | 0.20 a   | 9.6       | _            | 0          | 0.228 5.16  | İ             | 39 0.2312 0.2430 0.2634            | 0.2190 0.2117 0.1961 0.2339 0.2312 0.2430 0.2634                                                    |             | Trichloroethene          |
| 500.0                    | 250.0                                                      |          |                                         | 0.10     | 6.7       | 1.00         | _          | 0.1905.28   | 1             | 85 0.1880 0.2040 0.2103            | 0.1841 0.1831 0.1732 0.1885 0.1880 0.2040 0.2103                                                    |             | 1.2-Dichloropropane      |
| 500.0                    | 250.0                                                      |          | 20.00 5.00                              |          | 12        |              | _          | 0.164 5.34  | İ             | 69 0.1706 0.1882 0.1906            | 0.1508 0.1482 0.1425 0.1569 0.1706 0.1882 0.1906                                                    |             | Dibromomethane           |
| 500.0                    | 50.00 100.0 250.0                                          | 2.00     | 20.00 5.00                              | 0.10     | 1         | 1.00         | 0.995      | 0.238 5.27  |               | 74 0.2339 0.2487 0.2904            | 0.2300 0.2252 0.1821 0.2574 0.2339 0.2487                                                           | 1 0 Avg (   | Methylcyclohexane        |
| ations<br>Lvi7 Lvi8 Lvi9 | Calibration Level Concentrations  Lvi3 Lvi4 Lvi5 Lvi6 Lvi7 |          | Lvl1Lvl2                                | !<br>!   | %Rsd      | Corr2        | Corr1      | AvgRf RT    | RF9           | RF5 RF6 RF7 RF8                    | RF1 RF2 RF3 RF4                                                                                     | Col Mr Fit: | Compound Co              |
|                          | :<br>-<br>-<br>N                                           | )<br>]   | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |          | !         | 1            | :          |             | 1             |                                    |                                                                                                     | I INIOCHTO. |                          |
|                          |                                                            | 23:29    | 10/01/20 23:29                          | u        | 844 L 8   | CAL          | 450.D      | 11M83450.   | œ             | 10/02/20 01:08                     | CAL @ 500 PPB                                                                                       | 11M83455.D  |                          |
|                          |                                                            | 01:47    | 10/02/20 01:47                          | Ď        | @ 250 PPB | CAL          |            | 11M83457.   | · 6           | 10/02/20 02:27                     | ξ <sub>A</sub>                                                                                      | 11M83459.D  | رن<br>د                  |
|                          |                                                            | 00:48    | 10/02/20 00:48                          | ĕ        | @ 50 PPB  |              |            | 11M83454.   | 4             | 10/01/20 23:49                     | CAL                                                                                                 | 11M83451.D  |                          |
|                          | :                                                          | 00:08    | 10/02/20 00:08                          | @ 5 PPB  | 5 PP      | CAL          |            | 11M83452    | 2             | 10/02/20 00:28                     | CAL @                                                                                               | 1M83453.D   | _                        |
|                          | e/Time                                                     | ysis Dat | Analy                                   | ntifier: | Cal Ide   |              | Data File: | <b>#</b>    | Level #:      | Analysis Date/Time                 | File: Cal Identifier:                                                                               | Data File:  | <b>19 1</b><br>Levei #   |
|                          |                                                            |          |                                         |          |           |              |            |             |               |                                    |                                                                                                     |             | . 5                      |

Flags a - failed the min rf criteria

Avg Rsd: 9.652

Note:

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

C- failed the minimum correlation coeff criteria(if applicable) Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Instrument: GCMS\_11

| 9 Method: EFA 02000   |             |                                                  | _                                                              | Initial Calibration | ation        |            |                 |                                                                             |      |
|-----------------------|-------------|--------------------------------------------------|----------------------------------------------------------------|---------------------|--------------|------------|-----------------|-----------------------------------------------------------------------------|------|
| 1 Level               | Data File   | File: Cal Identifier:                            | Analysis Date/Time                                             | Level #:            | Data         | Fie        | Cal Identifier: | Analysis Date/Time                                                          |      |
|                       | 11M83453.D  | CAL @ 20 PPB                                     | 10/02/20 00:28                                                 | 2                   | 11M83452.I   | CA         | L @ 5 PPB       | 10/02/20 00:08                                                              |      |
| <b>4</b><br>ω         | 11M83451.D  | CAL @ 2 PPB                                      | 10/01/20 23:49                                                 | 4                   | 11M83454.E   | CA         | . @ 50 PPB      | 10/02/20 00:48                                                              |      |
| <b>2</b>              | 11M83459.D  | CAL @ 100 PPB                                    | 10/02/20 02:27                                                 | თ                   | 11M83457.E   | _          | CAL @ 250 PPB   | 10/02/20 01:47                                                              |      |
| 7                     | 11M83455.D  | CAL @ 500 PPB                                    | 10/02/20 01:08                                                 | œ                   | 11M83450.0   | _          | CAL @ 1 PPB     | 10/01/20 23:29                                                              |      |
| 93<br>。               | 11M83449.D  | CAL @ 0.5 PPB                                    | 10/01/20 23:09                                                 |                     |              |            |                 |                                                                             |      |
| ompound               | Col Mr Fit: | RF1 RF2 RF3 RF4                                  | RF5 RF6 RF7 RF8                                                | RF9 Avg             | AvgRf RT C   | orr1 Corr2 | %Rsd            | Calibration Level Concentrations  Lvl1 Lvl2 Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 Lvl8 L | Lvi9 |
| p-Ethyttoluene        | 1 0 Avg 1   | 1.8340 1.8055 1.7011 1.9492 1.6943 1.8536 2.2956 | 92 1.6943 1.8536 2.2956                                        | i                   | 1.887.35 0   | .990 1.00  | 1               | Ñ                                                                           |      |
| 4-Chlorotoluene       | 1 0 Avg 1   | 1.1001 1.1559 1.2029 1.1482 1.0373 1.2060 1.2383 | 82 1.0373 1.2060 1.2383                                        | -                   | 1.167.42 0   | .999 1.00  | 6.0             | 2.00                                                                        |      |
| n-Propylbenzene       | 1 0 Avg 2   | 2.1078 2.1089 2.0116 2.20                        | 2.1078 2.1089 2.0116 2.2099 1.9211 1.7522 2.0670 2.0194        | 1                   | 0            | .994 0.998 | 6.9             | 2.00                                                                        |      |
| Bromobenzene          | 1 0 Avg 1   | 1.1504 1.1392 0.9206 1.1447 1.0440 0.8735 0.9811 | 47 1.0440 0.8735 0.9811                                        |                     | 0            | 996 0.998  | <b>1</b>        | 2.00 50.00 100.0 250.0                                                      |      |
| 1.3.5-Trimethylbenzen | 1 0 Avg     | 1.5226 1.5477 1.4067 1.60                        | <u>1.5226 1.5477 1.4067 1.6047 1.4078 1.6011 1.9188 1.2573</u> |                     | 0            | .992 1.00  | 13              | 2.00 50.00 100.0                                                            |      |
| Butyl methacrylate    | 1 0 Avg (   | 0.3961 0.3232 0.3489 0.3731 0.3979 0.4777 0.5312 | 31 0.3979 0.4777 0.5312                                        | •                   | 0            | 996 1.00   | 18 0.50 a       | 2.00 50.00 100.0                                                            |      |
| t-Butylbenzene        | 1 0 Avg     | 1.5154 1.5084 1.4642 1.62                        | .5154 1.5084 1.4642 1.6231 1.4583 1.8723 2.2855 1.4055         | 5                   | 0            | 990 1.00   | 18              | 2.00 50.00 100.0                                                            |      |
| 1.2.4-Trimethylbenzen | 1 0 Avg 1   | 1.5719 1.5448 1.5391 1.65                        | .5719 1.5448 1.5391 1.6565 1.4853 1.9804 2.3079 1.4205         | 5                   | 0            | 992 0.999  | 18              | 2.00 50.00 100.0                                                            |      |
| sec-Butylbenzene      | 1 0 Avg 1   | 1.9195 1.8973 1.7937 2.05                        | 1.8973 1.7937 2.0556 1.7997 2.3482 2.9241 1.6640               | 0                   | 2.057.69 0   | 988 1.00   | 20              | 2 00 50 00 100 0                                                            |      |
| 4-isopropyltoluene    | !           | 1.6569 1.5960 1.5365 1.77                        | 1.6569 1.5960 1.5365 1.7752 1.5742 2.0281 2.5778 1.4273        | 3                   | 1.777.76 0   | 987 1.00   | 21              | 2.00 50.00 100.0                                                            |      |
| n-Butylbenzene        |             | 1.7628 1.7442 1.6418 1.84                        | 1.7628 1.7442 1.6418 1.8411 1.5875 1.9600 2.5273 1.5977        | 7                   | 1.838.00 0   | 986 1.00   | 17              | 2.00 50.00                                                                  |      |
| p-Diethylbenzene      |             | 0.9351 0.9030 0.8558 1.0113 0.9036 1.0493 1.4103 | 13 0.9036 1.0493 1.4103                                        | -                   | 1.017.98 0   | .983 1.00  | 19              | 20.00 5.00 2.00 50.00 100.0 250.0 500.0                                     |      |
| 1.2.4.5-Tetramethylbe | 1 0 Avg     | 1.4725 1.3934 1.3320 1.6336 1.5206 1.2803        | 36 1.5206 1.2803                                               | -                   | 1.448.44 0   | .993 1.00  | 9.0             | 2.00 50.00 100.0 250.0                                                      |      |
| 1.2-Dibromo-3-Chloro  |             | 0.1517 0.1465 0.1315 0.1596 0.1531 0.1348 0.2053 | 96 0.1531 0.1348 0.2053                                        |                     | 0.1558.50 0  | 972 0.997  | 16 0.05         | 2.00 50.00 100.0                                                            |      |
| Camphor               | 1 0 Avg (   | 0.0680 0.0603 0.0514 0.07                        | 38 0.0680 0.0559 0.0790                                        | 0                   | 0.06538.94 0 | 979 0.996  | 15              | 20.00 500.0 1000. 2500.                                                     | •    |
| Hexachlorobutadiene   |             | 0.2667 0.2471 0.2388 0.2863 0.2715 0.2229 0.3221 | 63 0.2715 0.2229 0.3221                                        | -                   | 0            | .977 0.996 | 12              | 20.00 5.00 2.00 50.00 100.0 250.0 500.0                                     |      |
| 1.2,4-Trichlorobenzen | 1 0 Avg     | 0.5556 0.5564 0.5798 0.6164 0.5937 0.4814 0.6345 | 64 0.5937 0.4814 0.6345                                        |                     | 0.5748.99 0  | .986 0.996 | 8.7 0.20        | 2.00 50.00 100.0 250.0                                                      |      |
| 1,2,3-Trichlorobenzen | 1 0 Avg (   | 0.5205 0.5292 0.5467 0.5767 0.5685 0.4587 0.5967 | 67 0.5685 0.4587 0.5967                                        | -                   | 0.5429.29 0  | .987 0.996 | 8.4             | 2.00 50.00 100.0                                                            |      |
| Naphthalene           | 1 0 Avg 1   | 1.6776 1.6230 1.6128 1.79                        | 1.6776 1.6230 1.6128 1.7977 1.7692 1.4172 1.8724 1.4164        | 4                   | 1.659.15 0   | .986 0.996 | 6               | 2.00 50.00 100.0 250.0                                                      |      |
|                       |             |                                                  |                                                                |                     |              |            |                 |                                                                             |      |

a - failed the min rf criteria

Flags
a - failed the min rf criteria
Corr 2 = Correlation Coefficient for linear Eq.
c - failed the minimum correlation coeff criteria (if applicable)
Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Calibration Name: CAL @ 20 PPB Cont Calibration Date/Time 10/5/2020 2:58:00 P Data File: 1M140087.D Method: EPA 8260D Instrument: GCMS 1

| TxtCompd:                           | Col# |     | Туре | RT   | Conc    | Conc<br>Exp | Lo<br>Lim |       | Initial<br>RF | RF    | %Diff | Flag |
|-------------------------------------|------|-----|------|------|---------|-------------|-----------|-------|---------------|-------|-------|------|
| Fluorobenzene                       | 1    | 0   | - 1  | 5.34 | 30.00   | 30          | **        |       |               | 0.000 | 0.00  |      |
| Chlorodifluoromethane               | 1    | 0   |      | 2.15 | 16.04   | 20          | 20        | 0.1   | 0.408         | 0.328 | 19.79 |      |
| Dichlorodifluoromethane             | 1    | 0   |      | 2.13 | 14.77   | 20          | 20        | 0.1   | 0.198         | 0.146 | 26.15 | C1   |
| Chloromethane                       | 1    | 0   |      | 2.31 | 18.65   | 20          | 20        | 0.1   | 0.273         | 0.255 | 6.74  |      |
| Bromomethane                        | 1    | 0   |      | 2.68 | 19.19   | 20          | 20        | 0.1   | 0.126         | 0.121 | 4.05  |      |
| Vinyl Chloride                      | 1    | 0   |      | 2.38 | 19.18   | 20          | 20        | 0.1   | 0.221         | 0.212 | 4.10  |      |
| Chloroethane                        | 1    | 0   |      | 2.75 | 22.31   | 20          | 20        | 0.1   | 0.130         | 0.145 | 11.54 |      |
| Trichlorofluoromethane              | 1    | 0   |      | 2.96 | 19.62   | 20          | 20        | 0.1   | 0.299         | 0.293 | 1.92  |      |
| Ethyl ether                         | 1    | 0   |      | 3.18 | 22.60   | 20          | 20        | 0.5   | 0.142         | 0.161 | 13.01 |      |
| Furan                               | 1    | 0   |      | 3.21 | 20.73   | 20          | 20        | 0.5   | 0.304         | 0.315 | 3.65  |      |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 1    | 0   |      | 3.37 | 21.69   | 20          | 20        | 0.1   | 0.127         | 0.138 | 8.43  |      |
| Methylene Chloride                  | 1    | 0   |      | 3.74 | 21.76   | 20          | 20        | 0.1   | 0.202         | 0.220 | 8.82  |      |
| Acrolein                            | 1    | 0   |      | 3.28 | 98.36   | 100         | 20        |       | 0.032         | 0.032 | 1.64  |      |
| Acrylonitrile                       | 1    | 0   |      | 3.92 | 24.48   | 20          | 20        |       | 0.088         | 0.108 | 22.38 | C1   |
| lodomethane                         | 1    | 0   |      | 3.51 | 17.31   | 20          | 20        |       | 0.232         | 0.201 | 13.44 |      |
| Acetone                             | 1    | 0   |      | 3.39 | 119.00  | 100         | 20        | 0.1   | 0.079         | 0.094 | 19.00 |      |
| Carbon Disulfide                    | 1    | Ö   |      | 3.57 | 21.58   | 20          | 20        |       | 0.535         | 0.577 | 7.90  |      |
| t-Butyl Alcohol                     | 1    | 0   |      | 3.80 | 122.39  | 100         | 20        | • • • | 0.022         | 0.027 | 22.39 | C1   |
| n-Hexane                            | 1    | 0   |      | 4.17 | 21.75   | 20          | 20        |       | 0.173         | 0.188 | 8.77  | •    |
| Di-isopropyl-ether                  | 1    | Ö   |      | 4.31 | 21.57   | 20          | 20        |       | 0.553         | 0.597 | 7.84  |      |
| 1,1-Dichloroethene                  | 1    | 0   |      | 3.37 | 21.09   | 20          | 20        |       | 0.261         | 0.276 | 5.46  |      |
| Methyl Acetate                      | 1    | 0   |      | 3.65 | 22.31   | 20          | 20        |       | 0.170         | 0.190 | 11.54 |      |
| Methyl-t-butyl ether                | 1    | 0   |      | 3.96 | 22.91   | 20          | 20        |       | 0.458         | 0.525 | 14.53 |      |
| 1,1-Dichloroethane                  | 1    | 0   |      | 4.28 | 21.10   | 20          | 20        |       | 0.363         | 0.323 | 5.52  |      |
| trans-1,2-Dichloroethene            | 1    | 0   |      | 3.97 | 22.49   | 20          | 20        |       | 0.184         | 0.303 | 12.45 |      |
| Ethyl-t-butyl ether                 | 1    | - 0 |      | 4.56 | 20.74   | 20          | 20        |       | 0.509         | 0.528 | 3.69  |      |
| cis-1,2-Dichloroethene              | 1    | 0   |      | 4.67 | 21.31   | 20          | 20        |       | 0.351         | 0.374 | 6.53  |      |
| Bromochloromethane                  | 1    | 0   |      | 4.82 | 21.13   | 20          | 20        | 0.1   | 0.351         | 0.374 | 5.63  |      |
|                                     |      | 0   |      | 4.62 |         |             |           |       |               |       |       |      |
| 2,2-Dichloropropane                 | 1    | -   |      |      | 20.48   | 20          | 20        |       | 0.293         | 0.300 | 2.40  |      |
| Ethyl acetate                       | 1    | 0   |      | 4.69 | 20.93   | 20          | 20        |       | 0.291         | 0.305 | 4.63  |      |
| 1,4-Dioxane                         | 1    | 0   |      | 5.73 | 1246.66 | 1000        | 20        |       | 0.004         | 0.005 | 24.67 | Ci   |
| 1,1-Dichloropropene                 | 1    | 0   |      | 5.07 | 21.28   | 20          | 20        |       | 0.271         | 0.288 | 6.41  |      |
| Chloroform                          | 1    | 0   | _    | 4.85 | 20.81   | 20          | 20        | 0.2   | 0.374         | 0.389 | 4.07  |      |
| Dibromofluoromethane                | 1    | 0   | S    | 4.94 | 29.41   | 30          |           |       | 0.280         | 0.274 | 1.97  |      |
| Cyclohexane                         | 1    | 0   |      | 5.03 | 19.78   | 20          | 20        | 0.1   | 0.257         | 0.254 | 1.10  |      |
| 1,2-Dichloroethane-d4               | 1    | 0   | S    | 5.15 | 27.60   | 30          | **        |       | 0.152         | 0.140 | 7.99  |      |
| 1,2-Dichloroethane                  | 1    | 0   |      | 5.19 | 20.82   | 20          | 20        |       | 0.299         | 0.312 | 4.10  |      |
| 2-Butanone                          | 1    | 0   |      | 4.69 | 21.45   | 20          | 20        |       | 0.219         | 0.235 | 7.23  |      |
| 1,1,1-Trichloroethane               | 1    | 0   |      | 4.98 | 19.99   | 20          | 20        |       | 0.333         | 0.333 | 0.07  |      |
| Carbon Tetrachloride                | 1    | 0   |      | 5.08 | 20.15   | 20          | 20        | 0.1   | 0.299         | 0.301 | 0.76  |      |
| Vinyl Acetate                       | 1    | 0   |      | 4.30 | 21.75   | 20          | 20        |       | 0.696         | 0.757 | 8.74  |      |
| Bromodichloromethane                | 1    | 0   |      | 5.81 | 20.58   | 20          | 20        | 0.2   | 0.293         | 0.301 | 2.92  |      |
| Methylcyclohexane                   | 1    | 0   |      | 5.66 | 20.30   | 20          | 20        | 0.1   | 0.230         | 0.233 | 1.49  |      |
| Dibromomethane                      | 1    | 0   |      | 5.73 | 22.43   | 20          | 20        |       | 0.166         | 0.186 | 12.13 |      |
| 1,2-Dichloropropane                 | 1    | 0   |      | 5.67 | 20.96   | 20          | 20        |       | 0.215         | 0.225 | 4.81  |      |
| Trichloroethene                     | 1    | 0   |      | 5.54 | 21.65   | 20          | 20        | 0.2   | 0.231         | 0.250 | 8.24  |      |
| Benzene                             | 1    | 0   |      | 5.19 | 22.04   | 20          | 20        | 0.5   | 0.790         | 0.871 | 10.20 |      |
| ert-Amyl methyl ether               | 1    | 0   |      | 5.24 | 22.13   | 20          | 20        |       | 0.485         | 0.537 | 10.64 |      |
| Chlorobenzene-d5                    | 1    | 0   | 1    | 6.99 | 30.00   | 30          | **        |       |               | 0.000 | 0.00  |      |
| so-propylacetate                    | 1    | 0   |      | 5.19 | 18.86   | 20          | 20        | 0.5   | 0.435         | 0.410 | 5.69  |      |
| Methyl methacrylate                 | 1    | 0   |      | 5.70 | 18.26   | 20          | 20        | 0.5   | 0.236         | 0.216 | 8.70  |      |
| Dibromochloromethane                | 1    | 0   |      | 6.67 | 19.55   | 20          | 20        |       | 0.283         | 0.276 | 2.23  |      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 2

Calibration Name: CAL @ 20 PPB
Cont Calibration Date/Time 10/5/2020 2:58:00 P

Data File: 1M140087.D Method: EPA 8260D Instrument: GCMS 1

| Cont Calibration Date/Tit   | ne torsi     |              | .30.00 F | IV.  | lethod: EPA |             |           |           |               |       |       |       |
|-----------------------------|--------------|--------------|----------|------|-------------|-------------|-----------|-----------|---------------|-------|-------|-------|
| TxtCompd:                   | Co#          | Multi<br>Num | Туре     | RT   | Conc        | Conc<br>Exp | Lo<br>Lim | MIN<br>RF | Initial<br>RF | RF    | %Diff | Flag  |
| 2-Chloroethylvinylether     | 1            | 0            |          | 5.94 | 21.30       | 20          | 20        |           | 0.058         | 0.061 | 6.50  |       |
| cis-1,3-Dichloropropene     | 1            | 0            |          | 6.04 | 19.55       | 20          | 20        | 0.2       | 0.364         | 0.356 | 2.23  |       |
| rans-1,3-Dichloropropene    | 1            | 0            |          | 6.33 | 19.05       | 20          | 20        | 0.1       | 0.368         | 0.350 | 4.73  |       |
| Ethyl methacrylate          | 1            | 0            |          | 6.36 | 19.85       | 20          | 20        | 0.5       | 0.224         | 0.223 | 0.74  |       |
| 1,1,2-Trichloroethane       | 1            | 0            |          | 6.44 | 20.46       | 20          | 20        | 0.1       | 0.234         | 0.239 | 2.32  |       |
| 1,2-Dibromoethane           | 1            | 0            |          | 6.74 | 19.90       | 20          | 20        | 0.1       | 0.252         | 0.251 | 0.51  |       |
| 1,3-Dichloropropane         | 1            | 0            |          | 6.54 | 19.88       | 20          | 20        |           | 0.399         | 0.397 | 0.61  |       |
| 4-Methyl-2-Pentanone        | 1            | 0            |          | 6.11 | 20.40       | 20          | 20        | 0.1       | 0.270         | 0.275 | 2.00  |       |
| 2-Hexanone                  | 1            | 0            |          | 6.55 | 20.09       | 20          | 20        | 0.1       | 0.205         | 0.206 | 0.45  |       |
| Tetrachloroethene           | 1            | 0            |          | 6.54 | 21.34       | 20          | 20        | 0.2       | 0.216         | 0.231 | 6.70  |       |
| Toluene-d8                  | 1            | 0            | s        | 6.20 | 28.61       | 30          | **        |           | 1.212         | 1.156 | 4.63  |       |
| Toluene                     | 1            | 0            |          | 6.24 | 20.55       | 20          | 20        | 0.4       | 0.593         | 0.610 | 2.76  |       |
| 1,1,1,2-Tetrachloroethane   | 1            | 0            |          | 7.04 | 19.60       | 20          | 20        |           | 0.257         | 0.252 | 2.03  |       |
| Chlorobenzene               | 1            | 0            |          | 7.00 | 20.62       | 20          | 20        |           | 0.692         | 0.714 | 3.11  |       |
| 1,4-Dichlorobenzene-d4      | 1            | 0            | 1        | 8.28 | 30.00       | 30          | **        |           |               | 0.000 | 0.00  |       |
| n-Butyl acrylate            | 1            | 0            |          | 7.25 | 17.68       | 20          | 20        | 0.5       | 0.774         | 0.684 | 11.62 |       |
| n-Amyl acetate              | 1            | Ö            |          | 7.37 | 18.37       | 20          | 20        |           | 0.755         | 0.694 | 8.13  |       |
| Bromoform                   | 1            | Ö            |          | 7.46 | 18.12       | 20          | 20        |           | 0.368         | 0.333 | 9.42  |       |
| Ethylbenzene                | 1            | 0            |          | 7.05 | 19.26       | 20          | 20        |           | 0.477         | 0.459 | 3.72  |       |
| 1,1,2,2-Tetrachloroethane   | 1            | Ö            |          | 7.67 | 18.56       | 20          | 20        |           | 0.592         | 0.550 | 7.19  |       |
| Bromofluorobenzene          | - <u>'</u> - | 0            | S        | 7.62 | 30.10       | 30          |           |           | 0.756         | 0.758 | 0.32  | ·· ·- |
| _                           | 1            | ō            | 0        | 7.33 | 20.49       | 20          | 20        | 0.3       | 1.139         | 1.168 | 2.46  |       |
| Styrene<br>m&p-Xylenes      | 1            | 0            |          | 7.11 | 41.15       | 40          | 20        |           | 0.640         | 0.658 | 2.87  |       |
| • •                         | 1            | 0            |          | 7.11 | 19.98       | 20          | 20        |           | 0.655         | 0.654 | 0.12  |       |
| o-Xylene                    | 1            | 0            |          | 7.70 | 17.84       | 20          | 20        |           | 0.035         | 0.004 | 10.82 |       |
| rans-1,4-Dichloro-2-butene  |              | - 0 -        |          | 8.25 | 19.57       | 20          | 20        |           | 0.225         | 0.964 | 2.13  |       |
| 1,3-Dichlorobenzene         | 1            | -            |          |      |             |             |           |           |               |       |       |       |
| 1,4-Dichlorobenzene         | 1            | 0            |          | 8.30 | 19.13       | 20          | 20        |           | 1.032         | 0.987 | 4.34  |       |
| 1,2-Dichlorobenzene         | 1            | 0            |          | 8.52 | 19.28       | 20          | 20        |           | 0.973         | 0.938 | 3.60  |       |
| Isopropylbenzene            | 1            | 0            |          | 7.53 | 19.58       | 20          | 20        |           | 1.650         | 1.615 | 2.12  |       |
| Cyclohexanone               | 1            | 0            |          | 7.60 | 120.07      | 100         | 20        |           | 0.021         | 0.025 | 20.07 | ***   |
| Camphene                    | 1            | 0            |          | 7.70 | 17.84       | 20          | 20        |           | 0.481         | 0.429 | 10.79 |       |
| 1,2,3-Trichloropropane      | 1            | 0            |          | 7.72 | 18.14       | 20          | 20        |           | 0.742         | 0.673 | 9.30  |       |
| 2-Chlorotoluene             | 1            | 0            |          | 7.82 | 19.22       | 20          | 20        |           | 1.147         | 1.102 | 3.91  |       |
| p-Ethyltoluene              | 1            | 0            |          | 7.81 | 20.50       | 20          | 20        |           | 1.746         | 1.790 | 2.50  |       |
| 4-Chlorotoluene             | _ 1 _        | 0            |          | 7.88 | 18.92       | 20_         | _20       |           | 1.152         | 1.090 | 5.42  |       |
| n-Propylbenzene             | 1            | 0            |          | 7.75 | 19.21       | 20          | 20        |           | 2.092         | 2.010 | 3.93  |       |
| Bromobenzene                | 1            | 0            |          | 7.72 | 18.72       | 20          | 20        |           | 1.158         | 1.084 | 6.41  |       |
| 1,3,5-Trimethylbenzene      | 1            | 0            |          | 7.84 | 18.88       | 20          | 20        |           | 1.477         | 1.395 | 5.60  |       |
| Butyl methacrylate          | 1            | 0            |          | 7.85 | 18.04       | 20          | 20        |           | 0.566         | 0.510 | 9.81  |       |
| -Butylbenzene               | . 1          | 0            |          | 8.04 | 19.16       | 20          | 20        |           | 1.397         | 1.338 | 4.22  |       |
| 1,2,4-Trimethylbenzene      | 1            | 0            |          | 8.06 | 19.38       | 20          | 20        |           | 1.535         | 1.487 | 3.11  |       |
| sec-Butylbenzene            | 1            | 0            |          | 8.16 | 19.30       | 20          | 20        |           | 1.744         | 1.683 | 3.48  |       |
| 4-Isopropyltoluene          | 1            | 0            |          | 8.23 | 19.88       | 20          | 20        |           | 1.522         | 1.513 | 0.61  |       |
| n-Butylbenzene              | 1            | 0            |          | 8.47 | 19.54       | 20          | 20        |           | 1.717         | 1.678 | 2.31  |       |
| o-Diethylbenzene            | 1            | 0            |          | 8.45 | 19.92       | 20          | 20        |           | 0.874         | 0.871 | 0.39  |       |
| 1,2,4,5-Tetramethylbenzene  | 1            | 0            |          | 8.91 | 14.67       | 20          | 20        |           | 1.287         | 1.248 | 26.64 | C1    |
| 1,2-Dibromo-3-Chloropropane | 1            | 0            |          | 8.97 | 18.33       | 20          | 20        |           | 0.164         | 0.150 | 8.37  |       |
| Camphor                     | 1            | 0            |          | 9.41 | 126.87      | 200         | 20        |           | 0.064         | 0.054 | 36.57 | C1    |
| Hexachlorobutadiene         | 1            | Ö            |          | 9.55 | 19.94       | 20          | 20        |           | 0.291         | 0.290 | 0.32  |       |
| 1,2,4-Trichlorobenzene      | 1            | Ö            |          | 9.46 | 19.89       | 20          | 20        |           | 0.631         | 0.627 | 0.57  |       |
| 1,2,3-Trichlorobenzene      | . <u>.</u>   | 0            |          | 9.76 | 18.91       | 20          | 20        |           | 0.582         | 0.550 | 5.44  | · ·   |
| Naphthalene                 | 1            | Ö            |          | 9.62 | 19.52       | 20          | 20        |           | 1.622         | 1.583 | 2.39  |       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 2

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 10/5/2020 3:44:00 P Data File: 11M83550.D Method: EPA 8260D Instrument: GCMS 11

| TxtCompd:                           | Col#       | Multi<br>Num | Туре | RT   | Conc    | Conc<br>Exp |    | MIN<br>RF        | Initial<br>RF | RF    | %Diff Flag |
|-------------------------------------|------------|--------------|------|------|---------|-------------|----|------------------|---------------|-------|------------|
| Fluorobenzene                       | 1          | 0            | 1    | 4.96 | 30.00   | 30          | ** |                  |               | 0.000 | 0.00       |
| Chlorodifluoromethane               | 1          | 0            |      | 1.68 | 73.65   | 50          | 20 | 0.1              | 0.165         | 0.243 | 47.29 C1   |
| Dichlorodifluoromethane             | 1          | 0            |      | 1.67 | 59.99   | 50          | 20 | 0.1              | 0.197         | 0.236 | 19.98      |
| Chloromethane                       | 1          | 0            |      | 1.84 | 54.62   | 50          | 20 | 0.1              | 0.179         | 0.196 | 9.25       |
| Bromomethane                        | _1         | 0            |      | 2.24 | 46.85   | 50          | 20 | 0.1              | 0.199         | 0.186 | 6.29       |
| Vinyl Chloride                      | 1          | 0            |      | 1.94 | 62.55   | 50          | 20 | 0.1              | 0.198         | 0.247 | 25.09 C1   |
| Chloroethane                        | 1          | 0            |      | 2.32 | 52.69   | 50          | 20 | 0.1              | 0.155         | 0.163 | 5.38       |
| Trichlorofluoromethane              | 1          | 0            |      | 2.54 | 58.79   | 50          | 20 | 0.1              | 0.366         | 0.430 | 17.59      |
| Ethyl ether                         | 1          | 0            |      | 2.77 | 40.25   | 50          | 20 | 0.5              | 0.142         | 0.114 | 19.50      |
| <sup>=</sup> uran                   | 1          | 0            |      | 2.81 | 48.86   | 50          | 20 | 0.5              | 0.184         | 0.179 | 2.29       |
| I,1,2-Trichloro-1,2,2-trifluoroetha | 1          | 0            |      | 2.97 | 60.24   | 50          | 20 | 0.1              | 0.129         | 0.156 | 20.47      |
| Methylene Chloride                  | 1          | 0            |      | 3.37 | 41.45   | 50          | 20 | 0.1              | 0.232         | 0.192 | 17.09      |
| Acrolein                            | 1          | 0            |      | 2.88 | 219.81  | 250         | 20 |                  | 0.025         | 0.022 | 12.08      |
| Acrylonitrile                       | 1          | 0            |      | 3.56 | 40.35   | 50          | 20 |                  | 0.062         | 0.050 | 19.31      |
| odomethane                          | 1          | 0            |      | 3.12 | 45.06   | 50          | 20 |                  | 0.187         | 0.227 | 9.88       |
| Acetone                             | 1          | 0            |      | 3.01 | 186.29  | 250         | 20 | 0.1              | 0.052         | 0.039 | 25.48 C1   |
| Carbon Disulfide                    | 1          | 0            |      | 3.18 | 56.87   | 50          | 20 | 0.1              | 0.514         | 0.584 | 13.75      |
| -Butyl Alcohol                      | 1          | 0            |      | 3.43 | 185.62  | 250         | 20 | -                | 0.022         | 0.016 | 25.75 C1   |
| n-Hexane                            | 1          | 0            |      | 3.81 | 66.66   | 50          | 20 |                  | 0.155         | 0.206 | 33.32 C1   |
| Di-isopropyl-ether                  | 1          | 0            |      | 3.95 | 45.06   | 50          | 20 |                  | 0.397         | 0.358 | 9.88       |
| ,1-Dichloroethene                   | _ <u>_</u> | 0            |      | 2.98 | 57.13   | 50          | 20 | 0.1              | 0.215         | 0.245 | 14.26      |
| Methyl Acetate                      | 1          | Ö            |      | 3.27 | 38.05   | 50          | 20 |                  | 0.116         | 0.088 | 23.90 C1   |
| Methyl-t-butyl ether                | 1          | 0            |      | 3.59 | 41.54   | 50          | 20 |                  | 0.492         | 0.409 | 16.93      |
| 1,1-Dichloroethane                  | 1          | 0            |      | 3.92 | 49.87   | 50          | 20 |                  | 0.302         | 0.301 | 0.25       |
| rans-1,2-Dichloroethene             | 1          | 0            |      | 3.60 | 54.60   | 50          | 20 |                  | 0.195         | 0.213 | 9.19       |
| Ethyl-t-butyl ether                 | - <u>-</u> | 0            |      | 4.19 | 42.68   | 50          | 20 | war transfer and | 0.133         | 0.406 | 14.64      |
| cis-1,2-Dichloroethene              | 1          | 0            |      | 4.31 | 49.91   | 50          | 20 |                  | 0.299         | 0.400 | 0.18       |
|                                     | 1          | 0            |      | 4.31 | 49.91   | 50          | 20 | 0.1              | 0.299         | 0.296 | 11.30      |
| Bromochloromethane                  | 1          | 0            |      |      |         |             |    |                  |               |       |            |
| 2,2-Dichloropropane                 | •          | -            |      | 4.31 | 60.09   | 50<br>50    | 20 |                  | 0.241         | 0.290 | 20.17      |
| Ethyl acetate                       | 1          | 0            |      | 4.33 | 40.17   | 50          | 20 |                  | 0.168         | 0.135 | 19.67      |
| I,4-Dioxane                         | 1          | 0            |      | 5.34 | 1859.37 | 2500        | 20 |                  | 0.004         | 0.003 | 25.63 C1   |
| 1,1-Dichloropropene                 | 1          | 0            |      | 4.70 | 57.62   | 50          | 20 |                  | 0.243         | 0.280 | 15.25      |
| Chloroform                          | 1          | 0            | _    | 4.49 | 48.10   | 50          | 20 | 0.2              | 0.357         | 0.343 | 3.81       |
| Dibromofluoromethane                | 1          | 0            | S    | 4.58 | 29.60   | 75          | ** |                  | 0.274         | 0.271 | 1.33       |
| Cyclohexane                         | 1          | 0            |      | 4.65 | 63.05   | 50          | 20 | 0.1              | 0.203         | 0.257 | 26.10 C1   |
| ,2-Dichloroethane-d4                | 1          | 0            | S    | 4.78 | 29.97   | 75          | ** |                  | 0.121         | 0.121 | 0.11       |
| 1,2-Dichloroethane                  | 1          | 0            |      | 4.82 | 41.74   | 50          | 20 |                  | 0.270         | 0.226 | 16.52      |
| ?-Butanone                          | 1          | 0            |      | 4.30 | 36.56   | 50          | 20 |                  | 0.070         | 0.051 | 26.87 C1   |
| I,1,1-Trichloroethane               | 1          | 0            |      | 4.61 | 53.81   | 50          | 20 |                  | 0.301         | 0.324 | 7.62       |
| Carbon Tetrachloride                | 1          | .0           |      | 4.71 | 56.51   | 50          | 20 | 0.1              | 0.268         | 0.303 | 13.02      |
| /inyl Acetate                       | 1          | 0            |      | 3.94 | 44.42   | 50          | 20 |                  | 0.470         | 0.418 | 11.15      |
| Bromodichloromethane                | 1          | 0            |      | 5.41 | 43.90   | 50          | 20 | 0.2              | 0.295         | 0.259 | 12.20      |
| Methylcyclohexane                   | 1          | 0            |      | 5.27 | 66.24   | 50          | 20 | 0.1              | 0.238         | 0.316 | 32.49 C1   |
| Dibromomethane                      | 1          | 0            |      | 5.34 | 42.97   | 50          | 20 |                  | 0.164         | 0.141 | 14.07      |
| I,2-Dichloropropane                 | 1          | 0            |      | 5.28 | 45.30   | 50          | 20 | 0.1              | 0.190         | 0.172 | 9.40       |
| Trichloroethene                     | 1          | 0            |      | 5.16 | 54.78   | 50          | 20 | 0.2              | 0.228         | 0.250 | 9.56       |
| Benzene                             | 1          | 0            |      | 4.82 | 50.15   | 50          | 20 | 0.5              | 0.767         | 0.769 | 0.29       |
| ert-Amyl methyl ether               | 1          | 0            |      | 4.86 | 42.47   | 50          | 20 |                  | 0.509         | 0.432 | 15.05      |
| Chlorobenzene-d5                    | 1          | 0            | 1    | 6.55 | 30.00   | 30          | ** |                  |               | 0.000 | 0.00       |
| so-propylacetate                    | 1          | 0            |      | 4.81 | 38.45   | 50          | 20 | 0.5              | 0.303         | 0.233 | 23.10 C1   |
| Methyl methacrylate                 | 1          | 0            |      | 5.30 | 38.95   | 50          | 20 |                  | 0.151         | 0.118 | 22.09 C1   |
| Dibromochloromethane                | 1          | 0            |      | 6.24 | 42.46   | 50          | 20 |                  | 0.287         | 0.244 | 15.09      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 2

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 10/5/2020 3:44:00 P Data File: 11M83550.D Method: EPA 8260D Instrument: GCMS 11

| Cont Calibration Date/Ti                         | me 10/3/     | 2020 3:      | 44:00 P | N    | lethod: EPA    | 8260D       |    |           |               |       |            |
|--------------------------------------------------|--------------|--------------|---------|------|----------------|-------------|----|-----------|---------------|-------|------------|
| TxtCompd:                                        | Col#         | Multi<br>Num | Туре    | RT   | Conc           | Conc<br>Exp |    | MIN<br>RF | initial<br>RF | RF    | %Diff Flag |
| 2-Chloroethylvinylether                          | 1            | 0            |         | 5.55 | 42.47          | 50          | 20 |           | 0.033         | 0.028 | 15.05      |
| cis-1,3-Dichloropropene                          | 1            | 0            |         | 5.64 | 46.42          | 50          | 20 | 0.2       | 0.356         | 0.331 | 7.16       |
| rans-1,3-Dichloropropene                         | 1            | 0            |         | 5.92 | 44.86          | 50          | 20 | 0.1       | 0.331         | 0.297 | 10.29      |
| Ethyl methacrylate                               | 1            | 0            |         | 5.93 | 41.37          | 50          | 20 | 0.5       | 0.144         | 0.119 | 17.27      |
| 1,1,2-Trichloroethane                            | 1            | 0            |         | 6.02 | 41.10          | 50          | 20 | 0.1       | 0.230         | 0.189 | 17.80      |
| I,2-Dibromoethane                                | 1            | 0            |         | 6.31 | 42.00          | 50          | 20 | 0.1       | 0.242         | 0.203 | 16.00      |
| I,3-Dichloropropane                              | 1            | 0            |         | 6.11 | 41.70          | 50          | 20 |           | 0.377         | 0.314 | 16.60      |
| I-Methyl-2-Pentanone                             | 1            | 0            |         | 5.70 | 38.55          | 50          | 20 | 0.1       | 0.180         | 0.139 | 22.91 C1   |
| 2-Hexanone                                       | 1            | 0            |         | 6.12 | 39.74          | 50          | 20 | 0.1       | 0.134         | 0.106 | 20.52 C1   |
| Tetrachloroethene                                | 1            | 0            |         | 6.12 | 56.86          | 50          | 20 | 0.2       | 0.194         | 0.220 | 13.72      |
| Foluene-d8                                       | 1            | 0            | S       | 5.79 | 29.96          | 75          | ** |           | 1.168         | 1.166 | 0.14       |
| Toluene                                          | 1            | 0            |         | 5.82 | 49.56          | 50          | 20 | 0.4       | 0.569         | 0.564 | 0.89       |
| ,1,1,2-Tetrachloroethane                         | 1            | 0            |         | 6.59 | 43.38          | 50          | 20 |           | 0.259         | 0.225 | 13.24      |
| Chlorobenzene                                    | 1            | 0            |         | 6.56 | 47.77          | 50          | 20 | 0.5       | 0.701         | 0.669 | 4.46       |
| ,4-Dichlorobenzene-d4                            | 1            | 0            | t       | 7.82 | 30.00          | 30          | ** |           |               | 0.000 | 0.00       |
| n-Butyl acrylate                                 | 1            | 0            |         | 6.80 | 42.18          | 50          | 20 | 0.5       | 0.642         | 0.542 | 15.65      |
| -Amyl acetate                                    | 1            | 0            |         | 6.91 | 34.92          | 50          | 20 |           | 0.542         | 0.416 | 30.15 C1   |
| Bromoform                                        | 1            | 0            |         | 7.01 | 40.08          | 50          | 20 |           | 0.374         | 0.300 | 19.84      |
| Ethylbenzene                                     | 1            | 0            |         | 6.60 | 52.52          | 50          | 20 |           | 0.495         | 0.520 | 5.04       |
| ,1,2,2-Tetrachloroethane                         | 1            |              |         | 7.22 | 41.28          | 50          | 20 |           | 0.545         | 0.450 | 17.45      |
| Bromofluorobenzene                               | 1            | 0            | S       | 7.17 | 29.89          | 75          | ** |           | 0.781         | 0.779 | 0.37       |
| Styrene                                          | 1            | 0            | •       | 6.88 | 45.20          | 50          | 20 | ივ        | 1.385         | 1.252 | 9.59       |
| n&p-Xylenes                                      | 1            | 0            |         | 6.66 | 105.99         | 100         | 20 |           | 0.711         | 0.754 | 5.99       |
| -Xylene                                          | 1            | 0            |         | 6.88 | 47.53          | 50          | 20 |           | 0.765         | 0.727 | 4.94       |
| -                                                | 1            |              |         | 7.24 |                | 50          | 20 | 0.5       | 0.169         | 0.172 | 1.60       |
| rans-1,4-Dichloro-2-butene<br>,3-Dichlorobenzene | · -'- ·<br>1 | 0            |         | 7.78 | 50.80<br>48.54 | 50          | 20 | Λ.6       | 0.103         | 0.968 | 2.91       |
|                                                  |              | 0            |         | 7.83 |                |             |    |           | 0.965         |       | 1.20       |
| ,4-Dichlorobenzene                               | 1            | 0            |         |      | 50.60          | 50<br>50    | 20 |           |               | 0.976 |            |
| ,2-Dichlorobenzene                               | 1            |              |         | 8.05 | 46.68          | 50<br>50    | 20 |           | 0.959         | 0.895 | 6.65       |
| sopropylbenzene                                  | 1            | 0            |         | 7.07 | 51.45          | 50          | 20 | 0.1       | 1.873         | 1.927 | 2.91       |
| Cyclohexanone                                    | _ 1          | _ 0          |         | 7.14 | 192.66         | 250         | 20 |           | 0.018         | 0.014 | 22.94 C1   |
| Camphene                                         | 1            | 0            |         | 7.24 | 60.84          | 50          | 20 |           | 0.554         | 0.673 | 21.67 C1   |
| ,2,3-Trichloropropane                            | 1            | 0            |         | 7.26 | 43.03          | 50          | 20 |           | 0.625         | 0.538 | 13.95      |
| 2-Chlorotoluene                                  | 1            | 0            |         | 7.36 | 48.56          | 50          | 20 |           | 1.144         | 1.111 | 2.89       |
| -Ethyltoluene                                    | 1            | 0            |         | 7.35 | 53.03          | 50          | 20 |           | 1.876         | 1.990 | 6.06       |
| -Chlorotoluene                                   | 1            | 0            |         | 7.42 | 48.69          | 50_         | 20 |           | 1.156         | 1.125 | 2.62       |
| -Propylbenzene                                   | 1            | 0            |         | 7.29 | 55.64          | 50          | 20 |           | 2.025         | 2.253 | 11.29      |
| Bromobenzene                                     | 1            | 0            |         | 7.27 | 50.22          | 50          | 20 |           | 1.036         | 1.041 | 0.43       |
| ,3,5-Trimethylbenzene                            | 1            | 0            |         | 7.38 | 50.04          | 50          | 20 |           | 1.533         | 1.535 | 0.09       |
| Butyl methacrylate                               | 1            | 0            |         | 7.38 | 41.18          | 50          | 20 | 0.5       | 0.407         | 0.335 | 17.64      |
| Butylbenzene                                     | 1            | 0            |         | 7.57 | 49.53          | 50          | 20 |           | 1.642         | 1.626 | 0.94       |
| ,2,4-Trimethylbenzene                            | 1            | 0            |         | 7.59 | 47.68          | 50          | 20 |           | 1.688         | 1.610 | 4.63       |
| ec-Butylbenzene                                  | 1            | 0            |         | 7.69 | 52.35          | 50          | 20 |           | 2.050         | 2.147 | 4.71       |
| -Isopropyltoluene                                | 1            | 0            |         | 7.76 | 58.34          | 50          | 20 |           | 1.772         | 1.853 | 16.68      |
| -Butylbenzene                                    | 1            | 0            |         | 8.00 | 54.56          | 50          | 20 |           | 1.833         | 2.000 | 9.13       |
| -Diethylbenzene                                  | 1            | 0            |         | 7.98 | 52.97          | 50          | 20 |           | 1.010         | 1.070 | 5.94       |
| ,2,4,5-Tetramethylbenzene                        | 1            | 0            |         | 8.44 | 56.92          | 50          | 20 |           | 1.439         | 1.638 | 13.85      |
| ,2-Dibromo-3-Chloropropane                       | 1            | 0            |         | 8.50 | 39.11          | 50          | 20 | 0.05      | 0.155         | 0.121 | 21.78 C1   |
| Camphor                                          | 1            | 0            |         | 8.94 | 418.27         | 500         | 20 |           | 0.065         | 0.055 | 16.35      |
| lexachlorobutadiene                              | 1            | 0            |         | 9.07 | 64.15          | 50          | 20 |           | 0.265         | 0.340 | 28.30 C1   |
| ,2,4-Trichlorobenzene                            | 1            | 0            |         | 8.99 | 57.96          | 50          | 20 | 0.2       | 0.574         | 0.665 | 15.92      |
| ,2,3-Trichlorobenzene                            | 1            | 0            |         | 9.29 | 54.43          | 50          | 20 | :== .     | 0.542         | 0.591 | 8.86       |
| Naphthalene                                      | 1            | 0            |         | 9.15 | 48.43          | 50          | 20 |           | 1.648         | 1.597 | 3.14       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 2

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 10/6/2020 9:54:00 A Data File: 11M83597.D Method: EPA 8260D Instrument: GCMS 11

| TxtCompd:                          | Col#     | Multi<br>Num | Туре | RT   | Conc    | Conc<br>Exp | Lo !<br>Lim |       | Initial<br>RF | RF    | %Diff | Flag |
|------------------------------------|----------|--------------|------|------|---------|-------------|-------------|-------|---------------|-------|-------|------|
| Fluorobenzene                      | 1        | 0            | 1    | 4.96 | 30.00   | 30          | **          |       |               | 0.000 | 0.00  |      |
| Chlorodifluoromethane              | 1        | 0            |      | 1.68 | 89.34   | 50          | 20          | 0.1   | 0.165         | 0.295 | 78.69 | C1   |
| Dichlorodifluoromethane            | 1        | 0            |      | 1.67 | 61.00   | 50          | 20          | 0.1   | 0.197         | 0.240 | 22.00 | C1   |
| Chloromethane                      | 1        | 0            |      | 1.84 | 54.76   | 50          | 20          | 0.1   | 0.179         | 0.196 | 9.52  |      |
| Bromomethane                       | 1        | 0            |      | 2.23 | 49.82   | 50          | 20          | 0.1   | 0.199         | 0.198 | 0.36  |      |
| Vinyl Chloride                     | 1        | 0            |      | 1.94 | 61.95   | 50          | 20          | 0.1   | 0.198         | 0.245 | 23.89 | C1   |
| Chloroethane                       | 1        | 0            |      | 2.32 | 53.63   | 50          | 20          | 0.1   | 0.155         | 0.166 | 7.25  |      |
| Trichlorofluoromethane             | 1        | 0            |      | 2.54 | 59.78   | 50          | 20          | 0.1   | 0.366         | 0.438 | 19.57 |      |
| Ethyl ether                        | 1        | 0            |      | 2.77 | 41.93   | 50          | 20          | 0.5   | 0.142         | 0.119 | 16.15 |      |
| Furan                              | 1        | 0            |      | 2.81 | 49.65   | 50          | 20          | 0.5   | 0.184         | 0.182 | 0.70  |      |
| 1,1,2-Trichloro-1,2,2-trifluoroeth | a 1      | 0            |      | 2.97 | 61.66   | 50          | 20          | 0.1   | 0.129         | 0.159 | 23.33 | C1   |
| Methylene Chloride                 | 1        | 0            |      | 3.37 | 42.52   | 50          | 20          | 0.1   | 0.232         | 0.197 | 14.96 |      |
| Acrolein                           | 1        | 0            |      | 2.89 | 215.19  | 250         | 20          |       | 0.025         | 0.022 | 13.93 |      |
| Acrylonitrile                      | 1        | 0            |      | 3.57 | 38.59   | 50          | 20          |       | 0.062         | 0.048 | 22.82 | C1   |
| Iodomethane                        | 1        | 0            |      | 3.12 | 44.55   | 50          | 20          |       | 0.187         | 0.225 | 10.90 |      |
| Acetone                            | 1        | 0            |      | 3.01 | 173.51  | 250         | 20          | 0.1   | 0.052         | 0.036 | 30.59 | C1   |
| Carbon Disulfide                   | 1        | 0            |      | 3.18 | 58.80   | 50          | 20          |       | 0.514         | 0.604 | 17.60 |      |
| t-Butyl Alcohol                    | 1        | ō            |      | 3.43 | 183.41  | 250         | 20          | • • • | 0.022         | 0.016 | 26.64 | C1   |
| n-Hexane                           | 1        | Ö            |      | 3.81 | 67.47   | 50          | 20          |       | 0.155         | 0.209 | 34.95 |      |
| Di-isopropyl-ether                 | 1        | Ö            |      | 3.95 | 44.97   | 50          | 20          |       | 0.397         | 0.357 | 10.06 | •    |
| 1.1-Dichloroethene                 | 1        | 0            |      | 2.98 | 56.05   | 50          | 20          | 0.1   | 0.215         | 0.241 | 12.10 |      |
| Methyl Acetate                     | 1        | 0            |      | 3.28 | 36.11   | 50          | 20          |       | 0.116         | 0.083 | 27.78 | C1   |
| Methyl-t-butyl ether               | 1        | 0            |      | 3.59 | 43.16   | 50          | 20          |       | 0.492         | 0.425 | 13.67 | 0,   |
| 1,1-Dichloroethane                 | 1        | 0            |      | 3.92 | 50.10   | 50          | 20          |       | 0.302         | 0.302 | 0.19  |      |
| trans-1,2-Dichloroethene           | 1        | 0            |      | 3.60 | 54.38   | 50          | 20          |       | 0.195         | 0.302 | 8.75  |      |
| Ethyl-t-butyl ether                | <u>-</u> | 0            |      | 4.19 | 43.70   | 50          | 20          |       | 0.476         | 0.416 | 12.60 |      |
| cis-1,2-Dichloroethene             | 1        | 0            |      | 4.31 | 49.90   | 50          | 20          |       | 0.299         | 0.410 | 0.20  |      |
| • •                                |          | 0            |      | 4.45 | 44.51   | 50          | 20          | 0.1   | 0.136         | 0.121 | 10.98 |      |
| Bromochloromethane                 | 1        | 0            |      | 4.45 | 60.43   | 50          | 20          |       | 0.130         | 0.121 | 20.85 | C1   |
| 2,2-Dichloropropane                | 1        | _            |      |      |         |             | 20          |       | 0.168         |       |       | Ci   |
| Ethyl acetate                      | 1        | 0            |      | 4.32 | 40.03   | 50          |             |       |               | 0.135 | 19.93 | C1   |
| 1,4-Dioxane                        | 1        | 0            |      | 5.33 | 1873.54 | 2500        | 20          |       | 0.004         | 0.003 | 25.06 | CI   |
| 1,1-Dichloropropene                | 1        | 0            |      | 4.70 | 58.55   | 50<br>50    | 20          |       | 0.243         | 0.285 | 17.10 |      |
| Chloroform                         | 1        | 0            | •    | 4.49 | 49.28   | 50          | 20          | 0.2   | 0.357         | 0.352 | 1.44  |      |
| Dibromofluoromethane               | 1        | 0            | S    | 4.58 | 30.07   | 75          |             | • •   | 0.274         | 0.275 | 0.24  | 0.4  |
| Cyclohexane                        | 1 .      | 0            |      | 4.65 | 63.14   | 50          | 20          | 0.1   | 0.203         | 0.257 | 26.28 | _01  |
| 1,2-Dichloroethane-d4              | 1        | 0            | S    | 4.78 | 29.46   | 75          |             |       | 0.121         | 0.119 | 1.80  |      |
| 1,2-Dichloroethane                 | 1        | 0            |      | 4.82 | 43.08   | 50          | 20          |       | 0.270         | 0.233 | 13.83 |      |
| 2-Butanone                         | 1        | 0            |      | 4.30 | 45.02   | 50          | 20          |       | 0.070         | 0.063 | 9.95  |      |
| 1,1,1-Trichloroethane              | 1        | 0            |      | 4.61 | 54.60   | 50          | 20          |       | 0.301         | 0.329 | 9.20  |      |
| Carbon Tetrachloride               | 1        | . 0          |      | 4.71 | 58.33   | 50          | 20          | 0.1   | 0.268         | 0.313 | 16.66 |      |
| Vinyl Acetate                      | 1        | 0            |      | 3.94 | 46.53   | 50          | 20          | _     | 0.470         | 0.437 | 6.94  |      |
| Bromodichloromethane               | 1        | 0            |      | 5.41 | 47.02   | 50          | 20          |       | 0.295         | 0.278 | 5.96  |      |
| Methylcyclohexane                  | 1        | 0            |      | 5.27 | 67.96   | 50          | 20          | 0.1   | 0.238         | 0.324 | 35.92 | C1   |
| Dibromomethane                     | 1        | 0            |      | 5.34 | 44.18   | 50          | 20          |       | 0.164         | 0.145 | 11.64 |      |
| 1,2-Dichloropropane                | . 1      | 0            |      | 5.28 | 47.24   | _50         | 20          |       | 0.190         | 0.180 | 5.53  |      |
| Trichloroethene                    | 1        | 0            |      | 5.16 | 55.67   | 50          | 20          |       | 0.228         | 0.254 | 11.34 |      |
| Benzene                            | 1        | 0            |      | 4.82 | 51.70   | 50          | 20          | 0.5   | 0.767         | 0.793 | 3.40  |      |
| tert-Amyl methyl ether             | 1        | 0            |      | 4.86 | 44.84   | 50          | 20          |       | 0.509         | 0.456 | 10.32 |      |
| Chlorobenzene-d5                   | 1        | 0            | 1    | 6.55 | 30.00   | 30          | **          |       |               | 0.000 | 0.00  |      |
| Iso-propylacetate                  | _1       | 0            |      | 4.81 | 39.91   | 50          | 20          | 0.5   | 0.303         | 0.242 | 20.18 |      |
| Methyl methacrylate                | 1        | 0            |      | 5.30 | 44.00   | 50          | 20          | 0.5   | 0.151         | 0.133 | 12.00 |      |
| Dibromochloromethane               | 1        | 0            |      | 6.24 | 43.33   | 50          | 20          | 0.1   | 0.287         | 0.249 | 13.34 |      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 2

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 10/6/2020 9:54:00 A Data File: 11M83597.D Method: EPA 8260D Instrument: GCMS 11

| TxtCompd:                   | Col# | Multi<br>Num | Туре     | RT   | Conc   | Conc<br>Exp |    | MIN<br>RF | Initial<br>RF | RF    | %Diff | Flag |
|-----------------------------|------|--------------|----------|------|--------|-------------|----|-----------|---------------|-------|-------|------|
| 2-Chloroethylvinylether     | 1    | 0            |          | 5.54 | 42.93  | 50          | 20 |           | 0.033         | 0.029 | 14.14 |      |
| cis-1,3-Dichloropropene     | 1    | 0            |          | 5.64 | 47.43  | 50          | 20 | 0.2       | 0.356         | 0.338 | 5.14  |      |
| rans-1,3-Dichloropropene    | 1    | 0            |          | 5.91 | 45.55  | 50          | 20 | 0.1       | 0.331         | 0.302 | 8.90  |      |
| Ethyl methacrylate          | 1    | 0            |          | 5.93 | 42.59  | 50          | 20 | 0.5       | 0.144         | 0.123 | 14.83 |      |
| 1,1,2-Trichloroethane       | 1    | 0            |          | 6.02 | 41.87  | 50          | 20 | 0.1       | 0.230         | 0.193 | 16.26 |      |
| 1,2-Dibromoethane           | 1    | 0            |          | 6.31 | 43.24  | 50          | 20 | 0.1       | 0.242         | 0.209 | 13.52 |      |
| 1,3-Dichloropropane         | 1    | 0            |          | 6.11 | 42.42  | 50          | 20 |           | 0.377         | 0.320 | 15.16 |      |
| 4-Methyl-2-Pentanone        | 1    | 0            |          | 5.70 | 38.84  | 50          | 20 | 0.1       | 0.180         | 0.140 | 22.32 | C1   |
| 2-Hexanone                  | 1    | 0            |          | 6.13 | 39.06  | 50          | 20 | 0.1       | 0.134         | 0.104 | 21.88 | C1   |
| Tetrachloroethene           | 1    | 0            |          | 6.11 | 56.28  | 50          | 20 | 0.2       | 0.194         | 0.218 | 12.56 |      |
| Toluene-d8                  | 1    | 0            | S        | 5.79 | 29.75  | 75          | ** |           | 1.168         | 1.158 | 0.84  |      |
| Toluene                     | 1    | 0            |          | 5.82 | 49.85  | 50          | 20 | 0.4       | 0.569         | 0.567 | 0.30  |      |
| 1,1,1,2-Tetrachioroethane   | 1    | 0            |          | 6.59 | 44.15  | 50          | 20 |           | 0.259         | 0.228 | 11.71 |      |
| Chlorobenzene               | 1    | 0            |          | 6.56 | 47.97  | 50          | 20 | 0.5       | 0.701         | 0.672 | 4.06  |      |
| 1,4-Dichlorobenzene-d4      | 1    | 0            | 1        | 7.82 | 30.00  | 30          | ** |           |               | 0.000 | 0.00  |      |
| n-Butyl acrylate            | 1    | 0            |          | 6.80 | 42.12  | 50          | 20 | 0.5       | 0.642         | 0.541 | 15.76 |      |
| n-Amyl acetate              | 1    | 0            |          | 6.91 | 35.67  | 50          | 20 | 0.5       | 0.542         | 0.425 | 28.66 | C1   |
| Bromoform                   | 1    | 0            |          | 7.01 | 41.31  | 50          | 20 | 0.1       | 0.374         | 0.309 | 17.38 |      |
| Ethylbenzene                | 1    | 0            |          | 6.60 | 52.61  | 50          | 20 | 0.1       | 0.495         | 0.521 | 5.23  |      |
| 1,1,2,2-Tetrachloroethane   | 1    | 0            |          | 7.22 | 42.27  | 50          | 20 | 0.1       | 0.545         | 0.461 | 15.46 |      |
| Bromofluorobenzene          | 1    | 0            | s        | 7.17 | 29.10  | 75          | ** |           | 0.781         | 0.758 | 2.99  |      |
| Styrene                     | 1    | 0            |          | 6.88 | 45.20  | 50          | 20 | 0.3       | 1.385         | 1.252 | 9.60  |      |
| n&p-Xylenes                 | 1    | 0            |          | 6.66 | 105.21 | 100         | 20 | 0.1       | 0.711         | 0.748 | 5.21  |      |
| o-Xylene                    | 1    | 0            |          | 6.88 | 46.97  | 50          | 20 | 0.3       | 0.765         | 0.718 | 6.06  |      |
| rans-1,4-Dichloro-2-butene  | 1    | 0            |          | 7.24 | 51.91  | 50          | 20 |           | 0.169         | 0.176 | 3.83  |      |
| 1,3-Dichlorobenzene         | 1    | 0            |          | 7.78 | 47.95  | 50          | 20 | 0.6       | 0.997         | 0.956 | 4.09  |      |
| 1,4-Dichlorobenzene         | 1    | 0            |          | 7.83 | 50.69  | 50          | 20 | 0.5       | 0.965         | 0.978 | 1.38  |      |
| 1,2-Dichlorobenzene         | 1    | 0            |          | 8.05 | 47.23  | 50          | 20 | 0.4       | 0.959         | 0.906 | 5.53  |      |
| sopropylbenzene             | 1    | 0            |          | 7.07 | 50.75  | 50          | 20 | 0.1       | 1.873         | 1.901 | 1.50  |      |
| Cyclohexanone               | 1    | 0            |          | 7.14 | 194.32 | 250         | 20 |           | 0.018         | 0.014 | 22.27 | C1   |
| Camphene                    | 1    | 0            |          | 7.24 | 59.71  | 50          | 20 |           | 0.554         | 0.661 | 19.43 |      |
| 1,2,3-Trichloropropane      | 1    | 0            |          | 7.26 | 43.27  | 50          | 20 |           | 0.625         | 0.541 | 13.46 |      |
| 2-Chlorotoluene             | 1    | 0            |          | 7.36 | 47.60  | 50          | 20 |           | 1.144         | 1.090 | 4.79  |      |
| o-Ethyltoluene              | 1    | 0            |          | 7.35 | 51.70  | 50          | 20 |           | 1.876         | 1.940 | 3.39  |      |
| 4-Chlorotoluene             | 1    | 0            |          | 7.42 | 49.24  | 50          | 20 |           | 1.156         | 1.138 | 1.52  |      |
| n-Propylbenzene             | 1    | 0            |          | 7.29 | 55.69  | 50          | 20 |           | 2.025         | 2.255 | 11.39 |      |
| Bromobenzene                | 1    | 0            |          | 7.27 | 50.03  | 50          | 20 |           | 1.036         | 1.037 | 0.05  |      |
| 1,3,5-Trimethylbenzene      | 1    | 0            |          | 7.38 | 50.12  | 50          | 20 |           | 1.533         | 1.537 | 0.25  |      |
| Butyl methacrylate          | 1    | 0            |          | 7.38 | 39.96  | 50          | 20 |           | 0.407         | 0.325 | 20.07 |      |
| -Butylbenzene               | 1    | 0            |          | 7.57 | 48.84  | 50          | 20 |           | 1.642         | 1.604 | 2.31  |      |
| 1,2,4-Trimethylbenzene      | 1    | 0            |          | 7.59 | 47.65  | 50          | 20 |           | 1.688         | 1.609 | 4.70  |      |
| sec-Butylbenzene            | 1    | 0            |          | 7.69 | 51.52  | 50          | 20 |           | 2.050         | 2.113 | 3.04  |      |
| 4-Isopropyltoluene          | 1    | 0            |          | 7.76 | 58.41  | 50          | 20 |           | 1.772         | 1.855 | 16.81 |      |
| n-Butylbenzene              | 1    | 0            |          | 8.00 | 54.47  | 50          | 20 |           | 1.833         | 1.997 | 8.94  |      |
| p-Diethylbenzene            | 1    | Ō            |          | 7.98 | 53.43  | 50          | 20 |           | 1.010         | 1.079 | 6.85  |      |
| I,2,4,5-Tetramethylbenzene  | 1    | 0            |          | 8.44 | 56.96  | 50          | 20 |           | 1.439         | 1.639 | 13.91 |      |
| 1,2-Dibromo-3-Chloropropane | 1    | Ō            |          | 8.50 | 39.66  | 50          | 20 | 0.05      |               | 0.123 | 20.67 | C1   |
| Camphor                     | 1    | 0            |          | 8.94 | 406.02 | 500         | 20 |           | 0.065         | 0.053 | 18.80 |      |
| Hexachlorobutadiene         | 1    | 0            |          | 9.07 | 64.70  | 50          | 20 |           | 0.265         | 0.343 | 29.40 | C1   |
| 1,2,4-Trichlorobenzene      | 1    | 0            |          | 8.99 | 58.29  | 50          | 20 |           | 0.574         | 0.669 | 16.58 |      |
| 1,2,3-Trichlorobenzene      | 1    | 0            | <u>.</u> | 9.29 | 53.53  | 50          | 20 |           | 0.542         | 0.581 | 7.06  |      |
| Naphthalene                 | 1    | 0            |          | 9.15 | 47.74  | 50          | 20 |           | 1.648         | 1.574 | 4.52  |      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 2

Calibration Name: CAL @ 20 PPB Cont Calibration Date/Time 10/7/2020 9:39:00 A Data File: 2M142814.D Method: EPA 8260D Instrument: GCMS 2

| xtCompd:                           | Col#       | Multi<br>Num | Туре | RT   | Conc           | Conc<br>Exp |    | RF  | Initial<br>RF                           | RF    | %Diff | Flag |
|------------------------------------|------------|--------------|------|------|----------------|-------------|----|-----|-----------------------------------------|-------|-------|------|
| luorobenzene                       | 1          | 0            | ı    | 5.10 | 30.00          | 30          | ** |     |                                         | 0.000 | 0.00  |      |
| Chlorodifluoromethane              | 1          | 0            |      | 1.70 | 15.52          | 20          | 20 | 0.1 | 0.306                                   | 0.237 | 22.41 | C1   |
| Pichlorodifluoromethane            | 1          | 0            |      | 1.68 | 16.67          | 20          | 20 | 0.1 | 0.308                                   | 0.257 | 16.63 |      |
| chloromethane                      | 1          | 0            |      | 1.86 | 15.69          | 20          | 20 | 0.1 | 0.343                                   | 0.269 | 21.54 | C1   |
| romomethane                        | _1         | 0            |      | 2.26 | 14.98          | 20          | 20 | 0.1 | 0.167                                   | 0.125 | 25.11 | C1   |
| 'inyl Chloride                     | 1          | 0            |      | 1.95 | 16.53          | 20          | 20 | 0.1 | 0.373                                   | 0.308 | 17.36 |      |
| chloroethane                       | 1          | 0            |      | 2.34 | 15.32          | 20          | 20 | 0.1 | 0.249                                   | 0.190 | 23.38 | C1   |
| richlorofluoromethane              | 1          | 0            |      | 2.57 | 17.26          | 20          | 20 | 0.1 | 0.571                                   | 0.493 | 13.70 |      |
| thyl ether                         | 1          | 0            |      | 2.80 | 18.62          | 20          | 20 | 0.5 | 0.198                                   | 0.185 | 6.88  |      |
| uran                               | 1          | 0            |      | 2.84 | 18.47          | 20          | 20 | 0.5 | 0.335                                   | 0.310 | 7.67  |      |
| ,1,2-Trichloro-1,2,2-trifluoroetha | 1          | 0            |      | 3.00 | 20.45          | 20          | 20 | 0.1 | 0.200                                   | 0.205 | 2.23  |      |
| lethylene Chloride                 | 1          | 0            |      | 3.42 | 19.04          | 20          | 20 | 0.1 | 0.283                                   | 0.270 | 4.82  |      |
| crolein                            | 1          | 0            |      | 2.92 | 86.48          | 100         | 20 |     | 0.045                                   | 0.039 | 13.52 |      |
| crylonitrile                       | 1          | 0            |      | 3.62 | 19.18          | 20          | 20 |     | 0.098                                   | 0.094 | 4.12  |      |
| odomethane                         | 1          | 0            |      | 3.15 | 19.00          | 20          | 20 |     | 0.210                                   | 0.204 | 4.98  |      |
| cetone                             | 1          | 0            |      | 3.04 | 88.40          | 100         | 20 | 0.1 | 0.081                                   | 0.071 | 11.60 |      |
| arbon Disulfide                    | 1          | 0            |      | 3.21 | 19.28          | 20          | 20 | 0.1 | 0.765                                   | 0.737 | 3.59  |      |
| Butyl Alcohol                      | 1          | 0            |      | 3.48 | 94.58          | 100         | 20 |     | 0.026                                   | 0.025 | 5.42  |      |
| -Hexane                            | 1          | 0            |      | 3.87 | 20.71          | 20          | 20 |     | 0.237                                   | 0.245 | 3.56  |      |
| i-isopropyl-ether                  | 1          | 0            |      | 4.03 | 19.43          | 20          | 20 |     | 0.678                                   | 0.659 | 2.83  |      |
| ,1-Dichloroethene                  | 1          | 0            |      | 3.01 | 18.44          | 20          | 20 | 0.1 | 0.386                                   | 0.356 | 7.78  |      |
| lethyl Acetate                     | 1          | 0            |      | 3.32 | 21.49          | 20          | 20 | 0.1 | 0.182                                   | 0.196 | 7.43  |      |
| lethyl-t-butyl ether               | 1          | 0            |      | 3.64 | 17.42          | 20          | 20 | 0.1 | 0.726                                   | 0.702 | 12.89 |      |
| .1-Dichloroethane                  | 1          | 0            |      | 4.00 | 19.59          | 20          | 20 | 0.2 | 0.470                                   | 0.461 | 2.05  |      |
| ans-1,2-Dichloroethene             | 1          | 0            |      | 3.65 | 19.15          | 20          | 20 | 0.1 | 0.285                                   | 0.272 | 4.24  |      |
| thyl-t-butyl ether                 | 1          | 0            |      | 4.29 | 19.54          | 20          | 20 | 0.5 | 0.734                                   | 0.717 | 2.31  |      |
| is-1,2-Dichloroethene              | 1          | 0            |      | 4.41 | 19.02          | 20          | 20 | 0.1 | 0.478                                   | 0.455 | 4.92  |      |
| romochloromethane                  | 1          | 0            |      | 4.57 | 20.92          | 20          | 20 |     | 0.212                                   | 0.222 | 4.62  |      |
| ,2-Dichloropropane                 | 1          | 0            |      | 4.42 | 21.17          | 20          | 20 |     | 0.422                                   | 0.446 | 5.84  |      |
| thyl acetate                       | 1          | 0            |      | 4.43 | 19.00          | 20          | 20 |     | 0.245                                   | 0.232 | 5.02  |      |
| ,4-Dioxane                         | 1          | 0            |      | 5.49 | 1018.25        | 1000        | 20 |     | 0.003                                   | 0.004 | 1.82  |      |
| ,1-Dichloropropene                 | 1          | 0            |      | 4.82 | 19.17          | 20          | 20 |     | 0.399                                   | 0.382 | 4.13  |      |
| hloroform                          | 1          | 0            |      | 4.60 | 19.67          | 20          | 20 | 0.2 | 0.512                                   | 0.504 | 1.66  |      |
| ibromofluoromethane                | 1          | Ö            | s    | 4.70 | 29.39          | 30          | ** |     | 0.287                                   | 0.282 | 2.03  |      |
| yclohexane                         | 1          | Ö            | ~    | 4.77 | 20.19          | 20          | 20 | 0.1 | 0.354                                   | 0.357 | 0.95  |      |
| ,2-Dichloroethane-d4               | <br>1      | 0            | S    | 4.91 | 28.95          | 30          | ** |     | 0.148                                   | 0.143 | 3.50  |      |
| ,2-Dichloroethane                  | 1          | Ö            | -    | 4.95 | 18.19          | 20          | 20 | 0.1 | 0.434                                   | 0.395 | 9.05  |      |
| -Butanone                          | 1          | Ö            |      | 4.41 | 19.70          | 20          | 20 |     | 0.125                                   | 0.123 | 1.50  |      |
| ,1,1-Trichloroethane               | 1          | Ö            |      | 4.73 | 20.02          | 20          | 20 |     | 0.454                                   | 0.455 | 0.08  |      |
| arbon Tetrachloride                | 1          | Ö            |      | 4.83 | 19.37          | 20          | 20 |     | 0.385                                   | 0.372 | 3.16  |      |
| inyl Acetate                       | 1          | Ö            |      | 4.02 | 20.74          | 20          | 20 |     | 0.761                                   | 0.789 | 3.68  |      |
| romodichloromethane                | 1          | Ö            |      | 5.57 | 18.15          | 20          | 20 | 0.2 | 0.415                                   | 0.416 | 9.23  |      |
| lethylcyclohexane                  | 1          | 0            |      | 5.42 | 20.10          | 20          | 20 |     | 0.343                                   | 0.344 | 0.49  |      |
| ibromomethane                      | 1          | 0            |      | 5.49 | 20.49          | 20          | 20 | 0.1 | 0.206                                   | 0.211 | 2.47  |      |
| ,2-Dichloropropane                 | 1          | 0            |      | 5.43 | 19.64          | 20          | 20 | 0.1 | 0.282                                   | 0.277 | 1.80  |      |
| richloroethene                     | _ <u>'</u> | -0-          |      | 5.30 | 20.04          | 20          | 20 |     | 0.317                                   | 0.318 | 0.18  |      |
| enzene                             | 1          | 0            |      | 4.95 | 19.16          | 20          | 20 |     | 1.123                                   | 1.076 | 4.18  |      |
| ert-Amyl methyl ether              | 1          | 0            |      | 4.99 | 19.10          | 20          | 20 | 0.5 | 0.790                                   | 0.760 | 3.78  |      |
| hlorobenzene-d5                    | 1          | 0            | 1    | 6.73 | 30.00          | 30          | 20 |     | J. 1 JU                                 | 0.700 | 0.00  |      |
|                                    | 1          | 0            | •    | 4.95 | 30.00<br>19.41 | 20          | 20 | 0.5 | 0.522                                   | 0.507 | 2.95  |      |
| o-propylacetate                    |            | J            |      | 4.50 | 13.41          | 20          |    | 0.5 | • • • • • • • • • • • • • • • • • • • • | 0.507 |       |      |
| lethyl methacrylate                | 1          | 0            |      | 5.45 | 18.64          | 20          | 20 | ΛF  | 0.252                                   | 0.235 | 6.78  |      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 2

Calibration Name: CAL @ 20 PPB Cont Calibration Date/Time 10/7/2020 9:39:00 A Data File: 2M142814.D Method: EPA 8260D Instrument: GCMS 2

| TxtCompd:                   | Co#      |   | Туре | RT            | Conc   | Conc<br>Exp | Lo<br>Lim |      | Initial<br>RF | RF                          | %Diff Flag |
|-----------------------------|----------|---|------|---------------|--------|-------------|-----------|------|---------------|-----------------------------|------------|
| 2-Chloroethylvinylether     | 1        | 0 |      | 5.71          | 20.36  | 20          | 20        |      | 0.038         | 0.039                       | 1.80       |
| cis-1,3-Dichloropropene     | 1        | 0 |      | 5.81          | 20.35  | 20          | 20        | 0.2  | 0.481         | 0.489                       | 1.73       |
| rans-1,3-Dichloropropene    | 1        | 0 |      | 6.09          | 19.51  | 20          | 20        |      | 0.458         | 0.446                       | 2.46       |
| Ethyl methacrylate          | 1        | 0 |      | 6.10          | 18.79  | 20          | 20        | 0.5  | 0.265         | 0.249                       | 6.03       |
| 1,1,2-Trichloroethane       | 1        | 0 |      | 6.20          | 19.53  | 20          | 20        | 0.1  | 0.297         | 0.290                       | 2.36       |
| 1,2-Dibromoethane           | 1        | 0 |      | 6.49          | 19.65  | 20          | 20        | 0.1  | 0.313         | 0.308                       | 1.74       |
| 1,3-Dichloropropane         | 1        | 0 |      | 6.29          | 19.48  | 20          | 20        |      | 0.519         | 0.506                       | 2.60       |
| 4-Methyl-2-Pentanone        | 1        | 0 |      | 5.87          | 18.82  | 20          | 20        | 0.1  | 0.280         | 0.264                       | 5.90       |
| 2-Hexanone                  | 1        | 0 |      | 6.30          | 17.70  | 20          | 20        | 0.1  | 0.208         | 0.185                       | 11.50      |
| Tetrachloroethene           | 1        | 0 |      | 6.29          | 19.98  | 20          | 20        | 0.2  | 0.270         | 0.270                       | 0.09       |
| Toluene-d8                  | 1        | 0 | S    | 5.95          | 29.87  | 30          | **        |      | 1.174         | 1.169                       | 0.44       |
| Toluene                     | 1        | 0 |      | 5.99          | 19.55  | 20          | 20        | 0.4  | 0.792         | 0.774                       | 2.27       |
| 1,1,1,2-Tetrachloroethane   | 1        | 0 |      | 6.78          | 18.00  | 20          | 20        |      | 0.318         | 0.286                       | 10.01      |
| Chlorobenzene               | 1        | 0 |      | 6.75          | 19.12  | 20          | 20        | 0.5  | 0.884         | 0.845                       | 4.42       |
| 1,4-Dichlorobenzene-d4      | 1        | 0 | 1    | 8.02          | 30.00  | 30          | **        |      |               | 0.000                       | 0.00       |
| n-Butyl acrylate            | 1        | 0 |      | 6.99          | 19.80  | 20          | 20        | 0.5  | 1.012         | 1.002                       | 1.01       |
| n-Amyl acetate              | 1        | 0 |      | 7.11          | 18.94  | 20          | 20        | 0.5  | 0.891         | 0.844                       | 5.29       |
| Bromoform                   | 1        | 0 |      | 7.20          | 20.08  | 20          | 20        |      | 0.448         | 0.449                       | 0.39       |
| Ethylbenzene                | 1        | 0 |      | 6.79          | 19.02  | 20          | 20        | 0.1  | 0.683         | 0.649                       | 4.92       |
| 1,1,2,2-Tetrachloroethane   | 1        | 0 |      | 7.42          | 18.09  | 20          | 20        |      | 0.803         | 0.726                       | 9.57       |
| Bromofluorobenzene          | 1        | 0 | S    | 7.37          | 30.49  | 30          | **        |      | 0.788         | 0.801                       | 1.65       |
| Styrene                     | 1        | 0 |      | 7.07          | 19.84  | 20          | 20        | 0.3  | 1.714         | 1.700                       | 0.80       |
| m&p-Xylenes                 | 1        | 0 |      | 6.85          | 37.95  | 40          | 20        |      | 1.039         | 0.986                       | 5.12       |
| p-Xylene                    | 1        | 0 |      | 7.07          | 19.61  | 20          | 20        |      | 0.984         | 0.964                       | 1.96       |
| rans-1,4-Dichloro-2-butene  | 1        | 0 |      | 7.44          | 23.07  | 20          | 20        | -    | 0.190         | 0.219                       | 15.34      |
| I,3-Dichlorobenzene         | 1        | 0 |      | 7.99          | 18.38  | 20          | 20        | 0.6  | 1.220         | 1.122                       | 8.08       |
| 1,4-Dichlorobenzene         | 1        | 0 |      | 8.03          | 18.10  | 20          | 20        |      | 1.249         | 1.130                       | 9.48       |
| 1,2-Dichlorobenzene         | 1        | 0 |      | 8.26          | 18.06  | 20          | 20        |      | 1.151         | 1.039                       | 9.69       |
| sopropylbenzene             | 1        | 0 |      | 7.26          | 20.04  | 20          | 20        |      | 2.399         | 2.404                       | 0.19       |
| Cyclohexanone               | 1        | 0 |      | 7.34          | 109.02 | 100         | 20        | 0.,  | 0.021         | 0.023                       | 9.02       |
| Camphene                    | <u>-</u> | 0 |      | 7.43          | 18.44  | 20          | 20        |      | 0.708         | 0.653                       | 7.82       |
| 1,2,3-Trichloropropane      | 1        | 0 |      | 7.46          | 18.94  | 20          | 20        |      | 0.870         | 0.824                       | 5.31       |
| 2-Chlorotoluene             | 1        | 0 |      | 7.56          | 19.91  | 20          | 20        |      | 1.443         | 1.437                       | 0.43       |
| p-Ethyltoluene              | 1        | 0 |      | 7.55          | 19.50  | 20          | 20        |      | 2.414         | 2.354                       | 2.48       |
| 1-Chlorotoluene             | 1        | 0 |      | 7.62          | 20.22  | 20          | 20        |      | 1.470         | 1.486                       | 1.12       |
|                             |          | 0 |      | 7.49          | 19.70  |             | 20        |      | 2.888         | 2.845                       | 1.48       |
| n-Propylbenzene             | 1        | 0 |      |               |        | 20<br>20    | 20        |      |               | 2. <del>04</del> 5<br>1.481 | 7.81       |
| Bromobenzene                | •        |   |      | 7.46<br>7.57  | 18.44  |             |           |      | 1.606         |                             | 1.70       |
| 1,3,5-Trimethylbenzene      | 1        | 0 |      | 7. <b>5</b> 7 | 19.66  | 20          | 20        | Λ.   | 1.870         | 1.838                       |            |
| Butyl methacrylate          | 1        | 0 |      | 7.58          | 18.91  | 20          | 20        | 0.5  | 0.731         | 0.691                       | 5.47       |
| -Butylbenzene               | _ 1      | 0 |      | 7.78          | 19.72  | 20          | 20        |      | 1.825         | 1.799                       | 1.39       |
| ,2,4-Trimethylbenzene       | 1        | 0 |      | 7.79          | 18.98  | 20          | 20        |      | 2.015         | 1.912                       | 5.08       |
| sec-Butylbenzene            | 1        | 0 |      | 7.90          | 20.07  | 20          | 20        |      | 2.255         | 2.263                       | 0.37       |
| I-Isopropyltoluene          | 1        | 0 |      | 7.96          | 19.84  | 20          | 20        |      | 1.915         | 1.900                       | 0.80       |
| n-Butylbenzene              | 1        | 0 |      | 8.20          | 20.12  | 20          | 20        |      | 1.981         | 1.993                       | 0.61       |
| o-Diethylbenzene            | 1        | 0 |      | 8.19          | 19.45  | 20          | 20        |      | 1.083         | 1.053                       | 2.75       |
| ,2,4,5-Tetramethylbenzene   | 1        | 0 |      | 8.65          | 18.76  | 20          | 20        |      | 1.583         | 1.485                       | 6.21       |
| 1,2-Dibromo-3-Chloropropane | 1        | 0 |      | 8.71          | 18.93  | 20          | 20        | 0.05 | 0.163         | 0.154                       | 5.34       |
| Camphor                     | 1        | 0 |      | 9.14          | 184.69 | 200         | 20        |      | 0.064         | 0.059                       | 7.66       |
| Hexachlorobutadiene         | 1        | 0 |      | 9.28          | 19.15  | 20          | 20        |      | 0.248         | 0.238                       | 4.26       |
| 1,2,4-Trichlorobenzene      | 1        | 0 |      | 9.20          | 17.96  | 20          | 20        | 0.2  | 0.591         | 0.531                       | 10.21      |
| 1,2,3-Trichlorobenzene      | 1        | 0 |      | 9.50          | 17.48  | 20          | 20        |      | 0.490         | 0.429                       | 12.59      |
| Naphthalene                 | 1        | 0 |      | 9.36          | 16.21  | 20          | 20        |      | 1.646         | 1.334                       | 18.97      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 2

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 10/7/2020 2:53:00 P Data File: 11M83666.D Method: EPA 8260D Instrument: GCMS 11

| xtCompd:                           | Col#  |     | Туре | RT    | Conc    | Conc<br>Exp |     | MIN<br>RF | Initial<br>RF | RF     | %Diff | <del></del> |
|------------------------------------|-------|-----|------|-------|---------|-------------|-----|-----------|---------------|--------|-------|-------------|
| fluorobenzene                      | 1     | 0   | ı    | 4.96  | 30.00   | 30          | **  |           |               | 0.000  | 0.00  |             |
| Chlorodifluoromethane              | 1     | 0   |      | 1.69  | 77.40   | 50          | 20  | 0.1       | 0.165         | 0.255  | 54.80 | C1          |
| Dichlorodifluoromethane            | 1     | 0   |      | 1.67  | 51.86   | 50          | 20  | 0.1       | 0.197         | 0.204  | 3.71  |             |
| Chloromethane                      | 1     | 0   |      | 1.84  | 53.10   | 50          | 20  | 0.1       | 0.179         | 0.190  | 6.20  |             |
| Bromomethane                       | _1    | 0   |      | 2.24  | 47.79   | 50          | 20  | 0.1       | 0.199         | 0.190  | 4.43  |             |
| /inyl Chloride                     | 1     | 0   |      | 1.94  | 60.00   | 50          | 20  | 0.1       | 0.198         | 0.237  | 20.01 |             |
| Chloroethane                       | 1     | 0   |      | 2.33  | 56.13   | 50          | 20  | 0.1       | 0.155         | 0.174  | 12.25 |             |
| richlorofluoromethane              | 1     | 0   |      | 2.55  | 59.56   | 50          | 20  | 0.1       | 0.366         | 0.436  | 19.13 |             |
| Ethyl ether                        | 1     | 0   |      | 2.77  | 41.38   | 50          | 20  | 0.5       | 0.142         | 0.117  | 17.24 |             |
| uran                               | 1     | 0   |      | 2.81  | 48.58   | 50          | 20  | 0.5       | 0.184         | 0.178  | 2.84  |             |
| ,1,2-Trichloro-1,2,2-trifluoroetha | 1     | 0   |      | 2.97  | 59.35   | 50          | 20  | 0.1       | 0.129         | 0.153  | 18.70 |             |
| Methylene Chloride                 | 1     | 0   |      | 3.37  | 43.89   | 50          | 20  | 0.1       | 0.232         | 0.203  | 12.22 |             |
| Acrolein                           | 1     | 0   |      | 2.89  | 222.42  | 250         | 20  |           | 0.025         | 0.022  | 11.03 |             |
| Acrylonitrile                      | 1     | 0   |      | 3.57  | 43.52   | 50          | 20  |           | 0.062         | 0.054  | 12.97 |             |
| odomethane                         | 1     | 0   |      | 3.12  | 45.12   | 50          | 20  |           | 0.187         | 0.228  | 9.75  |             |
| Acetone                            | 1     | 0   |      | 3.01  | 199.01  | 250         | 20  | 0.1       | 0.052         | 0.042  | 20.40 |             |
| Carbon Disulfide                   | 1     | 0   |      | 3.18  | 58.50   | 50          | 20  |           | 0.514         | 0.601  | 17.00 |             |
| -Butyl Alcohol                     | 1     | 0   |      | 3.43  | 192.00  | 250         | 20  | • • •     | 0.022         | 0.017  | 23.20 |             |
| -Hexane                            | 1     | Ö   |      | 3.81  | 65.72   | 50          | 20  |           | 0.155         | 0.204  | 31.44 |             |
| Di-isopropyl-ether                 | 1     | 0   |      | 3.95  | 46.66   | 50          | 20  |           | 0.397         | 0.370  | 6.68  | •           |
| 1.1-Dichloroethene                 | <br>1 | 0 - |      | 2.98  | 57.65   | 50          | 20  | 0.1       | 0.215         | 0.248  | 15.30 |             |
| Nethyl Acetate                     | 1     | 0   |      | 3.28  | 41.23   | 50          | 20  |           | 0.116         | 0.095  | 17.53 |             |
| Methyl-t-butyl ether               | 1     | 0   |      | 3.59  | 42.84   | 50          | 20  |           | 0.492         | 0.422  | 14.32 |             |
| ,1-Dichloroethane                  | 1     | 0   |      | 3.92  | 51.60   | 50          | 20  |           | 0.302         | 0.422  | 3.21  |             |
| rans-1,2-Dichloroethene            | · ·   | 0   |      | 3.60  | 56.07   | 50          | 20  |           | 0.195         | 0.312  | 12.13 |             |
|                                    | 1     | 0   |      |       |         |             |     |           | 0.193         | 0.416  | 12.55 |             |
| Ethyl-t-butyl ether                | •     | -   |      | 4.19  | 43.73   | 50<br>50    | 20  |           |               |        |       |             |
| cis-1,2-Dichloroethene             | 1     | 0   |      | 4.31  | 51.36   | 50<br>50    | 20  | 0.1       | 0.299         | 0.307  | 2.72  |             |
| Bromochloromethane                 | 1     | 0   |      | 4.45  | 46.46   | 50          | 20  |           | 0.136         | 0.126  | 7.08  |             |
| 2,2-Dichloropropane                | 1     | 0   |      | 4.31  | 61.76   | 50          | 20  |           | 0.241         | 0.298  | 23.51 |             |
| Ethyl acetate                      | 1 -   | _ 0 |      | 4.32  | 42.85   | 50          | 20  |           | 0.168         | 0.144  | 14.30 |             |
| ,4-Dioxane                         | 1     | 0   |      | 5.33  | 2103.96 | 2500        | 20  |           | 0.004         | 0.003  | 15.84 |             |
| ,1-Dichloropropene                 | 1     | 0   |      | 4.70  | 59.86   | 50          | 20  |           | 0.243         | 0.291  | 19.72 |             |
| Chloroform                         | 1     | 0   |      | 4.49  | 50.78   | 50          | 20  | 0.2       | 0.357         | 0.362  | 1.56  |             |
| Dibromofluoromethane               | 1     | 0   | S    | 4.58  | 30.94   | 75          | **  |           | 0.274         | 0.283  | 3.12  |             |
| Cyclohexane                        | 1     | 0   |      | 4.65  | 62.08   | 50          | 20  | 0.1       | 0.203         | 0.253  | 24.16 |             |
| ,2-Dichloroethane-d4               | 1     | 0   | S    | 4.77  | 29.99   | 75          | **  |           | 0.121         | 0.121  | 0.02  |             |
| ,2-Dichloroethane                  | 1     | 0   |      | 4.82  | 44.76   | 50          | 20  | 0.1       | 0.270         | 0.242  | 10.49 |             |
| ?-Butanone                         | 1     | 0   |      | 4.30  | 43.33   | 50          | 20  | 0.1       | 0.070         | 0.061  | 13.33 |             |
| ,1,1-Trichloroethane               | 1     | 0   |      | 4.61  | 55.32   | 50          | 20  | 0.1       | 0.301         | 0.333  | 10.65 |             |
| Carbon Tetrachloride               | 1     | 0   |      | 4.71  | 59.71   | 50          | 20  | 0.1       | 0.268         | 0.320  | 19.42 |             |
| /inyl Acetate                      | 1     | 0   |      | 3.94  | 45.93   | 50          | 20  |           | 0.470         | 0.432  | 8.14  |             |
| Bromodichloromethane               | 1     | 0   |      | 5.41  | 46.92   | 50          | 20  | 0.2       | 0.295         | 0.277  | 6.15  |             |
| Methylcyclohexane                  | 1     | 0   |      | 5.27  | 68.18   | 50          | 20  | 0.1       | 0.238         | 0.325  | 36.36 | C1          |
| Dibromomethane                     | 1     | 0   |      | 5.34  | 47.23   | 50          | 20  |           | 0.164         | 0.155  | 5.54  |             |
| ,2-Dichloropropane                 | 1     | 0   |      | 5.28  | 48.41   | 50          | 20  | 0.1       | 0.190         | 0.184  | 3.18  |             |
| richloroethene                     | 1     | 0   |      | 5.15  | 57.19   | 50          | 20  |           | 0.228         | 0.261  | 14.37 |             |
| Benzene                            | 1     | Ö   |      | 4.82  | 53.33   | 50          | 20  |           | 0.767         | 0.818  | 6.66  |             |
| ert-Amyl methyl ether              | 1     | Ö   |      | 4.85  | 43.48   | 50          | 20  |           | 0.509         | 0.443  | 13.05 |             |
| Chlorobenzene-d5                   | 1     | 0   | 1    | 6.55  | 30.00   | 30          | **  |           | 2.200         | 0.000  | 0.00  |             |
| so-propylacetate                   | 1     | 0   | •    | 4.81  | 40.28   | 50          | 20  | 0.5       | 0.303         | 0.000  | 19.45 |             |
|                                    |       |     |      | 5.30  | -       |             | 20  |           | 0.151         | 0.113  | 25.55 |             |
| Methyl methacrylate                | 1     | 0   |      | P 311 | 37.22   | 50          | 711 | n s       | 111-1         | () 774 | 75 55 | (:1         |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 2

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 10/7/2020 2:53:00 P Data File: 11M83666.D Method: EPA 8260D Instrument: GCMS 11

| Cont Calibration Date/Tin   | ne 10/7/. | 2020 2:        | :53:00 P | N            | lethod: EPA    | 8260D       |    |           |                |       |              |
|-----------------------------|-----------|----------------|----------|--------------|----------------|-------------|----|-----------|----------------|-------|--------------|
| TxtCompd:                   | Co#       | Multi<br>Num   | Туре     | RT           | Conc           | Conc<br>Exp |    | MIN<br>RF | Initial<br>RF  | RF    | %Diff Flag   |
| 2-Chloroethylvinylether     | 1         | 0              |          | 5.54         | 41.11          | 50          | 20 |           | 0.033          | 0.028 | 17.78        |
| cis-1,3-Dichloropropene     | 1         | 0              |          | 5.64         | 47.03          | 50          | 20 | 0.2       | 0.356          | 0.335 | 5.94         |
| trans-1,3-Dichloropropene   | 1         | 0              |          | 5.92         | 45.70          | 50          | 20 | 0.1       | 0.331          | 0.303 | 8.59         |
| Ethyl methacrylate          | 1         | 0              |          | 5.94         | 42.87          | 50          | 20 | 0.5       | 0.144          | 0.124 | 14.26        |
| 1,1,2-Trichloroethane       | 1         | 0              |          | 6.02         | 43.25          | 50          | 20 | 0.1       | 0.230          | 0.199 | 13.50        |
| 1,2-Dibromoethane           | 1         | 0              |          | 6.31         | 45.38          | 50          | 20 | 0.1       | 0.242          | 0.220 | 9.23         |
| 1,3-Dichloropropane         | 1         | 0              |          | 6.11         | 42.32          | 50          | 20 |           | 0.377          | 0.319 | 15.36        |
| 4-Methyl-2-Pentanone        | 1         | 0              |          | 5.70         | 41.38          | 50          | 20 | 0.1       | 0.180          | 0.149 | 17.24        |
| 2-Hexanone                  | 1         | 0              |          | 6.12         | 40.78          | 50          | 20 | 0.1       | 0.134          | 0.109 | 18.45        |
| Tetrachloroethene           | 1         | 0              |          | 6.12         | 57.36          | 50          | 20 | 0.2       | 0.194          | 0.222 | 14.71        |
| Toluene-d8                  | 1         | 0              | S        | 5.79         | 29.68          | 75          | ** |           | 1.168          | 1.155 | 1.05         |
| Toluene                     | 1         | 0              |          | 5.82         | 50.59          | 50          | 20 | 0.4       | 0.569          | 0.575 | 1.19         |
| 1,1,1,2-Tetrachloroethane   | 1         | 0              |          | 6.60         | 44.94          | 50          | 20 |           | 0.259          | 0.233 | 10.13        |
| Chlorobenzene               | 1         | 0              |          | 6.56         | 49.39          | 50          | 20 | 0.5       | 0.701          | 0.692 | 1.22         |
| 1,4-Dichlorobenzene-d4      | 1         | 0              | ı        | 7.82         | 30.00          | 30          | ** |           |                | 0.000 | 0.00         |
| n-Butyl acrylate            | :<br>1    | 0              |          | 6.80         | 41.46          | 50          | 20 | 0.5       | 0.642          | 0.533 | 17.08        |
| n-Amyl acetate              | 1         | Ō              |          | 6.91         | 34.56          | 50          | 20 |           | 0.542          | 0.411 | 30.87 C1     |
| Bromoform                   | 1         | 0              |          | 7.01         | 41.06          | 50          | 20 |           | 0.374          | 0.307 | 17.88        |
| Ethylbenzene                | 1         | 0              |          | 6.60         | 53.51          | 50          | 20 |           | 0.495          | 0.530 | 7.02         |
| 1,1,2,2-Tetrachloroethane   | 1         | 0              |          | 7.22         | 42.25          | 50          | 20 |           | 0.545          | 0.461 | 15.51        |
| Bromofluorobenzene          | 1         | 0              | S        | 7.17         | 28.83          | 75          | ** |           | 0.781          | 0.751 | 3.92         |
|                             | 1         | 0              | 3        | 6.88         | 45.64          | 50          | 20 | 0.3       | 1.385          | 1.264 | 8.73         |
| Styrene                     | 1         | 0              |          | 6.66         | 103.75         | 100         | 20 |           | 0.711          | 0.738 | 3.75         |
| m&p-Xylenes                 | 1         | 0              |          | 6.88         | 47.81          | 50          | 20 |           | 0.765          | 0.730 | 4.38         |
| o-Xylene                    |           | 0              |          |              |                |             |    | 0.5       |                | 0.731 | 4.36<br>4.16 |
| trans-1,4-Dichloro-2-butene | 1         | 0              |          | 7.24<br>7.78 | 52.08<br>48.78 | 50<br>50    | 20 |           | 0.169<br>0.997 | 0.170 | 2.44         |
| 1,3-Dichlorobenzene         | 1         | •              |          |              |                |             | 20 |           |                |       |              |
| 1,4-Dichlorobenzene         | 1         | 0              |          | 7.83         | 50.11          | 50          | 20 |           | 0.965          | 0.967 | 0.22         |
| 1,2-Dichlorobenzene         | 1         | 0              |          | 8.05         | 46.49          | 50          | 20 |           | 0.959          | 0.891 | 7.03         |
| Isopropylbenzene            | 1         | 0              |          | 7.07         | 51.70          | 50          | 20 | 0.1       | 1.873          | 1.937 | 3.41         |
| Cyclohexanone               | _ 1       | $-\frac{0}{2}$ |          | 7.14         | 209.93         | 250         | 20 |           | 0.018          | 0.015 | 16.03        |
| Camphene                    | 1         | 0              |          | 7.24         | 61.57          | 50          | 20 |           | 0.554          | 0.682 | 23.14 C1     |
| 1,2,3-Trichloropropane      | 1         | 0              |          | 7.25         | 44.00          | 50          | 20 |           | 0.625          | 0.550 | 12.01        |
| 2-Chlorotoluene             | 1         | 0              |          | 7.36         | 48.25          | 50          | 20 |           | 1.144          | 1.104 | 3.50         |
| p-Ethyltoluene              | 1         | 0              |          | 7.35         | 51.80          | 50          | 20 |           | 1.876          | 1.944 | 3.61         |
| 4-Chlorotoluene             | 1         | 0              |          | 7.42         | 47.89          | 50          | 20 |           | 1.156          | 1.107 | 4.21         |
| n-Propylbenzene             | 1         | 0              |          | 7.29         | 55.64          | 50          | 20 |           | 2.025          | 2.253 | 11.27        |
| Bromobenzene                | 1         | 0              |          | 7.27         | 50.69          | 50          | 20 |           | 1.036          | 1.050 | 1.38         |
| 1,3,5-Trimethylbenzene      | 1         | 0              |          | 7.38         | 50.70          | 50          | 20 |           | 1.533          | 1.555 | 1.39         |
| Butyl methacrylate          | 1         | 0              |          | 7.38         | 37.73          | 50          | 20 | 0.5       | 0.407          | 0.307 | 24.54 C1     |
| t-Butylbenzene              | 1         | 0              |          | 7.57         | 49.37          | 50          | 20 |           | 1.642          | 1.621 | 1.26         |
| 1,2,4-Trimethylbenzene      | 1         | 0              |          | 7.59         | 47.37          | 50          | 20 |           | 1.688          | 1.600 | 5.26         |
| sec-Butylbenzene            | 1         | 0              |          | 7.69         | 51.70          | 50          | 20 |           | 2.050          | 2.120 | 3.40         |
| 4-Isopropyltoluene          | 1         | 0              |          | 7.76         | 57.83          | 50          | 20 |           | 1.772          | 1.835 | 15.66        |
| n-Butylbenzene              | 1         | 0              |          | 8.00         | 54.06          | 50          | 20 |           | 1.833          | 1.982 | 8.12         |
| p-Diethylbenzene            | 1         | 0              |          | 7.98         | 52.85          | 50          | 20 |           | 1.010          | 1.067 | 5.69         |
| 1,2,4,5-Tetramethylbenzene  | 1         | 0              |          | 8.44         | 55.60          | 50          | 20 |           | 1.439          | 1.600 | 11.19        |
| 1,2-Dibromo-3-Chloropropane | 1         | 0              |          | 8.50         | 41.91          | 50          | 20 | 0.05      | 0.155          | 0.130 | 16.18        |
| Camphor                     | 1         | 0              |          | 8.93         | 415.71         | 500         | 20 |           | 0.065          | 0.054 | 16.86        |
| Hexachlorobutadiene         | 1         | 0              |          | 9.07         | 63.68          | 50          | 20 |           | 0.265          | 0.338 | 27.35 C1     |
| 1,2,4-Trichlorobenzene      | 1         | 0              |          | 8.99         | 56.06          | 50          | 20 | 0.2       | 0.574          | 0.644 | 12.12        |
| 1,2,3-Trichlorobenzene      | 1         | 0              |          | 9.29         | 52.29          | 50          | 20 |           | 0.542          | 0.567 | 4.58         |
| Naphthalene                 | 1         | 0              |          | 9.15         | 47.09          | 50          | 20 |           | 1.648          | 1.552 | 5.82         |
|                             |           | <u> </u>       |          | J V          |                |             |    |           |                |       |              |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 2

Calibration Name: CAL @ 20 PPB Cont Calibration Date/Time 10/9/2020 8:41:00 A Data File: 1M140329.D Method: EPA 8260D Instrument: GCMS 1

| TxtCompd:                          | Co#      | Multi<br>Num | Туре | RT           | Conc           | Conc<br>Exp |    | RF   | Initial<br>RF | RF    | %Diff | Flag |
|------------------------------------|----------|--------------|------|--------------|----------------|-------------|----|------|---------------|-------|-------|------|
| luorobenzene                       | 1        | 0            | 1    | 5.34         | 30.00          | 30          | ** |      |               | 0.000 | 0.00  |      |
| Chlorodifluoromethane              | 1        | 0            |      | 2.15         | 15.35          | 20          | 20 | 0.1  | 0.408         | 0.313 | 23.26 | C1   |
| Dichlorodifluoromethane            | 1        | 0            |      | 2.13         | 10.83          | 20          | 20 | 0.1  | 0.198         | 0.107 | 45.84 | C1   |
| Chloromethane                      | 1        | 0            |      | 2.30         | 15.32          | 20          | 20 | 0.1  | 0.273         | 0.209 | 23.38 | C1   |
| Bromomethane                       | 1        | _0           |      | 2.67         | 17.26          | 20          | 20 |      | 0.126         | 0.109 | 13.70 |      |
| /inyl Chloride                     | 1        | 0            |      | 2.39         | 17.35          | 20          | 20 | 0.1  | 0.221         | 0.192 | 13.27 |      |
| Chloroethane                       | 1        | 0            |      | 2.74         | 22.44          | 20          | 20 | 0.1  | 0.130         | 0.146 | 12.22 |      |
| Trichlorofluoromethane             | 1        | 0            |      | 2.95         | 21.39          | 20          | 20 | 0.1  | 0.299         | 0.319 | 6.93  |      |
| Ethyl ether                        | 1        | 0            |      | 3.17         | 20.98          | 20          | 20 | 0.5  | 0.142         | 0.149 | 4.90  |      |
| uran                               | 1        | 0            |      | 3.21         | 18.99          | 20          | 20 | 0.5  | 0.304         | 0.289 | 5.04  |      |
| ,1,2-Trichloro-1,2,2-trifluoroetha | 1        | 0            |      | 3.36         | 22.39          | 20          | 20 | 0.1  | 0.127         | 0.142 | 11.95 |      |
| Methylene Chloride                 | 1        | 0            |      | 3.73         | 21.53          | 20          | 20 | 0.1  | 0.202         | 0.218 | 7.64  |      |
| Acrolein                           | 1        | 0            |      | 3.28         | 109.29         | 100         | 20 |      | 0.032         | 0.035 | 9.29  |      |
| Acrylonitrile                      | 1        | 0            |      | 3.93         | 22.69          | 20          | 20 |      | 0.088         | 0.100 | 13.43 |      |
| odomethane                         | 1        | 0            |      | 3.50         | 17.05          | 20          | 20 |      | 0.232         | 0.198 | 14.76 |      |
| Acetone                            | 1        | 0            |      | 3.39         | 103.61         | 100         | 20 | 0.1  | 0.079         | 0.082 | 3.61  |      |
| Carbon Disulfide                   | 1        | 0            |      | 3.57         | 18.78          | 20          | 20 | 0.1  | 0.535         | 0.502 | 6.11  |      |
| -Butyl Alcohol                     | 1        | 0            |      | 3.80         | 124.57         | 100         | 20 |      | 0.022         | 0.028 | 24.57 | C1   |
| n-Hexane                           | 1        | 0            |      | 4.17         | 21.67          | 20          | 20 |      | 0.173         | 0.188 | 8.36  |      |
| Di-isopropyl-ether                 | 1        | 0            |      | 4.31         | 20.35          | 20          | 20 |      | 0.553         | 0.563 | 1.75  |      |
| ,1-Dichloroethene                  | 1        | 0            |      | 3.37         | 20.26          | 20          | 20 | 0.1  | 0.261         | 0.265 | 1.32  |      |
| Methyl Acetate                     | 1        | 0            |      | 3.64         | 22.46          | 20          | 20 |      | 0.170         | 0.191 | 12.28 |      |
| Methyl-t-butyl ether               | 1        | 0            |      | 3.96         | 24.30          | 20          | 20 |      | 0.458         | 0.557 | 21.52 | C1   |
| ,1-Dichloroethane                  | 1        | 0            |      | 4.28         | 18.88          | 20          | 20 |      | 0.363         | 0.342 | 5.61  |      |
| rans-1,2-Dichloroethene            | 1        | 0            |      | 3.96         | 22.11          | 20          | 20 |      | 0.184         | 0.204 | 10.57 |      |
| Ethyl-t-butyl ether                | 1        | 0            |      | 4.56         | 20.85          | 20          | 20 |      | 0.509         | 0.531 | 4.24  |      |
| cis-1,2-Dichloroethene             | 1        | 0            |      | 4.66         | 20.12          | 20          | 20 |      | 0.351         | 0.353 | 0.58  |      |
| Bromochloromethane                 | 1        | 0            |      | 4.81         | 17.61          | 20          | 20 |      | 0.211         | 0.186 | 11.96 |      |
| 2,2-Dichloropropane                | 1        | 0            |      | 4.68         | 20.72          | 20          | 20 |      | 0.293         | 0.303 | 3.58  |      |
| Ethyl acetate                      | 1        | 0            |      | 4.69         | 19.02          | 20          | 20 |      | 0.291         | 0.277 | 4.88  |      |
| ,4-Dioxane                         | 1        | 0            |      | 5.73         | 1100.64        | 1000        | 20 |      | 0.004         | 0.004 | 10.06 |      |
| ,1-Dichloropropene                 | 1        | Ö            |      | 5.07         | 20.79          | 20          | 20 |      | 0.271         | 0.281 | 3.95  |      |
| Chloroform                         | 1        | Ö            |      | 4.85         | 20.12          | 20          | 20 | 0.2  | 0.374         | 0.376 | 0.59  |      |
| Dibromofluoromethane               | 1        | Ö            | S    | 4.94         | 30.53          | 30          | ** |      | 0.280         | 0.285 | 1.78  |      |
| Cyclohexane                        | 1        | Ö            | _    | 5.02         | 19.69          | 20          | 20 | 0.1  | 0.257         | 0.253 | 1.54  |      |
| ,2-Dichloroethane-d4               | 1        | 0            | S    | 5.15         | 29.78          | 30          | ** |      | 0.152         | 0.151 | 0.73  | -    |
| ,2-Dichloroethane                  | 1        | 0            | -    | 5.19         | 20.88          | 20          | 20 | 0.1  | 0.299         | 0.313 | 4.40  |      |
| ?-Butanone                         | 1        | 0            |      | 4.69         | 20.33          | 20          | 20 |      | 0.219         | 0.223 | 1.64  |      |
| .1,1-Trichloroethane               | 1        | 0            |      | 4.98         | 20.49          | 20          | 20 |      | 0.333         | 0.341 | 2.45  |      |
| Carbon Tetrachloride               | 1        | 0            |      | 5.08         | 20.40          | 20          | 20 |      | 0.299         | 0.305 | 2.02  |      |
| /inyl Acetate                      | 1        | 0            |      | 4.30         | 20.11          | 20          | 20 | ~!   | 0.696         | 0.700 | 0.54  |      |
| Bromodichloromethane               | 1        | 0            |      | 5.81         | 20.21          | 20          | 20 | 0.2  | 0.293         | 0.296 | 1.07  |      |
| Methylcyclohexane                  | 1        | 0            |      | 5.66         | 21.15          | 20          | 20 |      | 0.230         | 0.243 | 5.74  |      |
| Dibromomethane                     | 1        | 0            |      | 5.73         | 21.42          | 20          | 20 | J. 1 | 0.166         | 0.177 | 7.12  |      |
| ,2-Dichloropropane                 | 1        | 0            |      | 5.67         | 18.94          | 20          | 20 | 0.1  | 0.100         | 0.203 | 5.30  |      |
| richloroethene                     | <u> </u> | 0 -          |      | 5.54         | 20.37          | 20          | 20 |      | 0.213         | 0.235 | 1.86  |      |
| Benzene                            | 1        | 0            |      | 5.19         | 19.71          | 20          | 20 |      | 0.790         | 0.233 | 1.45  |      |
|                                    | 1        | 0            |      | 5.19         | 21.74          | 20          | 20 | v.y  | 0.790         | 0.779 | 8.69  |      |
| ert-Amyl methyl ether              |          |              |      |              |                |             | 20 |      | U.400         |       |       |      |
| Chlorobenzene-d5                   | 1        | 0            | 1    | 6.99<br>5.40 | 30.00<br>17.60 | 30          |    | 0 E  | 0.425         | 0.000 | 0.00  |      |
| so-propylacetate                   | 1        | 0            |      | 5.19         | 17.69          | 20          | 20 |      | 0.435         | 0.385 | 11.53 |      |
| Methyl methacrylate                | 1        | 0            |      | 5.69         | 17.79          | 20          | 20 | ^ -  | 0.236         | 0.210 | 11.06 |      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 2

Calibration Name: CAL @ 20 PPB Cont Calibration Date/Time 10/9/2020 8:41:00 A Data File: 1M140329.D Method: EPA 8260D Instrument: GCMS 1

| TxtCompd:                  | Col#   |   | Туре | RT   | Conc   | Conc<br>Exp | Lo<br>Lim |      | Initial<br>RF | RF    | %Diff |    |
|----------------------------|--------|---|------|------|--------|-------------|-----------|------|---------------|-------|-------|----|
| 2-Chloroethylvinylether    | 1      | 0 |      | 5.95 | 12.99  | 20          | 20        |      | 0.058         | 0.037 | 35.03 | C1 |
| cis-1,3-Dichloropropene    | 1      | 0 |      | 6.04 | 17.83  | 20          | 20        |      | 0.364         | 0.324 | 10.84 |    |
| rans-1,3-Dichloropropene   | 1      | 0 |      | 6.33 | 16.53  | 20          | 20        |      | 0.368         | 0.304 | 17.33 |    |
| Ethyl methacrylate         | 1      | 0 |      | 6.36 | 20.04  | 20          | 20        | 0.5  | 0.224         | 0.225 | 0.21  |    |
| 1,1,2-Trichloroethane      | 1      | 0 |      | 6.44 | 17.86  | 20          | 20        | 0.1  | 0.234         | 0.209 | 10.71 |    |
| 1,2-Dibromoethane          | 1      | 0 |      | 6.74 | 17.67  | 20          | 20        | 0.1  | 0.252         | 0.223 | 11.66 |    |
| 1,3-Dichloropropane        | 1      | 0 |      | 6.54 | 17.45  | 20          | 20        |      | 0.399         | 0.348 | 12.76 |    |
| 1-Methyl-2-Pentanone       | 1      | 0 |      | 6.11 | 18.22  | 20          | 20        | 0.1  | 0.270         | 0.246 | 8.89  |    |
| 2-Hexanone                 | 1      | 0 |      | 6.55 | 18.03  | 20          | 20        | 0.1  | 0.205         | 0.185 | 9.83  |    |
| Tetrachloroethene          | 1      | 0 |      | 6.54 | 19.38  | 20          | 20        | 0.2  | 0.216         | 0.210 | 3.08  |    |
| Foluene-d8                 | 1      | 0 | S    | 6.20 | 27.28  | 30          | **        |      | 1.212         | 1.102 | 9.06  |    |
| Toluene                    | 1      | 0 |      | 6.24 | 17.93  | 20          | 20        | 0.4  | 0.593         | 0.532 | 10.34 |    |
| I,1,1,2-Tetrachloroethane  | 1      | 0 |      | 7.04 | 17.65  | 20          | 20        |      | 0.257         | 0.227 | 11.75 |    |
| Chlorobenzene              | 1      | 0 |      | 7.00 | 18.78  | 20          | 20        | 0.5  | 0.692         | 0.650 | 6.10  |    |
| 1,4-Dichlorobenzene-d4     | 1      | 0 |      | 8.28 | 30.00  | 30          | **        |      |               | 0.000 | 0.00  |    |
| n-Butyl acrylate           | 1      | 0 |      | 7.25 | 16.49  | 20          | 20        | 0.5  | 0.774         | 0.638 | 17.54 |    |
| n-Amyl acetate             | 1      | 0 |      | 7.37 | 16.37  | 20          | 20        | 0.5  | 0.755         | 0.618 | 18.14 |    |
| Bromoform                  | 1      | 0 |      | 7.46 | 16.00  | 20          | 20        | 0.1  | 0.368         | 0.294 | 20.02 |    |
| Ethylbenzene               | 1      | 0 |      | 7.05 | 16.98  | 20          | 20        | 0.1  | 0.477         | 0.405 | 15.10 |    |
| ,1,2,2-Tetrachloroethane   | 1      | 0 |      | 7.67 | 15.53  | 20          | 20        | 0.1  | 0.592         | 0.460 | 22.33 | C1 |
| Bromofluorobenzene         | 1      | 0 | S    | 7.62 | 31.36  | 30          | **        |      | 0.756         | 0.790 | 4.52  |    |
| Styrene                    | 1      | 0 |      | 7.33 | 18.56  | 20          | 20        | 0.3  | 1.139         | 1.057 | 7.20  |    |
| n&p-Xylenes                | 1      | 0 |      | 7.11 | 38.62  | 40          | 20        | 0.1  | 0.640         | 0.618 | 3.44  |    |
| o-Xylene                   | 1      | 0 |      | 7.33 | 18.55  | 20          | 20        | 0.3  | 0.655         | 0.608 | 7.24  |    |
| rans-1,4-Dichloro-2-butene | 1      | 0 |      | 7.70 | 15.89  | 20          | 20        |      | 0.225         | 0.179 | 20.53 | C1 |
| ,3-Dichlorobenzene         | 1      | 0 |      | 8.25 | 17.40  | 20          | 20        | 0.6  | 0.985         | 0.857 | 13.00 |    |
| ,4-Dichlorobenzene         | 1      | 0 |      | 8.30 | 17.48  | 20          | 20        | 0.5  | 1.032         | 0.902 | 12.62 |    |
| ,2-Dichlorobenzene         | 1      | 0 |      | 8.52 | 17.14  | 20          | 20        | 0.4  | 0.973         | 0.834 | 14.30 |    |
| sopropylbenzene            | 1      | 0 |      | 7.53 | 18.73  | 20          | 20        | 0.1  | 1.650         | 1.545 | 6.37  |    |
| Cyclohexanone              | 1      | 0 |      | 7.60 | 94.33  | 100         | 20        |      | 0.021         | 0.019 | 5.67  |    |
| Camphene                   | 1      | 0 |      | 7.70 | 17.77  | 20          | 20        |      | 0.481         | 0.427 | 11.15 |    |
| ,2,3-Trichloropropane      | 1      | 0 |      | 7.71 | 15.29  | 20          | 20        |      | 0.742         | 0.567 | 23.56 | C1 |
| 2-Chlorotoluene            | 1      | 0 |      | 7.82 | 17.10  | 20          | 20        |      | 1.147         | 0.980 | 14.50 |    |
| -Ethyltoluene              | 1      | 0 |      | 7.81 | 18.51  | 20          | 20        |      | 1.746         | 1.617 | 7.43  |    |
| I-Chlorotoluene            | 1      | 0 |      | 7.88 | 17.00  | 20          | 20        |      | 1.152         | 0.979 | 15.01 |    |
| n-Propylbenzene            | 1      | 0 | **** | 7.75 | 17.54  | 20          | 20        |      | 2.092         | 1.834 | 12.31 |    |
| Bromobenzene               | 1      | 0 |      | 7.73 | 17.00  | 20          | 20        |      | 1.158         | 0.984 | 15.00 |    |
| ,3,5-Trimethylbenzene      | 1      | 0 |      | 7.84 | 17.58  | 20          | 20        |      | 1.477         | 1.299 | 12.10 |    |
| Butyl methacrylate         | 1      | 0 |      | 7.85 | 16.98  | 20          | 20        | 0.5  | 0.566         | 0.480 | 15.10 |    |
| -Butylbenzene              | 1      | 0 |      | 8.04 | 18.22  | 20          | 20        |      | 1.397         | 1.272 | 8.92  |    |
| ,2,4-Trimethylbenzene      | 1      | 0 |      | 8.06 | 17.88  | 20          | 20        |      | 1.535         | 1.372 | 10.62 |    |
| sec-Butylbenzene           | 1      | 0 |      | 8.16 | 17.97  | 20          | 20        |      | 1.744         | 1.566 | 10.17 |    |
| l-Isopropyltoluene         | 1      | 0 |      | 8.23 | 18.71  | 20          | 20        |      | 1.522         | 1.424 | 6.47  |    |
| n-Butylbenzene             | 1      | 0 |      | 8.47 | 17.52  | 20          | 20        |      | 1.717         | 1.505 | 12.38 |    |
| p-Diethylbenzene           | 1      | 0 |      | 8.45 | 18.33  | 20          | 20        |      | 0.874         | 0.801 | 8.35  |    |
| ,2,4,5-Tetramethylbenzene  | 1      | 0 |      | 8.91 | 14.86  | 20          | 20        |      | 1.287         | 1.264 | 25.71 | C1 |
| ,2-Dibromo-3-Chloropropane | 1      | 0 |      | 8.97 | 15.76  | 20          | 20        | 0.05 | 0.164         | 0.129 | 21.21 |    |
| Camphor                    | 1      | Ö |      | 9.41 | 133.20 | 200         | 20        |      | 0.064         | 0.057 | 33.40 |    |
| lexachlorobutadiene        | 1      | Ö |      | 9.55 | 18.36  | 20          | 20        |      | 0.291         | 0.267 | 8.21  |    |
| ,2,4-Trichlorobenzene      | 1      | Ö |      | 9.46 | 18.39  | 20          | 20        | 0.2  | 0.631         | 0.580 | 8.03  |    |
| 1,2,3-Trichlorobenzene     | '<br>1 | 0 |      | 9.76 | 17.58  | 20          | 20        |      | 0.582         | 0.511 | 12.09 |    |
| Naphthalene                | 1      | Ö |      | 9.62 | 18.52  | 20          | 20        |      | 1.622         | 1.502 | 7.40  |    |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 2

Eval File Area Limit Eval File Area/RT:

Eval File Rt Limit:

Internal Standard Areas FORM8

Evaluation Std Data File: 1M139264.D Analysis Date/Time: 09/09/20 20:51

Method: EPA 8260D

|           |               | <u>2</u>                |      |          | ]<br>[                    |
|-----------|---------------|-------------------------|------|----------|---------------------------|
| 4.84-5.84 | 70026-        | 0053                    | Area | =        | !<br>!                    |
| 5.84      | 170026-680106 | 5.34                    | 뀒    |          | •                         |
| 6.49-7.49 | 145637-582548 | 291274 6.99 188560 8.28 | Area | 12       |                           |
| •         | 582548        | 6.99                    | 2    |          |                           |
| 7.78-8 7  | 9428          | 188560                  |      |          | LabF                      |
| 7.78-8 78 | 94280-377120  | 8.28                    | 召    | ಪ        | Lab File ID: CAL @ 20 PPB |
|           |               |                         | Area | <b>~</b> | @ 20 PPB                  |
|           |               |                         | 刀    |          | :<br>!<br>!               |
|           |               |                         | Area |          |                           |
|           |               | -                       | 꼭    | 55       | •<br>:<br>:               |

Area

곡

Area

끅

| ernal St   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                  |               |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|---------------|
| Standard / |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>I</b> 3 =           | I2 =             | =             |
| Areas      | Constitute a service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service | 1,4-Dichlorobenzene-d4 | Chlorobenzene-d5 | Fluorobenzene |

15 | 1

17 =

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Retention Times:

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8360 Internal Standard concentration = 30 mg/L
524 Internal Standard concentration = 5 mg/L

Internal Standard Areas

Evaluation Std Data File: 2M142492.D Analysis Date/Time: 09/29/20 16:47

Lab File ID: CAL @ 20 PPB Method: EPA 8260D

Area

Агеа

곡

ਰ

Eval File Area Limit: Eval File Area/RT: Eval File Rt Limit: 359594 5.10 179797-719188 162152-648606 Area 4.6-5.6 324303 6.73 Area 6.23-7.23 괵 173285 8.02 Area 86642-346570 7.52-8.52 ಪ R Area 4 곡 Area 5

| Data File Sample#        |        | !<br>!<br>! | !      |      | 1      | :    |
|--------------------------|--------|-------------|--------|------|--------|------|
| 2M142487.D CAL @ 0.5 PPB | 346417 | 5.10        | 307168 | 6.73 | 160675 | 8.02 |
| 2M142488.D CAL @ 1 PPB   | 387579 | 5.10        | 349135 | 6.73 | 180533 | 8.02 |
| 2M142489.D CAL @ 5 PPB   | 340498 | 5.10        | 303983 | 6.73 | 159994 | 8.02 |
| 2M142490.D CAL @ 10 PPB  | 387191 | 5.10        | 348044 | 6.73 | 187417 | 8.02 |
| S                        | 359594 | 5.10        | 324303 | 6.73 | 173285 | 8.02 |
| S                        | 341318 | 5.10        | 313870 | 6.73 | 172876 | 8.02 |
| ς<br>S                   | 347100 | 5.10        | 321317 | 6.73 | 178964 | 8.02 |
| _                        | 354579 | 5.10        | 343475 | 6.73 | 250266 | 8.02 |
| 2M142502.D CAL @ 500 PPB | 378988 | 5.10        | 368525 | 6.73 | 177011 | 8.03 |
| _                        | 379486 | 5.10        | 341026 | 6.73 | 179492 | 8.02 |

| 100 |
|-----|
| 13  |
| 13  |
| 120 |
| =   |
| 1   |
| K   |
| -   |
| l9i |
| 15  |
| 1=  |
| 100 |
| lØ. |
| 15  |
| id  |
| 1-  |
| 1   |
| -   |
| 12  |
| ĮΨ  |
| 100 |
| lØ. |
| ,   |
|     |
|     |

12 = 13 =

Fluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d4

15 H

17=

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8260 Internal Standard concentration = 30 ng/L
524 Internal Standard concentration = 5 ug/L

FORM8

Internal Standard Areas

Evaluation Std Data File: 11M83453.D

Method: EPA 8260D

Area

끅

Analysis Date/Time: 10/02/20 00:28 Lab File ID: CAL @ 20 PPB

|            |                       |               | _                     | i             |      |              |      |      |   |                  |     | _    |         |   |
|------------|-----------------------|---------------|-----------------------|---------------|------|--------------|------|------|---|------------------|-----|------|---------|---|
| 31         |                       | Area RT       | <br>  <br>  <b></b> - | Area          | 끽    | Area         | 괵    | Area | Ŗ | Area             | RT  | Area | י<br>דר | 꼭 |
| 9          | Eval File Area/RT:    | 241698 4.96   | 21                    | 214415 6.55   | 55   | :            | 7.82 |      |   |                  | — i |      |         |   |
| 0(         | Eval File Area Limit: | 120849-483396 | i.                    | 107208-428830 | 33   | 60645-242580 | 580  |      | 1 |                  |     |      | :       |   |
|            | Eval File Rt Limit    | 4.46-5.46     | ! !<br>! !            | 6.05-7.05     |      | 7.32-8.32    | 2    |      |   |                  |     |      | . :     |   |
| Data File  | Sample#               |               | !<br>!                | <br>          | !    |              |      |      | 1 | :<br>I           | İ   |      | !       |   |
| 11M83449.D | D CAL @ 0.5 PPB       |               | 4.96                  | 202665        | 6.55 |              |      |      |   |                  |     |      |         |   |
| 11M83450.D | _                     | Ü             | 4.96                  | 204456        | 6.55 | 109900       | 7.82 |      |   |                  |     |      |         |   |
| 11M83451.D | .D CAL@2PPB           |               | 4.96                  | 236604        | 6.55 |              |      |      |   |                  |     |      |         |   |
| 11M83452.C | _                     |               | 4.96                  | 201576        | 6.55 |              |      |      |   |                  |     |      |         |   |
| 11M83453.C | 1                     | į             | 4.96                  | 214415        | 6.55 | i            |      |      | 1 | :<br>:<br>!<br>( |     |      |         |   |
| 11M83454.D | 5                     |               | 4.96                  | 220421        | 6.55 |              |      |      |   |                  |     |      |         |   |
| 11M83455.D | 5.D CAL @ 500 PPB     |               | 4.96                  | 260652        | 6.55 |              |      |      |   |                  |     |      |         |   |
| 11M83457.D |                       |               | 4.96                  | 293440        | 6.55 |              |      | ,,,  |   |                  |     |      |         |   |
| 11M83459.D | ).D CAL @ 100 PPB     |               | 4.96                  | 282451        | 6.55 |              |      |      |   |                  |     |      |         |   |
| 11M83462.D | •                     | i<br>I        | 4.96                  | 228436        | 6.55 |              |      |      |   |                  |     |      |         |   |

| - 1 | =        |
|-----|----------|
|     | <b>6</b> |
| - 1 | ₹        |
| - 1 | 3        |
| •   | œ.       |
| - 1 | _        |
| -   | S        |
| 1   | ត        |
| - 1 | 3        |
| - 1 | ਨ        |
| - 1 | ╦        |
| - 1 | ₹        |
| - 1 | 盔        |
| - 1 | •        |
| - 1 | _        |
| - 1 | 7        |
| - 1 | ŭ        |
| - 1 | <b>7</b> |
| •   | ••       |
|     |          |
|     |          |
|     |          |
|     |          |

13 =

Fluorobenzene
Chlorobenzene-d5
1,4-Dichlorobenzene-d4

22.1

17 =

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Retention Times:

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8360 Internal Standard concentration = 30 mg/L 524 Internal Standard concentration = 5mg/L

Internal Standard Areas

Evaluation Std Data File: 11M83550.D Analysis Date/Time: 10/05/20 15:44

Method: EPA 8260D

Lab File ID: CAL @ 50 PPB

|                                                                                                                                                                            |   | 11M83            | 11M83580.D  | 11M83        | 11M83       | 11M83       | 11M83       | 11M83       | 11M83       | 11M83       | 11M83       | 11M83       | 11M83       | 11M83           | 11M83       | 11M83       | 11M83       | 11M83       | 11M83       | 11M83     | 11M83     | 11M83     | 11M83             | 11M83       | 11M83           | 11M83             | 11M83           | 11M83           | 11M83         | 11M83       | 11M83  | 11M83  | 11M83      | Data File           |                     | 0                    | <b>0</b> 9         | 31   | 02         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------------|-------------|-------------|-------------|-------------|-------------|-----------|-----------|-----------|-------------------|-------------|-----------------|-------------------|-----------------|-----------------|---------------|-------------|--------|--------|------------|---------------------|---------------------|----------------------|--------------------|------|------------|
|                                                                                                                                                                            |   | 11M83581.D       |             | 1M83579.D    | 1M83578.D   | 1M83577.D   | 1M83576.D   | 1M83575.D   | 1M83574.D   | 1M83573.D   | 1M83572.D   | 1M83571.D   | 1M83570.D   | 1M83569.D       | 1M83568.D   | 1M83567.D   | 1M83566.D   | 1M83565.D   | 1M83564.D   | 1M83563.D | 1M83562.D | 1M83561.D |                   | 1M83559.D   | 1M83558.D       | 1M83557.D         | 1M83556.D       | 1M83555.D       |               |             | -      |        | 11M83549.D | :                   | Ш                   | Eva                  | <br>m              |      |            |
| 13 =                                                                                                                                                                       |   | AD19581-007(MSD) | AD19560-002 | AD19542-001  | AD19539-009 | AD19539-012 | AD19563-007 | AD19563-005 | AD19563-003 | AD19563-001 | AD19582-002 | AD19587-006 | AD19587-005 | AD19587-004     | AD19587-003 | AD19587-002 | AD19587-001 | AD19562-007 | AD19562-001 | BLK       | BLK       | MBS89425  | AD19562-005(MSD:A | AD19542-001 | AD19581-011(5X) | AD19562-003(MS:AD | AD19581-007(MS) | AD19581-011(5X) | AD19581-007   | DAILY BLANK | BLK    | BLK    | 50 PPB     | Sample#             | Eval File Rt Limit: | Eval File Area Limit | Eval File Area/RT: |      |            |
| riuorobenzene-d5<br>Chlorobenzene-d5<br>I,4-Dichlorobenzene-d4                                                                                                             | i | SD) 258778       | 253608      | 241663       | 261446      | 268922      | 246509      | 262499      | 263292      | 263895      | 241452      | 250199      | 271423      | 238721          | 253022      | 256197      | 248139      | 270382      | 284656      | 292847    | 304935    | 315315    |                   | 197745      | () 270001       | S:AD 299710       | S) 315917       | _               | 276421        | 276519      | 285931 | 297479 | 307952     | <br> <br>           | 4.46                | 144216               | 288431             | Area |            |
| -d5<br>nzene-d4                                                                                                                                                            | ! |                  |             |              | _           |             |             |             |             | -           |             |             |             | !               |             |             |             |             | !           |           |           |           |                   | !<br>!      |                 |                   |                 |                 | !             |             |        |        |            | ;<br>1<br>!         | 4.46-5.46           | 144216-576862        | 4.96               | 꼭    |            |
|                                                                                                                                                                            | ļ | 4.96             | 4.96        | 4.96         | 4.96        | 4.96        | 4.96        | 4.96        | 4.96        | 4.96        | 4.96        | 4.96        | 4.96        | 4.96            | 4.96        | 4.96        | 4.96        | 4.96        | 4.96        | 4.96      | 4.96      | 4.96      | 4.96              | 4.96        | 4.96            | 4.96              | 4.96            | 4.96            | 4.96          | 4.96        | 4.96   | 4.96   | 4.96       | !                   |                     | 13                   | 261680             |      |            |
| 6 4 4                                                                                                                                                                      |   | 234070           | 235791      | 198113       | 253774      | 262789      | 207519      | 248223      | 248823      | 250970      | 209979      | 204432      | 252769      | 217161          | 219886      | 208266      | 204925      | 248178      | 264460      | 273043    | 284172    | 288487    | 285172            | 182359      | 257839          | 271756            | 289205          | 245173          | 252657        | 256924      | 258440 | 273504 | 279502     | <br> <br> <br> <br> | 6.05-7.05           | 130840-523360        | 680 6.55           | Area | 12         |
|                                                                                                                                                                            |   | 6.55             | 6.55        | 6.55         | 6.55        | 6.55        | 6.55        | 6.55        | 6.55        | 6.55        | 6.55        | 6.55        | 6.55        | 6.55            | 6.55        | 6.55        | 6.55        | 6.55        | 6.55        | 6.55      | 6.55      | 6.55      | 6.55              | 6.55        | 6.55            | 6.55              | 6.55            | 6.55            | 6.55          | 6.55        | 6.55   | 6.55   | 6.55       | 1                   |                     | ප                    | 55                 | RT   | i          |
|                                                                                                                                                                            |   | 124170           | 129363      | 81097        | 139735      | 145874      | 87142       | 134014      | 133905      | 132801      | 92504       | 81526       | 135507      | 111924          | 101443      | 93038       | 82035       | 129957      | 143559      | 152060    | 165016    | 171108    | 162653            | 60369       | 275456          | 153834            | 167104          | 314729          | 129324        | 138354      | 142918 | 153365 | 168515     | :                   | 7.32-8.32           | 76148-304590         | 152295             | Area | ಹ          |
| 7 8                                                                                                                                                                        | 1 | 7                |             | ! `<br>!     |             | 4 7.82      | 2 7.82      |             | 5 7.82      |             |             | 5 7.82      |             |                 |             |             |             | 7 7.82      |             | ) 7.82    |           |           |                   | 7.82        |                 | 7.82              | 1 7.82          | 7.82            |               | _           |        |        | 5 7.82     | !<br>!              | 32                  | 4590                 | 7.82               | R    | :<br>      |
|                                                                                                                                                                            |   | 82               | 7.82        | 7.82         | 7.82        | 82          | 82          | 7.82        | 82          | 81          | 7.82        | 82          | 7.82        | 82              | 7.82        | 83          | 83          | 82          | 82          | 82        | 82        | 7.82      | 82                | 82          | 82              | 82                | 82              | 82              | 82            | 82          | 82     | 82     | 82         |                     |                     |                      |                    | Area | 4          |
|                                                                                                                                                                            | ! |                  |             |              |             |             |             |             |             |             |             |             |             | ( )<br>( )<br>: |             |             |             |             |             |           |           |           |                   | [<br>!<br>! |                 |                   |                 |                 | !<br>!<br>!   |             |        |        |            |                     | !                   |                      |                    | 괵    |            |
| 624/8<br>524 I                                                                                                                                                             |   |                  |             | !<br>!<br>!  |             |             |             |             | -           |             |             |             |             | 1               |             |             |             |             |             |           |           |           |                   | :<br>:<br>! |                 |                   |                 |                 | :             |             |        |        |            |                     |                     |                      |                    | Area | 55         |
| 3260 Internal<br>3260 Internal<br>Internal Stand                                                                                                                           |   |                  |             | <u> </u>     |             |             |             |             | !<br>!      |             |             |             |             |                 |             |             |             |             |             |           |           |           |                   | [<br>[<br>[ |                 |                   |                 |                 | <br> <br>     |             |        |        |            | :<br>!              |                     |                      |                    | P    | ;<br> <br> |
| אבאסג'עי וחפרווא סאמעפרע נסטכפונוזאוסי = ישי וווער (וח וווואו פאנדארן)<br>624/8260 Internal Standard concentration = לאופער<br>524 Internal Standard concentration =לשער ל |   |                  |             | <u> </u><br> |             |             |             |             |             |             |             |             |             |                 |             |             |             |             |             |           |           |           |                   |             |                 |                   |                 |                 |               |             |        |        |            |                     |                     |                      |                    | Area | 5          |
| ntration = 34<br>ntration = 34<br>ion =5ug/L                                                                                                                               |   |                  |             | :<br>        |             |             |             |             | :           |             |             |             |             | j<br>:          |             |             |             |             | !<br>!<br>! |           |           |           |                   | !           |                 |                   |                 |                 | <b>!</b><br>: |             |        |        |            | :                   |                     | :                    |                    | 꼰    | ·<br>·     |
| ) wg/L (in im                                                                                                                                                              |   |                  |             |              |             |             |             |             | i           |             |             |             |             | ì               |             |             |             |             | i<br>İ      |           |           |           |                   | :           |                 |                   |                 |                 | :<br>!        |             |        |        |            |                     |                     |                      |                    | Area | 17         |
| iai extract)                                                                                                                                                               |   |                  |             |              |             |             |             |             |             |             |             |             |             |                 |             |             |             |             |             |           |           |           |                   |             |                 |                   |                 |                 |               |             |        |        |            |                     |                     |                      |                    | 괵    |            |

# Internal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Retention Times:

riags:

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria.

Limit = within +/-0.5 min of internal standard retention time from the daily cal or mid pt.

Internal Standard Areas FORM8

Evaluation Std Data File: 11M83550.D

Method: EPA 8260D

<u>\_</u> 6 괵

Area

Analysis Date/Time: 10/05/20 15:44

Lab File ID: CAL @ 50 PPB

|                       | =                                                                                                                                                                                                                    |                                                                                                                                                                                        | 23                                                                                                                                                                                          |                                                                                                                                                                                                                                                              | _                                    | ω                 | 4                 |                                                          | 5                 |                   |                   |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------|-------------------|----------------------------------------------------------|-------------------|-------------------|-------------------|
|                       | Area                                                                                                                                                                                                                 | 꾸                                                                                                                                                                                      | Area                                                                                                                                                                                        | R                                                                                                                                                                                                                                                            | Area                                 | R                 | Area              | 召                                                        | Area              | 곡                 | Area              |
| Eval File Area/RT     | 288431                                                                                                                                                                                                               | 4.96                                                                                                                                                                                   | 261680                                                                                                                                                                                      | 6.55                                                                                                                                                                                                                                                         | 152295                               | 7.82              |                   |                                                          |                   |                   | 1                 |
| Eval File Area Limit: | 144216-5                                                                                                                                                                                                             | 576862                                                                                                                                                                                 | 130840-                                                                                                                                                                                     | 523360                                                                                                                                                                                                                                                       | 76148                                | -304590           |                   | -                                                        | 1                 |                   |                   |
| Eval File Rt Limit.   | 4.46-5                                                                                                                                                                                                               | 5.46                                                                                                                                                                                   | 6.05                                                                                                                                                                                        | .7.05                                                                                                                                                                                                                                                        | 7.3                                  | 2-8.32            |                   |                                                          |                   | . :               |                   |
|                       |                                                                                                                                                                                                                      |                                                                                                                                                                                        |                                                                                                                                                                                             |                                                                                                                                                                                                                                                              |                                      |                   |                   |                                                          |                   | :                 |                   |
| _                     | 2442                                                                                                                                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                                             | _                                                                                                                                                                                                                                                            |                                      |                   | .82               |                                                          |                   |                   |                   |
| $\overline{}$         | 2654                                                                                                                                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                                             |                                                                                                                                                                                                                                                              |                                      |                   | 82                |                                                          |                   |                   |                   |
| $\overline{}$         | 2554                                                                                                                                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                                             | -                                                                                                                                                                                                                                                            |                                      |                   | .82               |                                                          |                   |                   |                   |
| $\overline{}$         | 2592                                                                                                                                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                                             |                                                                                                                                                                                                                                                              |                                      |                   | .82               |                                                          |                   |                   |                   |
| U                     | 2509                                                                                                                                                                                                                 | i<br>i                                                                                                                                                                                 | !<br>!                                                                                                                                                                                      | į                                                                                                                                                                                                                                                            |                                      | :                 | 82                | [<br> <br>                                               | i<br>:            |                   | ;<br>[<br>!       |
|                       | 2501;                                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                                             |                                                                                                                                                                                                                                                              |                                      |                   | .82               |                                                          |                   |                   |                   |
| _                     | 2434                                                                                                                                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                                             | -                                                                                                                                                                                                                                                            |                                      |                   | .82               |                                                          |                   |                   |                   |
|                       | Eval File Area/RT  Eval File Area Limit  Eval File Area Limit  Eval File Rt Limit  Eval File Rt Limit  Eval File BLK  11M83581.D BLK  11M83585.D BLK  11M83586.D BLK  11M83586.D BLK  11M83586.D BLK  11M83586.D BLK | Eval File Area/RT: 28 Eval File Area Limit: Eval File Area Limit: Eval File Rt Limit: Eval File Rt Limit: Sample# 2.D MBS89431 3.D BLK 4.D BLK 5.D BLK 6.D BLK 6.D BLK 6.D BLK 8.D BLK | Eval File Area/RT: 288431 4.96 Eval File Area Limit: 144216-576862 Eval File Rt Limit: 4.46-5.46  Sample# 244203 3.D BLK 255466 5.D BLK 259216 6.D BLK 259216 6.D BLK 250914 7.D BLK 243444 | Area RT Area RT Area RT Area Limit 288431 4.96 26  Eval File Area Limit 144216-576862 1  Eval File Rt Limit 4.46-5.46  Sample#  2.D MBS89431 244203 4.96 3.D BLK 255466 4.96 4.D BLK 259216 4.96 5.D BLK 259216 4.96 6.D BLK 250121 4.96 6.D BLK 243444 4.96 | 1   12   12   12   12   12   12   12 | Eval File Area/RT | Eval File Area/RT | 1   12   13   13   14   15   15   15   15   15   15   15 | Eval File Area/RT | Eval File Area/RT | Eval File Area/RT |

| IΦ    |
|-------|
| 13    |
| 13    |
| l (i) |
| -     |
| ശ     |
| lă:   |
| 100   |
| 13    |
| ᅽ     |
| 100   |
| 1=    |
| 16    |
| 1-    |
| 1     |
| 15    |
| lai   |
| 155   |
| 17%   |
| 14,   |
|       |

12 = 13 =

Fluorobenzene
Chlorobenzene-d5
1,4-Dichlorobenzene-d4

[7 =

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Retention Times:

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8360 Internal Standard concentration = 30 mg/L
524 Internal Standard concentration = 5 mg/L

Internal Standard Areas

Evaluation Std Data File: 1M140087.D Analysis Date/Time: 10/05/20 14:58

Method: EPA 8260D 8

Eval File Area Limit: Eval File Area/RT: Eval File Rt Limit: 379941 189970-759882 180174-720698 4.84-5.84 Area 4.84-5.84 5.34 360349 Area 6.49-7.49 7 6.99 깍 247858 123929-495716 Area RT Lab File ID: CAL @ 20 PPB 7.78-8.78 8.28 Area 4 짂 Area 낁 Area <u></u> 짇

Area

R

| 524 Internal Standard concentration = 5ug/L                           | <br> | i<br>! |      | \$ 0<br> | 숲            | 1,4-Dichlorobenzene-d4 | 13 =              |            |
|-----------------------------------------------------------------------|------|--------|------|----------|--------------|------------------------|-------------------|------------|
| 625/8270 Internal Standard concentration = 40 mg/L (in final extract) | ı    | 17     |      | 14=      |              | Fluorobenzene          | =                 |            |
|                                                                       | 8.28 | 255540 | 6.99 | 381945   | 5.33         | 368826                 | AD19539-006       | 1M140118.D |
|                                                                       | 8.28 | 242667 | 6.99 | 388012   | 5.33         | 366836                 | AD19539-007       | 1M140117.D |
|                                                                       | 8.28 | 239502 | 6.99 | 385589   | 5.33         | 377349                 | AD19539-008       | 1M140116.D |
|                                                                       | 8.28 | 234446 | 6.99 | 373886   | 5.33         | 364536                 | AD19539-015       | 1M140115.D |
|                                                                       | 8.28 | 242179 | 6.99 | 375199   | 5.34         | 374881                 | AD19539-013       | 1M140114.D |
|                                                                       | 8.28 | 235266 | 6.99 | 376528   | 5.34         | 366534                 | AD19539-016       | 1M140113.D |
|                                                                       | 8.28 | 226760 | 6.99 | 365452   | 5.33         | 357889                 | AD19539-010       | 1M140112.D |
|                                                                       | 8.28 | 214777 | 6.99 | 344261   | 5.33         | 341114                 | AD19539-011       | 1M140111.D |
|                                                                       | 8.28 | 233016 | 6.99 | 369289   | 5.34         | 364334                 | AD19566-002       | 1M140110.D |
|                                                                       | 8.28 | 233091 | 6.99 | 367502   | 5.34         | 360403                 | AD19580-007       | 1M140109.D |
|                                                                       | 8.28 | 238275 | 6.99 | 380893   | 5.34         | 374438                 | BLK               | 1M140108.D |
|                                                                       | 8.28 | 236328 | 6.99 | 366601   | 5.33         |                        | AD19539-009       | 1M140107.D |
|                                                                       | 8.28 | 261784 | 6.99 | 387688   | 5.34         |                        | AD19565-016(MSD)  | 1M140106.D |
|                                                                       | 8.28 | 247766 | 6.99 | 368794   | 5.3 <b>4</b> | ) 378094               | AD19565-016(MS)   | 1M140105.D |
|                                                                       | 8.28 | 267918 | 6.99 | 394652   | 5.34         | D) 399146              | AD19539-009(MSD)  | 1M140104.D |
|                                                                       | 8.28 | 236277 | 6.99 | 354304   | 5.33         | ) 363233               | AD19539-009(MS)   | 1M140103.D |
|                                                                       | 8.28 | 263454 | 6.99 | 398532   | 5.34         | 409583                 | MBS89427          | 1M140102.D |
|                                                                       | 8.28 | 255418 | 6.99 | 382201   | 5.34         | 391629                 | MBS89426          | 1M140101.D |
|                                                                       | 8.28 | 291582 | 6.99 | 436752   | 5.34         |                        | AD19539-017(8uL)  | 1M140100.D |
|                                                                       | 8.28 | 274479 | 6.99 | 394482   | 5.34         |                        | AD19539-014(80uL) | 1M140099.D |
|                                                                       | 8.28 | 258592 | 6.99 | 368362   | 5.34         | 349818                 | AD19498-001       | 1M140098.D |
|                                                                       | 8.28 | 224160 | 6.99 | 367947   | 5.34         | 358515                 | AD19565-016       | 1M140097.D |
|                                                                       | 8.28 | 229398 | 6.99 | 373973   | 5.34         | 360235                 | AD19565-009       | 1M140096.D |
|                                                                       | 8.28 | 222424 | 6.99 | 360707   | 5.34         | 353099                 | AD19529-001       | 1M140095.D |
|                                                                       | 8.28 | 214156 | 6.99 | 358749   | 5.34         | 349770                 | AD19539-001       | 1M140094.D |
|                                                                       | 8.28 | 201374 | 6.99 | 338178   | 5.3 <b>4</b> | 332905                 | DAILY BLANK       | 1M140093.D |
|                                                                       | 8.28 | 213944 | 6.99 | 351678   | 5.34         | 353375                 | DAILY BLANK       | 1M140092.D |
|                                                                       | 8.28 | 257297 | 6.99 | 396094   | 5.34         | 390131                 | BLX               | 1M140091.D |
|                                                                       | 8.28 | 279037 | 6.99 | 452011   | 5.34         | 459348                 | BLK               | 1M140090.D |
|                                                                       | 8.28 | 234676 | 6.99 | 356381   | 5.34         | 361216                 | BLK               | 1M140089.D |
|                                                                       | 8.28 | 235485 | 6.99 | 373935   | 5.34         | _                      | BLK-HCL(100520)   | 1M140088.D |
|                                                                       | 8.28 | 241965 | 6.99 | 354936   | 5.33         | 371762                 | 20 PPB            | 1M140086.D |
|                                                                       |      |        |      | i<br>i   |              |                        | Sample#           | Data File  |

## rnal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Retention Times:

### riags:

A - Indicates the compound failed the internal standard area criteria
R - Indicates the compound failed the internal standard retention time criteria.

コ

 $\overline{c}$ 

 $\overline{\omega}$ 

4

ᇬ

Area

Area

Ŗ

## FORM8

Internal Standard Areas

Evaluation Std Data File: 1M140087.D Analysis Date/Time: 10/05/20 14:58

Lab File ID: CAL @ 20 PPB Method: EPA 8260D

| 3          |                        | Area          | 직        | Area   | -<br>꼭        |      | Area          | RT     | Area        | RT | Area                  |  |
|------------|------------------------|---------------|----------|--------|---------------|------|---------------|--------|-------------|----|-----------------------|--|
| צע         | Eval File Area/RT:     | 379941 5.34   | 5.34     | 36034  | 360349 6.99   |      | 247858        | 8.28   |             |    |                       |  |
| U          | Eval File Area Limit   | 189970-759882 | 59882    | 1801   | 180174-720698 |      | 123929-495716 | 95716  | [<br>[<br>[ |    | !                     |  |
|            | Eval File Rt Limit:    | 4.84-5.84     | .84-5.84 | 6      | 6.49-7.49     |      | 7.78-8.78     | 78     |             |    |                       |  |
| Data File  | Sample#                | <br> <br>     |          |        |               |      |               |        |             | !  | :<br>:<br>:<br>:<br>! |  |
| 1M14011    | 1M140119.D AD19581-011 | 37688         |          | 5.33   | 385799        | 6.99 | 265302        | 2 8.28 | <b>w</b>    |    | :<br>:<br>:           |  |
| 1M140120.D | ).D AD19596-002        | 393638        | •        |        | 90484         | 6.99 | 26294         | 8 8.28 | w           |    |                       |  |
| 1M140121.D | I.D AD19581-003        | 37929         | Ĭ        | 5.34 3 | 385786        | 6.99 | 296836        | •      | w           |    |                       |  |
| 1M14012    | 1M140122.D AD19587-007 | 3845          |          |        | 78394         | 6.99 | 258299        | 9 8.28 | ω           |    |                       |  |
|            |                        |               |          |        |               |      |               |        |             |    |                       |  |

| - 1 | æ                |
|-----|------------------|
|     | 3                |
|     | $\overline{z}$   |
|     | <u> </u>         |
|     |                  |
|     | Ş                |
|     | ti               |
|     | 1                |
|     | $\boldsymbol{z}$ |
|     | ÷                |
|     | 9                |
|     | 7                |
|     | •                |
|     | A                |
|     | 7                |
|     | Œ                |
| 4   | <b>X</b>         |
| ı   | 0)               |
|     |                  |
|     |                  |
|     |                  |

13 =

Fluorobenzene
Chlorobenzene-d5
1,4-Dichlorobenzene-d4

17=

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8360 Internal Standard concentration = 30 ug/L 524 Internal Standard concentration = 5 ug/L

Internal Standard Areas

Evaluation Std Data File: 11M83597.D

Method: EPA 8260D

Analysis Date/Time: 10/06/20 09:54

Lab File ID: CAL @ 50 PPB

| i    |        |
|------|--------|
|      | ¥      |
| Area | T Area |
|      |        |

| Data File Sample#           |        |      |        |                |        |      |  |
|-----------------------------|--------|------|--------|----------------|--------|------|--|
| ב<br>כ                      | 264207 | 8    | 240987 | ָת<br>הקח<br>ו | 130567 | 7.83 |  |
|                             | 259663 | 4.96 | 250106 | 6.55           | 138737 | 7.82 |  |
|                             | 252434 | 4.96 | 239899 | 6.55           | 131022 | 7.82 |  |
|                             | 208366 | 4.96 | 205409 | 6.55           | 111535 | 7.82 |  |
|                             | 290760 | 4.96 | 239131 | 6.55           | 132671 | 7.82 |  |
| 11M83604.D AD19539-016      | 238664 | 4.96 | 231918 | 6.55           | 128450 | 7.82 |  |
| 11M83605.D MBS89437         | 269316 | 4.96 | 246135 | 6.55           | 147526 | 7.82 |  |
| 11M83606.D AD19581-008(MS)  | 263925 | 4.96 | 234051 | 6.55           | 118878 | 7.82 |  |
| 11M83607.D AD19581-008(MSD) | 267583 | 4.96 | 243444 | 6.55           | 131072 | 7.82 |  |
| 11M83608.D BLK              | 265949 | 4.96 | 252299 | 6.55           | 138917 | 7.82 |  |
| 11M83609.D AD19517-003      | 259549 | 4.96 | 239609 | 6.55           | 128671 | 7.81 |  |
| 11M83610.D AD19581-008      | 246141 | 4.96 | 231371 | 6.55           | 127311 | 7.82 |  |
| 11M83611.D AD19563-009      | 249857 | 4.96 | 236047 | 6.55           | 130277 | 7.82 |  |
| 11M83612.D AD19563-011      | 257779 | 4.96 | 246286 | 6.55           | 136374 | 7.82 |  |
| 11M83613.D AD19563-013      | 251043 | 4.96 | 238526 | 6.55           | 130253 | 7.82 |  |
| 11M83614.D AD19563-015      | 248269 | 4.96 | 232789 | 6.55           | 126943 | 7.82 |  |
| 11M83615.D AD19563-017      | 241260 | 4.96 | 217158 | 6.55           | 104705 | 7.82 |  |
| 11M83616.D AD19563-019      | 255105 | 4.96 | 241275 | 6.55           | 131568 | 7.82 |  |
| 11M83617.D AD19563-027      | 241743 | 4.96 | 203994 | 6.55           | 88947  | 7.82 |  |
| 11M83618.D AD19563-029      | 269858 | 4.96 | 216924 | 6.55           | 113462 | 7.82 |  |
| 11M83619.D AD19563-031      | 238333 | 4.96 | 223593 | 6.55           | 109488 | 7.82 |  |
| 11M83620.D AD19563-033      | 250087 | 4.96 | 241367 | 6.55           | 133038 | 7.82 |  |
| 11M83621.D AD19563-035      | 252896 | 4.96 | 241104 | 6.55           | 131558 | 7.82 |  |
| 11M83622.D AD19563-037      | 254731 | 4.96 | 242719 | 6.55           | 135064 | 7.82 |  |
| 11M83623.D AD19539-007      | 265333 | 4.96 | 367130 | 6.56           | 170526 | 7.82 |  |
|                             |        |      |        |                |        |      |  |

| _    |
|------|
| =    |
| 12   |
| ᄪ    |
| 12   |
| 13   |
| 123  |
| 125  |
| 1    |
| KO   |
| lě÷  |
| ופו  |
| 13   |
| ıa   |
| 122  |
| 12   |
| ız   |
| 1-   |
| 120  |
| 15   |
| lai. |
| lä   |
| äs   |
| 141  |
|      |
|      |

11 = 13 =

Fluorobenzene
Chlorobenzene-d5
1,4-Dichlorobenzene-d4

5 II II

17 =

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

### Flags:

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8260 Internal Standard concentration = 30 mg/L
524 Internal Standard concentration = 5 mg/L

Internal Standard Areas

Evaluation Std Data File: 2M142814.D

Method: EPA 8260D

Analysis Date/Time: 10/07/20 09:39
Lab File ID: CAL @ 20 PPB

| 625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30 mg/L 524 Internal Standard concentration = 5 mg/L | 625/82/0 Internal Standard concentration = 40 mg/<br>624/8260 Internal Standard concentration = 30ug/L<br>524 Internal Standard concentration =5ug/L | 625/8270 Internal Sta<br>624/8260 Internal Sta<br>524 Internal Standar |                                       | 17=          |              | <b>55 4</b>   | 4       | Fluorobenzene<br>Chlorobenzene-d5<br>1,4-Dichlorobenzene-d4 | 11 = F<br>12 = C<br>13 = 1 |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------|--------------|--------------|---------------|---------|-------------------------------------------------------------|----------------------------|------------|
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 8                                     | 163290 8.02  | 6.73         | 304737        | 5.10    | 326052                                                      | AD19568-003                | 2M142846.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     |              | 6.73         | 296955        | 5.09    | 311807                                                      | AD19587-005                | 2M142845.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 158682 8.02  | 6.73         | 312274        | 5.10    | 326935                                                      | AD19539-005(5X)            | 2M142844.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 162666 8.02  | 6.73         | 320747        | 5.10    | 330541                                                      | AD19539-004(5X)            | 2M142843.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 163751 8.02  | 6.73         | 318850        | 5.10    | 331837                                                      | AD19539-003(5X)            | 2M142842.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 159324 8.02  | 6.73         | 317809        | 5.10    | 331281                                                      | AD19539-002(5X)            | 2M142841.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 160010 8.02  | 6.73         | 307859        | 5.10    | 325830                                                      | AD19574-003                | 2M142840.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 164125 8.02  | 6.73         | 318290        | 5.10    | 334465                                                      | AD19574-002                | 2M142839.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 161251 8.02  | 6.73         | 313597        | 5.10    | 330631                                                      | AD19572-004                | 2M142838.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 178196 8.02  | 6.73         | 333947        | 5.10    | 355696                                                      | AD19572-003                | 2M142837.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 175339 8.02  | 6.73         | 337111        | 5.10    | 350008                                                      | BLK                        | 2M142836.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     |              | 6.73         | 335075        | 5.10    | 355372                                                      | BLK                        | 2M142835.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | <b>2</b>                              | 175000 8.02  | 6.73         | 314449        | 5.09    | 335972                                                      | AD19587-005(MSD)           | 2M142834.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 160119 8.02  | 6.73         | 289065        | 5.09    | 306379                                                      | AD19587-005(MS)            | 2M142833.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     |              | 6.73         | 313234        | 5.10    | )) 334750                                                   | AD19574-001(MSD)           | 2M142832.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 165420 8.02  | 6.73         | 302649        | 5.10    | 320689                                                      | AD19574-001(MS)            | 2M142831.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 169403 8.02  | 6.73         | 308522        | 5.10    | 325919                                                      | MBS89448                   | 2M142830.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 160243 8.02  | 6.73         | 303561        | 5.10    | 321013                                                      | MBS89447                   | 2M142829.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 150153 8.02  | 6.73         | 291683        | 5.10    | 305441                                                      | AD19574-001                | 2M142828.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 150036 8.02  | 6.73         | 290782        | 5.10    | 304578                                                      | AD19614-001                | 2M142827.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 153700 8.02  | 6.73         | 300197        | 5.10    | 316742                                                      | BLK                        | 2M142826.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 148428 8.02  | 6.73         | 282639        | 5.10    | 301374                                                      | BLK                        | 2M142825.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 167552 8.02  | 6.73         | 299401        | 5.10    | 316589                                                      | STD                        | 2M142824.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 162807 8.02  | 6.73         | 339926        | 5.10    | 323833                                                      | AD19539-003                | 2M142823.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     |              | 6.73         | 333602        | 5.10    | 322516                                                      | AD19539-002                | 2M142822.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     |              | 6.73         | 339963        | 5.10    | 355675                                                      | AD19447-015                | 2M142821.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     |              | 6.73         | 326738        | 5.10    | 342482                                                      | AD19447-014                | 2M142820.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | -            | 6.73         | 307175        | 5.10    | 319240                                                      | BLK                        | 2M142819.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     |              | 6.73         | 299213        | 5.10    | 313133                                                      | DAILY BLANK                | 2M142818.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     |              | 6.73         | 343626        | 5.10    | 368054                                                      | DAILY BLANK                | 2M142817.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 151166 8.02  | 6.73         | 296377        | 5.10    | 319931                                                      | BLK                        | 2M142816.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | 2                                     | 162826 8.02  | 6.73         | 303747        | 5.10    | 325262                                                      | 20 PPB                     | 2M142815.D |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        |                                       | !            |              |               |         |                                                             | Sample#                    | Data File  |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        |                                       | 7.52-8.52    |              | 6.23-7.23     | 1       | 4.6-5.6                                                     | Eval File Rt Limit:        |            |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        |                                       | 80516-322066 |              | 141080-564322 | 20      | 152630-610520                                               | Eval File Area Limit       |            |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        |                                       | 33 8.02      | 3 161033     | 282161 6.73   | 5.10 28 | 305260 5                                                    | Eval File Area/RT:         |            |
| Area RT                                                                                                                                                               | Area RT                                                                                                                                              | Area RT                                                                | Area RT                               |              | <del> </del> | ļ             | 1       |                                                             |                            | 1          |
| 17                                                                                                                                                                    | 5                                                                                                                                                    | 5                                                                      | 4                                     | 13           | <br> <br>    | <b>5</b>      | :       | <b>=</b>                                                    |                            | 02         |
|                                                                                                                                                                       |                                                                                                                                                      |                                                                        | · · · · · · · · · · · · · · · · · · · |              | 1            | 1             | :       | !!!!!!                                                      |                            | 2          |

# Internal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

### Flags:

A - Indicates the compound failed the internal standard area criteria

Internal Standard Areas

Evaluation Std Data File: 2M142814.D

Analysis Date/Time: 10/07/20 09:39 Lab File ID: CAL @ 20 PPB

Method: EPA 8260D

Area 6

Area

- 각

| 2M142848.D<br>2M142849.D                                  | 2M14284                     | Data File         |                     | 0             | 9                  | 3    | 02          |
|-----------------------------------------------------------|-----------------------------|-------------------|---------------------|---------------|--------------------|------|-------------|
| 2M142848.D AD19570-001(100X)<br>2M142849.D 19662-002(50X) | 2M142847.D AD19570-005(50X) | Data File Sample# | Eval File Rt Limit; |               | Eval File Area/RT: |      |             |
| 353952                                                    | 3726                        |                   | 4.6-5.6             | 152630-610520 | 305260 5.10        | Area | =           |
| 52 5.10                                                   |                             | 1                 | 5.6                 | 10520         | 5.10               | 짂    |             |
| 0 316238                                                  |                             |                   | 6.23                | 141080        | 282161             | Area | <del></del> |
| 238 6.73<br>046 6.73                                      |                             | !<br>!            | 6.23-7.23           | 141080-564322 | 6.73               | 끅    |             |
|                                                           |                             |                   | 7.                  | 8051          | 6.73 161033 8.02   | Area |             |
| 159898<br>172840                                          |                             |                   | 7.52-8.52           | 80516-322066  | 8.02               |      | ಪ           |
| 8.02                                                      | 8.02                        |                   |                     | :             | -                  |      |             |
|                                                           |                             | i                 |                     |               |                    | Area | <u> </u>    |
|                                                           |                             |                   |                     |               |                    | 끅    |             |
|                                                           |                             |                   |                     |               |                    | Area | 5           |
|                                                           |                             | !                 | :                   |               |                    | Ŗ    |             |

| ıw         |
|------------|
| 13         |
| 2          |
|            |
| ဖြ         |
| 할          |
| ١Ş         |
| ᅟᅟ         |
| 1          |
| -          |
| ₽          |
| <u>-</u>   |
| <b>!</b> ≥ |
| 13         |
| reas       |
| lw-        |
| ᇟ          |
| 14.        |
|            |
|            |
|            |

Fluorobenzene
Chlorobenzene-d5
1,4-Dichlorobenzene-d4

534

17 =

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Retention Times:

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8260 Internal Standard concentration = 30 ug/L
524 Internal Standard concentration = 5 ug/L

Eval File Area/RT:
Eval File Area Limit:

128202-512806 120158-480632

256403

4.96 240316

6.55

Area 141403

7.82

RT Area

꾸

Area

6

4

70702-282806 7.32-8.32 Area

Area

Eval File Rt Limit:

4.46-5.46

6.05-7.05

## FORM8

Internal Standard Areas

Evaluation Std Data File: 11M83666.D Analysis Date/Time: 10/07/20 14:53

Method: EPA 8260D

Lab File ID: CAL @ 50 PPB

| 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration =5ug/L |      |        |             | 16       | 2         | Chlorobenzene-d5 1,4-Dichlorobenzene-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12 =             |            |
|----------------------------------------------------------------------------------------------|------|--------|-------------|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|
| 625/8270 Internal Standard concentration = 40 mg/L (in final extract)                        |      | 17=    |             | <b>4</b> | <br> <br> | Fluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =                |            |
|                                                                                              | 7.80 | 172913 | 6.55        | 443536   | 4.96      | 269928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19581-001(5X)  | 11M83699.D |
|                                                                                              | 7.82 | 274212 | 6.55        | 247263   | 4.96      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AD19581-003(5X)  | 11M83698.D |
|                                                                                              | 7.82 | 98656  | 6.55        | 204978   | 4.96      | 220685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19620-001      | 11M83697.D |
|                                                                                              | 7.82 | 125498 | 6.55        | 230332   | 4.96      | 245467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19619-002      | 11M83696.D |
|                                                                                              | 7.82 | 127635 | 6.55        | 227745   | 4.96      | 236335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19619-001        | 11M83695.D |
|                                                                                              | 7.82 | 136261 | 6.55        | 250879   | 4.96      | 259096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19595-005        | 11M83694.D |
|                                                                                              | 7.82 | 127433 | 6.55        | 227059   | 4.96      | 244282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19595-001        | 11M83693.D |
|                                                                                              | 7.82 | 131295 | 6.55        | 234193   | 4.96      | 243044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19595-010        | 11M83692.D |
|                                                                                              | 7.82 | 117134 | 6.55        | 208682   | 4.96      | 219855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19595-009        | 11M83691.D |
|                                                                                              | 7.82 | 117395 | 6.55        | 215215   | 4.96      | 227079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19595-003        | 11M83690.D |
|                                                                                              | 7.82 | 91276  | 6.55        | 183150   | 4.96      | 198932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19618-016      | 11M83689.D |
|                                                                                              | 7.82 | 123628 | 6.55        | 221836   | 4.96      | 235756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19618-014      | 11M83688.D |
|                                                                                              | 7.82 | 115822 | 6.55        | 220894   | 4.96      | 236269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19618-012      | 11M83687.D |
|                                                                                              | 7.82 | 85393  | 6.55        | 232201   | 4.96      | 277994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19618-010      | 11M83686.D |
|                                                                                              | 7.82 | 102705 | 6.55        | 196090   | 4.96      | 218746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19618-008      | 11M83685.D |
|                                                                                              | 7.82 | 86544  | 6.55        | 199073   | 4.96      | 224946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19618-006      | 11M83684.D |
|                                                                                              | 7.82 | 111252 | 6.55        | 215359   | 4.96      | 231968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19618-004      | 11M83683.D |
|                                                                                              | 7.82 | 117017 | 6.55        | 222664   | 4.96      | 237276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19618-002      | 11M83682.D |
|                                                                                              | 7.82 | 88127  | 6.55        | 199697   | 4.96      | 227539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19551-001      | 11M83681.D |
|                                                                                              | 7.82 | 129597 | 6.55        | 238943   | 4.96      | 251761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19551-002      | 11M83680.D |
|                                                                                              | 7.82 | 136246 | 6.55        | 240582   | 4.96      | 256707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19612-003      | 11M83679.D |
|                                                                                              | 7.82 | 141763 | 6.55        | 249848   | 4.96      | 260942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19612-002      | 11M83678.D |
|                                                                                              | 7.82 | 145282 | 6.55        | 255722   | 4.96      | 265194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19612-001      | 11M83677.D |
|                                                                                              | 7.82 | 144963 | 6.55        | 255133   | 4.96      | 264746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BLK              | 11M83676.D |
|                                                                                              | 7.82 | 159521 | 6.55        | 265471   | 4.96      | 288441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MBS89452         | 11M83675.D |
|                                                                                              | 7.82 | 163163 | 6.55        | 269333   | 4.96      | D) 326742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AD19612-003(MSD) | 11M83674.D |
|                                                                                              | 7.82 | 162257 | 6.55        | 270414   | 4.96      | ) 286293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AD19612-003(MS)  | 11M83673.D |
|                                                                                              | 7.82 | 163515 | 6.56        | 332045   | 4.96      | 246624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD19539-007      | 11M83672.D |
|                                                                                              | 7.82 | 134470 | 6.55        | 238901   | 4.96      | 254824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BLK              | 11M83671.D |
|                                                                                              | 7.82 | 139211 | 6.55        | 248803   | 4.96      | 264550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DAILY BLANK      | 11M83670.D |
|                                                                                              | 7.82 | 142075 | 6.55        | 252384   | 4.96      | 267828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BLK              | 11M83669.D |
|                                                                                              | 7.82 | 148954 | 6.55        | 251687   | 4.96      | 273669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50 PPB           | 11M83667.D |
|                                                                                              | <br> |        | !<br>:<br>! | 1        |           | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | Sample#          | Data File  |

# Internal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Flags:

A - Indicates the compound failed the internal standard area criteria

Internal Standard Areas

Evaluation Std Data File: 11M83666.D

Method: EPA 8260D

Analysis Date/Time: 10/07/20 14:53

Lab File ID: CAL @ 50 PPB

| Val File Au File Sample# AD1958 AD1958 BLK BLK BLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Eval              |        |                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|---------------------------------------------------------------------------------------------|
| Eval File Area Limit: Eval File Rt Limit:  Sample#  D AD19581-001(5X) D AD19581-003(5X) D BLK D BLK D BLK D BLK D BLK D BLK D BLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Eval File Area/RT |        |                                                                                             |
| )2-51<br>16-5.4<br>16-5.4<br>12786<br>82786<br>88744<br>98747<br>91473<br>91473<br>96285<br>96285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | Area   | <b>.</b>                                                                                    |
| 6<br>6<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.96              | 곡      |                                                                                             |
| 120158-480632 6.05-7.05 6.05-7.05 6.463380 6.461709 6.379217 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372721 7.372 | 240316            | Area   | 7                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.55              | 끽      |                                                                                             |
| 70702-282806 7.32-8.32 7.32-8.32 7.32-8.32 6.55 52941 6.55 280807 6.55 239111 6.55 227474 6.55 213175 6.55 202162 6.55 194704 6.55 195030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 141403            | Area   | - :<br>:<br>:ឆ                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82              | RT     | i<br>i                                                                                      |
| 7.80<br>7.81<br>7.82<br>7.82<br>7.82<br>7.82<br>7.82<br>7.82<br>7.82<br>7.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | Area   | <br> <br> <br>  <b>4</b>                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 고<br>기 | i<br>:                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : :               | Area   | <u>.</u>                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 곡      | :                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Area   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 곡      | !                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Area   | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2               | 직      | !<br>!<br>!                                                                                 |

|   | =        |
|---|----------|
|   | ₾ .      |
|   | j.       |
|   | ū        |
|   | =        |
|   | ഗ        |
|   | ĊΫ́      |
|   | <b>⋍</b> |
| ı | ヹ        |
| ı | *        |
|   | =        |
|   | ď        |
|   | _        |
|   | 2        |
|   | ര്       |
|   | يَةِ     |
| ı | Ø        |
|   |          |
|   |          |
|   |          |

3 = 12 = 12 = 1

Fluorobenzene
Chlorobenzene-d5
1,4-Dichlorobenzene-d4

122

17 =

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Flags:

R - Indicates the compound failed the internal standard retention time criteria. A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8360 Internal Standard concentration = 30 ug/L
524 Internal Standard concentration = 5 ug/L

Retention Times: Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

Internal Standard Areas FORM8

Evaluation Std Data File: 1M140329.D

Method: EPA 8260D

Analysis Date/Time: 10/09/20 08:41 Lab File ID: CAL @ 20 PPB

|      | File             |                       |                       |                                     | i       |             |
|------|------------------|-----------------------|-----------------------|-------------------------------------|---------|-------------|
|      | File Sample#     | Eval File Rt Limit:   | Eval File Area Limit: | Eval File Area/RT                   |         |             |
|      | !<br>!<br>!      | 4.84-5.84             | 191131-764524         | 382262 5.34 387438 6.99 263399 8.28 | Area    | <b>1</b>    |
|      | !                |                       | 764524                | 5.34                                | 곡       | 1           |
|      |                  | 6.49                  | 193719-774876         | 387438                              | Area RT |             |
|      |                  | 6.49-7.49             | -774876               | 6.99                                | 곡       | 2           |
|      |                  | 7.78-8.78             | 131700                | 263399                              | Area    |             |
| 2077 |                  | 7.78-8.78             | 131700-526798         | 8.28                                | 괵       | ت :         |
| 3    |                  |                       |                       |                                     | Area    | 4           |
|      | [<br>[<br>[      | !<br>!                |                       |                                     | 곡       | <br>        |
|      | !                |                       |                       |                                     | Area    | 5           |
|      | ·<br>!           | :                     | : :                   |                                     | 곡       | ;<br>;<br>; |
|      | ;<br>;<br>;<br>; | !<br>!<br>!<br>!<br>! |                       |                                     | Area    | <u>16</u>   |
|      |                  | !                     |                       |                                     | 꾸       | ·  <br>     |
|      | i<br>i<br>i      |                       |                       |                                     | Area    | :           |
|      | i<br>i<br>i      | !                     |                       |                                     | 곡       | 7           |
|      | i                |                       | į t                   |                                     | i (     | 1           |

| 524 Internal Standard concentration =Sug/L                            |      |        |      | <u>16 =</u>           | 4           | ,4-Dichlorobenzene-d4             |                    |            |
|-----------------------------------------------------------------------|------|--------|------|-----------------------|-------------|-----------------------------------|--------------------|------------|
| 625/8270 Internal Standard concentration = 40 mg/L (in final extract) |      | 17=    |      | 7 T                   |             | Fluorobenzene<br>Chlorobenzene-dS | 5 H                |            |
|                                                                       |      |        | <br> | :  <br> -<br> -<br> - | i<br>I<br>I |                                   |                    |            |
|                                                                       | 8.28 | 279600 | 6.99 | 401863                | 5.34        | 391204                            | AD19593-003        | 1M140360.D |
|                                                                       | 8.28 | 112729 | 6.99 | 149121                | 5.34        | 55851                             | AD19593-001        | 1M140359.D |
|                                                                       | 8.28 | 251611 | 6.99 | 386666                | 5.34        | 363436                            | AD19592-001        | 1M140358.D |
|                                                                       | 8.28 | 249538 | 6.99 | 388890                | 5.34        | 368403                            | AD19616-006        | 1M140357.D |
|                                                                       | 8.28 | 253559 | 6.99 | 394417                | 5.34        | 369116                            | AD19591-004        | 1M140356.D |
|                                                                       | 8.28 | 251903 | 6.99 | 389312                | 5.34        | 366099                            | AD19591-003        | 1M140355.D |
|                                                                       | 8.28 | 251481 | 6.99 | 390483                | 5.34        | 366475                            | AD19592-003        | 1M140354.D |
|                                                                       | 8.28 | 274224 | 6.99 | 423279                | 5.34        | 399962                            | AD19592-002        | 1M140353.D |
|                                                                       | 8.28 | 260557 | 6.99 | 401212                | 5.34        | 377406                            | BLK                | 1M140352.D |
|                                                                       | 8.28 | 253733 | 6.99 | 389861                | 5.34        | 365607                            | BLK                | 1M140351.D |
|                                                                       | 8.28 | 271819 | 6.99 | 380560                | 5.33        | ) 372473                          | AD19654-001(MSD)   | 1M140350.D |
|                                                                       | 8.28 | 247612 | 6.99 | 349474                | 5.33        | 341378                            | AD19654-001(MS)    | 1M140349.D |
|                                                                       | 8.28 | 271295 | 6.99 | 397424                | 5.34        | ):A 388621                        | AD19616-003(MSD:A  | 1M140348.D |
|                                                                       | 8.28 | 278279 | 6.99 | 409067                | 5.34        | ND 407471                         | AD19616-002(MS:AD  | 1M140347.D |
|                                                                       | 8.28 | 258244 | 6.99 | 392590                | 5.34        | 373395                            | AD19595-012        | 1M140346.D |
|                                                                       | 8.28 | 257473 | 6.99 | 397321                | 5.34        | 374082                            | AD19595-006        | 1M140345.D |
|                                                                       | 8.28 | 250133 | 6.99 | 376087                | 5.34        | 352612                            | 19595-007          | 1M140344.D |
|                                                                       | 8.28 | 275813 | 6.99 | 407191                | 5.33        | 378849                            | AD19595-004        | 1M140343.D |
|                                                                       | 8.28 | 258756 | 6.99 | 374999                | 5.33        | 349551                            | AD19595-002        | 1M140342.D |
|                                                                       | 8.28 | 250948 | 6.99 | 379066                | 5.33        | 357563                            | AD19539-012        | 1M140341.D |
|                                                                       | 8.28 | 261826 | 6.99 | 389506                | 5.34        | 381486                            | AD19598-012        | 1M140340.D |
|                                                                       | 8.28 | 274785 | 6.99 | 396711                | 5.34        | 393888                            | MBS89476           | 1M140339.D |
|                                                                       | 8.28 | 270019 | 6.99 | 385156                | 534         | :                                 | MBS89475           | 1M140338.D |
|                                                                       | 8.28 | 265203 | 6.99 | 401823                | 5.34        | .) 378004                         | AD19539-014(40uL)  | 1M140337.D |
|                                                                       | 8.28 | 244935 | 6.99 | 383680                | 5.34        | iL) 364335                        | AD19539-012(400uL) | 1M140336.D |
|                                                                       | 8.28 | 265313 | 6.99 | 418046                | 5.34        | 401236                            | AD19616-001        | 1M140335.D |
|                                                                       | 8.28 | 254222 | 6.99 | 398400                | 5.34        | 365186                            | AD19654-001        | 1M140334.D |
|                                                                       | 8.28 | 254182 | 6.99 | 396377                | 5.34        | 365030                            | DAILY BLANK        | 1M140333.D |
|                                                                       | 8.28 | 259481 | 6.99 | 398073                | 5.34        | 374548                            | DAILY BLANK        | 1M140332.D |
|                                                                       | 8.28 | 254771 | 6.99 | 393036                | 5.34        | 374870                            | BLK                | 1M140331.D |
|                                                                       | 8.28 | 258045 | 6.99 | 399836                | 5.34        | 371150                            | BLK                | 1M140330.D |
|                                                                       | 8.28 | 305725 | 6.99 | 447412                | 5.34        | 412075                            | 20 PPB             | 1M140328.D |
|                                                                       |      | I      |      |                       |             |                                   | Sample#            | Data File  |

# **Internal Standard Areas**

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Retention Times:

A - Indicates the compound failed the internal standard area criteria

Internal Standard Areas

Evaluation Std Data File: 1M140329.D

Method: EPA 8260D

곡

Analysis Date/Time: 10/09/20 08:41 Lab File ID: CAL @ 20 PPB

| 12 | 009302     |                    |                      |                    | Data File             | 1M14                  | 1M14                  | 1M14                 | 1M14               | 1M14          | 1M14          | 1M14           | 1M14          | 1M14          | 1M14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1M14           |
|----|------------|--------------------|----------------------|--------------------|-----------------------|-----------------------|-----------------------|----------------------|--------------------|---------------|---------------|----------------|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|    |            | Eval File Area/RT: | Eval File Area Limit | Eval File Rt Limit | File Sample#          | M140361.D AD19616-004 | M140362.D AD19616-005 | IM140363.D 19517-004 | M140364.D MBS89482 | M140365.D BLK | M140366.D BLK | IM140367.D BLK | M140368.D BLK | M140369.D BLK | M140370.D BLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1M140371.D BLK |
|    | Area RT    | 382262 5.34        | 191131-764524        | 4.84-5.84          |                       | 374919                |                       |                      | _                  |               |               | _              |               | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 5  | Area F     |                    | 193719-774876        | 6.49-7.49          |                       |                       |                       |                      |                    | !             | 5.34 421405   |                |               |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|    | ₹T Ārea I  | 263399             | 3                    | 7.78-8.78          | i<br>!<br>!<br>!<br>! | 6.99 264870           |                       |                      |                    | i<br>i        | 6.99 285106   |                |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|    | RT Area I  | 8.28               | 798                  |                    |                       | 8.28                  | 8.28                  | 8.28                 | 8.28               | 8.28          | 8.28          | 8.28           | 8.28          | 8.28          | 8.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.28           |
| 55 | RT Area RT |                    |                      |                    |                       |                       |                       |                      |                    |               |               |                |               |               | And the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |                |
| 5  | Area RT    |                    |                      | i                  |                       |                       |                       |                      |                    |               |               |                |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 17 | Area       |                    |                      |                    |                       |                       |                       |                      |                    |               |               |                |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |

| mal      |
|----------|
| Standa   |
| rd Areas |
|          |

13 = =

Fluorobenzene
Chlorobenzene-d5
1,4-Dichlorobenzene-d4

422

17 =

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Flags:

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8260 juternal Standard concentration = 30 mg/L
524 Internal Standard concentration = 5 mg/L

Base Neutral/Acid Extractable Data

### Form1

### ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19539-007

Client Id: HSI-SB-02(10-10.5)

Data File: 7M109905.D

Analysis Date: 10/06/20 17:57 Date Rec/Extracted: 09/30/20-10/06/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil

Initial Vol: 30g

Final Vol: 0.5ml

Dilution: 1

Solids: 80

Units: mg/Kg

| Units: mg/kg |                            |       |       |      |          |                             |         |       |       |  |  |  |
|--------------|----------------------------|-------|-------|------|----------|-----------------------------|---------|-------|-------|--|--|--|
| Cas#         | Compound                   | MDL   | RL    | Conc | Cas #    | Compound                    | MDL     | RL    | Conc  |  |  |  |
| 92-52-4      | 1,1'-Biphenyl              | 0.012 | 0.042 | U    | 50-32-8  | Benzo[a]pyrene              | 0.014   | 0.042 | U     |  |  |  |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene | 0.014 | 0.042 | U    | 205-99-2 | Benzo[b]fluoranthene        | 0.015   | 0.042 | U     |  |  |  |
| 123-91-1     | 1.4-Dioxane                | 0.021 | 0.021 | U    | 191-24-2 | Benzo[g.h,i]perylene        | 0.00029 | 0.042 | U     |  |  |  |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol  | 0.016 | 0.042 | U    | 207-08-9 | Benzo[k]fluoranthene        | 0.015   | 0.042 | U     |  |  |  |
| 95-95-4      | 2.4.5-Trichlorophenol      | 0.012 | 0.042 | U    | 111-91-1 | bis(2-Chloroethoxy)methan   | 0.012   | 0.042 | U     |  |  |  |
| 88-06-2      | 2,4,6-Trichlorophenol      | 0.032 | 0.042 | U    | 111-44-4 | bis(2-Chloroethyl)ether     | 0.010   | 0.010 | U     |  |  |  |
| 120-83-2     | 2,4-Dichlorophenol         | 0.016 | 0.016 | U    | 108-60-1 | bis(2-chloroisopropyl)ether | 0.017   | 0.042 | U     |  |  |  |
| 105-67-9     | 2.4-Dimethylphenol         | 0.020 | 0.020 | U    | 117-81-7 | bis(2-Ethylhexyl)phthalate  | 0.037   | 0.042 | 0.34  |  |  |  |
| 51-28-5      | 2,4-Dinitrophenol          | 0.18  | 0.21  | U    | 85-68-7  | Butylbenzylphthalate        | 0.032   | 0.042 | U     |  |  |  |
| 121-14-2     | 2,4-Dinitrotoluene         | 0.013 | 0.042 | U    | 105-60-2 | Caprolactam                 | 0.033   | 0.042 | U     |  |  |  |
| 606-20-2     | 2.6-Dinitrotoluene         | 0.021 | 0.042 | U    | 86-74-8  | Carbazole                   | 0.013   | 0.042 | U     |  |  |  |
| 91-58-7      | 2-Chloronaphthalene        | 0.019 | 0.042 | U    | 218-01-9 | Chrysene                    | 0.014   | 0.042 | U     |  |  |  |
| 95-57-8      | 2-Chlorophenol             | 0.014 | 0.042 | U    | 53-70-3  | Dibenzo(a,h)anthracene      | 0.015   | 0.042 | U     |  |  |  |
| 91-57-6      | 2-Methylnaphthalene        | 0.013 | 0.042 | U    | 132-64-9 | Dibenzofuran                | 0.011   | 0.011 | U     |  |  |  |
| 95-48-7      | 2-Methylphenol             | 0.012 | 0.012 | U    | 84-66-2  | Diethylphthalate            | 0.027   | 0.042 | U     |  |  |  |
| 88-74-4      | 2-Nitroaniline             | 0.020 | 0.042 | U    | 131-11-3 | Dimethylphthalate           | 0.012   | 0.042 | U     |  |  |  |
| 88-75-5      | 2-Nitrophenol              | 0.019 | 0.042 | U    | 84-74-2  | Di-n-butylphthalate         | 0.048   | 0.048 | 1.6   |  |  |  |
| 106-44-5     | 3&4-Methylphenol           | 0.012 | 0.012 | U    | 117-84-0 | Di-n-octylphthalate         | 0.028   | 0.042 | U     |  |  |  |
| 91-94-1      | 3,3'-Dichlorobenzidine     | 0.034 | 0.042 | U    | 206-44-0 | Fluoranthene                | 0.016   | 0.042 | U     |  |  |  |
| 99-09-2      | 3-Nitroaniline             | 0.016 | 0.042 | U    | 86-73-7  | Fluorene                    | 0.011   | 0.042 | U     |  |  |  |
| 534-52-1     | 4.6-Dinitro-2-methylphenol | 0.15  | 0.21  | U    | 118-74-1 | Hexachlorobenzene           | 0.017   | 0.042 | U     |  |  |  |
| 101-55-3     | 4-Bromophenyl-phenylether  | 0.012 | 0.042 | U    | 87-68-3  | Hexachlorobutadiene         | 0.019   | 0.042 | U     |  |  |  |
| 59-50-7      | 4-Chloro-3-methylphenol    | 0.010 | 0.042 | U    | 77-47-4  | Hexachlorocyclopentadiene   | 0.14    | 0.14  | U     |  |  |  |
| 106-47-8     | 4-Chloroaniline            | 0.018 | 0.018 | U    | 67-72-1  | Hexachloroethane            | 0.018   | 0.042 | U     |  |  |  |
| 7005-72-3    | 4-Chlorophenyl-phenylether | 0.013 | 0.042 | U    | 193-39-5 | Indeno[1,2,3-cd]pyrene      | 0.019   | 0.042 | U     |  |  |  |
| 100-01-6     | 4-Nitroaniline             | 0.016 | 0.042 | U    | 78-59-1  | Isophorone                  | 0.013   | 0.042 | U     |  |  |  |
| 100-02-7     | 4-Nitrophenol              | 0.032 | 0.042 | U    | 91-20-3  | Naphthalene                 | 0.012   | 0.012 | 0.058 |  |  |  |
| 83-32-9      | Acenaphthene               | 0.012 | 0.042 | U    | 98-95-3  | Nitrobenzene                | 0.0017  | 0.042 | U     |  |  |  |
| 208-96-8     | Acenaphthylene             | 0.012 | 0.042 | U    | 621-64-7 | N-Nitroso-di-n-propylamine  | 0.016   | 0.016 | U     |  |  |  |
| 98-86-2      | Acetophenone               | 0.015 | 0.042 | U    | 86-30-6  | n-Nitrosodiphenylamine      | 0.14    | 0.14  | U     |  |  |  |
| 120-12-7     | Anthracene                 | 0.011 | 0.042 | U    | 87-86-5  | Pentachlorophenol           | 0.20    | 0.21  | U     |  |  |  |
| 1912-24-9    | Atrazine                   | 0.017 | 0.042 | U    | 85-01-8  | Phenanthrene                | 0.013   | 0.042 | U     |  |  |  |
| 100 52-7     | Benzaldehyde               | 0.45  | 0.45  | U    | 108-95-2 | Phenol                      | 0.012   | 0.042 | U     |  |  |  |
| 56-55-3      | Benzo[a]anthracene         | 0.014 | 0.042 | U    | 129-00-0 | Pyrene                      | 0.014   | 0.042 | U     |  |  |  |
|              |                            |       |       |      |          |                             |         |       |       |  |  |  |

Worksheet #: 571285

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $<sup>{\</sup>it E}$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Operator : AH/JKR/JB Sam Mult : 1 Vial# : 19 Misc : S,BNA Qt Meth : 7M\_0917.M Qt On : 10/09/20 10:10 Qt Upd On: 10/07/20 10:09 SampleID : AD19539-007 Data File: 7M109905.D Acq On : 10/6/20 17:57

Data Path : G:\GcMsData\2020\GCMS\_7\Data\10-0620\
Qt Path : G:\GCMSDATA\2020\GCMS\_7\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.   | QIon | Response | Conc U | nits Dev | (Min)  |
|-----------------------------|--------|------|----------|--------|----------|--------|
| Internal Standards          |        |      |          |        |          |        |
| 7) 1,4-Dioxane-d8(INT)      | 2.681  | 96   | 76553    | 40.00  | ng       | -0.02  |
| 21) 1,4-Dichlorobenzene-d4  | 5.895  | 152  | 167480   | 40.00  | ng       | 0.00   |
| 31) Naphthalene-d8          | 6.900  | 136  | 626910   | 40.00  | ng       | 0.00   |
| 50) Acenaphthene-d10        | 8.339  | 164  | 322446   | 40.00  | ng       | 0.00   |
| 77) Phenanthrene-d10        | 9.820  | 188  | 588763   | 40.00  | ng       | 0.00   |
| 91) Chrysene-d12            | 12.893 | 240  | 541619   | 40.00  | ng       | 0.00   |
| 103) Perylene-d12           | 14.544 | 264  | 535684   | 40.00  | ng       | 0.00   |
| System Monitoring Compounds |        |      |          |        |          |        |
| 11) 2-Fluorophenol          | 4.726  | 112  | 301581   | 66.90  | ng       | 0.01   |
| Spiked Amount 100.000       |        |      | Recove   |        | 66.90%   |        |
| 16) Phenol-d5               | 5.590  | 99   | 416427   |        | ng       | 0.01   |
| Spiked Amount 100.000       |        |      |          |        | 76.88%   |        |
| 32) Nitrobenzene-d5         | 6.342  | 128  | 83722    | 33.62  | ng       | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   |        |          |        |
| 55) 2-Fluorobiphenyl        | 7.740  | 172  | 387792   | 36.06  | ng       | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 72.12%   |        |
| 80) 2,4,6-Tribromophenol    | 9.091  | 330  | 116790   | 76.99  | ng       | 0.00   |
| Spiked Amount 100.000       |        |      | Recove   | ry =   | 76.99%   |        |
| 94) Terphenyl-d14           | 11.641 | 244  | 353000   | 40.93  | ng       | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 81.86%   |        |
| Target Compounds            |        |      |          |        |          | Ovalue |
| 41) Naphthalene             | 6.912  | 128  | 45620m   | 2.79   | 81 ng    | •      |
| 89) Di-n-butylphthalate     |        |      |          |        |          | 98     |
| 102) bis(2-Ethylhexyl)phtha |        |      | 165255m  |        |          |        |
|                             |        |      |          |        |          |        |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed



### Form1

### ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19539-011

Client Id: HSI-SB-03 (10-10.5)

Data File: 9M101550.D Analysis Date: 10/06/20 12:59

Date Rec/Extracted: 09/30/20-10/06/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil

Initial Vol: 30g

Final Vol: 0.5ml

Dilution: 1

Solids: 84

| U | Ini | ts: | m | g/ | Kg |
|---|-----|-----|---|----|----|
|   |     |     |   |    |    |

| Cas#      | Compound                   | MDL    | RL    | Conc | Cas #    | Compound                    | MDL     | RL     | Conc |
|-----------|----------------------------|--------|-------|------|----------|-----------------------------|---------|--------|------|
| 92-52-4   | 1,1'-Biphenyl              | 0.011  | 0.040 | U    | 50-32-8  | Benzo[a]pyrene              | 0.014   | 0.040  | U    |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene | 0.013  | 0.040 | U    | 205-99-2 | Benzo[b]fluoranthene        | 0.014   | 0.040  | U    |
| 123-91-1  | 1,4-Dioxane                | 0.020  | 0.020 | U    | 191-24-2 | Benzo[g,h,i]perylene        | 0.00027 | 0.040  | U    |
| 58-90-2   | 2,3,4,6-Tetrachiorophenoi  | 0.015  | 0.040 | U .  | 207-08-9 | Benzo[k]fluoranthene        | 0.015   | 0.040  | U    |
| 95-95-4   | 2,4,5-Trichlorophenol      | 0.011  | 0.040 | U    | 111-91-1 | bis(2-Chloroethoxy)methan   | 0.011   | 0.040  | U    |
| 88-06-2   | 2.4,6-Trichlorophenol      | 0.031  | 0.040 | U    | 111-44-4 | bis(2-Chloroethyl)ether     | 0.0096  | 0.0099 | U    |
| 120-83-2  | 2,4-Dichlorophenol         | 0.015  | 0.015 | υ    | 108-60-1 | bis(2-chloroisopropyl)ether | 0.016   | 0.040  | U    |
| 105-67-9  | 2.4-Dimethylphenol         | 0.019  | 0.019 | U    | 117-81-7 | bis(2-Ethylhexyl)phthalate  | 0.035   | 0.040  | U    |
| 51-28-5   | 2,4-Dinitrophenol          | 0.17   | 0.20  | U    | 85-68-7  | Butylbenzylphthalate        | 0.030   | 0.040  | U    |
| 121 14-2  | 2.4-Dinitrotoluene         | 0.012  | 0.040 | U    | 105-60-2 | Caprolactam                 | 0.032   | 0.040  | U    |
| 606-20-2  | 2,6-Dinitrotoluene         | 0.020  | 0.040 | U    | 86-74-8  | Carbazole                   | 0.012   | 0.040  | U    |
| 91-58-7   | 2-Chloronaphthalene        | 0.018  | 0.040 | U    | 218-01-9 | Chrysene                    | 0.013   | 0.040  | U    |
| 95-57-8   | 2-Chlorophenol             | 0.013  | 0.040 | U    | 53-70-3  | Dibenzo(a,h)anthracene      | 0.015   | 0.040  | U    |
| 91-57-6   | 2-Methylnaphthalene        | 0.012  | 0.040 | U    | 132-64-9 | Dibenzofuran                | 0.010   | 0.010  | U    |
| 95-48-7   | 2-Methylphenol             | 0.011  | 0.011 | U    | 84-66-2  | Diethylphthalate            | 0.026   | 0.040  | U    |
| 88-/4-4   | 2-Nitroaniline             | 0.019  | 0.040 | U    | 131-11-3 | Dimethylphthalate           | 0.011   | 0.040  | U    |
| 88-75-5   | 2-Nitrophenol              | 0.018  | 0.040 | U    | 84-74-2  | Di-n-butylphthalate         | 0.046   | 0.046  | U    |
| 106-44-5  | 3&4-Methylphenol           | 0.012  | 0.012 | U .  | 117-84-0 | Di-n-octylphthalate         | 0.026   | 0.040  | U    |
| 91-94-1   | 3,3'-Dichlorobenzidine     | 0.032  | 0.040 | U    | 206-44-0 | Fluoranthene                | 0.015   | 0.040  | U    |
| 99-09-2   | 3-Nitroaniline             | 0.015  | 0.040 | U    | 86-73-7  | Fluorene                    | 0.011   | 0.040  | U    |
| 534-52-1  | 4.6-Dinitro-2-methylphenol | 0.14   | 0.20  | U    | 118-74-1 | Hexachlorobenzene           | 0.017   | 0.040  | U    |
| 101-55-3  | 4-Bromophenyl-phenylether  | 0.011  | 0.040 | U    | 87-68-3  | Hexachlorobutadiene         | 0.018   | 0.040  | U    |
| 59-50-7   | 4-Chloro-3-methylphenol    | 0.0096 | 0.040 | U    | 77-47-4  | Hexachlorocyclopentadiene   | 0.13    | 0.13   | U    |
| 106 47-8  | 4-Chloroaniline            | 0.017  | 0.017 | U    | 67-72-1  | Hexachloroethane            | 0.018   | 0.040  | U    |
| 7005-72-3 | 4-Chlorophenyl-phenylether | 0.012  | 0.040 | U    | 193-39-5 | Indeno[1,2,3-cd]pyrene      | 0.018   | 0.040  | U    |
| 100-01-6  | 4-Nitroaniline             | 0.015  | 0.040 | U    | 78-59-1  | Isophorone                  | 0.013   | 0.040  | U    |
| 100 02-7  | 4-Nitrophenol              | 0.030  | 0.040 | U    | 91-20-3  | Naphthalene                 | 0.011   | 0.011  | U    |
| 83-32-9   | Acenaphthene               | 0.011  | 0.040 | U    | 98-95-3  | Nitrobenzene                | 0.0016  | 0.040  | U    |
| 208-96-8  | Acenaphthylene             | 0.012  | 0.040 | U    | 621-64-7 | N-Nitroso-di-n-propylamine  | 0.015   | 0.015  | U    |
| 98-86-2   | Acetophenone               | 0.014  | 0.040 | U    | 86-30-6  | n-Nitrosodiphenylamine      | 0.13    | 0.13   | U    |
| 120-12-7  | Anthracene                 | 0.011  | 0.040 | U    | 87-86-5  | Pentachlorophenol           | 0.19    | 0.20   | U    |
| 1912-24-9 | Atrazine                   | 0.016  | 0.040 | υ    | 85-01-8  | Phenanthrene                | 0.013   | 0.040  | U    |
| 100-52-7  | Benzaldehyde               | 0.43   | 0.43  | U    | 108-95-2 | Phenol                      | 0.011   | 0.040  | U    |
| 56-55-3   | Benzo[a]anthracene         | 0.013  | 0.040 | U    | 129-00-0 | Pyrene                      | 0.014   | 0.040  | U    |

Worksheet #: 571285

Total Target Concentration

0

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Data Path : G:\GcMsData\2020\GCMS\_9\Data\10-06-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_9\METHODQT\

Qt Resp Via : Initial Calibration

| Compound                      | R.T.   | QIon | Response | Conc U | nits Dev(Min) |
|-------------------------------|--------|------|----------|--------|---------------|
| Internal Standards            |        |      |          |        |               |
| 7) 1,4~Dioxane~d8(INT)        | 2.696  | 96   | 67682    | 40.00  | ng 0.00       |
| 21) 1,4-Dichlorobenzene-d4    | 5.901  | 152  | 125964   | 40.00  | ng 0.00       |
| 31) Naphthalene-d8            | 6.907  | 136  | 485597   | 40.00  | ng 0.00       |
| 50) Acenaphthene-d10          | 8.342  | 164  | 263417   | 40.00  | ng 0.00       |
| 77) Phenanthrene-d10          | 9.819  | 188  | 512963   | 40.00  | ng 0.00       |
| 91) Chrysene-d12              | 12.877 | 240  | 505973   | 40.00  | ng -0.01      |
| 103) Perylene-d12             | 14.513 | 264  | 505452   | 40.00  | ng -0.02      |
| System Monitoring Compounds   |        |      |          |        |               |
| <pre>11) 2-Fluorophenol</pre> | 4.713  | 112  | 215804   | 60.95  | ng 0.00       |
| Spiked Amount 100.000         |        |      | Recove   | ery =  | 60.95%        |
| 16) Phenol-d5                 | 5.578  | 99   | 274811   | 64.17  | ng 0.00       |
| Spiked Amount 100.000         |        |      |          |        | 64.17%        |
| 32) Nitrobenzene-d5           | 6.348  | 128  | 53289    |        | •             |
| Spiked Amount 50.000          |        |      |          | •      | 61.02%        |
| 55) 2-Fluorobiphenyl          | 7.748  | 172  |          |        | •             |
| Spiked Amount 50.000          |        |      |          |        | 60.38%        |
| 80) 2,4,6-Tribromophenol      | 9.089  | 330  | 75002    |        | -             |
| Spiked Amount 100.000         |        |      |          |        | 63.49%        |
| 94) Terphenyl-d14             | 11.625 | 244  |          |        | ng -0.01      |
| Spiked Amount 50.000          |        |      | Recove   | ry =   | 67.80%        |
|                               |        |      |          |        |               |

Target Compounds Qvalue

· ~

PAGE: 1

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed



### Form1

### ORGANICS SEMIVOLATILE REPORT

Units: mg/Kg

Cas#

Conc

Sample Number: AD19539-013

Client Id: HSI-SB-01 (2.5-3)

Data File: 7M109906.D

Analysis Date: 10/06/20 18:20 Date Rec/Extracted: 09/30/20-10/06/20

Compound

Cas#

100-01-6

100-02-7

83-32-9

208-96-8

98-86-2

120-12-7

1912-24-9

100-52-7

56-55-3

4-Nitroaniline

4-Nitrophenol

Acenaphthene

Acenaphthylene

Acetophenone

Benzaldehyde

Benzo[a]anthracene

Anthracene

Atrazine

Column: DB-5MS 30M 0.250mm ID 0.25um film

RL

MDL

0.015

0.029

0.011

0.011

0.014

0.011

0.015

0.013

0.42

0.038

0.038

0.038

0.038

0.038

0.038

0.038

0.42

0.038

Method: EPA 8270E

MDL

RL

Conc

Matrix: Soil

Initial Vol: 30g

Final Vol: 0.5ml

Dilution: 1

Compound

Solids: 87

|           |                            |        | —     |       |          |                             |         | –      |      |
|-----------|----------------------------|--------|-------|-------|----------|-----------------------------|---------|--------|------|
| 92-52-4   | 1,1'-Biphenyl              | 0.011  | 0.038 | U     | 50-32-8  | Benzo[a]pyrene              | 0.013   | 0.038  | U    |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene | 0.013  | 0.038 | U     | 205-99-2 | Benzo[b]fluoranthene        | 0.014   | 0.038  | U    |
| 123-91-1  | 1.4-Dioxane                | 0.019  | 0.019 | U     | 191-24-2 | Benzo[g,h,i]perylene        | 0.00026 | 0.038  | U    |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | 0.014  | 0.038 | U     | 207-08-9 | Benzo[k]fluoranthene        | 0.014   | 0.038  | U    |
| 95-95-4   | 2.4,5-Trichlorophenol      | 0.011  | 0.038 | U     | 111-91-1 | bis(2-Chloroethoxy)methan   | 0.011   | 0.038  | U    |
| 88-06-2   | 2,4.6-Trichlorophenol      | 0.030  | 0.038 | U     | 111-44-4 | bis(2-Chloroethyl)ether     | 0.0093  | 0.0096 | U    |
| 120-83-2  | 2.4-Dichlorophenol         | 0.014  | 0.014 | U     | 108-60-1 | bis(2-chloroisopropyl)ether | 0.015   | 0.038  | U    |
| 105-67-9  | 2,4-Dimethylphenol         | 0.019  | 0.019 | U     | 117-81-7 | bis(2-Ethylhexyl)phthalate  | 0.034   | 0.038  | 0.25 |
| 51-28-5   | 2,4-Dinitrophenol          | 0.17   | 0.19  | U     | 85-68-7  | Butylbenzylphthalate        | 0.029   | 0.038  | U    |
| 121-14-2  | 2,4-Dinitrotoluene         | 0.012  | 0.038 | U     | 105-60-2 | Caprolactam                 | 0.031   | 0.038  | U    |
| 606-20-2  | 2,6-Dinitrotoluene         | 0.020  | 0.038 | U     | 86-74-8  | Carbazole                   | 0.012   | 0.038  | U    |
| 91-58-7   | 2-Chloronaphthalene        | 0.017  | 0.038 | U     | 218-01-9 | Chrysene                    | 0.013   | 0.038  | U    |
| 95-57-8   | 2-Chlorophenol             | 0.013  | 0.038 | 0.35  | 53-70-3  | Dibenzo(a,h)anthracene      | 0.014   | 0.038  | U    |
| 91-57-6   | 2-Methylnaphthalene        | 0.012  | 0.038 | U     | 132-64-9 | Dibenzofuran                | 0.0097  | 0.0097 | U    |
| 95-48-7   | 2-Methylphenol             | 0.011  | 0.011 | 0.013 | 84-66-2  | Diethylphthalate            | 0.025   | 0.038  | U    |
| 88-74-4   | 2-Nitroaniline             | 0.018  | 0.038 | U     | 131-11-3 | Dimethylphthalate           | 0.011   | 0.038  | U    |
| 88-75-5   | 2-Nitrophenol              | 0.017  | 0.038 | U     | 84-74-2  | Di-n-butylphthalate         | 0.044   | 0.044  | 0.25 |
| 106-44-5  | 3&4-Methylphenol           | 0.011  | 0.011 | U     | 117-84-0 | Di-n-octylphthalate         | 0.025   | 0.038  | U    |
| 91-94-1   | 3,3'-Dichlorobenzidine     | 0.031  | 0.038 | U     | 206-44-0 | Fluoranthene                | 0.015   | 0.038  | U    |
| 99-09-2   | 3-Nitroaniline             | 0.015  | 0.038 | U     | 86-73-7  | Fluorene                    | 0.010   | 0.038  | U    |
| 534-52-1  | 4,6-Dinitro-2-methylphenol | 0.13   | 0.19  | U     | 118-74-1 | Hexachlorobenzene           | 0.016   | 0.038  | U    |
| 101-55-3  | 4-Bromophenyl-phenylether  | 0.011  | 0.038 | U     | 87-68-3  | Hexachlorobutadiene         | 0.017   | 0.038  | U    |
| 59-50-7   | 4-Chloro-3-methylphenol    | 0.0092 | 0.038 | U     | 77-47-4  | Hexachlorocyclopentadiene   | 0.12    | 0.12   | U    |
| 106-47-8  | 4-Chloroaniline            | 0.017  | 0.017 | U     | 67-72-1  | Hexachloroethane            | 0.017   | 0.038  | U    |
| 7005-72-3 | 4-Chlorophenyl-phenylether | 0.012  | 0.038 | U     | 193-39-5 | Indeno[1,2,3-cd]pyrene      | 0.017   | 0.038  | U    |
|           |                            |        |       |       |          |                             |         |        |      |

U

U

U

U

u

U

U

U

78-59-1

91-20-3

98-95-3

621-64-7

86-30-6

87-86-5

85-01-8

108-95-2

129-00-0

Isophorone

Naphthalene

Nitrobenzene

N-Nitroso-di-n-propylamine

n-Nitrosodiphenylamine

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Worksheet #: 571285

Total Target Concentration

0.93

ColumnID: (^) Indicates results from 2nd column

0.012

0.011

0.0016

0.014

0.13

0.18

0.012

0.011

0.013

0.038

0.011

0.038

0.014

0.13

0.19

0.038

0.038

0.038

U

U

U

U

U

U

U

u

0.063

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Data Path : G:\GcMsData\2020\GCMS\_7\Data\10-0620\
Qt Path : G:\GCMSDATA\2020\GCMS\_7\METHODQT\

Qt Resp Via : Initial Calibration

| Compound                    | R.T.   | QIon | Response | Conc ( | Jnits | Dev   | (Min)  |
|-----------------------------|--------|------|----------|--------|-------|-------|--------|
| Internal Standards          |        |      |          |        |       |       |        |
| 7) 1,4-Dioxane-d8(INT)      | 2.687  | 96   | 83622    | 40.00  | ng    |       | -0.01  |
| 21) 1,4-Dichlorobenzene-d4  | 5.895  | 152  | 183905   | 40.00  | ng n  |       | 0.00   |
|                             | 6.900  | 136  | 693603   | 40.00  | ng (  |       | 0.00   |
| 50) Acenaphthene-d10        | 8.339  | 164  | 359590   | 40.00  | ) ng  |       | 0.00   |
|                             | 9.820  | 188  | 643444   | 40.00  | ng    |       | 0.00   |
| 91) Chrysene-d12            | 12.893 | 240  | 551971   | 40.00  | ng n  |       | 0.00   |
| 103) Perylene-d12           | 14.544 | 264  | 521804   | 40.00  | ng ng |       | 0.00   |
| System Monitoring Compounds |        |      |          |        |       |       |        |
| 11) 2-Fluorophenol          | 4.732  | 112  | 343392   | 69.74  | l ng  |       | 0.02   |
| Spiked Amount 100.000       |        |      | Recove   | ry =   | 69    | .74%  |        |
| 16) Phenol-d5               | 5.590  | 99   | 463218   | 78.28  | ng ng |       | 0.01   |
| Spiked Amount 100.000       |        |      | Recove   | ry =   | 78    | .28%  |        |
| 32) Nitrobenzene-d5         | 6.342  | 128  | 92753    | 33.66  | ng ng |       | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 67    | . 32ቄ |        |
| 55) 2-Fluorobiphenyl        | 7.740  | 172  | 426261   |        |       |       | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   |        |       |       |        |
| 80) 2,4,6-Tribromophenol    | 9.091  | 330  | 127065   | 76.64  |       |       | 0.00   |
| Spiked Amount 100.000       |        |      | Recove   |        |       |       |        |
| 94) Terphenyl-d14           | 11.636 | 244  | 353293   |        | -     |       | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 80    | .38%  |        |
| Target Compounds            |        |      |          |        |       |       | Qvalue |
| •                           | 5.719  | 128  | 104448   | 18.1   |       | ng    | 79     |
|                             | 6.101  | 108  | 3601m    |        |       | ng    |        |
|                             | 6.912  |      | 59571m   |        |       | ng    |        |
| 89) Di-n-butylphthalate     |        |      | 256946m  |        |       | ng    |        |
| 102) bis(2-Ethylhexyl)phtha | 12.922 | 149  | 134935m  | 12.92  | 251   | ng    |        |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed



#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19539-014(200X)

Client Id: HSI-SB-01 (6-6.5) Data File: 7M109936.D

Analysis Date: 10/07/20 16:06 Date Rec/Extracted: 09/30/20-10/06/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil Initial Vol: 30g

Final Vol: 0.5ml Dilution: 200

Solids: 83

|           |                            |     |     | Units: mg | g/Kg     |                             |       |     |      |
|-----------|----------------------------|-----|-----|-----------|----------|-----------------------------|-------|-----|------|
| Cas#      | Compound                   | MDL | RL  | Conc      | Cas#     | Compound                    | MDL   | RL  | Conc |
| 92-52-4   | 1,1'-Biphenyl              | 2.3 | 8.0 | U         | 50-32-8  | Benzo(a)pyrene              | 2.7   | 8.0 | U    |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene | 2.7 | 8.0 | U         | 205-99-2 | Benzo(b)fluoranthene        | 2.9   | 8.0 | U    |
| 123-91-1  | 1.4-Dioxane                | 4.0 | 4.0 | U         | 191-24-2 | Benzo[g,h,i]perylene        | 0.055 | 8.0 | U    |
| 58-90-2   | 2.3.4,6-Tetrachlorophenol  | 3.0 | 8.0 | U         | 207-08-9 | Benzo[k]fluoranthene        | 3.0   | 8.0 | U    |
| 95-95-4   | 2,4,5-Trichlorophenol      | 2.3 | 8.0 | U         | 111-91-1 | bis(2-Chloroethoxy)methan   | 2.3   | 8.0 | U    |
| 88-06-2   | 2,4,6-Trichlorophenol      | 6.2 | 8.0 | U         | 111-44-4 | bis(2-Chloroethyl)ether     | 1.9   | 2.0 | U    |
| 120-83-2  | 2,4-Dichlorophenol         | 3.0 | 3.0 | U         | 108-60-1 | bis(2-chloroisopropyl)ether | 3.2   | 8.0 | U    |
| 105-67-9  | 2,4-Dimethylphenol         | 3.9 | 3.9 | U         | 117-81-7 | bis(2-Ethylhexyl)phthalate  | 7.1   | 8.0 | 50   |
| 51-28-5   | 2,4-Dinitrophenol          | 35  | 40  | U         | 85-68-7  | Butylbenzylphthalate        | 6.2   | 8.0 | U    |
| 121-14-2  | 2,4-Dinitrotoluene         | 2.5 | 8.0 | U         | 105-60-2 | Caprolactam                 | 6.4   | 8.0 | U    |
| 606-20-2  | 2,6-Dinitrotoluene         | 4.1 | 8.0 | U         | 86-74-8  | Carbazole                   | 2.5   | 8.0 | U    |
| 91-58-7   | 2-Chloronaphthalene        | 3.6 | 8.0 | U         | 218-01-9 | Chrysene                    | 2.7   | 8.0 | U    |
| 95-57-8   | 2-Chlorophenol             | 2.6 | 8.0 | 13        | 53-70-3  | Dibenzo[a,h]anthracene      | 2.9   | 8.0 | U    |
| 91-57-6   | 2-Methylnaphthalene        | 2.5 | 8.0 | U         | 132-64-9 | Dibenzofuran                | 2.0   | 2.0 | U    |
| 95-48-7   | 2-Methylphenol             | 2.3 | 2.3 | U         | 84-66-2  | Diethylphthalate            | 5.2   | 8.0 | U    |
| 88-74-4   | 2-Nitroaniline             | 3.8 | 8.0 | U         | 131-11-3 | Dimethylphthalate           | 2.3   | 8.0 | U    |
| 88-75-5   | 2-Nitrophenol              | 3.6 | 8.0 | U         | 84-74-2  | Di-n-butylphthalate         | 9.2   | 9.2 | 720  |
| 106-44-5  | 3&4-Methylphenol           | 2.3 | 2.3 | U         | 117-84-0 | Di-n-octylphthalate         | 5.3   | 8.0 | U    |
| 91-94-1   | 3,3'-Dichlorobenzidine     | 6.5 | 8.0 | U         | 206-44-0 | Fluoranthene                | 3.1   | 8.0 | U    |
| 99 09-2   | 3-Nitroaniline             | 3.1 | 8.0 | U         | 86-73-7  | Fluorene                    | 2.2   | 8.0 | υ    |
| 534-52-1  | 4,6-Dinitro-2-methylphenol | 28  | 40  | U         | 118-74-1 | Hexachlorobenzene           | 3.4   | 8.0 | U    |
| 101-55-3  | 4-Bromophenyl-phenylether  | 2.2 | 8.0 | U         | 87-68-3  | Hexachlorobutadiene         | 3.6   | 8.0 | U    |
| 59-50-7   | 4-Chloro-3-methylphenol    | 1.9 | 8.0 | U         | 77-47-4  | Hexachlorocyclopentadiene   | 26    | 26  | U    |
| 106-47-8  | 4-Chloroaniline            | 3.5 | 3.5 | U         | 67-72-1  | Hexachloroethane            | 3.5   | 8.0 | U    |
| 7005-72-3 | 4-Chlorophenyl-phenylether | 2.5 | 8.0 | U         | 193-39-5 | Indeno[1,2,3-cd]pyrene      | 3.6   | 8.0 | U    |
| 100-01-6  | 4-Nitroaniline             | 3.1 | 8.0 | U         | 78-59-1  | Isophorone                  | 2.6   | 8.0 | U    |
| 100-02-7  | 4-Nitrophenol              | 6.1 | 8.0 | U         | 91-20-3  | Naphthalene                 | 2.3   | 2.3 | 16   |
| 83-32-9   | Acenaphthene               | 2.3 | 8.0 | U         | 98-95-3  | Nitrobenzene                | 0.33  | 8.0 | U    |
| 208-96-8  | Acenaphthylene             | 2.4 | 8.0 | U         | 621-64-7 | N-Nitroso-di-n-propylamine  | 3.0   | 3.0 | U    |
| 98-86-2   | Acetophenone               | 2.9 | 8.0 | U         | 86-30-6  | n-Nitrosodiphenylamine      | 27    | 27  | U    |
| 120-12-7  | Anthracene                 | 2.2 | 8.0 | U         | 87-86-5  | Pentachlorophenol           | 39    | 40  | U    |
| 1912-24-9 | Atrazine                   | 3.2 | 8.0 | U         | 85-01-8  | Phenanthrene                | 2.6   | 8.0 | U    |
| 100-52-7  | Benzaldehyde               | 87  | 87  | U         | 108-95-2 | Phenol                      | 2.2   | 8.0 | U    |
| 56-55-3   | Benzo[a]anthracene         | 2.7 | 8.0 | U         | 129-00-0 | Pyrene                      | 2.7   | 8.0 | U    |
|           |                            |     |     |           |          |                             |       |     |      |

Worksheet #: 571285

Total Target Concentration

800

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 7M\_0917.M Qt On : 10/09/20 10:10 Qt Upd On: 10/07/20 10:09 Data File: 7M109936.D Acq On : 10/ 7/20 16:06

Data Path : G:\GcMsData\2020\GCMS\_7\Data\10-0720\
Qt Path : G:\GCMSDATA\2020\GCMS\_7\METHODQT\
Qt Resp Via : Initial Calibration

| Internal Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Compound                    | R.T.   | QIon | Response | Conc Un | nits De | v(Min)   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|------|----------|---------|---------|----------|
| 21) 1,4-Dichlorobenzene-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Internal Standards          |        |      |          |         |         |          |
| 31) Naphthalene-d8 6.900 136 697465 40.00 ng 0.00 50) Acenaphthene-d10 8.345 164 368225 40.00 ng 0.00 77) Phenanthrene-d10 9.826 188 697366 40.00 ng 0.00 91) Chrysene-d12 12.899 240 620884 40.00 ng 0.00 103) Perylene-d12 14.561 264 626037 40.00 ng 0.02  System Monitoring Compounds 11) 2-Fluorophenol 0.000 112 0 0.00 ng Spiked Amount 100.000 Recovery = 0.00% 16) Phenol-d5 5.595 99 2389 0.36 ng 0.02 Spiked Amount 100.000 Recovery = 0.36% 32) Nitrobenzene-d5 6.318 128 1395 0.50 ng -0.02 Spiked Amount 50.000 Recovery = 1.00% 55) 2-Fluorobiphenyl 7.746 172 2555m 0.21 ng 0.00 Spiked Amount 50.000 Recovery = 0.42% 80) 2,4,6-Tribromophenol 9.103 330 654 0.36 ng 0.01 Spiked Amount 100.000 Recovery = 0.36% 94) Terphenyl-d14 11.641 244 2054 0.21 ng 0.00 Spiked Amount 50.000 Recovery = 0.42% Target Compounds 18) 2-Chlorophenol 5.725 128 19924m 3.1232 ng 41) Naphthalene 6.917 128 74053 4.0826 ng 99 89) Di-n-butylphthalate 10.460 149 3810943 180.3477 ng 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7) 1,4-Dioxane-d8(INT)      | 2.705  | 96   | 92815    | 40.00   | ng      | 0.00     |
| 50) Acenaphthene-d10       8.345       164       368225       40.00 ng       0.00         77) Phenanthrene-d10       9.826       188       697366       40.00 ng       0.00         91) Chrysene-d12       12.899       240       620884       40.00 ng       0.00         103) Perylene-d12       14.561       264       626037       40.00 ng       0.00         103) Perylene-d12       0.000       12.899       240       620884       40.00 ng       0.00         103) Perylene-d12       0.000       14.561       264       626037       40.00 ng       0.00         103) Perylene-d12       0.000       112       0.00 ng       0.00         28ystem Monitoring Compounds       0.000       112       0.00 ng       0.00         10 Phenol-d5       0.000       112       0.00 ng       0.00         Spiked Amount 100.000       0.00       0.36 ng       0.02         Spiked Amount 50.000       0.00       0.00 ng       0.00         Recovery = 0.42%       0.00       0.00         Spiked Amount 50.000       0.00       0.00       0.00         Recovery = 0.36%       0.36 ng       0.00         Spiked Amount 50.000       0.00       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21) 1,4-Dichlorobenzene-d4  | 5.895  | 152  | 187136   | 40.00   | ng      | 0.00     |
| 77) Phenanthrene-d10 9.826 188 697366 40.00 ng 0.00 91) Chrysene-d12 12.899 240 620884 40.00 ng 0.00 103) Perylene-d12 14.561 264 626037 40.00 ng 0.00 103) Perylene-d12 14.561 264 626037 40.00 ng 0.02  System Monitoring Compounds 11) 2-Fluorophenol 0.000 112 0 0.00 ng Spiked Amount 100.000 Recovery = 0.00% 16) Phenol-d5 5.595 99 2389 0.36 ng 0.02 Spiked Amount 100.000 Recovery = 0.36% 32) Nitrobenzene-d5 6.318 128 1395 0.50 ng -0.02 Spiked Amount 50.000 Recovery = 1.00% 55) 2-Fluorobiphenyl 7.746 172 2555m 0.21 ng 0.00 Spiked Amount 50.000 Recovery = 0.42% 80) 2.4.6-Tribromophenol 9.103 330 654 0.36 ng 0.01 Spiked Amount 100.000 Recovery = 0.36% 11.641 244 2054 0.21 ng 0.00 Spiked Amount 50.000 Recovery = 0.36% 11.641 244 2054 0.21 ng 0.00 Spiked Amount 50.000 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Spiked Amount 50.000 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Spiked Amount 50.000 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Spiked Amount 50.000 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% 11.641 244 2054 0.21 ng 0.00 Recovery = 0.42% | 31) Naphthalene-d8          | 6.900  | 136  | 697465   | 40.00   | ng      | 0.00     |
| 91) Chrysene-d12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50) Acenaphthene-d10        | 8.345  | 164  | 368225   | 40.00   | ng      | 0.00     |
| 103   Perylene-d12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77) Phenanthrene-d10        | 9.826  | 188  | 697366   | 40.00   | ng      | 0.00     |
| System Monitoring Compounds   11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91) Chrysene-d12            | 12.899 | 240  | 620884   | 40.00   | ng      | 0.00     |
| 11) 2-Fluorophenol 0.000 112 0 0.00 ng Spiked Amount 100.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 103) Perylene-d12           | 14.561 | 264  | 626037   | 40.00   | ng      | 0.02     |
| Spiked Amount         100.000         Recovery         =         0.00%           16) Phenol-d5         5.595         99         2389         0.36 ng         0.02           Spiked Amount         100.000         Recovery         =         0.36%           32) Nitrobenzene-d5         6.318         128         1395         0.50 ng         -0.02           Spiked Amount         50.000         Recovery         =         1.00%           Spiked Amount         50.000         Recovery         =         0.42%           80) 2,4,6-Tribromophenol         9.103         330         654         0.36 ng         0.01           Spiked Amount         100.000         Recovery         =         0.36%           94) Terphenyl-d14         11.641         244         2054         0.21 ng         0.00           Spiked Amount         50.000         Recovery         =         0.42%           Target Compounds         2-Chlorophenol         5.725         128         19924m         3.1232         ng           41) Naphthalene         6.917         128         74053         4.0826         ng         99           89) Di-n-butylphthalate         10.460         149         3810943         180.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | System Monitoring Compounds |        |      |          |         |         |          |
| 16) Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11) 2-Fluorophenol          | 0.000  | 112  | 0        | 0.00    | ng      |          |
| Spiked Amount         100.000         Recovery         =         0.36%           32) Nitrobenzene-d5         6.318         128         1395         0.50 ng         -0.02           Spiked Amount         50.000         Recovery         =         1.00%           55) 2-Fluorobiphenyl         7.746         172         2555m         0.21 ng         0.00           Spiked Amount         50.000         Recovery         =         0.42%           80) 2,4,6-Tribromophenol         9.103         330         654         0.36 ng         0.01           Spiked Amount         100.000         Recovery         =         0.36%           94) Terphenyl-d14         11.641         244         2054         0.21 ng         0.00           Spiked Amount         50.000         Recovery         =         0.42%    Target Compounds  18) 2-Chlorophenol  5.725         128         19924m         3.1232         ng           41) Naphthalene         6.917         128         74053         4.0826         ng         99           89) Di-n-butylphthalate         10.460         149         3810943         180.3477         ng         97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Spiked Amount 100.000       |        |      | Recover  | ry =    | 0.00    | ક        |
| 32) Nitrobenzene-d5 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 100.000 Spiked Amount 100.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000  Target Compounds Spiked Amount 50.000  Target Compounds Spiked Amount 50.000  Target Compounds Spiked Amount 50.000  Target Compounds Spiked Amount 50.000  Target Compounds Spiked Amount 50.000  Target Compounds Spiked Amount 50.000  Target Compounds Spiked Amount 50.000  Target Compounds Spiked Amount 50.000  Target Compounds Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount  | 16) Phenol-d5               | 5.595  | 99   | 2389     | 0.36    | ng      | 0.02     |
| Spiked Amount         50.000         Recovery         =         1.00%           55) 2-Fluorobiphenyl         7.746         172         2555m         0.21 ng         0.00           Spiked Amount         50.000         Recovery         =         0.42%           80) 2,4,6-Tribromophenol         9.103         330         654         0.36 ng         0.01           Spiked Amount         100.000         Recovery         =         0.36%           94) Terphenyl-d14         11.641         244         2054         0.21 ng         0.00           Spiked Amount         50.000         Recovery         =         0.42%           Target Compounds         Recovery         =         0.42%           Target Compounds         90         100         128         19924m         3.1232         ng           18) 2-Chlorophenol         5.725         128         19924m         3.1232         ng           41) Naphthalene         6.917         128         74053         4.0826         ng         99           89) Di-n-butylphthalate         10.460         149         3810943         180.3477         ng         97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |        |      | Recover  | ry =    | 0.36    | %        |
| 55) 2-Fluorobiphenyl 7.746 172 2555m 0.21 ng 0.00 Spiked Amount 50.000 Recovery = 0.42% 80) 2,4,6-Tribromophenol 9.103 330 654 0.36 ng 0.01 Spiked Amount 100.000 Recovery = 0.36% 94) Terphenyl-d14 11.641 244 2054 0.21 ng 0.00 Spiked Amount 50.000 Recovery = 0.42% Qvalue 18) 2-Chlorophenol 5.725 128 19924m 3.1232 ng 41) Naphthalene 6.917 128 74053 4.0826 ng 99 89) Di-n-butylphthalate 10.460 149 3810943 180.3477 ng 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                           | 6.318  | 128  | 1395     | 0.50    | ng      | -0.02    |
| Spiked Amount         50.000         Recovery         = 0.42%           80) 2,4,6-Tribromophenol         9.103         330         654         0.36 ng         0.01           Spiked Amount         100.000         Recovery         = 0.36%           94) Terphenyl-d14         11.641         244         2054         0.21 ng         0.00           Spiked Amount         50.000         Recovery         = 0.42%           Target Compounds         Qvalue           18) 2-Chlorophenol         5.725         128         19924m         3.1232         ng           41) Naphthalene         6.917         128         74053         4.0826         ng         99           89) Di-n-butylphthalate         10.460         149         3810943         180.3477         ng         97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |        |      | Recove   | ry =    | 1.00    | *        |
| 80) 2,4,6-Tribromophenol 9.103 330 654 0.36 ng 0.01 Spiked Amount 100.000 Recovery = 0.36% 94) Terphenyl-d14 11.641 244 2054 0.21 ng 0.00 Spiked Amount 50.000 Recovery = 0.42%  Target Compounds Qvalue 18) 2-Chlorophenol 5.725 128 19924m 3.1232 ng 41) Naphthalene 6.917 128 74053 4.0826 ng 99 89) Di-n-butylphthalate 10.460 149 3810943 180.3477 ng 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | 7.746  | 172  |          |         |         |          |
| Spiked Amount         100.000         Recovery         = 0.36%           94) Terphenyl-d14         11.641         244         2054         0.21 ng         0.00           Spiked Amount         50.000         Recovery         = 0.42%           Target Compounds         Qvalue           18) 2-Chlorophenol         5.725         128         19924m         3.1232         ng           41) Naphthalene         6.917         128         74053         4.0826         ng         99           89) Di-n-butylphthalate         10.460         149         3810943         180.3477         ng         97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |        |      | Recover  | ry =    | 0.42    | <b>*</b> |
| 94) Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 9.103  | 330  |          |         |         |          |
| Spiked Amount 50.000       Recovery = 0.42%         Target Compounds       Qvalue         18) 2-Chlorophenol       5.725       128       19924m       3.1232       ng         41) Naphthalene       6.917       128       74053       4.0826       ng       99         89) Di-n-butylphthalate       10.460       149       3810943       180.3477       ng       97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |        |      |          |         |         |          |
| Target Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | 11.641 | 244  |          |         |         |          |
| 18)     2-Chlorophenol     5.725     128     19924m     3.1232     ng       41)     Naphthalene     6.917     128     74053     4.0826     ng     99       89)     Di-n-butylphthalate     10.460     149     3810943     180.3477     ng     97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spiked Amount 50.000        |        |      | Recover  | ry =    | 0.42    | ક        |
| 41) Naphthalene 6.917 128 74053 4.0826 ng 99<br>89) Di-n-butylphthalate 10.460 149 3810943 180.3477 ng 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Target Compounds            |        |      |          |         |         | Qvalue   |
| 89) Dien butylphthalate 10.460 149 3810943 180.3477 ng 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |        |      | 19924m   | 3.123   |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 6.917  | 128  |          | 4.082   | 6 ng    | 99       |
| 102) bis(2-Ethylhexyl)phtha 12.922 149 146593m 12.4832 ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89) Di-n-butylphthalate     | 10.460 | 149  | 3810943  | 180.347 | 7 ng    | 97       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102) bis(2-Ethylhexyl)phtha | 12.922 | 149  | 146593m  | 12.483  | 2 ng    |          |

<sup>(</sup>#) = qualifier out of range (m) = manual integration (+) = signals summed



7M 0917.M Thu Oct 29 09:29:25 2020 RPT1

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19539-017(400X)

Client Id: HSI-SB-D1 Data File: 7M109937.D Analysis Date: 10/07/20 16:29

Date Rec/Extracted: 09/30/20-10/06/20

Column:DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil

Initial Vol: 30g Final Vol: 0.5ml

Dilution: 400

Solids: 84

Units: mg/Kg

|           |                            |     |     | ក្សានេះ ឃើ | y/ng     |                             |      |     |      |
|-----------|----------------------------|-----|-----|------------|----------|-----------------------------|------|-----|------|
| Cas#      | Compound                   | MDL | RL  | Conc       | Cas #    | Compound                    | MDL  | RL  | Conc |
| 92-52-4   | 1,1'-Biphenyl              | 4.6 | 16  | U          | 50-32-8  | Benzo(a)pyrene              | 5.4  | 16  | U    |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene | 5.3 | 16  | U          | 205-99-2 | Benzo[b]fluoranthene        | 5.7  | 16  | U    |
| 123-91-1  | 1,4-Dioxane                | 8.0 | 8.0 | U          | 191-24-2 | Benzo[g,h,i]perylene        | 0.11 | 16  | U    |
| 58-90-2   | 2,3.4,6-Tetrachlorophenol  | 6.0 | 16  | U          | 207-08-9 | Benzo[k]fluoranthene        | 5.8  | 16  | U    |
| 95-95-4   | 2,4,5-Trichlorophenol      | 4.5 | 16  | U          | 111-91-1 | bis(2-Chloroethoxy)methan   | 4.5  | 16  | U    |
| 88-06-2   | 2,4,6-Trichlorophenol      | 12  | 16  | U          | 111-44-4 | bis(2-Chloroethyl)ether     | 3.9  | 4.0 | U    |
| 120-83-2  | 2,4-Dichlorophenol         | 6.0 | 6.0 | U          | 108-60-1 | bis(2-chloroisopropyl)ether | 6.3  | 16  | U    |
| 105 67-9  | 2,4-Dimethylphenol         | 7.7 | 7.7 | U          | 117-81-7 | bis(2-Ethylhexyl)phthalate  | 14   | 16  | 58   |
| 51-28-5   | 2,4-Dinitrophenol          | 69  | 79  | U          | 85-68-7  | Butylbenzylphthalate        | 12   | 16  | U    |
| 121-14-2  | 2,4-Dinitrotoluene         | 4.9 | 16  | U          | 105-60-2 | Caprolactam                 | 13   | 16  | U    |
| 606-20-2  | 2,6-Dinitrotoluene         | 8.1 | 16  | U          | 86-74-8  | Carbazole                   | 4.9  | 16  | U    |
| 91-58-7   | 2-Chloronaphthalene        | 7.1 | 16  | U          | 218-01-9 | Chrysene                    | 5.4  | 16  | U    |
| 95-57-8   | 2-Chlorophenol             | 5.2 | 16  | 24         | 53-70-3  | Dibenzo[a,h]anthracene      | 5.8  | 16  | U    |
| 91-57-6   | 2-Methylnaphthalene        | 4.9 | 16  | U          | 132-64-9 | Dibenzofuran                | 4.0  | 4.0 | U    |
| 95 48-7   | 2-Methylphenol             | 4.6 | 4.6 | U          | 84-66-2  | Diethylphthalate            | 10   | 16  | U    |
| 88-74-4   | 2-Nitroaniline             | 7.5 | 16  | U          | 131-11-3 | Dimethylphthalate           | 4.5  | 16  | U    |
| 88-75-5   | 2-Nitrophenol              | 7.2 | 16  | U          | 84-74-2  | Di-n-butylphthalate         | 18   | 18  | 1200 |
| 106-44-5  | 3&4-Methylphenol           | 4.6 | 4.6 | U          | 117-84-0 | Di-n-octylphthalate         | 11   | 16  | U    |
| 91-94-1   | 3,3'-Dichlorobenzidine     | 13  | 16  | U          | 206-44-0 | Fluoranthene                | 6.1  | 16  | U    |
| 99-09-2   | 3-Nitroaniline             | 6.2 | 16  | U          | 86-73-7  | Fluorene                    | 4.3  | 16  | U    |
| 534 52-1  | 4.6-Dinitro-2-methylphenol | 55  | 79  | U          | 118-74-1 | Hexachlorobenzene           | 6.6  | 16  | U    |
| 101-55-3  | 4-Bromophenyl-phenylether  | 4.4 | 16  | U          | 87-68-3  | Hexachlorobutadiene         | 7.1  | 16  | U    |
| 59-50-7   | 4-Chloro-3-methylphenol    | 3.8 | 16  | U          | 77-47-4  | Hexachlorocyclopentadiene   | 52   | 52  | U    |
| 106-47-8  | 4-Chloroaniline            | 7.0 | 7.0 | U          | 67-72-1  | Hexachloroethane            | 7.0  | 16  | U    |
| 7005-72-3 | 4-Chlorophenyl-phenylether | 4.9 | 16  | U          | 193-39-5 | Indeno[1,2,3-cd]pyrene      | 7.2  | 16  | U    |
| 100-01-6  | 4-Nitroaniline             | 6.1 | 16  | U          | 78-59-1  | Isophorone                  | 5.1  | 16  | U    |
| 100-02-7  | 4-Nitrophenol              | 12  | 16  | U          | 91-20-3  | Naphthalene                 | 4.6  | 4.6 | 26   |
| 83-32-9   | Acenaphthene               | 4.5 | 16  | U.         | 98-95-3  | Nitrobenzene                | 0.64 | 16  | U    |
| 208-96-8  | Acenaphthylene             | 4.7 | 16  | U          | 621-64-7 | N-Nitroso-di-n-propylamine  | 6.0  | 6.0 | U    |
| 98-86-2   | Acetophenone               | 5.7 | 16  | U          | 86-30-6  | n-Nitrosodiphenylamine      | 54   | 54  | U    |
| 120-12-7  | Anthracene                 | 4.4 | 16  | U          | 87-86-5  | Pentachlorophenol           | 76   | 79  | U    |
| 1912-24-9 | Atrazine                   | 6.4 | 16  | U          | 85-01-8  | Phenanthrene                | 5.1  | 16  | U    |
| 100-52-7  | Benzaldehyde               | 170 | 170 | U          | 108-95-2 | Phenol                      | 4.4  | 16  | U    |
| 56 55-3   | Benzo(a)anthracene         | 5.3 | 16  | U          | 129-00-0 | Pyrene                      | 5.4  | 16  | U    |
|           |                            |     |     |            |          |                             |      |     |      |

Worksheet #: 571285

Total Target Concentration

1300

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Quantitation Report

Data Path : G:\GcMsData\2020\GCMs\_7\Data\10-0720\
Qt Path : G:\GCMSDATA\2020\GCMS\_7\METHODQT\

Qt Resp Via : Initial Calibration

| Compound                    | R.T.   | QIon | Response | Conc Units | s Dev(Min) |
|-----------------------------|--------|------|----------|------------|------------|
| Internal Standards          |        |      |          |            |            |
| 7) 1,4-Dioxane-d8(INT)      | 2.699  | 96   | 93735    | 40.00 ng   | 0.00       |
| 21) 1,4-Dichlorobenzene-d4  | 5.895  | 152  | 184990   |            |            |
|                             | 6.894  |      | 690916   |            |            |
| 50) Acenaphthene-d10        | 8.339  | 164  | 370452   |            |            |
| 77) Phenanthrene-d10        | 9.820  | 188  | 699880   |            |            |
| 91) Chrysene-d12            | 12.893 | 240  | 634297   |            |            |
| 103) Perylene-d12           | 14.544 | 264  | 617336   | 40.00 ng   | 0.00       |
| System Monitoring Compounds |        |      |          |            |            |
| 11) 2-Fluorophenol          | 0.000  | 112  | 0        | 0.00 ng    |            |
| Spiked Amount 100.000       |        |      | Recove   | ry = (     | 0.00%      |
| 16) Phenol d5               | 5.590  | 99   | 983      | 0.15 ng    | 0.01       |
| Spiked Amount 100.000       |        |      |          | ry = (     |            |
| 32) Nitrobenzene-d5         | 6.318  | 128  | 1002     | 0.37 ng    | -0.02      |
| Spiked Amount 50.000        |        |      | Recove   | ry = (     | ).74%      |
| 55) 2-Fluorobiphenyl        | 7.740  | 172  | 1111     | 0.09 ng    | 0.00       |
| Spiked Amount 50.000        |        |      | Recove   | ry = 0     | ).18%      |
| 80) 2,4,6 Tribromophenol    | 0.000  | 330  | 0        | 0.00 ng    |            |
| Spiked Amount 100.000       |        |      | Recove   | ry = (     | 0.00%      |
| 94) Terphenyl-d14           | 11.636 | 244  | 1032     | 0.10 ng    | 0.00       |
| Spiked Amount 50.000        |        |      | Recove   | ry = (     | 0.20%      |
| Target Compounds            |        |      |          |            | Qvalue     |
| 18) 2-Chlorophenol          | 5.719  | 128  | 19154    | 2.9730     | ng 79      |
|                             | 6.912  | 128  | 58237    | 3.2410     | ng 98      |
| 89) Di-n-butylphthalate     | 10.455 |      |          |            |            |
| 102) bis(2-Ethylhexyl)phtha |        |      |          | 7.3141     | ng         |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed



#### Form1 ORGANICS SEMIVOLATILE REPORT

Sample Number: SMB88132

Client Id:

Data File: 9M101549.D

Analysis Date: 10/06/20 12:34

Date Rec/Extracted: NA-10/06/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil

Initial Vol: 30g

Final Vol: 0.5ml

Dilution: 1

Solids: 100

Units: mg/Kg

|           | _                          |        |        | Units: mg | /rg              | _                           |         |        | _    |
|-----------|----------------------------|--------|--------|-----------|------------------|-----------------------------|---------|--------|------|
| Cas #     | Compound                   | MDL    | RL     | Conc      | Cas #            | Compound                    | MDL     | RL     | Conc |
| 92-52-4   | 1,1'-Biphenyl              | 0.0096 | 0.033  | U         | 50-32 <b>-</b> 8 | Benzo[a]pyrene              | 0.011   | 0.033  | U    |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene | 0.011  | 0.033  | U         | 205-99-2         | Benzo[b]fluoranthene        | 0.012   | 0.033  | U    |
| 123-91-1  | 1,4-Dioxane                | 0.017  | 0.017  | U         | 191-24-2         | Benzo[g,h,i]perylene        | 0.00023 | 0.033  | U    |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | 0.013  | 0.033  | U         | 207-08-9         | Benzo[k]fluoranthene        | 0.012   | 0.033  | U    |
| 95-95-4   | 2,4,5-Trichlorophenol      | 0.0095 | 0.033  | U         | 111-91-1         | bis(2-Chloroethoxy)methan   | 0.0094  | 0.033  | U    |
| 88-06-2   | 2,4,6-Trichlorophenol      | 0.026  | 0.033  | U         | 111-44-4         | bis(2-Chloroethyl)ether     | 0.0081  | 0.0083 | U    |
| 120-83-2  | 2.4-Dichlorophenol         | 0.013  | 0.013  | U         | 108-60-1         | bis(2-chloroisopropyl)ether | 0.013   | 0.033  | U    |
| 105-67-9  | 2,4-Dimethylphenol         | 0.016  | 0.016  | U         | 117-81-7         | bis(2-Ethylhexyl)phthalate  | 0.029   | 0.033  | U    |
| 51-28-5   | 2.4-Dinitrophenol          | 0.14   | 0.17   | U         | 85-68-7          | Butylbenzylphthalate        | 0.026   | 0.033  | U    |
| 121-14-2  | 2.4-Dinitrotoluene         | 0.010  | 0.033  | U         | 105-60-2         | Caprolactam                 | 0.027   | 0.033  | U    |
| 606-20-2  | 2.6-Dinitrotoluene         | 0.017  | 0.033  | U         | 86-74-8          | Carbazole                   | 0.010   | 0.033  | U    |
| 91-58-7   | 2-Chloronaphthalene        | 0.015  | 0.033  | U         | 218-01-9         | Chrysene                    | 0.011   | 0.033  | U    |
| 96-57-8   | 2-Chlorophenol             | 0.011  | 0.033  | U         | 53-70-3          | Dibenzo[a,h]anthracene      | 0.012   | 0.033  | U    |
| 91-57-6   | 2-Methylnaphthalene        | 0.010  | 0.033  | U         | 132-64-9         | Dibenzofuran                | 0.0084  | 0.0084 | U    |
| 95-48-7   | 2-Methylphenol             | 0.0096 | 0.0096 | U         | 84-66-2          | Diethylphthalate            | 0.021   | 0.033  | U    |
| 88-74-4   | 2-Nitroaniline             | 0.016  | 0.033  | U         | 131-11-3         | Dimethylphthalate           | 0.0094  | 0.033  | U    |
| 88-75-5   | 2-Nitrophenol              | 0.015  | 0.033  | U         | 84-74-2          | Di-n-butylphthalate         | 0.038   | 0.038  | U    |
| 106-44-5  | 3&4-Methylphenol           | 0.0097 | 0.0097 | U         | 117-84-0         | Di-n-octylphthalate         | 0.022   | 0.033  | U    |
| 91 94-1   | 3,3'-Dichlorobenzidine     | 0.027  | 0.033  | U         | 206-44-0         | Fluoranthene                | 0.013   | 0.033  | U    |
| 99-09-2   | 3-Nitroaniline             | 0.013  | 0.033  | U         | 86-73-7          | Fluorene                    | 0.0091  | 0.033  | U    |
| 534-52-1  | 4.6-Dinitro-2-methylphenol | 0.12   | 0.17   | U         | 118-74-1         | Hexachlorobenzene           | 0.014   | 0.033  | U    |
| 101-55-3  | 4-Bromophenyl-phenylether  | 0.0093 | 0.033  | U         | 87-68-3          | Hexachlorobutadiene         | 0.015   | 0.033  | U    |
| 59 50-7   | 4-Chloro-3-methylphenol    | 0.0080 | 0.033  | U         | 77-47-4          | Hexachlorocyclopentadiene   | 0.11    | 0.11   | U    |
| 106-47-8  | 4-Chloroaniiine            | 0.015  | 0.015  | U         | 67-72-1          | Hexachloroethane            | 0.015   | 0.033  | U    |
| 7005-72-3 | 4-Chlorophenyl-phenylether | 0.010  | 0.033  | U         | 193-39-5         | Indeno[1,2,3-cd]pyrene      | 0.015   | 0.033  | U    |
| 100-01-6  | 4-Nitroaniline             | 0.013  | 0.033  | U         | 78-59-1          | Isophorone                  | 0.011   | 0.033  | U    |
| 100-02-7  | 4-Nitrophenol              | 0.025  | 0.033  | U         | 91-20-3          | Naphthalene                 | 0.0096  | 0.0096 | U    |
| 83-32-9   | Acenaphthene               | 0.0095 | 0.033  | U         | 98-95-3          | Nitrobenzene                | 0.0013  | 0.033  | U    |
| 208-96-8  | Acenaphthylene             | 0.010  | 0.033  | U         | 621-64-7         | N-Nitroso-di-n-propylamine  | 0.013   | 0.013  | U    |
| 98-86-2   | Acetophenone               | 0.012  | 0.033  | U         | 86-30-6          | n-Nitrosodiphenylamine      | 0.11    | 0.11   | U    |
| 120-12-7  | Anthracene                 | 0.0092 | 0.033  | U         | 87-86-5          | Pentachlorophenol           | 0.16    | 0.17   | U    |
| 1912-24-9 | Atrazine                   | 0.013  | 0.033  | U         | 85-01-8          | Phenanthrene                | 0.011   | 0.033  | U    |
| 100-52-7  | Benzaldehyde               | 0.36   | 0.36   | U         | 108-95-2         | Phenol                      | 0.0092  | 0.033  | U    |
| 56-55-3   | Benzo(a)anthracene         | 0.011  | 0.033  | U         | 129-00-0         | Pyrene                      | 0.011   | 0.033  | U    |
|           |                            |        |        |           |                  |                             |         |        |      |

Worksheet #: 571285

**Total Target Concentration** 

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% hetween columns due to coelution. Lower concentration used.

Qvalue

Qt Meth : 9M\_0917.M Qt On : 10/06/20 13:08 Qt Upd On: 09/29/20 13:20 Operator : AH/JKR/JB Sam Mult : 1 Vial# : 6 SampleID : SMB88132 Data File: 9M101549.D Acq On : 10/6/20 12:34 : S,BNA Misc

Data Path : G:\GcMsData\2020\GCMS\_9\Data\10-06-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_9\METHODQT\
Qt Resp Via : Initial Calibration

Target Compounds

| Compound                    | R.T.   | QIon | Response | Conc U | nits Dev(Min) |
|-----------------------------|--------|------|----------|--------|---------------|
| Internal Standards          |        |      |          |        |               |
| 7) 1,4-Dioxane-d8(INT)      | 2.684  | 96   | 48355    | 40.00  | ng -0.02      |
| 21) 1,4-Dichlorobenzene-d4  | 5.901  | 152  | 86785    | 40.00  | ng 0.00       |
| 31) Naphthalene-d8          | 6.907  | 136  | 328473   | 40.00  | ng 0.00       |
| 50) Acenaphthene-d10        | 8.342  | 164  | 168631   | 40.00  | ng 0.00       |
| 77) Phenanthrene-d10        | 9.819  | 188  | 326648   | 40.00  | ng 0.00       |
| 91) Chrysene-d12            | 12.877 | 240  | 304927   | 40.00  | ng -0.01      |
| 103) Perylene-d12           | 14.512 | 264  | 304884   | 40.00  | ng -0.02      |
| System Monitoring Compounds |        |      |          |        |               |
| 11) 2 Fluorophenol          | 4.713  | 112  | 206548   | 81.66  | ng 0.00       |
| Spiked Amount 100.000       |        |      |          |        | 81.66%        |
| 16) Phenol-d5               | 5.578  | 99   |          | 84.05  |               |
| Spiked Amount 100.000       |        |      | Recove   | ry =   | 84.05%        |
| 32) Nitrobenzene-d5         | 6.348  | 128  | 50199    | 42.49  | ng 0.00       |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 84.98%        |
| 55) 2-Fluorobiphenyl        | 7.748  | 172  | 257444   | 44.61  | ng 0.00       |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 89.22%        |
| 80) 2,4,6 Tribromophenol    | 9.089  | 330  | 61496    | 81.75  | ng 0.00       |
| Spiked Amount 100.000       |        |      | Recove   | ry =   | 81.75%        |
| 94) Terphenyl-d14           | 11.624 | 244  | 224147   | 50.50  | ng -0.01      |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 101.00%       |
| -                           |        |      |          | _      |               |

(#) = qualifier out of range (m) = manual integration (+) = signals summed



#### FORM2

Surrogate Recovery

Method: EPA 8270E

|          |                       |        |                |             | Dilute      | Column1<br>S1 | Column1<br>S2 | Column1<br>S3 | Column1<br>S4 | Column1<br>S5 | Column1<br>S6 |
|----------|-----------------------|--------|----------------|-------------|-------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Dfile    | Sample#               | Matrix | Date/Time      | Surr<br>Dil | Out<br>Flag | Recov         | Recov         | Recov         | Recov         | Recov         | Recov         |
|          | 9.D SMB88132          | s      | 10/06/20 12:34 | 1           |             | 82            | 84            | 85            | 89            | 82            | 101           |
|          | 5.DAD19539-007        | s      | 10/06/20 17:57 | 1           |             | 67            | 77            | 67            | 72            | 77            | 82            |
| 9M101550 | 0.DAD19539-011        | S      | 10/06/20 12:59 | 1           |             | 61            | 64            | 61            | 60            | 63            | 68            |
| 7M109906 | 6.DAD19539-013        | S      | 10/06/20 18:20 | 1           |             | 70            | 78            | 67            | 71            | 77            | 80            |
| 7M109936 | 6.DAD19539-014(200X)  | S      | 10/07/20 16:06 | 200         | SD          | 0*            | 73            | 201 *         | 83            | 73            | 83            |
| 7M10993  | 7.DAD19539-017(400X)  | S      | 10/07/20 16:29 | 400         | SD          | 0*            | 59            | 292*          | 72            | 0*            | 82            |
| 7M109910 | 0.D AD19562-002       | S      | 10/06/20 19:55 | 1           |             | 71            | 77            | 69            | 73            | 69            | 80            |
| 7M10991  | 1.D AD19562-004(MS:AD | 19 S   | 10/06/20 20:18 | 1           |             | 73            | 78            | 70            | 72            | 76            | 86            |
| 7M109912 | 2.DAD19562-006(MSD:AI | D1 S   | 10/06/20 20:42 | 1           |             | 69            | 77            | 70            | 74            | 77            | 86            |
| 9M101548 | 8.D SMB88132(MS)      | S      | 10/06/20 12:11 | 1           |             | 80            | 87            | 91            | 95            | 103           | 104           |

Flags: SD=Surrogate diluted out
\*=Surrogate out

Method: EPA 8270E

#### **Soil Laboratory Limits**

| Compound                | Spike<br>Amt | Limits |
|-------------------------|--------------|--------|
| S1=2-Fluorophenol       | 100          | 43-128 |
| S2=Phenol-d5            | 100          | 49-129 |
| S3=Nitrobenzene-d5      | 50           | 52-129 |
| S4=2-Fluorobiphenyl     | 50           | 58-125 |
| S5=2,4,6-Tribromophenol | 100          | 54-145 |
| S6=Terphenyl-d14        | 50           | 58-148 |

## Form3 Recovery Data Laboratory Limits

QC Batch: SMB88132

Data File Sample ID: Analysis Date
Spike or Dup: 9M101548.D SMB88132(MS) 10/6/2020 12:11:00 PM
Non Spike(If applicable):
Inst Blank(If applicable):

| Method: 8270E                                           | Matrix        | :: Soil                   |                | Units: mg/k       | (g QC Typ         | e: MBS                 |                   |
|---------------------------------------------------------|---------------|---------------------------|----------------|-------------------|-------------------|------------------------|-------------------|
| Analyte:                                                | Col           | Spike<br>Conc             | Sample<br>Conc | Expected Conc     | Recovery          | Lower<br>Limit         | Uppe<br>Limit     |
| Pyridine                                                | 1             | 25.2364                   | Q              | 50                | 50                | 1                      | 150               |
| N-Nitrosodimethylamine                                  | 1             | 40.8154                   | Q              | 50                | <u>82</u>         | <u>50</u>              | 130               |
| Benzaldehyde                                            | 1             | 40.7399                   | ō              | 50                | 81                | 20                     | 220               |
| Aniline                                                 | <u>1</u>      | <u>25.9014</u>            | <u>0</u>       | <u>50</u>         | <u>52</u>         | <u>20</u>              | <u>150</u>        |
| Pentachloroethane                                       | 1             | 36.7234                   | 0              | 50                | 73                | 50                     | 130               |
| bis(2-Chloroethyl)ether                                 | 1             | <u>45.9948</u>            | <u>0</u>       | <u>50</u>         | <u>92</u>         | <u>50</u>              | 130               |
| <u>Phenol</u><br>2-Chlorophenol                         | <u>1</u><br>1 | 78.1802                   | <u>0</u><br>0  | <u>100</u><br>100 | <u>78</u><br>82   | <u>20</u><br>50        | <u>150</u><br>130 |
| <u>z-Chiorophenoi</u><br>N-Decane                       | 1             | <u>82.2506</u><br>31.2811 | 0              | <u>100</u><br>50  | <u>62</u><br>63   | <u>30</u><br>20        | 130               |
| 1,3-Dichlorobenzene                                     | 1             | 40.98                     | <u>o</u>       | 50                | 82                | <u>60</u>              | 130               |
| 1,4-Dichlorobenzene                                     | 1             | 46.3334                   | <u>ō</u>       | 50                | 93                | 60                     | 130               |
| 1,2-Dichlorobenzene                                     | 1             | 46.142                    | <u>o</u>       | <u>50</u>         | <u>92</u>         | <u>50</u>              | 130               |
| Benzyl alcohol                                          | <u>1</u>      | <u>48.725</u>             | <u>0</u>       | <u>50</u>         | <u>97</u>         | <u>20</u>              | <u>130</u>        |
| bis(2-chloroisopropyl)ether                             | <u>1</u><br>1 | <u>45.5304</u>            | <u>0</u>       | <u>50</u>         | <u>91</u>         | <u>40</u>              | <u>130</u>        |
| 2-Methylphenol                                          |               | 94.0137                   | <u>0</u>       | <u>100</u>        | 94                | <u>50</u>              | <u>130</u>        |
| Acetophenone                                            | 1             | <u>45.4438</u>            | <u>0</u>       | <u>50</u>         | <u>91</u>         | <u>50</u>              | 130               |
| Hexachloroethane                                        | 1             | <u>45.9821</u><br>52.1323 | <u>0</u>       | <u>50</u>         | <u>92</u>         | <u>50</u>              | 130<br>130        |
| N-Nitroso-di-n-propylamine 3&4-Methylphenol             | <u>1</u><br>1 | 98.8253                   | <u>o</u>       | <u>50</u><br>100  | <u>104</u><br>99  | <u>40</u><br>70        | <u>130</u><br>130 |
| Nitrobenzene                                            | 1             | <u>52.343</u>             | <u>o</u>       | <u>50</u>         | 105               | <del>70</del>          | 130               |
| Isophorone                                              | 1             | 51.4584                   | <u>o</u>       | 50                | 103               | <u>60</u>              | 130               |
| 2-Nitrophenol                                           | <u>1</u>      | 92.9534                   | Ō              | 100               | 93                | 70                     | 130               |
| 2,4-Dimethylphenol                                      | 1             | 103.2401                  | <u>0</u>       | <u>100</u>        | <u>103</u>        | 40                     | 130               |
| Benzoic Acid                                            | 1             | <u>28.3762</u>            | Q              | <u>100</u>        | <u>28</u>         | <u>20</u>              | <u>130</u>        |
| bis(2-Chloroethoxy)methane                              | 1<br>1<br>1   | <u>53.244</u>             | <u>0</u>       | <u>50</u>         | <u>106</u>        | <u>60</u>              | <u>130</u>        |
| 2.4-Dichlorophenol                                      | 1             | 95.0002<br>50.2074        | <u>o</u>       | <u>100</u>        | <u>95</u>         | <u>70</u>              | 130               |
| <u>1,2,4-Trichlorobenzene</u><br>Naphthalene            | 1<br>1        | <u>50.3274</u><br>49.5156 | <u>0</u>       | <u>50</u><br>50   | <u>101</u>        | <u>50</u><br>50        | 130<br>130        |
| 4-Chloroaniline                                         | 1             | 28.3205                   | <u>0</u>       | <u>50</u>         | <u>99</u><br>57   | <u> </u>               | 150               |
| Hexachlorobutadiene                                     | 1             | 48.0823                   | <u>v</u>       | <u>50</u>         | 9 <u>6</u>        | 60                     | 130               |
| Caprolactam                                             | 1             | 52.9506                   | Ō              | 50                | 106               | 50                     | 130               |
| 4-Chloro-3-methylphenol                                 | <u>1</u>      | <u>95.0676</u>            | <u>o</u>       | <u>100</u>        | <u>95</u>         | <u>50</u>              | 130               |
| <u>2-Methylnaphthalene</u>                              | <u>1</u>      | <u>48.3377</u>            | <u>0</u>       | <u>50</u>         | <u>97</u>         | <u>70</u>              | <u>130</u>        |
| 1-Methylnaphthalene                                     | 1             | 49.5763                   | 0              | 50                | 99                | 70                     | 130               |
| 1.1'-Biphenyl                                           | 1             | 42.0938                   | <u>0</u>       | <u>50</u>         | <u>84</u>         | <u>60</u>              | 130               |
| 1,2,4,5-Tetrachlorobenzene<br>Hexachlorocyclopentadiene | 1             | <u>45.24</u><br>52.3968   | 0              | <u>50</u><br>50   | <u>90</u><br>105  | <u>70</u><br>20        | <u>130</u><br>160 |
| 2,4,6-Trichlorophenol                                   | <u>1</u><br>1 | 93.4661                   | <u>0</u>       | <u>50</u><br>100  | 93                | <u>20</u><br>70        | 130               |
| 2,4,5-Trichlorophenol                                   | <u> </u>      | 95.3092                   | <u>o</u>       | 100               | <u>95</u>         | <del>70</del>          | 130               |
| 2-Chloronaphthalene                                     | 1             | 54.8822                   | <u>0</u>       | 50                | <u>110</u>        | <del>70</del>          | 130               |
| 1,4-Dimethylnaphthalene                                 | 1             | 42.5953                   | ō              | 50                | 85                | 70                     | 130               |
| Diphenyl Ether                                          | 1             | 49.4685                   | 0              | 50                | 99                | 70                     | 130               |
| 2-Nitroaniline                                          | <u>1</u>      | 53.9294                   | Ō              | <u>50</u>         | <u>108</u>        | <u>50</u>              | <u>130</u>        |
| Coumarin                                                | 1             | 47.1065                   | 0              | 50                | 94                | 70                     | 130               |
| Acenaphthylene                                          | 1             | <u>57.7765</u>            | Õ              | <u>50</u>         | <u>116</u>        | <u>70</u>              | <u>130</u>        |
| <u>Dimethylphthalate</u><br>2,6-Dinitrotoluene          | <u>1</u><br>1 | <u>55.06</u><br>56.5044   | <u>ō</u>       | <u>50</u><br>50   | <u>110</u><br>113 | <u>70</u><br>70        | <u>130</u><br>130 |
| Acenaphthene                                            |               | <u>54.555</u>             | <u>0</u>       | <u>50</u>         | 113<br>109        | <u>50</u>              | 130               |
| 3-Nitroaniline                                          | <u>1</u><br>1 | 42.4376                   | <u>v</u>       | <u>50</u>         | <u>85</u>         | <u>10</u>              | 130               |
| 2,4-Dinitrophenol                                       | 1             | 26.1825                   | <u>o</u>       | <u>100</u>        | <u>26</u>         | <u>20</u>              | 150               |
| <u>Dibenzofuran</u>                                     | 1             | <u>52.0037</u>            | <u>0</u>       | 50                | <u>104</u>        | <u>70</u>              | 130               |
| 2,4-Dinitrotoluene                                      | 1             | <u>56.8677</u>            | <u>0</u>       | <u>50</u>         | <u>114</u>        | <u>40</u>              | 130               |
| 4-Nitrophenol                                           | 1             | 84.8796<br>87.4630        | <u>0</u>       | <u>100</u>        | <u>85</u>         | <u>20</u>              | <u>150</u>        |
| 2,3,4,6-Tetrachlorophenol                               | 1             | 87.1629<br>54.7413        | 0              | 100<br>50         | 87<br>109         | 70<br><b>50</b>        | 130               |
| <u>Fluorene</u><br>4-Chlorophenyl-phenylether           | <u>1</u><br>1 | <u>54.7413</u><br>55.3846 | <u>0</u>       | <u>50</u><br>50   | <u>109</u><br>111 | <u>50</u><br>70        | 130<br>130        |
| <u>4-Chlorophenyl-phenylether</u><br>Diethylphthalate   | <u>1</u><br>1 | 55.5981                   | <u>ō</u>       | <u>50</u><br>50   | 111               | <u>70</u><br><u>70</u> | 130<br>130        |
| 4-Nitroaniline                                          | 1             | 55.0749                   | <u>o</u>       | <u>50</u><br>50   | 110               | <u>70</u><br>50        | 130               |
| Atrazine                                                | 1             | 53.152                    | Ŏ              | <u>50</u>         | 106               | <del>50</del>          | 130               |
| 4,6-Dinitro-2-methylphenol                              | 1             | 49.7756                   | Q              | <u>100</u>        | <u>50</u>         | <u>40</u>              | <u>130</u>        |
| n-Nitrosodiphenylamine                                  | 1             | <u>46.8118</u>            | Q              | <u>50</u>         | 94                | <u>50</u>              | 130               |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

## Form3 Recovery Data Laboratory Limits QC Batch: SMB88132

| Method: 8270E                 | Matrix                               | ::Soil          |                                  | Units: mg/K | g QC Typ   | e: MBS         |            |
|-------------------------------|--------------------------------------|-----------------|----------------------------------|-------------|------------|----------------|------------|
|                               |                                      | Spike           | Sample                           | Expected    |            | Lower          | Uppe       |
| Analyte:                      | Col                                  | Conc            | Conc                             | Conc        | Recovery   | Limit          | Limit      |
| 1,2-Diphenylhydrazine         | 1                                    | 55.7864         | <u>o</u>                         | <u>50</u>   | 112        | <u>70</u>      | 130        |
| 4-Bromophenyl-phenylether     | 1                                    | <u>56.1557</u>  | <u>0</u><br>0                    | <u>50</u>   | <u>112</u> | <u>70</u>      | <u>130</u> |
| <u>Hexachlorobenzene</u>      | 1                                    | <u>51.3841</u>  | <u>o</u>                         | <u>50</u>   | <u>103</u> | <u>70</u>      | <u>130</u> |
| N-Octadecane                  | 1                                    | 56.8282         | 0                                | 50          | 114        | 70             | 130        |
| <u>Pentachlorophenol</u>      | 1                                    | 89.925 <u>6</u> | Q                                | <u>100</u>  | <u>90</u>  | <u>40</u>      | <u>130</u> |
| <u>Phenanthrene</u>           | <u>1</u>                             | <u>55.8146</u>  | <u>0</u>                         | <u>50</u>   | <u>112</u> | <u>70</u>      | <u>130</u> |
| <u>Anthracene</u>             | 1                                    | <u>55.9455</u>  | <u>0</u>                         | <u>50</u>   | <u>112</u> | <u>70</u>      | <u>130</u> |
| <u>Carbazole</u>              | 1                                    | <u>48.2992</u>  | <u>0</u><br><u>0</u><br><u>0</u> | <u>50</u>   | <u>97</u>  | <u>70</u>      | <u>130</u> |
| <u>Di-n-butylphthalate</u>    | 1                                    | <u>55.3138</u>  | <u>0</u>                         | <u>50</u>   | <u>111</u> | <u>70</u>      | <u>130</u> |
| <u>Fluoranthene</u>           | 1                                    | 57.5641         | Q                                | <u>50</u>   | <u>115</u> | <u>70</u>      | <u>130</u> |
| <u>Pyrene</u>                 | 1                                    | <u>56.1276</u>  | <u>0</u>                         | <u>50</u>   | <u>112</u> | <u>50</u><br>1 | 130        |
| <u>Benzidine</u>              | <u>1</u>                             | <u>7.6824</u>   | <u>o</u>                         | <u>50</u>   | <u>15</u>  | 1              | 130        |
| Butylbenzylphthalate          | 1                                    | <u>54.6642</u>  | <u>o</u>                         | <u>50</u>   | <u>109</u> | <u>50</u>      | <u>130</u> |
| 3,3'-Dichlorobenzidine        | <u>1</u>                             | <u>34.9351</u>  | <u>o</u>                         | <u>50</u>   | <u>70</u>  | <u>10</u>      | <u>130</u> |
| Benzo[a]anthracene            | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | <u>51.9931</u>  | <u>0</u><br>0<br>0               | <u>50</u>   | <u>104</u> | <u>70</u>      | <u>130</u> |
| Chrysene                      | 1                                    | <u>47.4162</u>  | <u>0</u><br><u>0</u>             | <u>50</u>   | <u>95</u>  | <u>60</u>      | <u>130</u> |
| bis(2-Ethylhexyl)phthalate    | <u>1</u>                             | <u>55.8205</u>  | <u>o</u>                         | <u>50</u>   | <u>112</u> | <u>70</u>      | <u>130</u> |
| <u>Di-n-octylphthalate</u>    | 1                                    | 55.3487         | <u>0</u>                         | <u>50</u>   | <u>111</u> | <u>70</u>      | 130        |
| Benzo[b]fluoranthene          | 1                                    | 65.0384         | <u>o</u>                         | <u>50</u>   | 130        | <u>70</u>      | 130        |
| <u>Benzo[k]fluoranthene</u>   | <u>1</u>                             | <u>58.6368</u>  | <u>0</u>                         | <u>50</u>   | <u>117</u> | <u>70</u>      | 130        |
| <u>Benzo[a]pyrene</u>         | 1<br>1<br>1<br>1                     | 61.6032         | <u>o</u>                         | <u>50</u>   | 123        | <u>70</u>      | 130        |
| Indeno[1,2,3-cd]pyrene        | <u>1</u>                             | 60.395          | Q                                | <u>50</u>   | <u>121</u> | <u>70</u>      | 130        |
| <u>Dibenzo[a,h]anthracene</u> | 11                                   | 60.2045         | <u>0</u><br><u>0</u>             | <u>50</u>   | 120        | 60             | 130        |
| Benzo[q,h,i]perylene          | 1                                    | 59.7774         | Q                                | 50          | 120        | 70             | 130        |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

#### Form3 **Recovery Data Laboratory Limits**

QC Batch: SMB88132

Data File

Sample ID:

Analysis Date

Spike or Dup: 7M109911.D Non Spike(If applicable): 7M109910.D

AD19562-004(MS:AD19562-002 AD19562-002

10/6/2020 8:18:00 PM 10/6/2020 7:55:00 PM

Inst Blank(If applicable):

| Method: 8270E                               | Matrix        | :: Soil                           |               | Units: mg/Kg            |                        |                        |                          |
|---------------------------------------------|---------------|-----------------------------------|---------------|-------------------------|------------------------|------------------------|--------------------------|
|                                             |               | Spike                             | Sample        | Expected                |                        | Lower                  | Upper                    |
| Analyte:                                    | Col           | Conc                              | Conc          | Conc                    | Recovery               | Limit                  | Limit                    |
| <u>Pyridine</u>                             | 1             | <u>22.8741</u>                    | <u>0</u>      | <u>50</u>               | <u>46</u>              | 1                      | <u>150</u>               |
| N-Nitrosodimethylamine                      | 1             | <u>36.875</u>                     | <u>0</u>      | <u>50</u>               | <u>74</u><br>82        | <u><b>50</b></u><br>20 | <u>130</u><br>220        |
| Benzaldehyde                                | 1             | 40.8931<br>1. <b>5219</b>         | 0<br><u>0</u> | 50<br><b>50</b>         | 3 <u>*</u>             | 20<br>20               | 150                      |
| <u>Aniline</u><br>Pentachloroethane         | <u>1</u><br>1 | 35.5288                           | Ŏ             | <u>50</u><br>50         | <u>9</u> _<br>71       | <u>50</u>              | 130                      |
| bis(2-Chloroethyl)ether                     | 1             | 43.0896                           | Ŏ             | 50                      | 86                     | 50                     | 130                      |
| Phenol                                      | <u>1</u>      | 73.6316                           | <u>0</u>      | 100                     | 74                     | 20                     | 150                      |
| 2-Chlorophenol                              | <u>1</u>      | 75.0948                           | <u></u>       | 100                     | <u>75</u>              | <u>50</u>              | 130                      |
| N-Decane                                    | 1             | 30.461                            | 0             | 50                      | 61                     | 20                     | 130                      |
| 1,3-Dichlorobenzene                         | <u>1</u>      | <u>35.4379</u>                    | <u>0</u>      | <u>50</u>               | <u>71</u>              | <u>60</u>              | <u>130</u>               |
| 1,4-Dichlorobenzene                         | 1             | <u>35.2333</u>                    | <u>0</u>      | <u>50</u>               | <u>70</u>              | <u>60</u>              | <u>130</u>               |
| 1,2-Dichlorobenzene                         | 1             | <u>35.4288</u>                    | <u>0</u>      | <u>50</u>               | <u>71</u>              | <u>50</u>              | 130                      |
| Benzyl alcohol                              | 1             | <u>35.0915</u>                    | <u>0</u>      | <u>50</u>               | <u>70</u>              | <u>20</u>              | 130                      |
| bis(2-chloroisopropyl)ether                 | 1             | <u>40.9178</u>                    | <u>0</u>      | <u>50</u>               | <u>82</u>              | <u>40</u>              | 130<br>420               |
| 2-Methylphenol                              | 1             | 73.3382                           | <u>0</u>      | <u>100</u>              | <u>73</u><br>80        | <u>50</u><br>50        | <u>130</u><br><u>130</u> |
| <u>Acetophenone</u><br>Hexachloroethane     | <u>1</u><br>1 | <u>39.9659</u><br>31.8 <u>803</u> | <u>0</u>      | <u>50</u><br>50         | <u>80</u><br>64        | <u>50</u><br>50        | 130<br>130               |
| N-Nitroso-di-n-propylamine                  | 1             | <u>41.6008</u>                    | <u>o</u>      | <u>50</u><br>50         | <u>83</u>              | <u>30</u><br>40        | 130<br>130               |
| 3&4-Methylphenol                            | <u> </u>      | 75.2684                           | <u>0</u>      | 100                     | <u>75</u>              | 70                     | 130                      |
| Nitrobenzene                                | 1             | 42.6034                           | Q             | 50                      | 85                     | <del>70</del>          | 130                      |
| Isophorone                                  | <u>1</u>      | 40.4114                           | · <u>0</u>    | <u>50</u>               | <u>81</u>              | 60                     | 130                      |
| <u>2-Nitrophenol</u>                        | <u>1</u>      | <u>71.9668</u>                    | <u>0</u>      | <u>100</u>              | <u>72</u>              | <u>70</u>              | <u>130</u>               |
| 2,4-Dimethylphenol                          | <u>1</u>      | <u>78.575</u>                     | <u>0</u>      | <u>100</u>              | <u>79</u>              | <u>40</u>              | <u>130</u>               |
| Benzoic Acid                                | 1             | <u>50.8458</u>                    | <u>0</u>      | <u>100</u>              | <u>51</u>              | <u>20</u>              | <u>130</u>               |
| bis(2-Chloroethoxy)methane                  | 1             | <u>42.7739</u>                    | <u>0</u>      | <u>50</u>               | <u>86</u>              | <u>60</u>              | <u>130</u>               |
| 2,4-Dichlorophenol                          | 1             | 70.7819                           | <u>0</u>      | <u>100</u>              | <u>71</u>              | <u>70</u>              | 130<br>130               |
| 1,2,4-Trichlorobenzene<br>Naphthalene       | <u>1</u><br>1 | 38.4523<br>37.9852                | <u>ō</u>      | <u>50</u><br>50         | <u>77</u><br><u>76</u> | <u>50</u><br>50        | <u>130</u><br><u>130</u> |
| 4-Chloroaniline                             | <u> </u>      | 18.6172                           | <u>o</u>      | <u>50</u>               | <u>70</u><br>37        | <u>50</u><br>10        | 150<br>150               |
| Hexachlorobutadiene                         | <u> </u>      | 35.1499                           | Q             | <u>50</u>               | <u>70</u>              | <del>60</del>          | 130                      |
| Caprolactam                                 | Ť             | 42.049                            | Õ             | 50                      | 84                     | 50                     | 130                      |
| 4-Chloro-3-methylphenol                     | <u>1</u>      | 70.1841                           | <u>0</u>      | 100                     | <u>70</u>              | <u>50</u>              | 130                      |
| 2-Methylnaphthalene                         | 1             | 36.1122                           | <u>0</u>      | <u>50</u>               | <u>72</u>              | <u>70</u>              | <u>130</u>               |
| 1-Methylnaphthalene                         | 1             | 41.5176                           | 0             | 50                      | 83                     | 70                     | 130                      |
| 1,1'-Biphenyl                               | 1             | <u>33.1605</u>                    | <u>0</u>      | <u>50</u>               | <u>66</u>              | <u>60</u>              | <u>130</u>               |
| 1,2,4,5-Tetrachlorobenzene                  | 1             | <u>38.9158</u>                    | <u>0</u>      | <u>50</u>               | <u>78</u>              | <u>70</u>              | <u>130</u>               |
| Hexachlorocyclopentadiene                   | 1             | <u>0</u><br>70 5050               | <u>0</u>      | <u>50</u>               | <u>0*</u>              | <u>20</u>              | <u>160</u>               |
| 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol | <u>1</u><br>1 | <u>72.5256</u><br>75.8462         | <u>0</u>      | <u>100</u><br>100       | <u>73</u><br>76        | <u>70</u><br>70        | <u>130</u><br>130        |
| 2-Chloronaphthalene                         | 1 1           | 42.0134                           | <u>o</u>      | <u>100</u><br><u>50</u> | <u>76</u><br>84        | <u>70</u><br>70        | 130<br>130               |
| 1,4-Dimethylnaphthalene                     | †<br>1        | 36.2316                           | 0             | <u>50</u>               | 72                     | <del>70</del>          | 130                      |
| Diphenyl Ether                              | 1             | 41.0301                           | Ŏ             | 50                      | 82                     | 70                     | 130                      |
| 2-Nitroaniline                              | 1             | 44.5786                           | <u>o</u>      | <u>50</u>               | <u>89</u>              | <u>50</u>              | 130                      |
| Coumarin                                    | î             | 38.0624                           | ō             | 50                      | 76                     | 70                     | 130                      |
| <u>Acenaphthylene</u>                       | 1             | <u>43.1541</u>                    | <u>0</u>      | <u>50</u>               | <u>86</u>              | <u>70</u>              | <u>130</u>               |
| <u>Dimethylphthalate</u>                    | 1             | 41.7784                           | <u>0</u>      | <u>50</u>               | <u>84</u>              | <u>70</u>              | <u>130</u>               |
| 2,6-Dinitrotoluene                          | 1             | <u>42.8226</u>                    | <u>0</u>      | <u>50</u>               | <u>86</u>              | <u>70</u>              | <u>130</u>               |
| <u>Acenaphthene</u>                         | 1             | <u>42.1443</u>                    | <u>0</u>      | <u>50</u>               | <u>84</u>              | <u>50</u>              | <u>130</u>               |
| 3-Nitroaniline                              | 1             | 31.7996<br>40.8407                | <u>0</u>      | <u>50</u>               | 64 *                   | <u>70</u>              | 130<br>150               |
| <u>2,4-Dinitrophenol</u><br>Dibenzofuran    | 1             | <u>19.8407</u>                    | <u>0</u>      | <u>100</u><br>50        | <u>20</u><br>78        | <u>20</u><br>70        | <u>150</u><br>130        |
| <u>Dibenzoruran</u><br>2,4-Dinitrotoluene   | <u>1</u><br>1 | <u>39.0638</u><br>41.9356         | <u>0</u>      | <u>50</u><br>50         | <u>78</u><br><u>84</u> | <u>70</u><br>40        | 130<br>130               |
| 4-Nitrophenol                               | <u>1</u><br>1 | 72.1157                           | <u>o</u>      | <u>50</u><br>100        | 72                     | <del>20</del>          | 150<br>150               |
| 2,3,4,6-Tetrachlorophenol                   | 1             | 66.4552                           | 0             | 100                     | <u>12</u><br>66*       | 70                     | 130                      |
| Fluorene                                    | 1             | 42.8903                           | <u>o</u>      | <u>50</u>               | <u>86</u>              | 50                     | 130                      |
| 4-Chlorophenyl-phenylether                  | <u>1</u>      | 42.2303                           | <u>o</u>      | <u>50</u>               | <u>84</u>              | <del>70</del>          | 130                      |
| Diethylphthalate                            | 1             | 42.7186                           | <u>0</u>      | <u>50</u>               | <u>85</u>              | <u>70</u>              | 130                      |
| 4-Nitroaniline                              | <u>1</u>      | 38.5286                           | <u>0</u>      | <u>50</u>               | <u>77</u>              | <u>50</u>              | <u>130</u>               |
| Atrazine                                    | 1             | 38.0617                           | 0             | 50                      | 76                     | 50                     | 130                      |
| 4,6-Dinitro-2-methylphenol                  | 1             | 31.3089<br>37.0389                | <u>0</u>      | <u>100</u>              | 31 *<br>74             | <u>40</u>              | 130<br>130               |
| n Nitrocodinhonylamino                      | 4             | 27 4204                           | ^             | En                      | 74                     | E0                     | 470                      |

n-Nitrosodiphenylamine 1 37.0389 <u>Q</u>. 74 \* - Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

<u>50</u>

<u>50</u> <u>130</u>

## Form3 Recovery Data Laboratory Limits QC Batch: SMB88132

| Method: 8270E               | Matrix   | :: Soil        |                                                     | Units: mg/K | g QC Typ   | e: MS     |            |
|-----------------------------|----------|----------------|-----------------------------------------------------|-------------|------------|-----------|------------|
|                             |          | Spike          | Sample                                              | Expected    | _          | Lower     | Upper      |
| Analyte:                    | Col      | Conc           | Conc                                                | Conc        | Recovery   | Limit     | Limit      |
| 1,2-Diphenylhydrazine       | 1        | 50.2523        | <u>0</u>                                            | <u>50</u>   | <u>101</u> | <u>70</u> | <u>130</u> |
| 4-Bromophenyl-phenylether   | <u>1</u> | 42.4892        | <u>0</u><br><u>0</u>                                | <u>50</u>   | <u>85</u>  | <u>70</u> | <u>130</u> |
| <u>Hexachlorobenzene</u>    | <u>1</u> | <u>40.1565</u> | <u>o</u>                                            | <u>50</u>   | 80         | <u>70</u> | <u>130</u> |
| N-Octadecane                | 1        | 49.3111        | 0                                                   | 50          | 99         | 70        | 130        |
| Pentachlorophenol           | <u>1</u> | <u>71.3457</u> | <u>o</u>                                            | <u>100</u>  | <u>71</u>  | <u>40</u> | <u>130</u> |
| <u>Phenanthrene</u>         | <u>1</u> | <u>47.5828</u> | <u>0</u><br><u>0</u><br><u>0</u>                    | <u>50</u>   | <u>95</u>  | <u>70</u> | <u>130</u> |
| <u>Anthracene</u>           | <u>1</u> | 43.9529        | <u>o</u>                                            | <u>50</u>   | <u>88</u>  | <u>70</u> | <u>130</u> |
| <u>Carbazole</u>            | 1        | <u>36.4639</u> | <u>o</u>                                            | <u>50</u>   | <u>73</u>  | <u>70</u> | <u>130</u> |
| Di-n-butylphthalate         | <u>1</u> | <u>45.8245</u> | <u>o</u>                                            | <u>50</u>   | <u>92</u>  | <u>70</u> | <u>130</u> |
| <u>Fluoranthene</u>         | 1        | 49.7557        | <u>0</u><br><u>0</u>                                | <u>50</u>   | <u>100</u> | <u>70</u> | <u>130</u> |
| <u>Pyrene</u>               | 1        | <u>55.3869</u> | <u>o</u>                                            | <u>50</u>   | <u>111</u> | <u>50</u> | <u>130</u> |
| Benzidine Penzidine         | <u>1</u> | <u>o</u>       | <u>o</u>                                            | <u>50</u>   | <u>Q*</u>  | 1         | <u>130</u> |
| <b>Butylbenzylphthalate</b> | <u></u>  | 51.0076        | <u>0</u>                                            | <u>50</u>   | <u>102</u> | <u>50</u> | <u>130</u> |
| 3,3'-Dichlorobenzidine      | <u>1</u> | <u>31.7695</u> | <u>0</u>                                            | <u>50</u>   | <u>64</u>  | <u>10</u> | <u>130</u> |
| Benzo[a]anthracene          | <u>1</u> | <u>45.8941</u> | <u>o</u>                                            | <u>50</u>   | <u>92</u>  | <u>70</u> | <u>130</u> |
| <u>Chrysene</u>             | 1        | 42.2928        | <u>0</u>                                            | <u>50</u>   | <u>85</u>  | <u>60</u> | <u>130</u> |
| bis(2-Ethylhexyl)phthalate  | <u>1</u> | <u>51.2163</u> | Q                                                   | <u>50</u>   | <u>102</u> | <u>70</u> | <u>130</u> |
| <u>Di-n-octylphthalate</u>  | <u>1</u> | <u>52.9673</u> | <u>0</u>                                            | <u>50</u>   | <u>106</u> | <u>70</u> | <u>130</u> |
| Benzo[b]fluoranthene        | <u>1</u> | <u>55.5178</u> | <u>0</u>                                            | <u>50</u>   | <u>111</u> | <u>70</u> | <u>130</u> |
| Benzo[k]fluoranthene        | <u>1</u> | <u>59.2585</u> | <u>0</u>                                            | <u>50</u>   | <u>119</u> | <u>70</u> | <u>130</u> |
| Benzo[a]pyrene              | <u>1</u> | <u>49.6008</u> | <u>0</u>                                            | <u>50</u>   | 99         | <u>70</u> | <u>130</u> |
| Indeno[1,2,3-cd]pyrene      | <u>1</u> | <u>48.0288</u> | <u>o</u>                                            | <u>50</u>   | <u>96</u>  | <u>70</u> | <u>130</u> |
| Dibenzo[a,h]anthracene      | <u>1</u> | 47.7943        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | <u>50</u>   | <u>96</u>  | <u>60</u> | <u>130</u> |
| Benzo[g,h,i]perylene        | <u>1</u> | <u>46.399</u>  | Q                                                   | <u>50</u>   | <u>93</u>  | <u>70</u> | <u>130</u> |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

#### Form3 **Recovery Data Laboratory Limits**

QC Batch: SMB88132

Data File

Sample ID:

Analysis Date

Spike or Dup: 7M109912.D Non Spike(If applicable): 7M109910.D AD19562-006(MSD:AD19562-0 AD19562-002

10/6/2020 8:42:00 PM 10/6/2020 7:55:00 PM

| Inst Blank(If applicable):                       |                  |                                  |                |                           |                     |                     |                          |
|--------------------------------------------------|------------------|----------------------------------|----------------|---------------------------|---------------------|---------------------|--------------------------|
| Method: 8270E                                    |                  |                                  |                | Units: mg/Kg QC Type: MSD |                     |                     |                          |
| Analyte:                                         | Col              | Spike<br>Conc                    | Sample<br>Conc | Expected<br>Conc          | Recovery            | Lower<br>Limit      | Uppe<br>Limit            |
| Pyridine                                         | 1                | 21.1594                          | Q              | 50                        | 42                  | 1                   | <u>150</u>               |
| N-Nitrosodimethylamine                           | 1                | <u>36.7461</u>                   | <u>0</u>       | <u>50</u>                 | <u>73</u>           | <u>50</u>           | <u>130</u>               |
| Benzaldehyde                                     | 1                | 38.4919                          | 0              | 50<br>50                  | 77                  | 20                  | 220                      |
| Aniline                                          | <u>1</u>         | <u>19.6779</u>                   | <u>o</u><br>o  | <u>50</u><br>50           | <u>39</u><br>65     | <u>20</u><br>50     | <u>150</u><br>130        |
| Pentachloroethane<br>bis(2-Chloroethyl)ether     | 1                | 32.5201<br><b>42.571</b>         | <u>0</u>       | 50<br>50                  | 85                  | <u>50</u>           | 130                      |
| Phenol                                           | <u> </u>         | 71.2754                          | <u>0</u>       | 100                       | <u>71</u>           | 20                  | 150                      |
| 2-Chlorophenol                                   | 1                | 72.1208                          | <u> </u>       | 100                       | <del>72</del>       | <u>50</u>           | 130                      |
| N-Decane                                         | 1                | 27.9422                          | ō              | 50                        | 56                  | 20                  | 130                      |
| <u>1,3-Dichlorobenzene</u>                       | 1                | <u>34.0505</u>                   | Q              | <u>50</u>                 | <u>68</u>           | <u>60</u>           | <u>130</u>               |
| 1,4-Dichlorobenzene                              | 1                | <u>35.5674</u>                   | <u>o</u>       | <u>50</u>                 | <u>71</u>           | <u>60</u>           | <u>130</u>               |
| 1,2-Dichlorobenzene                              | 1<br>1<br>1<br>1 | <u>35.729</u>                    | <u>0</u>       | <u>50</u>                 | <u>71</u>           | <u>50</u>           | 130                      |
| Benzyl alcohol                                   | 1                | <u>36.3293</u>                   | 0              | <u>50</u>                 | <u>73</u>           | <u>20</u>           | 130<br>130               |
| bis(2-chloroisopropyl)ether                      | 1                | <u>41.4884</u><br>73.634         | <u>0</u><br>0  | <u>50</u><br>100          | <u>83</u><br>74     | <u>40</u><br>50     | <u>130</u><br>130        |
| <u>2-Methylphenol</u><br>Acetophenone            | 1                | <u>73.634</u><br>39.7427         | <u>0</u>       | <u>50</u>                 | <del>74</del><br>79 | <u>50</u>           | 130                      |
| Hexachloroethane                                 | <u>1</u><br>1    | 31.5209                          | <u>0</u>       | <u>50</u>                 | 63                  | <u>50</u>           | 130                      |
| N-Nitroso-di-n-propylamine                       | <u> </u>         | 42.1098                          | <u>0</u>       | 50                        | <u>84</u>           | 40                  | 130                      |
| 3&4-Methylphenol                                 | 1                | 76.6268                          | Q              | 100                       | 77                  | 70                  | 130                      |
| Nitrobenzene                                     | 1                | 42.4423                          | <u>o</u>       | <u>50</u>                 | <u>85</u>           | <u>70</u>           | 130                      |
| Isophorone                                       | 1                | <u>41.1362</u>                   | <u>0</u>       | <u>50</u>                 | <u>82</u>           | <u>60</u>           | <u>130</u>               |
| 2-Nitrophenol                                    | 1                | <u>71.5407</u>                   | Ō              | <u>100</u>                | <u>72</u>           | <u>70</u>           | <u>130</u>               |
| 2,4-Dimethylphenol                               | 1                | <u>77.4908</u>                   | <u>0</u>       | <u>100</u>                | 77                  | <u>40</u>           | 130                      |
| Benzoic Acid                                     | 1                | 61.5026                          | <u>0</u>       | <u>100</u>                | <u>62</u>           | <u>20</u>           | 130<br>130               |
| bis(2-Chloroethoxy)methane<br>2,4-Dichlorophenol | 1                | <u>43.8515</u><br>70.359         | <u>0</u>       | <u>50</u><br>100          | <u>88</u><br>70     | <u>60</u><br>70     | <u>130</u><br>130        |
| 1,2,4-Trichlorobenzene                           | 1<br>1           | 38.6323                          | <u>o</u>       | <u>50</u>                 | <u>77</u>           | <u>50</u>           | 130                      |
| Naphthalene                                      | <u> </u>         | 38.4442                          | <u>o</u>       | <u>50</u>                 | <del>77</del>       | <u>50</u>           | 130                      |
| 4-Chloroaniline                                  | <u> </u>         | 23.8718                          | <u>0</u>       | <u>50</u>                 | <u>48</u>           | <del>10</del>       | 150                      |
| Hexachlorobutadiene                              | 1                | 35.4718                          | Q              | 50                        | <del>71</del>       | 60                  | 130                      |
| Caprolactam                                      | <u>1</u>         | 40.3373                          | ō              | 50                        | 81                  | 50                  | 130                      |
| 4-Chloro-3-methylphenol                          | 1                | <u>71.0551</u>                   | <u>0</u>       | <u>100</u>                | <u>71</u>           | <u>50</u>           | <u>130</u>               |
| 2-Methylnaphthalene                              | 1                | <u>37.5402</u>                   | Ō              | <u>50</u>                 | <u>75</u>           | <u>70</u>           | <u>130</u>               |
| 1-Methylnaphthalene                              | 1                | 41.7299                          | 0              | 50                        | 83                  | 70                  | 130                      |
| 1,1'-Biphenyl                                    | 1                | <u>33.7939</u>                   | Õ              | <u>50</u>                 | <u>68</u>           | <u>60</u>           | 130                      |
| 1,2,4,5-Tetrachlorobenzene                       | <u>1</u><br>1    | 39.0931                          | <u>ō</u>       | <u>50</u><br>50           | 78<br>0*            | <u>70</u>           | <u>130</u><br>160        |
| Hexachlorocyclopentadiene 2,4,6-Trichlorophenol  | 1                | <u>0</u><br>73.1778              | <u>0</u>       | <u>50</u><br>100          | <u>0*</u><br>73     | <u>20</u><br>70     | 130                      |
| 2,4,5-Trichlorophenol                            | 1<br>1           | 76.1086                          | <u>0</u>       | 100<br>100                | <u>76</u>           | <del>70</del>       | 130                      |
| 2-Chloronaphthalene                              | <u>1</u>         | 43.8318                          | <u>0</u>       | 50                        | 88                  | 70                  | 130                      |
| 1,4-Dimethylnaphthalene                          | 1                | 36.086                           | ō              | 50                        | 72                  | 70                  | 130                      |
| Diphenyl Ether                                   | 1                | 41.4878                          | 0              | 50                        | 83                  | 70                  | 130                      |
| 2-Nitroaniline                                   | 1                | <u>45.1187</u>                   | <u>0</u>       | <u>50</u>                 | <u>90</u>           | <u>50</u>           | <u>130</u>               |
| Coumarin                                         | 1                | 37.9448                          | 0              | 50                        | 76                  | 70                  | 130                      |
| <u>Acenaphthylene</u>                            | 1                | <u>45.1583</u>                   | <u>0</u>       | <u>50</u>                 | <u>90</u>           | <u>70</u>           | <u>130</u>               |
| Dimethylphthalate                                | 1                | 43.1968                          | <u>0</u>       | <u>50</u>                 | <u>86</u>           | <u>70</u>           | 130                      |
| 2.6-Dinitrotoluene                               | <u>1</u><br>1    | 44.6917                          | 0              | <u>50</u>                 | <u>89</u>           | <u>70</u>           | 130                      |
| <u>Acenaphthene</u><br>3-Nitroaniline            | 1 1              | <u>43.3758</u><br><u>35.0681</u> | <u>0</u>       | <u>50</u><br>50           | <u>87</u><br>70     | <u>50</u><br>70     | <u>130</u><br><u>130</u> |
| 2,4-Dinitrophenol                                | <u> </u>         | 23.0472                          | <u>o</u>       | <u>100</u>                | <del>23</del>       | <del>20</del>       | <u>150</u>               |
| Dibenzofuran                                     | <u> </u>         | 40.1191                          | <u>Q</u>       | <u>50</u>                 | 80                  | <del>20</del><br>70 | 130                      |
| 2,4-Dinitrotoluene                               | 1                | 43.9625                          | <u>0</u>       | <u>50</u>                 | 88                  | 40                  | 130                      |
| <u>4-Nitrophenol</u>                             | <u>1</u>         | 71.3957                          | <u>0</u>       | 100                       | <u>71</u>           | <u>20</u>           | <u>150</u>               |
| 2,3,4,6-Tetrachlorophenol                        | 1                | 67.9045                          | 0              | 100                       | 68*                 | 70                  | 130                      |
| Fluorene                                         | 1                | 44.0296                          | <u>0</u>       | <u>50</u>                 | <u>88</u>           | <u>50</u>           | <u>130</u>               |
| 4-Chlorophenyl-phenylether                       | 1                | <u>44.1141</u>                   | <u>0</u>       | <u>50</u>                 | <u>88</u>           | <u>70</u>           | 130                      |
| Diethylphthalate                                 | 1                | 44.3062                          | 0              | <u>50</u>                 | <u>89</u>           | <u>70</u>           | <u>130</u>               |
| 4-Nitroaniline                                   | 1                | 40.3658<br>37.6435               | <u>0</u>       | <u>50</u>                 | <u>81</u><br>75     | <u>50</u>           | 130<br>130               |
| Atrazine<br><u>4,6-Dinitro-2-methylphenol</u>    | 1<br>1           | 37.6435<br><b>35.1408</b>        | 0<br><u>0</u>  | 50<br><b>100</b>          | 75<br><u>35</u> *   | 50<br><b>40</b>     | 130<br><b>130</b>        |
| n-Nitrosodiphenvlamine                           | 1                | 37.2313                          | 0              | <u>100</u><br>50          | 74                  | <del>50</del>       | 130                      |

n-Nitrosodiphenylamine 1 37.2313 0 50 74 50 130
\* - Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

## Form3 Recovery Data Laboratory Limits QC Batch: SMB88132

| Method: 8270E               | Matrix           | : Soil         |                           | Units: mg/K | g QC Typ               | e: MSD                 |            |
|-----------------------------|------------------|----------------|---------------------------|-------------|------------------------|------------------------|------------|
|                             |                  | Spike          | Sample                    | Expected    |                        | Lower                  | Upper      |
| Analyte:                    | Col              | Conc           | Conc                      | Conc        | Recovery               | Limit                  | Limit      |
| 1,2-Diphenylhydrazine       | 1                | <u>51.1776</u> | Q                         | <u>50</u>   | <u>102</u>             | <u>70</u>              | <u>130</u> |
| 4-Bromophenyl-phenylether   | 1                | <u>43.6632</u> | <u>0</u>                  | <u>50</u>   | <u>87</u>              | <u>70</u>              | <u>130</u> |
| <u>Hexachlorobenzene</u>    | 1                | <u>41.3089</u> | <u>0</u>                  | <u>50</u>   | <u>83</u>              | <u>70</u>              | <u>130</u> |
| N-Octadecane                | 1                | 48.0089        | 0                         | 50          | 96                     | 70                     | 130        |
| <u>Pentachlorophenol</u>    | 1                | 71.3338        | <u>o</u>                  | <u>100</u>  | <u>71</u>              | <u>40</u>              | <u>130</u> |
| <u>Phenanthrene</u>         | 1                | <u>44.6643</u> | <u>o</u>                  | <u>50</u>   | <u>89</u>              | <u>70</u>              | <u>130</u> |
| Anthracene                  | <u>1</u>         | <u>43.5229</u> | <u>o</u>                  | <u>50</u>   | <u>87</u>              | <u>70</u>              | <u>130</u> |
| Carbazole                   | <u>1</u><br>1    | <u>35.7121</u> | <u>o</u><br><u>o</u><br>o | <u>50</u>   | <u>71</u>              | <u>70</u>              | <u>130</u> |
| Di-n-butylphthalate         | 1                | <u>45.6275</u> | <u>o</u>                  | <u>50</u>   | <u>91</u>              | <u>70</u>              | <u>130</u> |
| <u>Fluoranthene</u>         | <u>1</u>         | 43.331         | <u>o</u>                  | <u>50</u>   | <u>91</u><br><u>87</u> | <u>70</u><br><u>70</u> | <u>130</u> |
| Pyrene                      | <u>1</u>         | <u>49.0554</u> | <u>o</u>                  | <u>50</u>   | <u>98</u>              | <u>50</u>              | <u>130</u> |
| Benzidine                   | 1<br>1<br>1<br>1 | <u>o</u>       | <u>0</u><br><u>0</u>      | <u>50</u>   | <u>0*</u>              | <u>1</u><br>50         | <u>130</u> |
| <u>Butylbenzylphthalate</u> | <u>1</u>         | <u>52.1399</u> | <u>o</u>                  | <u>50</u>   | <u>104</u>             | <u>50</u>              | <u>130</u> |
| 3,3'-Dichlorobenzidine      | 1                | <u>36.026</u>  | <u>o</u>                  | <u>50</u>   | <u>72</u><br><u>83</u> | <u>10</u><br>70        | <u>130</u> |
| Benzo[a]anthracene          | <u>1</u>         | <u>41.4821</u> | <u>o</u>                  | <u>50</u>   | <u>83</u>              | <u>70</u>              | <u>130</u> |
| Chrysene                    | 1                | 39.0371        | <u>0</u><br>0             | <u>50</u>   | <u>78</u>              | <u>60</u>              | <u>130</u> |
| bis(2-Ethylhexyl)phthalate  | <u>1</u>         | <u>52.0217</u> | <u>0</u>                  | <u>50</u>   | <u>104</u>             | <u>70</u>              | <u>130</u> |
| Di-n-octylphthalate         | <u>1</u>         | 52.9278        | Ō                         | <u>50</u>   | <u>106</u>             | <u>70</u>              | 130        |
| Benzo[b]fluoranthene        | <u>1</u>         | <u>50.3211</u> | <u>o</u>                  | <u>50</u>   | <u>101</u>             | <u>70</u>              | <u>130</u> |
| Benzo[k]fluoranthene        | <u>1</u>         | <u>45.23</u>   | <u>ō</u><br><u>ō</u><br>ō | <u>50</u>   | 90                     | <u>70</u>              | 130        |
| Benzo[a]pyrene              | <u>1</u>         | <u>46.5094</u> | Q                         | <u>50</u>   | <u>93</u>              | <u>70</u>              | <u>130</u> |
| Indeno[1,2,3-cd]pyrene      | <u>1</u>         | <u>46.6381</u> | <u>0</u>                  | 50          | <u>93</u>              | <u>70</u>              | 130        |
| Dibenzo[a,h]anthracene      | <u>1</u>         | <u>46.3343</u> | <u>o</u>                  | <u>50</u>   | 93                     | 60                     | 130        |
| Benzo[g,h,i]perylene        | 1                | 44.7993        | <u>o</u>                  | 50          | 90                     | 70                     | 130        |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

#### Form3 **RPD Data Laboratory Limits**

QC Batch: SMB88132

Data File

Sample ID:

Analysis Date

Spike or Dup: 7M109912.D

Duplicate(If applicable): 7M109911.D

AD19562-006(MSD:AD19562-0

10/6/2020 8:42:00 PM AD19562-004(MS:AD19562-002 10/6/2020 8:18:00 PM

QC Type: MSD

Inst Blank(If applicable):

Matrix: Soil Units: mg/Kg Method: 8270E

|                                            |                       | D (MCD #4DCD                     | Sample #40#400                   |                     |                 |
|--------------------------------------------|-----------------------|----------------------------------|----------------------------------|---------------------|-----------------|
| Analyte:                                   | Column                | Dup/MSD/MBSD<br>Conc             | Sample/MS/MBS<br>Conc            | RPD                 | Limit           |
| Pyridine                                   | <u>1</u>              | 21.1594                          | 22.8741                          | <u>7.8</u>          | 30              |
| N-Nitrosodimethylamine                     | <u>1</u>              | <u>36.7461</u>                   | <u> 36.875</u>                   | <u>0.35</u>         | <u>30</u>       |
| Benzald <b>e</b> hyde                      | 1                     | 38.4919                          | 40.8931                          | 6                   | 30              |
| Aniline                                    | 1                     | <u>19.6779</u>                   | <u>1.5219</u>                    | <u>171 *</u>        | <u>30</u>       |
| Pentachloroethane                          | 1                     | 32.5201                          | 35.5288                          | 8.8                 | 30              |
| ois(2-Chloroethyl)ether                    | 1                     | <u>42.571</u>                    | <u>43.0896</u>                   | <u>1.2</u>          | <u>30</u>       |
| <u>Phenol</u><br>2-Chlorophenol            | <u>1</u><br>1         | <u>71.2754</u><br>72.1208        | <u>73.6316</u><br>75.0948        | 3.3<br>4            | <u>40</u><br>40 |
| N-Decane                                   | 1                     | 27.9422                          | 30.461                           | 8.6                 | 30              |
| 1,3-Dichlorobenzene                        | 1                     | 34.0505                          | 35.4379                          | 4                   | <u>30</u>       |
| 1,4-Dichlorobenzene                        | <u>1</u>              | 35.5674                          | <u>35.2333</u>                   | $0.9\overline{4}$   | 40              |
| 1,2-Dichlorobenzene                        | <u> </u>              | 35.729                           | 35.4288                          | 0.84                | 30              |
| Benzyl alcohol                             | <u>-</u>              | 36.3293                          | 35.0915                          | 3.5                 | 30              |
| ois(2-chloroisopropyl)ether                | <u>1</u>              | 41.4884                          | 40.9178                          | 1.4                 | <u>30</u>       |
| 2-Methylphenol                             | 1<br>1                | 73.634                           | 73.3382                          | <u>0.4</u>          | <u>40</u>       |
| <u>Acetophenone</u>                        | <u>1</u>              | <u>39.7427</u>                   | <u> 39.9659</u>                  | <u>0.56</u>         | <u>30</u>       |
| <u>-lexachloroethane</u>                   | 1 1                   | <u>31.5209</u>                   | <u>31.8803</u>                   | <u>1.1</u>          | <u>30</u>       |
| N-Nitroso-di-n-propylamine                 | 1                     | <u>42.1098</u>                   | <u>41.6008</u>                   | <u>1.2</u>          | <u>40</u>       |
| 8&4-Methylphenol                           | 1                     | <u>76.6268</u>                   | <u>75.2684</u>                   | <u>1.8</u>          | <u>30</u>       |
| <u>Vitrobenzene</u>                        | 1                     | <u>42.4423</u>                   | <u>42.6034</u>                   | <u>0.38</u>         | <u>30</u>       |
| sophorone                                  | 1                     | <u>41.1362</u>                   | <u>40.4114</u>                   | 1.8                 | <u>30</u>       |
| 2-Nitrophenol                              | 1 1                   | <u>71.5407</u>                   | 71.9668<br>70.575                | 0.59                | <u>30</u>       |
| 2,4-Dimethylphenol                         | <u>1</u><br>1         | 77.4908                          | <u>78.575</u><br>50.8458         | <u>1.4</u><br>19    | <u>40</u>       |
| Benzoic Acid<br>pis(2-Chloroethoxy)methane | 1                     | <u>61.5026</u><br>43.8515        | <del>50.6456</del><br>42.7739    | 2.5                 | <u>30</u><br>30 |
| 2,4-Dichlorophenol                         | <u>1</u><br>1         | 70.359                           | 70.7819                          | <u>2.5</u><br>0.6   | <u>30</u><br>30 |
| ,2,4-Trichlorobenzene                      |                       | <u>76.555</u><br>38.6323         | 38.4523                          | 0.47                | <u>40</u>       |
| Naphthalene                                | <u>1</u><br>1         | 38.4442                          | 37.9852                          | 1.2                 | 40<br>40        |
| I-Chloroaniline                            | <u> </u>              | 23.8718                          | 18.6172                          | <u>25</u>           | <del>30</del>   |
| Hexachlorobutadiene                        | <u> </u>              | 35.4718                          | 35.1499                          | 0.91                | <u>30</u>       |
| Caprolactam                                | 1                     | 40.3373                          | 42.049                           | 4.2                 | 30              |
| 4-Chloro-3-methylphenol                    | 1                     | <u>71.0551</u>                   | 70.1841                          | <u>1.2</u>          | <u>40</u>       |
| 2-Methylnaphthalene                        | <u>1</u>              | 37.5402                          | <del>36.1122</del>               | <u>3.9</u>          | <u>30</u>       |
| 1-Methylnaphthalene                        | 1                     | 41.7299                          | 41.5176                          | 0.51                | 30              |
| 1,1'-Biphenyl                              | <u>1</u>              | <u>33.7939</u>                   | <u>33.1605</u>                   | <u>1.9</u>          | <u>30</u>       |
| 1,2,4,5-Tetrachlorobenzene                 | <u>1</u><br>1<br>1    | <u> 39.0931</u>                  | <u>38.9158</u>                   | <u>0.45</u>         | <u>30</u>       |
| <u>Hexachlorocyclopentadiene</u>           | 1                     | <u>0</u>                         | <u>0</u>                         | NA                  | <u>30</u>       |
| 2,4,6-Trichlorophenol                      |                       | <u>73.1778</u>                   | <u>72.5256</u>                   | <u>0.9</u>          | <u>30</u>       |
| 2,4,5-Trichlorophenol                      | <u>1</u><br>1         | <u>76.1086</u>                   | <u>75.8462</u>                   | <u>0.35</u>         | <u>30</u>       |
| 2-Chloronaphthalene                        |                       | <u>43.8318</u>                   | <u>42.0134</u>                   | <u>4.2</u>          | <u>30</u>       |
| I,4-Dimethylnaphthalene                    | 1<br>1                | 36.086                           | 36.2316<br>41.0301               | 0.4                 | 30              |
| Diphenyl Ether                             | 1                     | 41.4878                          | 41.0301                          | 1.1<br><u>1.2</u>   | 30<br><b>30</b> |
| <u>2-Nitroaniline</u><br>Coumarin          | <u>1</u><br>1         | <u><b>45.1187</b></u><br>37.9448 | <u><b>44.5786</b></u><br>38.0624 | 1. <u>2</u><br>0.31 | <u>30</u><br>30 |
| Acenaphthylene                             | <u>'</u>              | 45.1583                          | 43.1541                          | 4.5                 | <u>30</u>       |
| Dimethylphthalate                          | 1                     | 43.1968                          | 41.7784                          | 3.3                 | <u>30</u>       |
| 2,6-Dinitrotoluene                         | <u> </u>              | 44.6917                          | 42.8226                          | <u>4.3</u>          | <u>30</u>       |
| Acenaphthene                               | 1                     | 43.3758                          | 42.1443                          | 2.9                 | <u>40</u>       |
| 3-Nitroaniline                             | i                     | 35.0681                          | 31.7996                          | 9.8                 | <u>30</u>       |
| 2,4-Dinitrophenol                          | 1<br>1<br>1<br>1<br>1 | 23.0472                          | 19.8407                          | <u>15</u>           | 30              |
| <u>Dibenzofuran</u>                        | <u>1</u>              | 40.1191                          | 39.0638                          | <u>2.7</u>          | 30              |
| 2,4-Dinitrotoluene                         | <u>1</u>              | 43.9625                          | <u>41.9356</u>                   | <u>4.7</u>          | <u>40</u>       |
| I-Nitrophenol                              | 1                     | 71.3957                          | <u>72.1157</u>                   | <u>1</u>            | <u>40</u>       |
| 2,3,4,6-Tetrachlorophenol                  | .1                    | 67.9045                          | 66.4552                          | 2.2                 | 30              |
| <u>Fluorene</u>                            | 1                     | <u>44.0296</u>                   | <u>42.8903</u>                   | <u>2.6</u>          | <u>40</u>       |
| 4-Chlorophenyl-phenylether                 | <u>1</u><br>1         | 44.1141                          | <u>42.2303</u>                   | <u>4.4</u>          | <u>30</u>       |
| <u>Diethylphthalate</u>                    | <u>1</u>              | 44.3062                          | <u>42.7186</u>                   | <u>3.6</u>          | <u>30</u>       |
| 4-Nitroaniline                             | <u>1</u><br>1         | <u>40.3658</u>                   | <u>38.5286</u>                   | 4.7                 | <u>30</u>       |
| Atrazine                                   |                       | 37.6435                          | 38.0617                          | 1.1                 | 30              |
| 4,6-Dinitro-2-methylphenol                 | <u>1</u><br>1         | <u>35.1408</u>                   | <u>31.3089</u>                   | <u>12</u>           | <u>30</u>       |
| n-Nitrosodiphenylamine                     | 7                     | <u> 37.2313</u>                  | <u>37.0389</u>                   | 0.52                | 30              |

<sup>\* -</sup> Indicates outside of limits

### Form3 RPD Data Laboratory Limits QC Batch: SMB88132

|                            | QO Dan       | CIT. CIVIDOO 132 |                |                |                            |
|----------------------------|--------------|------------------|----------------|----------------|----------------------------|
| Method: 8270E              | Matrix: Soil | Units:           | mg/Kg          | QC Type: MSI   | )                          |
|                            |              | Dup/MSD/MBSD     | Sample/MS/N    | MBS            |                            |
| Analyte:                   | Column       | Conc             | Conc           | RPD            | Limit                      |
| 1,2-Diphenylhydrazine      | 1            | 51.1776          | 50.2523        | 1.8            | <u>30</u>                  |
| 4-Bromophenyl-phenylether  | <u>1</u>     | <u>43.6632</u>   | 42.4892        | <u>2.7</u>     | <u>30</u>                  |
| <u>Hexachlorobenzene</u>   | <u>1</u>     | <u>41.3089</u>   | <u>40.1565</u> | <u>2.8</u>     | <u>30</u>                  |
| N-Octadecane               | 1            | 48.0089          | 49.3111        | 2.7            | 30                         |
| <u>Pentachlorophenol</u>   | <u>1</u>     | <u>71.3338</u>   | <u>71.3457</u> | <u>0.02</u>    | <u>40</u>                  |
| <u>Phenanthrene</u>        | <u>1</u>     | <u>44.6643</u>   | <u>47.5828</u> | <u>6.3</u>     | <u>30</u>                  |
| <u>Anthracene</u>          | <u>1</u>     | 43.5229          | <u>43.9529</u> | <u>0.98</u>    | 30<br>30                   |
| <u>Carbazole</u>           | <u>1</u>     | <u>35.7121</u>   | <u>36.4639</u> | <u>2.1</u>     | 30                         |
| Di-n-butylphthalate        | <u>1</u>     | <u>45.6275</u>   | 45.8245        | 0.43           | 30                         |
| <u>Fluoranthene</u>        | <u>1</u>     | <u>43.331</u>    | <u>49.7557</u> | <u>14</u>      | 30                         |
| <u>Pyrene</u>              | 1            | 49.0554          | 55.3869        | <u>12</u>      | 40                         |
| Benzidine                  | <u>1</u>     | <u> 0</u>        | <u> </u>       | NA             | 30<br>30<br>40<br>30<br>40 |
| Butylbenzylphthalate       | <u>1</u>     | 52.1399          | 51.0076        | <u>2.2</u>     | 40                         |
| 3,3'-Dichlorobenzidine     | ī            | 36.026           | 31.7695        | 13             | 30                         |
| Benzo[a]anthracene         | <u>1</u>     | 41.4821          | 45.8941        | <u>10</u>      | 30                         |
| Chrysene                   | <u>1</u>     | 39.0371          | 42.2928        | <u>8</u>       | 30<br>30<br>30<br>30       |
| bis(2-Ethylhexyl)phthalate | $\bar{1}$    | 52.0217          | 51.2163        | <u>1.6</u>     | 30                         |
| Di-n-octylphthalate        | <u>ī</u>     | 52.9278          | 52.9673        | 0.07           | 30                         |
| Benzo[b]fluoranthene       | <u>1</u>     | 50.3211          | 55.5178        | 9.8            | <u>30</u>                  |
| Benzo[k]fluoranthene       | <u>1</u>     | 45.23            | 59.2585        | <u>27</u>      | <u>30</u>                  |
| Benzo[a]pyrene             | <u>1</u>     | 46.5094          | 49.6008        | <u>6.4</u>     | <u>30</u>                  |
| Indeno[1,2,3-cd]pyrene     | <u>1</u>     | 46.6381          | 48.0288        | <del>2.9</del> | <u>30</u>                  |
| Dibenzo[a,h]anthracene     | <u>ī</u>     | 46.3343          | 47.7943        | 3.1            | <u>30</u>                  |
| Benzo[q,h,i]perylene       | <u>1</u>     | 44.7993          | 46.399         | 3. <u>5</u>    | 30                         |
|                            |              |                  |                |                |                            |

## FORM 4 Blank Summary

Blank Number: SMB88132 Blank Analysis Date: 10/06/20 12:34 Blank Data File: 9M101549.D Blank Extraction Date: 10/06/20

Matrix: Soil

(If Applicable)

Method: EPA 8270E

| Sample Number    | Data File  | Analysis Date  |  |
|------------------|------------|----------------|--|
| AD19539-007      | 7M109905.D | 10/06/20 17:57 |  |
| AD19539-011      | 9M101550.D | 10/06/20 12:59 |  |
| AD19539-013      | 7M109906.D | 10/06/20 18:20 |  |
| AD19539-014(200X | 7M109936.D | 10/07/20 16:06 |  |
| AD19539-017(400X | 7M109937.D | 10/07/20 16:29 |  |
| SMB88132(MS)     | 9M101548.D | 10/06/20 12:11 |  |
| AD19562-006(MSD  | 7M109912.D | 10/06/20 20:42 |  |
| AD19562-004(MS:  | 7M109911.D | 10/06/20 20:18 |  |
| AD19562-002      | 7M109910.D | 10/06/20 19:55 |  |

Tune Name: CAL DFTPP **Data File:** 7M109431.D Instrument: GCMS 7 Analysis Date: 09/17/20 09:43
Method: EPA 8270E
Tune Scan/Time Range; Average of 10.108 to 10.108 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw    | Pass/ |
|------|------|------|-------|-------|--------|-------|
| Mass | Mass | Lim  |       | Abund | Abund  | Fail  |
| 51   | 198  | 30   | 60    | 35.1  | 42072  | PASS  |
| 68   | 69   | 0.00 | 2     | 0.0   | 0      | PASS  |
| 69   | 198  | 0.00 | 100   | 45.6  | 54704  | PASS  |
| 70   | 69   | 0.00 | 2     | 0.7   | 373    | PASS  |
| 127  | 198  | 40   | 60    | 53.1  | 63672  | PASS  |
| 197  | 198  | 0.00 | 1     | 0.0   | 0      | PASS  |
| 198  | 198  | 100  | 100   | 100.0 | 120000 | PASS  |
| 199  | 198  | 5    | 9     | 6.8   | 8197   | PASS  |
| 275  | 198  | 10   | 30    | 20.8  | 24936  | PASS  |
| 365  | 198  | 1    | 100   | 2.2   | 2683   | PASS  |
| 441  | 443  | 0.01 | 100   | 72.0  | 7872   | PASS  |
| 442  | 198  | 40   | 100   | 47.1  | 56488  | PASS  |
| 443  | 442  | 17   | 23    | 19.3  | 10930  | PASS  |

| Data File  | Sample Number | Analysis Date: |
|------------|---------------|----------------|
| 7M109432.D | CAL BNA@2PPM  | 09/17/20 10:08 |
| 7M109433.D | CAL BNA@10PPM | 09/17/20 10:32 |
| 7M109434.D | CAL BNA@196PP | 09/17/20 10:55 |
| 7M109435.D | CAL BNA@160PP | 09/17/20 11:22 |
| 7M109436.D | CAL BNA@120PP | 09/17/20 11:46 |
| 7M109437.D | CAL BNA@80PPM | 09/17/20 12:09 |
| 7M109438.D | CAL BNA@20PPM | 09/17/20 12:33 |
| 7M109439.D | CAL BNA@0.5PP | 09/17/20 12:57 |
| 7M109440.D | CAL BNA@50PPM | 09/17/20 13:20 |
| 7M109441.D | ICV BNA@50PPM | 09/17/20 13:44 |

Data Path : G:\GcMsData\2020\GCMS 7\Data\09-17-20\

Data File : 7M109431.D

Acq On : 17 Sep 2020 9:43

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_7\METHODQT\7M\_EVALN.M

Title : @GCMS 7

Last Update : Thu Sep 10 08:21:04 2020



Spectrum Information: Average of 10.108 to 10.108 min.

| Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result  <br>Pass/Fail |
|----------------|-----------------|-----------------|-----------------|--------------|------------|-----------------------|
| 51             | 198             | 30              | 60              | 35.1         | 42072      | PASS                  |
| 68             | 69              | 0.00            | 2               | 0.0          | 0          | PASS                  |
| 69             | 198             | 0.00            | 100             | 45.6         | 54704      | PASS                  |
| 70             | 69              | 0.00            | 2               | 0.7          | 373        | PASS                  |
| 127            | 198             | 40              | 60              | 53.1         | 63672      | PASS                  |
| 197            | 198             | 0.00            | 1               | 0.0          | 0          | PASS                  |
| 198            | 198             | 100             | 100             | 100.0        | 120000     | PASS                  |
| 199            | 198             | 5               | 9               | 6.8          | 8197       | PASS                  |
| 275            | 198             | 10              | 30              | 20.8         | 24936      | PASS                  |
| 365            | 198             | 1               | 100             | 2.2          | 2683       | PASS                  |
| 441            | 443             | 0.01            | 100             | 72.0         | 7872       | PASS                  |
| 442            | 198             | 40              | 100             | 47.1         | 56488      | PASS                  |
| 443            | 442             | 17              | 23              | 19.3         | 10930      | PASS                  |

Tune Name: CAL DFTPP Instrument: GCMS 9

Data File: 9M101312.D Analysis Date: 09/17/20 09:43 Method: EPA 8270E

| Tune Scan/Ti | me Range: | Average of | 10.107 to | 10.107 min |
|--------------|-----------|------------|-----------|------------|
|              |           |            |           |            |

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw    | Pass/ |
|------|------|------|-------|-------|--------|-------|
| Mass | Mass | Lim  |       | Abund | Abund  | Fail  |
| 51   | 198  | 30   | 60    | 34.3  | 42992  | PASS  |
| 68   | 69   | 0.00 | 2     | 0.0   | 0      | PASS  |
| 69   | 198  | 0.00 | 100   | 38.1  | 47736  | PASS  |
| 70   | 69   | 0.00 | 2     | 0.4   | 213    | PASS  |
| 127  | 198  | 40   | 60    | 50.6  | 63424  | PASS  |
| 197  | 198  | 0.00 | 1     | 0.0   | 0      | PASS  |
| 198  | 198  | 100  | 100   | 100.0 | 125368 | PASS  |
| 199  | 198  | 5    | 9     | 6.6   | 8281   | PASS  |
| 275  | 198  | 10   | 30    | 23.1  | 28904  | PASS  |
| 365  | 198  | 1    | 100   | 2.9   | 3594   | PASS  |
| 441  | 443  | 0.01 | 100   | 85.2  | 12575  | PASS  |
| 442  | 198  | 40   | 100   | 59.7  | 74840  | PASS  |
| 443  | 442  | 17   | 23    | 19.7  | 14757  | PASS  |

| Data File  | Sample Number | Analysis Date: |
|------------|---------------|----------------|
| 9M101313.D | CAL BNA@10PPM | 09/17/20 10:10 |
| 9M101314.D | CAL BNA@2PPM  | 09/17/20 10:34 |
| 9M101315.D | CAL BNA@196PP | 09/17/20 11:00 |
| 9M101316.D | CAL BNA@160PP | 09/17/20 11:24 |
| 9M101317.D | CAL BNA@120PP | 09/17/20 11:47 |
| 9M101318.D | CAL BNA@80PPM | 09/17/20 12:12 |
| 9M101319.D | CAL BNA@20PPM | 09/17/20 12:35 |
| 9M101320.D | CAL BNA@0.5PP | 09/17/20 12:58 |
| 9M101321.D | CAL BNA@50PPM | 09/17/20 13:22 |
| 9M101322.D | ICV BNA@50PPM | 09/17/20 13:47 |
| 9M101323.D | SMB88017      | 09/17/20 14:11 |
| 9M101324.D | SMB88018      | 09/17/20 14:34 |
| 9M101326.D | 88018         | 09/17/20 15:48 |

Data Path : G:\GcMsData\2020\GCMS 9\Data\09-17-20\

Data File : 9M101312.D

Acq On : 17 Sep 2020 9:43

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_9\METHODQT\9M\_EVALN.M

Title : @GCMS\_9

Last Update : Tue Sep 15 10:50:50 2020



Spectrum Information: Average of 10.107 to 10.107 min.

|   | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|---|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
| Ī | 51             | 198             | 30              | 60              | 34.3         | 42992      | PASS                |
| Ì | 68             | 69              | 0.00            | 2               | 0.0          | 0          | PASS                |
| i | 69             | 198             | 0.00            | 100             | 38.1         | 47736      | PASS                |
| i | 70             | 69              | 0.00            | 2               | 0.4          | 213        | PASS                |
| Ì | 127            | 198             | 40              | 60              | 50.6         | 63424      | PASS                |
| i | 197            | 198             | 0.00            | 1               | 0.0          | 0          | PASS                |
| Ì | 198            | 198             | 100             | 100             | 100.0        | 125368     | PASS                |
| i | 199            | 198             | 5               | 9               | 6.6          | 8281       | PASS                |
| i | 275            | 198             | 10              | 30              | 23.1         | 28904      | PASS                |
|   | 365            | 198             | 1               | 100             | 2.9          | 3594       | PASS                |
|   | 441            | 443             | 0.01            | 100             | 85.2         | 12575      | PASS                |
|   | 442            | 198             | 40              | 100             | 59.7         | 74840      | PASS                |
| Ì | 443            | 442             | 17              | 23              | 19.7         | 14757      | PASS                |

Tune Name: CAL DFTPP Instrument: GCMS 9

**Data File:** 9M101544.D Analysis Date: 10/06/20 08:03 Method: EPA 8270E

| Tune Sca | ın/Time R | lange: A | verage o | of 10.095 t | o 10.113 | min . |
|----------|-----------|----------|----------|-------------|----------|-------|
|          |           |          |          |             |          |       |

| Tgt         | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/ |
|-------------|------|------|-------|-------|-------|-------|
| <u>Mass</u> | Mass | Lim  |       | Abund | Abund | Fail  |
| 51          | 198  | 30   | 60    | 31.6  | 22462 | PASS  |
| 68          | 69   | 0.00 | 2     | 0.0   | 0     | PASS  |
| 69          | 198  | 0.00 | 100   | 34.9  | 24835 | PASS  |
| 70          | 69   | 0.00 | 2     | 0.4   | 95    | PASS  |
| 127         | 198  | 40   | 60    | 48.4  | 34436 | PASS  |
| 197         | 198  | 0.00 | 1     | 0.0   | 0     | PASS  |
| 198         | 198  | 100  | 100   | 100.0 | 71194 | PASS  |
| 199         | 198  | 5    | 9     | 6.7   | 4781  | PASS  |
| 275         | 198  | 10   | 30    | 26.1  | 18549 | PASS  |
| 365         | 198  | 1    | 100   | 3.1   | 2237  | PASS  |
| 441         | 443  | 0.01 | 100   | 87.5  | 10723 | PASS  |
| 442         | 198  | 40   | 100   | 89.2  | 63514 | PASS  |
| 443         | 442  | 17   | 23    | 19.3  | 12261 | PASS  |

| Data File  | Sample Number   | Analysis Date: |
|------------|-----------------|----------------|
| 9M101545.D | CAL BNA@50PPM   | 10/06/20 08:27 |
| 9M101546.D | OMB88168(MS)    | 10/06/20 11:24 |
| 9M101547.D | OMB88168        | 10/06/20 11:47 |
| 9M101548.D | SMB88132(MS)    | 10/06/20 12:11 |
| 9M101549.D | SMB88132        | 10/06/20 12:34 |
| 9M101550.D | AD19539-011     | 10/06/20 12:59 |
| 9M101551.D | AD19595-009     | 10/06/20 13:22 |
| 9M101552.D | SMB88133        | 10/06/20 13:45 |
| 9M101553.D | SMB88133(MS)    | 10/06/20 14:09 |
| 9M101554.D | SMB88095(MS)    | 10/06/20 14:32 |
| 9M101555.D | SMB88095        | 10/06/20 14:56 |
| 9M101556.D | AD19501-003(MS) | 10/06/20 15:19 |
| 9M101557.D | AD19501-003(MSD | 10/06/20 15:42 |

Data Path : G:\GcMsData\2020\GCMS\_9\Data\10-06-20\

Data File: 9M101544.D

Acq On : 6 Oct 2020 8:03

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autointl.e

Method : G:\GCMSDATA\2020\GCMS\_9\METHODQT\9M\_EVALN.M

Title : @GCMS\_9

Last Update : Tue Sep 15 10:50:50 2020



Spectrum Information: Average of 10.095 to 10.113 min.

|   | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |   |
|---|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|---|
| Ī | 51             | 198             | 30              | 60              | 31.6         | 22462      | PASS                | - |
| İ | 68             | 69              | 0.00            | 2               | 0.0          | 0          | PASS                |   |
| İ | 69             | 198             | 0.00            | 100             | 34.9         | 24835      | PASS                |   |
| İ | 70             | 69              | 0.00            | 2               | 0.4          | 95         | PASS                |   |
| ı | 127            | 198             | 40              | 60              | 48.4         | 34436      | PASS                |   |
| İ | 197            | 198             | 0.00            | 1               | 0.0          | 0          | PASS                |   |
| İ | 198            | 198             | 100             | 100             | 100.0        | 71194      | PASS                |   |
| Ì | 199            | 198             | 5               | 9               | 6.7          | 4781       | PASS                | İ |
| İ | 275            | 198             | 10              | 30              | 26.1         | 18549      | PASS                | 1 |
| Ì | 365            | 198             | 1               | 100             | 3.1          | 2237       | PASS                | ĺ |
| İ | 441            | 443             | 0.01            | 100             | 87.5         | 10723      | PASS                | l |
| İ | 442            | 198             | 40              | 100             | 89.2         | 63514      | PASS                | İ |
| İ | 443            | 442             | 17              | 23              | 19.3         | 12261      | PASS                | 1 |

Tune Name: CAL DFTPP

Data File: 7M109897.D

| Tune N  | Name: CA                  | L DFTPP  | •      |           | Data File: 7 |                           |
|---------|---------------------------|----------|--------|-----------|--------------|---------------------------|
|         | ment: GC                  |          |        |           | Method: E    | 0/06/20 14:33<br>PA 8270E |
| Tune So | an/Time l                 | Range: A | verage | of 10.108 | to 10.114 m  | in                        |
| Tgt     | Rel                       |          | li Lim | Rel       | Raw          | Pass/                     |
| Mass    | Mass                      | Lim      |        | Abund     | Abund        | Fail                      |
| 51      | 198 30 60 32.9 61300 PASS |          |        |           |              |                           |
| 68      | 69                        | 0.00     | 2      | 0.0       | 0            | PASS                      |
| 69      | 198                       | 0.00     | 100    | 42.4      | 78872        | PASS                      |
| 70      | 69                        | 0.00     | 2      | 0.7       | 527          | PASS                      |
| 127     | 198                       | 40       | 60     | 50.4      | 93736        | PASS                      |
| 197     | 198                       | 0.00     | 1      | 0.0       | 0            | PASS                      |
| 198     | 198                       | 100      | 100    | 100.0     | 186048       | PASS                      |
| 199     | 198                       | 5        | 9      | 6.9       | 12813        | PASS                      |
| 275     | 198                       | 10       | 30     | 24.5      | 45612        | PASS                      |
| 365     | 198                       | 1        | 100    | 2.8       | 5185         | PASS                      |
| 441     | 443                       | 0.01     | 100    | 73.4      | 17511        | PASS                      |
| 442     | 198                       | 40       | 100    | 65.7      | 122176       | PASS                      |
| 443     | 442                       | 17       | 23     | 19.5      | 23847        | PASS                      |

| Data File  | Sample Number    | Analysis Date: |
|------------|------------------|----------------|
| 7M109898.D | CAL BNA@50PPM    | 10/06/20 14:57 |
| 7M109899.D | SMB88132         | 10/06/20 15:37 |
| 7M109900.D | OMB88168         | 10/06/20 16:00 |
| 7M109901.D | AD19542-001      | 10/06/20 16:24 |
| 7M109902.D | AD19542-001(MS)  | 10/06/20 16:47 |
| 7M109903.D | AD19542-001(MSD  | 10/06/20 17:10 |
| 7M109904.D | AD19587-007(5X)  | 10/06/20 17:34 |
| 7M109905.D | AD19539-007      | 10/06/20 17:57 |
| 7M109906.D | AD19539-013      | 10/06/20 18:20 |
| 7M109907.D | AD19539-014      | 10/06/20 18:44 |
| 7M109908.D | AD19539-017      | 10/06/20 19:08 |
| 7M109909.D | AD19595-004      | 10/06/20 19:31 |
| 7M109910.D | AD19562-002      | 10/06/20 19:55 |
| 7M109911.D | AD19562-004(MS:  | 10/06/20 20:18 |
| 7M109912.D | AD19562-006(MSD  | 10/06/20 20:42 |
| 7M109913.D | AD19562-008      | 10/06/20 21:05 |
| 7M109914.D | AD19551-001      | 10/06/20 21:29 |
| 7M109915.D | AD19599-001      | 10/06/20 21:52 |
| 7M109916.D | AD19599-002      | 10/06/20 22:16 |
| 7M109917.D | AD19582-001(3X)  | 10/06/20 22:39 |
| 7M109918.D | AD19482-005(3X)  | 10/06/20 23:03 |
| 7M109919.D | AD19517-002(5X)  | 10/06/20 23:26 |
| 7M109920.D | AD19517-004(5X)  | 10/06/20 23:50 |
| 7M109921.D | AD19517-001(5X)  | 10/07/20 00:13 |
| 7M109922.D | AD19517-003(10X) | 10/07/20 00:37 |
| 7M109923.D | AD19551-002(5X)  | 10/07/20 01:01 |

Data Path : G:\GcMsData\2020\GCMS\_7\Data\10-0620\

Data File : 7M109897.D

Acq On : 6 Oct 2020 14:33

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_7\METHODQT\7M\_EVALN.M

Title : @GCMS\_7

Last Update : Thu Sep 10 08:21:04 2020



Spectrum Information: Average of 10.108 to 10.114 min.

|   | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|---|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
| • | 51             | <br>  198       | l 30            | <br>I 60        | 32.9         | 61300      | PASS                |
|   | 68             | 69              | 0.00            | 2               | 0.0          | 0          | PASS                |
|   | 69             | 198             | 0.00            | 100             | 42.4         | 78872      | PASS                |
|   | 70             | 69              | 0.00            | 2               | 0.7          | 527        | PASS                |
|   | 127            | 198             | 40              | 60              | 50.4         | 93736      | PASS                |
|   | 197            | 198             | 0.00            | 1               | 0.0          | į o        | PASS                |
|   | 198            | 198             | 100             | 100             | 100.0        | 186048     | PASS                |
|   | 199            | 198             | 5               | 9               | 6.9          | 12813      | PASS                |
|   | 275            | 198             | 10              | 30              | 24.5         | 45612      | PASS                |
|   | 365            | 198             | 1               | 100             | 2.8          | 5185       | PASS                |
|   | 441            | 443             | 0.01            | 100             | 73.4         | 17511      | PASS                |
|   | 442            | 198             | 40              | 100             | 65.7         | 122176     | PASS                |
|   | 443            | 442             | 17              | 23              | 19.5         | 23847      | PASS                |

Tune Name: CAL DFTPP

Data File: 7M109934.D

Instrument: GCMS 7 Analysis Date: 10/07/20 15:17
Method: EPA 8270E
Tune Scan/Time Range: Average of 10.108 to 10.108 min

| Tgt  | Rel  | Lo H       | i Lim | Rel   | Raw    | Pass/       |
|------|------|------------|-------|-------|--------|-------------|
| Mass | Mass | <u>Lim</u> |       | Abund | Abund  | <u>Fail</u> |
| 51   | 198  | 30         | 60    | 33.6  | 79424  | PASS        |
| 68   | 69   | 0.00       | 2     | 0.0   | 0      | PASS        |
| 69   | 198  | 0.00       | 100   | 42.0  | 99312  | PASS        |
| 70   | 69   | 0.00       | 2     | 0.6   | 571    | PASS        |
| 127  | 198  | 40         | 60    | 49.8  | 117576 | PASS        |
| 197  | 198  | 0.00       | 1     | 0.0   | 0      | PASS        |
| 198  | 198  | 100        | 100   | 100.0 | 236224 | PASS        |
| 199  | 198  | 5          | 9     | 6.8   | 16055  | PASS        |
| 275  | 198  | 10         | 30    | 23.5  | 55520  | PASS        |
| 365  | 198  | 1          | 100   | 2.5   | 5902   | PASS        |
| 441  | 443  | 0.01       | 100   | 73.9  | 21320  | PASS        |
| 442  | 198  | 40         | 100   | 61.2  | 144512 | PASS        |
| 443  | 442  | 17         | 23    | 20.0  | 28840  | PASS        |

| Data File  | Sample Number    | Analysis Date: |
|------------|------------------|----------------|
| 7M109935.D | CAL BNA@50PPM    | 10/07/20 15:38 |
| 7M109936.D | AD19539-014(200X | 10/07/20 16:06 |
| 7M109937.D | AD19539-017(400X | 10/07/20 16:29 |
| 7M109938.D | AD19589-002(10X) | 10/07/20 16:53 |
| 7M109939.D | AD19589-003(10X) | 10/07/20 17:16 |
| 7M109940.D | AD19563-024(MS:  | 10/07/20 17:40 |
| 7M109941.D | AD19563-026(MSD  | 10/07/20 18:03 |
| 7M109942.D | AD19563-028      | 10/07/20 18:27 |
| 7M109943.D | AD19563-004      | 10/07/20 18:50 |
| 7M109944.D | AD19563-006      | 10/07/20 19:14 |
| 7M109945.D | AD19563-008      | 10/07/20 19:38 |
| 7M109946.D | AD19563-010      | 10/07/20 20:01 |
| 7M109947.D | AD19563-012      | 10/07/20 20:24 |
| 7M109948.D | AD19563-014      | 10/07/20 20:48 |
| 7M109949.D | AD19563-016      | 10/07/20 21:11 |
| 7M109950.D | AD19563-018      | 10/07/20 21:34 |
| 7M109951.D | AD19563-020      | 10/07/20 21:58 |
| 7M109952.D | AD19563-022      | 10/07/20 22:22 |
| 7M109953.D | AD19563-030      | 10/07/20 22:45 |
| 7M109954.D | AD19563-032      | 10/07/20 23:08 |
| 7M109955.D | AD19563-034      | 10/07/20 23:32 |
| 7M109956.D | AD19563-036      | 10/07/20 23:55 |
| 7M109957.D | AD19563-038      | 10/08/20 00:19 |
| 7M109958.D | AD19589-004      | 10/08/20 00:42 |
| 7M109959.D | AD19589-005      | 10/08/20 01:06 |
| 7M109960.D | AD19629-001(3X)  | 10/08/20 01:29 |
| 7M109961.D | AD19629-002(3X)  | 10/08/20 01:53 |
| 7M109962.D | AD19589-006(5X)  | 10/08/20 02:16 |
| 7M109963.D | AD19496-001(5X)  | 10/08/20 02:39 |
| 7M109964.D | AD19636-001(5X)  | 10/08/20 03:03 |

Data Path : G:\GcMsData\2020\GCMS 7\Data\10-0720\

Data File : 7M109934.D

Acq On : 7 Oct 2020 15:17

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_7\METHODQT\7M\_EVALN.M

Title : @GCMS\_7

Last Update : Thu Sep 10 08:21:04 2020



Spectrum Information: Average of 10.108 to 10.108 min.

|     | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>  Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>  Pass/Fail |  |
|-----|----------------|-----------------|-----------------|-------------------|--------------|------------|-----------------------|--|
| Ī   | 51             | 198             | 30              | 60                | 33.6         | 79424      | PASS                  |  |
|     | 68             | 69              | 0.00            | 2                 | 0.0          | 0          | PASS                  |  |
| Ì   | 69             | 198             | 0.00            | 100               | 42.0         | 99312      | PASS                  |  |
| ı   | 70             | 69              | 0.00            | 2                 | 0.6          | 571        | PASS                  |  |
| - 1 | 127            | 198             | 40              | 60                | 49.8         | 117576     | PASS                  |  |
|     | 197            | 198             | 0.00            | 1                 | 0.0          | 0          | PASS                  |  |
|     | 198            | 198             | 100             | 100               | 100.0        | 236224     | PASS                  |  |
|     | 199            | 198             | 5               | 9                 | 6.8          | 16055      | PASS                  |  |
| -   | 275            | 198             | 10              | 30                | 23.5         | 55520      | PASS                  |  |
| i   | 365            | 198             | 1               | 100               | 2.5          | 5902       | PASS                  |  |
| İ   | 441            | 443             | 0.01            | 100               | 73.9         | 21320      | PASS                  |  |
| ı   | 442            | 198             | 40              | 100               | 61.2         | 144512     | PASS                  |  |
|     | 443            | 442             | 17              | 23                | 20.0         | 28840      | PASS                  |  |

Form 6 Initial Calibration

| Methylnaphthalenes (T                                   | 1-Methylnaphthalene                                     | 2-Methylnaphthalene                                     | 4-Chloro-3-methylphe                                    | Caprolactam                                             | Hexachlorobutadiene                                     | 4-Chloroaniline                                         | Naphthalene                               | 1.2.4-Trichlorobenzen                                   | 2,4-Dichlorophenol                                      | bis(2-Chloroethoxy)me | Benzoic Acid                              | 2.4-Dimethylpheno                                       | 2-Nitrophenol                                           | Isophorone                                              | Nitrobenzene                                            | Nitrobenzene-d5                                         | 3&4-Methylphenol                                        | N-Nitroso-di-n-propyla                                  | Hexachloroethane                                        | Acetophenone                              | 2-Methylphenol              | bis(2-chloroisopropyl)e                                 | Benzyl alcohol                            | 1.2-Dichlorobenzene                                     | 1.4-Dichlorobenzene                                     | 1.3-Dichlorobenzene | N-Decane                                  | 2-Chloropheno                             | Phenol                                                  | Phenol-d5                                               | bis(2-Chloroethyl)ether                                        | Pentachloroethane                                       | Aniline                                                 | Benzaldehyde                                            | 2-Fluorophenol      | N-Nitrosodimethylamin                     | Pyridine             | 7,4-Dioxane                               | Compound :                                                | 31             | D 2              | 24             |                | ļ              | <b>2</b> 6         | Method: EPA 8270E   |
|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------|-------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|-----------------------------|---------------------------------------------------------|-------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------|-------------------------------------------|----------------------|-------------------------------------------|-----------------------------------------------------------|----------------|------------------|----------------|----------------|----------------|--------------------|---------------------|
| 1                                                       | thalene 1                                               | thalene 1                                               | thylphe 1                                               |                                                         | tadiene 1                                               | Ф<br>                                                   | _                                         | benzen 1                                                | henol 1                                                 | thoxy)me 1            | _                                         | henol 1                                                 |                                                         |                                                         |                                                         | ġ.<br>1                                                 | enol 1                                                  | -propyla 1                                              | nane 1                                                  |                                           | <u>으</u><br>                | opropyl)e 1                                             | <u>-</u>                                  | enzene 1                                                | enzene 1                                                | enzene 1            |                                           | 으<br> <br>                                | _1                                                      |                                                         | hvl)ether                                                      | hane                                                    |                                                         |                                                         | 2 (1)               | ethylamin 1                               | _ \$ .               | _1                                        | Col                                                       | 9 7N           | 7 7N             |                | 3 7N           | ا ۔            | Level#:            | A 8270E             |
| ,                                                       |                                                         |                                                         | -                                                       | ¥<br>A                                                  | ð.                                                      | ₽<br>A                                                  |                                           |                                                         |                                                         | 0 Avg 0.              | _                                         |                                                         |                                                         |                                                         | Ą                                                       | _                                                       |                                                         |                                                         | 0 Avg 0.                                                |                                           | 0 Avg 1.                    |                                                         | - 1                                       |                                                         |                                                         | Ą                   | A                                         | A                                         | A<br>O                                                  | A<br>A                                                  | Ava                                                            |                                                         | ļ                                                       | A :                                                     | D 2                 | A :                                       |                      |                                           | Mr Fit                                                    | 7M109439.D     | 7M109435.D       | 7M109437.D     | 7M109433.D     | M109440.D      | Data F             |                     |
|                                                         | 0.6665 0.7154 0.7299 0.6366 0.6383 0.6405 0.6302 0.6399 | 0.7067 0.7453 0.7803 0.6834 0.6750 0.6755 0.6696 0.6806 | 0.3084 0.3338 0.3341 0.2883 0.2971 0.2991 0.2952 0.3049 | 0.1184 0.1106 0.1229 0.1121 0.1169 0.1159 0.1185 0.1316 | 0.1875 0.1926 0.1999 0.1756 0.1851 0.1861 0.1848 0.1911 | 0.4150 0.4514 0.4611 0.4066 0.3960 0.3873 0.3786 0.3848 | 1.0361 1.1179 1.                          | 0.3297 0.3827 0.3653 0.3192 0.3200 0.3188 0.3163 0.3218 | 0.3043 0.3012 0.3405 0.2945 0.2980 0.2977 0.2926 0.3023 | 0.4111                | 0.2265 0.                                 | 0.3144 0.3281 0.3550 0.3012 0.3022 0.3036 0.2996 0.3089 | 0.1976 0.1932 0.2095 0.1844 0.1956 0.1936 0.1908 0.1975 | 0.6350 0.6864 0.6859 0.6102 0.6011 0.5961 0.5921 0.6090 | 0.3459 0.3723 0.3763 0.3326 0.3353 0.3278 0.3205 0.3297 | 0.1576 0.1658 0.1718 0.1508 0.1590 0.1535 0.1531 0.1594 | 1.1925 1.3190 1.3216 1.1468 1.1128 1.1207 1.0690 1.0898 | 0.8428 0.9300 0.9489 0.8133 0.7616 0.7632 0.7421 0.7603 | 0.5702 0.6156 0.6237 0.5454 0.5555 0.5509 0.5449 0.5631 | 1.7996 2.0492 2.                          | 1.1784 1.2528 1.            | 1.1229 1.2085 1.2299 1.0841 1.0806 1.0423 1.0131 1.0438 | 0.8438 0.9017 0.                          | 1.4100 1.5061 1.5397 1.3662 1.3659 1.3678 1.3445 1.3765 | 1.4926 1.5648 1.6299 1.4220 1.4369 1.4550 1.4263 1.4465 |                     | 1.8656 2.2904 2.                          | 2.6981 2.9972 3.                          | 3.3862 3.9079 3.9643 3.3198 3.3385 3.3020 3.2681 3.1926 | 2.7898 2.9699 3.1464 2.7032 2.7853 2.7657 2.7658 2.7168 | 2 3867 2 7789 2 7857 2 3989 2 3968 2 3181 2 3009 2 2391 2 9791 | 0.8172 0.9204 0.9396 0.8129 0.8117 0.7990 0.8039 0.7847 | 3 6292 4 1426 4 0564 3 5853 3 6364 3 6033 3 6378 3 5147 | 2.2528 2.5614 2.5996 2.2023 2.2383 2.2249 2.1906 2.1155 | 2 3080 2 4029 2     | 1 4514 1 4804 1                           |                      | 0.9568 1.1816 1.                          | RF1 RF2 R                                                 | CAL BNA@0.5PPM | CAL BNA@160PPM   | CAL BNA@80PPM  | CAL BNA@10PPM  | CALB           | r File: Cal to     |                     |
|                                                         | 7299 0.6366                                             | 7803 0.6834                                             | 3341 0.2883                                             | 1229 0.1121                                             | 1999 0.1756                                             | 4611 0.4066                                             | 1376 0.9819                               | 3653 0.3192                                             | 3405 0.2945                                             | 4283 0.3771           | 1668 0.1856                               | 3550 0.3012                                             | 2095 0.1844                                             | 6859 0.6102                                             | 3763 0.3326                                             | 1718 0.1508                                             | 3216 1.1468                                             | 9489 0.8133                                             | 6237 0.5454                                             | 0634 1.7758                               | 2572 1.1146                 | 2299 1.0841                                             | 8937 0.7937                               | 5397 1.3662                                             | 6299 1.4220                                             | 3604 2.9118         | 2050 1.8633                               | 1158 2.6442                               | 9643 3.3198                                             | 1464 2.7032                                             | 7857 2 3989                                                    | 9396 0.8129                                             | 0564 3 5853                                             | 5996 2 2023                                             | 2 5400 2 1946       | 5365 1 3723                               | 2 4197 2 1866        | 1240 0.9562                               | RF3 RF4                                                   | ).5PPM         | 160PPM           | 30PPM          | 10PPM          | 50PPM          | Cal Identifier:    |                     |
| 0 6964 0 7304 0 7664 0 6600 0 6666 0 6673 0 6403 0 6604 | 0.6383 0.640                                            | 0.6750 0.675                                            | 0.2971 0.299                                            | 0.1169 0.115                                            | 0.1851 0.186                                            | 0.3960 0.387                                            | 0.9819 0.991                              | 0.3200 0.318                                            | 0.2980 0.297                                            | 0.3741 0.361          | 0.2500 0.256                              | 0.3022 0.303                                            | 0.1956 0.193                                            | 0.6011 0.596                                            | 0.3353 0.327                                            | 0.1590 0.153                                            | 1.1128 1.120                                            | 0.7616 0.763                                            | 0.5555 0.550                                            | 1.6607 1.676                              | 1.2572 1.1146 1.1227 1.1367 | 1.0806 1.042                                            | 0.8050 0.818                              | 1.3659 1.367                                            | 1.4369 1.455                                            | 2.9649 2.874        | 1.8740 1.777                              | 2.6497 2.653                              | 3.3385 3.302                                            | 2.7853 2.765                                            | 2 3968 2 318                                                   | 0.8117 0.799                                            | 3 6364 3 603                                            | 2 2383 2 224                                            | 2315 2347           | 1 4411 1 472                              | 2 2357 2 243         | 0.9473 0.954                              | RF5 RF6                                                   | 09/17/20 12:57 | 09/17/20 11:22   | 09/17/20 12:09 | 09/17/20 10:32 | 09/17/20 13:20 | Analysis           |                     |
|                                                         | 5 0.6302 0.63                                           | 5 0.6696 0.68                                           | 1 0.2952 0.30                                           | 9 0.1185 0.13                                           | 1 0.1848 0.19                                           | 3 0.3786 0.38                                           | 1.1376 0.9819 0.9819 0.9910 0.9631 0.9839 | 8 0.3163 0.32                                           | 7 0.2926 0.30                                           | 1 0.3547 0.36         | 0.1668 0.1856 0.2500 0.2566 0.2660 0.2815 | 6 0.2996 0.30                                           | 6 0.1908 0.19                                           | 1 0.5921 0.60                                           | 8 0.3205 0.32                                           | 5 0.1531 0.15                                           | 7 1.0690 1.08                                           | 2 0.7421 0.76                                           | 9 0.5449 0.56                                           | 2.0634 1.7758 1.6607 1.6769 1.6185 1.6464 | 7 1.1139 1.1486             | 3 1.0131 1.04                                           | 0.8937 0.7937 0.8050 0.8188 0.8038 0.8352 | 8 1.3445 1.37                                           | 0 1.4263 1.44                                           | 6 2.8642 2.77       | 2.2050 1.8633 1.8740 1.7770 1.7474 1.7152 | 3.1158 2.6442 2.6497 2.6532 2.6524 2.5832 | 0 3.2681 3.19                                           | 7 2.7658 2.71                                           | 1 2 3009 2 23                                                  | 0 0 8039 0 78                                           | 3 3 6378 3 51                                           | 9 2 1906 2 11                                           | 2315 2377 2378 2388 | 1 5365 1 3723 1 4411 1 4720 1 4796 1 4964 | 2 2432 2 3058 2 2885 | 1.1240 0.9562 0.9473 0.9547 0.9719 0.9869 | RF7 RF8                                                   | 57             | 22               | 09             | 32             | 20             | Analvsis Date/Time |                     |
| 91                                                      | 99                                                      | 06                                                      | 49                                                      | 16                                                      |                                                         |                                                         | 39 1.1686                                 | 18                                                      | 23 0.3192                                               | 41                    | 15                                        | 89 0.3684                                               | 75                                                      | 90                                                      | 97                                                      | 94                                                      | 98 1.4274                                               | 03 1.0232                                               | 31 —                                                    | 64                                        | 86 1.2225                   | 38                                                      | 52                                        | 65                                                      | 65                                                      | 47                  | 52                                        | 32                                        | 26                                                      | 68                                                      | 91 2 9791                                                      |                                                         | 47 4 2846                                               | 55                                                      | л (                 | 5 6                                       |                      |                                           | RF9                                                       |                | œ                | 6              | 4              | 2              | Level#             | Initial Calibration |
| 0.6827.46                                               |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                           |                                                         |                                                         |                       |                                           |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         | Ì                                                       |                                                         |                                           | _                           |                                                         | ĺ                                         |                                                         |                                                         | •                   |                                           | - 1                                       |                                                         |                                                         |                                                                | _                                                       | 1                                                       | -                                                       |                     |                                           |                      | 1.04 2.74                                 | AvgRf RT (                                                |                | 7M109434         | 7M109436.D     | 7M109438       | 7M109          |                    | ration              |
| 1.00<br>1.                                              |                                                         |                                                         |                                                         |                                                         |                                                         | •                                                       |                                           | ا<br>: <b>د</b>                                         |                                                         |                       | •                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         | _                                         |                             |                                                         | - :                                       | _                                                       | _                                                       | _                   | _                                         | _;<br>                                    |                                                         | <u>.</u>                                                | <u>.</u>                                                       |                                                         | ٠.                                                      |                                                         | ~                   |                                           |                      |                                           | Corr1 Corr2                                               |                |                  |                |                | į              | Data File:         |                     |
| 1.00 5.8                                                |                                                         | .00 5.7                                                 | i                                                       | w                                                       |                                                         |                                                         | 1.00 7.6                                  | <br>                                                    |                                                         | •<br>-                |                                           | 00 7.9                                                  |                                                         |                                                         |                                                         |                                                         |                                                         | اس                                                      |                                                         | w                                         |                             | w                                                       | 1                                         |                                                         |                                                         | .00 7.1             | 8                                         | 00 7                                      |                                                         |                                                         |                                                                |                                                         | 1                                                       |                                                         | D                   |                                           | 77                   | 8<br>-                                    | г2<br>%R                                                  |                | CAL BNA          | CAL BNA        | AL BNA         | CAL BNA@2PPM   | င္က                |                     |
| D                                                       |                                                         |                                                         | - {                                                     |                                                         |                                                         |                                                         | 5 0.70                                    | !                                                       |                                                         | в 0.30                |                                           |                                                         |                                                         |                                                         | 0.20                                                    | 4                                                       |                                                         |                                                         |                                                         |                                           |                             | 2 0.01                                                  | 9                                         | 2                                                       | _                                                       |                     | 0.05                                      | 0.80                                      | 7 0.80                                                  |                                                         |                                                                | 0.05                                                    | - [                                                     | <br>001                                                 | _ (                 | <i>.</i> .                                |                      | _                                         | sd<br>                                                    |                | BNA@196PPM       | BNA@120PPM     | CAL BNA@20PPM  | ©2PPM          | Cal Identifier:    |                     |
| 1000 4 00                                               | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00            | 50.00                                     | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                              | 25.00 1.00                                              | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                | 50.00 2.00                  | 50.00 2.00                                              | 50.00 2.00                                | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00          | 50.00 2.00                                | 50.00 2.00                                | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                                     | 50 00 2 00                                              | 50 00 2 00                                              | 50 00 2 00                                              | 50.00 2.00          | 50.00 2.00                                | 50.00 2.00           | 50.00 2.00                                | Lvi1 L <u>v</u> i2                                        |                | M 09/17/20 10:55 |                | 09/17/20 12:33 | 09/1           |                    |                     |
| 20.00 40.00 160.0                                       | 10.00 20.00 8                                           | 20.00                                                   | 20.00                                                   | 20.00                                                   | 10.00 20.00 8                                           | 10.00 20.00 80.00                                       | 10.00 20.00 80.00                         | 10.00 20.00 80.00                                       | 20.00                                                   | 20.00                 | 10.00 20.00 80.00                         | 10.00 20.00 80.00                                       | 10.00 20.00 80.00                                       | 10.00 20.00 80.00                                       | 20.00                                                   | 0.00                                                    | 10.00 20.00 8                                           | 20.00                                                   | 20.00                                                   | 20.00                                     | 10.00 20.00 8               | 20.00                                                   | 10.00 20.00 8                             | 20.00                                                   | 20.00                                                   | 20.00               | 20.00                                     | 20.00                                     | 20.00                                                   | 20.00                                                   | 10 00 20 00 8                                                  | 10 00 20 00 80 00                                       | 10.00 20.00 80.00                                       | 10 00 20 00 80 00                                       | 10.00 20.00 80.00   |                                           | 10.00 20.00 8        | 10.00 20.00 80.00                         | Calibration Level Concentrations Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 |                | 10:55            | 11:46          | 12:33          | 10:08          | Analvsis Date/Time | Inst                |
| 600 2400                                                | 80.00 120.0                                             |                                                         |                                                         |                                                         |                                                         |                                                         |                                           |                                                         |                                                         |                       |                                           |                                                         |                                                         |                                                         | 80.00 120.0                                             | 40.00 60.00                                             |                                                         |                                                         |                                                         |                                           |                             |                                                         |                                           |                                                         |                                                         |                     |                                           |                                           |                                                         |                                                         |                                                                |                                                         |                                                         |                                                         |                     |                                           |                      | 0.00 120.0                                | vel Conce                                                 |                |                  |                |                | [              |                    | Instrument: GCMS_7  |
| 2200                                                    | 0.0 160.0                                               |                                                         | - 1                                                     |                                                         |                                                         |                                                         |                                           |                                                         |                                                         |                       |                                           |                                                         |                                                         |                                                         | 0.0 160.0                                               | 00 80.00                                                |                                                         |                                                         |                                                         |                                           |                             |                                                         | 1                                         |                                                         |                                                         |                     |                                           | 1                                         |                                                         |                                                         | 0.0 160.0                                                      |                                                         |                                                         |                                                         |                     |                                           |                      | 0.0 160.0                                 | entration                                                 |                |                  |                |                |                |                    | GCMS_7              |
| 200                                                     | .0 196.0                                                | .0 196.0                                                | 0 196.0                                                 | 0 196.0                                                 | 196.0                                                   | 196.0                                                   | 196.0                                     | 196.0                                                   | 196.0                                                   | 0 196.0               | 196.0                                     | 196.0                                                   | 0 196.0                                                 | 0 196.0                                                 | 0 196.0                                                 | 98.00                                                   | 196.0                                                   | 196.0                                                   | 0 196.0                                                 | 0 196.0                                   | 196.0                       | 0 196.0                                                 | 0 196.0                                   | 0 196.0                                                 | 0 196.0                                                 | 0 196.0             | 0 196.0                                   | 0 196.0                                   | 0 196 0                                                 | 196.0                                                   | 196.0                                                          | 96.0                                                    | 100.0                                                   |                                                         | 100.0               |                                           | 96                   | 196.0                                     | LvI8                                                      |                |                  |                |                |                |                    | 7                   |
|                                                         |                                                         |                                                         | ļ                                                       |                                                         |                                                         | 0.50                                                    | 0.50                                      |                                                         | 0.50                                                    |                       |                                           | 0.50                                                    |                                                         |                                                         |                                                         |                                                         | 0.50                                                    | 0.50                                                    |                                                         |                                           | 0.50                        |                                                         | :                                         |                                                         |                                                         |                     |                                           | !                                         |                                                         |                                                         | 0.50                                                           | 0.00                                                    | 20                                                      |                                                         |                     |                                           | 0                    | 0.50                                      | Lvi9                                                      |                |                  |                |                |                |                    |                     |

Flags

Note:

Avg Rsd: 6.036

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

c - failed the minimum correlation coeff criteria(if applicable) Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

0266

Method: EPA 8270E

## Form 6 Initial Calibration

Instrument: GCMS\_7

| 2 E                    |                          |                 | Cal Identifier:                          | Analysis Dat                                                                                                       | le/Time                      | # eve         |                                     | D.         | Cal Identi | ֝֟֞֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֟֟<br>֓ | Analy          | Analvsis Date/Time               |               |          |       |
|------------------------|--------------------------|-----------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------|---------------|-------------------------------------|------------|------------|---------------------------|----------------|----------------------------------|---------------|----------|-------|
|                        | 7M109440 D               | CAL B           | i<br>i                                   | 09/17/20 13:20                                                                                                     |                              | Į.            | 7M109432 D                          | CA         | BNA@2PPM   | <b>S</b>   <u> </u>       | 09/17/20       | 10:08                            |               |          |       |
| ω                      | 7M109433.D               |                 |                                          | 09/17/20 10:32                                                                                                     |                              |               | 7M109438.D                          | CAL        | BNA@20PPM  | M                         | 09/17/20 12:33 | 12:33                            |               |          |       |
|                        | 7M109437.D               |                 |                                          | 09/17/20 12:09                                                                                                     |                              | 6             | 7M109436.D                          | CAL        | BNA@120PPM | PM                        | 09/17/20 11:46 | 11:46                            |               |          |       |
| 9 7                    | 7M109435.D<br>7M109439.D | CAL BNA@160PPM  |                                          | 09/17/20 11:22<br>09/17/20 12:57                                                                                   |                              | œ             | 7M109434.D                          | Ç <u>A</u> | BNA@196PPM | Š                         | 09/17/20 10:55 | 10:55                            |               |          |       |
| Compound               | Col Mr Fit:              | RF1 RF2         | RF3 RF4                                  | RES RES R                                                                                                          | RF7 RF8 R                    | RF9 AvaRf     | f RT Comi                           | ri Corro   | %Rsd       |                           | 7 - 1 V        | Calibration Level Concentrations | oncentrations | 7 - VIS  | - VIQ |
| Hexachlorocyclopenta   | _ i                      | 0.3500 0.2853 ( | 0.3598 0.3195 (                          | 3 0.3672 (                                                                                                         |                              | !             | 17.58                               |            |            | 0.05 50.00                | 2.00           | 10.00 20.00 80.00                | 120.0 160.0   | _ :      | - 1   |
| 2,4,6-Trichlorophenol  | 1 0                      | 0.4057 0.4322 ( | 0.4593 0.3890 0                          | 0.4057 0.4322 0.4593 0.3890 0.4150 0.4043 0.4080 0.4190                                                            | 4080 0.4190                  |               | •                                   | 99 1.00    | _          |                           | 2.00           | 20.00                            | 120.0         | _        |       |
| 2,4,5-Trichlorophenol  | 1 0 Avg                  | 0.4324 0.4206 ( | 0.4802 0.4166 0                          | 0.4324 0.4206 0.4802 0.4166 0.4353 0.4324 0.4227 0.4329                                                            | 4227 0.4329                  | . 0.4         | 0.4347.71 1.00                      | 0 1.00     | 4.6 0.     |                           | 2.00           | 10.00 20.00 80.00                | 120.0 160.0   |          |       |
| 2-Fluorobiphenyl       | 1 0 Avg                  | 1.3133 1.3642   | 1.4686 1.2956 1                          | 1.3133 1.3642 1.4686 1.2956 1.3154 1.3008 1.2946 1.3205                                                            | 2946 1.3205                  | ·             | 1.337.75 1.00                       | 0 1.00     | 4.4        | 25.00                     | 1.00           | 5.00 10.00 40.00                 | 60.00 80.00   |          |       |
| 2-Chloronaphthalene    | 1 0 Avg                  | 1.1889 1.3080   | 1.3442 1.1837 1                          | 1.1889 1.3080 1.3442 1.1837 1.1714 1.1470 1.1211 1.1396                                                            | 1211 1 1396                  |               | 1.207.86 1.00                       | 0 1.00     | 6.8        | .80 50.00                 | 2.00           | 10.00 20.00 80.00                | 120.0 160.0   | 0 196.0  |       |
| 1,4-Dimethylnaphthale  | 9 1 0 Avg                | 0.8775 0.9638 - | 1.0096 0.8750 0                          | 0.9638 1.0096 0.8750 0.8553 0.8375 0.8057 0.8068                                                                   | 8057 0.8068                  | . 0.2         | 0.879 8.15 0.999                    | 99 1.00    | 8.3        |                           | 2.00           | 10.00 20.00 80.00                | 120.0         | 196      |       |
| Dimethylnaphthalenes   | 10                       | 0.8775 0.9638   | 1.0096 0.8750 0                          | 0.8775 0.9638 1.0096 0.8750 0.8553 0.8375 0.8057 0.8068                                                            | 8057 0.8068                  | 0.1           | 0.8798.15 0.999                     | 99 1.00    | &<br>3     | 50.00                     | 2.00           | 10.00 20.00 80.00                | 120.0 160.0   |          |       |
| Diphenyl Ether         | 1 0                      | 0.8549 0.8910 ( | 0.9541 0.8263 (                          | 0.8549 0.8910 0.9541 0.8263 0.8427 0.8372 0.8270 0.8375                                                            | 8270 0.8375                  | . 0           |                                     | 0 1.00     | 5          | 50.00                     | 2.00           | 10.00 20.00 80.00                |               |          |       |
| 2-Nitroaniline         | 1 0 Avg                  | 0.3625 0.3886 ( | 0.4111 0.3597 (                          | 0.3886 0.4111 0.3597 0.3567 0.3525 0.3451 0.3556                                                                   | 3451 0.3556                  | 0.3           | 0.3677.93 1.00                      | 0 1.00     | 6.0 0.     | .01 50.00                 | 2.00           | 10.00 20.00 80.00                | 120.0 160.0   |          |       |
| Coumarin               | 1 0 Avg                  | 0.4547 0.4917 ( | 0.5066 0.4441 0                          | 0.4917 0.5066 0.4441 0.4423 0.4394 0.4237 0.4308                                                                   | 4237 0.4308                  | [1<br>[02     | 0.454 8.12 0.999                    | 99 1.00    | 6.5        | 50.00                     | 00 2 00        | 10.00 20.00 80.00                | 120.0 160.0   |          |       |
| Acenaphthylene         | 1 0 Avg                  | 1.7628 1.8226   | 1.9772 1.7292 1                          | 1.8226 1.9772 1.7292 1.7232 1.6996 1.6806 1.6980                                                                   | 6806 1.6980                  | ;<br>         | -                                   | 0 1.00     | 5.6 0.     |                           |                | 10.00 20.00 80.00                | 120.0         |          |       |
| Dimethylphthalate      | 1 0 Avg                  | 1.3719 1.4662   | 1.5236 1.3473 1                          | 1.3719 1.4662 1.5236 1.3473 1.3500 1.3371 1.3096 1.3338                                                            | 3096 1.3338                  | ;             | •                                   |            |            |                           |                | 10.00 20.00 80.00                | 120.0         |          |       |
| 2.5-Dinitrotoluene     | 1 0 AVG                  | 1 1695 1 2367   | ).3582                                   | U.3158 U.3255 U.3582 U.3128 U.3106 U.3022 U.2897 U.2886<br>1 1695 1 2367 1 3088 1 1475 1 1371 1 1347 1 1123 1 1227 | 289/ 0.2686<br>1123 1 1227   | · ·           | 0.3138.14 0.998<br>1.178.37 1.00    | 1.00       |            | 0.90 50.00                | 8 8            | 10.00 20.00 80.00                | 120.0 160.0   | 0 196.0  |       |
| 3-Nitroaniline         | 1 0 Avg                  | 0.3559 0.3438 ( | 0.3870 0.3391 0                          | 0.3438 0.3870 0.3391 0.3478 0.3428 0.3378 0.3413                                                                   | 3378 0.3413                  | 0.            | _                                   |            |            |                           | 2.00           | 10.00 20.00 80.00                | 120.0         |          |       |
| 2,4-Dinitrophenol      | 1 0 Avg                  |                 | 0.1592 0.1413 (                          | 0.1592 0.1413 0.1932 0.2020 0.2039 0.2090                                                                          | 2039 0.2090                  | 0             | ì                                   | 0          | - 1        | စ                         |                | 20.00                            | 120.0         |          |       |
| Dibenzofuran           | 1 0 Avg                  | 1.7018 1.7927   | 1.9112 1.6572 1                          | .7018 1.7927 1.9112 1.6572 1.6612 1.6448 1.6136 1.6376                                                             |                              | 1.8876 1      | 1.72 8.53 1.00                      | 0 1.00     |            | 0.80 50.00                | 2.00           | 10.00 20.00 80.00                | 120.0 160.0   | .0 196.0 | 0.50  |
| 2,4-Dinitrotoluene     | 1 0 Avg                  | 0.4406 0.3938 ( | 0.4422 0.4151 0                          | 0.4406 0.3938 0.4422 0.4151 0.4384 0.4383 0.4412 0.4519                                                            | 4412 0.4519                  |               | _                                   |            |            |                           | 2.00           | 20.00                            | 120.0         | 0 196.0  |       |
| 4-Nitrophenol          |                          | 0.2411 0.2624 ( | 0.2861 0.2285 (                          | 0.2411 0.2624 0.2861 0.2285 0.2384 0.2412 0.2380 0.2443                                                            | 2380 0.2443                  |               |                                     | 0          |            |                           | 2.00           | 10.00 20.00 80.00                | 120.0         | .0 196.0 |       |
| 2,3,4,6-Tetrachiorophe |                          | 0.3/48 0.3369 0 | 1 5471 1 3447 1                          | <u>0.3748                                    </u>                                                                  | 3016 1 3330                  | 10            |                                     | - 1 -      | !          | İ                         | 200            |                                  | 120.0         | 0.00     | -     |
| A_Chlorophenyl_phenyl  |                          | 0.6030.0.7305.0 | 1.347   1.3447                           | 1.3/13 1.4/79 1.34/1 1.344/ 1.3439 1.3339 1.3010 1.3220<br>1.6030 0 7305 0 7408 0 6547 0 6810 0 6700 0 6704 0 6037 | 6724 0 6937                  | · ·           | 0.694.8.84 1.00                     | 3 5        |            | 0.90 50.00                | 9 6            | 10.00 20.00 80.00                | 120.0 160.0   |          |       |
| Diethylphthalate       | <u> </u>                 | 1.3819 1.3911   | 1.5075 1.3301 1                          | .3819 1.3911 1.5075 1.3301 1.3562 1.3481 1.3274 1.3544                                                             | 3274 1.3544                  | ·<br>         | -                                   |            | 4.2        |                           | 2.00           | 20.00                            | 120.0         | .0 196.0 |       |
| 4-Nitroaniline         | 1 0 Avg                  | 0.3702 0.3647 ( | 0.4086 0.3604 0                          | 0.3702 0.3647 0.4086 0.3604 0.3623 0.3657 0.3613 0.3731                                                            | 3613 0.3731                  | 0             | -                                   |            |            |                           | 2.00           | 10.00 20.00 80.00                | 120.0         |          |       |
| Atrazine               | 1 0 Avg                  | 0.4534 0.4478 ( | 0.4829 0.4321 0                          | 0.4534 0.4478 0.4829 0.4321 0.4555 0.4533 0.4522 0.4631                                                            | 4522 0.4631                  | 0.            | 0.455 9.50 1.00                     | 0 1.00     | į          | Ì                         | 2.00           | 10.00 20.00 80.00                | 120.0 160.0   |          |       |
| 4,6-Dinitro-2-methylph | 1 0 Avg                  | 0.1295 (        | 0.1193 0.1147 (                          | 0.1193 0.1147 0.1369 0.1422 0.1411 0.1481                                                                          | 1411 0.1481                  | . 0           | 0.133 8.89 0.998                    | 98 1.00    | 9.3 0.01   |                           |                | 10.00 20.00 80.00                |               |          |       |
| n-Nitrosodiphenylamin  | _<br>                    | 0.6180 0.6659 0 | 0.6878 0.6123 0                          | 0.6180 0.6659 0.6878 0.6123 0.5991 0.6021 0.5872 0.5993                                                            | 5872 0.5993                  | .0.           |                                     |            | 0          | .01 50.00                 | 2.00           | 20.00                            | 120.0         |          |       |
| 2,4,6-Tribromophenol   | 1 O Avg                  | 0.1004 0.0912 0 | 0.1031 0.0919 (<br>0.7452 0.6294 (       | 0.1004                                                                                                             | .1096 0.1134<br>.6351 0.6538 | ) i           | 0.1039.09 0.998                     | 1.00       | 7.7<br>6.1 | 50.00                     | 3 5            | 10.00 20.00 80.00                | 120.0 160.0   | 0 196.0  |       |
| 4-Bromophenyl-phenyl   | <u> </u>                 | 0.2168 0.2103 ( | 0 2346 0 2104 0                          | 0.2168                                                                                                             | 2196 0 2255                  | 0 9           |                                     |            | 37 0       | 10 50.00                  | 200            | 20.00                            | 120 0         |          |       |
| Hexachlorobenzene      | _<br> <br>               | 0.2295 0.2425 ( | 0.2459 0.2172 (                          | 0.2295 0.2425 0.2459 0.2172 0.2312 0.2333 0.2318 0.2415                                                            | 2318 0.2415                  | 0             |                                     | . !        | ļ          | 0.10 50.00                | 2.00           | 20.00                            | 120.0         |          |       |
| N-Octadecane           | 1 0 Avg                  | 0.3060 0.3136 ( | 0.3467 0.3015 0                          | 0.3136 0.3467 0.3015 0.2899 0.2815 0.2718 0.2804                                                                   | 2718 0.2804                  | . 0.          | 0.299 9.68 0.999                    |            | 0          |                           | 2.00           | 10.00 20.00 80.00                | 120.0 160.0   |          |       |
| Pentachiorophenol      | 1 0 Avg                  | 0.1504 (        | 0.1433 0.1308 0                          | 0.1433 0.1308 0.1580 0.1623 0.1631 0.1732                                                                          | 1631 0.1732                  | . 0           | 0.154 9.61 0.998                    |            | _          |                           |                | 20.00                            |               |          | -     |
| Phenanthrene           |                          | 1.0475 1.1471   | 1.1642 1.0201 1                          | 1.1471 1.1642 1.0201 1.0194 1.0102 0.9820 1.0135                                                                   | 9820 1.0135                  | ·             |                                     |            | 6.4 0.     |                           | 2.00           | 10.00 20.00 80.00                | 120.0         |          |       |
| Anthracene             |                          | 1.0764 1.1347   | 1.2153 1.0695                            | 1.1347 1.2153 1.0695 1.0503 1.0465 1.0035 1.0367                                                                   | 0035 1.0367                  | -<br> -<br> - | - i                                 | - 1        | 2          | 0.70 50.00                | 2.00           | 20.00                            | 120.0         |          |       |
| Carbazole              | 1 0 Avg                  | 0.9966 1.0555   | 1.0961 0.9724 (                          |                                                                                                                    |                              | 0             |                                     |            | 5.9        |                           | 2.00           | 10.00 20.00 80.00                | 120.0         |          |       |
| DI-n-butylphthalate    | 1 0 Avg                  |                 | .2322 1.1993 1.3204 1.1943 1.1967 1.1715 |                                                                                                                    |                              | 1.2955 1      |                                     |            | Ö          | 0.01 50.00                | 2.00           |                                  | 120.0 160.0   |          | 0.50  |
| Fluoranthene           | 1 0 Avg                  | 1.2114 1.2126   | 1.3122 1.1648 1                          | 1.2126 1.3122 1.1648 1.1847 1.1647 1.1331 1.1565                                                                   | 1331 1.1565                  | · _           |                                     |            | o          |                           | 2.00           |                                  |               | .0 196.0 | _     |
| Pyrene                 | 1 O Avg                  | 0.7613 0.7364 0 | 1.3941 1.2020 1                          | 1.29/6 1.3941 1.2020 1.2022 1.2044 1.1920 1.2208<br>0.7364 0.8643 0.7465 0.7354 0.7076 0.6880 0.6888               | 1920 1.2208                  | ? _           | 1.25 11.45 1.00<br>0 737 11 34 0 88 | 1.00       | 5.6<br>0.  | .60 50.00                 | 3 2 2          | 10.00 20.00 80.00                |               | .0 196.0 | _     |
| Ternhenvi-d14          | 1 0 Ava                  | 0.6340 0.6079 0 | 1 6601 0 5799 (                          | 0.6079 0.6601 0.5799 0.6280 0.6427 0.6528 0.6899                                                                   | 6528 0 6899                  |               | 0.637 11 64 0 998                   | 1 00       | 5          | 25                        | 9              | 3 6                              | 500           | 30.00    |       |
|                        |                          |                 |                                          |                                                                                                                    |                              |               |                                     |            | i          | !                         |                |                                  |               |          |       |

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

c - failed the minimum correlation coeff criteria(if applicable) Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Note:

Avg Rsd: 6.036

Page 2 of 3

a - failed the min rf criteria

Flags

# Form 6 Initial Calibration

Instrument: GCMS\_7

| 7 Method: EFA 82/0E     | OF.                                     |                            | Init                                                      | Initial Calibration | tion              |               |                | instrument: GCMS_/                             |           |
|-------------------------|-----------------------------------------|----------------------------|-----------------------------------------------------------|---------------------|-------------------|---------------|----------------|------------------------------------------------|-----------|
| 26'                     |                                         | Data File: Cal Identifier: | Analysis Date/Time                                        | ovo  #              | Data File         |               | Calldentifier  | Analysis Date/Time                             |           |
|                         | 7M1094                                  | CAL B                      | 09/17/20 13:20                                            | 2                   | 7M109432.D        |               | BNA@2PPM       | 09/17/20 10:08                                 |           |
| ω                       | 7M109433.D                              | CAL BNA@10PPM              | 09/17/20 10:32                                            | 4                   | 7M109438.D        | CAL BNA       | CAL BNA@20PPM  | 09/17/20 12:33                                 |           |
| 4                       | 7M109437.D                              | ک<br>ک                     | 09/17/20 12:09                                            | 6                   | 7M109436.D        | CAL BNA       | CAL BNA@120PPM | 09/17/20 11:46                                 |           |
| 7                       | 7M109435.D                              | C <sub>A</sub>             | 09/17/20 11:22                                            | œ                   | 7M109434.D        | CAL BNA       | CAL BNA@196PPM | 09/17/20 10:55                                 |           |
| <b>36</b><br>。          | 7M109439.D                              |                            | 09/17/20 12:57                                            |                     |                   |               | 1              |                                                |           |
| 9                       | C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                            | D .                                                       | i                   |                   |               |                | Calibration Level Concentrations               | 5         |
|                         | - !                                     |                            |                                                           | Battle A St.        |                   |               | 701.00         | E LAST LAST LAST LAST                          | LAIO FAIO |
| 1,1000                  |                                         | 0.000 0.000 0.0774 0.004   |                                                           |                     | 0.001 11.01 0.000 |               |                | 30.00 2.00 10.00 20.00 00.00 120.0 100.0 100.0 |           |
| 4.4-000                 | 7 U AVQ                                 | 0.5173 0.5040 0.5516 0.486 | 0.5173 0.5040 0.5516 0.4863 0.5081 0.5152 0.5081 0.5278 - | -                   | 0.51511.97 0.999  |               |                | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0 | 0         |
| Butylbenzylphthalate    | _                                       | 0.5670 0.5750 0.6106 0.538 | 0.5670 0.5750 0.6106 0.5386 0.5454 0.5565 0.5463 0.5709 - |                     | 0.564 12.23 0.999 |               | 0.01           | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0 | 0         |
| 4,4'-DDT                | 1 0 Avg                                 | 0.5993 0.5393 0.6429 0.552 |                                                           |                     | 0.581 12.33 0.999 |               | 5.4            | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0 | 0         |
| 3.3'-Dichlorobenzidine  | 1 0 Avg                                 | 0.4587 0.4820 0.4897 0.424 | 0.4587 0.4820 0.4897 0.4247 0.4479 0.4540 0.4440 0.4567 - | 0                   | 0.457 12.85 1.00  | i             | 0.01           | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.  | 0         |
| Benzolalanthracene      | 1 0 Avg                                 | 1.1813 1.2500 1.2776 1.105 | 1.1813 1.2500 1.2776 1.1055 1.1167 1.1531 1.1306 1.1707 - | !                   | 1.17 12.88 0.999  |               | 0.80           | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.  | 0         |
| Chrysene                | 1 0 Avg                                 | 1.0967 1.1295 1.2176 1.066 | 1.0967 1.1295 1.2176 1.0668 1.0498 1.0409 1.0250 1.0596 - | 1                   | 1.09 12.92 0.999  |               | 5.8 0.70       | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.  | 0         |
| bis(2-Ethylhexyl)phthal | _                                       | 0.7615 0.8450 0.8447 0.727 | 0.7615 0.8450 0.8447 0.7274 0.7265 0.7171 0.7088 0.7210 - |                     | 0.757 12.92 1.00  |               | 0.01           | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.  | 0         |
| Di-n-octylphthalate     | 1 0 Avg                                 | 1.2794 1.3745 1.4455 1.232 | .2794 1.3745 1.4455 1.2328 1.2345 1.2196 1.1919 1.2391 -  | -                   | 1.28 13.68 0.999  |               | 0.01           | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.  | 0         |
| Benzo[b]fluoranthene    | _                                       | 1.1394 1.2007 1.2147 1.122 | .1394 1.2007 1.2147 1.1224 1.0944 1.0793 1.0414 1.1490 -  | <b> </b><br>        | 1.13 14.11 0.998  |               | 0.70           | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.  | 0         |
| Benzolklfluoranthene    | _                                       | 1.0417 1.1169 1.1984 0.990 | .0417 1.1169 1.1984 0.9900 1.0351 1.0321 1.0449 1.0116 -  |                     | 1.06 14.14 0.999  |               | 0.70           | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.  | 0         |
| Benzojajpyrene          | 1 0 Avg                                 | 1.0102 1.0406 1.0815 0.952 | .0102 1.0406 1.0815 0.9527 0.9757 0.9811 0.9730 1.0095 -  | !                   | 1.00 14.48 0.999  |               | 0.70           | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.  | 0         |
| Indeno[1.2.3-cd]pyren   | 10                                      | 1.1141 1.1817 1.2143 1.036 | 1.1141 1.1817 1.2143 1.0361 1.0844 1.0993 1.0993 1.1488 - | i                   | 1.1215.94 0.999   |               | 0.50           | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.  | 0         |
| Dibenzofa,hlanthracen   | 1 0 Avg                                 | 0.9343 0.9522 1.0181 0.877 | 0.9343 0.9522 1.0181 0.8771 0.9158 0.9263 0.9176 0.9561 - |                     | 0.937 15.96 0.999 |               | 0.40           | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.  | 0         |
| Benzola, h. ilperylene  | 1 0 Avg                                 | 0.9171 1.0021 1.0080 0.857 | 0.9171 1.0021 1.0080 0.8577 0.8974 0.9121 0.9112 0.9585   | Ĭ<br> <br>          | 0.933 16.33 0.998 | 0.998 0.999 5 | 0.50           | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0 | 0         |

a - failed the min rf criteria

| Corr I = Correlation Coefficient for linear Eq.
| Corr 2 = Correlation Coefficient for quad Eq.
| Corr 2 = Correlation Coefficient for Quadratic Curve was used for compound.
| Corr 2 = Correlation Coefficient for linear Eq.
| Corr 2 = Correlation Coefficient for linear Eq.
| Corr 2 = Correlation Coefficient for linear Eq.
| Corr 2 = Correlation Coefficient for linear Eq.
| Corr 2 = Correlation Coefficient for linear Eq.
| Corr 2 = Correlation Coefficient for linear Eq.
| Corr 2 = Correlation Coefficient for linear Eq.
| Corr 3 = Correlation Coefficient for linear Eq.
| Corr 4 = Correlation Coefficient for linear Eq.
| Corr 5 = Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient

Avg Rsd: 6.036

Note:

# Form 6 Initial Calibration

Flags

Avg Rsd: 8.313

Note:

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Corr 2 = Correlation Coefficient for quad Eq.

C-failed the minimum correlation coeff criteria(if applicable) |Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

0269

| 026<br>                 | Data                     | File: Cal Identifier:                                           | Analysis Date/Time                                      | Level #: Data File: | ₽               | Cal Identifier        | fier:      | Analysis D                              | Analysis Date/Time<br>7/20 10:34                         |
|-------------------------|--------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------|-----------------|-----------------------|------------|-----------------------------------------|----------------------------------------------------------|
| ω                       | 9M101313.D               | CAL BNA@10PPM                                                   | 09/17/20 10:10                                          |                     | 5               | BNA@20PPM             | M          | 09/17/20 12:35                          | 2:35                                                     |
| 1 5                     | 9M101318.D               | CAL BNA@80PPM                                                   | 09/17/20 12:12                                          | 6 9M101317.         | 3 ≥             | BNA@120               | PA         | 09/17/20 11:47                          | 1:47                                                     |
|                         | 9M101316.D<br>9M101320.D | CAL BNA@160PPM CAL BNA@0.5PPM                                   | 09/17/20 11:24<br>09/17/20 12:58                        | 8 9M101315.         | C <sub></sub> A | BNA@196PPM            | PPM        | 09/17/20 11:00                          | 1:00                                                     |
| Compound Col            | o Mr Fit                 | RF1 RF2 RF3 RF4 R                                               | RF5 RF6 RF7 RF8 RF9                                     | AvgRf RT            | Corr1 Corr2     | %Rsd                  | _          | VI1                                     | alibration Level Concentrations Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 |
| cyclopenta              |                          | 1 0.2828                                                        | 8 0.3644 0.3556                                         | 97.59               | - 3             | 8.9 0.                | 50         | ا أ                                     | 20.00 8                                                  |
| 2,4,6-Trichlorophenol   | 1 0 Avg                  | 0.3248                                                          | .3853 0.3923 0.3806 0.3812                              |                     | 1.00 1.00       |                       | 0.20 50.00 | 2.00                                    | 20.00                                                    |
| 2.4.5-Trichlorophenol   | 1 0 Avg                  | 0.4023 0.3246 0.3934 0.3768 0.4135 0.4211 0.4052                | .4135 0.4211 0.4052 0.3981                              |                     | 0.999 0.999     |                       |            | 2.00                                    | 20.00                                                    |
| 2-Fluorobiphenyl        | 1 0 Avg                  | 1.3707 1.4571 1.4528 1.2908 1.3521 1.3636 1.3329                | 3521 1.3636 1.3329 1.3300                               | •                   | _               |                       |            | 9                                       | 10.00                                                    |
| 2-Chloronaphthalene     | 1 0 Avq                  | 1.2079 1.2890 1.3133 1.1381 1.1798 1.1686 1.1251 1.1160         | 1798 1.1686 1.1251 1.1160                               | [ ]                 | ۳               | 6.2 0.                | .80 50.00  | 2.00                                    | 20.00 80.00                                              |
| 1,4-Dimethylnaphthale   | 1 0 Avg                  | 0.9255 1.0309 1.0294 0.8805 0.8951 0.8660 0.8244 0.7969         | 8951 0.8660 0.8244 0.7969                               |                     | 0.997 1.00      | [                     |            | 2.00                                    |                                                          |
| Dimethylnaphthalenes    | 1 0 Avg                  | 0.9255 1.0309 1.0294 0.8805 0.                                  | 1.0309 1.0294 0.8805 0.8951 0.8660 0.8244 0.7969        |                     | _               | 9.5                   | 50.00      | 2.00                                    | 20.00 80.00                                              |
| Diphenyl Ether          |                          | 0.8861 0.9916 0.9581 0.8489 0.8725 0.8651 0.8299 0.8203         | 8725 0.8651 0.8299 0.8203                               |                     |                 | 6.9                   | 50.00      | 2.00                                    | 20.00 80.00                                              |
| 2-Nitroaniline          | 1 0 Avg                  | 0.3455 0.2687 0.3218 0.3181 0.3488 0.3541 0.3419                | 3488 0.3541 0.3419 0.3389                               |                     |                 | 0                     | .01 50.00  | 2.00                                    | 20.00 80.00                                              |
| Coumarin                |                          | 0.4511 0.4731 0.4791 0.4300 0.4470 0.4410 0.4208 0.4099         | 4470 0.4410 0.4208 0.4099                               | -                   |                 |                       |            | 2.00                                    | 20.00 80.00                                              |
| Acenaphthylene          | 1 0 Avg                  | 1.8381 1.8503 1.9043 1.7123 1.8061 1.7964 1.7130 1.6895         | 8061 1.7964 1.7130 1.6895                               |                     | ⊸ i             | ω<br> <br>            | 90 50.00   | 200                                     | 80.00                                                    |
| Dimethylphthalate       | 1 0 Avg                  | 1.3525 1.4157 1.4280 1.2755 1.3394 1.3346 1.2880 1.2749         | .3394 1.3346 1.2880 1.2749                              |                     |                 | 0                     |            | 2.00                                    | 20.00 80.00                                              |
| 2,6-Dinitrotoluene      | 1 0 Avg                  | 0.3044 0.2449 0.3025 0.2801 0.2964 0.2966 0.2777 0.2668         | .2964 0.2966 0.2777 0.2668                              | _                   |                 | 0                     | _          | 2.00                                    | 20.00 80.00                                              |
| Acenaphthene            | 1 0 Ava                  | 1.2402 1.4463 1.3577 1.1957 1.2207 1.1972 1.1275 1.1242         | 2207 1.1972 1.1275 1.1242                               |                     | 0.998 1.00      |                       | .90 50.00  | 2.00                                    | 10.00 20.00 80.00 120.0                                  |
| 3-Nitroaniline          |                          | 0.3485 0.2526 0.3288 0.3132 0.3512 0.3507 0.3385 0.3339         | 3512 0.3507 0.3385 0.3339                               | i –                 | 0.999 1.00      | i                     |            | 2.00                                    | 10.00 20.00 80.00 120.0                                  |
| 2.4-Dinitrophenol       | 1 0 Qua                  | 0.1451 0.1154 0.1019 0.                                         |                                                         | 0.157 8.38          |                 |                       | a          |                                         | 20.00 80.00                                              |
| Dibenzofuran            | 1 0 Ava                  | 1.7149 1.9669 1.8542 1.6174 1.6911 1.6830 1.6085 1.5976         | 6911 1.6830 1.6085 1.5976 1.8084                        | 1.738.54            | 0.999 1.00      |                       |            | 2.00                                    | 10.00 20.00 80.00 120.0                                  |
| 2.4-Dinitrotoluene      | 1 0 Ava                  | 0.3988 0.2634 0.3715 0.3555 0.4106 0.4225 0.4123 0.4121         | 4106 0.4225 0.4123 0.4121                               | _                   |                 | 14                    |            | 2.00                                    | 20.00 80.00                                              |
| 4-Nitrophenol           | 1 0 Qua                  | 0.2152 0.1023 0.2441 0.1898 0.2276 0.2348 0.2293                | 2276 0.2348 0.2293 0.2277                               |                     |                 | 22                    | 0.01 50.00 | 2.00                                    |                                                          |
| 2.3,4,5-1 etracniorophe | 1 O AVO                  | 0.3563 0.3052 0.3476 0.3237 0.<br>1 3868 1 5023 1 5050 1 3185 1 | 1 5033 1 5050 1 3185 1 3438 1 3197 1 3573 1 3532        | 1                   |                 | İ                     |            | 3 8                                     | 20.00 80.00                                              |
| A-Chlorophenyl-phenyl   |                          | 0.6742 0.7502 0.7241 0.6206 0.6632 0.6608 0.6306 0.630A         | 6632 0 6608 0 6306 0 6304                               |                     |                 |                       |            | 3 6                                     | 20.00 80.00                                              |
| Diethylphthalate        | 1 0 Ava                  | 1 3019 1 3008 1 3220 1 1977 1 2888 1 3039 1 2566 1 2415         | 1 3008 1 3220 1 1977 1 2888 1 3039 1 2566 1 2415        | 1 28 8 72 0         | 0.999 1.00      | بر<br>د<br>د د        | 0.00       | 8 8                                     | 10.00 20.00 80.00 120.0                                  |
| 4-Nitroaniline          | 1 0 Avg                  | 0.3607 0.2379 0.3413 0.3283 0.3708 0.3753 0.3607 0.3617         | 3708 0.3753 0.3607 0.3617                               | -                   |                 |                       |            | 2.00                                    | 20.00 80.00                                              |
| Atrazine                | 1 0 Avq                  | 0.4163 0.3187 0.3805 0.3762 0.                                  | 0.3187 0.3805 0.3762 0.4223 0.4277 0.4183 0.4117        | ! -                 | :               | 1                     |            | 2.00                                    | 20.00 80.00                                              |
| 4,6-Dinitro-2-methylph  | 1 0 Avg                  | 0.1223 0.1139 0.0958 0.                                         | 0.1139 0.0958 0.1330 0.1407 0.1391 0.1378               | _                   |                 |                       |            |                                         | 20.00 80.00                                              |
| n-Nitrosodiphenylamin   | 1 0 Ava                  | 0.6288 0.6407 0.6630 0.6065 0.6239 0.6160 0.6038 0.5906         | 6239 0.6160 0.6038 0.5906                               | -                   | w               |                       | 0.01 50.00 | 2.00                                    | 20.00 80.00                                              |
| 2.4.6- I ribromophenol  | 1 0 Ava                  | 0.0964 0.0626 0.0902 0.0859 0.1005 0.1016 0.1003 0.0991         | 1005 0.1016 0.1003 0.0991                               | _                   |                 | . 14                  | 50.00      | 2.00                                    | 20.00 80.00                                              |
| A_Bromophenyl_phenyl    |                          | 0.0311 0.0673 0.0713 0.0013 0.0209 0.0180 0.0324 0.0303         | 2055 0.0100 0.024 0.0303                                |                     | 1 00 1 00       | 5<br>1<br>1<br>1<br>1 |            | 3 5                                     | 10.00 20.00 80.00 120.0                                  |
| Hexachlorobenzene       | 1 0 Ava                  | 0.2198 0.2662 0.2378 0.2107 0.2233 0.2263 0.2239 0.2213         | 2233 0 2263 0 2239 0 2213                               | 0.2099.41           | 100             | 74 0                  | 0.10 50.00 | 2 2 2                                   | 10 00 20 00 80 00 120 0                                  |
| N-Octadecane            |                          | 0.3090 0.2392 0.3093 0.2832 0.3054 0.2996 0.2828 0.2698         | 3054 0.2996 0.2828 0.2698                               | -                   | ٠.              | 8.4                   |            | 2.00                                    | 20.00 80.00                                              |
| Pentachlorophenol       | 1 0 Avg                  | 0.1414 0.1466 0.1187 0.                                         | 0.1466 0.1187 0.1506 0.1575 0.1544 0.1549               |                     |                 |                       |            |                                         | 20.00 80.00                                              |
| Phenanthrene            | 1 0 Avg                  | 1.0499 1.2518 1.1464 1.0090 1.                                  | 1.1464 1.0090 1.0378 1.0254 1.0012 0.9849               | 1.069.85 0          |                 | 8.5 0.                |            | 2.00                                    | 20.00 80.00                                              |
| Anthracene              | 1 0 Ava                  | 1.0753 1.1218 1.1276 1.0259 1.                                  | 1.1218 1.1276 1.0259 1.0713 1.0503 1.0307 0.9983        | 1.06 9.90 0         | i —             | ĺ                     |            | 2.00                                    | 10.00 20.00 80.00 120.0                                  |
| Carbazole               | 1 0 Avg                  | 0.9801 0.9423 1.0058 0.9287 0.                                  | 0.9423 1.0058 0.9287 0.9786 0.9766 0.9442 0.9399        | 7                   | 0.999 1.00      | 2.8 0.                |            | 2.00                                    | 20.00 80.00                                              |
| Di-n-butylphthalate     | 1 0 Qua                  | 1.1066 0.7721 0.9731 0.9755 1.                                  | 0.7721 0.9731 0.9755 1.1298 1.1395 1.1174 1.0853 0.5826 | 0.987 10.45         | 0.999 1.00      |                       |            | 2.00                                    | 20.00 80.00                                              |
| Fluoranthene            | 1 0 Avg                  | 1.1752 1.0345 1.1343 1.0740 1.                                  | 1.0345 1.1343 1.0740 1.1771 1.1804 1.1547 1.1440        |                     | 1.00 1.00       |                       | 0.60 50.00 | 2.00                                    | 10.00 20.00 80.00 120.0                                  |
| Pyrene                  |                          | 1.1991 1.1646 1.2120 1.1032 1.1754 1.2103 1.1905 1.1796         | 1754 1.2103 1.1905 1.1796                               |                     |                 | 3.0                   | .60 50.00  | 2.00                                    | 20.00 80.00                                              |
| Benzidine               | 1 0 Qua                  | 0.6242 0.2647 0.5975 0.5110 0.                                  | 0.6242 0.2647 0.5975 0.5110 0.6516 0.6623 0.6553 0.6510 |                     | 0.999 0.999     | 24                    |            | ֚֓֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜ |                                                          |
|                         |                          |                                                                 |                                                         | 0 100 4 0 4         |                 |                       | 50.00      | 2.00                                    | 10.00 20.00 80.00 120.0                                  |

Flags

Avg Rsd: 8.313

Note:

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Correlation Coefficient for quad Eq.

Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

# Form 6 Initial Calibration

Instrument: GCMS\_9

| <b>0</b><br>≸e       | Method: EPA 82/0E       | rr          |                            | Ini                                                       | Initial Calibration | ition             |                |            | IIIStranient: GCMS_9                                      | ·u                  |
|----------------------|-------------------------|-------------|----------------------------|-----------------------------------------------------------|---------------------|-------------------|----------------|------------|-----------------------------------------------------------|---------------------|
| 27                   | Level #:                | Data File   | File: Cal Identifier:      | Analysis Date/Time                                        | Level #:            | Data File         | • •            |            | Analysis Date/Time                                        |                     |
| 0                    | _                       | 9M101321.D  | CAL BNA@50PPM              | 09/17/20 13:22                                            | 2                   |                   | CAL BNA@2PPM   | 09/1       | 10:34                                                     |                     |
|                      | ω                       | 9M101313.D  | CAL BNA@10PPM              | 09/17/20 10:10                                            | 4                   |                   | CAL BNA@20PPM  |            | 12:35                                                     |                     |
| 4                    | J1                      | 9M101318.D  | CAL BNA@80PPM              | 09/17/20 12:12                                            | o                   |                   | CAL BNA@120PPI |            | 11:47                                                     |                     |
| 12                   | 7                       | 9M101316.D  | CAL BNA@160PPM             | 09/17/20 11:24                                            | œ                   | 9M101315.D        | CAL BNA@196PPM |            | 11:00                                                     |                     |
| 36                   | 9                       | 9M101320.D  | CAL BNA@0.5PPM             | 09/17/20 12:58                                            |                     |                   |                |            |                                                           |                     |
| <b>9</b><br>Compound | ound                    | Col Mr Fit: | RF1 RF2 RF3 RF4 RF5        | RF5 RF6 RF7 RF8                                           | RF9 AvgRf           | Rf RT Corr1 Corr2 | Corr2 %Rsd     | Lvi1 Lvi2  | Calibration Level Concentrations Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 | ns<br>/17 Ly18 Ly19 |
| <b>24</b> ,4'-DDE    | Œ                       | 1 0 Avg 0   | ).3164 0.3085 0.3251 0.287 | 0.3164 0.3085 0.3251 0.2870 0.3181 0.3368 0.3355 0.3357   |                     | 0.320 11.57 0.999 | 1.00 5.3       | 50.00 2.00 | 10.00 20.00 80.00 120.0 160.0                             | ).0 196.0           |
| 4.4'-DDD             | 8                       | 1 0 Avg 0   | ).4676 0.3298 0.4118 0.403 | 0.4676 0.3298 0.4118 0.4039 0.4696 0.4943 0.4859 0.4842   |                     | 0.443 11.97 0.999 | 0.999 13       | 50.00 2.00 | 10.00 20.00 80.00 120.0 160                               | ).0 196.0           |
| Butylb               | Butylbenzylphthalate    | 1 0 Qua 0   | ).4710 0.2384 0.3600 0.384 | 0.4710 0.2384 0.3600 0.3840 0.4937 0.5153 0.5030 0.5012   |                     | 0.433 12.23 0.999 | 0.999 23 0.01  | 50.00 2.00 | 10.00 20.00 80.00 120.0 160                               | ).0 196.0           |
| 4.4'-DDT             | OT .                    | 1 0 Avg     | ).5607                     | 0.5607 0.4100 0.6178 0.5043 0.5646 0.5801 0.5774 0.5756   | -                   | 1.00              | 1.00 12        | 50.00 2.00 | 10.00 20.00 80.00 120.0 160                               | ).0 196.0           |
| 3,3'-Di              | 3,3'-Dichlorobenzidine  | 1 0 Qua     | 0.3898 0.2240 0.4113 0.335 | 0.3898 0.2240 0.4113 0.3352 0.4035 0.4225 0.4142 0.3995   |                     | 0.999             | 0.999 18 0.01  | 50.00 2.00 | 10.00 20.00 80.00 120.0 160                               | ).0 196.0           |
| Benzo                | Benzofalanthracene      | _           | 1.1262 1.1259 1.1404 1.040 | 1.1262 1.1259 1.1404 1.0406 1.1448 1.1645 1.1679 1.1421 . |                     | 1.13 12.88 1.00   | 1.00 3.5 0.80  | 50.00 2.00 | 10.00 20.00 80.00 120.0 160                               | ).0 196.0           |
| Chrysene             | e                       | 1 0 Avg 1   | 1.1020 1.2634 1.1943 1.044 | .1020 1.2634 1.1943 1.0445 1.0556 1.0822 1.0400 1.0496    | 1                   | 1.10 12.92 1.00   | 1.00 7.4 0.70  | 50.00 2.00 | 10.00 20.00 80.00 120.0 160                               | ).0 196.0           |
| bis(2-E              | bis(2-Ethylhexyl)phthal | 1 0 Qua     | ).6559 0.3313 0.5540 0.566 | 0.6559 0.3313 0.5540 0.5664 0.6633 0.6739 0.6511 0.6267   | -                   | 0.590 12.92 0.998 | 0.999 19 0.01  | 50.00 2.00 | 10.00 20.00 80.00 120.0 160                               | ).0 196.0           |
| Di-n-o               | Di-n-octylphthalate     | 1 0 Qua 1   | 1.0321 0.3373 0.6180 0.805 | .0321 0.3373 0.6180 0.8050 1.0983 1.1633 1.1157 1.0860    |                     | 0.907 13.68 0.998 | 0.999 33 0.01  | 50.00 2.00 | 10.00 20.00 80.00 120.0 160                               | ).0 196.0           |
| Benzo                | Benzo[b]fluoranthene    | 1 0 Avg 1   | 1.0627 0.8442 0.9841 0.933 | .0627 0.8442 0.9841 0.9332 1.0674 1.1317 1.1321 1.1712    |                     | 1.04 14.10 0.999  | 1.00 11 0.70   | 50.00 2.00 | 10 00 20.00 80.00 120.0 160                               | ).0_196.0           |
| Benzo                | Benzojklfluoranthene    | 1 0 Avg 1   | 1.1059 1.0441 1.1654 1.030 | .1059 1.0441 1.1654 1.0308 1.0850 1.0826 1.0345 0.9585    | 1                   | 0.994             | 0.999 5.8 0.70 | 50.00 2.00 | 10.00 20.00 80.00 120.0 160                               | ).0 196.0           |
| Benzo                | Benzolalpyrene          | 1 0 Avg 0   | ).9862 0.7020 0.9358 0.853 | 0.9862 0.7020 0.9358 0.8535 0.9952 1.0171 1.0027 0.9943   | -                   | 0.936 14.47 1.00  | 1.00 12 0.70   | 50.00 2.00 | 10.00 20.00 80.00 120.0 160                               | ).0 196.0           |
| Indend               | Indeno[1.2.3-cd]pyren   | 1 0 Avg 1   | 1.1882 0.9198 1.0889 1.047 | .1882 0.9198 1.0889 1.0476 1.2176 1.2755 1.2625 1.2526    |                     | 1.16 15.89 1.00   | 1.00 11 0.50   | 50.00 2.00 | 10.00 20.00 80.00 120.0 160                               | ).0 196.0           |
| Dibena               | Dibenzo[a,h]anthracen   | n 10 Avg 1  | 1.0042 0.7706 0.9347 0.892 | .0042 0.7706 0.9347 0.8922 1.0083 1.0517 1.0405 1.0286    |                     | 0.966 15.92 1.00  | 1.00 9.9 0.40  | 50.00 2.00 | 10.00 20.00 80.00 120.0 160                               | ).0 196.0           |
| Benzo                | Benzola,h,ilperylene    | 1 0 Avg 0   | 0.9795 0.8174 0.9208 0.868 | 0.9795 0.8174 0.9208 0.8688 0.9875 1.0324 1.0163 1.0094   |                     | 0.954 16.29 1.00  | 1.00 8.1 0.50  | 50.00 2.00 | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0            | 0.0 196.0           |
|                      |                         |             |                            |                                                           |                     |                   |                |            |                                                           |                     |

a - failed the min rf criteria

Corr l = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

c - failed the minimum correlation coeff criteria(if applicable) |Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Avg Rsd: 8.313

Note:

Form7
Continuing Calibration

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 8:27:00 A Data File: 9M101545.D Method: EPA 8270E Instrument: GCMS 9

| TxtCompd:                                   | Co#          | Multi<br>Num | Туре    | RT           | Conc           | Conc<br>Exp | Lo f |      | Initial<br>RF | RF    | %Diff Flag   |
|---------------------------------------------|--------------|--------------|---------|--------------|----------------|-------------|------|------|---------------|-------|--------------|
| 1,4-Dioxane-d8(INT)                         | 1            | 0            | 1       | 2.71         | 40.00          | 40          | **   |      |               | 0.000 | 0.00         |
| 1,4-Dioxane                                 | 1            | 0            |         | 2.74         | 47.74          | 50          | **   |      | 1.057         | 1.009 | 4.52         |
| Pyridine                                    | 1            | 0            |         | 3.21         | 50.45          | 50          | **   |      | 2.196         | 2.216 | 0.90         |
| N-Nitrosodimethylamine                      | 1            | 0            |         | 3.14         | 51.95          | 50          | **   |      | 1.391         | 1.445 | 3.91         |
| 2-Fluorophenol                              | 11           | 0            | S       | 4.71         | 50.91          | 50          | **   |      | 2.092         | 2.130 | 1.81         |
| Benzaldehyde                                | 1            | 0            |         | 5.52         | 49.15          | 50          | 20   | 0.01 | 2.004         | 1.970 | 1.70         |
| Aniline                                     | 1            | 0            |         | 5.62         | 50.58          | 50          | **   |      | 3.460         | 3.500 | 1.17         |
| Pentachloroethane                           | 1            | 0            |         | 5.67         | 49.29          | 50          | **   | 0.05 | 0.724         | 0.714 | 1.42         |
| bis(2-Chloroethyl)ether                     | 1            | 0            |         | 5.68         | 51.97          | 50          | 20   | 0.7  | 2.274         | 2.364 | 3.94         |
| Phenol-d5                                   | 1            | 0            | S       | 5.58         | 51.68          | 50          | **   |      | 2.531         | 2.616 | 3.37         |
| Phenol                                      | 1            | 0            |         | 5.59         | 50.76          | 50          | 20   | 0.8  | 3.242         | 3.291 | 1.52         |
| 2-Chlorophenol                              | 1            | 0            |         | 5.72         | 50.18          | 50          | 20   | 0.8  | 2.529         | 2.538 | 0.35         |
| N-Decane                                    | 1            | 0            |         | 5.77         | 51.28          | 50          | **   | 0.05 | 1.907         | 1.956 | 2.56         |
| 1,3-Dichlorobenzene                         | 1            | 0            |         | 5.85         | 50.04          | 50          | **   |      | 2.771         | 2.773 | 0.09         |
| 1,4-Dichlorobenzene-d4                      | 1            | 0            | 1       | 5.90         | 40.00          | 40          | **   |      |               | 0.000 | 0.00         |
| 1,4-Dichlorobenzene                         | 1            | 0            |         | 5.92         | 50.71          | 50          | 20   |      | 1.496         | 1.517 | 1.42         |
| 1,2-Dichlorobenzene                         | 1            | 0            |         | 6.04         | 50.63          | 50          | **   |      | 1.415         | 1.433 | 1.27         |
| Benzyl alcohol                              | 1            | 0            |         | 6.01         | 50.81          | 50          | **   |      | 0.812         | 0.825 | 1.62         |
| bis(2-chloroisopropyl)ether                 | 1            | 0            |         | 6.12         | 52.96          | 50          | 20   | 0.01 | 1.260         | 1.334 | 5.92         |
| 2-Methylphenol                              | 1            | 0            |         | 6.10         | 52.60          | 50          | 20   |      | 1.157         | 1.217 | 5.21         |
| Acetophenone                                | 1            | 0            | • • • • | 6.22         | 51.72          | 50          | 20   |      | 1.702         | 1.761 | 3.44         |
| Hexachloroethane                            | 1            | Ö            |         | 6.32         | 51.22          | 50          | 20   |      | 0.526         | 0.539 | 2.44         |
| N-Nitroso-di-n-propylamine                  | 1            | 0            |         | 6.22         | 53.55          | 50          | 20   |      | 0.741         | 0.793 | 7.09         |
| 3&4-Methylphenol                            | 1            | 0            |         | 6.22         | 53.11          | 50          | 20   |      | 1.136         | 1.206 | 6.22         |
| Naphthalene-d8                              | 1            | Ō            | 1       | 6.91         | 40.00          | 40          | **   |      |               | 0.000 | 0.00         |
| Nitrobenzene-d5                             | 1            | 0            | S       | 6.35         | 26.62          | 25          | **   |      | 0.144         | 0.153 | 6.48         |
| Nitrobenzene                                | 1            | 0            | _       | 6.37         | 51.60          | 50          | 20   | 0.2  | 0.314         | 0.324 | 3.20         |
| Isophorone                                  | 1            | 0            |         | 6.55         | 52.75          | 50          | 20   |      | 0.574         | 0.606 | 5.50         |
| 2-Nitrophenol                               | 1            | Ö            |         | 6.61         | 52.91          | 50          | 20   |      | 0.177         | 0.187 | 5.82         |
| 2,4-Dimethylphenol                          | 1            | Ö            |         | 6.64         | 51.46          | 50          | 20   |      | 0.294         | 0.302 | 2.92         |
| Benzoic Acid                                | 1            | 0            |         | 6.69         | 37.57          | 50          |      |      | 0.206         | 0.143 | 24.87        |
| bis(2-Chloroethoxy)methane                  | 1            | Ö            |         | 6.71         | 51.46          | 50          | 20   | 0.3  | 0.365         | 0.375 | 2.91         |
| 2,4-Dichlorophenol                          | 1            | Ŏ            |         | 6.80         | 52.73          | 50          | 20   |      | 0.270         | 0.285 | 5.45         |
| 1,2,4-Trichlorobenzene                      | 1            | Ö            |         | 6.86         | 49.96          | 50          | **   | ٧.٠  | 0.312         | 0.312 | 0.07         |
| Naphthalene                                 | 1            | Ö            |         | 6.92         | 50.52          | 50          | 20   | 0.7  | 1.062         | 1.073 | 1.04         |
| 4-Chloroaniline                             | - <u>-</u> - | 0            |         | 6.95         | 51.16          | 50          | 20   |      | 0.390         | 0.399 | 2.32         |
| Hexachlorobutadiene                         | 1            | Ö            |         | 7.01         | 49.66          | 50          | 20   |      | 0.175         | 0.174 | 0.68         |
| Caprolactam                                 | 1            | Ö            |         | 7.22         | 54.01          | 50          | 20   |      | 0.105         | 0.113 | 8.02         |
| 4-Chloro-3-methylphenol                     | 1            | Ö            |         | 7.32         | 50.23          | 50          | 20   |      | 0.276         | 0.277 | 0.46         |
| 2-Methylnaphthalene                         | 1            | 0            |         | 7.47         | 50.23          | 50          | **   |      | 0.697         | 0.710 | 1.88         |
| 1-Methylnaphthalene                         | <u>'-</u>    | 0            |         | 7.54         | 50.37          | 50          |      |      | 0.666         | 0.671 | 0.74         |
| Methylnaphthalenes                          | 1            | 0            |         | 7.54         | 101.44         | 50          | **   | 0.4  | 0.000         | 1.382 | 102.88       |
| 1,1'-Biphenyl                               | 1            | 0            |         | 7.84         | 50.44          | 50          |      | 0.01 | 0.805         | 0.812 | 0.89         |
| •                                           | 1            | 0            | 1       | 8.35         |                |             | 20   | 0.01 | 0.605         |       |              |
| Acenaphthene-d10 1,2,4,5-Tetrachlorobenzene |              | 0            | •       | 7.60         | 40.00<br>50.09 | 40<br>50    |      | 0.04 | 0 630         | 0.000 | 0.00         |
| Hexachlorocyclopentadiene                   | <u>1</u>     | 0            |         |              | 50.09          | 50<br>50    | 20   |      | 0.629         | 0.630 | 0.18         |
| * *                                         | 1            | 0            |         | 7.59<br>7.68 | 47.77<br>49.38 | 50          | 20   |      | 0.339         | 0.324 | 4.45<br>1.25 |
| 2,4,6-Trichlorophenol                       |              |              |         |              | 49.38<br>50.46 | 50<br>50    | 20   |      | 0.381         | 0.376 | 1.25         |
| 2,4,5-Trichlorophenol                       | 1            | 0            |         | 7.71<br>7.75 | 50.46          | 50          | 20   | 0.2  | 0.392         | 0.396 | 0.92         |
| 2-Fluorobiphenyl                            | 1            | 0            | S       | 7.75         | 25.55<br>51.16 | 25<br>50    |      | 0.0  | 1.369         | 1.399 | 2.21         |
| 2-Chloronaphthalene                         | 1            | 0            |         | 7.87         | 51.16          | 50          | 20   | 0.8  | 1.192         | 1.220 | 2.32         |
| 1,4-Dimethylnaphthalene                     | 1            | 0            |         | 8.15         | 50.91          | 50<br>50    |      |      | 0.906         | 0.923 | 1.82         |
| Dimethylnaphthalenes                        | 1            | 0            |         | 8.15         | 50.91          | 50          | 20   |      |               | 0.923 | 1.82         |

S-Surrogate Compound N/O or N/Q - Not applicable for this run I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 8:27:00 A Data File: 9M101545.D Method: EPA 8270E

e: 9M101545.D Instrument: GCMS 9

| Dipheny   Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TxtCompd:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Col# | Multi<br>Num | Туре | RT    | Conc                                   | Conc<br>Exp | Lo !<br>Lim | MIN<br>RF                             | Initial<br>RF | RF                                    | %Diff Flag  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|------|-------|----------------------------------------|-------------|-------------|---------------------------------------|---------------|---------------------------------------|-------------|
| Coumanin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diphenyl Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1    | 0            |      | 7.92  | 50.84                                  |             | **          |                                       | 0.884         | 0.899                                 | 1.69        |
| Committy rem   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1    | 0            |      | 7.94  | 54.42                                  | 50          | 20          | 0.01                                  | 0.330         | 0.359                                 | 8.85        |
| Demethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Coumarin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1    | 0            |      | 8.12  | 52.31                                  |             | **          |                                       | 0.444         |                                       |             |
| 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1    | 0            |      | 8.22  | 51.89                                  | 50          | 20          | 0.9                                   | 1.789         | 1.856                                 | 3.77        |
| 26-Dintriotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dimethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    | 0            |      | 8.08  | 51.28                                  | 50          | 20          | 0.01                                  | 1.339         | 1.373                                 | 2.56        |
| 3-Nitrosmiline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | About About colours and color and color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of t | 1    | 0            |      | 8.14  | 53.83                                  | 50          | 20          | 0.2                                   | 0.284         | 0.305                                 | 7.66        |
| 3-Nikroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1    | 0            |      | 8.38  | 50.84                                  | 50          | 20          | 0.9                                   | 1.239         | 1.260                                 | 1.69        |
| 2.4-Dinitrophenol 1 0 8.38 43.86 50 20 0.2 0.157 0.134 12.08 Dibenzofuran 1 0 8.53 50.59 50 20 0.8 1.727 1.747 1.17 2.4-Dinitrotoluene 1 0 8.50 54.33 50.59 50 20 0.2 0.381 0.414 8.65 4-Nitrophenol 1 0 8.50 54.33 50 20 0.1 0.209 0.221 2.94 2.34.6-Tetrachlorophenol 1 0 8.64 51.65 50 20 0.10 0.309 0.329 1.411 4.Chlorophenyl-phenylether 1 0 8.86 50.71 50 20 0.01 0.309 0.360 3.29 1.411 4.Chlorophenyl-phenylether 1 0 8.86 50.71 50 20 0.01 0.309 0.360 3.29 1.411 4.Chlorophenyl-phenylether 1 0 8.86 50.71 50 20 0.01 0.309 0.360 3.29 1.411 4.Chlorophenyl-phenylether 1 0 8.86 50.71 50 20 0.01 0.309 0.360 3.29 1.411 4.Chlorophenyl-phenylether 1 0 8.86 50.71 50 20 0.01 0.309 0.300 3.29 1.411 4.Chlorophenyl-phenylether 1 0 8.86 50.71 50 20 0.01 0.307 0.308 1.382 1.411 4.Chlorophenyl-phenylether 1 0 8.86 50.72 51.72 50 20 0.01 0.307 0.414 4.47 1.411 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111 4.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    | 0            |      | 8.29  | 54.15                                  | 50          | 20          | 0.01                                  | 0.327         | 0.354                                 | 8.29        |
| Debenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    | 0            |      | 8.38  | 43.96                                  | 50          | 20          | 0.2                                   | 0.157         | 0.134                                 | 12.08       |
| 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    | 0            |      |       | 50.59                                  | 50          | 20          | 0.8                                   | 1.727         | 1,747                                 | 1.17        |
| 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    | 0            |      | 8.50  | 54.33                                  | 50          | 20          | 0.2                                   | 0.381         | 0.414                                 | 8.65        |
| 2,3,4,6-Tetrachlorophenol   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    | 0            |      |       |                                        |             |             |                                       |               | 0.221                                 | 2.94        |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |              |      |       | 51.65                                  |             | 20          | 0.01                                  | 0.349         |                                       | 3.29        |
| 4-Chlorophenyl-phenylether 1 0 8.85 50.43 50 20 0.0 0.0 1.277 1.321 3.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |              |      |       |                                        |             |             |                                       |               |                                       |             |
| Diethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |              |      |       |                                        |             |             |                                       |               |                                       |             |
| 4-Nitroaniline 1 0 8.86 55.29 50 20 0.01 0.342 0.378 10.58 Arrazine 1 0 9.49 52.24 50 20 0.01 0.397 0.414 4.47 Phenanthrene-d10 1 0 1 9.49 52.24 50 20 0.01 0.397 0.414 4.47 Phenanthrene-d10 1 0 1 8.89 47.37 50 20 0.01 0.120 5.25 n-Nitrosodiphenylamine 1 0 8.89 47.37 50 20 0.01 0.622 0.640 2.94 2.46-Tribromophenol 1 0 8 9.66 51.47 50 20 0.01 0.622 0.640 2.94 1.20-Diphenylhydrazine 1 0 9.90 51.86 50 ** 0.902 0.0641 0.656 2.42 4.Bromophenyl-phenylepheryl 1 0 9.34 50.54 50 20 0.10 0.02 0.096 3.72 1.20-Diphenylhydrazine 1 0 9.34 50.54 50 20 0.10 0.02 0.096 3.72 1.20-Diphenylhydrazine 1 0 9.91 48.46 50 20 0.10 0.02 0.006 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |      |              |      |       | · · · · · · · · <del>- ·</del> · · · · |             |             | · · · · · · · · · · · · · · · · · · · |               |                                       |             |
| Altrazine 1 0 9.49 52.24 50 20 0.01 0.397 0.414 4.47 Phenanthrene-d10 1 0 1 9.82 40.00 40 ** 0.000 0.000 0.000 0.46 ** 0.000 0.000 0.000 0.46 ** 0.000 0.000 0.000 0.46 ** 0.000 0.000 0.000 0.46 ** 0.000 0.000 0.000 0.46 ** 0.000 0.000 0.000 0.000 0.000 0.46 ** 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |              |      |       |                                        |             |             |                                       |               |                                       |             |
| Phenanthrene-d10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |              |      |       |                                        |             |             |                                       |               |                                       |             |
| 4.6-Dinitro-2-methylphenol 1 0 8.89 47.37 50 20 0.01 0.126 0.120 5.25 n-Nitrosodiphenylamine 1 0 8.96 51.47 50 20 0.01 0.622 0.640 2.94 2.46-Tribromophenol 1 0 8.96 51.47 50 20 0.01 0.622 0.640 2.94 2.46-Tribromophenyl-phenylether 1 0 9.00 51.21 50 ** 0.084 0.666 2.42 4-Bromophenyl-phenylether 1 0 9.34 50.54 50 20 0.1 0.206 0.208 1.09 Hexachlorobenzene 1 0 9.34 50.54 50 20 0.1 0.206 0.208 1.09 Hexachlorobenzene 1 0 9.68 55.34 50 ** 0.05 0.287 0.318 10.68 Pentachlorophenol 1 0 9.61 48.97 50 20 0.5 0.267 0.318 10.68 Pentachlorophenol 1 0 9.85 49.90 50 20 0.7 1.063 1.061 0.20 Anthracene 1 0 9.85 49.90 50 20 0.7 1.063 1.061 0.20 Anthracene 1 0 9.90 50.88 50 20 0.7 1.063 1.061 0.20 Anthracene 1 0 10.07 52.47 50 20 0.01 0.962 1.010 4.93 Din-butylphthalate 1 0 10.45 49.45 50 20 0.01 0.962 1.010 4.93 Din-butylphthalate 1 0 11.18 52.88 50 20 0.01 0.967 1.130 1.11 Fluoranthene 1 0 11.45 52.12 50 20 0.6 1.179 1.229 4.24 Benzidine 1 0 11.45 52.12 50 20 0.0 0.577 0.564 8.56 Benzidine 1 0 11.57 50.17 ** 0.320 4.4*-DDD 1 0 1 12.22 49.60 50 20 0.1 0.375 0.399 3.59 Benzolglanthracene 1 0 12.84 48.20 50 20 0.1 0.375 0.399 3.59 Benzolglanthracene 1 0 12.84 48.20 50 20 0.1 0.950 0.377 0.27 bis(2-Ethylhexyl)phthalate 1 0 12.91 49.86 50 20 0.7 1.041 1.107 0.27 bis(2-Ethylhexyl)phthalate 1 0 12.91 49.86 50 20 0.7 1.041 1.107 0.27 bis(2-Ethylhexyl)phthalate 1 0 12.91 49.86 50 20 0.7 1.041 1.107 0.27 bis(2-Ethylhexyl)phthalate 1 0 1.451 40.00 40 ** 0.000 0.00 Din-octylphthalate 1 0 1.458 54.51 50 20 0.7 1.063 1.097 3.15 Benzolgliptoranthene 1 0 1.458 54.51 50 20 0.7 1.061 1.097 3.15 Benzolgliptoranthene 1 0 1.458 54.51 50 20 0.7 1.063 1.097 3.15 Benzolgliptoranthene 1 0 1.458 54.51 50 20 0.7 1.063 1.097 3.15 Benzolgliptoranthene 1 0 1.587 54.01 50 20 0.7 1.063 1.097 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |              | - 1  |       |                                        |             |             | 0.01                                  | 0.001         |                                       |             |
| n-Nitrosodiphenylamine 1 0 8,96 51.47 50 20 0.01 0.622 0.640 2.94 2.4.6-Tribromophenol 1 0 S 9.09 51.86 50 ** 0.092 0.096 3.72 1.2-Diphenylyhdrazine 1 0 9.00 51.21 50 ** 0.641 0.656 2.42 4-Bromophenyl-phenylether 1 0 9.34 50.54 50 20 0.1 0.206 0.208 1.09 Hexachlorobenzene 1 0 9.41 48.46 50 20 0.1 0.209 0.222 3.08 N-Octadecane 1 0 9.68 55.34 50 ** 0.05 0.287 0.318 10.68 Pentachlorophenol 1 0 9.68 49.90 50 20 0.7 1.063 1.061 0.20 Anthracene 1 0 9.85 49.90 50 20 0.7 1.063 1.061 0.20 Anthracene 1 0 9.90 50.88 50 20 0.7 1.063 1.061 0.20 Anthracene 1 0 1.07 52.47 50 20 0.01 0.907 1.063 1.061 0.20 Ibin-butylphthalate 1 0 1.07 52.47 50 20 0.01 0.907 1.103 1.11 Fluoranthene 1 0 1.18 52.88 50 20 0.01 0.907 1.103 1.11 Fluoranthene 1 0 1.18 52.88 50 20 0.01 0.907 1.103 1.11 Fluoranthene 1 0 1.18 52.88 50 20 0.6 1.134 1.200 5.76 Chrysene-d12 1 0 1.18 52.82 50 20 0.6 1.134 1.200 5.76 Chrysene-d12 1 0 1.15 50.17 ** 0.320  Hexachlorobenzidine 1 0 1.22 49.60 50 20 0.7 1.063 0.499 0.81  Butylbenzylphthalate 1 0 1.22 49.60 50 20 0.7 1.063 0.499 0.81  Butylbenzylphthalate 1 0 1.22 49.60 50 20 0.7 1.063 0.499 0.81  Butylbenzylphthalate 1 0 1.287 52.03 50 20 0.1 0.375 0.399 3.59  Benzo(a]anthracene 1 0 1.287 52.03 50 20 0.01 0.907 1.107 0.27  bis(2-Ethylhexyl)phthalate 1 0 1.287 50.03 50 20 0.01 0.907 1.007 0.27  bis(2-Ethylhexyl)phthalate 1 0 1.287 50.03 50 20 0.01 0.907 1.007 0.27  bis(2-Ethylhexyl)phthalate 1 0 1.287 50.03 50 20 0.01 0.907 1.008 2.85  Benzo(a]anthracene 1 0 1.458 54.51 50 20 0.7 1.003 1.097 3.15  Benzolphthoranthene 1 0 1.458 54.51 50 20 0.7 1.003 1.097 3.15  Benzolphthoranthene 1 0 1.458 54.51 50 20 0.7 1.003 1.097 3.15  Benzolphthoranthene 1 0 1.458 54.51 50 20 0.7 1.003 1.097 3.15  Benzolphthoranthene 1 0 1.458 54.51 50 20 0.7 1.007 1.009 0.00  Dibenzola,la]nthracene 1 0 1.587 54.01 50 20 0.7 1.095 1.099 0.00  Dibenzola,la]nthracene 1 0 1.587 54.01 50 20 0.7 1.095 1.099 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |              | •    |       |                                        |             | 20          | 0.01                                  | 0.126         |                                       |             |
| 2,4,6-Tribromophenol         1         0         S         9.09         51.86         50         ***         0.096         3.72           1,2-Diphenylhydrazine         1         0         9.00         51.21         50         ***         0.641         0.666         2.42           4-Bromophenyl-phenylether         1         0         9.34         50.54         50         20         0.1         0.208         1.09           Hexachlorophenol         1         0         9.68         55.34         50         ***         0.05         0.227         0.318         10.68           Pentachlorophenol         1         0         9.61         48.97         50         20         0.05         0.146         0.143         2.06           Phenanthrene         1         0         9.85         49.90         50         20         0.7         1.063         1.061         0.20           Anthracene         1         0         10.07         52.47         50         20         0.01         0.962         1.010         4.93           Di-n-butylphthalate         1         0         10.45         49.45         50         20         0.6         1.130         1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |      |       |                                        |             |             |                                       |               |                                       |             |
| 1,2-Diphenylhydrazine 1 0 9.00 51.21 50 ** 0.641 0.656 2.42 4-Bromophenyl-phenylether 1 0 9.34 50.54 50 20 0.1 0.206 0.208 1.09 Hexachlorobenzene 1 0 9.41 48.46 50 20 0.1 0.229 0.222 3.08 N-Octadecane 1 0 9.68 55.34 50 ** 0.05 0.287 0.318 10.68 Pentachlorophenol 1 0 9.68 55.34 50 ** 0.05 0.287 0.318 10.68 Pentachlorophenol 1 0 9.61 48.97 50 20 0.05 0.146 0.143 2.06 Phenanthrene 1 0 9.85 49.90 50 20 0.7 1.063 1.061 0.20 Anthracene 1 0 9.90 50.88 50 20 0.7 1.063 1.061 0.20 Anthracene 1 0 10.07 52.47 50 20 0.07 1.063 1.061 1.76 Carbazole 1 0 10.07 52.47 50 20 0.01 0.962 1.010 4.83 Di-n-butylphthalate 1 0 10.45 49.45 50 20 0.01 0.987 1.130 1.11 Fluoranthene 1 0 11.18 52.88 50 20 0.6 1.134 1.200 5.76 Chrysene-d12 1 0 1 1.288 40.00 40 ** 0.000 0.00 Pyrene 1 0 11.45 52.12 50 20 0.6 1.179 1.229 4.24 Benzidine 1 0 11.57 50.17 ** 0.582 0.611 4.89 4.4-DDE 1 0 11.57 50.17 ** 0.584 0.443 Di-n-butylphthalate 1 0 11.57 50.17 ** 0.584 0.443 Di-n-butylphthalate 1 0 12.22 49.60 50 20 0.01 0.43 0.489 0.81 4.4-DDT 1 0 12.84 48.20 50 20 0.01 0.375 0.399 3.59 Benzo[a]anthracene 1 0 12.87 52.03 50 20 0.01 0.375 0.399 3.59 Benzo[a]anthracene 1 0 12.87 52.03 50 20 0.01 0.375 0.399 3.59 Benzo[a]anthracene 1 0 12.91 50.14 50 20 0.7 1.061 1.107 0.27 bis(2-Ethylhexyl)phthalate 1 0 12.91 49.86 50 20 0.7 1.041 1.107 0.27 bis(2-Ethylhexyl)phthalate 1 0 12.91 49.86 50 20 0.7 1.041 1.107 0.27 bis(2-Ethylhexyl)phthalate 1 0 14.51 40.00 40 ** 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •    |              | 9    |       |                                        |             |             | 0.01                                  |               |                                       |             |
| 4-Bromophenyl-phenylether         1         0         9.34         50.54         50         20         0.1         0.208         1.09           Hexachlorobenzene         1         0         9.41         48.46         50         20         0.1         0.229         0.222         3.08           N-Octadecane         1         0         9.68         55.34         50         "         0.05         0.287         0.318         10.68           Pentachlorophenol         1         0         9.61         48.97         50         20         0.05         0.143         2.06           Phenanthrene         1         0         9.90         50.88         50         20         0.7         1.063         1.061         0.20           Anthracene         1         0         10.07         52.47         50         20         0.01         0.962         1.010         4.93           Di-n-butylphthalate         1         0         10.45         49.45         50         20         0.01         0.987         1.130         1.11           Fluoranthene         1         0         11.145         52.12         50         20         0.6         1.134         1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |              | J    |       |                                        |             | **          |                                       |               |                                       |             |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |              |      |       |                                        |             |             | 0.1                                   |               |                                       |             |
| N-Octadecane 1 0 9.68 55.34 50 ** 0.05 0.287 0.318 10.68 Pentachlorophenol 1 0 9.61 48.97 50 20 0.05 0.146 0.143 2.06 Phenanthrene 1 0 9.85 49.90 50 20 0.7 1.063 1.061 0.20 Anthracene 1 0 9.90 50.88 50 20 0.7 1.063 1.061 1.76 Carbazole 1 0 10.07 52.47 50 20 0.01 0.962 1.010 4.93 Di-n-butylphthalate 1 0 10.45 49.45 50 20 0.01 0.987 1.130 1.11 Fluoranthene 1 0 11.18 52.88 50 20 0.6 1.134 1.200 5.76 Chrysene-d12 1 0 1 12.88 40.00 40 ** 0.000 0.00 Pyrene 1 0 11.45 52.12 50 20 0.6 1.134 1.200 5.76 Chrysene-d12 1 0 1 11.45 52.12 50 20 0.6 1.77 1.229 4.24 Benzidine 1 0 11.33 45.72 50 ** 0.577 0.564 8.56 Terphenyl-d14 1 0 \$11.57 50.17 ** 0.577 0.564 8.56 Terphenyl-d14 1 0 11.96 53.69 ** 0.443 Butylbenzylphthalate 1 0 12.22 49.60 50 20 0.0 10.43 0.489 0.81 4.4'-DDT 1 0 12.84 48.20 50 20 0.0 10.375 0.399 3.59 Benzo[a]anthracene 1 0 12.87 52.03 50 20 0.7 1.004 1.177 4.06 Chrysene-d12 1 0 12.81 48.20 50 20 0.7 1.004 1.177 4.06 Chrysene 1 0 12.91 50.14 50 20 0.7 1.004 1.107 0.27 bis(2-Ethylhexyl)phthalate 1 0 12.91 49.86 50 20 0.7 1.004 1.107 0.27 bis(2-Ethylhexyl)phthalate 1 0 12.91 49.86 50 20 0.7 1.004 1.107 0.27 bis(2-Ethylhexyl)phthalate 1 0 13.66 48.58 50 20 0.7 1.004 1.126 8.15 Benzo[b]fluoranthene 1 0 14.08 54.07 50 20 0.7 1.004 1.126 8.15 Benzo[b]fluoranthene 1 0 14.45 54.51 50 20 0.7 1.004 1.126 8.15 Benzo[b]fluoranthene 1 0 14.45 54.51 50 20 0.7 1.006 1.039 7.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •    |              |      |       |                                        |             |             |                                       |               |                                       |             |
| Pentachlorophenol         1         0         9.61         48.97         50         20         0.05         0.143         2.06           Phenanthrene         1         0         9.85         49.90         50         20         0.7         1.063         1.061         0.20           Anthracene         1         0         9.90         50.88         50         20         0.7         1.063         1.081         1.76           Carbazole         1         0         10.07         52.47         50         20         0.01         0.982         1.010         4.93           Din-butylphthalate         1         0         10.45         49.45         50         20         0.01         0.987         1.130         1.11           Fluoranthene         1         0         11.18         52.88         50         20         0.6         1.134         1.200         576           Chrysene-d12         1         0         11.45         52.12         50         20         0.6         1.179         1.229         4.24           Benzidine         1         0         11.33         45.72         50         20         0.6         1.179         1.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |      |       |                                        |             |             |                                       |               |                                       |             |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •    | -            |      |       |                                        |             |             |                                       |               |                                       |             |
| Anthracene 1 0 9.90 50.88 50 20 0.7 1.063 1.081 1.76 Carbazole 1 0 10.07 52.47 50 20 0.01 0.962 1.010 4.93 Di-n-butylphthalate 1 0 10.45 49.45 50 20 0.01 0.962 1.010 4.93 Di-n-butylphthalate 1 0 11.18 52.88 50 20 0.6 1.134 1.200 5.76 Chrysene-d12 1 0 1 12.88 40.00 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |              |      |       |                                        |             |             |                                       |               |                                       |             |
| Carbazole         1         0         10.07         52.47         50         20         0.01         0.962         1.010         4.93           Di-n-butylphthalate         1         0         10.45         49.45         50         20         0.01         0.987         1.130         1.11           Fluoranthene         1         0         11.18         52.88         50         20         0.6         1.134         1.200         5.76           Chrysene-d12         1         0         1 2.88         40.00         40         "         0.000         0.000         0.00           Pyrene         1         0         11.45         52.12         50         20         0.6         1.179         1.229         4.24           Benzidine         1         0         11.33         45.72         50         *         0.577         0.564         8.56           Terphenyl-d14         1         0         11.57         50.17         "         0.320         0.611         4.89           4,4-DDE         1         0         11.96         53.69         "         0.0443         0.489         0.81           Butylbenzylphthalate         1         0 </td <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |              |      |       |                                        |             |             |                                       |               |                                       |             |
| Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |              |      |       |                                        |             |             |                                       |               |                                       |             |
| Fluoranthene         1         0         11.18         52.88         50         20         0.6         1.134         1.200         5.76           Chrysene-d12         1         0         1         12.88         40.00         40         ***         0.000         0.00           Pyrene         1         0         11.45         52.12         50         20         0.6         1.179         1.229         4.24           Benzidine         1         0         11.33         45.72         50         ***         0.577         0.564         8.56           Terphenyl-d14         1         0         S         11.62         26.22         25         ***         0.582         0.611         4.89           4,4*-DDE         1         0         11.96         53.69         ***         0.320         4.4*-DDT         4.4*-DDT         1         0         12.22         49.60         50         20         0.01         0.433         0.489         0.81           3,3*-Dichlorobenzidine         1         0         12.32         52.53         ***         0.549         1.177         4.06           Chrysene         1         0         12.87         52.03 <td>the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>· · · · · ·</td> | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 1    |              |      |       |                                        |             |             |                                       |               | · · · · · · · · · · · · · · · · · · · | · · · · · · |
| Chrysene-d12         1         0         I         12.88         40.00         40         ***         0.000         0.00           Pyrene         1         0         11.45         52.12         50         20         0.6         1.179         1.229         4.24           Benzidine         1         0         11.33         45.72         50         ***         0.577         0.564         8.56           Terphenyl-d14         1         0         \$11.62         26.22         25         ***         0.582         0.611         4.89           4,4'-DDE         1         0         11.96         53.69         ***         0.320         4.49           4,4'-DDT         1         0         12.22         49.60         50         20         0.01         0.433         0.489         0.81           4,4'-DDT         1         0         12.32         52.53         ***         0.549         0.81           Benzo(a)anthracene         1         0         12.84         48.20         50         20         0.01         0.375         0.399         3.59           Benzo(a)anthracene         1         0         12.91         49.86         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |              |      |       |                                        |             |             |                                       |               |                                       |             |
| Pyrene         1         0         11.45         52.12         50         20         0.6         1.179         1.229         4.24           Benzidine         1         0         11.33         45.72         50         **         0.577         0.564         8.56           Terphenyl-d14         1         0         \$11.62         26.22         25         **         0.582         0.611         4.89           4,4'-DDE         1         0         \$11.57         50.17         **         0.320         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.444         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443         0.443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |              |      |       |                                        |             |             | 0.6                                   | 1.134         |                                       |             |
| Benzidine         1         0         11.33         45.72         50         **         0.577         0.564         8.56           Terphenyl-d14         1         0         \$ 11.62         26.22         25         **         0.582         0.611         4.89           4,4'-DDE         1         0         11.57         50.17         **         0.320         **           4,4'-DDD         1         0         11.96         53.69         **         0.443         **           Butylbenzylphthalate         1         0         12.22         49.60         50         20         0.01         0.433         0.489         0.81           4,4'-DDT         1         0         12.32         52.53         **         0.549         **           3,3'-Dichlorobenzidine         1         0         12.84         48.20         50         20         0.01         0.375         0.399         3.59           Benzo[a]anthracene         1         0         12.87         52.03         50         20         0.8         1.132         1.177         4.06           Chrysene         1         0         12.91         49.86         50         20         0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |              | 1    |       |                                        |             |             |                                       |               |                                       |             |
| Terphenyl-d14 1 0 S 11.62 26.22 25 ** 0.582 0.611 4.89 4,4'-DDE 1 0 11.57 50.17 ** 0.320 4,4'-DDD 1 0 11.96 53.69 ** 0.443  Butylbenzylphthalate 1 0 12.22 49.60 50 20 0.01 0.433 0.489 0.81 4,4'-DDT 1 0 12.32 52.53 ** 0.549 3,3'-Dichlorobenzidine 1 0 12.84 48.20 50 20 0.01 0.375 0.399 3.59  Benzo[a]anthracene 1 0 12.87 52.03 50 20 0.8 1.132 1.177 4.06 Chrysene 1 0 12.91 50.14 50 20 0.7 1.104 1.107 0.27 bis(2-Ethylhexyl)phthalate 1 0 12.91 49.86 50 20 0.01 0.590 0.677 0.28 Perylene-d12 1 0 1 14.51 40.00 40 ** 0.000 0.00  Di-n-octylphthalate 1 0 13.66 48.58 50 20 0.01 0.907 1.082 2.85  Benzo[b]fluoranthene 1 0 14.08 54.07 50 20 0.7 1.041 1.126 8.15 Benzo[a]pyrene 1 0 14.45 54.51 50 20 0.7 0.936 1.020 9.02 Indeno[1,2,3-cd]pyrene 1 0 15.87 54.01 50 20 0.5 1.157 1.249 8.02 Dibenzo[a,h]anthracene 1 0 15.89 53.77 50 20 0.4 0.966 1.039 7.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •    |              |      |       |                                        |             |             | 0.6                                   |               |                                       |             |
| 4,4'-DDE       1       0       11.57       50.17       ** 0.320         4,4'-DDD       1       0       11.96       53.69       ** 0.443         Butylbenzylphthalate       1       0       12.22       49.60       50       20       0.01       0.433       0.489       0.81         4,4'-DDT       1       0       12.32       52.53       ** 0.549       0.549       **         3,3'-Dichlorobenzidine       1       0       12.84       48.20       50       20       0.01       0.375       0.399       3.59         Benzo[a]anthracene       1       0       12.87       52.03       50       20       0.01       0.375       0.399       3.59         Benzo[a]anthracene       1       0       12.87       52.03       50       20       0.0       1.104       1.107       0.27         Chrysene       1       0       12.91       50.14       50       20       0.7       1.104       1.107       0.27         bis(2-Ethylhexyl)phthalate       1       0       14.51       40.00       40       **       0.000       0.00       0.00         Din-octylphthalate       1       0       13.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |              |      |       |                                        |             |             |                                       |               |                                       |             |
| 4,4'-DDD       1       0       11.96       53.69       ** 0.443         Butylbenzylphthalate       1       0       12.22       49.60       50       20       0.01       0.433       0.489       0.81         4,4'-DDT       1       0       12.32       52.53       ** 0.549       0.549         3,3'-Dichlorobenzidine       1       0       12.84       48.20       50       20       0.01       0.375       0.399       3.59         Benzo[a]anthracene       1       0       12.87       52.03       50       20       0.8       1.132       1.177       4.06         Chrysene       1       0       12.91       50.14       50       20       0.7       1.104       1.107       0.27         bis(2-Ethylhexyl)phthalate       1       0       12.91       49.86       50       20       0.01       0.590       0.677       0.28         Perylene-d12       1       0       14.51       40.00       40       **       0.000       0.00         Di-n-octylphthalate       1       0       13.66       48.58       50       20       0.7       1.041       1.126       8.15         Benzo[b]fluoranthene <td></td> <td>1</td> <td></td> <td>S</td> <td></td> <td></td> <td>25</td> <td></td> <td></td> <td></td> <td>0.611</td> <td>4.89</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |              | S    |       |                                        | 25          |             |                                       |               | 0.611                                 | 4.89        |
| Butylbenzylphthalate       1       0       12.22       49.60       50       20       0.01       0.433       0.489       0.81         4,4'-DDT       1       0       12.32       52.53       ***       0.549       0.549         3,3'-Dichlorobenzidine       1       0       12.84       48.20       50       20       0.01       0.375       0.399       3.59         Benzo[a]anthracene       1       0       12.87       52.03       50       20       0.8       1.132       1.177       4.06         Chrysene       1       0       12.91       50.14       50       20       0.7       1.104       1.107       0.27         bis(2-Ethylhexyl)phthalate       1       0       12.91       49.86       50       20       0.01       0.590       0.677       0.28         Perylene-d12       1       0       1       14.51       40.00       40       ***       0.000       0.00         Di-n-octylphthalate       1       0       13.66       48.58       50       20       0.01       0.907       1.082       2.85         Benzo[b]fluoranthene       1       0       14.08       54.07       50       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |              |      |       |                                        |             |             |                                       |               |                                       |             |
| 4,4'-DDT       1       0       12.32       52.53       ***       0.549         3,3'-Dichlorobenzidine       1       0       12.84       48.20       50       20       0.01       0.375       0.399       3.59         Benzo[a]anthracene       1       0       12.87       52.03       50       20       0.8       1.132       1.177       4.06         Chrysene       1       0       12.91       50.14       50       20       0.7       1.104       1.107       0.27         bis(2-Ethylhexyl)phthalate       1       0       12.91       49.86       50       20       0.01       0.590       0.677       0.28         Perylene-d12       1       0       1       14.51       40.00       40       ***       0.000       0.00         Di-n-octylphthalate       1       0       13.66       48.58       50       20       0.01       0.907       1.082       2.85         Benzo[b]fluoranthene       1       0       14.08       54.07       50       20       0.7       1.041       1.126       8.15         Benzo[k]fluoranthene       1       0       14.45       54.51       50       20       0.7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |      |       |                                        |             |             |                                       |               |                                       |             |
| 3,3'-Dichlorobenzidine 1 0 12.84 48.20 50 20 0.01 0.375 0.399 3.59  Benzo[a]anthracene 1 0 12.87 52.03 50 20 0.8 1.132 1.177 4.06  Chrysene 1 0 12.91 50.14 50 20 0.7 1.104 1.107 0.27  bis(2-Ethylhexyl)phthalate 1 0 12.91 49.86 50 20 0.01 0.590 0.677 0.28  Perylene-d12 1 0 14.51 40.00 40 ** 0.000 0.00  Di-n-octylphthalate 1 0 13.66 48.58 50 20 0.01 0.907 1.082 2.85  Benzo[b]fluoranthene 1 0 14.08 54.07 50 20 0.7 1.041 1.126 8.15  Benzo[k]fluoranthene 1 0 14.12 51.57 50 20 0.7 1.063 1.097 3.15  Benzo[a]pyrene 1 0 14.45 54.51 50 20 0.5 1.157 1.249 8.02  Dibenzo[a,h]anthracene 1 0 15.89 53.77 50 20 0.4 0.966 1.039 7.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |              |      |       |                                        | 50          |             | 0.01                                  |               | 0.489                                 | 0.81        |
| Benzo[a]anthracene         1         0         12.87         52.03         50         20         0.8         1.132         1.177         4.06           Chrysene         1         0         12.91         50.14         50         20         0.7         1.104         1.107         0.27           bis(2-Ethylhexyl)phthalate         1         0         12.91         49.86         50         20         0.01         0.590         0.677         0.28           Perylene-d12         1         0         1         14.51         40.00         40         **         0.000         0.00           Di-n-octylphthalate         1         0         13.66         48.58         50         20         0.01         0.907         1.082         2.85           Benzo[b]fluoranthene         1         0         14.08         54.07         50         20         0.7         1.041         1.126         8.15           Benzo[k]fluoranthene         1         0         14.12         51.57         50         20         0.7         1.063         1.097         3.15           Benzo[a]pyrene         1         0         15.87         54.01         50         20         0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and an array of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1    |              |      |       |                                        |             |             |                                       |               |                                       |             |
| Chrysene       1       0       12.91       50.14       50       20       0.7       1.104       1.107       0.27         bis(2-Ethylhexyl)phthalate       1       0       12.91       49.86       50       20       0.01       0.590       0.677       0.28         Perylene-d12       1       0       I 4.51       40.00       40       **       0.000       0.00         Di-n-octylphthalate       1       0       13.66       48.58       50       20       0.01       0.907       1.082       2.85         Benzo[b]fluoranthene       1       0       14.08       54.07       50       20       0.7       1.041       1.126       8.15         Benzo[k]fluoranthene       1       0       14.12       51.57       50       20       0.7       1.063       1.097       3.15         Benzo[a]pyrene       1       0       14.45       54.51       50       20       0.7       0.936       1.020       9.02         Indeno[1,2,3-cd]pyrene       1       0       15.87       54.01       50       20       0.5       1.157       1.249       8.02         Dibenzo[a,h]anthracene       1       0       15.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    | 0            |      | 12.84 | 48.20                                  | 50          | 20          | 0.01                                  | 0.375         | 0.399                                 |             |
| bis(2-Ethylhexyl)phthalate         1         0         12.91         49.86         50         20         0.01         0.590         0.677         0.28           Perylene-d12         1         0         I         14.51         40.00         40         **         0.000         0.00           Di-n-octylphthalate         1         0         13.66         48.58         50         20         0.01         0.907         1.082         2.85           Benzo[b]fluoranthene         1         0         14.08         54.07         50         20         0.7         1.041         1.126         8.15           Benzo[k]fluoranthene         1         0         14.12         51.57         50         20         0.7         1.063         1.097         3.15           Benzo[a]pyrene         1         0         14.45         54.51         50         20         0.7         0.936         1.020         9.02           Indeno[1,2,3-cd]pyrene         1         0         15.87         54.01         50         20         0.5         1.157         1.249         8.02           Dibenzo[a,h]anthracene         1         0         15.89         53.77         50         20 <td< td=""><td>Benzo[a]anthracene</td><td>1</td><td>0</td><td></td><td>12.87</td><td>52.03</td><td>50</td><td>20</td><td>0.8</td><td>1.132</td><td>1.177</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Benzo[a]anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    | 0            |      | 12.87 | 52.03                                  | 50          | 20          | 0.8                                   | 1.132         | 1.177                                 |             |
| Perylene-d12         1         0         I         14.51         40.00         40         **         0.000         0.00           Di-n-octylphthalate         1         0         13.66         48.58         50         20         0.01         0.907         1.082         2.85           Benzo[b]fluoranthene         1         0         14.08         54.07         50         20         0.7         1.041         1.126         8.15           Benzo[k]fluoranthene         1         0         14.12         51.57         50         20         0.7         1.063         1.097         3.15           Benzo[a]pyrene         1         0         14.45         54.51         50         20         0.7         0.936         1.020         9.02           Indeno[1,2,3-cd]pyrene         1         0         15.87         54.01         50         20         0.5         1.157         1.249         8.02           Dibenzo[a,h]anthracene         1         0         15.89         53.77         50         20         0.4         0.966         1.039         7.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1    | 0            |      | 12.91 | 50.14                                  | 50          | 20          | 0.7                                   | 1.104         | 1.107                                 | 0.27        |
| Di-n-octylphthalate       1       0       13.66       48.58       50       20       0.01       0.907       1.082       2.85         Benzo[b]fluoranthene       1       0       14.08       54.07       50       20       0.7       1.041       1.126       8.15         Benzo[k]fluoranthene       1       0       14.12       51.57       50       20       0.7       1.063       1.097       3.15         Benzo[a]pyrene       1       0       14.45       54.51       50       20       0.7       0.936       1.020       9.02         Indeno[1,2,3-cd]pyrene       1       0       15.87       54.01       50       20       0.5       1.157       1.249       8.02         Dibenzo[a,h]anthracene       1       0       15.89       53.77       50       20       0.4       0.966       1.039       7.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bis(2-Ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1    | 0            |      | 12.91 | 49.86                                  | 50          | 20          | 0.01                                  | 0.590         | 0.677                                 | 0.28        |
| Benzo[b]fluoranthene         1         0         14.08         54.07         50         20         0.7         1.041         1.126         8.15           Benzo[k]fluoranthene         1         0         14.12         51.57         50         20         0.7         1.063         1.097         3.15           Benzo[a]pyrene         1         0         14.45         54.51         50         20         0.7         0.936         1.020         9.02           Indeno[1,2,3-cd]pyrene         1         0         15.87         54.01         50         20         0.5         1.157         1.249         8.02           Dibenzo[a,h]anthracene         1         0         15.89         53.77         50         20         0.4         0.966         1.039         7.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Perylene-d12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ 1  | 0            |      | 14.51 | 40.00                                  | 40          | **          |                                       |               | 0.000                                 | 0.00        |
| Benzo[k]fluoranthene         1         0         14.12         51.57         50         20         0.7         1.063         1.097         3.15           Benzo[a]pyrene         1         0         14.45         54.51         50         20         0.7         0.936         1.020         9.02           Indeno[1,2,3-cd]pyrene         1         0         15.87         54.01         50         20         0.5         1.157         1.249         8.02           Dibenzo[a,h]anthracene         1         0         15.89         53.77         50         20         0.4         0.966         1.039         7.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Di-n-octylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1    | 0            |      | 13.66 | 48.58                                  | 50          | 20          | 0.01                                  | 0.907         | 1.082                                 | 2.85        |
| Benzo[a]pyrene         1         0         14.45         54.51         50         20         0.7         0.936         1.020         9.02           Indeno[1,2,3-cd]pyrene         1         0         15.87         54.01         50         20         0.5         1.157         1.249         8.02           Dibenzo[a,h]anthracene         1         0         15.89         53.77         50         20         0.4         0.966         1.039         7.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzo[b]fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    | 0            |      | 14.08 | 54.07                                  | 50          | 20          | 0.7                                   | 1.041         | 1.126                                 | 8.15        |
| Indeno[1,2,3-cd]pyrene         1         0         15.87         54.01         50         20         0.5         1.157         1.249         8.02           Dibenzo[a,h]anthracene         1         0         15.89         53.77         50         20         0.4         0.966         1.039         7.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Benzo[k]fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    | 0            |      | 14.12 | 51.57                                  | 50          | 20          | 0.7                                   | 1.063         | 1.097                                 | 3.15        |
| Dibenzo[a,h]anthracene 1 0 15.89 53.77 50 20 0.4 0.966 1.039 7.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzo[a]pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1    | 0            |      | 14.45 | 54.51                                  | 50          | 20          | 0.7                                   | 0.936         | 1.020                                 | 9.02        |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Indeno[1,2,3-cd]pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1    | 0            |      | 15.87 | 54.01                                  | 50          | 20          | _0.5                                  | 1.157         | 1.249                                 | 8.02        |
| Benzo[g,h,i]perylene 1 0 16.27 53.56 50 20 0.5 0.954 1.022 7.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dibenzo[a,h]anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1    | 0            |      | 15.89 | 53.77                                  | 50          | 20          | 0.4                                   | 0.966         | 1.039                                 | 7.54        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzo[g,h,i]perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    | 0            |      | 16.27 | 53.56                                  | 50          | 20          | 0.5                                   | 0.954         | 1.022                                 | 7.12        |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

1-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 8:27:00 A Data File: 9M101545.D Method: EPA 8270E Instrument: GCMS 9

| TxtCompd:                      | Co# | Multi<br>Num | Туре | RT   | Conc | Conc<br>Exp | Lo MIN<br>Lim RF | l Initial<br>RF | RF    | %Diff Flag |
|--------------------------------|-----|--------------|------|------|------|-------------|------------------|-----------------|-------|------------|
| Diaminotoluene Dihydrochloride | 1   | 100          |      | 0.00 | 0.00 | 50          | **               |                 | 0.000 | 100.00     |
| Dimethylnaphthalenes (Total)   | 1   | 100          |      | 0.00 | 0.00 | 50          | **               | 0.906           | 0.000 | 100.00     |
| Toluene Diisocyanate           | 1   | 100          |      | 0.00 | 0.00 | 50          | **               |                 | 0.000 | 100.00     |
| 1,4-Dioxane-d8                 | 1   | 100          |      | 0.00 | 0.00 | 40          | **               |                 | 0.000 | 100.00     |
| Methylnaphthalenes (Total)     | 1   | 100          |      | 0.00 | 0.00 | 100         | **               | 0.681           | 0.000 | 100.00     |
| Methoxychlor                   | 1   | 100          |      | 0.00 | 0.00 | 10          | **               |                 | 0.000 | 100.00     |
| Heptachlor epoxide             | 1   | 100          |      | 0.00 | 0.00 | 10          | **               |                 | 0.000 | 100.00     |
| Heptachlor                     | 1   | 100          |      | 0.00 | 0.00 | 10          | **               |                 | 0.000 | 100.00     |
| gamma-BHC                      | 1   | 100          |      | 0.00 | 0.00 | 10          | **               |                 | 0.000 | 100.00     |
| 1,4-Dioxane-d8-Surro           | 1   | 100          |      | 0.00 | 0.00 | 40          | **               |                 | 0.000 | 100.00     |
| 2,2'-oxybis-(1-Chloropropane)  | 1   | 100          |      | 0.00 | 0.00 | 50          | **               |                 | 0.000 | 100.00     |
| 4-Methylphenol                 | 1   | 100          |      | 0.00 | 0.00 | 50          | ** (             | 0.6             | 0.000 | 100.00     |
| 2,4 Diaminotoluene             | 1   | 100          |      | 0.00 | 0.00 | 50          | **               |                 | 0.000 | 100.00     |
| Endrin                         | 1   | 100          |      | 0.00 | 0.00 | 50          | **               |                 | 0.000 | 100.00     |

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 2:57:00 P Data File: 7M109898.D Method: EPA 8270E Instrument: GCMS 7

| TxtCompd:                   | Col#          | Multi<br>Num                          | Туре | RT   | Conc   | Conc<br>Exp | Lo I<br>Lim | MIN<br>RF       | Initial<br>RF | RF    | %Diff Flag |
|-----------------------------|---------------|---------------------------------------|------|------|--------|-------------|-------------|-----------------|---------------|-------|------------|
| ,4-Dioxane-d8(INT)          | 1             | 0                                     | 1    | 2.70 | 40.00  | 40          | **          |                 |               | 0.000 | 0.00       |
| ,4-Dioxane                  | 1             | 0                                     |      | 2.75 | 47.35  | 50          | **          |                 | 1.035         | 0.980 | 5.30       |
| Pyridine                    | 1             | 0                                     |      | 3.23 | 50.92  | 50          | **          |                 | 2.335         | 2.378 | 1.84       |
| I-Nitrosodimethylamine      | 1             | 0                                     |      | 3.16 | 56.84  | 50          | **          |                 | 1.466         | 1.667 | 13.68      |
| ?-Fluorophenol              | 1             | 0                                     | S    | 4.73 | 51.07  | 50          | **          |                 | 2.355         | 2.406 | 2.14       |
| Benzaldehyde                | 1             | 0                                     |      | 5.52 | 51.88  | 50          | 20          | 0.01            | 2.298         | 2.385 | 3.76       |
| Aniline                     | 1             | 0                                     |      | 5.62 | 50.77  | 50          | **          |                 | 3.788         | 3.846 | 1.54       |
| Pentachloroethane           | 1             | 0                                     |      | 5.66 | 49.88  | 50          | **          | 0.05            | 0.836         | 0.834 | 0.23       |
| ois(2-Chloroethyl)ether     | 1             | 0                                     |      | 5.67 | 54.14  | 50          | 20          | 0.7             | 2.509         | 2.654 | 8.28       |
| Phenol-d5                   | 1             | 0                                     | s    | 5.59 | 54.29  | 50          | **          |                 | 2.830         | 3.073 | 8.59       |
| Phenol                      | 1             | 0                                     |      | 5.60 | 54.00  | 50          | 20          | 0.8             | 3.460         | 3.737 | 8.00       |
| 2-Chlorophenol              | 1             | 0                                     |      | 5.72 | 50.77  | 50          | 20          | 0.8             | 2.749         | 2.792 | 1.54       |
| N-Decane                    | 1             | 0                                     |      | 5.76 | 57.56  | 50          | **          | 0.05            | 1.917         | 2.207 | 15.11      |
| ,3-Dichlorobenzene          | 1             | 0                                     |      | 5.85 | 48.88  | 50          | **          |                 | 2.994         | 2.927 | 2.25       |
| ,4-Dichlorobenzene-d4       | 1             | 0                                     | 1    | 5.90 | 40.00  | 40          | **          |                 |               | 0.000 | 0.00       |
| ,4-Dichlorobenzene          | 1             | 0                                     |      | 5.91 | 51.31  | 50          | 20          |                 | 1.484         | 1.523 | 2.62       |
| ,2-Dichlorobenzene          | 1             | 0                                     |      | 6.04 | 50.70  | 50          | **          |                 | 1.410         | 1.429 | 1.40       |
| Benzyl alcohol              | 1             | 0                                     |      | 6.01 | 46.64  | 50          | **          |                 | 0.837         | 0.781 | 6.72       |
| ois(2-chloroisopropyl)ether | 1             | 0                                     |      | 6.12 | 63.85  | 50          | 20          | 0.01            | 1.103         | 1.409 | 27.69 C1   |
| 2-Methylphenol              | 1             | 0                                     |      | 6.10 | 55.80  | 50          | 20          |                 | 1.172         | 1.308 | 11.61      |
| Acetophenone                | 1             | 0                                     |      | 6.22 | 55.06  | 50          | 20          |                 | 1.786         | 1.967 | 10.12      |
| lexachloroethane            | 1             | Ö                                     |      | 6.31 | 51.37  | 50          | 20          |                 | 0.571         | 0.587 | 2.73       |
| N-Nitroso-di-n-propylamine  | 1             | Ō                                     |      | 6.22 | 58.08  | 50          | 20          |                 | 0.843         | 0.979 | 16.16      |
| 3&4-Methylphenol            | 1             | Ö                                     |      | 6.22 | 54.50  | 50          | 20          | • • •           | 1.200         | 1.308 | 8.99       |
| Naphthalene-d8              | 1             | Ö                                     | 1    | 6.90 | 40.00  | 40          | **          |                 |               | 0.000 | 0.00       |
| Nitrobenzene-d5             | 1             | 0                                     | S    | 6.34 | 25.64  | 25          | **          |                 | 0.159         | 0.163 | 2.54       |
| Nitrobenzene                | 1             | 0                                     | _    | 6.36 | 53.32  | 50          | 20          | 0.2             | 0.343         | 0.365 | 6.64       |
| sophorone                   | 1             | Ö                                     |      | 6.54 | 54.29  | 50          | 20          |                 | 0.627         | 0.681 | 8.58       |
| 2-Nitrophenol               | 1             | Ö                                     |      | 6.61 | 51.69  | 50          | 20          |                 | 0.195         | 0.202 | 3.38       |
| 2,4-Dimethylphenol          | 1             | Ō                                     |      | 6.63 | 49.52  | 50          | 20          |                 | 0.320         | 0.317 | 0.95       |
| Benzoic Acid                | <u>`</u><br>1 | 0                                     |      | 6.69 | 28.00  | 50          | **          |                 | 0.233         | 0.120 | 44.00      |
| ois(2-Chloroethoxy)methane  | 1             | 0                                     |      | 6.70 | 53.75  | 50          | 20          | 0.3             | 0.383         | 0.412 | 7.49       |
| 2,4-Dichlorophenol          | 1             | Ö                                     |      | 6.79 | 48.30  | 50          | 20          |                 | 0.306         | 0.295 | 3.40       |
| 1,2,4-Trichlorobenzene      | 1             | Ö                                     |      | 6.85 | 47.17  | 50          | **          | Ų. <b>L</b>     | 0.334         | 0.315 | 5.66       |
| Naphthalene                 | 1             | 0                                     |      | 6.92 | 50.19  | 50          | 20          | 0.7             | 1.040         | 1.044 | 0.39       |
| 1-Chloroaniline             | :             |                                       |      | 6.95 | 49.95  | 50          | 20          |                 | 0.418         | 0.418 | 0.11       |
| -lexachlorobutadiene        | 1             | 0                                     |      | 7.01 | 46.28  | 50          | 20          |                 | 0.188         | 0.174 | 7.45       |
| Caprolactam                 | 1             | 0                                     |      | 7.22 | 53.13  | 50          | 20          |                 | 0.118         | 0.174 | 6.25       |
| I-Chloro-3-methylphenol     | 1             | 0                                     |      | 7.32 | 49.67  | 50          | 20          |                 | 0.308         | 0.306 | 0.25       |
| • •                         | 1             | 0                                     |      | 7.45 | 50.74  | 50<br>50    | 20          |                 | 0.702         | 0.712 | 1.48       |
| 2-Methylnaphthalene         | 1             | · · · · · · · · · · · · · · · · · · · |      |      |        |             | **          |                 |               |       |            |
| I-Methylnaphthalene         |               | 0                                     |      | 7.53 | 50.89  | 50          | **          | Ų. <del>4</del> | 0.662         | 0.674 | 1.77       |
| Methylnaphthalenes          | 1             | 0                                     |      | 7.53 | 101.67 | 50<br>50    |             | 0.04            | 005           | 1.387 | 103.33     |
| I,1'-Biphenyl               | 1             | 0                                     |      | 7.83 | 50.24  | 50          | 20          | 0.01            | 0.825         | 0.829 | 0.47       |
| Acenaphthene-d10            | 1             | 0                                     | ı    | 8.35 | 40.00  | 40<br>50    |             | 0.04            | 0.607         | 0.000 | 0.00       |
| ,2,4,5-Tetrachlorobenzene   |               | 0                                     |      | 7.59 | 49.30  | 50          | 20          |                 | 0.627         | 0.619 | 1.39       |
| dexachlorocyclopentadiene   | 1             | 0                                     |      | 7.58 | 32.70  | 50<br>50    | 20          |                 | 0.351         | 0.230 | 34.60 C1   |
| 2,4,6-Trichlorophenol       | 1             | 0                                     |      | 7.68 | 48.79  | 50<br>50    | 20          |                 | 0.417         | 0.407 | 2.42       |
| 2,4,5-Trichlorophenol       | 1             | 0                                     |      | 7.72 | 49.99  | 50<br>25    | 20          | 0.2             | 0.434         | 0.434 | 0.03       |
| 2-Fluorobiphenyl            | 1             | 0                                     | S    | 7.75 | 24.80  | 25          | **          | <b>-</b> -      | 1.334         | 1.323 | 0.81       |
| 2-Chloronaphthalene         | !_            | _ 0                                   |      | 7.86 | 50.95  | 50          | 20          | 0.8             | 1.201         | 1.223 | 1.91       |
| 1,4-Dimethylnaphthalene     | 1             | 0                                     |      | 8.14 | 52.31  | 50          | **          |                 | 0.879         | 0.920 | 4.63       |
| Dimethylnaphthalenes        | 1             | 0                                     |      | 8.14 | 52.31  | 50          | 20          |                 |               | 0.920 | 4.63       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 2:57:00 P Data File: 7M109898.D Method: EPA 8270E Instrument: GCMS 7

| TxtCompd:                  | Col#          | Multi<br>Num | Туре | RT    | Conc          | Conc<br>Exp |    | MIN<br>RF   | Initial<br>RF | RF    | %Diff Flag |
|----------------------------|---------------|--------------|------|-------|---------------|-------------|----|-------------|---------------|-------|------------|
| Diphenyl Ether             | 1             | 0            |      | 7.92  | 51.30         | 50          | ** |             | 0.859         | 0.881 | 2.60       |
| 2-Nitroaniline             | 1             | 0            |      | 7.93  | <b>5</b> 7.17 | 50          | 20 | 0.01        | 0.367         | 0.419 | 14.35      |
| Coumarin                   | 1             | 0            |      | 8.12  | 53.29         |             | ** |             | 0.454         |       |            |
| Acenaphthylene             | 1             | 0            |      | 8.22  | 51.69         | 50          | 20 | 0.9         | 1.762         | 1.821 | 3.37       |
| Dimethylphthalate          | 1             | 0            |      | 8.08  | 51.23         | 50          | 20 | 0.01        | 1.380         | 1.414 | 2.47       |
| 2,6-Dinitrotoluene         | 1             | 0            |      | 8.14  | 53.43         | 50          | 20 | 0.2         | 0.313         | 0.334 | 6.86       |
| Acenaphthene               | 1             | 0            |      | 8.37  | 51.78         | 50          | 20 | 0.9         | 1.171         | 1.213 | 3.56       |
| 3-Nitroaniline             | 1             | 0            |      | 8.29  | 53.18         | 50          | 20 | 0.01        | 0.349         | 0.372 | 6.36       |
| 2,4-Dinitrophenol          | 1             | 0            |      | 8.39  | 50.83         | 50          | 20 | 0.2         | 0.184         | 0.187 | 1.65       |
| Dibenzofuran               | 1             | 0            |      | 8.53  | 50.63         | 50          | 20 | 0.8         | 1.723         | 1.745 | 1.27       |
| 2,4-Dinitrotoluene         | 1             | 0            | _    | 8.50  | 52.93         | 50          | 20 | 0.2         | 0.433         | 0.458 | 5.86       |
| 4-Nitrophenol              | 1             | 0            |      | 8.43  | 44.42         | 50          | 20 | 0.01        | 0.248         | 0.220 | 11.16      |
| 2,3,4,6-Tetrachlorophenol  | 1             | 0            |      | 8.64  | 49.74         | 50          | 20 | 0.01        | 0.376         | 0.374 | 0.52       |
| Fluorene                   | 1             | 0            |      | 8.86  | 52.55         | 50          | 20 | 0.9         | 1.381         | 1.451 | 5.10       |
| 4-Chlorophenyl-phenylether | 1             | 0            |      | 8.84  | 50.22         | 50          | 20 | 0.4         | 0.694         | 0.697 | 0.43       |
| Diethylphthalate           | 1             | 0            |      | 8.72  | 51.76         | 50          | 20 | 0.01        | 1.375         | 1.423 | 3.51       |
| 4-Nitroaniline             | 1             | 0            |      | 8.87  | 54.33         | 50          | 20 | 0.01        | 0.371         | 0.403 | 8.66       |
| Atrazine                   | 1             | 0            |      | 9.50  | 49.65         | 50          | 20 | 0.01        | 0.455         | 0.452 | 0.70       |
| Phenanthrene-d10           | 1             | 0            | 1    | 9.83  | 40.00         | 40          | ** |             |               | 0.000 | 0.00       |
| 4,6-Dinitro-2-methylphenol | 1             | 0            |      | 8.90  | 52.83         | 50          | 20 | 0.01        | 0.133         | 0.141 | 5.66       |
| n-Nitrosodiphenylamine     | 1             | 0            |      | 8.96  | 51.79         | 50          | 20 | 0.01        | 0.622         | 0.644 | 3.58       |
| 2,4,6-Tribromophenol       | 1             | 0            | s    | 9.10  | 48.77         | 50          | ** |             | 0.103         | 0.101 | 2.46       |
| 1,2-Diphenylhydrazine      | 1             | 0            |      | 9.00  | 55.89         | 50          | ** |             | 0.652         | 0.729 | 11.77      |
| 4-Bromophenyl-phenylether  | 1             | 0            |      | 9.34  | 49.37         | 50          | 20 | 0.1         | 0.219         | 0.217 | 1.26       |
| Hexachlorobenzene          | 1             | 0            |      | 9.41  | 48.89         | 50          | 20 |             | 0.234         | 0.229 | 2.22       |
| N-Octadecane               | 1             | 0            |      | 9.68  | 62.13         | 50          | ** |             | 0.299         | 0.372 | 24.27      |
| Pentachlorophenol          | 1             | 0            |      | 9.61  | 40.03         | 50          | 20 |             | 0.154         | 0.124 | 19.94      |
| Phenanthrene               | 1             | 0            |      | 9.85  | 51.01         | 50          | 20 |             | 1.051         | 1.072 | 2.01       |
| Anthracene                 | 1             | 0            |      | 9.91  | 51.24         | 50          | 20 |             | 1.079         | 1.106 | 2.48       |
| Carbazole                  | 1             | 0            |      | 10.08 | 52.38         | 50          | 20 |             | 0.990         | 1.037 | 4.77       |
| Di-n-butylphthalate        | 1             | 0            |      | 10.45 | 52.47         | 50          | 20 |             | 1.212         | 1.272 | 4.95       |
| Fluoranthene               | 1             | 0            |      | 11.19 | 50.54         | 50          | 20 |             | 1.193         | 1.205 | 1.07       |
| Chrysene-d12               | 1             | 0            | 1    | 12.90 | 40.00         | 40          | ** |             |               | 0.000 | 0.00       |
| Pyrene                     | 1             | 0            |      | 11.46 | 52.49         | 50          | 20 | 0.6         | 1.247         | 1.309 | 4.98       |
| Benzidine                  | 1             | 0            |      | 11.34 | 37.81         | 50          | ** |             | 0.737         | 0.558 | 24.38      |
| Terphenyl-d14              | 1             | 0            | S    | 11.64 | 25.60         | 25          | ** |             | 0.637         | 0.652 | 2.38       |
| 4,4'-DDE                   | 1             | 0            |      | 11.58 | 50.43         |             | ** |             | 0.357         |       |            |
| 4,4'-DDD                   | 1             | 0            |      | 11.98 | 52.32         |             | ** |             | 0.515         |       |            |
| Butylbenzylphthalate       | 1             | 0            |      | 12.23 | 53.83         | 50          | 20 | 0.01        | 0.564         | 0.607 | 7.66       |
| 4,4'-DDT                   | 1             | 0            |      | 12.33 | 54.21         |             | ** |             | 0.581         |       |            |
| 3,3'-Dichlorobenzidine     | 1             | 0            |      | 12.86 | 50.72         | 50          | 20 | 0.01        | 0.457         | 0.464 | 1.45       |
| Benzo[a]anthracene         | 1             | 0            |      | 12.89 | 51.12         | 50          | 20 |             | 1.173         | 1.200 | 2.25       |
| Chrysene                   | 1             | 0            |      | 12.93 | 52.82         | 50          | 20 |             | 1.086         | 1.147 | 5.65       |
| bis(2-Ethylhexyl)phthalate | 1             | 0            |      | 12.92 | 55.06         | 50          | 20 |             | 0.757         | 0.833 | 10.13      |
| Perylene-d12               | 1             | 0            | ı    | 14.55 | 40.00         | 40          | ** | <b>-</b> •  | • • • •       | 0.000 | 0.00       |
| Di-n-octylphthalate        |               | 0            |      | 13.67 | 54.24         | 50          | 20 | 0.01        | 1.277         | 1.386 | 8.48       |
| Benzo[b]fluoranthene       | 1             | 0            |      | 14.11 | 50.94         | 50          | 20 |             | 1.130         | 1.151 | 1.87       |
| Benzo[k]fluoranthene       | 1             | o            |      | 14.14 | 50.90         | 50          | 20 |             | 1.059         | 1.078 | 1.80       |
| Benzo[a]pyrene             | 1             | 0            |      | 14.49 | 51.04         | 50          | 20 |             | 1.003         | 1.024 | 2.07       |
| Indeno[1,2,3-cd]pyrene     | 1             | 0            |      | 15.95 | 51.99         | 50          | 20 |             | 1.122         | 1.167 | 3.97       |
| Dibenzo[a,h]anthracene     | <u>!</u><br>1 | 0            |      | 15.97 | 53.27         | 50          | 20 | · · · · — · | 0.937         | 0.999 | 6.54       |
| Benzo[g,h,i]perylene       | 1             | 0            |      | 16.35 | 52.29         | 50<br>50    | 20 |             | 0.933         | 0.976 | 4.58       |
| Pourofairi'ilhei kierie    | •             | U            |      | 10.55 | JL. 23        | 50          | 20 | 0.0         | U. 3JJ        | 0.510 | 7.50       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 2:57:00 P Data File: 7M109898.D Method: EPA 8270E

M109898.D Instrument: GCMS 7

| TxtCompd:                      | Co# | Multi<br>Num | Туре | RT   | Conc | Conc<br>Exp | Lo N<br>Lim F | IIN Initial<br>RF RF | RF    | %Diff Flag |
|--------------------------------|-----|--------------|------|------|------|-------------|---------------|----------------------|-------|------------|
| 1,4-Dioxane-d8-Surro           | 1   | 100          | •    | 0.00 | 0.00 | 40          | WW            |                      | 0.000 | 100.00     |
| Heptachlor                     | 1   | 100          |      | 0.00 | 0.00 | 10          | **            |                      | 0.000 | 100.00     |
| 2,4 Diaminotoluene             | 1   | 100          |      | 0.00 | 0.00 | 50          | **            |                      | 0.000 | 100.00     |
| 2,2'-oxybis-(1-Chloropropane)  | 1   | 100          |      | 0.00 | 0.00 | 50          | **            |                      | 0.000 | 100.00     |
| Methoxychlor                   | 1   | 100          |      | 0.00 | 0.00 | 10          | **            |                      | 0.000 | 100.00     |
| gamma-BHC                      | 1   | 100          |      | 0.00 | 0.00 | 10          | **            |                      | 0.000 | 100.00     |
| Methylnaphthalenes (Total)     | 1   | 100          |      | 0.00 | 0.00 | 100         | **            | 0.682                | 0.000 | 100.00     |
| Endrin                         | 1   | 100          |      | 0.00 | 0.00 | 50          | **            |                      | 0.000 | 100.00     |
| Diaminotoluene Dihydrochloride | 1   | 100          |      | 0.00 | 0.00 | 50          | **            |                      | 0.000 | 100.00     |
| Heptachlor epoxide             | 1   | 100          |      | 0.00 | 0.00 | 10          | **            |                      | 0.000 | 100.00     |
| Dimethylnaphthalenes (Total)   | 1   | 100          |      | 0.00 | 0.00 | 50          | **            | 0.879                | 0.000 | 100.00     |
| Toluene Diisocyanate           | 1   | 100          |      | 0.00 | 0.00 | 50          | **            |                      | 0.000 | 100.00     |
| 4-Methylphenol                 | 1   | 100          |      | 0.00 | 0.00 | 50          | **            | 0.6                  | 0.000 | 100.00     |
| 1,4-Dioxane-d8                 | 1   | 100          |      | 0.00 | 0.00 | 40          | **            |                      | 0.000 | 100.00     |

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/7/2020 3:38:00 P Data File: 7M109935.D Method: EPA 8270E Instrument: GCMS 7

| FxtCompd:                                    | Col#       | Multi<br>Num | Туре | RT                       | Conc           | Conc<br>Exp | Lo I<br>Lim |      | Initial<br>RF | RF    | %Diff  | Flag |
|----------------------------------------------|------------|--------------|------|--------------------------|----------------|-------------|-------------|------|---------------|-------|--------|------|
| ,4-Dioxane-d8(INT)                           | 1          | 0            | ı    | 2.70                     | 40.00          | 40          | **          |      |               | 0.000 | 0.00   |      |
| ,4-Dioxane                                   | 1          | 0            |      | 2.74                     | 49.48          | 50          | **          |      | 1.035         | 1.024 | 1.03   |      |
| Pyridine                                     | 1          | 0            |      | 3.22                     | 52.53          | 50          | **          |      | 2.335         | 2.453 | 5.06   |      |
| N-Nitrosodimethylamine                       | 1          | 0            |      | 3.16                     | 57.83          | 50          | **          |      | 1.466         | 1.696 | 15.66  |      |
| ?-Fluorophenoi                               | 1          | 0            | S    | 4.73                     | 52.92          | 50          | **          |      | 2.355         | 2.493 | 5.85   |      |
| Benzaldehyde                                 | 1          | 0            |      | 5.52                     | 53.46          | 50          | 20          | 0.01 | 2.298         | 2.457 | 6.92   |      |
| Aniline                                      | 1          | 0            |      | 5.62                     | 51.03          | 50          | **          |      | 3.788         | 3.866 | 2.07   |      |
| Pentachloroethane                            | 1          | 0            |      | 5.66                     | 51.86          | 50          | **          | 0.05 | 0.836         | 0.867 | 3.72   |      |
| is(2-Chloroethyl)ether                       | 1          | 0            |      | 5.67                     | 54.90          | 50          | 20          | 0.7  | 2.509         | 2.755 | 9.80   |      |
| Phenol-d5                                    | 1          | 0            | S    | 5.59                     | 55.74          | 50          | **          |      | 2.830         | 3.156 | 11.49  |      |
| Phenol                                       | 1          | 0            |      | 5.60                     | 55.03          | 50          | 20          | 0.8  | 3.460         | 3.808 | 10.07  |      |
| -Chlorophenol                                | 1          | 0            |      | 5.72                     | 52.20          | 50          | 20          | 0.8  | 2.749         | 2.870 | 4.41   |      |
| I-Decane                                     | 1          | 0            |      | 5.76                     | 59.70          | 50          | **          | 0.05 | 1.917         | 2.289 | 19.41  |      |
| ,3-Dichlorobenzene                           | 1          | 0            |      | 5.85                     | 51.13          | 50          | **          |      | 2.994         | 3.062 | 2.27   |      |
| ,4-Dichlorobenzene-d4                        | 1          | 0            | 1    | 5.90                     | 40.00          | 40          | **          |      |               | 0.000 | 0.00   |      |
| ,4-Dichlorobenzene                           | 1          | 0            |      | 5.91                     | 51.99          | 50          | 20          |      | 1.484         | 1.543 | 3.99   |      |
| ,2-Dichlorobenzene                           | 1          | 0            |      | 6.03                     | 52.57          | 50          | **          |      | 1.410         | 1.482 | 5.15   |      |
| Benzyl alcohol                               | 1          | 0            |      | 6.01                     | 48.80          | 50          | **          |      | 0.837         | 0.817 | 2.40   |      |
| is(2-chloroisopropyl)ether                   | 1          | 0            |      | 6.11                     | <b>64</b> .16  | 50          | 20          | 0.01 | 1.103         | 1.416 | 28.33  | C1   |
| -Methylphenol                                | 1          | 0            |      | 6.10                     | 54.77          | 50          | 20          | 0.7  | 1.172         | 1.284 | 9.54   |      |
| cetophenone                                  | 1          | 0            |      | 6.22                     | 54.70          | 50          | 20          | 0.01 | 1.786         | 1.954 | 9.40   |      |
| lexachloroethane                             | 1          | 0            |      | 6.31                     | 51.50          | 50          | 20          | 0.3  | 0.571         | 0.588 | 2.99   |      |
| I-Nitroso-di-n-propylamine                   | 1          | 0            |      | 6.22                     | 57.20          | 50          | 20          | 0.5  | 0.843         | 0.964 | 14.40  |      |
| &4-Methylphenol                              | 1          | 0            |      | 6.22                     | 54.69          | 50          | 20          |      | 1 200         | 1.313 | 9.39   |      |
| laphthalene-d8                               | 1          | 0            | 1    | 6.90                     | 40.00          | 40          | **          |      |               | 0.000 | 0.00   |      |
| litrobenzene-d5                              | 1          | 0            | S    | 6.34                     | 25.65          | 25          | **          |      | 0.159         | 0.163 | 2.60   |      |
| litrobenzene                                 | 1          | 0            |      | 6.35                     | 54.84          | 50          | 20          | 0.2  | 0.343         | 0.376 | 9.67   |      |
| sophorone                                    | 1          | 0            |      | 6.54                     | 56.06          | 50          | 20          |      | 0.627         | 0.703 | 12.11  |      |
| -Nitrophenol                                 | 1          | 0            |      | 6.60                     | 54.37          | 50          | 20          |      | 0.195         | 0.212 | 8.73   |      |
| ,4-Dimethylphenol                            | 1          | 0            |      | 6.63                     | 50.74          | 50          | 20          |      | 0.320         | 0.325 | 1.48   |      |
| Benzoic Acid                                 | 1          | 0            |      | 6.69                     | 39.15          | 50          | **          |      | 0.233         | 0.172 | 21.69  |      |
| is(2-Chloroethoxy)methane                    | 1          | 0            |      | 6.70                     | 55.76          | 50          | 20          | 0.3  | 0.383         | 0.427 | 11.53  |      |
| ,4-Dichlorophenol                            | 1          | 0            |      | 6.79                     | 50.88          | 50          | 20          |      | 0.306         | 0.311 | 1.76   |      |
| .2.4-Trichlorobenzene                        | 1          | 0            |      | 6.85                     | 50.12          | 50          | **          | • -  | 0.334         | 0.335 | 0.23   |      |
| laphthalene                                  | 1          | Ö            |      | 6.91                     | 50.83          | 50          | 20          | 0.7  | 1.040         | 1.057 | 1.65   |      |
| -Chloroaniline                               | 1          | 0            |      | 6.95                     | 51.04          | 50          | 20          |      | 0.418         | 0.427 | 2.07   |      |
| fexachlorobutadiene                          | 1          | Ö            |      | 7.00                     | 48.33          | 50          | 20          |      | 0.188         | 0.182 | 3.34   |      |
| Caprolactam                                  | 1          | Ö            |      | 7.23                     | 53.54          | 50          | 20          |      | 0.118         | 0.127 | 7.07   |      |
| -Chioro-3-methylphenol                       | 1          | Ö            |      | 7.32                     | 51.14          | 50          | 20          |      | 0.308         | 0.315 | 2.27   |      |
| -Methylnaphthalene                           | 1          | 0            |      | 7.45                     | 53.06          | 50          | **          |      | 0.702         | 0.745 | 6.13   |      |
| -Methylnaphthalene                           | <u>-</u> - | - 0          |      | 7.53                     | 53.32          | 50          | **          |      | 0.662         | 0.706 | 6.65   |      |
| Methylnaphthalenes                           | 1          | 0            |      | 7.45                     | 106.43         | 50          | **          | 5.4  | J.502         | 1.452 | 112.86 |      |
| ,1'-Biphenyl                                 | 1          | 0            |      | 7.83                     | 52.26          | 50          | 20          | 0.01 | 0.825         | 0.862 | 4.53   |      |
| cenaphthene-d10                              | 1          | 0            | ı    | 8.35                     | 40.00          | 40          | **          | 0.01 | 7.020         | 0.002 | 0.00   |      |
| ,2,4,5-Tetrachlorobenzene                    | 1          | 0            | •    | 7.59                     | 50.68          | 50          | 20          | 0.01 | 0.627         | 0.636 | 1.36   |      |
| lexachlorocyclopentadiene                    | <u>-</u>   | 0            |      | 7.58                     | 31.53          | 50          | 20          |      | 0.351         | 0.030 | 36.94  |      |
| 4,4,6-Trichlorophenol                        | 1          | 0            |      | 7.68                     | 50.62          | 50          | 20          |      | 0.417         | 0.422 | 1.25   | ٠,   |
|                                              | 1          | 0            |      | 7.72                     | 51.32          | 50          | 20          |      | 0.417         | 0.422 | 2.64   |      |
| 2,4,5-Trichlorophenol                        | 1          | 0            | s    | 7.72<br>7.74             |                |             | 20          | 0.2  | 1.334         | 1.370 | 2.72   |      |
| -Fluorobiphenyl                              | 1          | -            | 3    | 7.7 <del>4</del><br>7.86 | 25.68<br>52.94 | 25<br>50    | 20          | Λ •  | 1.201         | 1.271 | 5.89   |      |
| -Chloronaphthalene<br>,4-Dimethylnaphthalene | 1          | 0            |      | 8.14                     | 54.45          | 50<br>50    |             | 0.0  | 0.879         | 0.957 | 8.89   |      |
|                                              |            |              |      |                          |                |             |             |      |               |       |        |      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

!-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/7/2020 3:38:00 P Data File: 7M109935.D Method: EPA 8270E Instrument: GCMS 7

| TxtCompd:                  | Col# | Multi<br>Num | Туре | RT    | Conc  | Conc<br>Exp |    | NIN<br>RF | Initial<br>RF | RF    | %Diff Flag |
|----------------------------|------|--------------|------|-------|-------|-------------|----|-----------|---------------|-------|------------|
| Diphenyl Ether             | 1    | 0            |      | 7.92  | 52.67 | 50          | ** |           | 0.859         | 0.905 | 5.35       |
| 2-Nitroaniline             | 1    | 0            |      | 7.93  | 57.40 | 50          | 20 | 0.01      | 0.367         | 0.421 | 14.80      |
| Coumarin                   | 1    | 0            |      | 8.12  | 54.90 |             | ** |           | 0.454         |       |            |
| Acenaphthylene             | 1    | 0            |      | 8.22  | 53.60 | 50          | 20 | 0.9       | 1.762         | 1.889 | 7.20       |
| Dimethylphthalate          | 11   | 0            |      | 8.08  | 53.36 | 50          | 20 | 0.01      | 1.380         | 1.473 | 6.72       |
| 2,6-Dinitrotoluene         | 1    | 0            |      | 8.14  | 54.58 | 50          | 20 |           | 0.313         | 0.342 | 9.16       |
| Acenaphthene               | 1    | 0            |      | 8.37  | 54.11 | 50          | 20 | 0.9       | 1.171         | 1.267 | 8.22       |
| 3-Nitroaniline             | 1    | 0            |      | 8.29  | 54.06 | 50          | 20 | 0.01      | 0.349         | 0.378 | 8.12       |
| 2,4-Dinitrophenol          | 1    | 0            |      | 8.39  | 55.75 | 50          | 20 | 0.2       | 0.184         | 0.205 | 11.50      |
| Dibenzofuran               | 1    | 0            |      | 8.53  | 52.10 | 50          | 20 |           | 1.723         | 1.796 | 4.20       |
| 2,4-Dinitrotoluene         | 1    | 0            |      | 8.50  | 55.17 | 50          | 20 | 0.2       | 0.433         | 0.478 | 10.35      |
| 4-Nitrophenol              | 1    | 0            |      | 8.43  | 46.78 | 50          | 20 | 0.01      | 0.248         | 0.232 | 6.44       |
| 2,3,4,6-Tetrachlorophenol  | 1    | 0            |      | 8.64  | 51.56 | 50          | 20 | 0.01      | 0.376         | 0.388 | 3.11       |
| Fluorene                   | 1    | 0            |      | 8.86  | 53.98 | 50          | 20 | 0.9       | 1.381         | 1.490 | 7.95       |
| 4-Chlorophenyl-phenylether | 1    | 0            |      | 8.84  | 52.74 | 50          | 20 | 0.4       | 0.694         | 0.732 | 5.47       |
| Diethylphthalate           | 1    | 0            |      | 8.72  | 53.52 | 50          | 20 | 0.01      | 1.375         | 1.471 | 7.04       |
| 4-Nitroaniline             | 1    | 0            |      | 8.86  | 56.03 | 50          | 20 | 0.01      | 0.371         | 0.416 | 12.06      |
| Atrazine                   | 1    | 0            |      | 9.50  | 50.32 | 50          | 20 | 0.01      | 0.455         | 0.458 | 0.64       |
| Phenanthrene-d10           | 1    | 0            | 1    | 9.83  | 40.00 | 40          | ** |           |               | 0.000 | 0.00       |
| 4,6-Dinitro-2-methylphenol | 1    | 0            |      | 8.90  | 55.37 | 50          | 20 | 0.01      | 0.133         | 0.147 | 10.74      |
| n-Nitrosodiphenylamine     | 1    | 0            |      | 8.96  | 54.49 | 50          | 20 | 0.01      | 0.622         | 0.677 | 8.98       |
| 2,4,6-Tribromophenol       | 1    | 0            | S    | 9.09  | 52.15 | 50          | ** |           | 0.103         | 0.108 | 4.31       |
| 1,2-Diphenylhydrazine      | 1    | 0            |      | 9.00  | 61.91 | 50          | ** |           | 0.652         | 0.807 | 23.81      |
| 4-Bromophenyl-phenylether  | 1    | 0            |      | 9.34  | 53.05 | 50          | 20 | 0.1       | 0.219         | 0.233 | 6.09       |
| Hexachlorobenzene          | 1    | 0            |      | 9.41  | 51.88 | 50          | 20 | 0.1       | 0.234         | 0.243 | 3.76       |
| N-Octadecane               | 1    | 0            |      | 9.67  | 63.99 | 50          | ** | 0.05      | 0.299         | 0.383 | 27.97      |
| Pentachlorophenol          | 1    | 0            |      | 9.61  | 45.02 | 50          | 20 | 0.05      | 0.154         | 0.139 | 9.95       |
| Phenanthrene               | 1    | 0            |      | 9.85  | 53.59 | 50          | 20 | 0.7       | 1.051         | 1.126 | 7.18       |
| Anthracene                 | 1    | 0            |      | 9.91  | 53.80 | 50          | 20 | 0.7       | 1.079         | 1.161 | 7.61       |
| Carbazole                  | 1    | 0            |      | 10.07 | 54.64 | 50          | 20 | 0.01      | 0.990         | 1.081 | 9.28       |
| Di-n-butylphthalate        | 1    | 0            |      | 10.45 | 54.98 | 50          | 20 | 0.01      | 1.212         | 1.333 | 9.96       |
| Fluoranthene               | 1    | 0            |      | 11.19 | 53.09 | 50          | 20 | 0.6       | 1.193         | 1.266 | 6.18       |
| Chrysene-d12               | 1    | 0            | 1    | 12.90 | 40.00 | 40          | ** |           |               | 0.000 | 0.00       |
| Pyrene                     | 1    | 0            |      | 11.46 | 55.02 | 50          | 20 | 0.6       | 1.247         | 1.372 | 10.04      |
| Benzidine                  | 1    | Ō            |      | 11.34 | 43.16 | 50          | ** |           | 0.737         | 0.637 | 13.68      |
| Terphenyl-d14              | 1    | 0            | S    | 11.64 | 26.68 | 25          | ** |           | 0.637         | 0.680 | 6.70       |
| 4,4'-DDE                   | 1    | 0            |      | 11.57 | 53.96 |             | ** |           | 0.357         |       |            |
| 4,4'-DDD                   | 1    | 0            |      | 11.98 | 55.14 |             | ** |           | 0.515         |       |            |
| Butylbenzylphthalate       | 1    | 0            |      | 12.23 | 55.56 | 50          | 20 | 0.01      | 0.564         | 0.627 | 11.13      |
| 4,4'-DDT                   | 1    | 0            |      | 12.33 | 56.71 |             | ** |           | 0.581         |       |            |
| 3,3'-Dichlorobenzidine     | 1    | 0            |      | 12.86 | 52.65 | 50          | 20 | 0.01      | 0.457         | 0.481 | 5.30       |
| Benzo[a]anthracene         | 1    | 0            |      | 12.89 | 52.99 | 50          | 20 |           | 1.173         | 1.243 | 5.98       |
| Chrysene                   | 1    | 0            |      | 12.93 | 55.32 | 50          | 20 |           | 1.086         | 1.201 | 10.63      |
| bis(2-Ethylhexyl)phthalate | 1    | 0            |      | 12.92 | 56.41 | 50          | 20 |           | 0.757         | 0.854 | 12.82      |
| Perylene-d12               | 1    | 0            | 1    | 14.55 | 40.00 | 40          | ** |           |               | 0.000 | 0.00       |
| Di-n-octylphthalate        | 1    | 0            |      | 13.67 | 56.11 | 50          | 20 | 0.01      | 1.277         | 1.433 | 12.22      |
| Benzo[b]fluoranthene       | 1    | 0            |      | 14.12 | 51.09 | 50          | 20 |           | 1.130         | 1.155 | 2.18       |
| Benzo[k]fluoranthene       | 1    | 0            |      | 14.14 | 54.31 | 50          | 20 |           | 1.059         | 1.150 | 8.61       |
| Benzo[a]pyrene             | 1    | 0            |      | 14.49 | 53.68 | 50          | 20 |           | 1.003         | 1.077 | 7.36       |
| Indeno[1,2,3-cd]pyrene     | 1    | 0            |      | 15.95 | 55.85 | 50          | 20 |           | 1.122         | 1.254 | 11.70      |
| Dibenzo[a,h]anthracene     | 1    | 0            |      | 15.97 | 56.33 | 50          | 20 |           | 0.937         | 1.056 | 12.65      |
| Benzo[g,h,i]perylene       | 1    | 0            |      | 16.35 | 55.20 | 50          | 20 |           | 0.933         | 1.030 | 10.41      |
| CONTRACTOR STATE           | -    | -            |      |       |       |             |    |           |               |       |            |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

1-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/7/2020 3:38:00 P Data File: 7M109935.D Method: EPA 8270E

Instrument: GCMS 7

| TxtCompd:                      | Col# | Multi<br>Num | Туре | RT   | Conc | Conc<br>Exp | Lo Mi<br>Lim R |       | RF    | %Diff Flag |
|--------------------------------|------|--------------|------|------|------|-------------|----------------|-------|-------|------------|
| 1,4-Dioxane-d8                 | 1    | 100          |      | 0.00 | 0.00 | 40          | **             |       | 0.000 | 100.00     |
| Toluene Diisocyanate           | 1    | 100          |      | 0.00 | 0.00 | 50          | **             |       | 0.000 | 100.00     |
| 2,2'-oxybis-(1-Chloropropane)  | 1    | 100          |      | 0.00 | 0.00 | 50          | **             |       | 0.000 | 100.00     |
| 1,4-Dioxane-d8-Surro           | 1    | 100          |      | 0.00 | 0.00 | 40          | **             |       | 0.000 | 100.00     |
| 2,4 Diaminotoluene             | 1    | 100          |      | 0.00 | 0.00 | 50          | **             |       | 0.000 | 100.00     |
| Methylnaphthalenes (Total)     | 1    | 100          |      | 0.00 | 0.00 | 100         | **             | 0.682 | 0.000 | 100.00     |
| Methoxychlor                   | 1    | 100          |      | 0.00 | 0.00 | 10          | **             |       | 0.000 | 100.00     |
| Heptachlor epoxide             | 1    | 100          |      | 0.00 | 0.00 | 10          | **             |       | 0.000 | 100.00     |
| Heptachlor                     | 1    | 100          |      | 0.00 | 0.00 | 10          | **             |       | 0.000 | 100.00     |
| gamma-BHC                      | 1    | 100          |      | 0.00 | 0.00 | 10          | **             |       | 0.000 | 100.00     |
| Dimethylnaphthalenes (Total)   | 1    | 100          |      | 0.00 | 0.00 | 50          | **             | 0.879 | 0.000 | 100.00     |
| Diaminotoluene Dihydrochloride | 1    | 100          |      | 0.00 | 0.00 | 50          | **             |       | 0.000 | 100.00     |
| 4-Methylphenol                 | 1    | 100          |      | 0.00 | 0.00 | 50          | **             | 0.6   | 0.000 | 100.00     |
| Endrin                         | 1    | 100          |      | 0.00 | 0.00 | 50          | **             |       | 0.000 | 100.00     |

Page 3 of 3

Eval File Area Limit: Eval File Area/RT

36671-146684

71556-286222 5.4-6.4

267936-1071742

149991-599964 7.85-8.85

295540-1182158

283432-1133726

303332-1213326

14.04-15.04

12.39-13.39

9.33-10.33

591079

9.83 곡

566863

12.89 곡

606663

Area

P 14.54

Area

ಹ

Area

6.4-7.4

2.2-3.2

73342 Area

곡

Eval File Rt Limit

Evaluation Std Data File: 7M109440.D Internal Standard Areas

FORM8

Method: EPA 8270E

Analysis Date/Time: 09/17/20 13:20

2.70 143111 Area 5.90 끅 535871 Area Lab File ID: CAL BNA@50PPM 6.90 RT 299982 Area 8.35 괵

| Data File Sample#         |       |      |        |      |        |      |        |      |        |      |        |       |        |            |
|---------------------------|-------|------|--------|------|--------|------|--------|------|--------|------|--------|-------|--------|------------|
| 7M109432.D CAL BNA@2PPM   | 69531 | 2.70 | 148428 | 5.90 | 561422 | 6.90 | 316478 | 8.35 | 606550 | 9.82 | 573487 | 12.89 | 547194 | 14.53      |
| 7M109433.D CAL BNA@10PPM  | 64785 | 2.70 | 134629 | 5.89 | 507069 | 6.90 | 279139 | 8.35 | 539654 | 9.82 | 514810 | 12.89 | 506378 | 14.53      |
| 7M109434.D CAL BNA@196PPM | 67077 | 2.70 | 128427 | 5.90 | 488036 | 6.91 | 277961 | 8.35 | 551065 | 9.83 | 511721 | 12.90 | 549912 | 14.54      |
| 7M109435.D CAL BNA@160PPM | 67760 | 2.70 | 136063 | 5.90 | 515749 | 6.91 | 291779 | 8.35 | 586013 | 9.83 | 545173 | 12.90 | 587760 | 14.54      |
| <u>ટ</u>                  | 69954 | 2.70 | 139227 | 5.90 | 527795 | 6.90 | 296088 | 8.35 | 589714 | 9.83 | 559462 | 12.90 | 599997 | 14.54      |
| 7M109437.D CAL BNA@80PPM  | 70857 | 2.70 | 145864 | 5.90 | 544080 | 6.91 | 297856 | 8.36 | 591364 | 9.83 | 573376 | 12.89 | 606957 | 14.54      |
| 7M109438.D CAL BNA@20PPM  | 72238 | 2.70 | 147645 | 5.90 | 554057 | 6.90 | 303248 | 8.35 | 586639 | 9.82 | 574202 | 12.89 | 588787 | 14.54      |
| 7M109439.D CAL BNA@0.5PPM | 76478 | 2.70 | 159729 | 5.89 | 603591 | 6.91 | 332270 | 8.35 | 642708 | 9.83 | 623159 | 12.89 | 617986 | 14.56      |
| 7M109440.D CAL BNA@50PPM  | 73342 | 2.70 | 143111 | 5.90 | 535871 | 6.90 | 299982 | 8.35 | 591079 | 9.83 | 566863 | 12.89 | 606663 | 14.54      |
| 7M109441.D ICV BNA@50PPM  | 67053 | 2.70 | 134202 | 5.90 | 503057 | 6.90 | 276686 | 8.35 | 543669 | 9.83 | 533914 | 12.89 | 555170 | 14.54      |
|                           |       |      |        |      |        |      |        |      | i      | !    |        |       |        | :<br> <br> |

| 1 | =            |
|---|--------------|
| 1 | ᅺ            |
| 1 | $\mathbf{x}$ |
| ı | <u>v</u>     |
| ł | 3            |
| ı | 3            |
| ı | œ.           |
| ı | _            |
| ı | 'n           |
| ı | ¥            |
| 1 | 7.           |
| ı | =            |
| ı | _            |
| ı | o.           |
| ı | ᇷ            |
| ı | =            |
| ı | 2            |
| ı | _            |
| ı | •            |
| ı | ,            |
| ı | <u>a</u>     |
| ı | Φ            |
| ı | ໝ            |
| I | ū            |
| ۰ | •            |
|   |              |
|   |              |
|   |              |
|   |              |
|   |              |

11 = 12 = 13 =

1,4-Dichlorobenzene-d4 Naphthalene-d8 1,4-Dioxane-d8(INT)

**4 5 5 8** 

Phenanthrene-d10 Chrysene-d12 Acenaphthene-d10

17 =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration = 5ug/L

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria

5

<u></u> 5

FORM8

Evaluation Std Data File: 9M101321.D Analysis Date/Time: 09/17/20 13:22 Internal Standard Areas

Method: EPA 8270E

# Lab File ID: CAL BNA@50PPM

| 0          |                       | Area         | RT     | Area        | a R          | <b>-</b>    | Area          | RΤ     | Area      | 곡            | ļ.                               | Area          | 꼭      | Area          | 끽      | . <u> </u>  | Area          | Ŗ          |
|------------|-----------------------|--------------|--------|-------------|--------------|-------------|---------------|--------|-----------|--------------|----------------------------------|---------------|--------|---------------|--------|-------------|---------------|------------|
| 93         | Eval File Area/RT:    | 52141        | 2.70   | 97053       | 5.90         |             | 369972        | 6.91   | 193560    | 8.35         | اِ۔. ۔۔<br>ا دم                  | 374543        | 9.82   | 375977        | 12.89  | w           | ļ             | 14.53      |
| 0 0        | Eval File Area Limit: | 26070-104282 | )4282  | 485         | 48526-194106 | 3,          | 184986-739944 | 39944  | 96780-    | 96780-387120 | <br>                             | 187272-749086 | 9086   | 187988-751954 | -75195 | 4           | 193707-774828 | 74828      |
| (          | Eval File Rt Limit    | 2.2-3.2      | .2     |             | 5.4-6.4      | - +         | 6.41-7.41     | .41    | 7.85      | 7.85-8.85    | ! <del> </del><br>! <del> </del> | 9.32-10.32    | 32     | 12.39         | 13.39  | L _         | 14.03-15.03   | 5.<br>83   |
| Data File  | Sample#               |              | į<br>į |             | !<br>!<br>!  | !<br>!<br>! |               |        |           | !            | ļ<br>!                           | !<br>!<br>!   | i<br>: | !<br>!<br>!   |        | [<br>[<br>] |               | !<br> <br> |
| 9M101313.D | 13.D CAL BNA@10PPM    | 51565        | 5 2.70 | 70          | 94603        | 5.90        | 35764         | 4 6.91 | 91 186206 | Ο,           | 8.35                             | 356949        | 9.8    | 2 362365      |        | 2.89        | 363176        | 14.52      |
| 9M101314.D | 14.D CAL BNA@2PPM     | 57993        | _      | 71          | 109516       | 5.90        | 41586         | 6.91   | _         |              | 8.35                             | 427849        | 9.8    |               |        | 2.89        | 441726        | 14.52      |
| 9M101315.D | 15.D CAL BNA@196PPN   | _            | Ī      |             | 98295        | 5.91        | 37091         | 4 6.9  | _         |              | 8.35                             | 385348        | 9.8    |               |        | 290         | 404382        | 14.54      |
| 9M101316.D | 16.D CAL BNA@160PPN   | M 54281      |        |             | 99671        | 5.91        | 380119        | 9 6.91 |           |              | 8.35                             | 386668        | 9.8    |               |        | 90          | 404156        | 14.54      |
| 9M101317.D | 17.D CAL BNA@120PPN   |              |        | i           | 100690       | 5.90        | 388633        | 3 6.91 |           |              | 8.35                             | 396990        | 9.8    |               | į      | 90          | 411181        | 14.53      |
| 9M101318.D | 18.D CAL BNA@80PPM    | 50413        |        | 2.70        | 96900        | 5.90        | 367645        | 5 6.91 | 91 189022 |              | 8.35                             | 364874        | 9.82   |               |        | 12.89       | 384858        | 14.53      |
| 9M101319.D | 19.D CAL BNA@20PPM    | 5028         |        |             | 98086        | 5.90        | 373409        | 9 6.91 | _         | -            | 8.35                             | 372145        | 9.8    |               |        | 2.89        | 390149        | 14.53      |
| 9M101320.D | 20.D CAL BNA@0.5PPM   | 5486         |        |             | 105764       | 5.90        | 40184         | 0 6.91 |           |              | 8.35                             | 400507        | 9.8    |               |        | 2.89        | 412513        | 14.52      |
| 9M101321.D | 21.D CAL BNA@50PPM    | 5214         |        |             | 97053        | 5.90        | 369972        | 2 6.91 |           |              | 8.35                             | 374543        | 9.8    |               |        | 2.89        | 387414        | 14.53      |
| 9M101322.D | 22.D ICV BNA@50PPM    | 46870        |        | !<br>!<br>! | 89922        | 5.90        | 342712        | 2 6.91 | 179589    |              | 8.35                             | 348639        | 9.8    |               |        | 2.89        | 359279        | 14.54      |
| 9M101323.D | 23.D SMB88017         | 49284        | _      |             | 94546        | 5.90        | 357728        |        |           | Ü            | 8.35                             | 361831        | 9.8    |               |        | 2.89        | 341541        | 14.52      |
| 9M101324.D | 24.D SMB88018         | 45386        | •      | 2.68        | 84733        | 5.90        | 321859        | 9 6.91 | 91 165009 | _            | 8.35                             | 323960        | 9.8    |               |        | 288         | 301351        | 14.54      |
| 9M101326.D | 26.D 88018            | 51046        | •      |             | 92137        | 5.91        | 348476        | 6 6.93 | 3 179935  | Ο.           | 8.38                             | 346012        | 9.8    |               |        | 2.91        | 349749        | 14.58      |

## Internal Standard Areas

11 = 12 = 13 =

1,4-Dioxane-d8(INT)
1,4-Dichlorobenzene-d4
Naphthalene-d8

5 = 2

Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12

I7 =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8260 Internal Standard concentration = 30ug/L
524 Internal Standard concentration = 5ug/L

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Flags:

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria.

9M101546.D OMB88168(MS)

2.71

87981

Data File

Sample#

67632 48355 45157 49839 52355

5.90 5.90 5.90 5.90 5.90

6.91 6.91 6.91 6.91 6.91

263417 168631 152191 189970 170902

512963 326648 292441 366889 325322

8.34 8.35 8.34 8.35

304927 288810 339498 322612

12.88 12.88 12.88 12.88

> 326100 342246

14.51 14.51 14.51 14.51 14.52

328473 297200 362991 333569

Internal Standard Areas FORM8

Evaluation Std Data File: 9M101545.D

Method: EPA 8270E

Analysis Date/Time: 10/06/20 08:27

| Eval File Rt Limit:     | Eval File Area Limit:       |                                |                 | ,        |                                         |
|-------------------------|-----------------------------|--------------------------------|-----------------|----------|-----------------------------------------|
| 2.21-3.21               | 32423-129692                | 64846                          | Area RT         | =        |                                         |
| 3.21                    | 129692                      | 2.71                           | 괵               |          | !                                       |
| 5.4-6.4                 | 60238-240954                | 120477                         | Area RT Area    | टा       |                                         |
| 5.4                     | 40954                       | 5.90                           | -<br>- 곡        |          | l<br> <br>                              |
| 6.41-7.41               | 231457-9                    | 462914                         | RT Area RT Area | ಒ        | Lab File                                |
| 7.41                    | 25828                       | 6.91                           | 召               |          | ID: CAL BNA@50                          |
| 7.85-8.85               | 231457-925828 120294-481178 |                                | 1 1             |          | Lab File ID: CAL BNA@50PPM              |
| .85                     | ĺ i                         | 8.35                           | 곡               |          | . —<br>!                                |
| 9.32-10.32              | 232526-930104               |                                | RT Area         | <u>ড</u> |                                         |
| 0.32                    | 30104                       | 9.82                           | 꼭               |          | * 1 4 1 1 4 1 1 4 1 1 4 1 1 1 1 1 1 1 1 |
| 12.38-13.38             |                             | 461393                         | RT Area RT Area | <u></u>  | [<br>[<br>[                             |
| 13.38                   | 22786                       | 12.88                          | 끽               |          | Ì<br>!                                  |
| 12.38-13.38 14.01-15.01 |                             | 9.82 461393 12.88 480646 14.51 | Area            | 17       | • • • • • • • • • • • • • • • • • • •   |
| 15.01                   | 961292                      | 14.51                          | 꾸               | L        | !<br>!                                  |

|                      | I                                            | 1 1 1                                                                                                                                                              | 1                                            |                                   |      | 1            |      |        |                                                      |                                     |             | IAADIIIIIAIEIIE-UO                          |             | !                                       |               |
|----------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|------|--------------|------|--------|------------------------------------------------------|-------------------------------------|-------------|---------------------------------------------|-------------|-----------------------------------------|---------------|
| og/L (in fina<br>g/L | lration = 40 n<br>tration = 30u;<br>n =5ug/L | 625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration =5ug/L | Internal Sta<br>Internal Sta<br>nal Standaro | 625/8270<br>624/8260<br>524 Inteп |      | Perylene-d12 |      | 17 =   | Acenaphthene-d10<br>Phenanthrene-d10<br>Chrysene-d12 | 14 = Acen<br>15 = Phen<br>16 = Chry |             | ,4-Dioxane-d8(INT)<br>,4-Dichlorobenzene-d4 | <b>-</b>    | = = = = = = = = = = = = = = = = = = =   |               |
|                      |                                              |                                                                                                                                                                    |                                              |                                   | :    | 1            |      |        |                                                      | <br>                                | i<br>!<br>! | !<br>!<br>!                                 | 1           | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | -             |
|                      |                                              |                                                                                                                                                                    |                                              |                                   |      |              |      |        |                                                      |                                     |             |                                             |             |                                         |               |
|                      |                                              |                                                                                                                                                                    |                                              |                                   |      |              |      |        |                                                      |                                     |             |                                             |             |                                         |               |
|                      |                                              |                                                                                                                                                                    |                                              |                                   |      |              |      |        |                                                      |                                     |             |                                             |             |                                         |               |
|                      |                                              |                                                                                                                                                                    |                                              |                                   |      |              |      |        |                                                      |                                     |             |                                             |             |                                         |               |
|                      |                                              |                                                                                                                                                                    |                                              |                                   |      |              |      |        |                                                      |                                     |             |                                             |             |                                         |               |
|                      |                                              |                                                                                                                                                                    |                                              |                                   |      |              |      |        |                                                      |                                     |             |                                             |             |                                         |               |
|                      |                                              |                                                                                                                                                                    |                                              |                                   |      |              |      |        |                                                      |                                     |             |                                             |             |                                         |               |
|                      |                                              |                                                                                                                                                                    |                                              |                                   |      |              |      |        |                                                      |                                     |             |                                             |             |                                         |               |
|                      |                                              |                                                                                                                                                                    |                                              |                                   |      |              |      |        |                                                      |                                     |             |                                             |             |                                         |               |
|                      |                                              |                                                                                                                                                                    |                                              |                                   |      |              |      |        |                                                      |                                     |             |                                             |             |                                         |               |
|                      |                                              |                                                                                                                                                                    |                                              |                                   |      |              |      |        |                                                      |                                     |             |                                             |             |                                         |               |
|                      |                                              |                                                                                                                                                                    |                                              |                                   |      |              |      |        |                                                      |                                     |             |                                             |             |                                         |               |
|                      |                                              |                                                                                                                                                                    |                                              |                                   |      |              |      |        |                                                      |                                     |             |                                             |             |                                         |               |
|                      |                                              |                                                                                                                                                                    |                                              |                                   |      |              |      |        |                                                      |                                     |             |                                             |             |                                         |               |
| 313014               | 12.88                                        | 318522                                                                                                                                                             | 9.82                                         | 318901                            | 8.34 | 167660       | 6.91 | 321373 | 5.90                                                 | 84569                               | 2.69        | 45686                                       | (MSD)       | AD19501-003(MSD)                        | 9M101557.D AI |
| 362100               | 12.88                                        | 364927                                                                                                                                                             | 9.82                                         | 365232                            | 8.35 | 192298       | 6.91 | 367910 | 5.90                                                 | 96966                               | 2.70        | 52179                                       | (MS)        | AD19501-003(MS)                         | 9M101556.D AI |
| 299595               | 12.88                                        | 318746                                                                                                                                                             | 9.82                                         | 338431                            | 8.34 | 174862       | 6.91 | 336070 | 5.90                                                 | 87814                               | 2.69        | 46322                                       | !<br>!<br>! | SMB88095                                | 9M101555.D SI |
| 357409               | 12.88                                        | 363417                                                                                                                                                             | 9.82                                         | 363406                            | 8.35 | 191656       | 6.91 | 368059 | 5.90                                                 | 96671                               | 2.69        | 51114                                       | S)          | SMB88095(MS)                            | 9M101554.D SI |
| 379451               | 12.88                                        | 383435                                                                                                                                                             | 9.82                                         | 383763                            | 8.35 | 201449       | 6.91 | 384336 | 5.90                                                 | 100977                              | 2.69        | 55325                                       | s) .        | SMB88133(MS)                            | 9M101553.D SI |
| 364759               | 12.88                                        | 369510                                                                                                                                                             | 9.82                                         | 389770                            | 8.34 | 202399       | 6.91 | 382461 | 5.90                                                 | 99988                               | 2.69        | 54457                                       |             | SMB88133                                | 9M101552.D SI |
| 408841               | 12.88                                        | 415843                                                                                                                                                             | 9.82                                         | 414463                            | 8.34 | 212977       | 6.91 | 405724 | 5.90                                                 | 105065                              | 2.69        | 57576                                       |             | AD19595-009                             | 9M101551.D AI |
| 505452               | 12.88                                        | 505973                                                                                                                                                             | 9.82                                         | 512963                            | 8.34 | 263417       | 6.91 | 485597 | 5.90                                                 | 125964                              | 2.70        | 67682                                       | !           | AD19539-011                             | 9M101550.D A  |
| 304884               | 12.88                                        | 304927                                                                                                                                                             | 9.82                                         | 326648                            | 8.34 | 168631       | 6.91 | 328473 | 5.90                                                 | 86785                               | 2.68        | 48355                                       |             | SMB88132                                | 9M101549.D SI |
| 288660               | 12.88                                        | 288810                                                                                                                                                             | 9.82                                         | 292441                            | 8.35 | 152191       | 6.91 | 297200 | 5.90                                                 | 78129                               | 2.69        | 45157                                       | S) ·        | SMB88132(MS)                            | 9M101548.D SI |
| 342246               | 12.88                                        | 339498                                                                                                                                                             | 9.82                                         | 366889                            | 8.34 | 189970       | 6.91 | 362991 | 5.90                                                 | 95122                               | 2.71        | 52355                                       |             | OMB88168                                | 9M101547.D OI |
| 00.00                |                                              |                                                                                                                                                                    |                                              |                                   | 0    |              | 0.0  |        | ***                                                  | 4. 66.                              | •           | .0000                                       | ,           |                                         |               |

## Internal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt

Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Retention Times:

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria

Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

Eval File Area/RT:

94005 Area

2.70

183010 Area

5.90

718228

6.90

388948

8.35 곡

760702 Area

9.83 괵

689073 Area

12.90

703473

14.55 곡

Area

ا ھ

Area RT

Area

ಹ

Evaluation Std Data File: 7M109898.D Internal Standard Areas

FORM8

Method: EPA 8270E

Analysis Date/Time: 10/06/20 14:57

Lab File ID: CAL BNA@50PPM

| •          |                       | _            |      |              | -            |                |            |               | _        |                |      |                |               |                |       |
|------------|-----------------------|--------------|------|--------------|--------------|----------------|------------|---------------|----------|----------------|------|----------------|---------------|----------------|-------|
|            | Eval File Area Limit: | 47002-188010 | ō!   | 91505-366020 |              | 359114-1436456 | 86         | 194474-777896 | & !<br>! | 380351-1521404 | 2    | 344536-1378146 | 3146          | 351736-1406946 | 6946  |
| ,          | Eval File Rt Limit    | 2.2-3.2      |      | 5.4-6.4      | i<br>   <br> | 6.4-7.4        | <br>  <br> | 7.85-8.85     | -        | 9.33-10.33     |      | 12.4-13.4      | <b></b>  <br> | 14.05-15.05    | 95    |
| Data File  | Sample#               |              |      |              |              |                |            |               |          |                |      |                |               |                |       |
| 7M109899.D | _                     | 68220        | 2.68 | 130338       | 5.90         | 499541         | 6.90       | 265133        | 8.35     | 504806         | 9.83 | 441795         | 12.90         | 417396         | 14.54 |
| 7M109900.D | D OMB88168            | 76887        | 2.70 | 143883       | 5.89         | 560845         | 6.90       | 300163        | 8.34     | 570525         | 9.82 | 497748         | 12.89         | 470539         | 14.54 |
| 7M109901.D | .D AD19542-001        | 79592        | 2.70 | 152722       | 5.89         | 564596         | 6.90       | 278229        | 8.34     | 479970         | 9.82 | 336510         | 12.93         | 236863         | 14.67 |
| 7M109902.D | D AD19542-001(MS)     | 67252        | 2.71 | 135682       | 5.90         | 504512         | 6.90       | 258765        | 8.34     | 457625         | 9.83 | 310347         | 12.93         | 202357         | 14.67 |
| 7M109903.D | D AD19542-001(MSD)    | 64249        | 2.71 | 132842       | 5.90         | 489846         | 6.90       | 246785        | 8.35     | 456176         | 9.83 | 319636         | 12.93         | 206875         | 14.67 |
| 7M109904.D | _                     | 82517        | 2.70 | 172473       | 5.89         | 650086         | 6.90       | 328272        | 8.34     | 604189         | 9.83 | 590381         | 12.91         | 626947         | 14.58 |
| 7M109905.D | D AD19539-007         | 76553        | 2.68 | 167480       | 5.90         | 626910         | 6.90       | 322446        | 8.34     | 588763         | 9.82 | 541619         | 12.89         | 535684         | 14.54 |
| 7M109906.E | i.D AD19539-013       | 83622        | 2.69 | 183905       | 5.90         | 693603         | 6.90       | 359590        | 8.34     | 643444         | 9.82 | 551971         | 12.89         | 521804         | 14.54 |
| 7M109907.D | D AD19539-014         | 105751       | 2.69 | 151028       | 5.90         | 532285         | 6.91       | 303559        | 8.35     | 570386         | 9.83 | 507738         | 12.92         | 503912         | 14.56 |
| 7M109908.D | D AD19539-017         | 101191       | 2.69 | 149707       | 5.90         | 508898         | 6.91       | 302802        | 8.35     | 548776         | 9.83 | 496028         | 12.92         | 487309         | 14.57 |
| 7M109909.D | D AD19595-004         | 81461        | 2.69 | 179484       | 5.89         | 665487         | 6.90       | 337148        | 8.34     | 620533         | 9.83 | 508677         | 12.89         | 506697         | 14.54 |
| 7M109910.D | D AD19562-002         | 93013        | 2.69 | 198969       | 5.90         | 765551         | 6.90       | 380815        | 8.34     | 717810         | 9.83 | 574873         | 12.90         | 557951         | 14.54 |
| 7M109911.D | .D AD19562-004(MS:AD  | _            | 2.69 | 171699       | 5.89         | 641716         | 6.90       | 330943        | 8.35     | 629478         | 9.83 | 518455         | 12.90         | 497161         | 14.54 |
| 7M109912.D | .D AD19562-006(MSD:A  |              | 2.69 | 196004       | 5.89         | 746660         | 6.90       | 386184        | 8.35     | 741528         | 9.83 | 598713         | 12.90         | 586228         | 14.54 |
| 7M109913.D | D AD19562-008         | 88043        | 2.69 | 186620       | 5.89         | 705132         | 6.90       | 350030        | 8.34     | 664610         | 9.82 | 532877         | 12.89         | 510346         | 14.54 |
| 7M109914.D | .D AD19551-001        | 98497        | 2.69 | 200885       | 5.89         | 769915         | 6.90       | 400901        | 8.34     | 742896         | 9.82 | 612338         | 12.90         | 596303         | 14.54 |
| 7M109915.D | D AD19599-001         | 84276        | 2.70 | 173873       | 5.89         | 668725         | 6.90       | 340109        | 8.34     | 601547         | 9.82 | 513702         | 12.90         | 511323         | 14.55 |
| 7M109916.D | D AD19599-002         | 87073        | 2.69 | 183732       | 5.90         | 699488         | 6.90       | 360055        | 8.34     | 632224         | 9.82 | 534689         | 12.90         | 539286         | 14.55 |
| 7M109917.D | D AD19582-001(3X)     | 85485        | 2.71 | 176667       | 5.90         | 672928         | 6.90       | 338161        | 8.34     | 597833         | 9.82 | 489224         | 12.90         | 505912         | 14.54 |
| 7M109918.D | D AD19482-005(3X)     | 88055        | 2.70 | 172991       | 5.90         | 585503         | 6.90       | 360825        | 8.35     | 603105         | 9.84 | 542161         | 12.90         | 516488         | 14.54 |
| 7M109919.D | _                     | 95739        | 2.71 | 200667       | 5.89         | 756987         | 6.90       | 369609        | 8.34     | 684098         | 9.83 | 563268         | 12.90         | 569454         | 14.55 |
| 7M109920.D | ).D AD19517-004(5X)   | 92014        | 2.70 | 184927       | 5.90         | 656254         | 6.90       | 355450        | 8.35     | 673960         | 9.83 | 573464         | 12.90         | 570404         | 14.55 |
| 7M109921.D | .D AD19517-001(5X)    | 93446        | 2.70 | 201572       | 5.89         | 772949         | 6.90       | 393953        | 8.34     | 696469         | 9.83 | 545084         | 12.90         | 553081         | 14.54 |
| 7M109922.D | P.D AD19517-003(10X)  | 85767        | 2.72 | 186558       | 5.90         | 689756         | 6.90       | 350574        | 8.34     | 602068         | 9.82 | 499148         | 12.90         | 496695         | 14.55 |
| 7M109923.D | D AD19551-002(5X)     | 91790        | 2.71 | 202054       | 5.90         | 771652         | 6.90       | 388928        | 8.34     | 675041         | 9.83 | 552723         | 12.90         | 549175         | 14.55 |
|            |                       |              |      |              |              |                |            |               |          |                |      |                |               |                |       |

## Internal Standard Areas

I,4-Dioxane-d8(INT)
I,4-Dichlorobenzene-d4
Naphthalene-d8

Acenaphthene-d10
Phenanthrene-d10
Chrysene-d12

17=

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8260 Internal Standard concentration = 30 ug/L
524 Internal Standard concentration = 5 ug/L

Upper Limit = + 100% of internal standard area from daily cal or mid pt Lower Limit = - 50% of internal standard area from daily cal or mid pt.

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria.

Eval File Area Limit: Eval File Area/RT

52334-209336 2.2-3.2

104668

2.70

208874 5.90

792097 6.90 396048-1584194

431706

830843

9.83 괵

754632 | 12.90 377316-1509264

800356

Area

R 14.55

400178-1600712

14.05-15.05

Area

215853-863412 7.85-8.85

415422-1661686

9.33-10.33

12.4-13.4

곡

Агеа

끽 8.35

Area

104437-417748

5.4-6.4

6.4-7.4

Area

Eval File Rt Limit:

FORM8

Evaluation Std Data File: 7M109935.D Internal Standard Areas

Method: EPA 8270E

Analysis Date/Time: 10/07/20 15:38

| ĺ   |                           |
|-----|---------------------------|
| į.  |                           |
|     |                           |
| :   |                           |
| -:  |                           |
| i   |                           |
|     | la                        |
| ļ   | Lab File ID: CAL BNA@50PP |
| -1  | 풊                         |
| i   | =                         |
| ;   | ب                         |
| - 1 | Ω                         |
| - 1 | ₽                         |
|     | ·                         |
| 7   | ž                         |
| i   | ≥                         |
| i   | (8)                       |
| Í   | \@50PPI                   |
| -1  | 꾸                         |
| į   | š                         |
|     |                           |
| ţ   |                           |
|     |                           |

| 2.71 193453 5.89 678079 6.90 338501 8.35 648665 | AD19589-006(5X) 96416 2.71 197173 5.89 748628 6.89 382973 8.34 689987 | 92783 2.71 186342 5.90 653453 6.90 329987 8.34 643998 | (3X) 96526 2.70 180653 5.89 694097 6.90 335048 8.35 654573 | 2.70 177126 5.90 672223 6.90 340880 8.34 618948 | 2.69 191722 5.89 728888 6.90 367512 8.34 671036 | 2.69 180736 5.89 675338 6.89 330597 8.34 637158 | 2.70 211756 5.89 756061 6.90 379854 8.34 736231 | 2.70 202953 5.89 718038 6.90 367823 8.35 709491 | 2.70 199790 5.90 709304 6.89 364333 8.35 700072 | 2.70 185973 5.90 655996 6.89 337889 8.34 649509 | 2.70 196956 5.89 691356 6.90 359241 8.35 697994 | 2.69 186578 5.89 674185 6.89 339522 8.34 653611 | 2.70 191426 5.90 681772 6.90 349256 8.35 676346 | 2.69 190664 5.89 694491 6.89 344648 8.34 663733 | 2.70 208653 5.89 753525 6.90 381643 8.35 731549 | 2.69 193323 5.89 709346 6.89 353860 8.34 678303 | 2.70 201480 5.90 734678 6.89 363237 8.34 695971 | AD19563-008 96355 2.70 193202 5.90 699693 6.89 343149 8.34 664212 | 2.69 182489 5.89 647471 6.89 328008 8.34 631912 | 2.69 194100 5.89 711775 6.89 349451 8.35 671219 | 2.69 196871 5.90 719552 6.89 355706 8.34 700139 | AD19563-026(MSD:A 97479 2.69 188278 5.89 675480 6.90 364794 8.35 694889 | 99966 2.69 190134 5.90 676196 6.90 358423 8.35 702334 | l 92400 2.71 190614 5.90 715206 6.90 367652 8.34 683611 | 2.70 192842 5.90 719745 6.89 371763 8.34 684151 | 2.70 184990 5.90 690916 6.89 370452 8.34 699880 | 187136 5.89 697465 6.90 368225 8.35 697366 | Data File Sample# |
|-------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------|-------------------|
| 330504                                          | 382973                                                                | 329987                                                | 335048                                                     | 340880                                          | 367512                                          | 330597                                          | 379854                                          | 367823                                          | 364333                                          | 337889                                          | 359241                                          | 339522                                          | 349256                                          | 344648                                          | 381643                                          | 353860                                          | 363237                                          | 343149                                                            | 328008                                          | 349451                                          | 355706                                          | 364794                                                                  | 358423                                                | 367652                                                  | 371763                                          | 370452                                          | 368225                                     |                   |
| ν<br>γ                                          | 8.34                                                                  | 8.34                                                  | 8.35                                                       | 8.34                                            | 8.34                                            | 8.34                                            | 8.34                                            | 8.35                                            | 8.35                                            | 8.34                                            | 8.35                                            | 8.34                                            | 8.35                                            | 8.34                                            | 8.35                                            | 8.34                                            | 8.34                                            | 8.34                                                              | 8.34                                            | 8.35                                            | 8.34                                            | 8.35                                                                    | 8.35                                                  | 8.34                                                    | 8.34                                            | 8.34                                            | 8.35                                       |                   |
|                                                 | 9.82 550272                                                           | i                                                     |                                                            |                                                 |                                                 |                                                 |                                                 | :<br>!                                          |                                                 |                                                 |                                                 |                                                 |                                                 |                                                 |                                                 |                                                 |                                                 |                                                                   |                                                 |                                                 |                                                 |                                                                         | i<br>I                                                |                                                         |                                                 |                                                 |                                            |                   |
| 578182                                          | 12.90 577222 14.55                                                    | 559541                                                | 579972                                                     | 523462                                          | 575767                                          | 541958                                          | 628286                                          | 613464                                          | 608114                                          | 560780                                          | 597598                                          | 565207                                          | 586292                                          | 578754                                          | 646453                                          | 592771                                          | 622201                                          | 576630                                                            | 554260                                          | 594443                                          | 614576                                          | 605613                                                                  | 625415                                                | 580661                                                  | 576636                                          | 617336                                          | 626037                                     |                   |

## Internal Standard Areas

11 = 12 = 13 =

1,4-Dioxane-d8(INT) 1,4-Dichlorobenzene-d4 Naphthalene-d8

5 5 4

Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12

17 =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration = 5ug/L

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt

## Flags:

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria

**Metal Data** 

Sample ID: AD19539-007

% Solid: 80

Lab Name: Veritech

Nras No:

Client Id: Matrix:

HSI-SB-02(10-10.5) SOIL

Units: MG/KG Date Rec: 10/1/2020 Lab Code: Contract:

Sdg No:

Case No:

LOW Level:

| Cas No.                | Analyte  | MDL   | RL               | Conc | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:     | Seq<br>Num      | М  | Instr      |
|------------------------|----------|-------|------------------|------|----------|-------------------|-----------------|------------------|---------------|-----------|-----------------|----|------------|
| 7429-90-5 A            | Muminum  | 21    | 250              | 2200 | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL  | 37              | Р  | PEICP3A    |
| 7440-39-3              | Barium   | 0.84  | 12               | 15   | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL  | 37              | P  | PEICP3A    |
| 7440-70-2              | Calcium  | 130   | 1200             | 200J | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL  | 37              | P  | PEICP3A    |
| 7440-47-3. C           | hromium  | 0.84  | 6.2 <sub> </sub> | 21   | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL  | 37              | P  | PEICP3A    |
| 7440-48-4              | Cobalt   | 0.89  | 3.1              | ND   | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL  | 37              | Ρ  | PEICP3A    |
| 7440-50-8              | Copper   | 0.77  | 6.2              | 8.0  | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL  | 37              | Р  | PEICP3A    |
| 7439-89-6 <sup>1</sup> | Iron     | 16    | 250              | 5300 | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL  | 37              | P  | PEICP3A    |
| 7439-92-1              | Lead     | 0.77  | 6.2              | 13   | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312B3MDL  | 15              | P  | PEICP3A    |
| 7439-95-4 <b>M</b> a   | agnesium | 24    | 620              | 160J | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL  | 37              | P  | PEICP3A    |
| 7439-96-5 <b>M</b> a   | anganese | 0.80  | 12.              | 12J  | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL  | <b>37</b> .     | P  | PEICP3A    |
| 7439-97-6              | Mercury  | 0.016 | 0.10             | ND   | 1,       | 0.15              | 25:             | 10/06/20         | 85372!        | 6312SMDL  | 27              | CV | HGCV3A     |
| 7440-02-0              | Nickel   | 1.4   | 6.2              | 2.5J | 1,       | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL: | 37              | P. | PEICP3A    |
| 7440-09-7 P            | otassium | 120   | 620              | ND   | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A4MDL  | 26 <sup>1</sup> | P  | PEICPRAD4A |
| 7440-23-5              | Sodium   | 160   | 310              | ND   | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A4MDL  | 26 <sup> </sup> | P  | PEICPRAD4A |
| 7440-66-6              | Zinc     | 1.9   | 12               | 23   | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL  | 37              | Р  | PEICP3A    |

| Comments: |  |
|-----------|--|
|           |  |
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19539-007

% Solid: 80

Lab Name: Veritech

Nras No:

Client Id: HSI-SB-02(10-10.5)

SOIL

Units: MG/KG Date Rec: 10/1/2020 Lab Code: Contract:

Sdg No: Case No:

Matrix: Level: LOW

| Cas No.   | Analyte   | MDL   | RL   | Conc          | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | М  | Instr        |
|-----------|-----------|-------|------|---------------|----------|-------------------|-----------------|------------------|---------------|----------|------------|----|--------------|
| 7440-36-0 | Antimony  | 0.028 | 1.0  | 0.053J        | 1        | 0.5               | 100             | 10/07/20         | 85373         | 0720ANEW | 18         | MS | MS3_7700SWA  |
| 7440-38-2 | Arsenic   | 0.022 | 0.25 | 1.9           | 1        | 0.5               | 100             | 10/07/20         | 85373         | 0720ANEW | 18         | MS | M\$3_7700SWA |
| 7440-41-7 | Beryllium | 0.059 | 0.75 | 0.12 <b>J</b> | 3        | 0.5               | 100             | 10/07/20         | 85373         | 0720ANEW | 23         | MS | MS3_7700SWA  |
| 7440-43-9 | Cadmium   | 0.018 | 0.50 | 0.24J         | 1        | 0.5               | 100             | 10/07/20         | 85373         | 0720ANEW | 18         | MS | MS3_7700SWA  |
| 7782-49-2 | Selenium  | 0.079 | 2.5  | 3.1           | 1        | 0.5               | 100             | 10/07/20         | 85373         | 0720ANEW | 18         | MS | MS3_7700SWA  |
| 7440-22-4 | Silver    | 0.033 | 0.25 | 0.12J         | 1        | 0.5               | 100             | 10/07/20         | 85373         | 0720ANEW | 18         | MS | MS3_7700SWA  |
| 7440-28-0 | Thallium  | 0.066 | 1.5  | ND            | 3        | 0.5               | 100             | 10/07/20         | 85373         | 0720ANEW | 23         | MS | MS3_7700SWA  |
| 7440-62-2 | Vanadium  | 0.014 | 0.25 | 32            | 1        | 0.5               | 100             | 10/07/20         | 85373         | 0720ANEW | 18         | MS | MS3_7700SWA  |

| Comments: | <br> |      |      |      |  |
|-----------|------|------|------|------|--|
|           |      |      | <br> | <br> |  |
|           |      |      |      |      |  |
|           |      |      |      |      |  |
|           |      |      |      |      |  |
|           | <br> | <br> |      |      |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

P: PEICPRAD4A

P' PEICPRAD4A

PEICP3A

### Form1 Inorganic Analysis Data Sheet

Sample ID:

AD19539-011

% Solid:

Lab Name: Veritech

Nras No:

85372/312A4MDL

853721312A4MDL

853723112A3MDL

27 !

38

P

Client Id: Matrix: HSI-SB-03 (10-10.5) SOIL Units: Date Rec:

MG/KG 10/1/2020 Lab Code: Contract: Sdg No: Case No:

Level: LOW

| Cas No.            | Analyte     | MDL   | RL    | Conc | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | M                | Instr   |
|--------------------|-------------|-------|-------|------|----------|-------------------|-----------------|------------------|---------------|----------|------------|------------------|---------|
| 7429-90-5          | Aluminum    | 20    | 240   | 570  | 1,       | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 38         | Р                | PEICP3A |
| 7440-39-3          | Barium      | 0.80  | 12    | ND   | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 38         | P                | PEICP3A |
| 7440-70-2          | Calcium     | 120   | 1200  | ND   | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 38         | P                | PEICP3A |
| 7440-47-3          | Chromium    | 0.80  | 6.0   | 1.0J | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 38         | P                | PEICP3A |
| 7440-48-4          | Cobalt      | 0.85  | 3.0   | ND   | 1,       | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 38         | P                | PEICP3A |
| 7440-50-8          | Copper      | 0.73  | 6.0   | 1.0J | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 38         | P                | PEICP3A |
| 7439-89-6          | Iron :      | 16    | 240   | 1400 | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 38         | $\mathbf{P}^{i}$ | PEICP3A |
| 7439-92-1          | Lead        | 0.73  | 6.0   | 1.2J | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312B3MDL | 16         | P,               | PEICP3A |
| 7439-95-4          | Magnesium   | 23    | 600   | ND   | 1,       | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 38         | P                | PEICP3A |
| 7439-96-5 <b>l</b> | Manganese : | 0.76  | 12    | 1.4J | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 38         | $\mathbf{P}^{i}$ | PEICP3A |
| 7439-97-6          | Mercury     | 0.015 | 0.099 | ND   | 1        | 0.15              | 25              | 10/06/20         | 85372         | 6312SMDL | 28 1       | CV               | HGCV3A  |
| 7440-02-0          | Nickel      | 1.3   | 6.0   | ND   | 1        | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 38         | P                | PEICP3A |

0.5

0.5

0.5

1

1

50 10/06/20

50 10/06/20

50 10/06/20

| Comments: |  | <br> |  |
|-----------|--|------|--|
|           |  |      |  |

ND

ND

ND

Flag Codes:

 $\mbox{\bf U}$  or  $\mbox{\bf ND}$  - Indicates Compound was not found above the detection/reporting limit  $\mbox{\bf P}$  -  $\mbox{\bf ICP-AES}$ 

120

150

1.8

600

300i

12

CV -ColdVapor

7440-09-7 Potassium

Sodium

Zinc

7440-23-5

7440-66-6

Sample ID: AD19539-011

% Solid: 84

Lab Name: Veritech

Nras No:

Client Id: HSI-SB-03 (10-10.5)

Units: MG/KG

Lab Code:

Sdg No:

SOIL Matrix:

Level: LOW

| Date Rec: | 10/1/2020 | Contract: | Case No: |
|-----------|-----------|-----------|----------|
|           |           |           |          |
|           |           |           |          |
|           |           |           |          |

| Cas No.                | Analyte   | MDL   | RL   | Conc   | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol  | Analysis<br>Date | Prep<br>Batch | File:   | Seq<br>Num | M     | Instr    |
|------------------------|-----------|-------|------|--------|----------|-------------------|------------------|------------------|---------------|---------|------------|-------|----------|
| 7440-36-0              | Antimony  | 0.027 | 0.95 | ND     | 1        | 0.5               | 100              | 10/07/20         | 853730        | 720ANEW | 19         | MSMS3 | 7700SWA  |
| 7440-38-2              | Arsenic   | 0.021 | 0.24 | 0.30   | 1        | 0.5               | 100              | 10/07/20         | 853730        | 720ANEW | 19         | MSMS3 | 7700SWA  |
| 7440-41-7              | Beryllium | 0.019 | 0.24 | 0.040J | 1        | 0.5               | 100              | 10/07/20         | 85373D        | 720ANEW | 19         | MSMS3 | 7700SWA  |
| 7440-43-9              | Cadmium : | 0.017 | 0.48 | ND     | 1        | 0.5               | 100 <sub>'</sub> | 10/07/20         | 85373D        | 720ANEW | 19         | MSMS3 | _7700SWA |
| 7782-49-2 <sup>i</sup> | Selenium  | 0.076 | 2.4  | 1.1J!  | 1        | 0.5               | 100              | 10/07/20         | 853730        | 720ANEW | 19         | MSMS3 | _7700SWA |
| 7440-22-4              | Silver    | 0.031 | 0.24 | 0.077J | 1        | 0.5 <sup>l</sup>  | 100              | 10/07/20         | 853730        | 720ANEW | 19         | MSMS3 | 7700SWA  |
| 7440-28-0              | Thallium  | 0.021 | 0.48 | ND     | 1        | 0.5               | 100              | 10/07/20         | 853730        | 720ANEW | 19         | MSMS3 | 7700SWA  |
| 7440-62-2              | /anadium  | 0.013 | 0.24 | 7.5    | 1        | 0.5               | 100              | 10/07/20         | 853730        | 720ANEW | 19         | MSMS3 | _7700SWA |

| Comments: | <br> | <br> | <br> |
|-----------|------|------|------|
|           |      |      |      |

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19539-013

% Solid: 87

Lab Name: Veritech

Nras No:

Matrix:

Client Id: HSI-SB-01 (2.5-3) SOIL

Units: MG/KG Date Rec: 10/1/2020

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

| Cas No.              | Analyte  | MDL   | RL               | Conc         | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:   | Seq<br>Num | M                         | Instr      |
|----------------------|----------|-------|------------------|--------------|----------|-------------------|-----------------|------------------|---------------|---------|------------|---------------------------|------------|
| 7429-90-5 A          | luminum  | 19    | 230              | 4200         | 1        | 0.5               | 50              | 10/06/20         | 8537213       | 12A3MDL | 39         | P                         | PEICP3A    |
| 7440-39-3            | Barium   | 0.78  | 11,              | 9.1J         | 1:       | 0.5               | 50              | 10/06/20         | 85372)31      | 2A3MDL  | 39         | P                         | PEICP3A    |
| 7440-70-2            | Calcium  | 120   | 1100:            | ND           | 1        | 0.5i              | 50              | 10/06/20         | 85372i31      | 2A3MDL  | 39         | P                         | PEICP3A    |
| 7440-47-3 C          | hromium  | 0.77  | 5.7              | 20           | 1:       | 0.5               | 50              | 10/06/20         | 85372131      | 2A3MDL  | 39         | P                         | PEICP3A    |
| 7440-48-4            | Cobalt   | 0.82  | 2.9              | ND           | 1!       | 0.5               | 50              | 10/06/20         | 85372131      | 2A3MDL  | 39         | P                         | PEICP3A    |
| 7440-50-8            | Copper   | 0.71  | <b>5</b> .7      | 7.0          | 1        | 0.5               | 50              | 10/06/20         | 85372 31      | 2A3MDL  | 39         | Р                         | PEICP3A    |
| 7439-89-6            | Iron ·   | 15    | 230              | 7600         | 1        | 0.5               | 50              | 10/06/20         | 85372 31      | 2A3MDL  | 39         | P                         | PEICP3A    |
| 7439-92-1            | Lead     | 0.71  | 5.7              | 9.8          | 1        | 0.5 <sup>i</sup>  | 50              | 10/06/20         | 85372 31      | 2B3MDL  | 17         | $\mathbf{P}^{\mathrm{i}}$ | PEICP3A    |
| 7439-95-4Ma          | gnesium  | 22    | 570 <sup>!</sup> | 350J         | 1        | 0.5               | 50              | 10/06/20         | 8537231       | 2A3MDL  | 39         | Р                         | PEICP3A    |
| 7439-96-5 <b>M</b> a | inganese | 0.74  | 11               | 13           | 1        | 0.5               | 50              | 10/06/20         | 85372 31      | 2A3MDL  | 39         | Р                         | PEICP3A    |
| 7439-97-6            | Mercury  | 0.015 | 0.096            | ND           | 1        | 0.15              | 25              | 10/06/20         | 85372 63      | 12SMDL  | 29         | CV                        | HGCV3A     |
| 7440-02-0            | Nickel   | 1.3   | 5.7              | 3.5J         | 1        | 0.5               | 50              | 10/06/20         | 85372 31      | 2A3MDL  | 39         | Р                         | PEICP3A    |
| 7440-09-7 Pc         | otassium | 110   | 570              | 160J         | 1        | 0.5               | 50              | 10/06/20         | 85372131      | 2A4MDL  | 28         | P                         | PEICPRAD4A |
| 7440-23-5            | Sodium   | 140   | 290              | ND           | 1        | 0.5               | 50              | 10/06/20         | 85372 31      | 2A4MDL  | 28         | P                         | PEICPRAD4A |
| 7440-66-6            | Zinc     | 1.7   | 11               | 9.0 <b>J</b> | 1,       | 0.5               | 50              | 10/06/20         | 8537231       | 2A3MDL  | 39         | P                         | PEICP3A    |

| Comments: |  |
|-----------|--|
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

MSMS3\_7700SWA

MSMS3\_7700SWA

MSMS3\_7700SWA

#### Form1 Inorganic Analysis Data Sheet

Sample ID: AD19539-013

% Solid: 87 Lab Name: Veritech

Nras No:

Client Id: Matrix: HSI-SB-01 (2.5-3) SOIL

Units: MG/KG Date Rec: 10/1/2020

0.054J

ND

14

0.23

0.46

0.23

Lab Code: Contract:

Sdg No: Case No:

853730720ANEW

853730720ANEW

853730720ANEW

20

20

LOW Level:

| Cas No.   | Analyte   | MDL   | RL   | Conc   | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol |          | Prep<br>Batch | File:    | Seq<br>Num | м  | Instr       |
|-----------|-----------|-------|------|--------|----------|-------------------|-----------------|----------|---------------|----------|------------|----|-------------|
| 7440-36-0 | Antimony  | 0.026 | 0.92 | 0.045J | 1        | 0.5               | 100             | 10/07/20 | 85373         | 0720ANEW | 20         | MS | MS3_7700SWA |
| 7440-38-2 | Arsenic   | 0.020 | 0.23 | 1.8    | 1        | 0.5               | 100             | 10/07/20 | 85373         | 0720ANEW | 20         | MS | MS3_7700SWA |
| 7440-41-7 | Beryllium | 0.018 | 0.23 | 0.059J | 1        | 0.5               | 100             | 10/07/20 | 85373         | 0720ANEW | 20         | MS | MS3_7700SWA |
| 7440-43-9 | Cadmium   | 0.016 | 0.46 | 0.40J  | 1        | 0.5               | 100             | 10/07/20 | 85373         | D720ANEW | 20         | MS | MS3_7700SWA |
| 7782-49-2 | Selenium  | 0.073 | 2.3  | 0.80J  | 1        | 0.5               | 100             | 10/07/20 | 85373         | 0720ANEW | 20         | MS | MS3_7700SWA |

0.5

0.5

0.5

1

100 10/07/20

100 10/07/20

100, 10/07/20

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

0.030

0.020

0.012

Silver

Thallium

P - ICP-AES

CV -ColdVapor

7440-22-4

7440-28-0

7440-62-2 Vanadium

Sample ID: AD19539-014

% Solid: 83

Lab Name: Veritech

Nras No:

Client Id: Matrix: HSI-SB-01 (6-6.5) SOIL

Units: MG/KG Date Rec: 10/1/2020 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

| Instr      | M                | Seq<br>Num | File:    | Prep<br>Batch | Analysis<br>Date | Final<br>Wt/Vol | Initial<br>Wt/Vol | Dil Fact | Conc   | RL   | MDL   | Analyte                | Cas No.:           |
|------------|------------------|------------|----------|---------------|------------------|-----------------|-------------------|----------|--------|------|-------|------------------------|--------------------|
| PEICP3A    | Р                | 40         | 312A3MDL | 85372         | 10/06/20         | 50              | 0.5               | 1        | 4200   | 240  | 20    | Aluminum               | 7429-90-5          |
| PEICP3A    | Р                | 40         | 312A3MDL | 85372         | 10/06/20         | 50              | 0.5               | 1        | 75     | 12   | 0.81  | Barium                 | 7440-39-3          |
| PEICP3A    | Р                | 40         | 312A3MDL | 85372         | 10/06/20         | 50              | 0.5               | 1        | 290J   | 1200 | 120   | Calcium                | 7440-70-2          |
| PEICP3A    | Р                | 40         | 312A3MDL | 85372         | 10/06/20         | 50              | 0.5               | 1        | 60     | 6.0  | 0.81  | Chromium               | 7440-47-3          |
| PEICP3A    | Ρ                | 40         | 312A3MDL | 85372         | 10/06/20         | 50              | 0.5               | 1        | 1.3J   | 3.0  | 0.86  | Cobalt                 | 7440-48-4          |
| PEICP3A    | Р                | 40         | 312A3MDL | 85372         | 10/06/20         | 50              | 0.5               | 1        | 12     | 6.0  | 0.74  | Copper                 | 7440-50-8          |
| PEICP3A    | Р                | 40         | 312A3MDL | 85372         | 10/06/20         | 50              | 0.5               | 1        | 8200   | 240  | 16    | Iron                   | 7439-89-6          |
| PEICP3A    | P                | 18         | 312B3MDL | 85372         | 10/06/20         | 50 <sup>6</sup> | 0.5               | 1        | 160    | 6.0  | 0.74  | Lead                   | 7439-92-1          |
| PEICP3A    | $\mathbf{P}^{i}$ | 40         | 312A3MDL | 85372         | 10/06/20         | 50              | 0.5               | 1        | 420J   | 600  | 23    | lagnesium <sup>1</sup> | 7439-95-4 <b>N</b> |
| PEICP3A    | P                | 40         | 312A3MDL | 85372         | 10/06/20         | 50              | 0.5               | 1        | 27     | 12   | 0.77  | langanese !            | 7439-96-5N         |
| HGCV3A     | CV               | 30         | 6312SMDL | 85372         | 10/06/20         | 25              | 0.15              | 1        | 0.063J | 0.10 | 0.015 | Mercury                | 7439-97-6          |
| PEICP3A    | P                | 40         | 312A3MDL | 85372         | 10/06/20         | 50              | 0.5               | 1        | 8.1    | 6.0  | 1.3   | Nickel                 | 7440-02-0          |
| PEICPRAD4A | Р                | 29         | 312A4MDL | 85372         | 10/06/20         | 50              | 0.5               | 1,       | 160J   | 600  | 120   | Potassium              | 7440-09-7          |
| PEICPRAD4A | Р                | 29         | 312A4MDL | 85372         | 10/06/20         | 50              | 0.5               | 1        | ND     | 300  | 150   | Sodium                 | 7440-23-5          |
| PEICP3A    | Р                | 40         | 312A3MDL | 85372         | 10/06/20         | 50              | 0.5               | 1,       | 33     | 12   | 1.8   | Zinc                   | 7440-66-6          |

| Comments: |  |
|-----------|--|
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19539-014

% Solid: 83

Lab Name: Veritech

Nras No:

Client Id: HSI-SB-01 (6-6.5) Matrix:

SOIL

Units: MG/KG Date Rec: 10/1/2020 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL   | Conc   | Dil Fact | Initial<br>Wt/Vol |     | Analysis<br>Date | Prep<br>Batch | File: ¡  | Seq<br>Num | М  | Insti       |
|-----------|-----------|-------|------|--------|----------|-------------------|-----|------------------|---------------|----------|------------|----|-------------|
| 7440-36-0 | Antimony  | 0.027 | 0.96 | 0.84J  | 1        | 0.5               | 100 | 10/07/20         | 85373         | 0720ANEW | 21         | MS | MS3_7700SWA |
| 7440-38-2 | Arsenic   | 0.021 | 0.24 | 2.3    | 1        | 0.5               | 100 | 10/07/20         | 85373         | 0720ANEW | 21         | MS | MS3_7700SWA |
| 7440-41-7 | Beryllium | 0.019 | 0.24 | 0.20J  | 1        | 0.5               | 100 | 10/07/20         | 85373         | 720ANEW  | 21         | MS | MS3_7700SWA |
| 7440-43-9 | Cadmium   | 0.017 | 0.48 | 11     | 1        | 0.5               | 100 | 10/07/20         | 85373         | 720ANEW  | 21         | MS | MS3_7700SWA |
| 7782-49-2 | Selenium  | 0.077 | 2.4  | 3.3    | 1        | 0.5               | 100 | 10/07/20         | 85373         | 720ANEW  | 21         | MS | MS3_7700SWA |
| 7440-22-4 | Silver    | 0.031 | 0.24 | 0.062J | 1        | 0.5               | 100 | 10/07/20         | 85373         | 720ANEW  | 21         | MS | MS3_7700SWA |
| 7440-28-0 | Thallium  | 0.021 | 0.48 | ND     | 1        | 0.5               | 100 | 10/07/20         | 85373         | 720ANEW  | 21         | MS | MS3_7700SWA |
| 7440-62-2 | Vanadium  | 0.013 | 0.24 | 18     | 1        | 0.5               | 100 | 10/07/20         | 85373         | 0720ANEW | 21         | MS | MS3_7700SWA |

| Comments: |  |
|-----------|--|
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19539-017

% Solid: 84

Lab Name: Veritech

Nras No:

Client Id: HSI-SB-D1 Matrix:

SOIL

Units: MG/KG Date Rec: 10/1/2020 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

| Cas No.                | Analyte    | MDL               | RL               | Conc | Dil Fact   | Initial<br>Wt/Vol |                 | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | М  | Instr      |
|------------------------|------------|-------------------|------------------|------|------------|-------------------|-----------------|------------------|---------------|----------|------------|----|------------|
| 7429-90-5              | Aluminum   | 20                | 240              | 5000 | 1          | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 41         | Р  | PEICP3A    |
| 7440-39-3              | Barium     | 0.80              | 12               | 37   | 1          | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 41         | Ρ  | PEICP3A    |
| 7440-70-2              | Calcium ,  | 120               | 1200             | 1300 | 1          | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 41         | Ρ  | PEICP3A    |
| 7440-47-3              | Chromium : | 0.80              | 6.0              | 49   | 1          | 0.5               | 50              | 10/06/20         | 853721        | 312A3MDL | 41         | Ρ  | PEICP3A    |
| 7440-48-4              | Cobalt     | 0.85 <sup>i</sup> | 3.0              | 1.4J | 1          | 0.5               | 50              | 10/06/20         | 853721        | 312A3MDL | 41         | P  | PEICP3A    |
| 7440-50-8              | Copper     | 0.73              | 6.0              | 12   | 1          | 0.5               | 50 <sup>j</sup> | 10/06/20         | 85372         | 312A3MDL | 41         | Ρ  | PEICP3A    |
| 7439-89-6              | Iron       | 16                | 240              | 9700 | 1          | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 41         | P  | PEICP3A    |
| 7439-92-1              | Lead       | 0.73              | 6.0              | 140  | 1          | 0.5               | 50              | 10/06/20         | 85372         | 312B3MDL | 19         | Р  | PEICP3A    |
| 7439-95-4              | Magnesium  | 23                | 600              | 440J | 1,         | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 41         | Ρ  | PEICP3A    |
| 7439-96-5              | Manganese  | 0.76              | 12               | 27   | 1          | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 41         | P  | PEICP3A    |
| 7439-97-6              | Mercury    | 0.015             | 0.099            | 0.14 | <b>1</b> i | 0.15              | 25              | 10/06/20         | 85372         | 6312SMDL | 31         | CV | HGCV3A     |
| 7440-02-0 <sup>i</sup> | Nickel     | 1.3               | 6.0 <sup>l</sup> | 9.0  | 1          | 0.5               | 50              | 10/06/20         | 85372         | 312A3MDL | 41         | Р  | PEICP3A    |
| 7440-09-7              | Potassium  | 120 <sup>į</sup>  | 600 <sup>1</sup> | 190J | 1          | 0.5               | 50 <sup>l</sup> | 10/06/20         | 85372         | 312A4MDL | 30         | Р  | PEICPRAD4A |
| 7440-23-5              | Sodium     | 150               | 300              | ND   | 1          | 0.5               | 50              | 10/06/20         | 85372         | 312A4MDL | 30         | P  | PEICPRAD4A |
| 7440-66-6              | Zinc       | 1.8               | 12               | 31   | 1          | 0.5               | 50              | 10/06/20         | 853721        | 312A3MDL | 41         | P  | PEICP3A    |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19539-017

% Solid: 84

Lab Name: Veritech

Nras No:

Client Id: HSI-SB-D1 Matrix: SOIL

Units: MG/KG Date Rec: 10/1/2020 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL   | Conc   | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | M     | Instr    |
|-----------|-----------|-------|------|--------|----------|-------------------|-----------------|------------------|---------------|----------|------------|-------|----------|
| 7440-36-0 | Antimony  | 0.027 | 0.95 | 1.3    | 1        | 0.5               | 100             | 10/07/20         | 85373         | 720ANEW  | 22         | MSMS3 | _7700SWA |
| 7440-38-2 | Arsenic   | 0.021 | 0.24 | 2.3    | 1        | 0.5               | 100             | 10/07/20         | 85373         | 0720ANEW | 22         | MSMS3 | _7700SWA |
| 7440-41-7 | Beryllium | 0.019 | 0.24 | 0.17J  | 1        | 0.5               | 100             | 10/07/20         | 85373         | 0720ANEW | 22         | MSMS3 | _7700SWA |
| 7440-43-9 | Cadmium   | 0.017 | 0.48 | 6.2    | 1:       | 0.5               | 100             | 10/07/20         | 85373         | 720ANEW  | 22         | MSMS3 | _7700SWA |
| 7782-49-2 | Selenium  | 0.076 | 2.4  | 2.8    | 1.       | 0.5               | 100             | 10/07/20         | 85373         | 720ANEW  | 22         | MSMS3 | _7700SWA |
| 7440-22-4 | Silver    | 0.031 | 0.24 | 0.064J | 1        | 0.5               | 100             | 10/07/20         | 85373         | 0720ANEW | 22         | MSMS3 | _7700SWA |
| 7440-28-0 | Thallium  | 0.021 | 0.48 | ND     | 1        | 0.5               | 100             | 10/07/20         | 85373         | 720ANEW  | 22         | MSMS3 | _7700SWA |
| 7440-62-2 | Vanadium  | 0.013 | 0.24 | 19     | 1        | 0.5               | 100             | 10/07/20         | 85373         | 720ANEW  | 22         | MSMS3 | 7700SWA  |

| Comments: |      |      |      |      |  |
|-----------|------|------|------|------|--|
|           | <br> | <br> | <br> | <br> |  |
|           |      |      |      |      |  |
|           |      |      |      |      |  |
|           |      |      | <br> | <br> |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 85372 (100)

% Solid: 0

Lab Name: Veritech

Client Id: MB 85372 (100)

Units: MG/KG

Lab Code:

Matrix: SOIL Level: LOW

| Cas No.    | Analyte    | MDL :            | RL     | Conc | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis Date | Prep<br>Batch | File:    | Seq<br>Num | м | Instr      |
|------------|------------|------------------|--------|------|----------|-------------------|-----------------|---------------|---------------|----------|------------|---|------------|
| 7429-90-5  | Aluminum   | 8.4              | 200    | ND   | 1,       | 0.5               | 50              | 10/06/20      | 853726        | 312A3MDL | 14         | Р | PEICP3A    |
| 7440-39-3  | Barium     | 0.34             | 10     | ND   | 1        | 0.5               | 50              | 10/06/20      | 853726        | 312A3MDL | 14         | Р | PEICP3A    |
| 7440-70-2  | Calcium    | 50               | 1000   | ND   | 1,       | 0.5               | 50              | 10/06/20      | 853726        | 312A3MDL | 14         | Ρ | PEICP3A    |
| 7440-47-3  | Chromium   | 0.33             | 5.0    | ND   | 1        | 0.5               | 50              | 10/06/20      | 853726        | 312A3MDL | 14         | Р | PEICP3A    |
| 7440-48-4  | Cobalt     | 0.36             | 2.5    | ND   | 1        | 0.5               | 50              | 10/06/20      | 853726        | 312A3MDL | 14         | Р | PEICP3A    |
| 7440-50-8  | Copper     | 0.31             | 5.0    | ND   | 1        | 0.5               | 50              | 10/06/20      | 853726        | 312A3MDL | 14         | Р | PEICP3A    |
| 7439-89-6  | Iron       | 6.6 <sup>†</sup> | 200    | ND   | 1        | 0.5               | 50              | 10/06/20      | 853726        | 312A3MDL | 14         | P | PEICP3A    |
| 7439-92-1  | Lead       | 2.5              | -10000 | ND   | 1        | 0.5               | 50 <sup>1</sup> | 10/06/20      | 85372         | S26312A3 | 14         | P | PEICP3A    |
| 7439-95-4N | /agnesium  | 9.8              | 500    | ND   | 1        | 0.5               | 50              | 10/06/20      | 853726        | 312A3MDL | 14         | P | PEICP3A    |
| 7439-96-5N | fanganese: | 0.32             | 10     | ND:  | 1;       | 0.5               | 50              | 10/06/20      | 853726        | 312A3MDL | 14         | P | PEICP3A    |
| 7440-02-0  | Nickel     | 0.55             | 5.0    | ND   | 1        | 0.5               | 50              | 10/06/20      | 853726        | 312A3MDL | 14         | Р | PEICP3A    |
| 7440-09-7  | Potassium; | 49               | 500    | ND   | 1        | 0.5               | 50              | 10/06/20      | 853726        | 312A4MDL | 14         | P | PEICPRAD4A |
| 7440-23-5  | Sodium     | 63               | 250    | ND   | 1        | 0.5               | 50              | 10/06/20      | 853726        | 312A4MDL | 14         | P | PEICPRAD4A |
| 7440-62-2  | Vanadium   | 0.48             | 10     | ND   | 1        | 0.5               | 50              | 10/06/20      | 853726        | 312A3MDL | 14         | Р | PEICP3A    |
| 7440-66-6  | Zinc       | 0.75             | 10     | ND   | 1        | 0.5               | 50              | 10/06/20      | 853726        | 312A3MDL | 14         | Р | PEICP3A    |

| Comments: |  |  |
|-----------|--|--|
|           |  |  |
|           |  |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 85372 (167)

% Solid: 0

Lab Name: Veritech

Client Id: MB 85372 (167)

Units: MG/KG

Lab Code:

Matrix: SOIL Level: LOW

|   | Cas No.   | Analyte | MDL   | RL    | Conc | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis Date | Prep<br>Batch |           | Seq<br>Num | M  | Instr  |
|---|-----------|---------|-------|-------|------|----------|-------------------|-----------------|---------------|---------------|-----------|------------|----|--------|
| _ | 7439-97-6 | Mercury | 0.013 | 0.083 | ND   | 1        | 0.15              | 25              | 10/06/20      | 85372         | 26312SMDL | 11         | CV | HGCV3A |

| Comments: |  | <br> | <br> | <br> |  |
|-----------|--|------|------|------|--|
|           |  |      |      |      |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 85373

% Solid: 0

Lab Name: Veritech

Client Id: MB 85373

Units: MG/KG

Lab Code:

Matrix: SOIL Level: LOW

| Cas   | s No.           | Analyte    | MDL    | RL   | Conc   | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis Date | Prep<br>Batch | File:    | Seq<br>Num | М      | Instr    |
|-------|-----------------|------------|--------|------|--------|----------|-------------------|-----------------|---------------|---------------|----------|------------|--------|----------|
| 7429  | -90-5           | Aluminum   | 0.79   | 100  | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3  | _7700SWA |
| 7440  | -36-0           | Antimony   | 0.011  | 0.80 | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3  | _7700SWA |
| 7440  | -38-2           | Arsenic    | 0.0087 | 0.20 | ND     | 1        | 0.5 <sub> </sub>  | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3  | _7700SWA |
| 7440  | -39-3           | Barium     | 0.028  | 1.0  | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3  | _7700SWA |
| 7440  | -41-7           | Beryllium  | 0.0078 | 0.20 | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3  | _7700SWA |
| 7440  | -43-9           | Cadmium    | 0.0071 | 0.40 | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373         | 0620ANEW | 18         | MSMS3_ | _7700SWA |
| 7440  | -70-2           | Calcium    | 9.5    | 100  | ND!    | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3  | _7700SWA |
| 7440  | -47-3           | Chromium   | 0.043  | 0.40 | ND:    | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18 ;       | MSMS3  | _7700SWA |
| 7440  | -48-4           | Cobalt     | 0.0054 | 0.40 | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | мѕмѕз_ | 7700SWA  |
| 7440  | -50-8           | Copper     | 0.097  | 2.0  | ND:    | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3  | _7700SWA |
| 7439  | -89-6           | Iron       | 2.1    | 100  | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3  | _7700SWA |
| 7439  | -92-1           | Lead       | 0.019  | 0.40 | 0.33J  | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3_ | _7700SWA |
| 7439  | -95 <b>-4</b> N | /lagnesium | 1.2    | 100  | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3_ | _7700SWA |
| 7439  | -96-5N          | Manganese  | 0.12   | 1.2  | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373         | 0620ANEW | 18         | MSMS3  | _7700SWA |
| 7439  | -98-7           | olybdenum  | 0.027  | 0.20 | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3_ | _7700SWA |
| 7440  | -02-0           | Nickel     | 0.026  | 0.60 | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3_ | _7700SWA |
| 7440  | -09-7           | Potassium  | 2.9    | 100  | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3  | _7700SWA |
| 7782  | -49-2           | Selenium   | 0.032  | 2.0  | ND,    | 1        | 0.5               | 100             | 10/06/20      | 853730        | 0620ANEW | 18         | MSMS3_ | _7700SWA |
| 7440  | -22-4           | Silver     | 0.013  | 0.20 | 0.025J | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3_ | 7700SWA  |
| 7440  | -23-5           | Sodium     | 8.9    | 100  | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373         | 0620ANEW | 18         | MSMS3_ | _7700SWA |
| 7440- | -28-0           | Thallium   | 0.0088 | 0.40 | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3_ | _7700SWA |
| 7440  | -62-2           | Vanadium   | 0.0054 | 0.20 | 0.013J | 1        | 0.5               | 100             | 10/06/20      | 853730        | 0620ANEW | 18         | MSMS3_ | _7700SWA |
| 7440- | -66-6           | Zinc       | 0.73   | 4.0  | ND     | 1        | 0.5               | 100             | 10/06/20      | 85373)        | 0620ANEW | 18         | MSMS3_ | 7700SWA  |

| Comments: | <br><del> </del> |  | <br> |
|-----------|------------------|--|------|
|           |                  |  |      |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

## FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/06/20

Data File: \$26312A3MDL

Prep Batch: 85372

Analytical Method:6010B(ICP)/7470A,7471A(Hg),6020

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0093024

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

**ICV/CCV SOURCE: VHG LABS** 

|           | ICV/CCV | ICV V-<br>, 333673 | -5  | CCV V-<br>333673-12 | 2   | CCV V-<br>333673- |     | CCV V-<br>333673- |     | CCV V-<br>333673- |           |          |     |   |     |   |     |   |
|-----------|---------|--------------------|-----|---------------------|-----|-------------------|-----|-------------------|-----|-------------------|-----------|----------|-----|---|-----|---|-----|---|
| Analyte   | Amt     |                    | Rec |                     | Rec | 23                | Rec | 35                | Rec | 43                | Rec       |          | Rec |   | Rec |   | Rec | : |
| Aluminum  | 10/5    | 5.05564            | 101 | 5.17951             | 104 | 4.99762           | 100 | 4.95421           | 99  | 4.92674           | 99        |          |     |   |     |   | į   | i |
| Barium    | 1/.5    | 0.49588            | 99  | 0.49000             | 98  | 0.48948           | 98  | 0.48642           | 97  | 0.48363           | 97        | !        |     | 1 |     |   |     |   |
| Calcium   | 100/50  | 51.91990           | 104 | 50.05090            | 100 | 49 96790          | 100 | 49.29700          | 99  | 49.18230          | 98        |          |     | 1 | !   | 1 |     |   |
| Chromium  | 1/.5    | 0.52045            | 104 | 0.51507             | 103 | 0.51594           | 103 | 0.51272           | 103 | 0.50940           | 102       | 1        |     |   | 1   |   | i   |   |
| Cobalt    | 1/.5    | 0.49215            | 98  | 0.50982             | 102 | 0.48591           | 97  | 10.50178          | 100 | 0.50033           | 100       |          |     | ł | į   | i |     |   |
| Copper    | 1/.5    | 0.51691            | 103 | 0.51096             | 102 | 0.51359           | 103 | 0.50942           | 102 | 0.50957           | 102       | : :      |     |   | !   | ! |     |   |
| Iron      | 10/5    | 5.02134            | 100 | 5 04844             | 101 | 4.98848           | 100 | 4.96259           | 99  | 4.93112           | 99        | 1        |     |   | į   |   | *   | i |
| Magnesium | 100/50  | 51.83890           | 104 | 50.36080            | 101 | 50.13610          | 100 | 49 44050          | 99  | 49.19310          | :<br>· 98 |          |     | ! | ,   |   | :   |   |
| Manganese | 1/.5    | 0.51014            | 102 | 0.50482             | 101 | 0.50546           | 101 | 0.50220           | 100 | 0.49931           | 100       |          |     | 1 |     |   | •   |   |
| Nickel    | 1/.5    | 0 50052            | 100 | 0.49500             | 99  | 0.49444           | 99  | 0.49217           | 98  | 0.48817           | 98        | <u> </u> |     | 1 | 1   |   | •   |   |
| Zinc      | 1/.5    | 0.51188            | 102 | 0.50536             | 101 | 0.50367           | 101 | 0.50193           | 100 | 0.49522           | 99        | į i      |     | ! | i   | İ | ļ   |   |

Notes: a-indicates analyte failed the ICV limits for 6010B, 6020

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B (Except Hg 7470A,7471A),6020

d-indicates analyte failed the CCV limits Hg 7470A/7471A

Qc Limits: ICV - 200.7 : 95-105

CCV- 200.7/200.8/6010B/245.1 : 90-110 (Except Hg 7470A/ 7471A=80-120)

ICV -6010B/6020/200.8: 90-110

CLP ICP ICV/CCV: 90-110

CLP Hg ICV/CCV: 80-120

#### FORM 2 LLQCS/LRS Summary)

Date Analyzed: 10/06/20

Data File: S26312A3MDL

Prep Batch: 85372

Analytical Method: 6010D, 6020B, 7470A, 7471B

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

LLQCS/LRS SOURCE: SPEX

|            | LLQCS<br>Spike<br>Amount | LLICV V-<br>333671 | Recovery | Low<br>Limit | High<br>Limit | LRS<br>Spike<br>Amount | LRS V-<br>335934 | Recovery | Low<br>Limit | High<br>Limit |     |
|------------|--------------------------|--------------------|----------|--------------|---------------|------------------------|------------------|----------|--------------|---------------|-----|
| Magnesium  | 5.0                      | 5.10950            | 102      | 80           | 120           | 500                    | 494.982          | 99       | 90           | 110           |     |
| Silver     | 0.015                    | 0.0162091          | 108      | 80           | 120           | 1                      | 1.28279          | 128 a    | 90           | 110           |     |
| Aluminum   | 2.0                      | 2.00586            | 100      | 80           | 120           | 500                    | 521.565          | 104      | 90           | 110           |     |
| Arsenic    | 0.04                     | 0.0385007          | 96       | 80           | 120           | 10                     | 10.8290          | 108      | 90           | 110           |     |
| Boron      | 0.2                      | 0.187917           | 94       | 80           | 120           | 5                      | 5.96491          | 119a     | 90           | 110           |     |
| Barium     | 0.1                      | 0.102475           | 102      | 80           | 120           | 10                     | 10.1528          | 102      | 90           | 110           | ,   |
| Beryllium  | 0.012                    | 0.0113478          | 95       | 80           | 120           | 5                      | 5.00946          | 100      | 90           | 110           |     |
| Calcium    | 10                       | 10.1891            | 102      | 80           | 120           | 500                    | 468.327          | 94       | 90           | 110           |     |
| Cadmium    | 0.012                    | 0.0160250          | 134 a    | 80           | 120           | 5                      | 5.16439          | 103      | 90           | 110           |     |
| Cobalt     | 0.025                    | 0.0221149          | 88       | 80           | 120           | 5                      | 4.76437          | 95       | 90           | 110           |     |
| Chromium   | 0.05                     | 0.0523551          | 105      | 80           | 120           | 10                     | 10.0320          | 100      | 90           | 110           |     |
| Copper     | 0.05                     | 0.0489648          | 98       | 80           | 120           | 10                     | 10.6100          | 106      | 90           | 110           |     |
| Silicon    | 0.1                      | 0.170439           | 170 a    | 80           | 120           | 25                     | 26.2416          | 105      | 90           | 110           |     |
| Potassium  | NA                       | -91.5073           |          | 80           | 120           | 200                    | -1952.73         | -980 a   | 90           | 110           |     |
| Zinc       | 0.1                      | 0.100436           | 100      | 80           | 120           | 10                     | 9.79983          | 98       | 90           | 110           | i   |
| Manganese  | 0.1                      | 0.101036           | 101      | 80           | 120           | 10                     | 10.0997          | 101      | 90           | 110           | :   |
| Molybdenum | 0.025                    | 0.0242054          | 97       | 80           | 120           | 10                     | 9.74625          | 97       | 90           | 110           | :   |
| Sodium     | NA                       | 2.82393            | İ        | 80           | 120           | 1000                   | 1194.54          | 119a     | 90           | 110           |     |
| Nickel     | 0.05                     | 0.0535588          | 107      | 80           | 120           | 10                     | 9.50364          | 95       | 90           | 110           |     |
| Lead       | 0.05                     | 0.0502176          | 100      | 80           | 120           | 10                     | 10.1138          | 101      | 90           | 110           |     |
| Antimony   | 0.04                     | 0.0460602          | 115      | 80           | 120           | 5                      | 5.61022          | 112 a    | 90           | 110           |     |
| Selenium   | 0.05                     | 0.0501388          | 100      | 80           | 120           | 5                      | 5.17169          | 103      | 90           | 110           |     |
| Tin        | 0.2                      | 0.206022           | 103      | 80           | 120           | 10                     | 10.8082          | 108      | 90           | 110           | İ   |
| Titanium   | 0.1                      | 0.0994510          | 99       | 80           | 120           | 10                     | 10.3799          | 104      | 90           | 110           |     |
| Thallium   | 0.05                     | 0.0516208          | 103      | 80           | 120           | 5                      | 5.02029          | 100      | 90           | 110           |     |
| Vanadium   | 0.1                      | 0.0963681          | 96       | 80           | 120           | 10                     | 10.1006          | 101      | 90           | 110           | 7.7 |
| Iron       | 2.0                      | 2.02395            | 101      | 80           | 120           | 400                    | 390.343          | 98       | 90           | 110           |     |

Notes: a-indicates analyte is outsite the limits.

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

## FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/06/20 Lab Name: Veritech

Data File: S26312A4MDL Lab Code:
Prep Batch: 85372 Contract:
Analytical Method:6010B(ICP)/7470A,7471A(Hg),6020 Nras No:
Instrument: PEICPRAD4A Sdg No:
Units: All units in ppm except Hg and icp-ms in ppb Case No:

Project Number: 0093024 ICV/CCV SOURCE: VHG LABS

| Analyte   | ICV/CCV<br>Amt | ICV V-<br>335864-5<br>Rec | CCV V-<br>335864-12<br>Rec | CCV V-<br>335864-<br>23 Rec | CCV V-<br>335864-<br>31 | Rec |   | Rec | • | Rec |   | Rec | <br>Rec | : |
|-----------|----------------|---------------------------|----------------------------|-----------------------------|-------------------------|-----|---|-----|---|-----|---|-----|---------|---|
| Potassium | 100/50         | 50.26410 101              | 49.61190 99                | 49 24350 98                 | 48.79750                | 98  |   | :   |   |     | : |     |         |   |
| Sodium    | 100/50         | 51.92440   104            | 51.73270   103             | 51.84940 104                | 51.47580                | 103 | : | . ! | ! | 4   |   | 1   |         | : |

Notes: a-indicates analyte failed the ICV limits for 6010B, 6020

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B (Except Hg 7470A,7471A),6020

d-indicates analyte failed the CCV limits Hg 7470A/7471A

**Qc Limits:** ICV - 200.7 : 95-105

CCV- 200.7/200.8/6010B/245.1 : 90-110 (Except Hg 7470A/ 7471A=80-120) CLP Hg ICV/O

ICV -6010B/6020/200.8: 90-110

CLP ICP ICV/CCV: 90-110 CLP Hg ICV/CCV: 80-120

#### FORM 2 LLQCS/LRS Summary)

Date Analyzed: 10/06/20

Data File: S26312A4MDL

Prep Batch: 85372

Analytical Method: 6010D, 6020B, 7470A, 7471B

Instrument: PEICPRAD4A

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

LLQCS/LRS SOURCE: SPEX

| Analyte    | LLQCS<br>Spike<br>Amount | LLICV V-<br>333671 | Recovery | Low<br>Limit | High<br>Limit | LRS<br>Spike<br>Amount | LRS V-<br>333662 | Recovery | Low<br>Limit | High<br>Limit |  |
|------------|--------------------------|--------------------|----------|--------------|---------------|------------------------|------------------|----------|--------------|---------------|--|
| Molybdenum | 0.025                    | 0.0247425          | 99       | 80           | 120           | 10                     | 9.79100          | 98       | 90           | 110           |  |
| Boron      | 0.2                      | 0.201058           | 101      | 80           | 120           | 5                      | 4.47272          | 89 a     | 90           | 110           |  |
| Barium     | 0.1                      | 0.0909789          | 91       | 80           | 120           | 10                     | 9.48268          | 95       | 90           | 110           |  |
| Calcium    | 10.00                    | 9.55155            | 96       | 80           | 120           | 500                    | 456.060          | 91       | 90           | 110           |  |
| Copper     | 0.05                     | 0.0411633          | 82       | 80           | 120           | 10                     | 9.96097          | 100      | 90           | 110           |  |
| Iron       | 2.00                     | 1.89280            | 95       | 80           | 120           | 400                    | 377.955          | 94       | 90           | 110           |  |
| Potassium  | 5.00                     | 5.03899            | 101      | 80           | 120           | 200                    | 213.641          | 107      | 90           | 110           |  |
| Aluminum   | 2.00                     | 1.88728            | 94       | 80           | 120           | 500                    | 516.859          | 103      | 90           | 110           |  |
| Manganese  | 0.10                     | 0.0951392          | 95       | 80           | 120           | 10                     | 9.32927          | 93       | 90           | 110           |  |
| Zinc       | 0.1                      | 0.0979652          | 98       | 80           | 120           | 10                     | 9.59032          | 96       | 90           | 110           |  |
| Sodium     | 2.50                     | 2.84303            | 114      | 80           | 120           | 1000                   | 930.198          | 93       | 90           | 110           |  |
| Nickel     | 0.05                     | 0.0540028          | 108      | 80           | 120           | 10                     | 9.90720          | 99       | 90           | 110           |  |
| Selenium   | 0.05                     | 0.0501860          | 100      | 80           | 120           | 5                      | 4.38156          | 88 a     | 90           | 110           |  |
| Silicon    | 0.1                      | 0.169466           | 169 a    | 80           | 120           | 25                     | 24.6536          | 99       | 90           | 110           |  |
| Tin        | 0.2                      | 0.224233           | 112      | 80           | 120           | 10                     | 11.3622          | 114a     | 90           | 110           |  |
| Titanium   | 0.1                      | 0.0951476          | 95       | 80           | 120           | 10                     | 9.62470          | 96       | 90           | 110           |  |
| Vanadium   | 0.1                      | 0.0911253          | 91       | 80           | 120           | 10                     | 9.07124          | 91       | 90           | 110           |  |
| Magnesium  | 5.00                     | 4.74694            | 95       | 80           | 120           | 500                    | 495.850          | 99       | 90           | 110           |  |

a-indicates analyte is outsite the limits. Notes:

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

### FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/06/20

Data File: \$26312B3MDL Prep Batch: 85372

Analytical Method: 6010D, 6020B, 7470A, 7471B

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No:

Sdg No: Case No:

ICV/CCV SOURCE: SCP Science

|            | ICV/CCV | ICV V-<br>333673-              |       | CCV V-<br>333673-<br>12 | D     | CCV V-<br>333673-<br>20 | Da-   | CCV V-<br>333673-<br>27 | Dee   | CCV V-<br>333673-<br>36 | Do.   | Po-      | Rec   | Rec     |
|------------|---------|--------------------------------|-------|-------------------------|-------|-------------------------|-------|-------------------------|-------|-------------------------|-------|----------|-------|---------|
| Analyte    | Amt     | ****************************** | Rec   |                         | Rec   | T=                      | Rec   |                         | Rec   |                         | Rec   | Rec      | Rec   | <br>Rec |
| ,Aluminum  |         | 5.04536                        | 101   | 5.04641                 | 101   | 5.01106                 | 100   | 5.02299                 | 100   | 4.99285                 | 100   | <u> </u> | įįį   |         |
| Antimony   |         | 0.52411                        | 105   | 0.52178                 | 104   | 0.52641                 | 105   | 0.53468                 | 107   | 0.52569                 | 105   |          | 1     | 1       |
| Arsenic    | .5/.5   | 0.49821                        | 100   | 0.50133                 | 100   | 0.50715                 | 101   | 0.50935                 | 102   | 0.49819                 | 100   | İ        | 1     | 1       |
| Barium     | .5/.5   | 0.49551                        | 99    | 0.49258                 | 99    | 0.49067                 | 98    | 0.49077                 | 98    | 0.48947                 | 98    | 1        | i ;   | į.      |
| Beryllium  | .5/.5   | 0.50765                        | 102   | 0.50916                 | 102   | 0.51240                 | 102   | 0.51431                 | 103   | 0.50527                 | 101   |          |       | i       |
| Boron      | .5/.5   | 0.44850                        | 90    | 0.42220                 | 84 c  | 0.41559                 | 83 c  | 0.41856                 | 84 c  | 0.41719                 | 83 c  |          | :<br> |         |
| Cadmium    | .5/.5   | 0.48915                        | 98    | 0.48811                 | 98    | 0.48702                 | 97    | 0.48816                 | 98    | 0.48542                 | 97    |          |       | 1       |
| Calcium    | 50/50   | 50.77610                       | 102   | 50.99040                | 102   | 51.20640                | 102   | 51.34330                | 103   | 50.41390                | 101   |          |       | !       |
| Chromium   | .5/.5   | 0.51985                        | 104   | 0.51790                 | 104   | 0.51680                 | 103   | 0.51679                 | 103   | 0.51433                 | 103   |          | i '   | !       |
| Cobalt     | .5/.5   | 0.51360                        | 103   | 0.51243                 | 102   | 0.51699                 | 103   | 0.51786                 | 104   | 0.51516                 | 103   |          | ! !   | !       |
| Copper     | .5/.5   | 0.51966                        | 104   | 0.51653                 | 103   | 0.51514                 | 103   | 0.51649                 | 103   | 0.51450                 | 103   |          |       |         |
| Iron       | 5/5     | 5.01309                        | 100   | 5.00532                 | 100   | 4.98558                 | 100   | 5.01450                 | 100   | 4.99541                 | 100   |          | 1 1   | !       |
| Lead       | .5/.5   | 0.50757                        | 102   | 0.50482                 | 101   | 0.50045                 | 100   | 0.50328                 | 101   | 0.49331                 | 99    | i        | į l   | ļ       |
| Magnesium  | 50/50   | 50.99780                       | 102   | 48.83930                | 98    | 50.61870                | 101   | 49.42980                | 99    | 50.52580                | 101   |          | i [   | !       |
| Manganese  | .5/.5   | 0.50987                        | 102   | 0.50737                 | 101   | 0.50648                 | 101   | 0.50687                 | 101   | 0.50473                 | 101   |          | i     | į.      |
| Molybdenum | .5/.5   | 0.50490                        | 101   | 0.50507                 | 101   | 0.50846                 | 102   | 0.50899                 | 102   | 0.50669                 | 101   | i i      | 1     | ì       |
| Nickel     | .5/.5   | 0.50469                        | 101   | 0.49943                 | 100   | 0.53135                 | 106   | 0.50026                 | 100   | 0.52929                 | 106   |          |       | ;       |
| Selenium   | .5/.5   | 0.50941                        | 102   | 0.50401                 | 101   | 0.50870                 | 102   | 0.51528                 | 103   | 0.50720                 | 101   |          |       |         |
| Silver     | 0.1/0.1 | 0.11725                        | 117 a | 0.11688                 | 117 c | 0.11697                 | 117 c | 0.11708                 | 117 c | 0.11552                 | 116 c |          |       |         |
| Thallium   | .5/.5   | 0.52529                        | 105   | 0.52755                 | 106   | 0.53431                 | 107   | 0.52946                 | 106   | 0.53087                 | 106   |          |       |         |
| Tin        | .5/.5   | 0.51884                        | 104   | 0.51833                 | 104   | 0.51914                 | 104   | 0.51613                 | 103   | 0.51522                 | 103   |          | 1     |         |
| Titanium   | .5/.5   | 0.51358                        | 103   | 0.51165                 | 102   | <br> 0.51197            | 102   | 0.51099                 | 102   | 0.50875                 | 102   |          | !     |         |
| Vanadium   | .5/.5   | 0.50787                        | 102   | 0.50638                 | 101   | 0.50418                 | 101   | 0.50355                 | 101   | 0.50389                 | 101   |          | i     |         |
| Zinc       | .5/.5   | 0.51260                        | 103   | 0.50919                 | 102   | 0.50819                 | 102   | 0.51080                 | 102   | 0.51032                 | 102   | į į      |       |         |

Notes: a-indicates analyte failed the ICV limits for 6010D, 6020B

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010C,6020B, Hg 7470A,7471B

d-indicates analyte failed the CCV limits Hg 7470A/7471B

**Qc Limits:** ICV - 200.7 (95-105) 6010D/6020B/200.8 (90-110)

CCV- 200.7/200.8/6010D/245.1, Hg 7470A/ 7471B (90-110)

#### FORM 2 LLQCS/LRS Summary)

Date Analyzed: 10/06/20

Lab Name: Hampton-Clarke

Data File: S26312B3MDL

Lab Code:

Prep Batch: 85372 Analytical Method: 6010D, 6020B, 7470A, 7471B Contract: Nras No:

Sdg No:

Instrument: PEICP3A

Case No:

Units: All units in ppm except Hg and icp-ms in ppb

LLQCS/LRS SOURCE: SPEX

| Analyte    | LLQCS<br>Spike<br>Amount | LLICV V-<br>333671 | Recovery    | Low<br>Limit | High<br>Limit | LRS<br>Spike<br>Amount | LRS V-<br>335934 | Recovery           | Low<br>Limit | High<br>Limit |      |
|------------|--------------------------|--------------------|-------------|--------------|---------------|------------------------|------------------|--------------------|--------------|---------------|------|
| Manganese  | 0.1                      | 0.104134           | 104         | 80           | 120           | 10                     | 9.92915          | 99                 | 90           | 110           | <br> |
| Aluminum   | 2.0                      | 2.06387            | 103         | 80           | 120           | 500                    | 510.957          | 102                | 90           | 110           |      |
| Arsenic    | 0.04                     | 0.0386501          | 97          | 80           | 120           | 10                     | 10.6820          | 107                | 90           | 110           |      |
| Boron      | 0.2                      | 0.134138           | 67 <b>a</b> | 80           | 120           | <u>,</u> 5             | 6.36588          | 127 a              | 90           | 110           |      |
| Barium     | 0.1                      | 0.104637           | 105         | 80           | 120           | 10                     | 10.0698          | 101                | 90           | 110           |      |
| Beryllium  | 0.012                    | 0.0131756          | 110         | 80           | 120           | 5                      | 5.01865          | 100                | 90           | 110           |      |
| Calcium    | 10                       | 10.5266            | 105         | 80           | 120           | 500                    | 462.358          | 92                 | 90           | 110           |      |
| Cadmium    | 0.012                    | 0.0171461          | 143 a       | 80           | 120           | 5                      | 5.15048          | 103                | 90           | 110           |      |
| Cobalt     | 0.025                    | 0.0245449          | 98          | 80           | 120           | 5                      | 4.76339          | 95                 | 90           | 110           |      |
| Chromium   | 0.05                     | 0.0538951          | 108         | 80           | 120           | 10                     | 9.95429          | 100                | 90           | 110           |      |
| Copper     | 0.05                     | 0.0515210          | 103         | 80           | 120           | 10                     | 10.5594          | 106                | 90           | 110           |      |
| Iron       | 2.0                      | 2.06661            | 103         | 80           | 120           | 400                    | 384.777          | 96                 | 90           | 110           |      |
| Silver     | 0.015                    | 0.0173528          | 116         | 80           | 120           | 1                      | 1.28151          | 128 a              | 90           | 110           |      |
| Magnesium  | 5.0                      | 5.23201            | 105         | 80           | 120           | 500                    | 465.854          | 93                 | 90           | 110           |      |
| Zinc       | 0.1                      | 0.104187           | 104         | 80           | 120           | 10                     | 9.73672          | 97                 | 90           | 110           |      |
| Molybdenum | 0.025                    | 0.0253058          | 101         | 80           | 120           | 10                     | 9.67250          | 97                 | 90           | 110           |      |
| Sodium     | NA                       | 3.23226            |             | 80           | 120           | 1000                   | 1199.05          | 120 a              | 90           | 110           |      |
| Nickel     | 0.05                     | 0.0557502          | 112         | 80           | 120           | 10                     | 9.49253          | 95                 | 90           | 110           |      |
| Lead       | 0.05                     | 0.0474338          | 95          | 80           | 120           | 10                     | 10.0940          | 101                | 90           | 110           |      |
| Antimony   | 0.04                     | 0.0430396          | 108         | 80           | 120           | 5                      | 5.54286          | 111 a              | 90           | 110           |      |
| Selenium   | 0.05                     | 0.0506248          | 101         | 80           | 120           | 5                      | 5.12946          | 103                | 90           | 110           |      |
| Silicon    | 0.1                      | 0.197518           | 198 a       | 80           | 120           | 25                     | 26.0514          | 104                | 90           | 110           |      |
| Tin        | 0.2                      | 0.210439           | 105         | 80           | 120           | 10                     | 10.6796          | 107                | 90           | 110           |      |
| Titanium   | 0.1                      | 0.101562           | 102         | 80           | 120           | 10                     | 10.1997          | 102                | 90           | 110           |      |
| Thallium   | 0.05                     | 0.0506222          | 101         | 80           | 120           | 5                      | 5.01398          | 100                | 90           | 110           |      |
| Vanadium   | 0.1                      | 0.101702           | 102         | 80           | 120           | 10                     | 10.0120          | 100                | 90           | 110           |      |
| Potassium  | NA                       | -20.3283           |             | 80           | 120           | 200                    | -2415.62         | - <b>a</b><br>1200 | 90           | 110           |      |

a-indicates analyte is outsite the limits. Notes:

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

### FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/06/20 Lab Name: Veritech

Data File: H26312SMDL Lab Code:
Prep Batch: 85372 Contract:
Analytical Method:6010B(ICP)/7470A,7471A(Hg),6020 Nras No:
Instrument: HGCV3A Sdg No:
Units: All units in ppm except Hg and icp-ms in ppb Case No:

Project Number: 0093024 ICV/CCV SOURCE: VHG LABS

|         | ICV (2)-9         | CCV-21         | CCV-32 |     |     |     |     |     |     |
|---------|-------------------|----------------|--------|-----|-----|-----|-----|-----|-----|
| Analyte | ICV/CCV<br>Amt Re | c Red          | R      | Rec | Rec | Rec | Rec | Rec | Rec |
| Mercury | 20/10 20.23000 10 | 1 10.11000 101 | :      | 02  |     |     |     |     |     |

Notes: a-indicates analyte failed the ICV limits for 6010B, 6020

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B (Except Hg 7470A,7471A),6020

d-indicates analyte failed the CCV limits Hg 7470A/7471A

Qc Limits: ICV - 200.7 : 95-105

CCV- 200.7/200.8/6010B/245.1 : 90-110 (Except Hg 7470A/ 7471A=80-120)

ICV -6010B/6020/200.8:90-110

CLP ICP ICV/CCV: 90-110

CLP Hg ICV/CCV: 80-120

## FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/06/20

Data File: S100620ANEW

Prep Batch: 85373

Analytical Method:6010B(ICP)/7470A,7471A(Hg),6020

Instrument: MS3\_7700SWA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0093024

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

| Analyte   | ICV/CCV<br>Amt | ICV V-<br>336038-8    |     | CCV V-<br>336042-16 | 3   | CCV V-<br>336042- |     | CCV V-<br>336042-<br>40 |     | CCV V-<br>336042- |     | ••• |     |   |     |   |        |   |
|-----------|----------------|-----------------------|-----|---------------------|-----|-------------------|-----|-------------------------|-----|-------------------|-----|-----|-----|---|-----|---|--------|---|
|           |                |                       | Rec |                     | Rec | 28                | Rec | 40                      | Rec | 43                | Rec |     | Rec |   | Rec | ; | Red    | С |
| Antimony  | 50/30          | 48 67300              | 97  | 49 41100            | 99  | 48 60900          | 97  | 49.31600                | 99  | 48.35200          | 97  |     |     |   | :   |   |        |   |
| Arsenic   | 50/30          | 51.37800              | 103 | 50.05400            | 100 | 49.06400          | 98  | 50.00100                | 100 | 49.73100          | 99  | i   | i   | : | :   | ; |        |   |
| Beryllium | 50/30          | <sub>[</sub> 50.76200 | 102 | 51.41000            | 103 | 50.99800          | 102 | 49.89500                | 100 | 49.68100          | 99  | i   |     | ŀ | i   |   | į      | ŧ |
| Cadmium   | 50/30          | 51.20400              | 102 | 50.76200            | 102 | 49.59800          | 99  | 49.97000                | 100 | 49.03500          | 98  | !   |     | 1 | i   |   | !<br>  |   |
| Selenium  | 50/30          | 51.59200              | 103 | 246.73300           | 99  | 243.31200         | 97  | 245.34600               | 98  | 243.98800         | 98  | ·   | į   | i | 1   | İ | :<br>į | : |
| Silver    | 10/6           | 9.88200               | 99  | 49.31900            | 99  | 48.59100          | 97  | 48.41500                | 97  | 47.72900          | 95  | :   | 1   | ! | ļ   | i | ļ      |   |
| Thallium  | 50/30          | 49.86200              | 100 | 50.64800            | 101 | 50.27100          | 101 | 50.21000                | 100 | 49.19400          | 98  |     | 1   |   |     |   | :      |   |
| Vanadium  | 50/30          | 50.53600              | 101 | 49.74100            | 99  | 48.80100          | 98  | 50.28400                | 101 | 50.57800          | 101 |     |     |   | i   |   | ÷      | : |
|           |                |                       |     |                     |     |                   | •   |                         |     |                   |     |     | •   |   |     |   |        |   |

Notes: a-indicates analyte failed the ICV limits for 6010B, 6020

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B (Except Hg 7470A,7471A),6020

d-indicates analyte failed the CCV limits Hg 7470A/7471A

Qc Limits: ICV - 200.7 : 95-105

CCV- 200.7/200.8/6010B/245.1 : 90-110 (Except Hg 7470A/ 7471A=80-120)

ICV -6010B/6020/200.8 : 90-110

CLP ICP ICV/CCV: 90-110

CLP Hg ICV/CCV: 80-120

#### FORM 2 LLQCS/LRS Summary)

Date Analyzed: 10/06/20

Data File: S100620ANEW

Prep Batch: 85373

Analytical Method: 6010D, 6020B, 7470A, 7471B

Instrument: MS3\_7700SWA

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No:

Sdg No: Case No:

LLQCS/LRS SOURCE: SPEX

| Analyte    | LLQCS<br>Spike<br>Amount | LLICV V-<br>336043 | Recovery | Low<br>Limit | High<br>Limit | LRS<br>Spike<br>Amount | LRS V-<br>336041 | Recovery | Low<br>Limit | High<br>Limit |  |
|------------|--------------------------|--------------------|----------|--------------|---------------|------------------------|------------------|----------|--------------|---------------|--|
| Magnesium  | 500                      | 495.931            | 99       | 80           | 120           | 50000                  | 51910.574        | 104      | 90           | 110           |  |
| Aluminum   | 500                      | 507.018            | 101      | 80           | 120           | 15000                  | 15863.425        | 106      | 90           | 110           |  |
| Chromium   | 2                        | 2.067              | 103      | 80           | 120           | 500                    | 535.399          | 107      | 90           | 110           |  |
| Copper     | 10                       | 10.332             | 103      | 80           | 120           | 500                    | 518.389          | 104      | 90           | 110           |  |
| Iron       | 500                      | 519.403            | 104      | 80           | 120           | 50000                  | 51753.317        | 104      | 90           | 110           |  |
| Arsenic    | 1                        | 0.984              | 98       | 80           | 120           | 500                    | 521.633          | 104      | 90           | 110           |  |
| Barium     | 5                        | 4.936              | 99       | 80           | 120           | 500                    | 532.705          | 107      | 90           | 110           |  |
| Beryllium  | 1                        | 1.020              | 102      | 80           | 120           | 500                    | 489.039          | 98       | 90           | 110           |  |
| Calcium    | 500                      | 513.221            | 103      | 80           | 120           | 50000                  | 53448.789        | 107      | 90           | 110           |  |
| Cadmium    | 2                        | 1.993              | 100      | 80           | 120           | 500                    | 532.738          | 107      | 90           | 110           |  |
| Silver     | 1                        | 0.946              | 95       | 80           | 120           | 500                    | 842.993          | 169 a    | 90           | 110           |  |
| Potassium  | 500                      | 497.211            | 99       | 80           | 120           | 50000                  | 52735.394        | 105      | 90           | 110           |  |
| Zinc       | 20                       | 20.857             | 104      | 80           | 120           | 500                    | 495.922          | 99       | 90           | 110           |  |
| Manganese  | 6                        | 5.982              | 100      | 80           | 120           | 500                    | 545.010          | 109      | 90           | 110           |  |
| Molybdenum | 1                        | 1.092              | 109      | 80           | 120           | 500                    | 542.329          | 108      | 90           | 110           |  |
| Sodium     | 500                      | 479.961            | 96       | 80           | 120           | 50000                  | 52895.810        | 106      | 90           | 110           |  |
| Nickel     | 3                        | 3.041              | 101      | 80           | 120           | 500                    | 501.973          | 100      | 90           | 110           |  |
| Lead       | 2                        | 1.912              | 96       | 80           | 120           | 500                    | 484.217          | 97       | 90           | 110           |  |
| Antimony   | 4                        | 3.861              | 97       | 80           | 120           | 500                    | 511.667          | 102      | 90           | 110           |  |
| Selenium   | 10                       | 10.338             | 103      | 80           | 120           | 2500                   | 2532.893         | 101      | 90           | 110           |  |
| Thallium   | 2                        | 1.822              | 91       | 80           | 120           | 500                    | 479.411          | 96       | 90           | 110           |  |
| Vanadium   | 1                        | 0.974              | 97       | 80           | 120           | 500                    | 545.796          | 109      | 90           | 110           |  |
| Cobalt     | 2                        | 2.002              | 100      | 80           | 120           | 500                    | 529.135          | 106      | 90           | 110           |  |

Notes:

a-indicates analyte is outsite the limits.

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

# FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/07/20 Lab Name: Veritech

 Data File: \$100720ANEW
 Lab Code:

 Prep Batch: 85373
 Contract:

 Analytical Method: 6010B(ICP)/7470A,7471A(Hg),6020
 Nras No:

 Instrument: MS3, 7700SIMA
 Sda No:

Instrument: MS3\_7700SWA Sdg No:
Units: All units in ppm except Hg and icp-ms in ppb Case No:

Project Number: 0093024 ICV/CCV SOURCE: VHG LABS

| Analyte   | ICV/CCV<br>Amt | ICV V-<br>, 336038- | 8<br>Rec | CCV V-<br>336042-16 | Rec | CCV V-<br>336042-<br>28 | Rec | CCV V-<br>336042-<br>40 | Rec | CCV V-<br>336042-<br>51 | Rec  | Rec | Rec | Rec |
|-----------|----------------|---------------------|----------|---------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|------|-----|-----|-----|
| Antimony  | 50/30          | 48.11300            | 96       | 47 00900            | 94  | 46.96200                | 94  | 45.89500                | 92  | 45.75700                | 92   | 1   |     |     |
| Arsenic   | 50/30          | 50 36700            | 101      | 49.12200            | 98  | 48.63100                | 97  | 49.22300                | 98  | 48 44700                | 97   |     | 1 . |     |
| Beryllium | 50/30          | 50.77200            | 102      | 51.07200            | 102 | 49.05900                | 98  | 49 64400                | 99  | 41.37300                | 83 c |     |     |     |
| Cadmium   | 50/30          | 50.04800            | 100      | 47.57800            | 95  | 47.12600                | 94  | 45.53800                | 91  | 44.20600                | 88 ¢ |     |     |     |
| Selenium  | 50/30          | 51.96600            | 104      | 243.56900           | 97  | 239 83600               | 96  | 240.97000               | 96  | 229.16600               | 92   |     |     |     |
| Silver    | 10/6           | 9.75500             | 98       | 46.61700            | 93  | 46 04800                | 92  | 46.84300                | 94  | 44.50300                | 89 c |     |     | 1   |
| Thallium  | 50/30          | 49.26700            | 99       | 49.66000            | 99  | 49.26800                | 99  | 48 80500                | 98  | 47.75000                | 96   | !   | !   |     |
| Vanadium  | 50/30          | 49.93100            | 100      | 49.01100            | 98  | 48.13100                | 96  | 48 83400                | 98  | 47.90100                | 96   | •   |     | 1   |

Notes: a-indicates analyte failed the ICV limits for 6010B, 6020

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B (Except Hg 7470A,7471A),6020

d-indicates analyte failed the CCV limits Hg 7470A/7471A

**Qc Limits:** ICV - 200.7 : 95-105

CCV- 200.7/200.8/6010B/245.1 : 90-110 (Except Hg 7470A/ 7471A=80-120) CLP Hg ICV/6

ICV -6010B/6020/200.8: 90-110

CLP ICP ICV/CCV: 90-110 CLP Hg ICV/CCV: 80-120

# FORM 2 LLQCS/LRS Summary)

Date Analyzed: 10/07/20

Lab Name: Hampton-Clarke

Data File: S100720ANEW

Lab Code:

Prep Batch: 85373

Contract: Nras No:

Analytical Method: 6010D, 6020B, 7470A, 7471B

Sdg No:

instrument: MS3\_7700SWA

Case No:

Units: All units in ppm except Hg and icp-ms in ppb

LLQCS/LRS SOURCE: SPEX

| Analyte    | LLQCS<br>Spike<br>Amount | LLICV V-<br>336043 | Recovery | Low<br>Limit | High<br>Limit | LRS<br>Spike<br>Amount | LRS V-<br>336041 | Recovery | Low<br>Limit | High<br>Limit |  |
|------------|--------------------------|--------------------|----------|--------------|---------------|------------------------|------------------|----------|--------------|---------------|--|
| Magnesium  | 500                      | 484.376            | 97       | 80           | 120           | 50000                  | 50508.392        | 101      | 90           | 110           |  |
| Aluminum   | 500                      | 486.298            | 97       | 80           | 120           | 15000                  | 15306.461        | 102      | 90           | 110           |  |
| Chromium   | 2                        | 2.025              | 101      | 80           | 120           | 500                    | 517.157          | 103      | 90           | 110           |  |
| Copper     | 10                       | 10.032             | 100      | 80           | 120           | 500                    | 510.431          | 102      | 90           | 110           |  |
| iron       | 500                      | 509.019            | 102      | 80           | 120           | 50000                  | 51033.964        | 102      | 90           | 110           |  |
| Arsenic    | 1                        | 1.035              | 104      | 80           | 120           | 500                    | 513.763          | 103      | 90           | 110           |  |
| Barium     | 5                        | 4.920              | 98       | 80           | 120           | 500                    | 522.878          | 105      | 90           | 110           |  |
| Beryllium  | 1                        | 0.990              | 99       | 80           | 120           | 500                    | 482.700          | 97       | 90           | 110           |  |
| Calcium    | 500                      | 510.508            | 102      | 80           | 120           | 50000                  | 54407.330        | 109      | 90           | 110           |  |
| Cadmium    | 2                        | 1.868              | 93       | 80           | 120           | 500                    | 510.113          | 102      | 90           | 110           |  |
| Silver     | 1                        | 0.903              | 90       | 80           | 120           | 500                    | 1554.927         | 311 a    | 90           | 110           |  |
| Potassium  | 500                      | 498.037            | 100      | 80           | 120           | 50000                  | 52742.800        | 105      | 90           | 110           |  |
| Zinc       | 20                       | 19.501             | 98       | 80           | 120           | 500                    | 485.019          | 97       | 90           | 110           |  |
| Manganese  | 6                        | 5.688              | 98       | 80           | 120           | 500                    | 526.632          | 105      | 90           | 110           |  |
| Molybdenum | 1                        | 0.997              | 100      | 80           | 120           | 500                    | 519.409          | 104      | 90           | 110           |  |
| Sodium     | 500                      | 465.079            | 93       | 80           | 120           | 50000                  | 50938.140        | 102      | 90           | 110           |  |
| Nickel     | 3                        | 2.896              | 97       | 80           | 120           | 500                    | 521.841          | 104      | 90           | 110           |  |
| Lead       | 2                        | 0.964              | 48 a     | 80           | 120           | 500                    | 480.225          | 96       | 90           | 110           |  |
| Antimony   | 4                        | 3.513              | 88       | 80           | 120           | 500                    | 496.986          | 99       | 90           | 110           |  |
| Selenium   | 10                       | 10.336             | 103      | 80           | 120           | 2500                   | 2522.581         | 101      | 90           | 110           |  |
| Thallium   | 2                        | 1.798              | 90       | 80           | 120           | 500                    | 477.957          | 96       | 90           | 110           |  |
| Vanadium   | 1                        | 1.000              | 100      | 80           | 120           | 500                    | 536.405          | 107      | 90           | 110           |  |
| Cobalt     | 2                        | 1.977              | 99       | 80           | 120           | 500                    | 514.167          | 103      | 90           | 110           |  |

Notes:

a-indicates analyte is outsite the limits.

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

### FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/08/20

Data File: S26317C3MDL Prep Batch: 85372

Analytical Method: 6010D, 6020B, 7470A, 7471B

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name: Hampton-Clarke

Lab Code: Contract: Nras No:

Sdg No: Case No:

ICV/CCV SOURCE: SCP Science

| Analyte    | ICV/CCV<br>Amt | ICV V-<br>, 336236- | 5<br>Rec     | CCV V-<br>336236-<br>12 | Rec | CCV V-<br>336236-<br>24 | Rec       | CCV V-<br>336236-<br>32 | Rec   | CCV V-<br>336236-<br>43 | Rec   | Rec           | Rec    | Rec |
|------------|----------------|---------------------|--------------|-------------------------|-----|-------------------------|-----------|-------------------------|-------|-------------------------|-------|---------------|--------|-----|
| Aluminum   | 5/5            | 5.00974             | 100          | 4.92796                 | 99  | 4.90876                 | 98        | 4.94932                 | 99    | 4.88332                 | 98    | -   -   -   - |        |     |
| Antimony   | .5/.5          | 0.50879             | 102          | 0.49608                 | 99  | 0.50695                 | 101       | 0.51078                 | 102   | 0.50740                 | 101   |               | !      | 1   |
| Arsenic    | .5/.5          | 0.49530             | 99           | 0.47427                 | 95  | 0.48409                 | 97        | 0.49124                 | 98    | 0.49955                 | 100   |               | }      |     |
| Barium     | .5/.5          | 0.47938             | 96           | 0.46659                 | 93  | 0.46822                 | 94        | 0.47972                 | 96    | 0.47356                 | 95    |               |        |     |
| Beryllium  | .5/.5          | 0.49006             | 98           | 0.47590                 | 95  | 0.48044                 | 96        | 0.49022                 | 98    | 0.48772                 | 98    |               |        |     |
| Boron      | .5/.5          | 0.50530             | 101          | 0.48186                 | 96  | 0.48368                 | :<br>  97 | 0.52150                 | 104   | 0.52510                 | 105   | ! !           | i      | 1   |
| Cadmium    | .5/.5          | 0.47319             | 95           | 0.45874                 | 92  | 0.46192                 | 92        | 0.48508                 | 97    | 0.48579                 | 97    |               | 1      |     |
| Calcium    | 50/50          | 49.99470            | 100          | 47.93710                | 96  | 48.29730                | 97        | 49.23540                | 98    | 48.98300                | 98    |               | ì      | 1   |
| Chromium   | .5/.5          | 0.49698             | 99           | 0.48355                 | 97  | 0.48470                 | 97        | 0.51555                 | 103   | 0.51450                 | 103   |               | i      | (   |
| Cobalt     | .5/.5          | 0.50519             | 101          | 10.49002                | 98  | 0.49743                 | 99        | 0.49535                 | 99    | 0.49623                 | 99    |               | i      | 1   |
| Copper     | .5/.5          | 0.50086             | 100          | 0.49057                 | 98  | 0.49073                 | 98        | 0.50070                 | 100   | 0.49286                 | 99    |               | i      | i t |
| Iron       | 5/5            | 5.04397             | 101          | 4.91518                 | 98  | 4.92896                 | 99        | 5.06475                 | 101   | 5.01814                 | 100   |               | i<br>I | 1 1 |
| Lead       | .5/.5          | 0.50440             | 101          | 0.48750                 | 97  | 0.49144                 | 98        | 0.49722                 | 99    | 0.49798                 | 100   |               | i      | į ! |
| Magnesium  | i 50/50        | 49.93190            | 100          | 48.19080                | 96  | 50.75330                | 102       | 51.91220                | 104   | 51.40070                | 103   |               | İ      | 1   |
| Manganese  | .5/.5          | 0.49994             | 100          | 0.48679                 | 97  | 0.48841                 | 98        | 0.49728                 | 99    | 0.49074                 | 98    |               |        | į ( |
| Molybdenum | .5/.5          | 0.49694             | 99           | 0.48547                 | 97  | 0.48971                 | 98        | 0.48533                 | 97    | 0.48315                 | 97    | * Marie       |        | 1   |
| Nickel     | .5/.5          | :0.48317            | 97           | 0.46828                 | 94  | 0.47316                 | 95        | 0.50132                 | 100   | 0.50209                 | 100   |               |        | 1   |
| Selenium   | .5/.5          | 0.49135             | 98           | 0.48377                 | 97  | 0.49109                 | 98        | 0.49488                 | 99    | 10.50639                | 101   | 1             |        |     |
| Silver     | 0.1/0.1        | 0.11221             | 112 <b>a</b> | 0.10995                 | 110 | 0.11041                 | 110       | 0.11666                 | 117 c | 0.11628                 | 116 c | 1             |        | 1   |
| Thallium   | .5/.5          | 0.51930             | 104          | 0.50820                 | 102 | 0.51298                 | 103       | 0.51638                 | 103   | 0.51960                 | 104   |               | 4      | į.  |
| <b>Tin</b> | .5/.5          | 0.51743             | 103          | 0.49773                 | 100 | 0.50102                 | 100       | 0.51310                 | 103   | 0.51730                 | 103   |               |        | 1   |
| Titanium   | .5/.5          | 0.50479             | 101          | 0.49358                 | 99  | 0.49342                 | 99        | 0.49655                 | 99    | 0.48863                 | 98    | 1             | 1      | 1   |
| Vanadium   | .5/.5          | 0.49144             | 98           | 0.47818                 | 96  | 0.47798                 | 96        | 0.48827                 | 98    | 0.47951                 | 96    | i             |        | į l |
| Zinc       | .5/.5          | 0.49533             | 99           | 0.47579                 | 95  | 0.48266                 | 97        | 0.51689                 | 103   | 0.52127                 | 104   |               |        | 1   |

a-indicates analyte failed the ICV limits for 6010D, 6020B Notes:

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010C,6020B, Hg 7470A,7471B

d-indicates analyte failed the CCV limits Hg 7470A/7471B

ICV - 200.7 (95-105) 6010D/6020B/200.8 (90-110) Qc Limits:

CCV- 200.7/200.8/6010D/245.1, Hg 7470A/ 7471B (90-110)

# FORM 2 LLQCS/LRS Summary)

Date Analyzed: 10/08/20

Data File: S26317C3MDL

Prep Batch: 85377

Analytical Method: 6010D, 6020B, 7470A, 7471B

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name: Hampton-Clarke

Lab Code: Contract:

Nras No:

Sdg No:

Case No:

LLQCS/LRS SOURCE: SPEX

| Analyte    | LLQCS<br>Spike<br>Amount | LLICV V-<br>336304 | Recovery     | Low<br>Limit | High<br>Limit | LRS<br>Spike<br>Amount | LRS V-<br>335934 | Recovery   | Low<br>Limit | High<br>Limit |                                       |
|------------|--------------------------|--------------------|--------------|--------------|---------------|------------------------|------------------|------------|--------------|---------------|---------------------------------------|
| Magnesium  | 5.0                      | 4.83471            | 97           | 80           | 120           | 500                    | 482.586          | 97         | 90           | 110           | · · · · · · · · · · · · · · · · · · · |
| Silver     | 0.015                    | 0.0150094          | 100          | 80           | 120           | 1                      | 1.24812          | 125 a      | 90           | 110           | !                                     |
| Aluminum   | 2.0                      | 2.02377            | 101          | 80           | 120           | 500                    | 499.167          | 100        | 90           | . 110         | :<br><del> </del>                     |
| Arsenic    | 0.04                     | 0.0432891          | 108          | 80           | 120           | 10                     | 10.3612          | 104        | 90           | 110           |                                       |
| Boron      | 0.2                      | 0.196345           | 98           | 80           | 120           | 5                      | 6.02373          | 120 a      | 90           | 110           | 1                                     |
| Barium     | 0.1                      | 0.100941           | 101          | 80           | 120           | 10                     | 9.84526          | 98         | 90           | 110           | į                                     |
| Beryllium  | 0.012                    | 0.0103276          | 86           | 80           | 120           | 5                      | 4.91720          | 98         | 90           | 110           |                                       |
| Calcium    | 10                       | 9.83792            | 98           | 80           | 120           | 500                    | 468.693          | 94         | 90           | 110           |                                       |
| Cadmium    | 0.012                    | 0.0128496          | 107          | 80           | 120           | ;<br>[ 5               | 5.07466          | 101        | 90           | 110           | <u> </u>                              |
| Cobalt     | 0.025                    | 0.0238427          | 95           | 80           | 120           | 5                      | 4.70270          | 94         | 90           | 110           | !<br>[                                |
| Chromium   | 0.05                     | 0.0469199          | 94           | 80           | 120           | 10                     | 9.67339          | 97         | 90           | 110           | I                                     |
| Copper     | 0.05                     | 0.0492852          | 99           | 80           | 120           | 10                     | 10.3152          | 103        | 90           | 110           |                                       |
| Silicon    | 0.1                      | 0.100773           | 101          | 80           | 120           | 25                     | 26.7349          | 107        | 90           | 110           |                                       |
| Potassium  | NA                       | -13.7968           |              | 80           | 120           | 200                    | -2893.64         | - a        | 90           | 110           | Í<br>:                                |
| Zinc       | 0.1                      | 0.0985752          | 99           | 80           | 120           | 10                     | 9.46706          | 1400<br>95 | 90           | 110           | 1                                     |
| Manganese  | 0.1                      | 0.100766           | 101          | 80           | 120           | 10                     | 9.70055          | 97         | 90           | 110           | 1                                     |
| Molybdenum | 0.025                    | 0.0246093          | 98           | 80           | 120           | 10                     | 9.46816          | 95         | 90           | 110           | ļ                                     |
| Sodium     | NA                       | 2.23015            |              | 80           | 120           | 1000                   | 1195.27          | 120 a      | 90           | 110           |                                       |
| Nickel     | 0.05                     | i0.0511094         | 102          | 80           | 120           | 10                     | 9.29265          | 93         | 90           | 110           |                                       |
| Lead       | 0.05                     | 0.0504763          | 101          | 80           | 120           | 10                     | 9.68715          | 97         | 90           | 110           | !                                     |
| Antimony   | 0.04                     | 0.0392143          | 98           | 80           | 120           | 5                      | 5.42053          | 108        | 90           | 110           | :<br>1                                |
| Selenium   | 0.05                     | 0.0610799          | 122 <b>a</b> | 80           | 120           | 5                      | 4.96734          | 99         | 90           | 110           | !<br>                                 |
| Tin        | 0.2                      | 0.210827           | 105          | 80           | 120           | 10                     | 10.2325          | 102        | 90           | 110           | !                                     |
| Titanium   | 0.1                      | 0.0988116          | 99           | 80           | 120           | :<br>10                | 9.96209          | 100        | 90           | 110           |                                       |
| Thallium   | 0.05                     | 0.0468704          | 94           | 80           | 120           | 5                      | 4.90788          | 98         | 90           | 110           |                                       |
| Vanadium   | 0.1                      | 0.0972023          | 97           | 80           | 120           | 10                     | 9.80195          | 98         | 90           | 110           | 1                                     |
| Iron       | 2.0                      | 1.96465            | 98           | 80           | 120           | 400                    | 373.038          | 93         | 90           | 110           |                                       |

a-indicates analyte is outsite the limits. Notes:

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

## FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 10/06/20

Data File: S26312A3MDL

Prep Batch: 85372

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0093024

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

| Analyte   | ICB V-333667-6 | CCB V-333667-<br>13 | CCB V-333667-<br>24 | CCB V-333667-<br>36 | CCB V-333667-<br>44 | MB 85372<br>(100)-14 |   |
|-----------|----------------|---------------------|---------------------|---------------------|---------------------|----------------------|---|
| Aluminum  | 101 a          | .167 U              | .167U               | .167 U              | .167 U              | 8.4U                 |   |
| Barium    | 00482a         | .00676 U            | .00676 U            | .00676 U            | .00676 U            | .34U                 | ! |
| Calcium   | 505 U          | 1.01 U              | 1.01 U              | 1.01 U              | 1.01 U              | 51U                  | 1 |
| Chromium  | 00452 a        | .0067 U             | .0067 U             | .0067 U             | .0067 U             | .34U                 | 1 |
| Cobalt    | - 0043 a       | .00713 U            | .00713U             | .00713 U            | .00713 U            | .36U                 |   |
| Copper    | .00308U        | .00616 U            | .00616U             | .00616U             | .00616 U            | .31U                 |   |
| Iron      | 066 U          | 132 U               | .132 U              | .132 U              | .132 U              | 6.6U                 | 1 |
| Magnesium | 24 a           | 203 a               | 224 a               | - 256 a             | 261 a               | 9.8U                 |   |
| Manganese | 00349 a        | .00642U             | .00642 U            | .00642 U            | .00642 U            | .32U                 | 1 |
| Nickel    | .0055 U        | .011 U              | .011 U              | .011 U              | .011 U              | .55U                 |   |
| Zinc      | .00755 U       | .0151 U             | .0151 U             | .0151 U             | .0151 U             | .76U                 |   |

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

## FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 10/06/20

Data File: S26312A4MDL

Lab Name: Veritech

Prep Batch: 85372 Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020 Lab Code: Contract:

Nras No:

Instrument: PEICPRAD4A

Sdg No:

Case No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0093024

| Analyte   | ICB V-333667-6 | CCB V-333667-<br>13 | CCB V-333667-<br>24 | CCB V-333667-<br>32 | MB 85372<br>(100)-14 |          |
|-----------|----------------|---------------------|---------------------|---------------------|----------------------|----------|
| Potassium | .493 U         | .987 U              | .987 U              | 987 U               | 49 U                 |          |
| Sodium    | .628 U         | 1.26 U              | 1.26 U              | 1.26 U              | 63 U                 | <u> </u> |

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

# FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 10/06/20

Data File: S26312B3MDL

Prep Batch: 85372

Reporting Limits Used: 6010D, 6020B, 7470A, 7471B

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name: Han

Hampton-Clarke

Lab Code: Contract:

> Nras No: Sdg No:

Case No:

| Analyte    | ICB V-333667-<br>6 | CCB V-333667-<br>13 | CCB V-333667-<br>21 | CCB V-333667-<br>28 | CCB V-333667-<br>37 |   |          |
|------------|--------------------|---------------------|---------------------|---------------------|---------------------|---|----------|
| Aluminum   | .0835 U            | .167 U              | .167 U              | .167 U              | .167 U              |   | 1        |
| Antimony   | .0052 U            | .0104 U             | .0104 U             | .0104 U             | .0104 U             |   |          |
| Arsenic    | .00685 U           | .0137 U             | .0137 U             | .0137 U             | .0137 U             |   | !        |
| Barium     | 00353 a            | .00676 U            | .00676 U            | .00676 U            | .00676 U            | 1 |          |
| Beryllium  | .00357 U           | .00714 U            | .00714 U            | .00714 U            | .00714 U            |   |          |
| Boron      | 048 a              | .0593 U             | 0609 a              | 0602 a              | 0619 a              | i |          |
| Cadmium    | .00412 a           | .00523 U            | .00523 U            | .00523 U            | .00523 U            |   |          |
| Calcium    | .505 U             | 1.01 U              | 1.01 U              | 1.01 U              | 1.01 U              |   |          |
| Chromium   | .00335 U           | .0067 U             | .0067 U             | .0067 U             | .0067 U             | į | <u>:</u> |
| Cobalt     | .00356 U           | .00713 U            | .00713 U            | .00713 U            | .00713 U            |   |          |
| Copper     | .00308 U           | .00616 U            | .00616 U            | .00616 U            | .00616 U            |   | !        |
| Iron       | .066 U             | .132 U              | .132 U              | .132 U              | .132 U              |   | İ        |
| Lead       | .00308 U           | 0111 a              | 0183 a              | 0158 a              | 0268 a              |   | 1        |
| Magnesium  | .0975 U            | 195 U               | .195 U              | .195 U              | .195 U              | • |          |
| Manganese  | 00321 U            | .00642 U            | .00642 U            | .00642 U            | .00642 U            |   |          |
| Molybdenum | 0745 U             | .149 U              | .149 U              | 149 U               | .149 U              |   |          |
| Nickel     | .0055 U            | .011 U              | .011 U              | .011 U              | .011 U              |   |          |
| Selenium   | .00865 U           | .0173 U             | .0173 U             | .0173 U             | .0173 U             |   |          |
| Silver     | .00122 U           | .00244 U            | .00244 U            | .00244 U            | 00244 U             |   |          |
| Thallium   | .083 U             | . 166 U             | .166 U              | .166 U              | .166 U              |   |          |
| Tin        | .00935 U           | .0187 U             | .0187 U             | .0187 U             | .0187 U             |   |          |
| Titanium   | .00318 U           | .00636 U            | .00636 U            | .00636 U            | .00636 U            | ! |          |
| √anadium   | .00479 U           | .00958 U            | .00958 U            | .00958 U            | .00958 U            |   |          |
| Zinc       | .00755 U           | .0151 U             | .0151 U             | .0151 U             | .0151 U             |   |          |

Notes: a -for methods 7470A, 7471B indicates absolute value of result found above the reporting limits in ICB/CCB/MB. for methods 6010D, 6020B indicates absolute value of result found above the reporting limit in CCB or above 1/2 the reporting limit in ICB/MB.

# FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 10/06/20

Data File: H26312SMDL

Prep Batch: 85372

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Instrument: HGCV3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0093024

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

# FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 10/06/20

Data File: S100620ANEW

Lab Name: Veritech

Prep Batch: 85373

Lab Code:

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Contract:

Nras No:

Instrument: MS3\_7700SWA

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb Project Number: 0093024

Case No:

| Analyte   | ICB V-336039-<br>10 | CCB V-336039-<br>17 | CCB V-336039-<br>29 | CCB V-336039-<br>41 | CCB V-336039-<br>44 | MB 85373-18 |
|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------|
| Antimony  | .0562 U             | .112 U              | .112 U              | .112U               | .112 U              | 110         |
| Arsenic   | .0437 U             | .0874 U             | .0874 U             | .0874 U             | .0874 U             | 8.7U        |
| Beryllium | .0391 U             | .0783 U             | .0783 U             | .0783 U             | .0783 U             | 7.8U        |
| Cadmium   | .0353 U             | .0706 U             | .0706 U             | .0706 U             | .0706 U             | 7.10        |
| Selenium  | .159 U              | .318 U              | .318U               | .318 U              | .322 a              | 32U         |
| Silver    | .208 a              | 345 a               | 31 a                | .306 a              | .304 a              | 25a         |
| Thallium  | .0441 U             | .0882 U             | .0882U              | 0882 U              | .0882 U             | 8.8U        |
| Vanadium  | .0271 U             | .0542 U             | .0542U              | .0542 U             | .0542 U             | . 13a       |

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

# FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 10/07/20

Data File: S100720ANEW

Prep Batch: 85373

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Instrument: MS3\_7700SWA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0093024

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

| Analyte   | ICB V-336039-<br>10 | CCB V-336039-<br>17 | CCB V-336039-<br>29 | CCB V-336039-<br>41 | CCB V-336039-<br>52 |   |
|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|---|
| Antimony  | - 111 a             | .112U               | .112U               | .112U               | .112 U              |   |
| Arsenic   | .0437 U             | .0874 U             | .0874 U             | .0874 U             | .0874 U             | 1 |
| Beryllium | .0391 U             | .0783 U             | .0783 U             | .0783 U             | .0783 U             |   |
| Cadmium   | .0353 U             | .0706 U             | .0706U              | .0706 U             | .0706 U             |   |
| Selenium  | .159 U              | .318 U              | .318 U              | .318 U              | 318 U               |   |
| Silver    | .0652 U             | .13U                | .148a               | .13 U               | .13 U               |   |
| Thallium  | .0441 U             | .0882 U             | .0882 U             | .0882 U             | .0882 U             |   |
| Vanadium  | .0271 U             | 0542 U              | .0542 U             | .0542 U             | 0542 U              |   |

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

## FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 10/08/20

Data File: S26317C3MDL

Prep Batch: 85372

Reporting Limits Used: 6010D, 6020B, 7470A, 7471B

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name:

Hampton-Clarke Lab Code:

Contract:

Nras No: Sdg No:

Case No:

| Analyte    | ICB V-333667-<br>6 | CCB V-333667-<br>13 | CCB V-333667-<br>25 | CCB V-333667-<br>33 | CCB V-333667-<br>44 |
|------------|--------------------|---------------------|---------------------|---------------------|---------------------|
| Aluminum   | 0835 U             | .167 U              | .167 U              | .167 U              | 167 U               |
| Antimony   | .0052 U            | .0104 U             | .0104 U             | .0104 U             | .0104 U             |
| Arsenic    | .00685 U           | .0137 U             | .0137 U             | .0137 U             | .0137 U             |
| Barium     | 0048 a             | .00676 U            | .00676 U            | .00676 U            | .00676 U            |
| Beryllium  | .00357 U           | .00714 U            | .00714 U            | .00714 U            | .00714 U            |
| Boron      | .0297 U            | .0593 U             | .0593 U             | .0593 U             | .0593 U             |
| Cadmium    | .00261 U           | .00523 U            | .00523 U            | .00523 U            | .00523 U            |
| Calcium    | 698 a              | 1.01 U              | 1.01 U              | 1.01 U              | 1.01 U              |
| Chromium   | 00908 a            | 00898 a             | 00876 a             | 0091 a              | 00938 a             |
| Cobalt     | .00356 U           | .00713 U            | .00713 U            | .00713 U            | .00713 U            |
| Copper     | 00308 U            | .00616 U            | .00616 U            | .00616 U            | .00616 U            |
| Iron       | 0872 a             | .132 U              | .132 U              | .132 U              | .132 U              |
| Lead       | 00626 a            | .00616 U            | 00703 a             | 00806 a             | 00959 a             |
| Magnesium  | 572 a              | 562 a               | 567 a               | 56 a                | 569 a               |
| Manganese  | .00321 U           | .00642 U            | .00642 U            | .00642 U            | .00642 U            |
| Molybdenum | .0745 U            | .149 U              | .149 U              | .149 U              | .149 U              |
| Nickel     | .0055 U            | .011 U              | .011 U              | .011 U              | .011 U              |
| Selenium   | .00865 U           | .0173 U             | .0173 U             | .0173 U             | .0173 U             |
| Silver     | 00346 a            | - 00343 a           | .00244 U            | 00277 a             | 00254 a             |
| Thallium   | .083 U             | .166 U              | .166 U              | 166 U               | .166 U              |
| Tin        | .00935 U           | .0187 U             | .0187 U             | .0187 U             | .0187 U             |
| Titanium   | .00318 U           | .00636 U            | .00636 U            | .00636 U            | .00636 U            |
| Vanadium   | .00479 U           | .00958 U            | .00958 U            | .00958 U            | .00958 U            |
| Zinc       | .00755 U           | .0151 U             | .0151 U             | .0151 U             | .0151 U             |

Notes: a -for methods 7470A, 7471B indicates absolute value of result found above the reporting limits in ICB/CCB/MB. for methods 6010D, 6020B indicates absolute value of result found above the reporting limit in CCB or above 1/2 the reporting limit in ICB/MB.

# FORM 4 (ICSA/ICSAB Summary)

Date Analyzed: 10/06/20

Data File: S26312A3MDL

Prep Batch: 85372

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0093024

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

ICSA/ICSAB: SOURCE: VHG LABS

| Analyte   | Spk<br>Amt | ICSA V-<br>333668-11 | Rec | Rec | Rec | Rec | Rec | Rec         | Rec | Rec |
|-----------|------------|----------------------|-----|-----|-----|-----|-----|-------------|-----|-----|
| Aluminum  | 500        | 539.37€              | 108 |     |     |     |     |             |     |     |
| Barium    | 0          | U                    | į   |     | i   | •   |     |             |     |     |
| Calcium   | 500        | 488.903              | 98  |     | 1   | į   | :   |             |     |     |
| Chromium  | 0          | - 0104956t           | j   |     |     | Ì   | 1   | ;<br>       |     |     |
| Cobalt    | 0          | U                    |     |     |     | į   |     |             |     |     |
| Copper    | 0          | 0304269a             |     |     |     |     | -   | #<br>#<br>- |     |     |
| Iron      | 200        | 195.106              | 98  |     |     |     |     | į           |     |     |
| Magnesium | 500        | 510.644              | 102 |     |     |     |     | į           | !   | 1   |
| Manganese | 0          | .007026t             |     |     | 1   | •   |     | 4           |     |     |
| Nickel    | 0          | U                    |     |     |     |     |     |             |     |     |
| Zinç      | 0          | U                    |     |     |     |     |     |             |     |     |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 \* Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

u-indicates the absolute value of the concentration was below the reporting limit

## FORM 4 (ICSA/ICSAB Summary)

Date Analyzed: 10/06/20

Lab Name: Veritech

Data File: S26312A4MDL

Lab Code:

Prep Batch: 85372

Contract:

Reporting Limits Used:SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Nras No:

Instrument: PEICPRAD4A

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 0093024

ICSA/ICSAB: SOURCE: VHG LABS

| Analyte   | Spk<br>Amt | ICSA V-<br>333668-11 | Rec | Rec | Rec | Rec | Rec | Rec | Rec | Rec |
|-----------|------------|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Aluminum  | 500        | 527.101              | 105 |     |     |     |     |     |     |     |
| Calcium   | 500        | 504.861              | 101 |     |     |     |     |     |     |     |
| Iron      | 200        | 189.80€              | 95  |     |     |     |     |     |     |     |
| Magnesium | 500        | 506.301              | 101 | :   |     |     |     |     |     |     |
| Potassium | 0          | U                    | į   |     |     |     |     |     | 4   |     |
| Sodium    | 0          | U                    |     |     |     |     |     |     |     |     |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 \* Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

u-indicates the absolute value of the concentration was below the reporting limit

# FORM 4 (ICSA/ICSAB Summary)

Date Analyzed: 10/06/20 Lab Name: Hampton-Clarke

 Data File: S26312B3MDL
 Lab Code:

 Prep Batch: 85372
 Contract:

 Reporting Limits Used: 6010D, 6020B, 7470A, 7471B
 Nras No:

 Instrument: PEICP3A
 Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb Case No:

ICSA/ICSAB: SOURCE: SCP Science

|           | Spk<br>Amt | ICSA V-<br>333668-11 |     | _   | _      | _           | _        | _   | _             |                                       |
|-----------|------------|----------------------|-----|-----|--------|-------------|----------|-----|---------------|---------------------------------------|
| Analyte   |            |                      | Rec | Rec | Rec    | Rec         | Rec      | Rec | Rec           | Rec                                   |
| Aluminum  | 500        | 562.383              | 112 |     |        |             |          |     |               |                                       |
| Antimony  | 0          | U                    |     |     |        |             |          |     |               |                                       |
| Arsenic   | 0          | 0163961b             |     |     |        |             | 1        |     |               |                                       |
| Barium    | 0          | U                    | -   |     | :<br>  |             | İ        |     | Ì             |                                       |
| Beryllium | 0          | U                    |     |     | İ      | •           |          |     |               | !                                     |
| Boron     | 0          | .634881a             |     |     |        | 1           |          |     |               |                                       |
| Cadmium   | 0          | U                    |     |     | i<br>I |             |          | •   |               | · · · · · · · · · · · · · · · · · · · |
| Calcium   | 500        | 506.156              | 101 |     |        |             |          |     | İ             |                                       |
| Chromium  | 0          | 0094665b             | •   |     |        |             |          |     | ‡             |                                       |
| Cobalt    | 0          | U                    |     |     |        | •           |          |     |               |                                       |
| Copper    | 0          | 0297a                |     |     |        |             |          |     |               |                                       |
| Iron      | 200        | 202.389              | 101 |     |        |             | ļ        |     | ì             |                                       |
| Lead      | 0          | .0410695a            |     |     |        |             |          | 1   |               |                                       |
| Magnesium | 500        | 509.098              | 102 |     |        |             |          |     |               |                                       |
| Manganese | 0          | .0083526b            |     |     |        |             | :        | :   | !             |                                       |
| Molybdenu | 0          | U                    |     |     |        | ;           | İ        |     |               |                                       |
| Nickel    | 0          | U                    | !   |     |        | 1           |          |     |               |                                       |
| Selenium  | 0          | 0186657b             |     |     |        |             | <b>!</b> |     | <b>!</b><br>i |                                       |
| Silver    | 0          | 0060178a             |     |     |        | 1           | :        |     |               | 1                                     |
| Thallium  | 0          | U                    | !   |     |        |             |          |     |               | :<br>1                                |
| Tin       | 0          | U                    |     |     |        |             |          | 1   |               |                                       |
| Titanium  | 0          | U                    | :   |     |        |             |          |     |               |                                       |
| Vanadium  | 0          | 0615287a             |     |     |        |             |          |     |               |                                       |
| Zinc      | 0          | Ü                    |     |     |        | į           | İ        |     |               |                                       |
|           |            |                      |     |     | l      | <del></del> | L        | .t  | L             |                                       |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 \* Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

u-indicates the absolute value of the concentration was below the reporting limit

Qc Limits: 200.7, 6020B < 2 \* Reporting Limit

6010D < Reporting Limit

## FORM 4 (ICSA/ICSAB Summary)

Date Analyzed: 10/06/20

Lab Name: Veritech

Data File: S100620ANEW

Lab Code:

Prep Batch: 85373

Contract:

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Nras No:

Instrument: MS3\_7700SWA

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 0093024

ICSA/ICSAB: SOURCE: VHG LABS

| Analyte   | Spk<br>Amt | ICSA V-<br>336040-11 | Rec | Rec | Rec | Rec | _Rec | Rec | Rec | Rec |
|-----------|------------|----------------------|-----|-----|-----|-----|------|-----|-----|-----|
| Aluminum  | 50000      | 50401.29             | 101 |     |     | :   |      | i   |     |     |
| Antimony  | . 0        | .334æ                | Ì   |     | į   |     |      | İ   |     |     |
| Arsenic   | 0          | .252₹                |     |     |     | !   |      | ļ   | :   |     |
| Beryllium | 0          | U                    |     |     |     |     | 4    | į.  |     |     |
| Cadmium   | 0          | 1.311a               |     |     | :   |     | 1    | į   | :   |     |
| Calcium   | 150000     | 160530.9             | 107 |     |     |     |      | •   | :   |     |
| Iron      | 125000     | 124903.4             | 100 |     |     |     |      |     |     |     |
| Magnesium | 50000      | 49694.16             | 99  |     |     |     |      |     |     |     |
| Selenium  | 0          | U                    |     |     | •   |     | 1    |     |     |     |
| Silver    | 0          | .138t                |     |     |     |     |      |     |     |     |
| Thallium  | 0          | U                    | i   |     |     |     | :    | :   | i   |     |
| Vanadium  | 0          | .073t                | !   |     | :   |     |      |     |     |     |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 \* Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

u-indicates the absolute value of the concentration was below the reporting limit

# FORM 4 (ICSA/ICSAB Summary)

Date Analyzed: 10/07/20

Data File: S100720ANEW Prep Batch: 85373

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Instrument: MS3\_7700SWA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0093024

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICSA/ICSAB: SOURCE: VHG LABS

|           | Spk    | ICSA V-<br>336040-11 |      |     |     |     |                |     |     |     |
|-----------|--------|----------------------|------|-----|-----|-----|----------------|-----|-----|-----|
| Analyte   | Amt    | 330040-11            | Rec  | Rec | Rec | Rec | Rec            | Rec | Rec | Rec |
| Aluminum  | 50000  | 49672.03             | 99 : |     |     |     |                |     |     |     |
| Antimony  | 0      | .231a                |      |     |     | •   | 1              |     |     |     |
| Arsenic   | 0 :    | .239⋷                | į.   |     |     |     |                |     |     |     |
| Beryllium | 0      | U                    | :    | :   | •   |     |                |     |     |     |
| Cadmium   | 0      | 1.444€               |      |     |     |     |                |     |     |     |
| Calcium   | 150000 | 159895.4             | 107  |     |     |     |                | t.  |     |     |
| Iron      | 125000 | 125787.8             | 101  | Ì   |     |     | 1              | į   |     |     |
| Magnesium | 50000  | 50000.71             | 100  |     | İ   |     | 1              |     |     |     |
| Selenium  | 0      |                      |      |     |     | ļ   | <u>\$</u><br>3 |     |     |     |
| Silver    | 0      | .132t                | !    | ;   |     | i   |                |     |     |     |
| Thallium  | 0      | U                    |      |     |     | 1   | :              |     |     |     |
| Vanadium  | 0      | 069ს                 |      |     |     |     |                | 1   |     |     |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2  $^{\star}$  Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

u-indicates the absolute value of the concentration was below the reporting limit

## FORM 4 (ICSA/ICSAB Summary)

Date Analyzed: 10/08/20

Lab Name: Hampton-Clarke

Data File: S26317C3MDL

Lab Code:

Prep Batch: 85372

Contract:

Reporting Limits Used: 6010D, 6020B, 7470A, 7471B

Nras No:

Instrument: PEICP3A

Sdg No:

Case No:

Units: All units in ppm except Hg and icp-ms in ppb

ICSA/ICSAB: SOURCE: SCP Science

| Spk         336303-11           Analyte         Amt         Rec         Rec         Rec         Rec         Rec         Rec         Rec         Analyte           Aluminum         500         520.374         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104 | Rec |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Aluminum 500 520.374 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| Astimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| Arsenic 0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Barium 0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Beryllium 0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Boron 0 .631528a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| Cadmium 0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Calcium 500 476.726 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Chromium 00147516a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| Cobalt 0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Copper 0 - 0293948a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Iron 200 185.832 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Lead 0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| Magnesium 500 501.179 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| Manganese 0 .0075832b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| Molybdenu 0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Nickel 0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Selenium 0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Silver 00063676a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| Thallium 0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Tin 0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| Titanium 0007446b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Vanadium 00693229a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| Zinc 0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 \* Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

u-indicates the absolute value of the concentration was below the reporting limit

Qc Limits:

200.7, 6020B < 2 \* Reporting Limit

6010D < Reporting Limit

PREP BATCH: 85372

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| TxtQcType:   | LCSMR        | Ma | atrix: SOIL |          | Sample                                  | eID: LC | S MR 85372 | # · ·        |           |                  |             |             |
|--------------|--------------|----|-------------|----------|-----------------------------------------|---------|------------|--------------|-----------|------------------|-------------|-------------|
| Analyte      | Batchld      | DF | Data File   | Seq#:    |                                         |         | Spk Conc:  |              | Spk Added | Recov            | Qual Lo Lim | Hi Lim      |
| Aluminum     | 85372        | 1  | S26312A3    | 16       |                                         |         | 81.4411    |              | 110       | 74               | 55          | 152         |
| Barium       | 85372        | 1  | S26312A3    | 16       |                                         |         | 6.8481     |              | 8.92      | 77               | 65          | 110         |
| Calcium      | 85372        | 1  | S26312A3    | 16       |                                         |         | 166.4770   |              | 207.00    | 80               | 69          | 110         |
| Chromium     | 85372        | 1  | S26312A3    | 16       |                                         |         | 1.7709     |              | 2.27      | 78               | 61          | 114         |
| Cobalt       | 85372        | 1  | S26312A3    | 16       |                                         |         | 2.1474     |              | 2.87      | 75               | 64          | 110         |
| Copper       | 85372        | 1  | S26312A3    | 16       |                                         |         | 1.6825     |              | 2.09      | 81               | 66          | 110         |
| Iron         | 85372        | 1  | S26312A3    | 16       |                                         |         | 127.1390   |              | 192.00    | 66               | 34          | 138         |
| Lead         | 85372        | 1  | S26312A3    | 16       |                                         |         | 1.2609     |              | 1.63      | 77               | 62          | 110         |
| Magnesium    | 85372        | 1  | S26312A3    | 16       |                                         |         | 57.7825    |              | 74.60     | 77               | 26          | 114         |
| Manganese    | 85372        | 1  | S26312A3    | 16       |                                         |         | 4.7264     |              | 6.03      | 78               | 68          | 110         |
| Mercury      | 85372        | 4  | H26312SM    | 15       |                                         |         | 6.3240     |              | 41.64     | 61               | 39          | 110         |
| Nickel       | 85372        | 1  | S26312A3    | 16       |                                         |         | 0.4441     |              | .553      | 80               | 61          | 114         |
| Potassium    | 85372        | 1  | S26312A4    | 16       |                                         |         | 15.4725    |              | 22.60     | 68               | 61          | 140         |
| Sodium       | 85372        | 1  | S26312A4    | 16       |                                         |         | 6.8589     |              | 8.67      | 79               | 57          | 125         |
| Zinc         | 85372        | 1  | S26312A3    | 16       |                                         |         | 5.3836     |              | 7.13      | 76               | 60          | 112         |
| TxtQcType:   | LCS          | Ma | ntrix: SOIL |          | Sample                                  | eID: LC | S 85372    | t i          |           |                  |             | <del></del> |
| Analyte      | Batchid      | DF | Data File   | Seq#:    | • •• •• • • • • • • • • • • • • • • • • |         | Spk Conc:  |              | Spk Added | Recov            | Qual Lo Lim | Hi Lim      |
| Aluminum     | 85372        | 1  | S26312A3    | 15       |                                         |         | 91.4337    |              | 110       | 83               | 55          | 152         |
| Barium       | 85372        | 1  | S26312A3    | 15       |                                         |         | 7.8689     |              | 8.92      | 88               | 65          | 110         |
| Calcium      | 85372        | 1  | S26312A3    | 15       |                                         |         | 185.4560   |              | 207.00    | 90               | 69          | 110         |
| Chromium     | 85372        | 1  | S26312A3    | 15       |                                         |         | 1.9482     |              | 2.27      | 86               | 61          | 114         |
| Cobalt       | 85372        | 1  | S26312A3    | 15       |                                         |         | 2.3567     |              | 2.87      | 82               | 64          | 110         |
| Copper       | 85372        | 1  | S26312A3    | 15       |                                         |         | 1.8470     |              | 2.09      | 88               | 66          | 110         |
| Iron         | 85372        | 1  | S26312A3    | 15       |                                         |         | 139.9070   |              | 192.00    | 73               | 34          | 138         |
| Lead         | 85372        | 1  | S26312A3    | 15       |                                         |         | 1.4146     |              | 1.63      | 87               | 62          | 110         |
| Magnesium    | 85372        | 1  | S26312A3    | 15       |                                         |         | 63.7138    |              | 74.60     | 85               | 26          | 114         |
| Manganese    | 85372        | 1  | S26312A3    | 15       |                                         |         | 5.1846     |              | 6.03      | 86               | 68          | 110         |
| Mercury      | 85372        | 4  | H26312SM    | 14       |                                         |         | 5.0720     |              | 41.64     | 49               | 39          | 110         |
| Nickel       | 85372        | 1  | S26312A3    | 15       |                                         |         | 0.4843     |              | .553      | 88               | 61          | 114         |
|              | 11 11 41 144 |    |             |          |                                         |         |            |              |           |                  |             |             |
| Potassium    | 85372        | 1  | S26312A4    | 15<br>15 |                                         |         | 17.5016    |              | 22.60     | 77<br>9 <b>7</b> | 61<br>57    | 140         |
| Sodium       | 85372        | 1  | S26312A4    | 15       |                                         |         | 7.5531     |              | 8.67      | 87               | 57<br>CO    | 125         |
| Zinc         | 85372        | 1  | S26312A3    | 15       |                                         | ,       | 5.9232     |              | 7.13      | 83               | 60          | 112         |
| TxtQcType: ( |              | Ma | ntrix: SOIL |          | Sample                                  | eID: AD | 19599-001  |              |           |                  |             |             |
| Analyte      | BatchId      | DF |             | Seq#:    | NS Data Fil                             |         |            | NS Conc:     | Spk Added |                  | Qual Lo Lim | Hi Lim      |
| Aluminum     | 85372        | 1  | S26312A3    | 20       | S26312A3                                | 17      |            | 35.0794      | 5.0       | 353              | b 75        | 125         |
| Barium       | 85372        | 1  | S26312A3    | 20       | S26312A3                                |         | 0.8150     | 0.3880       | 0.5       | 85               | 75          | 125         |
| Calcium      | 85372        | 1  | S26312A3    | 20       | S26312A3                                | 17      | 56.8781    | 10.3010      | 50        | 93               | 75          | 125         |
| Chromium     | 85372        | 4  | S26317C3    | 40       | S26317C3                                | 37      | 0.1828     | 0.0951       | 0.5       | 70               | a 75        | 125         |
| Cobalt       | 85372        | 1  | S26312A3    | 20       | S26312A3                                | 17      | 0.5251     | 0.0600       | 0.5       | 93               | 75          | 125         |
| Copper       | 85372        | 1  | S26312A3    | 20       | S26312A3                                | 17      | 3.8132     | 4.8181       | 0.5       | -200             | b 75        | 125         |
| Iron         | 85372        | 1  | S26312A3    | 20       | S26312A3                                | 17      | 69.6051    | 65.2427      | 5.0       | 87               | 75          | 125         |
| Lead         | 85372        | 1  | S26312A3    | 20       | S26312A3                                | 17      | 1.4972     | 1.1811       | 0.5       | 63               | a 75        | 125         |
| Magnesium    | 85372        | 1  | S26312A3    | 20       | S26312A3                                |         | 79.8152    | 31.9608      | 50        | 96               | 75          | 125         |
| Manganese    | 85372        | 1  | S26312A3    | 20       | S26312A3                                |         | 1.6147     | 1.5020       | 0.5       | 23               | a 75        | 125         |
| Mercury      | 85372        | 1  | H26312SM    | 19       | H26312SM                                |         | 11.1900    | 1.1530       | 10        | 100              | 75          | 125         |
| Nickel       | 85372        | 20 | S26312B3    | 32       | S26312B3                                |         | 0.2590     | 0.3168       | 0.5       | -230             | b 75        | 125         |
| Potassium    | 85372        | 1  | S26312A4    | 20       | S26312A4                                |         | 48.5022    | 2.3752       | 50        | 92               | 75          | 125         |
| Sodium       | 85372        | 1  | S26312A4    | 20       | S26312A4                                |         | 48.7851    | 1.255852743U | 50        | 98               | 75          | 125         |
|              |              |    | S26312A3    | 20       | S26312A4                                |         | 4.5416     | 4.6700       | 0.5       | -26              | b 75        | 125         |
| Zinc         | 85372        | 1  | 320312A3    | 20       | 320312M3                                | 17      | 4.9410     | 4.0700       | U.S       | -20              | U 10        | 120         |

PREP BATCH: 85372

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| TxtQcType: | MS      | Ма | trix: SOIL |       | Sample      | eID: AD | 19599-001 |              |           |       |      |        |        |
|------------|---------|----|------------|-------|-------------|---------|-----------|--------------|-----------|-------|------|--------|--------|
| Analyte    | BatchId | DF | Data File  | Seq#: | NS Data Fil | Seq#    | Spk Conc: | NS Conc:     | Spk Added | Recov | Qual | Lo Lim | Hi Lim |
| Aluminum   | 85372   | 1  | S26312A3   | 19    | S26312A3    | 17      | 45.1244   | 35.0794      | 5.0       | 201   | b    | 75     | 125    |
| Barium     | 85372   | 1  | S26312A3   | 19    | S26312A3    | 17      | 0.8384    | 0.3880       | 0.5       | 90    |      | 75     | 125    |
| Calcium    | 85372   | 1  | S26312A3   | 19    | \$26312A3   | 17      | 57.8361   | 10.3010      | 50        | 95    |      | 75     | 125    |
| Chromium   | 85372   | 4  | S26317C3   | 39    | S26317C3    | 37      | 6.5162    | 0.0951       | 0.5       | 5140  | а    | 75     | 125    |
| Cobalt     | 85372   | 1  | S26312A3   | 19    | S26312A3    | 17      | 0.6047    | 0.0600       | 0.5       | 109   |      | 75     | 125    |
| Copper     | 85372   | 1  | S26312A3   | 19    | S26312A3    | 17      | 4.1360    | 4.8181       | 0.5       | -140  | b    | 75     | 125    |
| Iron       | 85372   | 1  | S26312A3   | 19    | S26312A3    | 17      | 102.6680  | 65.2427      | 5.0       | 749   | b    | 75     | 125    |
| Lead       | 85372   | 1  | S26312A3   | 19    | S26312A3    | 17      | 1.4888    | 1.1811       | 0.5       | 62    | а    | 75     | 125    |
| Magnesium  | 85372   | 1  | S26312A3   | 19    | S26312A3    | 17      | 81.0576   | 31.9608      | 50        | 98    |      | 75     | 125    |
| Manganese  | 85372   | 1  | S26312A3   | 19    | S26312A3    | 17      | 1.9508    | 1.5020       | 0.5       | 90    |      | 75     | 125    |
| Mercury    | 85372   | 1  | H26312SM   | 18    | H26312SM    | 16      | 13.1600   | 1.1530       | 10        | 120   |      | 75     | 125    |
| Nickel     | 85372   | 20 | S26312B3   | 31    | S26312B3    | 29      | 5.1442    | 0.3168       | 0.5       | 19300 | b    | 75     | 125    |
| Potassium  | 85372   | 1  | S26312A4   | 19    | S26312A4    | 17      | 48.1449   | 2.3752       | 50        | 92    |      | 75     | 125    |
| Sodium     | 85372   | 1  | S26312A4   | 19    | S26312A4    | 17      | 48.3146   | 1.255852743U | 50        | 97    |      | 75     | 125    |
| Zinc       | 85372   | 1  | S26312A3   | 19    | S26312A3    | 17      | 4.0057    | 4.6700       | 0.5       | -130  | b    | 75     | 125    |

PREP BATCH: 85372

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| TxtQcType: PS | Ма | trix: SOIL |       | Sample      | eID: AD | 19599-001 |              |           |       |             |        |
|---------------|----|------------|-------|-------------|---------|-----------|--------------|-----------|-------|-------------|--------|
| Analyte       | DF | Data File  | Seq#: | NS Data Fil | Seq#    | Spk Conc: | NS Conc:     | Spk Added | Recov | Qual Lo Lim | Hi Lim |
| Aluminum      | 1  | S26312A3   | 21    | S26312A3    | 17      | 39.3287   | 35.0794      | 5.0       | 85    | 75          | 125    |
| Barium        | 1  | S26312A3   | 21    | S26312A3    | 17      | 0.8685    | 0.3880       | 0.50      | 96    | 75          | 125    |
| Calcium       | 1  | S26312A3   | 21    | S26312A3    | 17      | 58.1351   | 10.3010      | 50        | 96    | 75          | 125    |
| Chromium      | 1  | S26317C3   | 41    | S26317C3    | 37      | 0.5928    | 0.0951       | 0.50      | 100   | 75          | 125    |
| Cobalt        | 1  | S26312A3   | 21    | S26312A3    | 17      | 0.5518    | 0.0600       | 0.50      | 98    | 75          | 125    |
| Copper        | 1  | S26312A3   | 21    | S26312A3    | 17      | 5.1605    | 4.8181       | 0.50      | 68    | b 75        | 125    |
| Iron          | 1  | S26312A3   | 21    | S26312A3    | 17      | 69.4398   | 65.2427      | 5.0       | 84    | 75          | 125    |
| Lead          | 1  | S26312A3   | 21    | S26312A3    | 17      | 1.5770    | 1.1811       | 0.50      | 79    | 75          | 125    |
| Magnesium     | 1  | S26312A3   | 21    | S26312A3    | 17      | 80.8722   | 31.9608      | 50        | 98    | 75          | 125    |
| Manganese     | 1  | S26312A3   | 21    | S26312A3    | 17      | 1.9579    | 1.5020       | 0.50      | 91    | 75          | 125    |
| Nickel        | 1  | S26312B3   | 33    | S26312B3    | 29      | 0.8447    | 0.3168       | 0.50      | 106   | 75          | 125    |
| Potassium     | 1  | S26312A4   | 21    | S26312A4    | 17      | 49.1371   | 2.3752       | 50        | 94    | 75          | 125    |
| Sodium        | 1  | S26312A4   | 21    | S26312A4    | 17      | 48.5632   | 1.255852743U | 50        | 97    | 75          | 125    |
| Zinc          | 1  | S26312A3   | 21    | S26312A3    | 17      | 5.1255    | 4.6700       | 0.50      | 91    | 75          | 125    |

PREP BATCH: 85373

Instrument Type: ICPMS

Analytical Method(s):6020/200.8

| TxtQcType:                                                 | LCSMR                            | Mat         | rix: SOIL                                        |                | Sample                                | eID: LC        | S MR 85373                      |                   |            |          |             |            |
|------------------------------------------------------------|----------------------------------|-------------|--------------------------------------------------|----------------|---------------------------------------|----------------|---------------------------------|-------------------|------------|----------|-------------|------------|
| Analyte                                                    | BatchId                          | DF          | Data File                                        | Seq#:          |                                       |                | Spk Conc:                       |                   | Spk Added  | Recov    | Qual Lo Lim | Hi Lim     |
| Antimony                                                   | 85373                            | 1           | S100620A                                         | 20             |                                       |                | 50.3880                         |                   | 117        | 43       | 10          | 110        |
| Arsenic                                                    | 85373                            | 1           | \$100620A                                        | 20             |                                       |                | 44.4660                         |                   | 49.4       | 90       | 61          | 113        |
| Beryllium                                                  | 85373                            | 1           | S100620A                                         | 20             |                                       |                | 150.3740                        |                   | 187        | 80       | 66          | 110        |
| Cadmium                                                    | 85373                            | 1           | S100620A                                         | 20             |                                       |                | 179.0720                        |                   | 197        | 91       | 64          | 110        |
| Selenium                                                   | 85373                            | 1           | S100620A                                         | 20             |                                       |                | 327.2530                        |                   | 364        | 90       | 60          | 112        |
| Silver                                                     | 85373                            | 1           | S100620A                                         | 20             |                                       |                | 88.3010                         |                   | 94.0       | 94       | 61          | 111        |
| Thallium                                                   | 85373                            | 1           | S100620A                                         | 20             |                                       |                | 190.8280                        |                   | 229        | 83       | 61          | 110        |
| √anadium                                                   | 85373                            | 1           | S100620A                                         | 20             |                                       |                | 267.1310                        |                   | 300        | 89       | 66          | 110        |
| TxtQcType:                                                 | LCS                              | Mat         | rix: SOIL                                        |                | Sample                                | eID: LC        | S 85373                         |                   |            | - *      |             |            |
| Analyte                                                    | BatchId                          | DF          | Data File                                        | Seq#:          |                                       |                | Spk Conc:                       |                   | Spk Added  | Recov    | Qual Lo Lim | Hi Lim     |
| Antimony                                                   | 85373                            | 1           | S100620A                                         | 19             |                                       |                | 50.9180                         |                   | 117        | 44       | 10          | 110        |
| Arsenic                                                    | 85373                            | 1           | S100620A                                         | 19             |                                       |                | 44.9540                         |                   | 49.4       | 91       | 61          | 113        |
| Beryllium                                                  | 85373                            | 1           | S100620A                                         | 19             |                                       |                | 153.7010                        |                   | 187        | 82       | 66          | 110        |
| Cadmium                                                    | 85373                            | 1           | S100620A                                         | 19             |                                       |                | 182.6240                        |                   | 197        | 93       | 64          | 110        |
| Selenium                                                   | 85373                            | 1           | S100620A                                         | 19             |                                       |                | 327.9440                        |                   | 364        | 90       | 60          | 112        |
| Silver                                                     | 85373                            | 1           | S100620A                                         | 19             |                                       |                | 90.9370                         |                   | 94.0       | 97       | 61          | 111        |
| Thallium                                                   | 85373                            | 1           | S100620A                                         | 19             |                                       |                | 190.7870                        |                   | 229        | 83       | 61          | 110        |
| /anadium                                                   | 85373                            | 1           | S100620A                                         | 19             | · · · · · · · · · · · · · · · · · · · |                | 271.3740                        |                   | 300        | 90       | 66          | 110        |
| TxtQcType:                                                 | MSD                              | Mati        | rix: SOIL                                        |                | Sample                                | eID: AD        | 19599-001                       |                   |            |          |             |            |
| Analyte                                                    | Batchld                          | DF          | Data File                                        | Seq#:          | NS Data Fil                           | Seq#           | Spk Conc:                       | NS Conc:          | Spk Added  | Recov    | Qual Lo Lim | Hi Lim     |
| Antimony                                                   | 85373                            | 1           | S100620A                                         | 25             | S100620A                              | 21             | 163.2870                        | 2.7270            | 250        | 64       | a 75        | 125        |
| Arsenic                                                    | 85373                            | 1           | S100620A                                         | 25             | S100620A                              | 21             | 224.7200                        | 9.0880            | 250        | 86       | 75          | 125        |
| Beryllium                                                  | 85373                            | 1           | S100620A                                         | 25             | S100620A                              | 21             | 202.9630                        | 0.7980            | 250        | 81       | 75          | 125        |
| Cadmium                                                    | 85373                            | 1           | S100620A                                         | 25             | S100620A                              | 21             | 235.7310                        | 19.1870           | 250        | 87       | 75          | 125        |
| Selenium                                                   | 85373                            | 1           | S100620A                                         | 25             | S100620A                              | 21             | 215.8370                        | 7.2890            | 250        | 83       | 75          | 125        |
| Silver                                                     | 85373                            | 1           | S100620A                                         | 25             | S100620A                              | 21             | 42.5060                         | 1.2950            | 50         | 82       | 75          | 125        |
| hallium                                                    | 85373                            | 1           | S100620A                                         | 25             | S100620A                              | 21             | 201.0840                        | 0.4800            | 250        | 80       | 75          | 125        |
| /anadium                                                   | 85373                            | 1           | S100620A                                         | 25             | S100620A                              | 21             | 260.4290                        | 42.7770           | 250        | 87       | 75          | 125        |
| TxtQcType:                                                 | MS                               | Mati        | ix: SOIL                                         |                | Sample                                | eID: AD        | 19599-001                       |                   |            |          |             |            |
|                                                            | BatchId                          | DF          | Data File                                        | Seq#:          | NS Data Fil                           |                |                                 | NS Conc:          | Spk Added  |          | Qual Lo Lim | Hi Lim     |
| nalyte                                                     |                                  | 4           | S100620A                                         | 24             | S100620A                              |                | 175.3730                        | 2.7270            | 250        | 69       | a 75        | 125        |
| Intimony                                                   | 85373                            | 1           |                                                  |                | S100620A                              | 21             | 227.4540                        | 9.0880            | 250        | 87       | 75          | 125        |
| Antimony                                                   | 85373<br>85373                   | 1           | S100620A                                         | 24             |                                       |                |                                 |                   |            |          |             |            |
| Antimony<br>Arsenic                                        |                                  | 1 1         |                                                  | 24<br>24       | S100620A                              |                | 213.7140                        | 0.7980            | 250        | 85       | 75          | 125        |
| Antimony<br>Arsenic<br>Beryllium                           | 85373                            | 1           | S100620A                                         |                |                                       | 21             | 213.7140<br>241.9780            | 0.7980<br>19.1870 | 250<br>250 | 85<br>89 | 75<br>75    | 125<br>125 |
| Antimony<br>Arsenic<br>Beryllium<br>Cadmium                | 85373<br>85373                   | 1           | S100620A<br>S100620A                             | 24             | S100620A                              | 21             | 241.9780                        |                   |            |          |             |            |
| Antimony<br>Arsenic<br>Beryllium<br>Cadmium<br>Selenium    | 85373<br>85373<br>85373          | 1<br>1<br>1 | S100620A<br>S100620A<br>S100620A                 | 24<br>24       | S100620A<br>S100620A                  | 21<br>21       | 241.9780<br>212.9280            | 19.1870           | 250        | 89       | 75          | 125        |
| Analyte Antimony Arsenic Beryllium Cadmium Selenium Silver | 85373<br>85373<br>85373<br>85373 | 1<br>1<br>1 | \$100620A<br>\$100620A<br>\$100620A<br>\$100620A | 24<br>24<br>24 | S100620A<br>S100620A<br>S100620A      | 21<br>21<br>21 | 241.9780<br>212.9280<br>43.9900 | 19.1870<br>7.2890 | 250<br>250 | 89<br>82 | 75<br>75    | 125<br>125 |

PREP BATCH: 85373

Instrument Type: ICPMS

Analytical Method(s):6020/200.8

| TxtQcType: PS | Ma | trix: SOIL | SampleID: AD19599-001 |             |      |           |          |           |       |             |        |
|---------------|----|------------|-----------------------|-------------|------|-----------|----------|-----------|-------|-------------|--------|
| Analyte       | DF | Data File  | Seq#:                 | NS Data Fil | Seq# | Spk Conc: | NS Conc: | Spk Added | Recov | Qual Lo Lim | Hi Lim |
| Antimony      | 1  | S100620A   | 26                    | S100620A    | 21   | 49.6800   | 2.7270   | 50        | 94    | 75          | 125    |
| Arsenic       | 1  | S100620A   | 26                    | S100620A    | 21   | 56.9840   | 9.0880   | 50        | 96    | 75          | 125    |
| Beryllium     | 1  | S100620A   | 26                    | S100620A    | 21   | 44.1760   | 0.7980   | 50        | 87    | 75          | 125    |
| Cadmium       | 1  | S100620A   | 26                    | S100620A    | 21   | 67.0280   | 19.1870  | 50        | 96    | 75          | 125    |
| Selenium      | 1  | S100620A   | 26                    | S100620A    | 21   | 237.8090  | 7.2890   | 250       | 92    | 75          | 125    |
| Silver        | 1  | S100620A   | 26                    | S100620A    | 21   | 47.7940   | 1.2950   | 50        | 93    | 75          | 125    |
| Thallium      | 1  | S100620A   | 26                    | S100620A    | 21   | 46.1060   | 0.4800   | 50        | 91    | 75          | 125    |
| Vanadium      | 1  | S100620A   | 26                    | S100620A    | 21   | 91.0120   | 42.7770  | 50        | 96    | 75          | 125    |

# FORM6/FORM9 RPD/%Difference Data

RPD/%Difference Da PREP BATCH: 85372

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| TxtQcType: L | CSMR           | Matrix: So | OIL   | Sam       | pleID: LCS | MR 85372     |              |      |     |      |
|--------------|----------------|------------|-------|-----------|------------|--------------|--------------|------|-----|------|
| Analyte      | BatchId        | Data File  | Seq#: | NS File   | Seq#       | Result 1     | Result 2     | RPD  |     | Lim  |
| Aluminum     | 85372          | S26312A3   | 16    | \$26312A3 | 15         | 81.4411      | 91.4337      | 12   |     | 20   |
| Barium       | 85372          | \$26312A3  | 16    | S26312A3  | 15         | 6.8481       | 7.8689       | 14   |     | 20   |
| Calcium      | 85372          | S26312A3   | 16    | S26312A3  | 15         | 166.4770     | 185.4560     | 11   |     | 20   |
| Chromium     | 85372          | S26312A3   | 16    | S26312A3  | 15         | 1.7709       | 1.9482       | 9.5  |     | 20   |
| Cobalt       | 85372          | S26312A3   | 16    | S26312A3  | 15         | 2.1474       | 2.3567       | 9.3  |     | 20   |
| Copper       | 85372          | S26312A3   | 16    | S26312A3  | 15         | 1.6825       | 1.8470       | 9.3  |     | 20   |
| Iron         | 85372          | S26312A3   | 16    | S26312A3  | 15         | 127.1390     | 139.9070     | 9.6  |     | 20   |
| Lead         | 85372          | \$26312A3  | 16    | \$26312A3 | 15         | 1.2609       | 1.4146       | 11   |     | 20   |
| Magnesium    | 85372          | S26312A3   | 16    | S26312A3  | 15         | 57.7825      | 63.7138      | 9.8  |     | 20   |
| Manganese    | 85372          | S26312A3   | 16    | S26312A3  | 15         | 4.7264       | 5.1846       | 9.2  |     | 20   |
| Mercury      | 85372          | H26312SM   | 15    | H26312SM  | 14         | 6.3240       | 5.0720       | 22   | а   | 20   |
| Nickel       | 85372          | S26312A3   | 16    | S26312A3  | 15         | 0.4441       | 0.4843       | 8.7  |     | 20   |
| Potassium    | 85372          | S26312A4   | 16    | S26312A4  | 15         | 15.4725      | 17.5016      | 12   |     | 20   |
| Sodium       | 85372          | S26312A4   | 16    | S26312A4  | 15         | 6.8589       | 7.5531       | 9.6  |     | 20   |
| Zinc         | 85372          | S26312A3   | 16    | S26312A3  | 15         | 5.3836       | 5.9232       | 9.5  |     | 20   |
| TxtQcType: N | AR.            | Matrix: SC | OIL   | Sam       | pleID: AD1 | 0500_001     | wn w 1111 h  |      |     |      |
| Analyte      | Batchld        |            | Seq#: | NS File   | Seq#       | Result 1     | Result 2     | RPD  |     | Limi |
| Aluminum     | 85372          | S26312A3   | 18    | \$26312A3 | 17         | 90.7629      | 35.0794      | 88   |     |      |
|              | 85372          |            | 18    | S26312A3  | 17         |              |              |      | а   | 20   |
| Barium       | 85372<br>85372 | S26312A3   |       |           |            | 0.3727       | 0.3880       | 4    |     | 20   |
| Calcium      |                | S26312A3   | 18    | S26312A3  | 17         | 9.2963       | 10.3010      | 10   |     | 20   |
| Chromium     | 85372          | S26317C3   | 38    | S26317C3  | 37         | 0.2251       | 0.0951       | 81   | a   | 20   |
| Cobalt       | 85372          | S26312A3   | 18    | S26312A3  | 17         | 0.0514       | 0.0600       | 16   |     | 20   |
| Copper       | 85372          | S26312A3   | 18    | S26312A3  | 17         | 5.7767       | 4.8181       | 18   |     | 20   |
| lron         | 85372          | S26312A3   | 18    | S26312A3  | 17         | 102.8680     | 65.2427      | 45   | а   | 20   |
| Lead         | 85372          | S26312A3   | 18    | S26312A3  | 17         | 2.8357       | 1.1811       | 82   | , a | 20   |
| Magnesium    | 85372          | S26312A3   | 18    | S26312A3  | 17         | 34.8339      | 31.9608      | 8.6  |     | 20   |
| Manganese    | 85372          | S26312A3   | 18    | S26312A3  | 17         | 1.5057       | 1.5020       | 0.25 |     | 20   |
| Мегсигу      | 85372          | H26312SM   | 17    | H26312SM  | 16         | 0.9350       | 1.1530       | 21   | а   | 20   |
| Nickel       | 85372          | S26312B3   | 30    | S26312B3  | 29         | 0.4038       | 0.3168       | 24   | а   | 20   |
| Potassium    | 85372          | S26312A4   | 18    | S26312A4  | 17         | 2.1982       | 2.3752       | 7.7  |     | 20   |
| Sodium       | 85372          | S26312A4   | 18    | S26312A4  | 17         | 1.255852743U | 1.255852743U |      |     | 20   |
| Zinc         | 85372          | S26312A3   | 18    | S26312A3  | 17         | 4.7846       | 4.6700       | 2.4  |     | 20   |
| TxtQcType: M | ISD            | Matrix: SC | OIL   | Sam       | pleID: AD1 | 9599-001     |              |      |     |      |
| Analyte      | BatchId        |            | Seq#: | MS File   | Seq#       | Result 1     | Result 2     | RPD  |     | Limi |
| Aluminum     | 85372          | S26312A3   | 20    | S26312A3  | 19         | 52.7226      | 45.1244      | 16   |     | 20   |
| Barium       | 85372          | S26312A3   | 20    | S26312A3  | 19         | 0.8150       | 0.8384       | 2.8  |     | 20   |
| Calcium      | 85372          | S26312A3   | 20    | S26312A3  | 19         | 56.8781      | 57.8361      | 1.7  |     | 20   |
| Chromium     | 85372          | S26317C3   | 40    | S26317C3  | 39         | 0.1828       | 6.5162       | 189  | а   | 20   |
| Cobalt       | 85372          | S26312A3   | 20    | S26312A3  | 19         | 0.5251       | 0.6047       | 14   |     | 20   |
| Copper       | 85372          | S26312A3   | 20    | S26312A3  | 19         | 3.8132       | 4.1360       | 8.1  |     | 20   |
| ron          | 85372          | S26312A3   | 20    | S26312A3  | 19         | 69.6051      | 102.6680     | 38   | а   | 20   |
| _ead         | 85372          | S26312A3   | 20    | S26312A3  | 19         | 1.4972       | 1.4888       | .56  |     | 20   |
| Magnesium    | 85372          | S26312A3   | 20    | S26312A3  | 19         | 79.8152      | 81.0576      | 1.5  |     | 20   |
| Manganese    | 85372          | \$26312A3  | 20    | S26312A3  | 19         | 1.6147       | 1.9508       | 19   |     | 20   |
| Mercury      | 85372          | H26312SM   | 19    | H26312SM  | 18         | 11.1900      | 13.1600      | 16   |     | 20   |
| Nickel       | 85372          | S26312B3   | 32    | S26312B3  | 31         | 0.2590       | 5.1442       | 181  | а   | 20   |
| otassium     | 85372          | S26312A4   | 20    | S26312A4  | 19         | 48.5022      | 48.1449      | .74  |     | 20   |
| Sodium       | 85372          | S26312A4   | 20    | S26312A4  | 19         | 48.7851      | 48.3146      | .97  |     | 20   |
|              |                |            | -     |           | -          | ·            |              |      |     |      |

a-Indicates Rpd Failed the criteria b-Method Rep Out but concentrations < 5\*RL c-Serial dilution Out but conc < 10 \* IDL

#### FORM6/FORM9

#### RPD/%Difference Data PREP BATCH: 85372

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| TxtQcType: S | SD      | Matrix: S | OIL   | Sam      | pleID: AD195 | 99-001   |          |       |   |       |
|--------------|---------|-----------|-------|----------|--------------|----------|----------|-------|---|-------|
| Analyte      | Batchid | Data File | Seq#: | NS File  | Seq# DF      | Result 1 | Result 2 | %Diff |   | Limit |
| Aluminum     | 85372   | S26312A3  | 22    | S26312A3 | 17 5         | 6.9723   | 35.0794  | 0.62  |   | 10    |
| Barium       | 85372   | S26312A3  | 22    | S26312A3 | 17 5         | 0.0766   | 0.3880   | 1.2   |   | 10    |
| Calcium      | 85372   | S26312A3  | 22    | S26312A3 | 17 5         | 1.9474   | 10.3010  | 5.5   |   | 10    |
| Chromium     | 85372   | S26317C3  | 42    | S26317C3 | 37 5         | 0.0126   | 0.0951   | 34    | а | 10    |
| Cobalt       | 85372   | S26312A3  | 22    | S26312A3 | 17 5         | 0.0085   | 0.0600   | 29    | С | 10    |
| Copper       | 85372   | S26312A3  | 22    | S26312A3 | 17 5         | 0.9591   | 4.8181   | 0.47  |   | 10    |
| Iron         | 85372   | S26312A3  | 22    | S26312A3 | 17 5         | 13.1387  | 65.2427  | 0.69  |   | 10    |
| Lead         | 85372   | S26312A3  | 22    | S26312A3 | 17 5         | 0.2322   | 1.1811   | 1.7   |   | 10    |
| Magnesium    | 85372   | S26312A3  | 22    | S26312A3 | 17 5         | 6.3278   | 31.9608  | 1     |   | 10    |
| Manganese    | 85372   | S26312A3  | 22    | S26312A3 | 17 5         | 0.2999   | 1.5020   | 0.16  |   | 10    |
| Nickel       | 85372   | S26312B3  | 34    | S26312B3 | 29 5         | 0.0651   | 0.3168   | 2.7   |   | 10    |
| Potassium    | 85372   | S26312A4  | 22    | S26312A4 | 17 5         | 0.6491   | 2.3752   | 37    | С | 10    |
| Sodium       | 85372   | S26312A4  | 22    | S26312A4 | 17 5         | 0.1865   | 0.5823   | 60    | С | 10    |
| Zinc         | 85372   | S26312A3  | 22    | S26312A3 | 17 5         | 0.9278   | 4.6700   | 0.66  |   | 10    |

### FORM6/FORM9

#### RPD/%Difference Data PREP BATCH: 85373

Instrument Type: ICPMS
Analytical Method(s):6020/200.8

| TxtQcType:   | LCSMR   | Matrix: SOIL    | Sam      | npleID: LCS N | MR 85373 |          |          |       |
|--------------|---------|-----------------|----------|---------------|----------|----------|----------|-------|
| Analyte      | BatchId | Data File Seq#: | NS File  | Seq#          | Result 1 | Result 2 | RPD      | Limit |
| Antimony     | 85373   | S100620A 20     | S100620A | 19            | 50.3880  | 50.9180  | 1        | 20    |
| Arsenic      | 85373   | S100620A 20     | S100620A | 19            | 44.4660  | 44.9540  | 1.1      | 20    |
| Beryllium    | 85373   | S100620A 20     | S100620A | 19            | 150.3740 | 153.7010 | 2.2      | 20    |
| Cadmium      | 85373   | S100620A 20     | S100620A | 19            | 179.0720 | 182.6240 | 2        | 20    |
| Selenium     | 85373   | S100620A 20     | S100620A | 19            | 327.2530 | 327.9440 | .21      | 20    |
| Silver       | 85373   | S100620A 20     | S100620A | 19            | 88.3010  | 90.9370  | 2.9      | 20    |
| Thallium     | 85373   | S100620A 20     | S100620A | 19            | 190.8280 | 190.7870 | .021     | 20    |
| Vanadium     | 85373   | S100620A 20     | S100620A | 19            | 267.1310 | 271.3740 | 1.6      | 20    |
| TxtQcType: I | MR      | Matrix: SOIL    | San      | npleID: AD19  | 599-001  |          |          |       |
| Analyte      | BatchId | Data File Seq#: | NS File  | Seq#          | Result 1 | Result 2 | RPD      | Limit |
| Antimony     | 85373   | S100620A 22     | S100620A | 21            | 2.9060   | 2.7270   | 6.4      | 20    |
| Arsenic      | 85373   | S100620A 22     | S100620A | 21            | 9.5900   | 9.0880   | 5.4      | 20    |
| Beryllium    | 85373   | S100620A 22     | S100620A | 21            | 0.6540   | 0.7980   | 20       | 20    |
| Cadmium      | 85373   | S100620A 22     | S100620A | 21            | 20.5600  | 19.1870  | 6.9      | 20    |
| Selenium     | 85373   | S100620A 22     | S100620A | 21            | 10.4520  | 7.2890   | 36 a     | 20    |
| Silver       | 85373   | S100620A 22     | S100620A | 21            | 1.2460   | 1.2950   | 3.9      | 20    |
| Thallium     | 85373   | S100620A 22     | S100620A | 21            | 0.1420   | 0.4800   | 110 b    | 20    |
| Vanadium     | 85373   | S100620A 22     | S100620A | 21            | 39.5120  | 42.7770  | 7.9      | 20    |
| TxtQcType: I | MSD     | Matrix: SOIL    | Sam      | npleID: AD19  | 599-001  |          |          |       |
| Analyte      | BatchId | Data File Seq#: | MS File  | Seq#          | Result 1 | Result 2 | RPD      | Limi  |
| Antimony     | 85373   | S100620A 25     | S100620A | 24            | 163.2870 | 175.3730 | 7.1      | 20    |
| Arsenic      | 85373   | S100620A 25     | S100620A | 24            | 224.7200 | 227.4540 | 1.2      | 20    |
| Beryllium    | 85373   | S100620A 25     | S100620A | 24            | 202.9630 | 213.7140 | 5.2      | 20    |
| Cadmium      | 85373   | S100620A 25     | S100620A | 24            | 235.7310 | 241.9780 | 2.6      | 20    |
| Selenium     | 85373   | S100620A 25     | S100620A | 24            | 215.8370 | 212.9280 | 1.4      | 20    |
| Silver       | 85373   | S100620A 25     | S100620A | 24            | 42.5060  | 43.9900  | 3.4      | 20    |
| Thallium     | 85373   | S100620A 25     | S100620A | 24            | 201.0840 | 208.7490 | 3.7      | 20    |
| Vanadium     | 85373   | S100620A 25     | S100620A | 24            | 260.4290 | 268.7310 | 3.1      | 20    |
| TxtQcType:   | SD      | Matrix: SOIL    | Sam      | npleID: AD19  | 599-001  |          | <u> </u> |       |
| Analyte      | BatchId | Data File Seq#: | NS File  | Seq# DF       | Result 1 | Result 2 | %Diff    | Limi  |
| Antimony     | 85373   | S100620A 23     | S100620A | 21 5          | 0.5600   | 2.7270   | 2.7      | 20    |
| Arsenic      | 85373   | S100620A 23     | S100620A | 21 5          | 1.9690   | 9.0880   | 8.3      | 20    |
| Beryllium    | 85373   | S100620A 23     | S100620A | 21 5          | 0.2110   | 0.7980   | 32 c     | 20    |
| Cadmium      | 85373   | S100620A 23     | S100620A | 21 5          | 3.9730   | 19.1870  | 3.5      | 20    |
| Selenium     | 85373   | S100620A 23     | S100620A | 21 5          | 1.4320   | 7.2890   | 1.8      | 20    |
| Silver       | 85373   | S100620A 23     | S100620A | 21 5          | 0.2640   | 1.2950   | 1.9      | 20    |
| Thallium     | 85373   | S100620A 23     | S100620A | 21 5          | 0.0350   | 0.4800   | 64 c     | 20    |
| Vanadium     | 85373   | S100620A 23     | S100620A | 21 5          | 8.8210   | 42.7770  | 3.1      | 20    |

Hampton-Clarke

#### **ICP SAMPLE PREPARATION LOG**

| ANALYTICAL N Batch No.: 26 QC Number: 83 Matrix: 56 | летнор: 3010A 300<br>5 3 1 2<br>5 3 7 2<br>Ц 6010 | 95A 3050B 200.7/200<br>Analyst:<br>Prep Date:<br>Reviewed By: | .8 OTHER |          |
|-----------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|----------|----------|
| LAB ID#                                             | ICP                                               | ICP-MS                                                        | TCLP     | COMMENTS |

| LAB ID#                 | IC      | P     | ICP     | -MS       | / / T | CLP       | COMMENTS                                                       |
|-------------------------|---------|-------|---------|-----------|-------|-----------|----------------------------------------------------------------|
|                         |         | -     |         | dary dil) | -     | - <b></b> |                                                                |
|                         | Initial | Final | Aliquot | Final     | Eff   | TCLP      |                                                                |
| Method blank            | Sonl    | Sonl  |         |           |       |           |                                                                |
| LCS                     | 0.59    |       |         |           |       |           |                                                                |
| LCSD                    | 10      |       |         |           |       |           |                                                                |
| 1.A019599-001           |         |       |         |           |       |           | Samples are combined prior to analysis to provide extra sample |
| 1. Analytical Diplicate |         |       |         |           |       |           | volume for analysis                                            |
| MR -001                 |         |       |         |           |       |           |                                                                |
| MS -001                 |         |       |         |           |       |           | Balance used: 072                                              |
| $MSD \sqrt{-001}$       |         |       |         |           |       |           | Pipettes used: (49 / 55                                        |
| 2. 19601-001            | ,       |       |         |           |       |           |                                                                |
| 3. 1-002                |         |       |         |           |       | i<br>     | Hot Block used: 4                                              |
| 4. V -003               | ~       |       |         |           |       |           | <u>, , , , , , , , , , , , , , , , , , , </u>                  |
| 5. 19604-001            |         | ~     |         |           |       |           |                                                                |
| 6. 19599-002            |         |       |         |           |       |           |                                                                |
| 7.19539-007             |         |       |         |           |       |           |                                                                |
| 8. 1 -011               |         |       |         |           |       |           |                                                                |
| 9013                    |         |       |         |           |       |           |                                                                |
| 10019                   |         |       |         |           |       |           |                                                                |
| 11. 1 -017              |         | V     |         |           |       | :         |                                                                |
| 12.                     |         |       |         |           |       |           |                                                                |
| 13.                     |         |       |         |           |       |           |                                                                |
| 14.                     |         |       |         |           |       |           |                                                                |
| 15.                     |         |       |         |           |       |           |                                                                |
| 16.                     |         |       |         |           |       |           |                                                                |
| 17.                     |         |       |         |           |       |           |                                                                |
| 18.                     |         |       |         |           |       |           |                                                                |
| 19.                     |         |       |         |           |       |           |                                                                |
| 20.                     |         |       |         |           |       |           |                                                                |
|                         |         |       |         |           |       |           |                                                                |
|                         |         |       |         |           |       |           |                                                                |

| 82 . I | 5 A         |           |           |         |        |      |      |                               |      |        |        |      |         |                     |      |       |       |   |
|--------|-------------|-----------|-----------|---------|--------|------|------|-------------------------------|------|--------|--------|------|---------|---------------------|------|-------|-------|---|
|        | C.<br>Zabio | Hot Plate | Temperati | ure: 94 | 1.2    | _C ( | 90-9 | 95° C)                        | Star | rt Tim | le: 8: | Ooan |         | End Tir             | ne:_ | 11:00 | ion   |   |
|        |             |           | Volume    |         | Lot #  | `    | Г    | Acid                          |      | Vol    | L      | ot#  |         | Acid                |      | Vol   | Lot#  |   |
|        |             |           | mL        |         |        | 1    |      |                               | - 1  | mL     |        | I    |         |                     | . 1. | mL    |       |   |
|        | LCS, LC     | CSD       | 0.12      | V- 1    | 3005   |      | F    | INO <sub>3</sub>              |      | 2,5    | V-(3   | 457  | Ti      | :1 HNO <sub>3</sub> |      | 5.0   | V-336 | Ī |
|        | LLLCS,      | LLLCSD    | -         | V-      |        |      | I    | ICI                           | 5    | . 0    | V-(?   | 392. | <u></u> | :1 HCl              |      |       | V-    | _ |
| 94 P   | MS, MS      | SD .      | 0 25 ml   | V-13/   | 77,131 | 78   | F    | I <sub>2</sub> O <sub>2</sub> | 1    | .5     | V- (   | 3067 |         |                     |      |       |       | _ |
|        | LLMS,       | LLMSD     |           | V-      | 33:    | 5926 |      |                               |      |        | 4      |      |         |                     |      |       |       | _ |
|        |             |           |           |         |        |      |      |                               |      |        |        |      |         |                     |      |       |       |   |

Relinquished By Av
Received By

Date 10/6/20 Date 10/0/2020

T:\QC\FORMS\LOGBOOK FORMS\METALS\ICP sample prep log 2018 DOD.DOC

Hampton-Clarke

#### ( ICP SAMPLE PREPARATION LOG

| Batch No.:                                | 2631            | 3             |                              | Analy                                            | /st:               | AN     |         |                                                  |                                        |  |
|-------------------------------------------|-----------------|---------------|------------------------------|--------------------------------------------------|--------------------|--------|---------|--------------------------------------------------|----------------------------------------|--|
| QC Number:                                | 853             | 73            |                              | Prep                                             | Date:              | 10/6   | 10/6/20 |                                                  |                                        |  |
| Matrix:                                   | Soul            | 6020          |                              | Revie                                            | wed By:            |        | K       |                                                  |                                        |  |
| LAB I                                     | D#              | IC            | P                            | 1                                                | P-MS               | Т      | CLP     | COMME                                            | ENTS                                   |  |
|                                           |                 | Initial Final |                              | Aliquot                                          | dary dil)<br>Final | Eff    | TCLP    |                                                  |                                        |  |
| Method blank                              |                 | Sonl          | Soul                         | 252                                              | Sonl               |        |         |                                                  |                                        |  |
| LCS                                       |                 | 0.19          | 1                            | 1                                                | )                  |        |         |                                                  |                                        |  |
| LCSD                                      |                 | 0.10          |                              | <del>                                     </del> |                    |        |         | 1                                                |                                        |  |
| 1. A0 195 99-001  1. Analytical Diplicate |                 | 19-001 0-59   |                              |                                                  |                    |        |         | analysis to p                                    | combined prior to<br>rovide extra samp |  |
| MR                                        |                 |               |                              |                                                  |                    |        |         | volume for a                                     | inalysis                               |  |
| MS                                        | -001<br>-001    |               |                              |                                                  |                    |        |         | Balance                                          | used: 03 2                             |  |
| MSD 🗸                                     | -001            |               |                              |                                                  |                    |        |         | Pipettes 1                                       | used: 149, 15                          |  |
| 2. 19601-                                 |                 |               |                              |                                                  |                    |        |         |                                                  |                                        |  |
| 3.   -                                    | 002             |               |                              |                                                  |                    |        |         | Hot Bloc                                         | k used: 4                              |  |
| 4. 1 -                                    | 003             |               |                              |                                                  |                    |        |         |                                                  |                                        |  |
| 5. 19599                                  | -002            |               |                              |                                                  |                    |        |         | ļ                                                |                                        |  |
| 6. 19 53                                  | 9-007           |               |                              |                                                  |                    |        |         |                                                  |                                        |  |
| 7.                                        | -011            |               |                              |                                                  |                    |        |         |                                                  |                                        |  |
|                                           | -013            |               |                              |                                                  |                    |        |         | <u> </u>                                         |                                        |  |
|                                           | -014            |               |                              |                                                  | 1,                 |        |         |                                                  |                                        |  |
|                                           | -017            | <u> </u>      | <del>- '</del>               | -√                                               | V                  |        |         | <u> </u>                                         |                                        |  |
| 11.<br>12.                                |                 |               |                              |                                                  |                    |        |         | <del> </del>                                     |                                        |  |
| 13.                                       |                 |               |                              |                                                  |                    |        |         |                                                  |                                        |  |
| 14.                                       |                 |               |                              |                                                  |                    |        |         |                                                  |                                        |  |
| 15.                                       |                 |               | - 1                          |                                                  |                    |        |         |                                                  |                                        |  |
| 16.                                       |                 |               |                              |                                                  |                    |        |         |                                                  |                                        |  |
| 17.                                       |                 |               |                              |                                                  |                    |        |         |                                                  |                                        |  |
| 18.                                       |                 |               |                              |                                                  |                    |        |         | <del>                                     </del> | <del></del>                            |  |
| 19.                                       |                 |               |                              |                                                  |                    |        |         |                                                  |                                        |  |
| 20.                                       |                 |               |                              |                                                  |                    |        |         |                                                  |                                        |  |
|                                           |                 | ·····         |                              |                                                  |                    |        |         | 1                                                |                                        |  |
|                                           |                 |               |                              | -                                                |                    |        |         |                                                  |                                        |  |
| Hot Plate Tem                             | perature:       | 94.2          | C (90-95                     | 5° C) Start                                      | Time: 8            | opan   | End Ti  | me: <i>\viside 3</i>                             | Oan                                    |  |
|                                           | lume<br>nL      | Lot #         |                              |                                                  | ol Lo              | ot#    | Acid    | Vol<br>mL                                        | Lot#                                   |  |
| CSD 6.                                    | 19 V-           | 13005         | Н                            | $NO_3$ 2                                         | 5 V-13             | 457    | 1:1 HNO |                                                  | V-336092                               |  |
| LLLCSD 0                                  | V-<br>25, 1 V-1 |               | H                            |                                                  | V-                 | 067    | 1:1 HCl |                                                  | V-                                     |  |
| T 1 0-                                    | 3 C 18 37 1     | ベロコ かしてん      | $\nu \times I \cup I \cup I$ | <sub>2</sub> O <sub>2</sub>   1.                 | > IV-13            | mr + 1 | 1       |                                                  | 1                                      |  |

Date\_

Received By\_

T:\QC\FORMS\LOGBOOK FORMS\METALS\ICP sample prep log 2018 DOD.DOC

#### **HG SAMPLE PREPARATION LOG**

Hampton-Clarke/Veritech

| ANALYTICAL METHOD:                              | 245.1 7470A                            | (4111) OTHER_            | <del></del>                            | 4 0                                              |
|-------------------------------------------------|----------------------------------------|--------------------------|----------------------------------------|--------------------------------------------------|
| Batch No.:* 26312                               |                                        |                          |                                        | Analyst:                                         |
| OC Number: 8537                                 | 2 ,                                    |                          |                                        | Prep Date: 10/6/20                               |
| Matrix: S. GV                                   |                                        | ·                        |                                        | Review By:                                       |
| LAB ID#                                         | ME                                     | RCURY                    |                                        |                                                  |
| CVD ID*                                         |                                        | FINAL                    | COL & CELERO                           | GTANDARDS                                        |
| Method blank                                    | INITIAL ()                             |                          | COMMENTS                               | CAL CURVE BLK Oppb V- 3 36/66                    |
|                                                 | Don't                                  | 25ml                     |                                        | 3 ) 6 / 6 0                                      |
| ics                                             | 0.159                                  | <del></del>              |                                        | STD 0.2 ppb V- 336/62                            |
| CSD IG COO                                      |                                        | <del> </del>             | <del></del>                            |                                                  |
| A019599-001                                     |                                        |                          |                                        | STD 1.0 ppb V- 3 36 / 6 8                        |
| MR061                                           |                                        | <del>   </del>           | <del></del>                            | 10mm 20 1 1/                                     |
| MS -001                                         |                                        |                          |                                        | STD 2.0 ppb V- 336170<br>STD 5.0 ppb V- 236171   |
| MSD V -001                                      |                                        |                          | · · · · · · · · · · · · · · · · · · ·  |                                                  |
| 19601-001                                       |                                        |                          |                                        | STD 10.0 ppb V- 3 36 17-2                        |
| 1-002                                           |                                        |                          |                                        | STD 25.0 ppb V- 7 36173                          |
| 1 -003                                          |                                        |                          |                                        | ICV 10.0 ppb V- 336/69                           |
| 19604-001                                       |                                        |                          | · · · · · · · · · · · · · · · · · · ·  | CCV 20.0 ppb V- 3 3 6 / 6 5                      |
| 19899-002                                       |                                        | `                        |                                        |                                                  |
| 19539-007                                       |                                        |                          |                                        |                                                  |
| 1-011                                           |                                        |                          |                                        | Balance used: 032                                |
| -013                                            |                                        |                          |                                        | Pipettes used: 143,159,155                       |
| 0 -014                                          |                                        |                          |                                        |                                                  |
| 1 1-017                                         | 7                                      | J                        | <del>-</del>                           | Hot Block used: 7                                |
| 2                                               |                                        |                          |                                        |                                                  |
| 3                                               |                                        |                          |                                        |                                                  |
| 4                                               |                                        |                          |                                        |                                                  |
| 5                                               |                                        |                          |                                        |                                                  |
| 6                                               |                                        |                          |                                        |                                                  |
| 7                                               | ······································ |                          |                                        |                                                  |
| 8                                               |                                        |                          | *****                                  |                                                  |
| 9                                               |                                        |                          |                                        |                                                  |
| 0                                               |                                        |                          | <del></del>                            |                                                  |
|                                                 |                                        |                          | · · · · · · · · · · · · · · · · · · ·  |                                                  |
|                                                 |                                        | <u> </u>                 | ************************************** |                                                  |
| Lot Numbers                                     | Volume (mL)                            | Acid                     | Volume (mL)                            | Lot# **Block Temp °C                             |
| mmO4: V- 33 5298                                | 3.7)                                   | HNO3                     |                                        | V- Time in Block: 8: 30 an                       |
| <sub>2</sub> S <sub>2</sub> O <sub>4</sub> : V- |                                        | HCI                      |                                        | V-                                               |
| HOH: V. 734567                                  | (-5                                    | H2SO4                    |                                        | V- Time Out of Block: g. ooa                     |
| Pike Volume & Lot #                             |                                        | Aqua Regia               | 1-25                                   | V- 336/63                                        |
| LCS v- 1                                        | 3005 6B10.25ml                         | Start time               | e: 8:00 End Time                       | : 9:30an 245.1/7470A:90-                         |
| LMs v. 33                                       | 3005 (197025ml                         |                          |                                        | 95C<br>7471B : 92-98C                            |
| Standards/Control Batch B-                      | 1797                                   |                          |                                        | Relinquished By:                                 |
|                                                 | digested with this bat                 | tch using the same reage | nts and at the same ti                 | me as the above samples. The preparation of each |
|                                                 |                                        |                          |                                        | and the corresponding V #s.                      |

Data File: W:\METALS.FRM\ICPDATA\New\PEICP3A\S26312A3MDL.txt

Analysis Date: 10/06/20

Instrument: PEICP3A

|                 |          | Qc    |       |    | Test         | Rept<br>Limit | Qc     | Anai   | Prep    | 0                                                      | Ct.do.                      |
|-----------------|----------|-------|-------|----|--------------|---------------|--------|--------|---------|--------------------------------------------------------|-----------------------------|
| Sample Id       | DF       | Type  | Time  | #  | Group        | Matrix        | Matrix | Method | d Batch | Comments:                                              | Stds:                       |
| CALBLK V-333667 | 1        | CAL   | 12:09 | ı  |              |               |        |        |         |                                                        | V-333667(ICB/CCB)           |
| CALST2 V-333671 | 1        | CAL   | 12:13 | 2  |              |               |        |        |         |                                                        | V-333671(LLICV/LLCCV soil)  |
| CALST3 V-333666 | 1        | CAL   | 12:17 | 3  |              |               |        |        |         |                                                        | V-333666(ICS3 - Middle Std) |
| CALST4 V-333665 | 1        | CAL   | 12:21 | 4  |              |               |        |        |         |                                                        | V-333665(ICS4 High std)     |
| ICV V-333673    | 1, ,     | ICV   | 12:25 | 5  |              |               |        |        |         |                                                        | V-333673(CCV)               |
| ICB V-333667    | 1        | ICB   | 12:29 | 6  |              |               |        |        |         |                                                        | V-333667(ICB/CCB)           |
| LRS V-335934    | 1        | LRS   | 12:33 | 7  |              | SOIL          | SOIL   | SW846  | 85372   |                                                        | V-335934(LRS)               |
| ICS3 V-333666   | 1        | ICS   | 12:37 | 8  |              |               |        |        |         |                                                        | V-333666(ICS3 - Middle Std) |
| RINSE           | L        | NA    | 12:41 | 9  |              | SOIL          | SOIL   | SW846  | 85372   |                                                        | 0                           |
| LLICV V-333671  | ı        | LLICY | 12:45 | 10 |              | SOIL          | SOIL   | SW846  | 85372   |                                                        | V-333671(LLICV/LLCCV soil)  |
| ICSA V-333668   | 1        | ICSA  | 12:49 | 11 |              |               |        |        |         |                                                        | V-333668(ICSA)              |
| CCV V-333673    | ı        | CCV   | 12:54 | 12 |              |               |        |        |         |                                                        | V-333673(CCV)               |
| CCB V-333667    | 1        | CCB   | 12:58 | 13 |              |               |        |        |         |                                                        | V-333667(ICB/CCB)           |
| MB 85372 (100)  | 1        | MB    | 13:02 | 14 |              | SOIL          | SOIL   | SW846  | 85372   |                                                        | 0                           |
| LCS 85372       | 1        | LCS   | 13:06 | 15 |              | SOIL          | SOIL   | SW846  | 85372   |                                                        | 0                           |
| LCS MR 85372    | 1        | LCS   | 13:11 | 16 |              | SOIL          | SOIL   | SW846  | 85372   |                                                        | 0                           |
| AD19599-001     | 1        | SMP   | 13:16 | 17 | MET-TAL6010S | SOIL          | SOIL   | SW846  | 85372   | Cr, Ni NOT reported                                    | 0                           |
| AD19599-001     | 1        | MR    | 13:20 | 18 | MET-TAL6010S | SOIL          | SOIL   | SW846  | 85372   | Cr, Ni NOT reported                                    | 0                           |
| AD19599-001     | 1        | MS    | 13:25 | 19 | MET-TAL6010S | SOIL          | SOIL   | SW846  | 85372   | Cr, Ni NOT reported (Cr, Ni over LR)                   | 0                           |
| AD19599-001     | 1        | MSD   | 13:29 | 20 | MET-TAL6010S | SOIL          | SOIL   | SW846  | 85372   | Cr, Ni NOT reported                                    | 0                           |
| AD19599-001     | 1        | PS    | 13:34 | 21 | MET-TAL6010S | SOIL          | SOIL   | SW846  | 85372   | Cr, Ni NOT reported                                    | 0                           |
| AD19599-001     | 5        | SD    | 13:39 | 22 | MET-TAL6010S | SOIL          | SOIL   | SW846  | 85372   | Cr, Ni NOT reported                                    | 0                           |
| CCV V-333673    | 1        | CCV   | 13:43 | 23 |              |               |        |        |         |                                                        | V-333673(CCV)               |
| CCB V-333667    | 1        | CCB   | 13:47 | 24 |              |               |        |        |         |                                                        | V-333667(ICB/CCB)           |
| AD19601-001     | 1        | SMP   | 13:51 | 25 | MET-RCRA-S   | SOIL          | SOIL   | SW846  | 85372   | Pb NOT reported (Pb> LR)                               | 0                           |
| AD19601-002     | ı        | SMP   | 13:55 | 26 | MET-RCRA-S   | SOIL          | SOIL   | SW846  | 85372   | Pb (CCV failed), Cr (Cr> LR) NOT reported              | 0                           |
| AD19601-003     | . 1      | SMP   | 14:00 | 27 | MET-RCRA-S   | SOIL          | SOIL   | SW846  | 85372   | Cr, Pb (Cr, Pb over LR) NOT reported                   | 0                           |
| AD19599-002     | ì        | NA    | 14:05 | 28 | MET-TAL6010S | SOIL          | SOIL   | SW846  | 85372   | possible carry-over from AD19601-<br>003 (see seq. 32) | 0                           |
| RINSE           | 1        | NA    | 14:09 | 29 |              | SOIL          | SOIL   | SW846  | 85372   |                                                        | 0                           |
| RINSE           | 1        | NA    | 14:13 | 30 |              | SOIL          | SOIL   | SW846  | 85372   |                                                        | 0                           |
| RINSE           | 1        | NA    | 14:16 | 31 |              | SOIL          | SOIL   | SW846  | 85372   |                                                        | 0                           |
| AD19599-002     | 1        | SMP   | 14:20 | 32 | MET-TAL6010S | SOIL          | SOIL   | SW846  | 85372   | Pb NOT reported                                        | 0                           |
| RINSE           | 1        | NA    | 14:24 | 33 |              | SOIL          | SOIL   | SW846  | 85372   |                                                        | 0                           |
| RINSE           | 1        | NA    | 14:28 | 34 |              | SOIL          | SOIL   | SW846  | 85372   |                                                        | 0                           |
| CCV V-333673    | 1        | CCV   | 14:32 | 35 |              |               |        |        |         | Pb failed                                              | V-333673(CCV)               |
| CCB V-333667    | 1        | CCB   | 14:36 | 36 |              |               |        |        |         |                                                        | V-333667(ICB/CCB)           |
| AD19539-007     | 1        | SMP   | 14:40 | 37 | MET-TAL6010S | SOIL          | SOIL   | SW846  | 85372   | Pb NOT reported                                        | 0                           |
| AD19539-011     | ı        | SMP   | 14:43 | 38 | MET-TAL6010S | SOIL          | SOIL   | SW846  | 85372   | Pb NOT reported                                        | 0                           |
| AD19539-013     | 1        | SMP   | 14:47 | 39 | MET-TAL6010S | SOIL          | SOIL   | SW846  | 85372   | Pb NOT reported                                        | 0                           |
| AD19539-014     | 1        | SMP   | 14:51 | 40 | MET-TAL6010S | SOIL          | SOIL   | SW846  | 85372   | Pb NOT reported                                        | 0                           |
| AD19539-017     | <b>.</b> | SMP   | 14:55 | 41 | MET-TAL6010S | SOIL          | SOIL   | SW846  | 85372   | Pb NOT reported                                        | 0                           |
| AD19587-007     | 2        | SMP   | 14:59 | 42 | MET-TAL6010S | SOIL          | SOIL   | SW846  | 85368   | Co reported                                            | 0                           |
| CCV V-333673    | I        | CCV   | 15:03 | 43 |              |               |        |        |         |                                                        | V-333673(CCV)               |
| CCB V-333667    | I        | CCB   | 15:07 | 44 |              |               |        |        |         |                                                        | V-333667(ICB/CCB)           |

| Comments/Reviewedby:                           | * ************************************ |       |      |  |
|------------------------------------------------|----------------------------------------|-------|------|--|
| oluferni<br>192 168 1.89 10/12/2020 1:04:50 PM |                                        | ••••• | <br> |  |
| RUN IS OK                                      |                                        |       | <br> |  |

Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor:\_\_\_\_\_\_

Data File: W:\METALS.FRM\CPDATA\New\PEICPRAD4A\S26312A4MDL.txt

Analysis Date: 10/06/20

**Instrument: PEICPRAD4A** 

| Sample Id       | DF  | Qc<br>Type | Time  |    | Test<br>Group | Rept<br>Limit<br>Matrix | Qc<br>Matrix | Anal<br>Method | Prep<br>Batch | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stds:                       |
|-----------------|-----|------------|-------|----|---------------|-------------------------|--------------|----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| CALBLK V-333667 | 1   | CAL        | 11:57 | 1  |               |                         |              |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)           |
| CALST2 V-333671 | i   | CAL        | 12:01 | 2  |               |                         |              |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333671(LLICV/LLCCV soil)  |
| CALST3 V-335982 | i   | CAL        | 12:06 | 3  |               |                         |              |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335982(ICS3 - Middle Std) |
| CALST4 V-335863 | ı   | CAL        | 12:11 | 4  |               |                         |              |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335863(ICS4 High std)     |
| ICV V-335864    | ı   | ICV        | 12:15 | 5  |               |                         |              |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335864(CCV)               |
| ICB V-333667    |     | ICB        | 12:20 | 6  |               |                         |              |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)           |
| LRS V-333662    | 1   | LRS        | 12:24 | 7  |               | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333662(LRS)               |
| ICS3 V-335982   | 1   | ICS        | 12:29 | 8  |               |                         |              |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335982(ICS3 - Middle Std) |
| RINSE           | 1   | NA         | 12:34 | 9  |               | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| LLICV V-333671  |     | LLICV      | 12:38 | 10 |               | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333671(LLICV/LLCCV soil)  |
| ICSA V-333668   | ı   | ICSA       | 12:42 | 11 |               |                         |              |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333668(ICSA)              |
| CCV V-335864    | ı   | CCV        | 12:46 | 12 |               |                         |              |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335864(CCV)               |
| CCB V-333667    | 1   | CCB        | 12:51 | 13 |               |                         |              |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)           |
| MB 85372 (100)  | 1   | MB         | 12:56 | 14 |               | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| 1.CS 85372      | 1   | LCS        | 13:00 | 15 |               | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| LCS MR 85372    | 1   | LCS        | 13:04 | 16 |               | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19599-001     | 1   | SMP        | 13:07 | 17 | MET-TAL6010S  | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19599-001     | 1   | MR         | 13:11 | 18 | MET-TAL6010S  | SOIL                    | SOIL         | SW846          | 85372         | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 0                           |
| AD19599-001     | ı   | MS         | 13:16 | 19 | MET-TAL6010S  | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19599-001     | 1   | MSD        | 13:21 | 20 | MET-TAL6010S  | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19599-001     | ı   | PS         | 13:26 | 21 | MET-TAL6010S  | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19599-001     | 5   | SD         | 13:31 | 22 | MET-TAL6010S  | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| CCV V-335864    | 1   | CCV        | 13:35 | 23 |               |                         |              |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335864(CCV)               |
| CCB V-333667    | 1   | CCB        | 13:40 | 24 |               |                         |              |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)           |
| AD19599-002     | i   | SMIP       | 13:44 | 25 | MET-TAL6010S  | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19539-007     | 1   | SMP        | 13:49 | 26 | MET-TAL6010S  | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19539-011     | !   | SMP        | 13:53 | 27 | MET-TAL6010S  | SOIL                    | SOIL         | SW846          | 85372         | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | 0                           |
| AD19539-013     |     | SMP        | 13:57 | 28 | MET-TAL6010S  | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19539-014     | . 1 | SMP        | 14:02 | 29 | MET-TAL6010S  | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19539-017     | 1   | SMP        | 14:06 | 30 | MET-TAL6010S  | SOIL                    | SOIL         | SW846          | 85372         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| CCV V-335864    | 1   | CCV        | 14:10 | 31 |               |                         |              |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335864(CCV)               |
| CCB V-333667    | 1   | CCB        | 14:14 | 32 |               |                         |              |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)           |

| Comments/Reviewedby:                          |  |
|-----------------------------------------------|--|
| olufemi<br>192.168.1.89 10/12/2020 1:50:17 PM |  |
| RUN IS OK<br>Na, K reported                   |  |
| 0/12/20                                       |  |

Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor:\_\_\_\_\_\_

Data File: W:\METALS.FRM\ICPDATA\New\PEICP3A\S26312B3MDL.txt

Analysis Date: 10/06/20

Instrument: PEICP3A

| Sample Id       | DF   | Qc<br>Type | Time  | Run<br># | Test<br>Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rept<br>Limit<br>Matrix | Qc<br>Matrix | Anal<br>Method | Prep<br>IBatch | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stds:                       |
|-----------------|------|------------|-------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| CALBLK V-333667 | ı    | CAL        | 18:01 | 1        | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | water make to the       | •            | •              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)           |
| CALST2 V-333671 | 1    | CAL        | 18:05 | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333671(LLICV/LLCCV soil)  |
| CALST3 V-333666 | i    | CAL        | 18:09 | 3        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333666(ICS3 - Middle Std) |
| CALST4 V-333665 | 1    | CAL        | 18:13 | 4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V-333665(ICS4 High std)     |
| ICV V-333673    | ı    | ICV        | 18:17 | 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333673(CCV)               |
| ICB V-333667    | 1    | ICB        | 18:21 | 6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)           |
| LRS V-335934    | ı    | LRS        | 18:25 | 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL                    | SOIL         | SW846          | 85372          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335934(LRS)               |
| IC\$3 V-333666  | 1    | ICS        | 18:29 | 8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333666(ICS3 - Middle Std) |
| RINSE           | 1    | NA         | 18:33 | 9        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL                    | SOIL         | SW846          | 85372          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| LLICV V-333671  | 1    | LLICY      | 18:37 | 10       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL                    | SOIL         | SW846          | 85372          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333671(LLICV/LLCCV soil)  |
| ICSA V-333668   | 1    | ICSA       | 18:41 | 11       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333668(ICSA)              |
| CCV V-333673    | 1    | CCV        | 18:46 | 12       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333673(CCV)               |
| CCB V-333667    | 1    | CCB        | 18:50 | 13       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)           |
| AD19599-002     | 1    | SMP        | 18:54 | 14       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL         | SW846          | 85372          | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 0                           |
| AD19539-007     | 1    | SMP        | 18:57 | 15       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL         | SW846          | 85372          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19539-011     | ī    | SMP        | 19:01 | 16       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL         | SW846          | 85372          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19539-013     | 1    | SMP        | 19:05 | 17       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL         | SW846          | 85372          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19539-014     | 1    | SMP        | 19:09 | 18       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL         | SW846          | 85372          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19539-017     | 1    | SMP        | 19:13 | 19       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL         | SW846          | 85372          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| CCV V-333673    | i    | CCV        | 19:16 | 20       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V-333673(CCV)               |
| CCB V-333667    | i    | CCB        | 19:21 | 21       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)           |
| AD19601-002     | 1    | SMP        | 19:24 | 22       | MET-RCRA-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SOIL                    | SOIL         | SW846          | 85372          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O                           |
| AD19601-001     | 5    | SMP        | 19:29 | 23       | MET-RCRA-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SOIL                    | SOIL         | SW846          | 85372          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| AD19601-002     | 5    | SMP        | 19:33 | 24       | MET-RCRA-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SOIL                    | SOIL         | SW846          | 85372          | Cr reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                           |
| AD19601-003     | 20   | SMP        | 19:37 | 25       | MET-RCRA-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SOIL                    | SOIL         | SW846          | 85372          | Cr reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                           |
| AD19601-003     | 1000 | NA         | 19:42 | 26       | MET-RCRA-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SOIL                    | SOIL         | SW846          | 85372          | empty spot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                           |
| CCV V-333673    | 1    | CCV        | 19:46 | 27       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333673(CCV)               |
| CCB V-333667    | . 1  | CCB        | 19:50 | 28       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)           |
| AD19599-001     | 20   | SMP        | 19:53 | 29       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL         | SW846          | 85372          | Ni reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                           |
| AD19599-001     | 20   | MR         | 19:57 | 30       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | SOIL         | SW846          | 85372          | Ni reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                           |
| AD19599-001     | 20   | MS         | 20:01 | 31       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | SOIL         | SW846          | 85372          | Ni reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                           |
| AD19599-001     | 20   | MSD        | 20:05 | 32       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | SOIL         | SW846          | 85372          | Ni reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                           |
| AD19599-001     | I    | PS         | 20:09 | 33       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | SOIL         | SW846          | 85372          | Ni reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                           |
| AD19599-001     | 100  | SD         | 20:13 | 34       | MET-TAL6010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | SOIL         | SW846          | 85372          | Ni reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                           |
| AD19601-003     | 1000 | SMP        | 20:17 | 35       | MET-RCRA-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SOIL                    | SOIL         | SW846          | 85372          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           |
| CCV V-333673    | 1    | CCV        | 20:20 | 36       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333673(CCV)               |
| CCB V-333667    | i    | ССВ        | 20:24 | 37       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                | PROFESSION AND A CONTRACT OF STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V-333667(ICB/CCB)           |

| Comments/Reviewedby:                                |  |
|-----------------------------------------------------|--|
| olufemi<br>192.168 i 89 10/12/2020 1:26:28 PM       |  |
| RUN IS OK<br>Pb reported, unless otherwise reported |  |

Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor:\_\_\_\_\_

Data File: W:\METALS.FRM\ICPDATA\New\PEICP3A\S26317C3MDL.txt

Analysis Date: 10/08/20 Instrument: PEICP3A

|                      |     | Qc    |       | Run | Test                                  | Rept<br>Limit             | Qc     | Anal     | Prep                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|----------------------|-----|-------|-------|-----|---------------------------------------|---------------------------|--------|----------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Sample Id            | DF  | Type  | Time  | #   | Group                                 | Matrix                    | Matrix | Method   | Batch                                 | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stds:                                  |
| CALBLK V-333667      | 1   | CAL   | 09:45 | 1   | a characteristic in the consideration | note notes nichtster (i). |        |          | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)                      |
| CALST2 V-336304      | 1   | CAL   | 09:49 | 2   |                                       |                           |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336304(LLICV/LLCCV soil)             |
| CALST3 V-336234      | 1   | CAL   | 09:53 | 3   |                                       |                           |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336234(ICS3 - Middle Std)            |
| CALST4 V-336235      | 1   | CAL   | 09:57 | 4   |                                       |                           |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336235(ICS4 High std)                |
| ICV V-336236         | _ ! | IÇV   | 10:01 | 5   |                                       |                           |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336236(CCV)                          |
| ICB V-333667         | 1   | ICB   | 10:05 | 6   |                                       |                           |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)                      |
| LRS V-335934         | l   | LRS   | 10:09 | 7   |                                       | SOIL                      | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-335934(LRS)                          |
| ICS3 V-336234        | 1   | ICS   | 10:13 | 8   |                                       |                           |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336234(ICS3 - Middle Std)            |
| RINSE                |     | NA    | 10:17 | 9   |                                       | SOIL                      | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| LLICV V-336304       | ı   | LLICV | 10:21 | 10  |                                       | SOIL                      | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336304(LLICV/LLCCV soil)             |
| ICSA V-336303        | ı   | ICSA  | 10:25 | 11  |                                       |                           |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336303(ICSA)                         |
| CCV V-336236         | ł   | CCV   | 10:30 | 12  |                                       |                           |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336236(CCV)                          |
| CCB V-333667         | ı   | ССВ   | 10:34 | 13  |                                       |                           |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)                      |
| MB 85377 (100)       | 1   | NA    | 10:37 | 14  |                                       | SOIL                      | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ()                                     |
| MB 85377 (100)       | i   | MB    | 10:41 | 15  |                                       | SOIL                      | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| LCS 85377            | 1   | LCS   | 10:45 | 16  |                                       | SOIL                      | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| LCS MR 85377         | 1   | LCS   | 10:50 | 17  |                                       | SOIL                      | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| AD19618-003          | 1   | SMP   | 10:55 | 18  | MET-TAL6010S                          | SOIL                      | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| AD19618-003          | 1   | MR    | 10:59 | 19  | MET-TAL6010S                          | SOIL                      | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| AD19618-003          | 1   | MS    | 11:04 | 20  | MET-TAL6010S                          | SOIL                      | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| AD19618-003          | 1   | MSD   | 11:09 | 21  | MET-TAL6010S                          | SOIL                      | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| AD19618-003          | 1   | PS    | 11:14 | 22  | MET-TAL6010S                          |                           | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| AD19618-003          | 5   | SD    | 11:19 | 23  | MET-TAL6010S                          |                           | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| CCV V-336236         | 1   | CCV   | 11:22 | 24  |                                       |                           |        | •        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336236(CCV)                          |
| CCB V-333667         | 1   | ССВ   | 11:26 | 25  |                                       |                           |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)                      |
| AD19619-001          | 1   | SMP   | 11:30 | 26  | MET-TAL6010S                          | SOIL                      | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| AD19619-002          | ı   | SMP   | 11:35 | 27  | MET-TAL6010S                          | -                         | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| AD19618-001          | 1   | SMP   | 11:40 | 28  | MET-TAL6010S                          |                           | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| AD19618-005          | 1   | SMP   | 11:45 | 29  | MET-TAL6010S                          |                           | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| AD19618-007          | 1   | SMP   | 11:49 | 30  | MET-TAL6010S                          |                           | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| AD19618-009          | 1   | SMP   | 11:54 | 31  | MET-TAL6010S                          |                           | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| CCV V-336236         | 1   | CCV   | 11:59 | 32  |                                       |                           |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336236(CCV)                          |
| CCB V-333667         | 1   | ССВ   | 12:03 | 33  |                                       |                           |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)                      |
| AD19618-011          | 1   | SMP   | 12:07 | 34  | MET-TAL6010S                          | SOIL.                     | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| AD19618-013          | 1   | SMP   | 12:11 | 35  | MET-TAL6010S                          |                           | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| AD19618-015          | 1   | SMP   | 12:16 | 36  | MET-TAL6010S                          |                           | SOIL   | SW846    | 85377                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                      |
| AD19599-001          | 4   | SMP   | 12:21 | 37  | MET-TAL6010S                          |                           | SOIL   | SW846    | 85372                                 | Cr reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                      |
| AD19599-001          | 4   | MR    | 12:25 | 38  | MET-TAL6010S                          |                           | SOIL   | SW846    | 85372                                 | Cr reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                      |
| AD19599-001          | 4   | MS    | 12:29 | 39  | MET-TAL6010S                          |                           | SOIL   | SW846    | 85372                                 | Cr reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                      |
| AD19599-001          | 4   | MSD   | 12:33 | 40  | MET-TAL6010S                          |                           | SOIL   | SW846    | 85372                                 | Cr reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                      |
| AD19599-001          | i   | PS    | 12:36 | 41  | MET-TAL6010S                          |                           | SOIL   | SW846    | 85372<br>85372                        | Cr reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
| AD19599-001          | 20  | SD    | 12:41 | 42  | MET-TAL6010S                          |                           | SOIL   | SW846    | 85372                                 | Cr reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                      |
| CCV V-336236         | i   | CCV   | 12:44 | 43  | WILL-LYDONIO                          | JUIL                      | JUIL   | 3 11 040 | 03312                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336236(CCV)                          |
| CCB V-333667         |     | CCB   | 12:48 | 44  |                                       |                           |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-333667(ICB/CCB)                      |
| 00 <b>0</b> 1-333001 | •   |       | 12.70 |     |                                       |                           |        |          |                                       | A STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR | ************************************** |

| Comments/Reviewedby:                   |                                         |
|----------------------------------------|-----------------------------------------|
| olufemi                                | *************************************** |
| 192.168.1.89 10/12/2020 2:54:51 PM     |                                         |
| RUN IS OK                              |                                         |
| Pb reported, unless otherwise reported |                                         |

Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor:\_\_\_\_\_



#### Run Loa

Data File: W:\METALS.FRM\ICPDATA\New\HGCV3A\H26312SMDL.txt

Analysis Date: 10/06/20 Instrument: HGCV3A

| Sample Id         | DF | Qc<br>Type | Time  | Run<br># | Test<br>Group | Rept<br>Limit<br>Matrix | Qc<br>Matrix | Anal<br>Method | Prep<br>dBatch          | Comments:              | Stds: |
|-------------------|----|------------|-------|----------|---------------|-------------------------|--------------|----------------|-------------------------|------------------------|-------|
| Calibration Blank | 1  | CAL        | 11:24 | 1        | \$1.00        | ant axint               |              | 07274 1        | . New York and a second |                        | 0     |
| .2 PPB            | 1  | CAL        | 11:25 | 2        |               |                         |              |                |                         |                        | 0     |
| .5 PPB            | 1  | CAL        | 11:26 | 3        |               |                         |              |                |                         |                        | 0     |
| I PPB             | ı  | CAL        | 11:28 | 4        |               |                         |              |                |                         |                        | 0     |
| 2 PPB             | ı  | CAL        | 11:29 | 5        |               |                         |              |                |                         |                        | 0     |
| 5 PPB             | 1  | CAL        | 11:30 | 6        |               |                         |              |                |                         |                        | 0     |
| 10 PPB            | 1  | CAL        | 11:32 | 7        |               |                         |              |                |                         |                        | 0     |
| 25 PPB            | 1  | CAL        | 11:33 | 8        |               |                         |              |                |                         |                        | 0     |
| ICV (2)           | 1  | ICV        | 11:35 | 9        |               |                         |              |                |                         |                        | 0     |
| ICB               | 1  | ICB        | 11:37 | 10       |               |                         |              |                |                         |                        | 0     |
| MB 85372 (167)    | 1  | MB         | 11:38 | 11       |               | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| LCS 85372         | 1  | NA         | 11:40 | 12       |               | SOIL                    | SOIL         | SW846          | 85372                   | over calibration limit | 0     |
| LCS 85372 MR      | 1  | NA         | 11:41 | 13       |               | SOIL                    | SOIL         | SW846          | 85372                   | over calibration limit | 0     |
| LCS 4D            | 4  | LCS        | 11:43 | 14       |               | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| LCS 4D MR         | 4  | LCS        | 11:44 | 15       |               | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| AD19599-001       | 1  | SMP        | 11:46 | 16       | HG-SOIL       | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| AD19599-001       | 1  | MR         | 11:47 | 17       | HG-SOIL       | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| AD19599-001       | l  | MS         | 11:48 | 18       | HG-SOIL       | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| AD19599-001       | l  | MSD        | 11:50 | 19       | HG-SOIL       | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| AD19601-001       | 1  | SMP        | 11:52 | 20       | HG-SOIL       | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| CCV               | 1  | CCV        | 11:53 | 21       |               |                         |              |                |                         |                        | 0     |
| ССВ               | 1  | ССВ        | 11:55 | 22       |               |                         |              |                |                         |                        | 0     |
| AD19601-002       | 1  | SMP        | 11:56 | 23       | HG-SOIL       | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| AD19601-003       | 1  | SMP        | 11:57 | 24       | HG-SOIL       | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| AD19604-001       | 1  | SMP        | 11:59 | 25       | HG-SOIL       | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| AD19599-002       | ı  | SMP        | 12:00 | 26       | HG-SOIL       | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| AD19539-007       | 1  | SMP        | 12:01 | 27       | HG-SOIL       | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| AD19539-011       | 1  | SMP        | 12:03 | 28       | HG-SOIL       | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| AD19539-013       | 1  | SMP        | 12:04 | 29       | HG-SOIL       | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| AD19539-014       | t  | SMP        | 12:05 | 30       | HG-SOIL       | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| AD19539-017       | ł  | SMP        | 12:07 | 31       | HG-SOIL       | SOIL                    | SOIL         | SW846          | 85372                   |                        | 0     |
| CCV               | 1  | CCV        | 12:08 | 32       |               |                         |              |                |                         |                        | 0     |
| ССВ               | 1  | CCB        | 12:10 | 33       |               |                         |              |                |                         |                        | 0     |

| Comments/Reviewedby: | Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor: |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RUN IS OK            | Standard/Batch/SnCl2 Lot #:                                                                                                                                                   |

-10/12/w

Data File: W:\METALS.FRM\ICPDATA\New\MS3\_7700SWA\S100620ANEW.txt

Analysis Date: 10/06/20 Instrument: MS3\_7700SWA

| Sample id        | DF          | Qc<br>Type | Time  | Run<br># | Test<br>Group | Rept<br>Limit<br>Matrix | Qc<br>Matrix       | Anal<br>Method | Prep<br>(Batch | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stds:                                                        |
|------------------|-------------|------------|-------|----------|---------------|-------------------------|--------------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| RINSE            | <u>Y</u> E. | NA         | 12:40 |          |               | SOIL                    | SOIL               | SW846          | 85373          | Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro | eller (tree) Ware and or or or or or or or or or or or or or |
| CalBlk V-336032  | 1           | ISBLK      | 12:40 | 2        |               | SOIL                    | SOIL               | 2 M 940        | 83373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336032(Cal Blk WARNING)                                    |
| CalStd1 V-336033 | i           | CAL        | 12:49 | 3        |               | JOIL                    | JOIL               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336033(Cal Std-I WARNING)                                  |
| CalStd2 V-336034 | i           | CAL        | 12:54 | 4        |               |                         |                    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336034(Cal Std-2 WARNING)                                  |
| CalStd3 V-336035 |             | CAL        | 12:58 | 5        |               |                         |                    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336035(Cal Std-3 WARNING)                                  |
| CalStd4 V-336036 | 1           | CAL        | 13:03 | 6        |               |                         |                    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336036(Cal Std-4 WARNING)                                  |
| CalStd5 V-336037 | i           | CAL        | 13:07 | 7        |               |                         |                    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336037(Cal Std-5 WARNING)                                  |
| ICV V-336038     | 1           | ICV        | 13:12 | 8        |               |                         |                    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336038(ICV WARNING)                                        |
| I.LICV V-336043  | i           | LLICV      | 13:16 | 9        |               | SOIL                    | SOIL               | SW846          | 85373          | And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | V-336043(LL-ICV/CCV SOIL<br>WARNING)                         |
| ICB V-336039     | 1           | ICB        | 13:21 | 10       |               |                         |                    |                |                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V-336039(ICB/CCB WARNING)                                    |
| ICSA V-336040    | 1           | ICSA       | 13:25 | 11       |               |                         |                    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336040(ICSA WARNING)                                       |
| RINSE            | ı           | NA         | 13:30 | 12       |               | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| LRS V-336041     | 1           | LRS        | 13:34 | 13       |               | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336041(LRS WARNING)                                        |
| RINSE            | I           | NA         | 13:39 | 14       |               | SOIL                    | SOIL               | SW846          | 85373          | response to the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of th | 0                                                            |
| RINSE            | ļ           | NA         | 13:43 | 15       |               | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| CCV V-336042     | ì           | CCV        | 13:48 | 16       |               |                         |                    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336042(CCV WARNING)                                        |
| CCB V-336039     | 1           | ССВ        | 13:52 | 17       |               |                         |                    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336039(ICB/CCB WARNING)                                    |
| MB 85373         | 1           | MB         | 13:57 | 18       |               | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| LCS 85373        | 1           | LCS        | 14:01 | 19       |               | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| LCS MR 85373     | 1           | LCS        | 14:05 | 20       |               | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| AD19599-001      | 1           | SMP        | 14:10 | 21       | MET-TAL6020S  | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| AD19599-001      | 1           | MR         | 14:14 | 22       | MET-TAL6020S  | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| AD19599-001      | 5           | SD         | 14:19 | 23       | MET-TAL6020S  | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| AD19599-001      | ŧ           | MS         | 14:23 | 24       | MET-TAL6020S  | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| AD19599-001      | 1.          | MSD        | 14:27 | 25       | MET-TAL6020S  | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| AD19599-001      | 1           | PS         | 14:32 | 26       | MET-TAL6020S  | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| RINSE            | 1           | NA         | 14:36 | 27       |               | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| CCV V-336042     | 1           | CCV        | 14:41 | 28       |               |                         |                    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336042(CCV WARNING)                                        |
| CCB V-336039     | 1           | ССВ        | 14:45 | 29       |               |                         |                    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336039(ICB/CCB WARNING)                                    |
| AD19601-001      | 1           | SMP        | 14:49 | 30       | MET-RCRA-MS   | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| AD19601-002      | 1           | SMP        | 14:54 | 31       | MET-RCRA-MS   | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| AD19601-003      | 1           | SMP        | 14:58 | 32       | MET-RCRA-MS   | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| AD19599-002      | 1.          | SMP        | 15:03 | 33       | MET-TAL6020S  | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| AD19539-007      | ı           | NA         | 15:07 | 34       | MET-TAL6020S  | SOIL                    | SOIL               | SW846          | 85373          | Rerun.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                            |
| AD19539-011      | 1           | NA         | 15:12 | 35       | MET-TAL6020S  | SOIL                    | SOIL               | SW846          | 85373          | Rerun.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                            |
| AD19539-013      | 1           | NA         | 15:16 | 36       | MET-TAL6020S  | SOIL                    | SOIL               | SW846          | 85373          | Rerun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                            |
| AD19539-014      | . 1         | NA         | 15:21 | 37       | MET-TAL6020S  | SOIL                    | SOIL               | SW846          | 85373          | Rerun.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                            |
| AD19539-017      | 1           | NA         | 15:25 | 38       | MET-TAL6020S  | SOIL                    | SOIL               | SW846          | 85373          | Rerun.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                            |
| RINSE            | 1           | NA         | 15:29 | 39       |               | SOIL                    | SOIL               | SW846          | 85373          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                            |
| CCV V-336042     | - 1         | CCV        | 15:34 | 40       |               |                         |                    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336042(CCV WARNING)                                        |
| CCB V-336039     | 1           | ССВ        | 15:38 | 41       |               |                         | managers on a con- |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336039(ICB/CCB WARNING)                                    |
| RINSE            | ı           | NA         | 15:43 | 42       |               | SOIL                    | SOIL               | SW846          | 85373          | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | 0                                                            |
| CCV V-336042     | ı           | CCV        | 15:47 | 43       |               |                         |                    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336042(CCV WARNING)                                        |
| CCB V-336039     | 1           | CCB        | 15:52 | 44       |               |                         |                    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-336039(ICB/CCB WARNING)                                    |

Comments/Reviewedby:

pcousineau 192.168.1.87 10/7/2020 11:20:50 AM

Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor:

Standard/Batch/SnCI2 Lot #:

Run ok Report Ag, As, Be, Cd, Sb, Se, Tl, V. LRS fail for Ag, Ag LR = 100ppb. Rerun all elements for 19539-007, 011, 013, 014, 017 (int. stds.). PC.

columno

Run Log
Data File: W:\METALS.FRM\CPDATA\New\MS3\_7700SWA\S100720ANEW.txt

Analysis Date: 10/07/20 Instrument: MS3\_7700SWA

|                             |         | Qc       |       |                   | Test           | Rept<br>Limit | Qc     | Anal    | Prep   | <b>2</b>                   | Otales                               |
|-----------------------------|---------|----------|-------|-------------------|----------------|---------------|--------|---------|--------|----------------------------|--------------------------------------|
| Sample Id                   | DF      | Туре     | Time  | #<br>Stropovinska | Group          | Matrix        | Matrix | Method  | dBatch | Comments:                  | Stds:                                |
| RINSE                       | 1       | NA       | 09:47 | 1                 | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85373  |                            | 0                                    |
| CalBlk V-336032             | 1       | ISBLK    | 09:52 | 2                 |                | SOIL          | SOIL   |         |        |                            | V-336032(Cal Blk WARNING)            |
| CalStd1 V-336033            | 1       | CAL      | 09:56 | 3                 |                |               |        |         |        |                            | V-336033(Cal Std-I WARNING)          |
| CalStd2 V-336034            | 1       | CAL      | 10:01 | 4                 |                |               |        |         |        |                            | V-336034(Cal Std-2 WARNING)          |
| CalStd3 V-336035            | 11      | CAL      | 10:05 | 5                 |                |               |        |         |        |                            | V-336035(Cal Std-3 WARNING)          |
| CalStd4 V-336036            | 1       | CAL      | 10:10 | 6                 |                |               |        |         |        |                            | V-336036(Cal Std-4 WARNING)          |
| CalStd5 V-336037            | 1       | CAL      | 10:14 | 7                 |                |               |        |         |        |                            | V-336037(Cal Std-5 WARNING)          |
| ICV V-336038                | 1       | ICV      | 10:19 | 8                 |                |               |        |         |        |                            | V-336038(ICV WARNING)                |
| LLICV V-336043              | 1       | LLICV    | 10:23 | 9                 | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85373  |                            | V-336043(LL-ICV/CCV SOIL<br>WARNING) |
| ICB V-336039                | 1       | ICB      | 10:28 | 10                |                |               |        |         |        |                            | V-336039(ICB/CCB WARNING)            |
| ICSA V-336040               | 1       | ICSA     | 10:32 | 11                |                |               |        |         |        |                            | V-336040(ICSA WARNING)               |
| RINSE                       | 1       | NA       | 10:37 | 12                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85373  |                            | 0                                    |
| LRS V-336041                | 11      | LRS      | 10:41 | 13                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85373  |                            | V-336041(LRS WARNING)                |
| RINSE                       | 1       | NA       | 10:45 | 14                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85373  |                            | 0                                    |
| RINSE                       | 1       | NA       | 10:50 | 15                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85373  |                            | 0                                    |
| CCV V-336042                | 1       | CCV      | 10:54 | 16                |                |               |        |         |        |                            | V-336042(CCV WARNING)                |
| CCB V-336039                | 1       | ССВ      | 10:59 | 17                |                |               |        |         |        |                            | V-336039(ICB/CCB WARNING)            |
| AD19539-007                 | 1       | SMP      | 11:03 | 18                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85373  | Be and TI not reported     | 0                                    |
| AD19539-011                 | 1       | SMP      | 11:08 | 19                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85373  |                            | 0                                    |
| AD19539-013                 | 1       | SMP      | 11:12 | 20                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85373  | · <del></del>              | 0                                    |
| AD19539-014                 | ì       | SMP      | 11:17 | 21                | MET-TAL6020S   |               | SOIL   | SW846   | 85373  |                            | 0                                    |
| AD19539-017                 | i       | SMP      | 11:21 | 22                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85373  |                            | 0                                    |
| AD19539-007                 | 3       | SMP      | 11:26 | 23                |                | SOIL          | SOIL   | SW846   | 85373  | Be and TI reported.        | 0                                    |
| MB 85378                    | i       | MB       | 11:30 | 24                | MET-TAL6020S   |               | SOIL   | SW846   | 85378  |                            | 0                                    |
| LCS 85378                   | 1       | LCS      | 11:35 | 25                | MET-TAL6020S   |               | SOIL   | SW846   | 85378  |                            | 0                                    |
| LCS MR 85378                | 1       | LCS      | 11:39 | 26                | MET-TAL6020S   |               | SOIL   | SW846   | 85378  |                            | 0                                    |
| RINSE                       | i       | NA       | 11:43 | 27                | MET-TAL6020S   |               | SOIL   | SW846   | 85378  |                            | 0                                    |
| CCV V-336042                | ;<br>1  | CCV      | 11:43 | 28                | WIE 1-17L00203 | SOIL          | SOIL   | 3 W 04U | 03370  |                            | V-336042(CCV WARNING)                |
|                             | 1       | CCB      |       |                   |                |               |        |         |        |                            | V-336039(ICB/CCB WARNING)            |
| CCB V-336039<br>AD19618-003 | <u></u> | SMP      | 11:52 | 29                | NET TAL 60300  | COT           | COIL   | CWOAC   | 06270  |                            |                                      |
|                             |         |          | 11:57 | 30                | MET-TAL6020S   |               | SOIL   | SW846   | 85378  |                            | 0                                    |
| AD19618-003                 | l .     | MR<br>SD | 12:01 | 31                |                | SOIL          | SOIL   | SW846   | 85378  |                            | 0                                    |
| AD19618-003                 | 5       | SD       | 12:06 | 32                | MET-TAL6020S   |               | SOIL   | SW846   | 85378  |                            | 0                                    |
| AD19618-003                 |         | MS       | 12:10 | 33                | MET-TAL6020S   |               | SOIL   | SW846   | 85378  |                            | 0                                    |
| AD19618-003                 | ļ.      | MSD      | 12:14 | 34                |                | SOIL          | SOIL   | SW846   | 85378  |                            | 0                                    |
| AD19618-003                 | 1       | PS -     | 12:18 | 35                | MET-TAL6020S   |               | SOIL   | SW846   | 85378  |                            | 0                                    |
| AD19619-001                 | 1       | SMP      | 12:23 | 36                |                | SOIL          | SOIL   | SW846   | 85378  |                            | 0                                    |
| AD19619-002                 | !       | SMP      | 12:27 | 37                | MET-TAL6020S   | •             | SOIL   | SW846   | 85378  |                            | 0                                    |
| ADI9618-001                 | 1       | SMP      | 12:32 | 38                |                | SOIL          | SOIL   | SW846   | 85378  |                            | 0                                    |
| RINSE                       | 1       | NA       | 12:36 | 39                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85378  |                            | 0                                    |
| CCV V-336042                | 1       | CCV      | 12:41 | 40                |                |               |        |         |        |                            | V-336042(CCV WARNING)                |
| CCB V-336039                | 1       | CCB      | 12:45 | 41                |                |               |        |         |        |                            | V-336039(ICB/CCB WARNING)            |
| AD19618-005                 | 1       | SMP      | 12:49 | 42                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85378  | Ag, Cd and Be not reported | 0                                    |
| AD19618-007                 | 1       | SMP      | 12:54 | 43                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85378  | Ag, Cd and Be not reported | 0                                    |
| AD19618-009                 | 1       | SMP      | 12:58 | 44                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85378  | Ag, Cd and Be not reported | 0                                    |
| AD19618-011                 | 1       | SMP      | 13:03 | 45                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85378  | Ag, Cd and Be not reported | 0                                    |
| AD19618-013                 | 1       | SMP      | 13:07 | 46                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85378  | Ag, Cd and Be not reported | 0                                    |
| AD19618-015                 | 1       | SMP      | 13:12 | 47                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85378  | Ag, Cd and Be not reported | 0                                    |
| AD19636-001                 | 1       | SMP      | 13:16 | 48                | MET-TAL6020S   |               | SOIL   | SW846   | 85378  | Ag, Cd and Be not reported | 0                                    |
| AD19636-002                 | 1       | NA       | 13:20 | 49                | MET-TAL6020S   | SOIL          | SOIL   | SW846   | 85378  | Ag, Cd and Be not reported | 0                                    |
| RINSE                       | 1       | NA       | 13:25 | 50                | MET-TAL6020S   |               | SOIL   | SW846   | 85378  | Ag, Cd and Be not reported | 0                                    |
| CCV V-336042                | ı       | CCV      | 13:29 | 51                | <del>-</del>   | . =           |        |         |        | Ag,Cd and Be failed        | V-336042(CCV WARNING)                |
| CCB V-336039                | i       | ССВ      | 13:33 | 52                |                |               |        |         |        | -                          | V-336039(ICB/CCB WARNING)            |
|                             | •       |          |       | -                 |                |               |        |         |        |                            |                                      |

| Comme | nts/Revi | iewedby: |
|-------|----------|----------|
|-------|----------|----------|

192.168.1.87 10/8/2020 2:00:38 PM

Run is OK. Ag failed in LRS. Ag LRS=100 ppb. Ag, Cd and Be failed in last CCV. Ag, Cd and Be not reported for AD 19618-005 to AD19636-002.

performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor:

Note: ICP-MS dilution factor column does not reflect dilution which is

TuneID: 1

Batch/FileID: S100620ANSample ID: CalBlk V-336032 Sample Date 10/06/20 Sample Time: 12:45

 IS ID:
 Area
 Area Limit

 Ho-1
 1745822.23
 1222075.561
 - 2269568.899

 In-1
 1134783.53
 794348.471
 - 1475218.589

 Sc-1
 837948.22
 586563.754
 - 1089332.686

 Tb-1
 1808869.45
 1266208.615
 - 2351530.285

|        |                 |     | Ho-1       | In-1       | Sc-1     | Tb-1                  |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|-----------------|-----|------------|------------|----------|-----------------------|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QcType | txtSamId:       | Pos | Area       | Area       | Area     | Area                  | Area | Area | Area | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ISBLK  | CalBlk V-336032 |     | 1745822.   | 1134783.   | 837948.2 | 1808869.              |      |      |      | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
| SMP    | RINSE           | 1   | 1750364.   | 1135925.   | 840652.9 | 1813886.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CAL    | CalStd1 V-33603 | 3   | 1764100.   | 1147023.   | 850940.4 | 1823295.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CAL    | CalStd2 V-33603 | 4   | 1751758.   | 1136017.   | 841371.7 | 1802605.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CAL    | CalStd3 V-33603 | 5   | 1750202.   | 1147636.   | 846688.1 | 1839022.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CAL    | CalStd4 V-33603 | 6   | 1742527.   | 1135751.   | 841942.5 | 1769193.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CAL    | CalStd5 V-33603 | 7   | 1773948.   | 1142100.   | 849819.3 | 1831954.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ICV    | ICV V-336038    | 8   | 1799765.   | 1172447.   | 865941.5 | 1850113.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LLICV  | LLICV V-336043  | 9   | 1820204.   | 1182388.   | 871547.6 | 1858415.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ICB    | ICB V-336039    | 10  | 1780593.   | 1173115.   | 862351.0 | 1855077.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ICSA   | ICSA V-336040   | 11  | 1892363.   | 1163531.   | 915029.2 | 1951244.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | RINSE           | 12  | 1937611.   | 1294814.   | 939289.7 | 2008062.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LRS    | LRS V-336041    | 13  | 1855178.   | 1166430.   | 907697.7 | 1909810.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | RINSE           | 14  | 1919524.   | 1270755.   | 939878.0 | 1985431.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | RINSE           | 15  | 1872392.   | 1232973.   | 900668.9 | 1923395.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCV    | CCV V-336042    | 16  | 1862851.   | 1202342.   | 897221.0 | 1921143.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCB    | CCB V-336039    | 17  | 1846388.   | 1206490.   | 883269.6 | 1916844.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| мв     | MB 85373        | 18  | 1880561.   | 1214854.   | 867260.3 | 1 <del>94</del> 2653. |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCS    | LCS 85373       | 19  | 1943042.   | 1219067.   | 946721.3 | 1999932.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MR     | LCS MR 85373    | 20  | 1920624.   | 1221132.   | 933658.2 | 1988203.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | AD19599-001     | 21  | 1916305.   | 1207183.   | 963457.5 | 1986665.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MR     | AD19599-001     | 22  | 1907286.   | 1195642.   | 960234.0 | 1955666.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SD     | AD19599-001     | 23  | 1836801.   | 1181054.   | 879178.3 | 1887102.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MS     | AD19599-001     | 24  | 1896942.   | 1233224.   | 981869.0 | 1966244.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MSD    | AD19599-001     | 25  | 1939895.   | 1260259.   | 1010627. | 2000425.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PS     | AD19599-001     | 26  | 1964323.   | 1245053.   | 1017081. | 2028986.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | RINSE           | 27  | 1830986.   | 1196520.   | 869711.3 | 1894897.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCV    | CCV V-336042    | 28  | 1802670.   | 1176661.   | 871157.7 | 1856836.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCB    | CCB V-336039    | 29  | 1811569.   | 1187319.   | 871300.5 | 1881091.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | AD19601-001     | 30  | 2056268.   | 1212022.   | 1507330. | * 2130366.            |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | AD19601-002     | 31  | 1702934.   | 1041975.   | 949735.6 | 1758493.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | AD19601-003     | 32  | 1674018.   | 1101587.   | 1032619. | 1717352.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | AD19599-002     | 33  | 2054986.   | 1452733.   | 1203518. |                       |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | AD19539-007     | 34  | 2466475. * | 1479433. * |          | * 2447110.            | *    |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | AD19539-011     | 35  | 2192135.   | 1485632. * | 1421328. |                       |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | AD19539-013     | 36  | 2161078.   | 1482728. * | 1377884. |                       |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | AD19539-014     | 37  | 2304236. * | 1459320.   |          | 2354453.              | *    |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | AD19539-017     | 38  | 2305128. * | 1481456. * | 1598383. |                       |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | RINSE           | 39  | 1898758.   | 1268116.   | 934222.5 | 1968517.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCV    | CCV V-336042    | 40  | 1865348.   | 1236367.   | 911641.7 | 1928653.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ССВ    | CCB V-336039    | 41  | 1869522.   | 1240638.   | 911670.5 | 1937968.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMP    | RINSE           | 42  | 1859746.   | 1231502.   | 897363.3 | 1914783.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCV    | CCV V-336042    | 43  | 1853936.   | 1222382.   | 907438.6 | 1928454.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCB    | CCB V-336039    | 44  | 1859179.   | 1238153.   | 903976.2 | 1925420.              |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>\*</sup> Indicates Internal Standard Area outside of limits

TuneID: 2

Batch/FileID: S100620ANBample ID: CalBlk V-336032 Sample Date 10/06/20 Sample Time: 12:45

 IS ID: Area
 Area Limit

 Ho-2 777304.57
 544113.199 - 1010495.941

 In-2 244995.23
 171496.661 - 318493.799

 Sc-2 41802.81
 29261.967 - 54343.653

 Tb-2 783839.63
 548687.741 - 1018991.519

|        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ••  |            |          |            |          |      |      |      |      |
|--------|-----------------------------------------|-----|------------|----------|------------|----------|------|------|------|------|
|        |                                         |     | Ho-2       | in-2     | Sc-2       | Tb-2     |      |      |      |      |
| QcType | txtSamId:                               | Pos | Area       | Area     | Area       | Area     | Area | Area | Area | Area |
| ISBLK  | CalBlk V-336032                         | 2   | 777304.5   | 244995.2 | 41802.81   | 783839.6 |      |      |      |      |
| SMP    | RINSE                                   | 1   | 781758.0   | 245412.9 | 41123.22   | 782359.7 |      |      |      |      |
| CAL    | CalStd1 V-33603                         | 3   | 775325.9   | 246533.3 | 42086.49   | 782788.7 |      |      |      |      |
| CAL    | CalStd2 V-33603                         | 4   | 785505.1   | 247781.1 | 42212.29   | 791005.9 |      |      |      |      |
| CAL    | CalStd3 V-33603                         | 5   | 786753.4   | 247064.2 | 41844.04   | 789771.6 |      |      |      |      |
| CAL    | CalStd4 V-33603                         | 6   | 781441.1   | 244904.3 | 41164.60   | 788595.1 |      |      |      |      |
| CAL    | CalStd5 V-33603                         | 7   | 789994.6   | 246066.1 | 41604.47   | 794745.9 |      |      |      |      |
| ICV    | ICV V-336038                            | 8   | 808765.6   | 253458.7 | 43482.04   | 813986.0 |      |      |      |      |
| LLICV  | LLICV V-336043                          | 9   | 806854.6   | 252896.9 | 43251.40   | 808069.2 |      |      |      |      |
| ICB    | ICB V-336039                            | 10  | 787987.1   | 251493.2 | 42759.37   | 795233.4 |      |      |      |      |
| ICSA   | ICSA V-336040                           | 11  | 842374.7   | 255649.2 | 46958.30   | 843049.6 |      |      |      |      |
| SMP    | RINSE                                   | 12  | 852354.9   | 271649.8 | 46688.27   | 854995.3 |      |      |      |      |
| LRS    | LRS V-336041                            | 13  | 824092.9   | 254752.9 | 45827.69   | 829912.9 |      |      |      |      |
| SMP    | RINSE                                   | 14  | 843212.8   | 273446.3 | 46829.94   | 852145.3 |      |      |      |      |
| SMP    | RINSE                                   | 15  | 830483.8   | 262363.6 | 44957.76   | 835195.2 |      |      |      |      |
| CCV    | CCV V-336042                            | 16  | 823940.9   | 260827.9 | 44677.08   | 829973.7 |      |      |      |      |
| CCB    | CCB V-336039                            | 17  | 823515.0   | 262145.5 | 44311.50   | 830706.6 |      |      |      |      |
| MB     | MB 85373                                | 18  | 815759.3   | 253755.4 | 42168.11   | 817855.9 |      |      |      |      |
| LCS    | LCS 85373                               | 19  | 834433.1   | 248958.2 | 44185.86   | 830428.7 |      |      |      |      |
| MR     | LCS MR 85373                            | 20  | 832051.0   | 248220.2 | 43243.48   | 836486.6 |      |      |      |      |
| SMP    | AD19599-001                             | 21  | 833099.6   | 246742.4 | 44547.89   | 834989.4 |      |      |      |      |
| MR     | AD19599-001                             | 22  | 824028.4   | 244998.0 | 44032.13   | 826967.9 |      |      |      |      |
| SD     | AD19599-001                             | 23  | 805651.1   | 249404.0 | 42374.01   | 814774.2 |      |      |      |      |
| MS     | AD19599-001                             | 24  | 825340.7   | 257311.7 | 46582.56   | 831512.1 |      |      |      |      |
| MSD    | AD19599-001                             | 25  | 832126.7   | 256031.4 | 48270.38   | 839492.1 |      |      |      |      |
| PS     | AD19599-001                             | 26  | 835054.4   | 252644.6 | 46573.65   | 845659.3 |      |      |      |      |
| SMP    | RINSE                                   | 27  | 808905.0   | 254629.5 | 43498.70   | 813446.6 |      |      |      |      |
| CCV    | CCV V-336042                            | 28  | 810891.7   | 256017.1 | 43158.95   | 815885.0 |      |      |      |      |
| CCB    | CCB V-336039                            | 29  | 811865.7   | 258012.0 | 43049.84   | 820880.5 |      |      |      |      |
| SMP    | AD19601-001                             | 30  | 907474.3   | 248966.5 | 70603.27 * | 912544.7 |      |      |      |      |
| SMP    | AD19601-002                             | 31  | 726138.5   | 219161.0 | 43627.78   | 729604.3 |      |      |      |      |
| SMP    | AD19601-003                             | 32  | 745201.5   | 242266.4 | 45960.31   | 738830.3 |      |      |      |      |
| SMP    | AD19599-002                             | 33  | 891664.2   | 281141.4 | 53456.45   | 900274.6 |      |      |      |      |
| SMP    | AD19539-007                             | 34  | 1112989. * | 288478.5 | 87190.46 * | 1059246. | *    |      |      |      |
| SMP    | AD19539-011                             | 35  | 949325.5   | 284607.1 | 64086.79 * | 946373.3 |      |      |      |      |
| SMP    | AD19539-013                             | 36  | 945786.1   | 283529.3 | 62863.10 * | 946677.0 |      |      |      |      |
| SMP    | AD19539-014                             | 37  | 1006896.   | 282337.3 | 73693.80 * | 1002228. |      |      |      |      |
| SMP    | AD19539-017                             | 38  | 1018076. * | 284284.4 | 73957.18 * | 1003120. |      |      |      |      |
| SMP    | RINSE                                   | 39  | 828110.8   | 261260.1 | 43960.93   | 834327.7 |      |      |      |      |
| CCV    | CCV V-336042                            | 40  | 834875.9   | 259227.3 | 44720.43   | 840043.7 |      |      |      |      |
| CCB    | CCB V-336039                            | 41  | 824914.5   | 260612.5 | 44204.63   | 826467.9 |      |      |      |      |
| SMP    | RINSE                                   | 42  | 822783.0   | 258472.5 | 44183.62   | 823364.9 |      |      |      |      |
| CCV    | CCV V-336042                            | 43  | 831546.5   | 258202.7 | 44597.84   | 842208.1 |      |      |      |      |
| CCB    | CCB V-336039                            | 44  | 827297.9   | 260443.5 | 44471.96   | 831304.9 |      |      |      |      |
|        |                                         |     |            |          |            |          |      |      |      |      |

<sup>\*</sup> Indicates Internal Standard Area outside of limits

TuneID: 1

Batch/FileID: S100720ANBample ID: CalBlk V-336032 Sample Date 10/07/20 Sample Time: 09:52

 IS ID:
 Area
 Area Limit

 Ho-1
 1972172.75
 1380520.925
 - 2563824.575

 In-1
 1291714.79
 904200.353
 - 1679229.227

 Sc-1
 1063662.30
 744563.61
 - 1382760.99

 Tb-1
 2019248.72
 1413474.104
 - 2625023.336

|           |                 |     | Ho-1       | In-1     | Sc-1     | Tb-1               | _    |      | _    | _    |
|-----------|-----------------|-----|------------|----------|----------|--------------------|------|------|------|------|
| сТуре     | txtSamId:       | Pos | Area       | Area     | Area     | Area               | Area | Area | Area | Area |
| BLK       | CalBlk V-336032 | 2   | 1972172.   | 1291714. | 1063662. | 2019248.           |      |      |      |      |
| MP        | RINSE           | 1   | 1920793.   | 1252566. | 1010258. | 1989239.           |      |      |      |      |
| AL        | CalStd1 V-33603 |     | 1960879.   | 1358925. | 1064198. | 2045965.           |      |      |      |      |
| AL        | CalStd2 V-33603 | 4   | 1972600.   | 1317441. | 1085918. | 2052996.           |      |      |      |      |
| AL        | CalStd3 V-33603 |     | 1971504.   | 1301514. | 1070201. | 2024749.           |      |      |      |      |
| AL        | CalStd4 V-33603 |     | 1940441.   | 1279769. | 1075422. | 2010844.           |      |      |      |      |
| ٩L        | CaiStd5 V-33603 |     | 1916208.   | 1238281. | 1015719. | 1955228.           |      |      |      |      |
| V         | ICV V-336038    | 8   | 1902846.   | 1257048. | 1026358. | 1974036.           |      |      |      |      |
| .ICV      | LLICV V-336043  |     | 1945346.   | 1345329. | 1072583. | 1995523.           |      |      |      |      |
| В         | ICB V-336039    | 10  | 1953733.   | 1327303. | 1093745. | 2024503.           |      |      |      |      |
| SA        | ICSA V-336040   | 11  | 2051413.   | 1277367. | 1183081. | 2091338.           |      |      |      |      |
| <b>NP</b> | RINSE           | 12  | 2126562.   | 1515535. | 1225989. | 2184077.           |      |      |      |      |
| RS        | LRS V-336041    | 13  | 2050759.   | 1339782. | 1180837. | 2128681.           |      |      |      |      |
| MP        | RINSE           | 14  | 2002985.   | 1393665. | 1127602. | 2085935.           |      |      |      |      |
| MP        | RINSE           | 15  | 1994832.   | 1383691. | 1096547. | 2075071.           |      |      |      |      |
| CV        | CCV V-336042    | 16  | 2018385.   | 1373356. | 1150976. | 2068361.           |      |      |      |      |
| СВ        | CCB V-336039    | 17  | 1971650.   | 1335306. | 1045889. | 2056658.           |      |      |      |      |
| MP        | AD19539-007     | 18  | 2684608. * |          | 2123606. |                    |      |      |      |      |
| MP        | AD19539-011     | 19  | 2314395.   | 1516097. | 1578818. |                    |      |      |      |      |
| ИP        | AD19539-013     | 20  | 2285536.   | 1522068. |          | * 2360061.         |      |      |      |      |
| ИP        | AD19539-014     | 21  | 2507838.   | 1543048. | 1871451. |                    |      |      |      |      |
| MP        | AD19539-017     | 22  | 2484235.   | 1513127. | 1846029. |                    |      |      |      |      |
| MP        | AD19539-007     | 23  | 2332870.   | 1487512. | 1456632. |                    |      |      |      |      |
| В         | MB 85378        | 24  | 2077938.   | 1441383. | 1134818. | 2149331.           |      |      |      |      |
| cs        | LCS 85378       | 25  | 2183506.   | 1506852. | 1347747. | 2257618.           |      |      |      |      |
| R         | LCS MR 85378    | 26  | 2213545.   | 1516995. | 1313987. | 2283852.           |      |      |      |      |
| MP        | RINSE           | 27  | 2049413.   | 1419730. | 1048040. | 2105267.           |      |      |      |      |
| CV        | CCV V-336042    | 28  | 2041082.   | 1374850. | 1063366. | 2104876.           |      |      |      |      |
| СВ        | CCB V-336039    | 29  | 2040288.   | 1432643. | 1145495. | 2114282.           |      |      |      |      |
| MP        | AD19618-003     | 30  | 2343161.   | 1542630. | 2134120. |                    |      |      |      |      |
| R         | AD19618-003     | 31  | 2329818.   | 1556821. | 2057797. |                    |      |      |      |      |
| D         | AD19618-003     | 32  | 2192239.   | 1515942. | 1406033. |                    |      |      |      |      |
| S         | AD19618-003     | 33  | 2314246.   | 1511815. |          | * 2387311.         |      |      |      |      |
| SD        | AD19618-003     | 34  | 2375287.   | 1530357. |          | * 2444319.         |      |      |      |      |
| S         | AD19618-003     | 35  | 2323068.   | 1533834. |          | * 2377551.         |      |      |      |      |
| <b>MP</b> | AD19619-001     | 36  | 2375231.   | 1558193. |          | * 2464997.         |      |      |      |      |
| MP        | AD19619-002     | 37  | 2392066.   | 1552654. |          | * 2434648.         |      |      |      |      |
| MP        | AD19618-001     | 38  | 2377973.   | 1553175. |          | * 2438391.         |      |      |      |      |
| MP        | RINSE           | 39  | 2127123.   | 1528601. | 1215495. | 2197071.           |      |      |      |      |
| CV        | CCV V-336042    | 40  | 2124400.   | 1500471. | 1223071. | 2194780.           |      |      |      |      |
| CB        | CCB V-336039    | 41  | 2071956.   | 1468814. | 1162876. | 2133424.           |      |      |      |      |
| MP        | AD19618-005     | 42  | 2397374.   | 1558246. |          | * 2468222.         |      |      |      |      |
| ИP        | AD19618-007     | 43  | 2395805.   | 1561647. |          | * 2466533.         |      |      |      |      |
| MP        | AD19618-009     | 44  | 2441242.   | 1576234. |          | * 2492529.         |      |      |      |      |
| MP        | AD19618-011     | 45  | 2378344.   | 1591799. |          | * 2440477.         |      |      |      |      |
| MP        | AD19618-013     | 46  | 2358523.   | 1575668. |          | * 2418890.         |      |      |      |      |
| /P        | AD19618-015     | 47  | 2418685.   | 1576353. |          | * 2494677.         |      |      |      |      |
| ИP        | AD19636-001     | 48  | 2349882.   | 1590527. | 1664024. | <b>* 2430653</b> . |      |      |      |      |

<sup>\*</sup> Indicates Internal Standard Area outside of limits

## ICPMS Internal Standard Summary Report

| TuneID: 1 |              |    |          |          |          |          |  |  |  |
|-----------|--------------|----|----------|----------|----------|----------|--|--|--|
| SMP       | AD19636-002  | 49 | 2317343. | 1582341. | 1553792. | 2365603. |  |  |  |
| SMP       | RINSE        | 50 | 2144302. | 1458927. | 1000341. | 2205731. |  |  |  |
| CCV       | CCV V-336042 | 51 | 2195509. | 1491691. | 1089846. | 2248886. |  |  |  |
| CCB       | CCB V-336039 | 52 | 2206603. | 1528761. | 1181414. | 2269936. |  |  |  |

<sup>\*</sup> Indicates Internal Standard Area outside of limits

TuneID: 2

Batch/FileID: S100720AN6ample ID: CalBlk V-336032 Sample Date 10/07/20 Sample Time: 09:52

 IS ID: Area
 Area Limit

 Ho-2 864862.10
 605403.47 - 1124320.73

 In-2 281504.17
 197052.919 - 365955.421

 Sc-2 54952.85
 38466.995 - 71438.705

 Tb-2 887414.63
 621190.241 - 1153639.019

|            |                 |     | Ho-2       | In-2     | Sc-2     | Tb-2       |      |      |      |      |
|------------|-----------------|-----|------------|----------|----------|------------|------|------|------|------|
| сТуре      | txtSamId:       | Pos | Area       | Area     | Area     | Area       | Area | Area | Area | Area |
| BLK        | CalBlk V-336032 | 2   | 864862.1   | 281504.1 | 54952.85 | 887414.6   |      |      |      |      |
| MP         | RINSE           | 1   | 852003.9   | 275483.5 | 53527.46 | 871713.5   |      |      |      |      |
| AL         | CalStd1 V-33603 | 3   | 872210.4   | 284499.0 | 55553.26 | 896692.4   |      |      |      |      |
| AL         | CalStd2 V-33603 | 4   | 877151.0   | 285552.4 | 55816.53 | 903163.0   |      |      |      |      |
| AL         | CalStd3 V-33603 | 5   | 889889.3   | 293857.5 | 57001.11 | 915724.4   |      |      |      |      |
| AL         | CalStd4 V-33603 | 6   | 876392.9   | 283417.7 | 55789.59 | 899447.5   |      |      |      |      |
| AL         | CalStd5 V-33603 | 7   | 866502.8   | 278159.3 | 54568.37 | 885192.4   |      |      |      |      |
| CV         | ICV V-336038    | 8   | 878412.6   | 286369.0 | 56458.50 | 896800.3   |      |      |      |      |
| LICV       | LLICV V-336043  | 9   | 896118.2   | 296957.4 | 58020.76 | 921061.5   |      |      |      |      |
| В          | ICB V-336039    | 10  | 888895.7   | 299023.9 | 58390.87 | 913951.1   |      |      |      |      |
| CSA        | ICSA V-336040   | 11  | 900944.4   | 281546.4 | 59924.36 | 915240.1   |      |      |      |      |
| MP         | RINSE           | 12  | 919087.0   | 304329.2 | 59782.85 | 941587.4   |      |      |      |      |
| RS         | LRS V-336041    | 13  | 900584.1   | 291158.4 | 59392.75 | 918451.5   |      |      |      |      |
| MP         | RINSE           | 14  | 899662.7   | 303304.1 | 57959.43 | 921388.1   |      |      |      |      |
| MP         | RINSE           | 15  | 896291.8   | 297676.9 | 57832.33 | 914329.4   |      |      |      |      |
| CV         | CCV V-336042    | 16  | 899376.9   | 295329.5 | 57895.96 | 913539.2   |      |      |      |      |
| СВ         | CCB V-336039    | 17  | 877470.1   | 291886.4 | 56632.18 | 901874.7   |      |      |      |      |
| MP         | AD19539-007     | 18  | 1163693. * | 295184.2 | 102555.0 | * 1115497. |      |      |      |      |
| MP         | AD19539-011     | 19  | 993864.9   | 295658.0 | 75327.02 | * 999902.4 |      |      |      |      |
| MP         | AD19539-013     | 20  | 978411.6   | 296107.4 | 73446.06 | 1001716.   |      |      |      |      |
| MP         | AD19539-014     | 21  | 1051741.   | 293481.2 | 87456.06 | * 1057947. |      |      |      |      |
| MP         | AD19539-017     | 22  | 1060252.   | 292567.8 | 86163.83 | 1056173.   |      |      |      |      |
| MP         | AD19539-007     | 23  | 988400.3   | 286482.5 | 69200.32 | 984085.8   |      |      |      |      |
| IB         | MB 85378        | 24  | 893325.8   | 287621.9 | 54700.92 | 916351.9   |      |      |      |      |
| cs         | LCS 85378       | 25  | 936082.8   | 292533.8 | 60993.71 | 953274.5   |      |      |      |      |
| <b>I</b> R | LCS MR 85378    | 26  | 923041.7   | 290490.8 | 59621.29 | 944654.1   |      |      |      |      |
| MP         | RINSE           | 27  | 888024.3   | 284833.5 | 53791.68 | 914757.9   |      |      |      |      |
| CV         | CCV V-336042    | 28  | 902675.2   | 287012.2 | 54918.08 | 915598.6   |      |      |      |      |
| СВ         | CCB V-336039    | 29  | 898974.5   | 292871.9 | 55394.07 | 915149.7   |      |      |      |      |
| MP         | AD19618-003     | 30  | 994253.5   | 293924.0 | 104351.9 | 1005219.   |      |      |      |      |
| IR         | AD19618-003     | 31  | 994471.2   | 298423.8 | 100221.2 | 1011184.   |      |      |      |      |
| D          | AD19618-003     | 32  | 942474.3   | 300835.8 | 67087.16 | 965433.1   |      |      |      |      |
| IS         | AD19618-003     | 33  | 985855.8   | 296867.2 | 109663.5 | 1003309.   |      |      |      |      |
| ISD        | AD19618-003     | 34  | 1011485.   | 297207.5 | 103079.2 | 1022200.   |      |      |      |      |
| S          | AD19618-003     | 35  | 1002434.   | 295304.0 | 103032.2 | 1017286.   |      |      |      |      |
| MP         | AD19619-001     | 36  | 999625.5   | 298390.3 | 87034.41 | 1028232.   |      |      |      |      |
| MP         | AD19619-002     | 37  | 1004144.   | 298879.3 | 96783.19 | 1021441.   |      |      |      |      |
| MP         | AD19618-001     | 38  | 999654.2   | 295418.6 | 104712.5 | 1012028.   |      |      |      |      |
| MP         | RINSE           | 39  | 913754.0   | 302134.4 | 57752.19 | 938676.3   |      |      |      |      |
| CV         | CCV V-336042    | 40  | 930491.6   | 300742.7 | 57883.50 | 945432.4   |      |      |      |      |
| СВ         | CCB V-336039    | 41  | 898700.9   | 297798.5 | 56701.22 | 923891.7   |      |      |      |      |
| MP         | AD19618-005     | 42  | 1027887.   | 302586.7 |          | 1047442.   |      |      |      |      |
| MP         | AD19618-007     | 43  | 1019914.   | 297550.4 |          | 1029600.   |      |      |      |      |
| MP         | AD19618-009     | 44  | 1027407.   | 302064.1 |          | 1036551.   |      |      |      |      |
| MP         | AD19618-011     | 45  | 1005016.   | 302926.0 | 91526.31 |            |      |      |      |      |
| MP         | AD19618-013     | 46  | 1001322.   | 302822.4 | 111859.6 |            |      |      |      |      |
| MP         | AD19618-015     | 47  | 1009727.   | 297184.2 | 91694.82 |            |      |      |      |      |
|            | AD19636-001     | 48  | 965618.1   | 293365.3 |          | 988563.8   |      |      |      |      |

<sup>\*</sup> Indicates Internal Standard Area outside of limits

| TuneID: 2 |              |    |          |          |          |          |  |  |  |  |
|-----------|--------------|----|----------|----------|----------|----------|--|--|--|--|
| SMP       | AD19636-002  | 49 | 934322.8 | 284155.7 | 69454.58 | 943950.7 |  |  |  |  |
| SMP       | RINSE        | 50 | 862288.3 | 265199.1 | 48164.51 | 878732.3 |  |  |  |  |
| CCV       | CCV V-336042 | 51 | 900366.5 | 276945.5 | 51719.64 | 912595.8 |  |  |  |  |
| CCB       | CCB V-336039 | 52 | 902131.5 | 289123.7 | 54399.28 | 915267.1 |  |  |  |  |

<sup>\*</sup> Indicates Internal Standard Area outside of limits

Wet Chemistry Data

# VERITECH Wet Chem Form1 Analysis Summary % Solids

TestGroupName: % Solids SM2540G

TestGroup: %SOLIDS

Project #: 0093024

| Lab#        | Client SampleID   | Matrix         | Dilution: | Result | Units:  | RL | Prep Date | Analysis<br>Date | Received<br>Date | Collect<br>Date |
|-------------|-------------------|----------------|-----------|--------|---------|----|-----------|------------------|------------------|-----------------|
| AD19539-006 | HSI-SB-02(3.5-4)  | Soil/Terracore | 1         | 83     | Percent |    |           | 10/02/20         | 09/30/20         | 09/28/20        |
| AD19539-007 | HSI-SB-02(10-10.  | Soil/Terracore | 1         | 80     | Percent |    |           | 10/02/20         | 09/30/20         | 09/28/20        |
| AD19539-008 | HSI-SB-02(11-11.  | Soil/Terracore | 1         | 79     | Percent |    |           | 10/02/20         | 09/30/20         | 09/28/20        |
| AD19539-009 | HSI-SB-04 (9.5-10 | Soil/Terracore | 1         | 81     | Percent |    |           | 10/02/20         | 09/30/20         | 09/29/20        |
| AD19539-010 | HSI-SB-03 (3.5-4) | Soil/Terracore | 1         | 86     | Percent |    |           | 10/02/20         | 09/30/20         | 09/29/20        |
| AD19539-011 | HSI-SB-03 (10-10. | Soil/Terracore | 1         | 84     | Percent |    |           | 10/02/20         | 09/30/20         | 09/29/20        |
| AD19539-012 | HSI-SB-03 (11-11. | Soil/Terracore | 1         | 80     | Percent |    |           | 10/02/20         | 09/30/20         | 09/29/20        |
| AD19539-013 | HSI-SB-01 (2.5-3) | Soil/Terracore | 1         | 87     | Percent |    |           | 10/02/20         | 09/30/20         | 09/29/20        |
| AD19539-014 | HSI-SB-01 (6-6.5) | Soil/Terracore | 1         | 83     | Percent |    |           | 10/02/20         | 09/30/20         | 09/29/20        |
| AD19539-015 | HSI-SB-01 (10-10. | Soil/Terracore | 1         | 82     | Percent |    |           | 10/02/20         | 09/30/20         | 09/29/20        |
| AD19539-017 | HSI-SB-D1         | Soil/Terracore | 1         | 84     | Percent |    |           | 10/02/20         | 09/30/20         | 09/29/20        |

## % Solids Report

Analysis Type: SOLIDS-SS
BatchID: SOLIDS-SS-11031

| QcType | SampleID:   | Rounded<br>Result | Raw<br>Result | Units   | Tare<br>Weight | Wet<br>Weight | Dry<br>Weight | Analysis<br>Date | Analyzed<br>By | QC RPD | Rpd<br>Limit |
|--------|-------------|-------------------|---------------|---------|----------------|---------------|---------------|------------------|----------------|--------|--------------|
| DUP    | AD19545-004 | 81                | 80.76616      | Percent | 1.38           | 13.91         | 11.49         | 10/02/20         | BEENA          | 0.23   | 5            |
| Sample | AD19539-006 | 83                | 82.77457      | Percent | 1.38           | 10.03         | 8.55          | 10/02/20         | BEENA          |        |              |
| Sample | AD19539-007 | 80                | 80.06329      | Percent | 1.36           | 10.84         | 8.95          | 10/02/20         | BEENA          |        |              |
| Sample | AD19539-008 | 79                | 79.43696      | Percent | 1.38           | 9.55          | 7.87          | 10/02/20         | BEENA          |        |              |
| Sample | AD19539-009 | 81                | 81.26126      | Percent | 1.37           | 12.47         | 10.39         | 10/02/20         | BEENA          |        |              |
| Sample | AD19539-010 | 86                | 85.84071      | Percent | 1.37           | 11.54         | 10.10         | 10/02/20         | BEENA          |        |              |
| Sample | AD19539-011 | 84                | 84.41704      | Percent | 1.38           | 10.30         | 8.91          | 10/02/20         | BEENA          |        |              |
| Sample | AD19545-004 | 81                | 80.58252      | Percent | 1.36           | 13.72         | 11.32         | 10/02/20         | BEENA          |        |              |
| Sample | AD19545-005 | 82                | 81.57390      | Percent | 1.35           | 11.77         | 9.85          | 10/02/20         | BEENA          |        |              |
| Sample | AD19548-002 | 84                | 84.24797      | Percent | 1.36           | 11.20         | 9.65          | 10/02/20         | BEENA          |        |              |
| Sample | AD19552-001 | 27                | 26.56250      | Percent | 1.37           | 7.13          | 2.91          | 10/02/20         | BEENA          |        |              |
| Sample | AD19552-002 | 1.2               | 1.22905       | Percent | 1.37           | 19.27         | 1.59          | 10/02/20         | BEENA          |        |              |
| Sample | AD19553-001 | 29                | 29.27807      | Percent | 1.38           | 8.86          | 3.57          | 10/02/20         | BEENA          |        |              |
| Sample | AD19553-002 | 1.2               | 1.16602       | Percent | 1.37           | 19.38         | 1.58          | 10/02/20         | BEENA          |        |              |
| Sample | AD19557-001 | 86                | 86.01399      | Percent | 1.36           | 9.94          | 8.74          | 10/02/20         | BEENA          |        |              |
| Sample | AD19561-001 | 96                | 95.73691      | Percent | 1.33           | 9.54          | 9.20          | 10/02/20         | BEENA          |        |              |
| Sample | AD19561-002 | 96                | 95.71938      | Percent | 1.35           | 9.76          | 9.42          | 10/02/20         | BEENA          |        |              |
| Sample | AD19561-003 | 94                | 94.32314      | Percent | 1.35           | 8.22          | 7.83          | 10/02/20         | BEENA          |        |              |
| Sample | AD19561-004 | 94                | 94.27184      | Percent | 1.37           | 11.67         | 11.08         | 10/02/20         | BEENA          |        |              |
| Sample | AD19561-005 | 96                | 95.83333      | Percent | 1.38           | 14.34         | 13.80         | 10/02/20         | BEENA          |        |              |
| Sample | AD19561-006 | 94                | 93.73882      | Percent | 1.38           | 12.56         | 11.86         | 10/02/20         | BEENA          |        |              |

<sup>\* -</sup> Indicates Failed Rpd Criteria

## % Solids Report

Analysis Type: SOLIDS-SS BatchID: SOLIDS-SS-11032

| QсТуре | SampleID:   | Rounded<br>Result | Raw<br>Result | Units   | Tare<br>Weight | Wet<br>Weight | Dry<br>Weight | Analysis<br>Date | Analyzed<br>By | QC RPD | Rpd<br>Limit |
|--------|-------------|-------------------|---------------|---------|----------------|---------------|---------------|------------------|----------------|--------|--------------|
| DUP    | AD19539-015 | 82                | 82.37052      | Percent | 1.40           | 11.44         | 9.67          | 10/02/20         | BEENA          | 0.03   | 5            |
| Sample | AD19539-012 | 80                | 80.09009      | Percent | 1.38           | 12.48         | 10.27         | 10/02/20         | BEENA          |        |              |
| Sample | AD19539-013 | 87                | 87.40340      | Percent | 1.37           | 14.31         | 12.68         | 10/02/20         | BEENA          |        |              |
| Sample | AD19539-014 | 83                | 82.92201      | Percent | 1.38           | 11.51         | 9.78          | 10/02/20         | BEENA          |        |              |
| Sample | AD19539-015 | 82                | 82.39509      | Percent | 1.39           | 11.16         | 9.44          | 10/02/20         | BEENA          |        |              |
| Sample | AD19539-017 | 84                | 83.83838      | Percent | 1.40           | 9.32          | 8.04          | 10/02/20         | BEENA          |        |              |
| Sample | AD19551-001 | 66                | 66.47287      | Percent | 1.39           | 11.71         | 8.25          | 10/02/20         | BEENA          |        |              |
| Sample | AD19551-002 | 86                | 86.46789      | Percent | 1.41           | 10.13         | 8.96          | 10/02/20         | BEENA          |        |              |
| Sample | AD19558-001 | 89                | 89.30373      | Percent | 1.39           | 11.30         | 10.24         | 10/02/20         | BEENA          |        |              |
| Sample | AD19558-002 | 89                | 89.09487      | Percent | 1.39           | 10.56         | 9.56          | 10/02/20         | BEENA          |        |              |
| Sample | AD19558-003 | 89                | 88.83495      | Percent | 1.39           | 13.75         | 12.37         | 10/02/20         | BEENA          |        |              |
| Sample | AD19558-004 | 93                | 93.33333      | Percent | 1.38           | 9.93          | 9.36          | 10/02/20         | BEENA          |        |              |
| Sample | AD19558-005 | 87                | 86.80556      | Percent | 1.37           | 8.57          | 7.61          | 10/02/20         | BEENA          |        |              |
| Sample | AD19559-001 | 85                | 84.57831      | Percent | 1.39           | 9.69          | 8.41          | 10/02/20         | BEENA          |        |              |
| Sample | AD19559-002 | 81                | 80.76063      | Percent | 1.37           | 10.31         | 8.59          | 10/02/20         | BEENA          |        |              |
| Sample | AD19559-003 | 66                | 65.93137      | Percent | 1.37           | 9.53          | 6.75          | 10/02/20         | BEENA          |        |              |
| Sample | AD19559-004 | 89                | 88.86738      | Percent | 1.38           | 11.71         | 10.56         | 10/02/20         | BEENA          |        |              |
| Sample | AD19559-005 | 80                | 79.97870      | Percent | 1.37           | 10.76         | 8.88          | 10/02/20         | BEENA          |        |              |
| Sample | AD19562-001 | 91                | 91.37255      | Percent | 1.36           | 11.56         | 10.68         | 10/02/20         | BEENA          |        |              |
| Sample | AD19562-002 | 92                | 91.78967      | Percent | 1.36           | 12.20         | 11.32         | 10/02/20         | BEENA          |        |              |
| Sample | AD19562-003 | 88                | 87.78443      | Percent | 1.37           | 9.72          | 8.70          | 10/02/20         | BEENA          |        |              |

<sup>\* -</sup> Indicates Failed Rpd Criteria



Analytical & Field Services

Last Page of Report



800-426-9992 · 973-244-9770





**Analytical & Field Services** 

## **Project:** Hot Spot Investigation

Client PO: CG09042310MS

Report To: Chesapeake Geosciences Inc

5405 Twin Knolls Rd.

Suite 1

Columbia, MD 21045 Attn: Nancy Love

Received Date: 10/2/2020

**Report Date:** 10/22/2020

Deliverables: MDE-R

Lab ID: AD19595

Lab Project No: 0100230

This report is a true report of results obtained from our tests of this material. The report relates only to those samples received and analyzed by the laboratory. All results meet the requirements of the NELAC Institute standards. Laboratory reports may not be reproduced, except in full, without the written approval of the laboratory.

In lieu of a formal contract document, the total aggregate liability of Hampton-Clarke to all parties shall not exceed Hampton-Clarke's total fee for analytical services rendered.

Sean Berls - Quality Assurance Officer

Jean Revolus - Laboratory Director

(07071)(68-00463)

(ELAP11408) KY (90124)

(PH-0671)





## **Table of Contents - 0100230**

| Sample Summary                                   | 1   |
|--------------------------------------------------|-----|
| Case Narrative                                   | 2   |
| Executive Summary                                | 4   |
| Report of Analysis                               | 9   |
| Reporting Definitions / Data Qualifiers          | 29  |
| Laboratory Chronicles                            | 30  |
| Chain of Custody Forms                           | 34  |
| Chain of Custody                                 |     |
| Condition Upon Receipt Forms                     |     |
| Preservation Documentation Forms (If Applicable) |     |
| Internal Chain Of Custody Records                |     |
| Volatile Data                                    | 40  |
| Form 1 Sample and Blank Results                  | -10 |
| Form 2 Surrogate Recovery                        |     |
| Form 3 Spike Recovery                            |     |
| Form 4 Method Blank Summary                      |     |
| Form 5 Tune Summary                              |     |
| Form 6,7 Calibration & RT Summary                |     |
| Form 8 Internal Standard Area Summary            |     |
| TCLP Volatile Data                               | 145 |
|                                                  | 145 |
| Form 1 Sample and Blank Results                  |     |
| Form 2 Surrogate Recovery                        |     |
| Form 3 Spike Recovery                            |     |
| Form 4 Method Blank Summary                      |     |
| Form 5 Tune Summary                              |     |
| Form 6,7 Calibration & RT Summary                |     |
| Form 8 Internal Standard Area Summary            |     |
| Base Neutral/Acid Extractable Data               | 180 |
| Form 1 Sample and Blank Results                  |     |
| Form 2 Surrogate Recovery                        |     |
| Form 3 Spike Recovery                            |     |
| Form 4 Method Blank Summary                      |     |
| Form 5 Tune Summary                              |     |
| Form 6,7 Calibration & RT Summary                |     |



### Form 8 Internal Standard Area Summary

| TCLP Base   | Neutral/Acid Extractable Data                    | 224 |
|-------------|--------------------------------------------------|-----|
| Form        | n 1 Sample and Blank Results                     |     |
| Form        | n 2 Surrogate Recovery                           |     |
| Form        | n 3 Spike Recovery                               |     |
| Form        | n 4 Method Blank Summary                         |     |
| Form        | n 5 Tune Summary                                 |     |
| Form        | n 6,7 Calibration & RT Summary                   |     |
| Form        | n 8 Internal Standard Area Summary               |     |
| PCB Data    |                                                  | 277 |
| Form        | n 1 Sample and Blank Results                     |     |
| Form        | n 2 Surrogate Recovery                           |     |
| Form        | n 3 Spike Recovery                               |     |
| Form        | n 4 Method Blank Summary                         |     |
| Form        | n 5 Run Logs & RT Shift Summary                  |     |
| Form        | n 6, 7 Calibration Summary                       |     |
| DRO Data    |                                                  | 304 |
| Form        | n 1 Sample and Blank Results                     |     |
| Form        | n 2 Surrogate Recovery                           |     |
| Form        | n 3 Spike Recovery                               |     |
| Form        | n 4 Method Blank Summary                         |     |
| Form        | n 5 Run Logs & RT Shift Summary                  |     |
| Form        | n 6, 7 Calibration Summary                       |     |
| GRO Data    |                                                  | 328 |
| Form        | n 1 Sample and Blank Results                     |     |
| Form        | n 2 Surrogate Recovery                           |     |
| Form        | n 3 Spike Recovery                               |     |
| Form        | n 4 Method Blank Summary                         |     |
| Form        | n 5 Run Logs & BFB Spectra                       |     |
| Form        | n 6, 7 Calibration Summary                       |     |
| Metal Data. |                                                  | 347 |
| Form        | n 1 Sample Results                               |     |
| Meta        | als Form 2 Calibration Summary                   |     |
| Meta        | als Form 3 Blank Summary                         |     |
| Meta        | als Form 4 ICP Interference Check Sample Summary |     |



Metals Form 5/7 Spike / LCS Recovery Data

| Metals Form 6/9 Duplicate / Serial Dilution Sample Data |     |
|---------------------------------------------------------|-----|
| TCLP Metal Data                                         | 389 |
| Form 1 Sample Results                                   |     |
| Metals Form 2 Calibration Summary                       |     |
| Metals Form 3 Blank Summary                             |     |
| Metals Form 4 ICP Interference Check Sample Summary     |     |
| Metals Form 5/7 Spike / LCS Recovery Data               |     |
| Metals Form 6/9 Duplicate / Serial Dilution Sample Data |     |
| Wet Chemistry Data                                      | 411 |
| Form 1 Sample Results                                   |     |
| Inorganic Spreadsheet / QC Summary                      |     |
| Miscellaneous Data                                      | 414 |

## **Sample Summary**

Client: Chesapeake Geosciences Inc

**Project:** Hot Spot Investigation

HC Project #: 0100230

| Lab#        | SampleID           | Matrix         | Collection<br>Date | Receipt<br>Date |  |
|-------------|--------------------|----------------|--------------------|-----------------|--|
| AD19595-001 | HSI-SB-05(4.5-5)   | Soil/Terracore | 9/30/2020          | 10/2/2020       |  |
| AD19595-002 | HSI-SB-06(4.5-5)   | Soil/Terracore | 9/30/2020          | 10/2/2020       |  |
| AD19595-003 | HSI-SB-07(4.5-5)   | Soil/Terracore | 9/30/2020          | 10/2/2020       |  |
| AD19595-004 | HSI-SB-08(3.5-4)   | Soil/Terracore | 10/1/2020          | 10/2/2020       |  |
| AD19595-005 | HSI-SB-08(8-8.5)   | Soil/Terracore | 10/1/2020          | 10/2/2020       |  |
| AD19595-006 | HSI-SB-08(12-13)   | Soil/Terracore | 10/1/2020          | 10/2/2020       |  |
| AD19595-007 | HSI-SB-08(13-13.5) | Soil/Terracore | 10/1/2020          | 10/2/2020       |  |
| AD19595-008 | HSI-SB-09(14-14.5) | Soil/Terracore | 10/1/2020          | 10/2/2020       |  |
| AD19595-009 | HSI-SB-10(5.5-6)   | Soil/Terracore | 10/1/2020          | 10/2/2020       |  |
| AD19595-010 | HSI-SB-10(7-7.5)   | Soil/Terracore | 10/1/2020          | 10/2/2020       |  |
| AD19595-011 | HSI-SB-10(8-8.5)   | Soil/Terracore | 10/1/2020          | 10/2/2020       |  |
| AD19595-012 | HSI-SB-D2          | Soil/Terracore | 10/1/2020          | 10/2/2020       |  |
| AD19595-013 | HSI-WC-NH          | Soil           | 10/1/2020          | 10/2/2020       |  |
| AD19595-014 | HSI-WC-H           | Soil           | 10/1/2020          | 10/2/2020       |  |
|             |                    |                |                    |                 |  |

## **HC Case Narrative**

Client: Chesapeake Geosciences Inc. HC Project: 0100230

Project: Hot Spot Investigation

This case narrative is in the form of an exception report. Method specific and/or QA/QC anomalies related to this report only are detailed below.

## **Volatile Organic Analysis:**

The Method Blank Spike for batches 89449, 89464, 89475 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

The MS/MSD RPD, Matrix Spike and/or Matrix Spike Duplicate for batches 89449, 89464, 89475 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

## **TCLP Volatile Organic Analysis:**

The Method Blank Spike for batch 89438 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

The MS/MSD RPD, Matrix Spike and/or Matrix Spike Duplicate for batch 89438 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

## **Base Neutral/Acid Extractable Analysis:**

The MS/MSD RPD, Matrix Spike and/or Matrix Spike Duplicate for batch 88132 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

### **TCLP Base Neutral/Acid Extractable Analysis:**

The MS/MSD RPD, Matrix Spike and/or Matrix Spike Duplicate for batch 88180 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

### **PCB Analysis:**

Data conforms to method requirements.

### **Diesel Range Organics Analysis:**

The MS/MSD RPD, Matrix Spike and/or Matrix Spike Duplicate for batch 88159 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

There is no surrogate recovery data for samples AD19542-001, -001(MSD), -001(MSD) due to high sample dilution. Please refer to the applicable Form 2 for the recoveries.

### **Gasoline Range Organics Analysis:**

Data conforms to method requirements.

### **Metals Analysis:**

The Post Spike, Matrix Spike and/or Matrix Spike Duplicate for batch 85369 had recoveries outside QC limits. Please refer to the applicable Form 5/7 for the recoveries.

The RPD between the QC sample and the Method Replicate had recoveries outside QC limits in batches 85368, 85369. Please refer to the applicable Form 6/9 for the recoveries.

The serial dilution for batch 85368 is outside QC limits for one or more analytes. Please refer to the applicable Form 6/9 for the recoveries.

Reported to MDL per client request. When reporting to the MDL, detections are typically found in the blanks. Acceptance criteria for blanks are based on the RL.

## **TCLP Metals Analysis:**

The serial dilution for batch 85367 is outside QC limits for one or more analytes. Please refer to the applicable Form 6/9 for the recoveries.

## **Wet Chemistry Analysis:**

Data conforms to method requirements.

Sean Berls
Quality Assurance Officer

Or

Jean Revolus
Laboratory Director

Date

Client: Chesapeake Geosciences Inc

HC Project #: 0100230

**Project:** Hot Spot Investigation

Lab#: AD19595-001

Sample ID: HSI-SB-05(4.5-5)

| Amalista                 | 11    | DI (MD) | D14    | Analytical<br>Method |
|--------------------------|-------|---------|--------|----------------------|
| Analyte                  | Units | RL/MDL  | Result | Method               |
| 1,2-Dichloroethane       | mg/kg | 0.051   | 0.10   | EPA 8260D            |
| Chlorobenzene            | mg/kg | 0.026   | 0.050J | EPA 8260D            |
| cis-1,2-Dichloroethene   | mg/kg | 0.051   | 0.34   | EPA 8260D            |
| Tetrachloroethene        | mg/kg | 0.029   | 0.059J | EPA 8260D            |
| trans-1,2-Dichloroethene | mg/kg | 0.025   | 0.076J | EPA 8260D            |
| Trichloroethene          | mg/kg | 0.028   | 0.85   | EPA 8260D            |

Lab#: AD19595-002

Sample ID: HSI-SB-06(4.5-5)

| Analyte                | Units | RL/MDL | Result | Analytical<br>Method |
|------------------------|-------|--------|--------|----------------------|
| Chlorobenzene          | mg/kg | 0.026  | 1.4    | EPA 8260D            |
| cis-1,2-Dichloroethene | mg/kg | 0.050  | 0.17   | EPA 8260E            |
| Ethylbenzene           | mg/kg | 0.037  | 0.044J | EPA 82600            |
| m&p-Xylenes            | mg/kg | 0.067  | 0.16   | EPA 82600            |
| o-Xylene               | mg/kg | 0.054  | 0.067J | EPA 82600            |
| Tetrachloroethene      | mg/kg | 0.028  | 0.028J | EPA 82600            |
| Toluene                | mg/kg | 0.026  | 0.39   | EPA 82600            |
| Trichloroethene        | mg/kg | 0.027  | 0.54   | EPA 82600            |
| Xylenes (Total)        | mg/kg | 0.054  | 0.23   | EPA 8260E            |

Lab#: AD19595-003

Sample ID: HSI-SB-07(4.5-5)

| Analyte                   | Units | RL/MDL | Result | Analytical<br>Method |
|---------------------------|-------|--------|--------|----------------------|
| 1,1,2,2-Tetrachloroethane | mg/kg | 0.037  | 0.17   | EPA 8260D            |
| 1,2-Dichloroethane        | mg/kg | 0.053  | 0.087  | EPA 8260D            |
| Trichloroethene           | mg/kg | 0.028  | 0.11   | EPA 8260D            |

Client: Chesapeake Geosciences Inc

HC Project #: 0100230

**Project:** Hot Spot Investigation

Lab#: AD19595-004

Sample ID: HSI-SB-08(3.5-4)

| Analyte                    | Units | RL/MDL | Result  | Analytical<br>Method |
|----------------------------|-------|--------|---------|----------------------|
| Aluminum                   | mg/kg | 19     | 4000    | EPA 6010D            |
| Barium                     | mg/kg | 0.78   | 20      | EPA 6010D            |
| Chromium                   | mg/kg | 0.77   | 19      | EPA 6010D            |
| Copper                     | mg/kg | 0.71   | 10      | EPA 6010D            |
| Iron                       | mg/kg | 15     | 8200    | EPA 6010D            |
| Lead                       | mg/kg | 0.71   | 7.1     | EPA 6010D            |
| Magnesium                  | mg/kg | 22     | 390JB   | EPA 6010D            |
| Manganese                  | mg/kg | 0.74   | 16      | EPA 6010D            |
| Nickel                     | mg/kg | 1.3    | 3.3J    | EPA 6010D            |
| Potassium                  | mg/kg | 110    | 150J    | EPA 6010D            |
| Zinc                       | mg/kg | 1.7    | 7.7J    | EPA 6010D            |
| Arsenic                    | mg/kg | 0.020  | 3.7     | EPA 6020B            |
| Beryllium                  | mg/kg | 0.018  | 0.18J   | EPA 6020B            |
| Cadmium                    | mg/kg | 0.016  | 0.21J   | EPA 6020B            |
| Selenium                   | mg/kg | 0.073  | 2.6     | EPA 6020B            |
| Silver                     | mg/kg | 0.030  | 0.045JB | EPA 6020B            |
| Thallium                   | mg/kg | 0.020  | 0.021J  | EPA 6020B            |
| Vanadium                   | mg/kg | 0.012  | 20B     | EPA 6020B            |
| 1,2-Dichlorobenzene        | mg/kg | 0.024  | 0.029J  | EPA 8260D            |
| Chlorobenzene              | mg/kg | 0.025  | 1.3     | EPA 8260D            |
| Ethylbenzene               | mg/kg | 0.035  | 0.11    | EPA 8260D            |
| m&p-Xylenes                | mg/kg | 0.063  | 0.47    | EPA 8260D            |
| o-Xylene                   | mg/kg | 0.051  | 0.14    | EPA 8260D            |
| Toluene                    | mg/kg | 0.024  | 0.49    | EPA 8260D            |
| Trichloroethene            | mg/kg | 0.026  | 0.030J  | EPA 8260D            |
| Xylenes (Total)            | mg/kg | 0.051  | 0.61    | EPA 8260D            |
| 1,1'-Biphenyl              | mg/kg | 0.011  | 0.10    | EPA 8270E            |
| 2-Methylnaphthalene        | mg/kg | 0.012  | 0.12    | EPA 8270E            |
| 3&4-Methylphenol           | mg/kg | 0.011  | 0.021   | EPA 8270E            |
| bis(2-Ethylhexyl)phthalate | mg/kg | 0.034  | 0.38    | EPA 8270E            |
| Di-n-butylphthalate        | mg/kg | 0.044  | 0.064   | EPA 8270E            |
| Naphthalene                | mg/kg | 0.011  | 0.10    | EPA 8270E            |
| Phenanthrene               | mg/kg | 0.012  | 0.019J  | EPA 8270E            |

Lab#: AD19595-005

Sample ID: HSI-SB-08(8-8.5)

|                 |       |        |        | Analytical |
|-----------------|-------|--------|--------|------------|
| Analyte         | Units | RL/MDL | Result | Method     |
| Benzene         | mg/kg | 0.024  | 0.040J | EPA 8260D  |
| Chlorobenzene   | mg/kg | 0.027  | 1.0    | EPA 8260D  |
| Ethylbenzene    | mg/kg | 0.038  | 0.15   | EPA 8260D  |
| m&p-Xylenes     | mg/kg | 0.069  | 0.56   | EPA 8260D  |
| o-Xylene        | mg/kg | 0.055  | 0.18   | EPA 8260D  |
| Toluene         | mg/kg | 0.026  | 0.053J | EPA 8260D  |
| Xylenes (Total) | mg/kg | 0.055  | 0.74   | EPA 8260D  |

Client: Chesapeake Geosciences Inc

HC Project #: 0100230

**Project:** Hot Spot Investigation

Lab#: AD19595-006

Sample ID: HSI-SB-08(12-13)

| Analyte         |       |        |        | Analytical |
|-----------------|-------|--------|--------|------------|
|                 | Units | RL/MDL | Result | Method     |
| Benzene         | mg/kg | 0.027  | 0.13   | EPA 8260D  |
| Chlorobenzene   | mg/kg | 0.030  | 3.7    | EPA 8260D  |
| Ethylbenzene    | mg/kg | 0.043  | 0.065J | EPA 8260D  |
| m&p-Xylenes     | mg/kg | 0.078  | 0.27   | EPA 8260D  |
| o-Xylene        | mg/kg | 0.062  | 0.068J | EPA 8260D  |
| Toluene         | mg/kg | 0.030  | 1.1    | EPA 8260D  |
| Xylenes (Total) | mg/kg | 0.062  | 0.34   | EPA 8260D  |

Lab#: AD19595-007

Sample ID: HSI-SB-08(13-13.5)

|                      |       |         |        | Analytical |
|----------------------|-------|---------|--------|------------|
| Analyte              | Units | RL/MDL  | Result | Method     |
| Benzene              | mg/kg | 0.00065 | 0.0086 | EPA 8260D  |
| Chlorobenzene        | mg/kg | 0.00055 | 0.20   | EPA 8260D  |
| Ethylbenzene         | mg/kg | 0.00061 | 0.0019 | EPA 8260D  |
| m&p-Xylenes          | mg/kg | 0.0011  | 0.0071 | EPA 8260D  |
| Methyl-t-butyl ether | mg/kg | 0.00048 | 0.0016 | EPA 8260D  |
| o-Xylene             | mg/kg | 0.00063 | 0.0019 | EPA 8260D  |
| Toluene              | mg/kg | 0.00058 | 0.0035 | EPA 8260D  |
| Trichloroethene      | mg/kg | 0.00073 | 0.0033 | EPA 8260D  |
| Xylenes (Total)      | mg/kg | 0.00063 | 0.0090 | EPA 8260D  |

Lab#: AD19595-008

Sample ID: HSI-SB-09(14-14.5)

|                          |       |         |        | Analytical |
|--------------------------|-------|---------|--------|------------|
| Analyte                  | Units | RL/MDL  | Result | Method     |
| 1,2-Dichloroethane       | mg/kg | 0.00036 | 0.0047 | EPA 8260D  |
| Benzene                  | mg/kg | 0.00064 | 0.0039 | EPA 8260D  |
| Chlorobenzene            | mg/kg | 0.00054 | 0.064  | EPA 8260D  |
| cis-1,2-Dichloroethene   | mg/kg | 0.00071 | 0.040  | EPA 8260D  |
| Methyl-t-butyl ether     | mg/kg | 0.00047 | 0.0022 | EPA 8260D  |
| Toluene                  | mg/kg | 0.00058 | 0.0038 | EPA 8260D  |
| trans-1,2-Dichloroethene | mg/kg | 0.0010  | 0.010  | EPA 8260D  |
| Trichloroethene          | mg/kg | 0.00071 | 0.0062 | EPA 8260D  |
| Vinyl chloride           | mg/kg | 0.0011  | 0.0057 | EPA 8260D  |

Client: Chesapeake Geosciences Inc

HC Project #: 0100230

**Project:** Hot Spot Investigation

Lab#: AD19595-009

Sample ID: HSI-SB-10(5.5-6)

| Analyte                   | Units | RL/MDL | Result  | Analytical<br>Method |
|---------------------------|-------|--------|---------|----------------------|
| Aluminum                  | mg/kg | 19     | 5900    | EPA 6010D            |
| Barium                    | mg/kg | 0.76   | 28      | EPA 6010D            |
| Calcium                   | mg/kg | 110    | 120J    | EPA 6010D            |
| Chromium                  | mg/kg | 0.75   | 21      | EPA 6010D            |
| Cobalt                    | mg/kg | 0.80   | 2.1J    | EPA 6010D            |
| Copper                    | mg/kg | 0.69   | 8.1     | EPA 6010D            |
| Iron                      | mg/kg | 15     | 6900    | EPA 6010D            |
| Lead                      | mg/kg | 0.69   | 4.4J    | EPA 6010D            |
| Magnesium                 | mg/kg | 22     | 940B    | EPA 6010D            |
| Manganese                 | mg/kg | 0.72   | 36      | EPA 6010D            |
| Nickel                    | mg/kg | 1.2    | 7.6     | EPA 6010D            |
| Potassium                 | mg/kg | 110    | 280J    | EPA 6010D            |
| Zinc                      | mg/kg | 1.7    | 12      | EPA 6010D            |
| Arsenic                   | mg/kg | 0.020  | 1.5     | EPA 6020B            |
| Beryllium                 | mg/kg | 0.018  | 0.22J   | EPA 6020B            |
| Cadmium                   | mg/kg | 0.016  | 0.020J  | EPA 6020B            |
| Selenium                  | mg/kg | 0.071  | 1.3J    | EPA 6020B            |
| Silver                    | mg/kg | 0.029  | 0.042JB | EPA 6020B            |
| Thallium                  | mg/kg | 0.020  | 0.021J  | EPA 6020B            |
| Vanadium                  | mg/kg | 0.012  | 20B     | EPA 6020B            |
| 1,1,2,2-Tetrachloroethane | mg/kg | 0.032  | 0.052J  | EPA 8260D            |
| 1,2-Dichloroethane        | mg/kg | 0.045  | 0.070   | EPA 8260D            |
| Chlorobenzene             | mg/kg | 0.023  | 0.17    | EPA 8260D            |
| cis-1,2-Dichloroethene    | mg/kg | 0.045  | 0.40    | EPA 8260D            |
| Ethylbenzene              | mg/kg | 0.033  | 0.053J  | EPA 8260D            |
| m&p-Xylenes               | mg/kg | 0.060  | 0.099   | EPA 82600            |
| o-Xylene                  | mg/kg | 0.049  | 0.054J  | EPA 8260D            |
| Tetrachloroethene         | mg/kg | 0.025  | 0.028J  | EPA 8260D            |
| Toluene                   | mg/kg | 0.023  | 0.040J  | EPA 8260D            |
| Trichloroethene           | mg/kg | 0.025  | 0.24    | EPA 8260D            |
| Xylenes (Total)           | mg/kg | 0.049  | 0.15    | EPA 8260D            |

Lab#: AD19595-010

Sample ID: HSI-SB-10(7-7.5)

|                        |       |        |        | Analytical |
|------------------------|-------|--------|--------|------------|
| Analyte                | Units | RL/MDL | Result | Method     |
| Benzene                | mg/kg | 0.022  | 0.031J | EPA 8260D  |
| Chlorobenzene          | mg/kg | 0.025  | 0.81   | EPA 8260D  |
| cis-1,2-Dichloroethene | mg/kg | 0.047  | 0.81   | EPA 8260D  |
| Ethylbenzene           | mg/kg | 0.035  | 0.045J | EPA 8260D  |
| Toluene                | mg/kg | 0.024  | 0.063J | EPA 8260D  |
| Vinyl chloride         | mg/kg | 0.053  | 0.75   | EPA 8260D  |

Client: Chesapeake Geosciences Inc

HC Project #: 0100230

**Project:** Hot Spot Investigation

Lab#: AD19595-011

Sample ID: HSI-SB-10(8-8.5)

|                           |       |         |        | Analytica |
|---------------------------|-------|---------|--------|-----------|
| Analyte                   | Units | RL/MDL  | Result | Method    |
| 1,1,2,2-Tetrachloroethane | mg/kg | 0.00037 | 0.028  | EPA 8260D |
| 1,1,2-Trichloroethane     | mg/kg | 0.00038 | 0.0043 | EPA 8260D |
| 1,2-Dichloroethane        | mg/kg | 0.00034 | 0.018  | EPA 8260D |
| Acetone                   | mg/kg | 0.0056  | 0.019  | EPA 8260D |
| Benzene                   | mg/kg | 0.00060 | 0.0018 | EPA 8260D |
| Chlorobenzene             | mg/kg | 0.00051 | 0.052  | EPA 8260D |
| cis-1,2-Dichloroethene    | mg/kg | 0.00067 | 0.059  | EPA 8260D |
| Tetrachloroethene         | mg/kg | 0.00081 | 0.0035 | EPA 8260D |
| Toluene                   | mg/kg | 0.00055 | 0.0030 | EPA 8260D |
| trans-1,2-Dichloroethene  | mg/kg | 0.00099 | 0.0019 | EPA 8260D |
| Trichloroethene           | mg/kg | 0.00068 | 0.061  | EPA 8260D |
| Vinyl chloride            | mg/kg | 0.0010  | 0.010  | EPA 8260D |

Lab#: AD19595-012

Sample ID: HSI-SB-D2

| Analyte                  |       |        |        | Analytical |
|--------------------------|-------|--------|--------|------------|
|                          | Units | RL/MDL | Result | Method     |
| 4-Methyl-2-pentanone     | mg/kg | 0.045  | 4.1    | EPA 8260D  |
| Benzene                  | mg/kg | 0.028  | 0.12   | EPA 8260D  |
| Chlorobenzene            | mg/kg | 0.031  | 3.7    | EPA 8260D  |
| cis-1,2-Dichloroethene   | mg/kg | 0.059  | 0.40   | EPA 8260D  |
| Ethylbenzene             | mg/kg | 0.043  | 0.069J | EPA 8260D  |
| m&p-Xylenes              | mg/kg | 0.079  | 0.25   | EPA 8260D  |
| o-Xylene                 | mg/kg | 0.064  | 0.076J | EPA 8260D  |
| Toluene                  | mg/kg | 0.030  | 5.4    | EPA 8260D  |
| trans-1,2-Dichloroethene | mg/kg | 0.029  | 0.068J | EPA 8260D  |
| Vinyl chloride           | mg/kg | 0.066  | 1.1    | EPA 8260D  |
| Xylenes (Total)          | mg/kg | 0.064  | 0.33   | EPA 8260D  |

Lab#: AD19595-013

Sample ID: HSI-WC-NH

| Analyte       | Units | RL/MDL | Result | Analytical<br>Method |
|---------------|-------|--------|--------|----------------------|
| Lead          | mg/l  | 0.050  | 0.10   | EPA 6010D            |
| Chlorobenzene | mg/l  | 0.0010 | 0.0031 | EPA 8260D            |

Lab#: AD19595-014

Sample ID: HSI-WC-H

|                         |       |        |        | Analytical |
|-------------------------|-------|--------|--------|------------|
| Analyte                 | Units | RL/MDL | Result | Method     |
| Lead                    | mg/l  | 0.050  | 0.21   | EPA 6010D  |
| Gasoline Range Organics | mg/kg | 30     | 94     | EPA 8015D  |
| 1,2-Dichloroethane      | mg/l  | 0.0064 | 0.033  | EPA 8260D  |
| Chlorobenzene           | mg/l  | 0.010  | 0.83   | EPA 8260D  |
| Tetrachloroethene       | mg/l  | 0.010  | 0.039  | EPA 8260D  |
| Trichloroethene         | mg/l  | 0.010  | 0.51   | EPA 8260D  |
| 2-Methylphenol          | mg/l  | 0.0020 | 0.0069 | EPA 8270E  |
| 3&4-Methylphenol        | mg/l  | 0.0020 | 0.012  | EPA 8270E  |

## **HC Report of Analysis**

HC Project #: 0100230 Client: Chesapeake Geosciences Inc

**Project:** Hot Spot Investigation

Sample ID: HSI-SB-05(4.5-5)

Collection Date: 9/30/2020 Lab#: AD19595-001 Receipt Date: 10/2/2020

Matrix: Soil/Terracore

| % Solids SM2540 | ١G |
|-----------------|----|
|-----------------|----|

| <br>Analyte | DF | Units   | RL | <br>Result |  |
|-------------|----|---------|----|------------|--|
| % Solids    | 1  | percent |    | 86         |  |
| <br>_ , , , |    |         |    | <br>       |  |

### Volatile Organics (no search) 8260

| Analyte                               | DF   | Units | MDL   | RL    | Result |
|---------------------------------------|------|-------|-------|-------|--------|
| 1,1,1-Trichloroethane                 | 68.8 | mg/kg | 0.029 | 0.080 | ND     |
| 1,1,2,2-Tetrachloroethane             | 68.8 | mg/kg | 0.036 | 0.080 | ND     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 68.8 | mg/kg | 0.058 | 0.080 | ND     |
| 1,1,2-Trichloroethane                 | 68.8 | mg/kg | 0.026 | 0.080 | ND     |
| 1,1-Dichloroethane                    | 68.8 | mg/kg | 0.034 | 0.080 | ND     |
| 1,1-Dichloroethene                    | 68.8 | mg/kg | 0.043 | 0.080 | ND     |
| 1,2,3-Trichlorobenzene                | 68.8 | mg/kg | 0.063 | 0.080 | ND     |
| 1,2,4-Trichlorobenzene                | 68.8 | mg/kg | 0.058 | 0.080 | ND     |
| 1,2-Dibromo-3-chloropropane           | 68.8 | mg/kg | 0.067 | 0.080 | ND     |
| 1,2-Dibromoethane                     | 68.8 | mg/kg | 0.027 | 0.080 | ND     |
| 1,2-Dichlorobenzene                   | 68.8 | mg/kg | 0.026 | 0.080 | ND     |
| 1,2-Dichloroethane                    | 68.8 | mg/kg | 0.051 | 0.051 | 0.10   |
| 1,2-Dichloropropane                   | 68.8 | mg/kg | 0.024 | 0.080 | ND     |
| 1,3-Dichlorobenzene                   | 68.8 | mg/kg | 0.030 | 0.080 | ND     |
| 1,4-Dichlorobenzene                   | 68.8 | mg/kg | 0.029 | 0.080 | ND     |
| 1,4-Dioxane                           | 68.8 | mg/kg | 3.1   | 4.0   | ND     |
| 2-Butanone                            | 68.8 | mg/kg | 0.060 | 0.080 | ND     |
| 2-Hexanone                            | 68.8 | mg/kg | 0.048 | 0.080 | ND     |
| 4-Methyl-2-pentanone                  | 68.8 | mg/kg | 0.039 | 0.080 | ND     |
| Acetone                               | 68.8 | mg/kg | 0.37  | 0.40  | ND     |
| Benzene                               | 68.8 | mg/kg | 0.024 | 0.040 | ND     |
| Bromochloromethane                    | 68.8 | mg/kg | 0.063 | 0.080 | ND     |
| Bromodichloromethane                  | 68.8 | mg/kg | 0.028 | 0.080 | ND     |
| Bromoform                             | 68.8 | mg/kg | 0.043 | 0.080 | ND     |
| Bromomethane                          | 68.8 | mg/kg | 0.040 | 0.080 | ND     |
| Carbon disulfide                      | 68.8 | mg/kg | 0.034 | 0.080 | ND     |
| Carbon tetrachloride                  | 68.8 | mg/kg | 0.026 | 0.080 | ND     |
| Chlorobenzene                         | 68.8 | mg/kg | 0.026 | 0.080 | 0.050J |
| Chloroethane                          | 68.8 | mg/kg | 0.046 | 0.080 | ND     |
| Chloroform                            | 68.8 | mg/kg | 0.16  | 0.16  | ND     |
| Chloromethane                         | 68.8 | mg/kg | 0.041 | 0.080 | ND     |
| cis-1,2-Dichloroethene                | 68.8 | mg/kg | 0.051 | 0.080 | 0.34   |
| cis-1,3-Dichloropropene               | 68.8 | mg/kg | 0.026 | 0.080 | ND     |
| Cyclohexane                           | 68.8 | mg/kg | 0.039 | 0.080 | ND     |
| Dibromochloromethane                  | 68.8 | mg/kg | 0.019 | 0.080 | ND     |
| Dichlorodifluoromethane               | 68.8 | mg/kg | 0.050 | 0.080 | ND     |
| Ethylbenzene                          | 68.8 | mg/kg | 0.037 | 0.080 | ND     |
| Isopropylbenzene                      | 68.8 | mg/kg | 0.039 | 0.080 | ND     |
| m&p-Xylenes                           | 68.8 | mg/kg | 0.068 | 0.080 | ND     |
| Methyl Acetate                        | 68.8 | mg/kg | 0.056 | 0.080 | ND     |
| Methylcyclohexane                     | 68.8 | mg/kg | 0.049 | 0.080 | ND ND  |
| Methylene chloride                    | 68.8 | mg/kg | 0.024 | 0.080 | ND     |
| Methyl-t-butyl ether                  | 68.8 | mg/kg | 0.025 | 0.040 | ND     |
| o-Xylene                              | 68.8 | mg/kg | 0.055 | 0.080 | ND     |
| Styrene                               | 68.8 | mg/kg | 0.043 | 0.080 | ND ND  |
| Tetrachloroethene                     | 68.8 | mg/kg | 0.029 | 0.080 | 0.059J |
| Toluene                               | 68.8 | mg/kg | 0.026 | 0.080 | ND     |
| trans-1,2-Dichloroethene              | 68.8 | mg/kg | 0.025 | 0.080 | 0.076J |
| trans-1,3-Dichloropropene             | 68.8 | mg/kg | 0.025 | 0.080 | ND     |
| Trichioroethene                       | 68.8 | mg/kg | 0.028 | 0.080 | 0.85   |
|                                       |      |       | 0.005 | 0.000 | AID.   |
| Trichlorofluoromethane                | 68.8 | mg/kg | 0.025 | 0.080 | ND     |

Sample ID: HSI-SB-06(4.5-5) Lab#: AD19595-002 Collection Date: 9/30/2020 Receipt Date: 10/2/2020

Matrix: Soil/Terracore

| Analyte                            | DF | Units   | RL | Result |
|------------------------------------|----|---------|----|--------|
| % Solids                           | 1  | percent |    | 85     |
| Volatile Organics (no search) 8260 |    |         |    |        |

| Analyte                               | DF   | Units | MDL   | RL    | Result       |
|---------------------------------------|------|-------|-------|-------|--------------|
| 1,1,1-Trichloroethane                 | 67.5 | mg/kg | 0.028 | 0.079 | ND           |
| 1,1,2,2-Tetrachloroethane             | 67.5 | mg/kg | 0.036 | 0.079 | ND           |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 67.5 | mg/kg | 0.058 | 0.079 | ND           |
| 1,1,2-Trichloroethane                 | 67.5 | mg/kg | 0.025 | 0.079 | ND           |
| 1,1-Dichloroethane                    | 67.5 | mg/kg | 0.034 | 0.079 | ND           |
| 1,1-Dichloroethene                    | 67.5 | mg/kg | 0.042 | 0.079 | ND           |
| 1,2,3-Trichlorobenzene                | 67.5 | mg/kg | 0.062 | 0.079 | ND           |
| 1,2,4-Trichlorobenzene                | 67.5 | mg/kg | 0.058 | 0.079 | ND           |
| 1,2-Dibromo-3-chloropropane           | 67.5 | mg/kg | 0.066 | 0.079 | ND           |
| 1,2-Dibromoethane                     | 67.5 | mg/kg | 0.027 | 0.079 | ND           |
| 1,2-Dichlorobenzene                   | 67.5 | mg/kg | 0.026 | 0.079 | ND           |
| 1,2-Dichloroethane                    | 67.5 | mg/kg | 0.051 | 0.051 | ND           |
| 1,2-Dichloropropane                   | 67.5 | mg/kg | 0.024 | 0.079 | ND ND        |
| 1,3-Dichlorobenzene                   | 67.5 | mg/kg | 0.030 | 0.079 | ND           |
| 1,4-Dichlorobenzene                   | 67.5 | mg/kg | 0.029 | 0.079 | ND           |
|                                       |      |       | 3.1   |       | ND           |
| 1,4-Dioxane2-Butanone                 | 67.5 | mg/kg |       | 4.0   | ND ND        |
|                                       | 67.5 | mg/kg | 0.059 | 0.079 |              |
| 2-Hexanone                            | 67.5 | mg/kg | 0.048 | 0.079 | ND           |
| 4-Methyl-2-pentanone                  | 67.5 | mg/kg | 0.039 | 0.079 | ND           |
| Acetone                               | 67.5 | mg/kg | 0.36  | 0.40  | ND ND        |
| Benzene                               | 67.5 | mg/kg | 0.023 | 0.040 | ND           |
| Bromochloromethane                    | 67.5 | mg/kg | 0.062 | 0.079 | ND           |
| Bromodichloromethane                  | 67.5 | mg/kg | 0.027 | 0.079 | ND           |
| Bromoform                             | 67.5 | mg/kg | 0.043 | 0.079 | ND           |
| Bromomethane                          | 67.5 | mg/kg | 0.040 | 0.079 | ND           |
| Carbon disulfide                      | 67.5 | mg/kg | 0.034 | 0.079 | ND           |
| Carbon tetrachloride                  | 67.5 | mg/kg | 0.026 | 0.079 | ND           |
| Chlorobenzene                         | 67.5 | mg/kg | 0.026 | 0.079 | 1.4          |
| Chloroethane                          | 67.5 | mg/kg | 0.046 | 0.079 | ND           |
| Chloroform                            | 67.5 | mg/kg | 0.16  | 0.16  | ND           |
| Chloromethane                         | 67.5 | mg/kg | 0.041 | 0.079 | ND           |
| cis-1,2-Dichloroethene                | 67.5 | mg/kg | 0.050 | 0.079 | 0.17         |
| cis-1,3-Dichloropropene               | 67.5 | mg/kg | 0.025 | 0.079 | ND           |
| Cyclohexane                           | 67.5 | mg/kg | 0.039 | 0.079 | ND           |
| Dibromochloromethane                  | 67.5 | mg/kg | 0.019 | 0.079 | ND           |
| Dichlorodifluoromethane               | 67.5 | mg/kg | 0.049 | 0.079 | ND           |
| Ethylbenzene                          | 67.5 | mg/kg | 0.037 | 0.079 | 0.044J       |
| Isopropylbenzene                      | 67.5 | mg/kg | 0.039 | 0.079 | ND           |
| m&p-Xylenes                           | 67.5 | mg/kg | 0.067 | 0.079 | 0.16         |
| Methyl Acetate                        | 67.5 | mg/kg | 0.056 | 0.079 | ND           |
| Methylcyclohexane                     | 67.5 | mg/kg | 0.049 | 0.079 | ND           |
| Methylene chloride                    | 67.5 | mg/kg | 0.023 | 0.079 | ND           |
| Methyl-t-butyl ether                  | 67.5 | mg/kg | 0.025 | 0.040 | ND           |
|                                       |      |       |       |       |              |
| o-Xylene<br>Sturono                   | 67.5 | mg/kg | 0.054 | 0.079 | 0.067J<br>ND |
| Styrene                               | 67.5 | mg/kg | 0.043 | 0.079 |              |
| Tetrachloroethene                     | 67.5 | mg/kg | 0.028 | 0.079 | 0.028J       |
| Toluene                               | 67.5 | mg/kg | 0.026 | 0.079 | 0.39         |
| trans-1,2-Dichloroethene              | 67.5 | mg/kg | 0.025 | 0.079 | ND -         |
| trans-1,3-Dichloropropene             | 67.5 | mg/kg | 0.024 | 0.079 | ND           |
| Trichloroethene                       | 67.5 | mg/kg | 0.027 | 0.079 | 0.54         |
| Trichlorofluoromethane                | 67.5 | mg/kg | 0.024 | 0.079 | ND           |
| Vinyl chloride                        | 67.5 | mg/kg | 0.056 | 0.079 | ND           |
| Xylenes (Total)                       | 67.5 | mg/kg | 0.054 | 0.079 | 0.23         |

Collection Date: 9/30/2020

Sample ID: HSI-SB-07(4.5-5) Lab#: AD19595-003

Lab#: AD19595-003 Receipt Date: 10/2/2020 Matrix: Soil/Terracore

| Analyte                                 | DF           | Units          | RL             |                | Result   |
|-----------------------------------------|--------------|----------------|----------------|----------------|----------|
| % Solids                                | 1            | percent        |                |                | 86       |
| atile Organics (no search) 8260         |              |                |                |                |          |
| Analyte                                 | DF           | Units          | MDL            | RL             | Result   |
| 1,1,1-Trichloroethane                   | 70.8         | mg/kg          | 0.029          | 0.082          | ND ND    |
| 1,1,2,2-Tetrachloroethane               | 70.8         | mg/kg          | 0.037          | 0.082          | 0.17     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane   | 70.8         | mg/kg          | 0.060          | 0.082          | ND       |
| 1,1,2-Trichloroethane                   | 70.8         | mg/kg          | 0.026          | 0.082          | ND       |
| 1,1-Dichloroethane                      | 70.8         | mg/kg          | 0.035          | 0.082          | ND       |
| 1,1-Dichloroethene                      | 70.8         | mg/kg          | 0.044          | 0.082          | ND       |
| 1,2,3-Trichlorobenzene                  | 70.8         | mg/kg          | 0.065          | 0.082          | ND       |
| 1,2,4-Trichlorobenzene                  | 70.8         | mg/kg          | 0.060          | 0.082          | ND       |
| 1,2-Dibromo-3-chloropropane             | 70.8         | mg/kg          | 0.069          | 0.082          | ND       |
| 1,2-Dibromoethane                       | 70.8         | mg/kg          | 0.028          | 0.082          | ND       |
| 1,2-Dichlorobenzene                     | 70.8         | mg/kg          | 0.027          | 0.082          | ND       |
| 1,2-Dichloroethane                      | 70.8         | mg/kg          | 0.053          | 0.053          | 0.087    |
|                                         |              |                |                |                |          |
| 1,2-Dichloropropane 1,3-Dichlorobenzene | 70.8<br>70.8 | mg/kg<br>ma/ka | 0.025<br>0.031 | 0.082<br>0.082 | ND<br>ND |
| ·                                       |              | mg/kg          |                |                |          |
| 1,4-Dichlorobenzene                     | 70.8         | mg/kg          | 0.030          | 0.082          | ND       |
| 1,4-Dioxane                             | 70.8         | mg/kg          | 3.2            | 4.1            | ND       |
| 2-Butanone                              | 70.8         | mg/kg          | 0.062          | 0.082          | ND       |
| 2-Hexanone                              | 70.8         | mg/kg          | 0.049          | 0.082          | ND       |
| 4-Methyl-2-pentanone                    | 70.8         | mg/kg          | 0.040          | 0.082          | ND       |
| Acetone                                 | 70.8         | mg/kg          | 0.38           | 0.41           | ND       |
| Benzene                                 | 70.8         | mg/kg          | 0.024          | 0.041          | ND       |
| Bromochloromethane                      | 70.8         | mg/kg          | 0.065          | 0.082          | ND       |
| Bromodichloromethane                    | 70.8         | mg/kg          | 0.028          | 0.082          | ND       |
| Bromoform                               | 70.8         | mg/kg          | 0.045          | 0.082          | ND       |
| Bromomethane                            | 70.8         | mg/kg          | 0.041          | 0.082          | ND       |
| Carbon disulfide                        | 70.8         | mg/kg          | 0.035          | 0.082          | ND       |
| Carbon tetrachloride                    | 70.8         | mg/kg          | 0.027          | 0.082          | ND       |
| Chlorobenzene                           | 70.8         | mg/kg          | 0.027          | 0.082          | ND       |
| Chloroethane                            | 70.8         | mg/kg          | 0.048          | 0.082          | ND       |
| Chloroform                              | 70.8         | mg/kg          | 0.16           | 0.16           | ND       |
| Chloromethane                           | 70.8         | mg/kg          | 0.042          | 0.082          | ND       |
| cis-1,2-Dichloroethene                  | 70.8         | mg/kg          | 0.052          | 0.082          | ND       |
| cis-1,3-Dichloropropene                 | 70.8         | mg/kg          | 0.026          | 0.082          | ND       |
| Cyclohexane                             | 70.8         | mg/kg          | 0.040          | 0.082          | ND       |
| Dibromochloromethane                    | 70.8         | mg/kg          | 0.020          | 0.082          | ND       |
| Dichlorodifluoromethane                 | 70.8         | mg/kg          | 0.051          | 0.082          | ND       |
| Ethylbenzene                            | 70.8         | mg/kg          | 0.038          | 0.082          | ND       |
| Isopropylbenzene                        | 70.8         | mg/kg          | 0.041          | 0.082          | ND       |
| m&p-Xylenes                             | 70.8         | mg/kg          | 0.070          | 0.082          | ND       |
| Methyl Acetate                          | 70.8         | mg/kg          | 0.058          | 0.082          | ND       |
| Methylcyclohexane                       | 70.8         | mg/kg          | 0.051          | 0.082          | ND       |
| Methylene chloride                      | 70.8         | mg/kg          | 0.024          | 0.082          | ND       |
| Methyl-t-butyl ether                    | 70.8         | mg/kg          | 0.026          | 0.041          | ND       |
| o-Xylene                                | 70.8         | mg/kg          | 0.056          | 0.082          | ND       |
| Styrene                                 | 70.8         | mg/kg          | 0.045          | 0.082          | ND -     |
| Tetrachloroethene                       | 70.8         | mg/kg          | 0.049          | 0.082          | ND       |
| Toluene                                 | 70.8<br>70.8 |                | 0.029          | 0.082          | ND       |
|                                         | 70.8         | mg/kg<br>mg/kg | 0.027          |                | ND       |
| trans-1,2-Dichloroethene                |              | mg/kg          |                | 0.082          |          |
| trans-1,3-Dichloropropene               | 70.8         | mg/kg          | 0.025          | 0.082          | ND       |
| Trichloroethene                         | 70.8         | mg/kg          | 0.028          | 0.082          | 0.11     |
| Trichlorofluoromethane                  | 70.8         | mg/kg          | 0.025          | 0.082          | ND       |
| Vinyl chloride                          | 70.8         | mg/kg          | 0.058          | 0.082          | ND       |

Sample ID: HSI-SB-08(3.5-4) Lab#: AD19595-004

Matrix: Soil/Terracore

Collection Date: 10/1/2020 Receipt Date: 10/2/2020

| Analyte                                  | DF       | Units                 | RL                    |                 | Result      |
|------------------------------------------|----------|-----------------------|-----------------------|-----------------|-------------|
| % Solids                                 | 1        | percent               |                       |                 | 87          |
| Mercury (Soil/Waste) 7471B               |          |                       |                       |                 |             |
| Analyte                                  | DF       | Units                 | MDL                   | RL              | Result      |
| Mercury                                  | 1        | mg/kg                 | 0.015                 | 0.096           | ND          |
| Semivolatile Organics (no search) 8270   |          |                       |                       |                 |             |
| Analyte                                  | DF       | Units                 | MDL                   | RL              | Result      |
|                                          |          |                       |                       | *****           |             |
| 1,1'-Biphenyl 1,2,4,5-Tetrachiorobenzene | 1        | <b>mg/kg</b><br>mg/kg | <b>0.011</b><br>0.013 | 0.038<br>0.038  | 0.10<br>ND  |
| 1,4-Dioxane                              | 1        | mg/kg                 | 0.019                 | 0.0096          | ND          |
| 2,3,4,6-Tetrachlorophenol                | 1        | mg/kg                 | 0.014                 | 0.038           | ND          |
| 2,4,5-Trichlorophenol                    | 1        | mg/kg                 | 0.011                 | 0.038           | ND          |
| 2,4,6-Trichlorophenol                    | 1        | mg/kg                 | 0.030                 | 0.038           | ND          |
| 2,4-Dichlorophenol                       | 1        | mg/kg                 | 0.014                 | 0.0096          | ND          |
| 2,4-Dimethylphenol                       | 1        | mg/kg                 | 0.019                 | 0.0096          | ND          |
| 2,4-Dinitrophenol                        | 1        | mg/kg                 | 0.17                  | 0.19            | ND          |
| 2,4-Dinitrotoluene                       | 1        | mg/kg                 | 0.012                 | 0.038           | ND          |
| 2,6-Dinitrotoluene                       | 1        | mg/kg                 | 0.020                 | 0.038           | ND          |
| 2-Chloronaphthalene                      | 1        | mg/kg                 | 0.017                 | 0.038           | ND          |
| 2-Chlorophenol                           | 1        | mg/kg                 | 0.013                 | 0.038           | ND          |
| 2-Methylnaphthalene                      | 1        | mg/kg                 | 0.012                 | 0.038           | 0.12        |
| 2-Methylphenol                           | 1        | mg/kg                 | 0.011                 | 0.0096          | ND          |
| 2-Nitroaniline                           |          | mg/kg                 | 0.018                 | 0.038           | ND          |
| 2-Nitrophenol                            | 1<br>1   | mg/kg                 | 0.017                 | 0.038           | ND<br>0.034 |
| 3&4-Methylphenol 3,3'-Dichlorobenzidine  | 1        | mg/kg                 | <b>0.011</b><br>0.031 | 0.0096<br>0.038 | 0.021<br>ND |
| 3-Nitroaniline                           | 1        | mg/kg<br>mg/kg        | 0.031                 | 0.038           | ND<br>ND    |
| 4,6-Dinitro-2-methylphenol               | <u>'</u> | mg/kg                 | 0.13                  | 0.19            | ND ND       |
| 4-Bromophenyl-phenylether                | 1        | mg/kg                 | 0.011                 | 0.038           | ND          |
| 4-Chloro-3-methylphenol                  | 1        | mg/kg                 | 0.0092                | 0.038           | ND          |
| 4-Chtoroaniline                          | 1        | mg/kg                 | 0.017                 | 0.0096          | ND          |
| 4-Chlorophenyl-phenylether               | 1        | mg/kg                 | 0.012                 | 0.038           | ND          |
| 4-Nitroaniline                           | 1        | mg/kg                 | 0.015                 | 0.038           | ND          |
| 4-Nitrophenol                            | 1        | mg/kg                 | 0.029                 | 0.038           | ND          |
| Acenaphthene                             | 1        | mg/kg                 | 0.011                 | 0.038           | ND          |
| Acenaphthylene                           | 1        | mg/kg                 | 0.011                 | 0.038           | ND          |
| Acetophenone                             | 1        | mg/kg                 | 0.014                 | 0.038           | ND          |
| Anthracene                               | 1        | mg/kg                 | 0.011                 | 0.038           | ND          |
| Atrazine                                 | 1        | mg/kg                 | 0.015                 | 0.038           | ND          |
| Benzaldehyde                             | 1        | mg/kg                 | 0.42                  | 0.038           | ND          |
| Benzo[a]anthracene                       | 1        | mg/kg                 | 0.013                 | 0.038           | ND          |
| Benzo(a)pyrene                           | 1        | mg/kg                 | 0.013                 | 0.038           | ND          |
| Benzo(b)fluoranthene                     | 1        | mg/kg                 | 0.014                 | 0.038           | ND .        |
| Benzo[g,h,i]perylene                     | 1        | mg/kg                 | 0.00026               | 0.038           | ND          |
| Benzo[k]fluoranthene                     | 1        | mg/kg                 | 0.014                 | 0.038           | ND          |
| bis(2-Chloroethoxy)methane               | 1        | mg/kg                 | 0.011                 | 0.038           | ND          |
| bis(2-Chloroethyl)ether                  | 1        | mg/kg                 | 0.0093                | 0.038           | ND NO       |
| bis(2-Chloroisopropyl)ether              | 1        | mg/kg                 | 0.015                 | 0.038           | ND<br>0.30  |
| bis(2-Ethylhexyl)phthalate               | 1        | mg/kg                 | 0.034                 | 0.038           | 0.38<br>ND  |
| Butylbenzylphthalate                     | 1        | mg/kg<br>ma/ka        | 0.029                 | 0.038           | ND<br>ND    |
| Caprolactam Carbazole                    |          | mg/kg                 | 0.031                 | 0.038           |             |
| Chrysene                                 | 1        | mg/kg<br>mg/kg        | 0.012<br>0.013        | 0.038           | ND<br>ND    |
| Dibenzo[a,h]anthracene                   | 1        | mg/kg<br>mg/kg        | 0.013                 | 0.038           | ND<br>ND    |
| Dibenzofuran                             | 1        | mg/kg                 | 0.0097                | 0.0096          | ND          |
| Diethylphthalate                         | ;        | mg/kg                 | 0.025                 | 0.0090          | ND          |
| Dimethylphthalate                        | 1        | mg/kg                 | 0.011                 | 0.038           | ND          |
| Di-n-butylphthalate                      | 1        | mg/kg                 | 0.044                 | 0.0096          | 0.064       |
| Di-n-octylphthalate                      | 1        | mg/kg                 | 0.025                 | 0.038           | ND          |
| Fluoranthene                             | 1        | mg/kg                 | 0.015                 | 0.038           | ND ND       |
| Fluorene                                 | 1        | mg/kg                 | 0.010                 | 0.038           | ND          |
| Hexachlorobenzene                        | 1        | mg/kg                 | 0.016                 | 0.038           | ND          |
| Hexachlorobutadiene                      | 1        | mg/kg                 | 0.017                 | 0.038           | ND          |
| Hexachlorocyclopentadiene                | 1        | mg/kg                 | 0.12                  | 0.038           | ND          |
| Hexachloroethane                         | 1        | mg/kg                 | 0.017                 | 0.038           | ND          |

NOTE: Soil Results are reported to Dry Weigh

Project #: 0100230

|             | HSI-SB-08(3.5-4)<br>AD19595-004                                                                                                                                                                 |                                                              |                                                                         |                                                                                                       | Collection Date: Receipt Date:                                                               | – . – .                                  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------|
| latrix:     | Soil/Terracore                                                                                                                                                                                  |                                                              |                                                                         |                                                                                                       | •                                                                                            | V 0.1—10—10                              |
|             | Indeno[1,2,3-cd]pyrene                                                                                                                                                                          | 1                                                            | mg/kg                                                                   | 0.017                                                                                                 | 0.038                                                                                        | ND                                       |
|             | Isophorone                                                                                                                                                                                      | 1                                                            | mg/kg                                                                   | 0.012                                                                                                 | 0.038                                                                                        | ND                                       |
|             | Naphthalene                                                                                                                                                                                     | 1                                                            | mg/kg                                                                   | 0.011                                                                                                 | 0.0096                                                                                       | 0.10                                     |
|             | Nitrobenzene                                                                                                                                                                                    | 1                                                            | mg/kg                                                                   | 0.0016                                                                                                | 0.038                                                                                        | ND                                       |
|             | N-Nitroso-di-n-propylamine                                                                                                                                                                      | 1                                                            | mg/kg                                                                   | 0.014                                                                                                 | 0.0096                                                                                       | ND                                       |
|             | N-Nitrosodiphenylamine                                                                                                                                                                          | 1                                                            | mg/kg                                                                   | 0.13                                                                                                  | 0.038                                                                                        | ND                                       |
|             | Pentachlorophenol                                                                                                                                                                               | 1                                                            | mg/kg                                                                   | 0.18                                                                                                  | 0.19                                                                                         | ND                                       |
|             | Phenanthrene                                                                                                                                                                                    | 1                                                            | mg/kg                                                                   | 0.012                                                                                                 | 0.038                                                                                        | 0.019J                                   |
| • • •       | Phenol                                                                                                                                                                                          | 1                                                            | mg/kg                                                                   | 0.011                                                                                                 | 0.038                                                                                        | ND                                       |
|             | Pyrene                                                                                                                                                                                          | 1                                                            | mg/kg                                                                   | 0.013                                                                                                 | 0.038                                                                                        | ND                                       |
| •           | TAL Metals 6010D                                                                                                                                                                                |                                                              |                                                                         |                                                                                                       |                                                                                              |                                          |
| -           | Analyte                                                                                                                                                                                         | DF                                                           | Units                                                                   | MDL                                                                                                   | RL                                                                                           | Result                                   |
|             | Aluminum                                                                                                                                                                                        | 1                                                            | mg/kg                                                                   | 19                                                                                                    | 230                                                                                          | 4000                                     |
|             | Barlum                                                                                                                                                                                          | 1                                                            | mg/kg                                                                   | 0.78                                                                                                  | 11                                                                                           | 20                                       |
|             | Calcium                                                                                                                                                                                         | 1                                                            | mg/kg                                                                   | 120                                                                                                   | 1100                                                                                         | ND                                       |
|             | Chromium                                                                                                                                                                                        | 1                                                            | mg/kg                                                                   | 0.77                                                                                                  | 5.7                                                                                          | 19                                       |
|             | Cobalt                                                                                                                                                                                          | 1                                                            | mg/kg                                                                   | 0.82                                                                                                  | 2.9                                                                                          | ND                                       |
|             | Copper                                                                                                                                                                                          | 1                                                            | mg/kg                                                                   | 0.71                                                                                                  | 5.7                                                                                          | 10                                       |
|             | Iron                                                                                                                                                                                            | 1                                                            | mg/kg                                                                   | 15                                                                                                    | 230                                                                                          | 8200                                     |
|             | Lead                                                                                                                                                                                            | 1                                                            | mg/kg                                                                   | 0.71                                                                                                  | 5.7                                                                                          | 7.1                                      |
|             | Magnesium                                                                                                                                                                                       | 1                                                            | mg/kg                                                                   | 22                                                                                                    | 570                                                                                          | 390JB                                    |
|             | Manganese                                                                                                                                                                                       | 1                                                            | mg/kg                                                                   | 0.74                                                                                                  | 11                                                                                           | 16                                       |
|             | Nickel                                                                                                                                                                                          | 1                                                            | mg/kg                                                                   | 1.3                                                                                                   | 5.7                                                                                          | 3.3J                                     |
|             | Potassium                                                                                                                                                                                       | 1                                                            | mg/kg                                                                   | 110                                                                                                   | 570                                                                                          | 150J                                     |
|             | Sodium                                                                                                                                                                                          | 1                                                            | mg/kg                                                                   | 140                                                                                                   | 290                                                                                          | ND                                       |
|             | Zinc                                                                                                                                                                                            | 1                                                            | mg/kg                                                                   | 1.7                                                                                                   | 11                                                                                           | 7.7J                                     |
| •           | TAL Metals 6020B                                                                                                                                                                                |                                                              |                                                                         |                                                                                                       |                                                                                              |                                          |
| •           | Analyte                                                                                                                                                                                         | DF                                                           | Units                                                                   | MDL                                                                                                   | RL                                                                                           | Result                                   |
|             | Antimony                                                                                                                                                                                        | 1                                                            | mg/kg                                                                   | 0.026                                                                                                 | 0.92                                                                                         | ND                                       |
|             | Arsenic                                                                                                                                                                                         | 1                                                            | mg/kg                                                                   | 0.020                                                                                                 | 0.23                                                                                         | 3.7                                      |
|             | Beryllium                                                                                                                                                                                       | ì                                                            | mg/kg                                                                   | 0.018                                                                                                 | 0.23                                                                                         | 0.18J                                    |
|             | Cadmium                                                                                                                                                                                         | 1                                                            | mg/kg                                                                   | 0.016                                                                                                 | 0.46                                                                                         | 0.21J                                    |
| 40.00       | Selenium                                                                                                                                                                                        | 1                                                            | mg/kg                                                                   | 0.073                                                                                                 | 2.3                                                                                          | 2.6                                      |
|             | Silver                                                                                                                                                                                          | 1                                                            | mg/kg                                                                   | 0.030                                                                                                 | 0.23                                                                                         | 0.045JB                                  |
|             | Thallium                                                                                                                                                                                        | 1                                                            | mg/kg                                                                   | 0.020                                                                                                 | 0.46                                                                                         | 0.021J                                   |
|             | Vanadium                                                                                                                                                                                        | 1                                                            | mg/kg                                                                   | 0.012                                                                                                 | 0.23                                                                                         | 20B                                      |
| ,           | Volatile Organics (no search) 8260                                                                                                                                                              |                                                              |                                                                         |                                                                                                       |                                                                                              |                                          |
| •           | Analyte                                                                                                                                                                                         | DF                                                           | Units                                                                   | MDL                                                                                                   | RL                                                                                           | Result                                   |
|             | 1,1,1-Trichloroethane                                                                                                                                                                           | 64.7                                                         | mg/kg                                                                   | 0.027                                                                                                 | 0.074                                                                                        | ND                                       |
|             | 1,1,2,2-Tetrachloroethane                                                                                                                                                                       | 64.7                                                         | mg/kg                                                                   | 0.033                                                                                                 | 0.074                                                                                        | ND                                       |
|             | 1,1,2-Trichloro-1,2,2-trifluoroethane                                                                                                                                                           | 64.7                                                         | mg/kg                                                                   | 0.054                                                                                                 | 0.074                                                                                        | ND                                       |
|             | 1,1,2-Trichloroethane                                                                                                                                                                           | 64.7                                                         | mg/kg                                                                   | 0.024                                                                                                 | 0.074                                                                                        | ND                                       |
| -           | 1,1-Dichloroethane                                                                                                                                                                              | 64.7                                                         | mg/kg                                                                   | 0.032                                                                                                 | 0.074                                                                                        | ND                                       |
|             | 1,1-Dichloroethene                                                                                                                                                                              | 64.7                                                         | mg/kg                                                                   | 0.040                                                                                                 | 0.074                                                                                        | ND                                       |
|             | 1,2,3-Trichlorobenzene                                                                                                                                                                          | 64.7                                                         | mg/kg                                                                   | 0.058                                                                                                 | 0.074                                                                                        | ND                                       |
|             | 1,2,4-Trichtorobenzene                                                                                                                                                                          | 64.7                                                         | mg/kg                                                                   | 0.054                                                                                                 | 0.074                                                                                        | ND                                       |
|             | 1,2-Dibromo-3-chloropropane                                                                                                                                                                     | 64.7                                                         | mg/kg                                                                   | 0.062                                                                                                 | 0.074                                                                                        | ND                                       |
|             | 1,2-Dibromoethane                                                                                                                                                                               | 64.7                                                         | mg/kg                                                                   | 0.025                                                                                                 | 0.074                                                                                        | ND                                       |
|             | 4.0.01-64                                                                                                                                                                                       | 64.7                                                         | mg/kg                                                                   | 0.024                                                                                                 | 0.074                                                                                        | 0.029J                                   |
|             | 1,2-Dichlorobenzene                                                                                                                                                                             |                                                              |                                                                         | 0.047                                                                                                 | 0.047                                                                                        | ND                                       |
|             | 1,2-Dichlorobenzene 1,2-Dichloroethane                                                                                                                                                          | 64.7                                                         | mg/kg                                                                   |                                                                                                       |                                                                                              | ND                                       |
| <del></del> |                                                                                                                                                                                                 |                                                              | mg/kg<br>mg/kg                                                          | 0.022                                                                                                 | 0.074                                                                                        |                                          |
| _           | 1,2-Dichloroethane                                                                                                                                                                              | 64.7                                                         |                                                                         |                                                                                                       | 0.074<br>0.074                                                                               | ND                                       |
|             | 1,2-Dichloroethane 1,2-Dichloropropane                                                                                                                                                          | 64.7<br>64.7                                                 | mg/kg                                                                   | 0.022                                                                                                 |                                                                                              |                                          |
|             | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene                                                                                                                                      | 64.7<br>64.7<br>64.7                                         | mg/kg<br>mg/kg                                                          | 0.022<br>0.028                                                                                        | 0.074                                                                                        | ND                                       |
|             | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene                                                                                                                  | 64.7<br>64.7<br>64.7<br>64.7                                 | mg/kg<br>mg/kg<br>mg/kg                                                 | 0.022<br>0.028<br>0.027                                                                               | 0.074<br>0.074                                                                               | ND<br>ND                                 |
|             | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane                                                                                                      | 64.7<br>64.7<br>64.7<br>64.7<br>64.7                         | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                        | 0.022<br>0.028<br>0.027<br>2.9                                                                        | 0.074<br>0.074<br>3.7                                                                        | ND<br>ND<br>ND                           |
|             | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone                                                                                           | 64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7                 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                               | 0.022<br>0.028<br>0.027<br>2.9<br>0.056                                                               | 0.074<br>0.074<br>3.7<br>0.074                                                               | ND<br>ND<br>ND                           |
|             | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone                                                                                | 64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7         | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                               | 0.022<br>0.028<br>0.027<br>2.9<br>0.056<br>0.045                                                      | 0.074<br>0.074<br>3.7<br>0.074<br>0.074                                                      | ND<br>ND<br>ND<br>ND                     |
|             | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone                                                           | 64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                      | 0.022<br>0.028<br>0.027<br>2.9<br>0.056<br>0.045<br>0.036                                             | 0.074<br>0.074<br>3.7<br>0.074<br>0.074                                                      | ND<br>ND<br>ND<br>ND<br>ND               |
|             | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone                                                   | 64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg             | 0.022<br>0.028<br>0.027<br>2.9<br>0.056<br>0.045<br>0.036                                             | 0.074<br>0.074<br>3.7<br>0.074<br>0.074<br>0.074<br>0.37                                     | ND<br>ND<br>ND<br>ND<br>ND<br>ND         |
|             | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene                                           | 64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg    | 0.022<br>0.028<br>0.027<br>2.9<br>0.056<br>0.045<br>0.036<br>0.34                                     | 0.074<br>0.074<br>3.7<br>0.074<br>0.074<br>0.074<br>0.37                                     | ND ND ND ND ND ND ND ND ND ND            |
| -           | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane                        | 64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7 | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg             | 0.022<br>0.028<br>0.027<br>2.9<br>0.056<br>0.045<br>0.036<br>0.34<br>0.022                            | 0.074<br>0.074<br>3.7<br>0.074<br>0.074<br>0.074<br>0.37<br>0.037<br>0.037                   | ND ND ND ND ND ND ND ND ND ND ND ND ND   |
| _           | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane   | 64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7 | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg       | 0.022<br>0.028<br>0.027<br>2.9<br>0.056<br>0.045<br>0.036<br>0.34<br>0.022<br>0.058                   | 0.074<br>0.074<br>3.7<br>0.074<br>0.074<br>0.074<br>0.37<br>0.037<br>0.037<br>0.074          | ND ND ND ND ND ND ND ND ND ND ND ND ND N |
|             | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromoform              | 64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7 | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg | 0.022<br>0.028<br>0.027<br>2.9<br>0.056<br>0.045<br>0.036<br>0.34<br>0.022<br>0.058<br>0.026<br>0.040 | 0.074<br>0.074<br>3.7<br>0.074<br>0.074<br>0.074<br>0.37<br>0.037<br>0.037<br>0.074<br>0.074 | ND ND ND ND ND ND ND ND ND ND ND ND ND N |
|             | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromoform Bromomethane | 64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7<br>64.7 | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg | 0.022<br>0.028<br>0.027<br>2.9<br>0.056<br>0.045<br>0.036<br>0.34<br>0.022<br>0.058<br>0.026<br>0.040 | 0.074<br>0.074<br>3.7<br>0.074<br>0.074<br>0.074<br>0.37<br>0.037<br>0.074<br>0.074<br>0.074 | ND ND ND ND ND ND ND ND ND ND ND ND ND N |

| Lab#: | HSI-SB-08(3.5-4)<br>AD19595-004<br>Soil/Terracore |      |       |       | Collection Date:<br>Receipt Date: |        |
|-------|---------------------------------------------------|------|-------|-------|-----------------------------------|--------|
|       | Chloroethane                                      | 64.7 | mg/kg | 0.043 | 0.074                             | ND     |
|       | Chloroform                                        | 64.7 | mg/kg | 0.15  | 0.15                              | ND     |
|       | Chloromethane                                     | 64.7 | mg/kg | 0.038 | 0.074                             | ND     |
|       | cis-1,2-Dichloroethene                            | 64.7 | mg/kg | 0.047 | 0.074                             | ND     |
|       | cis-1,3-Dichloropropene                           | 64.7 | mg/kg | 0.024 | 0.074                             | ND     |
|       | Cyclohexane                                       | 64.7 | mg/kg | 0.036 | 0.074                             | ND     |
|       | Dibromochloromethane                              | 64.7 | mg/kg | 0.018 | 0.074                             | ND     |
|       | Dichlorodifluoromethane                           | 64.7 | mg/kg | 0.046 | 0.074                             | ND     |
|       | Ethylbenzene                                      | 64.7 | mg/kg | 0.035 | 0.074                             | 0.11   |
|       | Isopropyibenzene                                  | 64.7 | mg/kg | 0.037 | 0.074                             | ND     |
|       | m&p-Xylenes                                       | 64.7 | mg/kg | 0.063 | 0.074                             | 0.47   |
|       | Methyl Acetate                                    | 64.7 | mg/kg | 0.052 | 0.074                             | ND     |
|       | Methylcyclohexane                                 | 64.7 | mg/kg | 0.046 | 0.074                             | ND     |
|       | Methylene chloride                                | 64.7 | mg/kg | 0.022 | 0.074                             | ND     |
|       | Methyl-t-butyl ether                              | 64.7 | mg/kg | 0.023 | 0.037                             | ND     |
|       | o-Xylene                                          | 64.7 | mg/kg | 0.051 | 0.074                             | 0.14   |
| -     | Styrene                                           | 64.7 | mg/kg | 0.040 | 0.074                             | ND     |
|       | Tetrachloroethene                                 | 64.7 | mg/kg | 0.027 | 0.074                             | ND     |
|       | Toluene                                           | 64.7 | mg/kg | 0.024 | 0.074                             | 0.49   |
|       | trans-1,2-Dichloroethene                          | 64.7 | mg/kg | 0.023 | 0.074                             | ND     |
| ***** | trans-1,3-Dichloropropene                         | 64.7 | mg/kg | 0.023 | 0.074                             | ND     |
|       | Trichloroethene                                   | 64.7 | mg/kg | 0.026 | 0.074                             | 0.030J |
|       | Trichlorofluoromethane                            | 64.7 | mg/kg | 0.023 | 0.074                             | ND     |
|       | Vinyl chloride                                    | 64.7 | mg/kg | 0.053 | 0.074                             | ND     |
|       | Xylenes (Total)                                   | 64.7 | mg/kg | 0.051 | 0.074                             | 0.61   |

Sample ID: HSI-SB-08(8-8.5) Lab#: AD19595-005

Matrix: Soil/Terracore

Collection Date: 10/1/2020

Receipt Date: 10/2/2020

| Analyte                               | DF   | Units   | RL    |       | Result |
|---------------------------------------|------|---------|-------|-------|--------|
| % Solids                              | 1    | percent |       | ,     | 82     |
| atile Organics (no search) 8260       |      |         |       |       |        |
| Analyte                               | DF   | Units   | MDL   | RL    | Result |
| 1,1,1-Trichloroethane                 | 66.2 | mg/kg   | 0.029 | 0.081 | ND     |
| 1,1,2,2-Tetrachloroethane             | 66.2 | mg/kg   | 0.036 | 0.081 | ND     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 66.2 | mg/kg   | 0.059 | 0.081 | ND     |
| 1,1,2-Trichloroethane                 | 66.2 | mg/kg   | 0.026 | 0.081 | ND     |
| 1,1-Dichloroethane                    | 66.2 | mg/kg   | 0.035 | 0.081 | ND     |
| 1,1-Dichloroethene                    | 66.2 | mg/kg   | 0.043 | 0.081 | ND     |
| 1,2,3-Trichlorobenzene                | 66.2 | mg/kg   | 0.064 | 0.081 | ND     |
| 1,2,4-Trichlorobenzene                | 66.2 | mg/kg   | 0.059 | 0.081 | ND     |
| 1,2-Dibromo-3-chloropropane           | 66.2 | mg/kg   | 0.067 | 0.081 | ND     |
| 1,2-Dibromoethane                     | 66.2 | mg/kg   | 0.028 | 0.081 | ND     |
| 1,2-Dichlorobenzene                   | 66.2 | mg/kg   | 0.026 | 0.081 | ND     |
| 1,2-Dichloroethane                    | 66.2 | mg/kg   | 0.052 | 0.052 | ND     |
| 1,2-Dichloropropane                   | 66.2 | mg/kg   | 0.024 | 0.081 | ND     |
| 1,3-Dichlorobenzene                   | 66.2 | mg/kg   | 0.030 | 0.081 | ND     |
| 1,4-Dichlorobenzene                   | 66.2 | mg/kg   | 0.030 | 0.081 | ND     |
| 1,4-Dioxane                           | 66.2 | mg/kg   | 3.2   | 4.0   | ND     |
| 2-Butanone                            | 66.2 | mg/kg   | 0.060 | 0.081 | ND     |
| 2-Hexanone                            | 66.2 | mg/kg   | 0.048 | 0.081 | ND     |
| 4-Methyl-2-pentanone                  | 66.2 | mg/kg   | 0.039 | 0.081 | ND     |
| Acetone                               | 66.2 | mg/kg   | 0.37  | 0.40  | ND     |
| Benzene                               | 66.2 | mg/kg   | 0.024 | 0.040 | 0.040J |
| Bromochloromethane                    | 66.2 | mg/kg   | 0.063 | 0.081 | ND     |
| Bromodichloromethane                  | 66.2 | mg/kg   | 0.028 | 0.081 | ND     |
| Bromoform                             | 66.2 | mg/kg   | 0.044 | 0.081 | ND     |
| Bromomethane                          | 66.2 | mg/kg   | 0.041 | 0.081 | ND     |
| Carbon disulfide                      | 66.2 | mg/kg   | 0.034 | 0.081 | ND     |
| Carbon tetrachloride                  | 66.2 | mg/kg   | 0.026 | 0.081 | ND     |
| Chlorobenzene                         | 66.2 | mg/kg   | 0.027 | 0.081 | 1.0    |
| Chloroethane                          | 66.2 | mg/kg   | 0.047 | 0.081 | ND     |
| Chloroform                            | 66.2 | mg/kg   | 0.16  | 0.16  | ND     |
| Chloromethane                         | 66.2 | mg/kg   | 0.042 | 0.081 | ND     |
| cis-1,2-Dichloroethene                | 66.2 | mg/kg   | 0.051 | 0.081 | ND     |
| cis-1,3-Dichloropropene               | 66.2 | mg/kg   | 0.026 | 0.081 | ND     |
| Cyclohexane                           | 66.2 | mg/kg   | 0.039 | 0.081 | ND     |
| Dibromochloromethane                  | 66.2 | mg/kg   | 0.019 | 0.081 | ND     |
| Dichlorodifluoromethane               | 66.2 | mg/kg   | 0.050 | 0.081 | ND     |
| Ethylbenzene                          | 66.2 | mg/kg   | 0.038 | 0.081 | 0.15   |
| Isopropylbenzene                      | 66.2 | mg/kg   | 0.040 | 0.081 | ND     |
| m&p-Xylenes                           | 66.2 | mg/kg   | 0.069 | 0.081 | 0.56   |
| Methyl Acetate                        | 66.2 | mg/kg   | 0.057 | 0.081 | ND     |
| Methylcyclohexane                     | 66.2 | mg/kg   | 0.050 | 0.081 | ND     |
| Methylene chloride                    | 66.2 | mg/kg   | 0.024 | 0.081 | ND     |
| Methyl-t-butyl ether                  | 66.2 | mg/kg   | 0.025 | 0.040 | ND     |
| o-Xylene                              | 66.2 | mg/kg   | 0.055 | 0.081 | 0.18   |
| Styrene                               | 66.2 | mg/kg   | 0.044 | 0.081 | ND     |
| Tetrachloroethene                     | 66.2 | mg/kg   | 0.029 | 0.081 | ND     |
| Toluene                               | 66.2 | mg/kg   | 0.026 | 0.081 | 0.053J |
| trans-1,2-Dichloroethene              | 66.2 | mg/kg   | 0.025 | 0.081 | ND     |
| trans-1,3-Dichloropropene             | 66.2 | mg/kg   | 0.025 | 0.081 | ND     |
| Trichloroethene                       | 66.2 | mg/kg   | 0.028 | 0.081 | ND     |
| Trichlorofluoromethane                | 66.2 | mg/kg   | 0.025 | 0.081 | ND     |
| Vinyl chloride                        | 66.2 | mg/kg   | 0.057 | 0.081 | ND     |
| Xylenes (Total)                       | 66.2 | mg/kg   | 0.055 | 0.081 | 0.74   |

Sample ID: HSI-SB-08(12-13) Lab#: AD19595-006 Matrix: Soil/Terracore Collection Date: 10/1/2020 Receipt Date: 10/2/2020

| Analyte  | DF | Units   | RL | Result |
|----------|----|---------|----|--------|
| % Solids | 1  | percent |    | 76     |

| Analyte                               | DF   | Units | MDL   | RL    | Result |
|---------------------------------------|------|-------|-------|-------|--------|
| 1,1,1-Trichloroethane                 | 69.4 | mg/kg | 0.033 | 0.091 | ND     |
| 1,1,2,2-Tetrachloroethane             | 69.4 | mg/kg | 0.041 | 0.091 | ND     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 69.4 | mg/kg | 0.066 | 0.091 | ND     |
| 1,1,2-Trichloroethane                 | 69.4 | mg/kg | 0.029 | 0.091 | ND     |
| 1,1-Dichloroethane                    | 69.4 | mg/kg | 0.039 | 0.091 | ND     |
| 1,1-Dichloroethene                    | 69.4 | mg/kg | 0.049 | 0.091 | ND     |
| 1,2,3-Trichlorobenzene                | 69.4 | mg/kg | 0.072 | 0.091 | ND     |
| 1,2,4-Trichlorobenzene                | 69.4 | mg/kg | 0.067 | 0.091 | ND     |
| ,2-Dibromo-3-chloropropane            | 69.4 | mg/kg | 0.076 | 0.091 | ND     |
| 1,2-Dibromoethane                     | 69.4 | mg/kg | 0.031 | 0.091 | ND     |
| 1,2-Dichlorobenzene                   | 69.4 | mg/kg | 0.030 | 0.091 | ND     |
| ,2-Dichloroethane                     | 69.4 | mg/kg | 0.058 | 0.058 | ND     |
| I,2-Dichloropropane                   | 69.4 | mg/kg | 0.027 | 0.091 | ND     |
| 1,3-Dichlorobenzene                   | 69.4 | mg/kg | 0.034 | 0.091 | ND     |
| 1,4-Dichlorobenzene                   | 69.4 | mg/kg | 0.033 | 0.091 | ND     |
| ,4-Dioxane                            | 69.4 | mg/kg | 3.6   | 4.6   | ND     |
| 2-Butanone                            | 69.4 | mg/kg | 0.068 | 0.091 | ND     |
| 2-Hexanone                            | 69.4 | mg/kg | 0.055 | 0.091 | ND     |
| I-Methyl-2-pentanone                  | 69.4 | mg/kg | 0.044 | 0.091 | ND     |
| Acetone                               | 69.4 | mg/kg | 0.42  | 0.46  | ND     |
| Benzene                               | 69.4 | mg/kg | 0.027 | 0.046 | 0.13   |
| Bromochloromethane                    | 69.4 | mg/kg | 0.072 | 0.091 | ND     |
| Bromodichloromethane                  | 69.4 | mg/kg | 0.032 | 0.091 | ND     |
| Bromoform                             | 69.4 | mg/kg | 0.049 | 0.091 | ND     |
| Bromomethane                          | 69.4 | mg/kg | 0.046 | 0.091 | ND     |
| Carbon disulfide                      | 69.4 | mg/kg | 0.039 | 0.091 | ND     |
| Carbon tetrachloride                  | 69.4 | mg/kg | 0.029 | 0.091 | ND     |
| Chlorobenzene                         | 69.4 | mg/kg | 0.030 | 0.091 | 3.7    |
| Chloroethane                          | 69.4 | mg/kg | 0.053 | 0.091 | ND     |
| Chloroform                            | 69.4 | mg/kg | 0.18  | 0.18  | ND     |
| Chloromethane                         | 69.4 | mg/kg | 0.047 | 0.091 | ND     |
| cis-1,2-Dichloroethene                | 69.4 | mg/kg | 0.058 | 0.091 | ND     |
| cis-1,3-Dichloropropene               | 69.4 | mg/kg | 0.029 | 0.091 | ND     |
| Cyclohexane                           | 69.4 | mg/kg | 0.044 | 0.091 | ND     |
| Dibromochloromethane                  | 69.4 | mg/kg | 0.022 | 0.091 | ND     |
| Dichlorodifluoromethane               | 69.4 | mg/kg | 0.057 | 0.091 | ND     |
| Ethylbenzene                          | 69.4 | mg/kg | 0.043 | 0.091 | 0.065J |
| sopropylbenzene                       | 69.4 | mg/kg | 0.045 | 0.091 | ND     |
| n&p-Xylenes                           | 69.4 | mg/kg | 0.078 | 0.091 | 0.27   |
| Methyl Acetate                        | 69.4 | mg/kg | 0.064 | 0.091 | ND     |
| Methylcyclohexane                     | 69.4 | mg/kg | 0.056 | 0.091 | ND     |
| Methylene chloride                    | 69.4 | mg/kg | 0.027 | 0.091 | ND     |
| Methyl-t-butyl ether                  | 69.4 | mg/kg | 0.029 | 0.046 | ND     |
| o-Xylene                              | 69.4 | mg/kg | 0.062 | 0.091 | 0.068J |
| Styrene                               | 69.4 | mg/kg | 0.050 | 0.091 | ND     |
| Tetrachloroethene                     | 69.4 | mg/kg | 0.033 | 0.091 | ND     |
| Toluene                               | 69.4 | mg/kg | 0.030 | 0.091 | 1.1    |
| rans-1,2-Dichloroethene               | 69.4 | mg/kg | 0.028 | 0.091 | ND     |
| rans-1,3-Dichloropropene              | 69.4 | mg/kg | 0.028 | 0.091 | ND     |
| Trichloroethene                       | 69.4 | mg/kg | 0.032 | 0.091 | ND     |
| richlorofluoromethane                 | 69.4 | mg/kg | 0.028 | 0.091 | ND     |
| /inyl chloride                        | 69.4 | mg/kg | 0.065 | 0.091 | ND     |

Sample ID: HSI-SB-08(13-13.5) Lab#: AD19595-007

Matrix: Soil/Terracore

Collection Date: 10/1/2020

Receipt Date: 10/2/2020

| Analyte                               | DF    | Units   | RL      |         | Result |
|---------------------------------------|-------|---------|---------|---------|--------|
| % Solids                              | 1     | percent |         |         | 77     |
| atile Organics (no search) 8260       |       |         |         |         |        |
| Analyte                               | DF    | Units   | MDL     | RL      | Result |
| 1,1,1-Trichloroethane                 | 0.681 | mg/kg   | 0.00081 | 0.0018  | ND     |
| 1,1,2,2-Tetrachloroethane             | 0.681 | mg/kg   | 0.00040 | 0.0018  | ND     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.681 | mg/kg   | 0.0012  | 0.0018  | ND     |
| 1,1,2-Trichloroethane                 | 0.681 | mg/kg   | 0.00041 | 0.0018  | ND     |
| 1,1-Dichloroethane                    | 0.681 | mg/kg   | 0.00077 | 0.0018  | ND     |
| 1,1-Dichloroethene                    | 0.681 | mg/kg   | 0.0010  | 0.0018  | ND     |
| 1,2,3-Trichlorobenzene                | 0.681 | mg/kg   | 0.00049 | 0.0018  | ND     |
| 1,2,4-Trichlorobenzene                | 0.681 | mg/kg   | 0.00056 | 0.0018  | ND     |
| 1,2-Dibromo-3-chloropropane           | 0.681 | mg/kg   | 0.00049 | 0.0018  | ND     |
| 1,2-Dibromoethane                     | 0.681 | mg/kg   | 0.00043 | 0.00088 | ND     |
| 1,2-Dichlorobenzene                   | 0.681 | mg/kg   | 0.00045 | 0.0018  | ND     |
| 1,2-Dichloroethane                    | 0.681 | mg/kg   | 0.00036 | 0.0018  | ND     |
| 1,2-Dichloropropane                   | 0.681 | mg/kg   | 0.00073 | 0.0018  | ND     |
| 1,3-Dichlorobenzene                   | 0.681 | mg/kg   | 0.00049 | 0.0018  | ND     |
| 1,4-Dichlorobenzene                   | 0.681 | mg/kg   | 0.00047 | 0.0018  | ND     |
| 1,4-Dioxane                           | 0.681 | mg/kg   | 0.043   | 0.088   | ND     |
| 2-Butarione                           | 0.681 | mg/kg   | 0.0011  | 0.0018  | ND     |
| 2-Hexanone                            | 0.681 | mg/kg   | 0.00075 | 0.0018  | ND     |
| 4-Methyl-2-pentanone                  | 0.681 | mg/kg   | 0.00051 | 0.0018  | ND     |
| Acetone                               | 0.681 | mg/kg   | 0.0060  | 0.0088  | ND     |
| Benzene                               | 0.681 | mg/kg   | 0.00065 | 0.00088 | 0.0086 |
| Bromochloromethane                    | 0.681 | mg/kg   | 0.00062 | 0.0018  | ND     |
| Bromodichloromethane                  | 0.681 | mg/kg   | 0.00042 | 0.0018  | ND     |
| Bromoform                             | 0.681 | mg/kg   | 0.00029 | 0.0018  | ND     |
| Bromomethane                          | 0.681 | mg/kg   | 0.0014  | 0.0018  | ND     |
| Carbon disulfide                      | 0.681 | mg/kg   | 0.0030  | 0.0030  | ND     |
| Carbon tetrachloride                  | 0.681 | mg/kg   | 0.00086 | 0.0018  | ND     |
| Chlorobenzene                         | 0.681 | mg/kg   | 0.00055 | 0.0018  | 0.20   |
| Chloroethane                          | 0.681 | mg/kg   | 0.0017  | 0.0018  | ND ND  |
| Chloroform                            | 0.681 | mg/kg   | 0.0012  | 0.0018  | ND     |
| Chloromethane                         | 0.681 | mg/kg   | 0.0011  | 0.0018  | ND     |
| cis-1,2-Dichloroethene                | 0.681 | mg/kg   | 0.00072 | 0.0018  | ND     |
| cis-1,3-Dichloropropene               | 0.681 | mg/kg   | 0.00047 | 0.0018  | ND     |
| Cyclohexane                           | 0.681 | mg/kg   | 0.0011  | 0.0018  | ND     |
| Dibromochlorometharie                 | 0.681 | mg/kg   | 0.00038 | 0.0018  | ND     |
| Dichlorodifluoromethane               | 0.681 | mg/kg   | 0.0012  | 0.0018  | ND     |
| Ethylbenzene                          | 0.681 | mg/kg   | 0.00061 | 0.00088 | 0.0019 |
| Isopropylbenzene                      | 0.681 | mg/kg   | 0.00073 | 0.00088 | ND     |
| m&p-Xylenes                           | 0.681 | mg/kg   | 0.0011  | 0.0011  | 0.0071 |
| Methyl Acetate                        | 0.681 | mg/kg   | 0.00085 | 0.0018  | ND     |
| Methylcyclohexane                     | 0.681 | mg/kg   | 0.00080 | 0.0018  | ND     |
| Methylene chloride                    | 0.681 | mg/kg   | 0.00066 | 0.0018  | ND     |
| Methyl-t-butyl ether                  | 0.681 | mg/kg   | 0.00048 | 0.00088 | 0.0016 |
| o-Xylene                              | 0.681 | mg/kg   | 0.00063 | 0.00088 | 0.0019 |
| Styrene                               | 0.681 | mg/kg   | 0.00049 | 0.0018  | ND     |
| Tetrachloroethene                     | 0.681 | mg/kg   | 0.00087 | 0.0018  | ND     |
| Toluene                               | 0.681 | mg/kg   | 0.00058 | 0.00088 | 0.0035 |
| trans-1,2-Dichloroethene              | 0.681 | mg/kg   | 0.0011  | 0.0018  | ND     |
| trans-1,3-Dichloropropene             | 0.681 | mg/kg   | 0.00042 | 0.0018  | ND     |
| Trichloroethene                       | 0.681 | mg/kg   | 0.00073 | 0.0018  | 0.0033 |
| Trichlorofluoromethane                | 0.681 | mg/kg   | 0.0010  | 0.0018  | ND     |
| Vinyl chloride                        | 0.681 | mg/kg   | 0.0011  | 0.0018  | ND     |
| Xylenes (Total)                       | 0.681 | 59      | 0.00063 | 0.00088 | 0.0090 |

Sample ID: HSI-SB-09(14-14.5) Lab#: AD19595-008

Matrix: Soil/Terracore

Collection Date: 10/1/2020 Receipt Date: 10/2/2020

#### % Solids SM2540G

Volatile Organics (no search) 8260

| Analyte  | DF | Units   | RL | Result |
|----------|----|---------|----|--------|
| % Solids | 1  | percent |    | 80     |

| Analyte                               | DF    | Units | MDL     | RL      | Result |
|---------------------------------------|-------|-------|---------|---------|--------|
| 1,1,1-Trichloroethane                 | 0.697 | mg/kg | 0.00080 | 0.0017  | ND     |
| 1,1,2,2-Tetrachloroethane             | 0.697 | mg/kg | 0.00039 | 0.0017  | ND     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.697 | mg/kg | 0.0012  | 0.0017  | ND     |
| 1,1,2-Trichloroethane                 | 0.697 | mg/kg | 0.00040 | 0.0017  | ND     |
| 1,1-Dichloroethane                    | 0.697 | mg/kg | 0.00076 | 0.0017  | ND     |
| 1,1-Dichloroethene                    | 0.697 | mg/kg | 0.0010  | 0.0017  | ND     |
| 1,2,3-Trichlorobenzene                | 0.697 | mg/kg | 0.00048 | 0.0017  | ND     |
| 1,2,4-Trichlorobenzene                | 0.697 | mg/kg | 0.00055 | 0.0017  | ND     |
| 1,2-Dibromo-3-chloropropane           | 0.697 | mg/kg | 0.00048 | 0.0017  | ND     |
| 1,2-Dibromoethane                     | 0.697 | mg/kg | 0.00043 | 0.00087 | ND     |
| 1,2-Dichlorobenzene                   | 0.697 | mg/kg | 0.00044 | 0.0017  | ND     |
| 1,2-Dichloroethane                    | 0.697 | mg/kg | 0.00036 | 0.0017  | 0.0047 |
| 1,2-Dichloropropane                   | 0.697 | mg/kg | 0.00071 | 0.0017  | ND     |
| 1,3-Dichlorobenzene                   | 0.697 | mg/kg | 0.00048 | 0.0017  | ND     |
| 1,4-Dichlorobenzene                   | 0.697 | mg/kg | 0.00046 | 0.0017  | ND     |
| 1,4-Dioxane                           | 0.697 | mg/kg | 0.042   | 0.087   | ND     |
| 2-Butanone                            | 0.697 | mg/kg | 0.0010  | 0.0017  | ND     |
| 2-Hexanone                            | 0.697 | mg/kg | 0.00074 | 0.0017  | ND     |
| 4-Methyl-2-pentanone                  | 0.697 | mg/kg | 0.00051 | 0.0017  | ND     |
| Acetone                               | 0.697 | mg/kg | 0.0059  | 0.0087  | ND     |
| Benzene                               | 0.697 | mg/kg | 0.00064 | 0.00087 | 0.0039 |
| Bromochloromethane                    | 0.697 | mg/kg | 0.00061 | 0.0017  | ND     |
| Bromodichloromethane                  | 0.697 | mg/kg | 0.00041 | 0.0017  | ND     |
| Bromoform                             | 0.697 | mg/kg | 0.00029 | 0.0017  | ND     |
| Bromomethane                          | 0.697 | mg/kg | 0.0014  | 0.0017  | ND     |
| Carbon disulfide                      | 0.697 | mg/kg | 0.0030  | 0.0030  | ND     |
| Carbon tetrachloride                  | 0.697 | mg/kg | 0.00085 | 0.0017  | ND     |
| Chiorobenzene                         | 0.697 | mg/kg | 0.00054 | 0.0017  | 0.064  |
| Chloroethane                          | 0.697 | mg/kg | 0.0017  | 0.0017  | ND     |
| Chloroform                            | 0.697 | mg/kg | 0.0012  | 0.0017  | ND     |
| Chloromethane                         | 0.697 | mg/kg | 0.0011  | 0.0017  | ND     |
| cis-1,2-Dichloroethene                | 0.697 | mg/kg | 0.00071 | 0.0017  | 0.040  |
| cis-1,3-Dichloropropene               | 0.697 | mg/kg | 0.00046 | 0.0017  | ND     |
| Cyclohexane                           | 0.697 | mg/kg | 0.0010  | 0.0017  | ND     |
| Dibromochloromethane                  | 0.697 | mg/kg | 0.00037 | 0.0017  | ND     |
| Dichlorodifluoromethane               | 0.697 | mg/kg | 0.0012  | 0.0017  | ND     |
| Ethylbenzene                          | 0.697 | mg/kg | 0.00060 | 0.00087 | ND     |
| Isopropylbenzene                      | 0.697 | mg/kg | 0.00072 | 0.00087 | ND     |
| m&p-Xylenes                           | 0.697 | mg/kg | 0.0010  | 0.0010  | ND     |
| Methyl Acetate                        | 0.697 | mg/kg | 0.00084 | 0.0017  | ND     |
| Methylcyclohexane                     | 0.697 | mg/kg | 0.00078 | 0.0017  | ND     |
| Methylene chloride                    | 0.697 | mg/kg | 0.00065 | 0.0017  | ND     |
| Methyl-t-butyl ether                  | 0.697 | mg/kg | 0.00047 | 0.00087 | 0.0022 |
| o-Xylene                              | 0.697 | mg/kg | 0.00062 | 0.00087 | ND     |
| Styrene                               | 0.697 | mg/kg | 0.00048 | 0.0017  | ND     |
| Tetrachloroethene                     | 0.697 | mg/kg | 0.00045 | 0.0017  | ND     |
|                                       | 0.031 | mg/ng | 0.0000  | 0.0017  | NU     |

0.697

0.697

0.697

0.697

0.697

0.697

0.697

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

Toluene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Xylenes (Total)

0.00058

0.0010

0.00041

0.00071

0.0010

0.0011

0.00062

0.00087

0.0017

0.0017

0.0017

0.0017

0.0017

0.00087

0.0038

0.010

0.0062

0.0057

ND

ND

ND

Sample ID: HSI-SB-10(5.5-6) Lab#: AD19595-009

Matrix: Soil/Terracore

Collection Date: 10/1/2020 Receipt Date: 10/2/2020

| Analyte                               | DF                                    | Units          | RL             |                 | Result   |
|---------------------------------------|---------------------------------------|----------------|----------------|-----------------|----------|
| % Solids                              | 1                                     | percent        |                |                 | 89       |
| ercury (Soil/Waste) 7471B             |                                       |                |                |                 |          |
| Analyte                               | DF                                    | Units          | MDL            | RL              | Result   |
| Mercury                               | 1                                     | mg/kg          | 0.014          | 0.094           | ND       |
| emivolatile Organics (no search) 8270 | · · · · · · · · · · · · · · · · · · · | 99             | 0.017          |                 |          |
|                                       |                                       | 44 **          |                |                 |          |
| Analyte                               | DF                                    | Units          | MDL            | RL              | Result   |
| 1,1'-Biphenyl                         | 1                                     | mg/kg          | 0.011          | 0.037           | ND       |
| 1,2,4,5-Tetrachlorobenzene            | 1                                     | mg/kg          | 0.013          | 0.037           | ND       |
| 1,4-Dioxane                           | 1                                     | mg/kg          | 0.019          | 0.0094          | ND       |
| 2,3,4,6-Tetrachlorophenol             |                                       | mg/kg          | 0.014          | 0.037           | ND       |
| 2,4,5-Trichlorophenol                 | 1                                     | mg/kg          | 0.011          | 0.037<br>0.037  | ND<br>ND |
| 2,4,6-Trichlorophenol                 | 1                                     | mg/kg          | 0.029<br>0.014 | 0.0094          | ND       |
| 2,4-Dichlorophenol 2,4-Dimethylphenol | 1                                     | mg/kg<br>mg/kg | 0.014          | 0.0094          | ND       |
| 2,4-Dinitrophenol                     |                                       | mg/kg          | 0.16           | 0.19            | ND ND    |
| 2,4-Dinitrotoluene                    | 1                                     | mg/kg          | 0.012          | 0.037           | ND       |
| 2,6-Dinitrotoluene                    | 1                                     | mg/kg          | 0.019          | 0.037           | ND       |
| 2-Chloronaphthalene                   | 1                                     | mg/kg          | 0.017          | 0.037           | ND       |
| 2-Chlorophenol                        | 1                                     | mg/kg          | 0.012          | 0.037           | ND ND    |
| 2-Methylnaphthalene                   | 1                                     | mg/kg          | 0.012          | 0.037           | ND       |
| 2-Methylphenol                        | 1                                     | mg/kg          | 0.011          | 0.0094          | ND       |
| 2-Nitroaniline                        | 1                                     | mg/kg          | 0.018          | 0.037           | ND       |
| 2-Nitrophenol                         | 1                                     | mg/kg          | 0.017          | 0.037           | ND       |
| 3&4-Methylphenol                      | 1                                     | mg/kg          | 0.011          | 0.0094          | ND       |
| 3,3'-Dichlorobenzidine                | 1                                     | mg/kg          | 0.030          | 0.037           | ND       |
| 3-Nitroaniline                        | 1                                     | mg/kg          | 0.015          | 0.037           | ND       |
| 4,6-Dinitro-2-methylphenol            | 1                                     | mg/kg          | 0.13           | 0.19            | ND       |
| 4-Bromophenyl-phenylether             | 1                                     | mg/kg          | 0.010          | 0.037           | ND       |
| 4-Chloro-3-methylphenol               | 1                                     | mg/kg          | 0.0090         | 0.037           | ND       |
| 4-Chloroaniline                       | 1                                     | mg/kg          | 0.016          | 0.0094          | ND       |
| 4-Chlorophenyl-phenylether            | 1                                     | mg/kg          | 0.011          | 0.037           | ND       |
| 4-Nitroaniline                        | 1                                     | mg/kg          | 0.014          | 0.037           | ND       |
| 4-Nitrophenol                         | 1                                     | mg/kg          | 0.028          | 0.037           | ND       |
| Acenaphthene                          | 1                                     | mg/kg          | 0.011          | 0.037           | ND       |
| Acenaphthylene                        | 1                                     | mg/kg          | 0.011          | 0.037           | ND       |
| Acetophenone                          | 1                                     | mg/kg          | 0.013          | 0.037           | ND       |
| Anthracene                            | 1                                     | mg/kg          | 0.010          | 0.037           | ND       |
| Atrazine                              | 1                                     | mg/kg          | 0.015          | 0.037           | ND       |
| Benzaldehyde                          | 1                                     | mg/kg          | 0.41           | 0.037           | ND       |
| Benzo[a]anthracene                    | 1                                     | mg/kg          | 0.012          | 0.037           | ND       |
| Benzo[a]pyrene                        | 1                                     | mg/kg          | 0.013          | 0.037           | ND       |
| Benzo(b)fluoranthene                  | 1                                     | mg/kg          | 0.013          | 0.037           | ND       |
| Benzo[g,h,i]perylene                  | 1                                     | mg/kg          | 0.00026        | 0.037           | ND       |
| Benzo(k)fluoranthene                  | 1                                     | mg/kg          | 0.014          | 0.037           | ND       |
| bis(2-Chloroethoxy)methane            | 1                                     | mg/kg          | 0.011          | 0.037           | ND       |
| bis(2-Chloroethyl)ether               | 1                                     | mg/kg          | 0.0091         | 0.0094          | ND       |
| bis(2-Chloroisopropyl)ether           | 1                                     | mg/kg          | 0.015          | 0.037           | ND       |
| bis(2-Ethylhexyl)phthalate            | 1                                     | mg/kg          | 0.033          | 0.037           | ND       |
| Butylbenzylphthalate                  | 1                                     | mg/kg          | 0.029          | 0.037           | ND       |
| Caprolactam                           | 1                                     | mg/kg          | 0.030          | 0.037           | ND       |
| Carbazole                             | 1                                     | mg/kg          | 0.012          | 0.037           | ND       |
| Chrysene                              | 1                                     | mg/kg          | 0.013          | 0.037           | ND<br>ND |
| Dibenzo(a,h)anthracene                | 1                                     | mg/kg          | 0.014          | 0.037           | ND       |
| Dibenzofuran  Diethylebthelete        | 11                                    | mg/kg          | 0.0095         | 0.0094          | ND ND    |
| Diethylphthalate                      | ·                                     | mg/kg<br>mg/kg | 0.024          | 0.037           | ND<br>ND |
| Dimethylphthalate                     | 1                                     | mg/kg<br>mg/kg | 0.011          | 0.037           | ND<br>ND |
| Di-n-butylphthalate                   | 1                                     | mg/kg<br>mg/kg | 0.043<br>0.025 | 0.0094<br>0.037 | ND<br>ND |
| Di-n-octylphthalate Fluoranthene      | 1                                     | mg/kg          | 0.025          | 0.037           | ND       |
| Fluoranmene<br>Fluorene               | 1                                     | mg/kg<br>mg/kg | 0.014          | 0.037           | ND<br>ND |
| Huorene<br>Hexachtorobenzene          | 1                                     | mg/kg<br>mg/kg | 0.016          | 0.037           | ND<br>ND |
| Hexachlorobutadiene                   | 1                                     | mg/kg          | 0.017          | 0.037           | ND<br>ND |
| Hexachlorocyclopentadiene             | 1                                     | mg/kg          | 0.12           | 0.037           | ND ND    |
| , iosadinio de y diopentaciene        | •                                     | y.ny           | U. 12          | 0.007           |          |

| Lab#   | : HSI-SB-10(5.5-6)<br>: AD19595-009                                                                                                                                                                                         |                                                              |                                                                               |                                                                                                                         | Collection Date:<br>Receipt Date:                                                                     |                                          |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------|
| matrix | : Soil/Terracore                                                                                                                                                                                                            |                                                              |                                                                               |                                                                                                                         |                                                                                                       |                                          |
|        | Indeno[1,2,3-cd]pyrene<br>Isophorone                                                                                                                                                                                        | 1                                                            | mg/kg                                                                         | 0.017<br>0.012                                                                                                          | 0.037                                                                                                 | ND<br>ND                                 |
|        | Naphthalene                                                                                                                                                                                                                 | 1                                                            | mg/kg<br>mg/kg                                                                | 0.012                                                                                                                   | 0.037<br>0.00 <del>9</del> 4                                                                          | ND                                       |
|        | Nitrobenzene                                                                                                                                                                                                                | 1                                                            | mg/kg                                                                         | 0.0015                                                                                                                  | 0.037                                                                                                 | ND                                       |
|        | N-Nitroso-di-n-propylamine                                                                                                                                                                                                  |                                                              | mg/kg                                                                         | 0.014                                                                                                                   | 0.0094                                                                                                | ND                                       |
|        | N-Nitrosodiphenylamine                                                                                                                                                                                                      | 1                                                            | mg/kg                                                                         | 0.13                                                                                                                    | 0.037                                                                                                 | ND                                       |
|        | Pentachlorophenol                                                                                                                                                                                                           | 1                                                            | mg/kg                                                                         | 0.18                                                                                                                    | 0.19                                                                                                  | ND                                       |
|        | Phenanthrene                                                                                                                                                                                                                | 1                                                            | mg/kg                                                                         | 0.012                                                                                                                   | 0.037                                                                                                 | ND                                       |
|        | Phenol                                                                                                                                                                                                                      | 1                                                            | mg/kg                                                                         | 0.010                                                                                                                   | 0.037                                                                                                 | ND                                       |
|        | Pyrene                                                                                                                                                                                                                      | <u> </u>                                                     | mg/kg                                                                         | 0.013                                                                                                                   | 0.037                                                                                                 | ND                                       |
|        | TAL Metals 6010D                                                                                                                                                                                                            |                                                              |                                                                               |                                                                                                                         |                                                                                                       |                                          |
|        | Analyte                                                                                                                                                                                                                     | DF                                                           | Units                                                                         | MDL                                                                                                                     | RL                                                                                                    | Result                                   |
|        | Aluminum                                                                                                                                                                                                                    | 1                                                            | mg/kg                                                                         | 19                                                                                                                      | 220                                                                                                   | 5900                                     |
|        | Barlum                                                                                                                                                                                                                      | 1                                                            | mg/kg                                                                         | 0.76                                                                                                                    | 11                                                                                                    | 28                                       |
|        | Calcium                                                                                                                                                                                                                     | 1                                                            | mg/kg                                                                         | 110                                                                                                                     | 1100                                                                                                  | 120J                                     |
|        | Chromlum                                                                                                                                                                                                                    | 1                                                            | mg/kg                                                                         | 0.75                                                                                                                    | 5.6                                                                                                   | 21                                       |
|        | Cobalt                                                                                                                                                                                                                      | 1                                                            | mg/kg                                                                         | 0.80                                                                                                                    | 2.8                                                                                                   | 2.1J                                     |
|        | Copper                                                                                                                                                                                                                      | 1                                                            | mg/kg                                                                         | 0.69                                                                                                                    | 5.6                                                                                                   | 8.1                                      |
|        | Iron                                                                                                                                                                                                                        | 1                                                            | mg/kg                                                                         | 15                                                                                                                      | 220                                                                                                   | 6900                                     |
|        | Lead                                                                                                                                                                                                                        | 1                                                            | mg/kg                                                                         | 0.69                                                                                                                    | 5.6                                                                                                   | 4.4J                                     |
|        | Magnesium                                                                                                                                                                                                                   | 1                                                            | mg/kg                                                                         | 22<br>0.72                                                                                                              | 560<br>11                                                                                             | 940B                                     |
|        | Manganese<br>Nickel                                                                                                                                                                                                         | 1                                                            | mg/kg<br>mg/kg                                                                | 1.2                                                                                                                     | 5.6                                                                                                   | 36<br>7.6                                |
|        | Potassium                                                                                                                                                                                                                   | 1                                                            | mg/kg<br>mg/kg                                                                | 110                                                                                                                     | 560                                                                                                   | 280J                                     |
|        | Sodium                                                                                                                                                                                                                      | 1                                                            | mg/kg                                                                         | 140                                                                                                                     | 280                                                                                                   | ND ND                                    |
|        | Zinc                                                                                                                                                                                                                        | 1                                                            | mg/kg                                                                         | 1.7                                                                                                                     | 11                                                                                                    | 12                                       |
|        | TAL Metals 6020B                                                                                                                                                                                                            |                                                              |                                                                               |                                                                                                                         |                                                                                                       |                                          |
| •      | Analyte                                                                                                                                                                                                                     | DF                                                           | Units                                                                         | MDL                                                                                                                     | RL                                                                                                    | Result                                   |
|        | Antimony                                                                                                                                                                                                                    | 1                                                            | mg/kg                                                                         | 0.025                                                                                                                   | 0.90                                                                                                  | ND                                       |
|        | Arsenic                                                                                                                                                                                                                     | 1                                                            | mg/kg                                                                         | 0.020                                                                                                                   | 0.22                                                                                                  | 1.5                                      |
|        | Beryllium                                                                                                                                                                                                                   | 1                                                            | mg/kg                                                                         | 0.018                                                                                                                   | 0.22                                                                                                  | 0.22J                                    |
|        | Cadmium                                                                                                                                                                                                                     | 1                                                            | mg/kg                                                                         | 0.016                                                                                                                   | 0.45                                                                                                  | 0.020J                                   |
|        | Selenium                                                                                                                                                                                                                    | 1                                                            | mg/kg                                                                         | 0.071                                                                                                                   | 2.2                                                                                                   | 1.3J                                     |
|        | Silver                                                                                                                                                                                                                      | 1                                                            | mg/kg                                                                         | 0.029                                                                                                                   | 0.22                                                                                                  | 0.042JB                                  |
|        | Thallium                                                                                                                                                                                                                    | 1                                                            | mg/kg                                                                         | 0.020                                                                                                                   | 0.45                                                                                                  | 0.021J                                   |
|        | Vanadium                                                                                                                                                                                                                    | 1                                                            | mg/kg                                                                         | 0.012                                                                                                                   | 0.22                                                                                                  | 20B                                      |
|        | Volatile Organics (no search) 8260                                                                                                                                                                                          |                                                              |                                                                               |                                                                                                                         |                                                                                                       |                                          |
|        | Analyte                                                                                                                                                                                                                     | DF                                                           | Units                                                                         | MDL                                                                                                                     | RL                                                                                                    | Result                                   |
|        | 1,1,1-Trichloroethane                                                                                                                                                                                                       | 63.2                                                         | mg/kg                                                                         | 0.025                                                                                                                   | 0.071                                                                                                 | ND                                       |
|        | 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                   | 63.2                                                         | mg/kg                                                                         | 0.032                                                                                                                   | 0.071                                                                                                 | 0.052J                                   |
|        | 1,1,2-Trichloro-1,2,2-trifluoroethane                                                                                                                                                                                       | 63.2                                                         | mg/kg                                                                         | 0.052                                                                                                                   | 0.071                                                                                                 | ND                                       |
|        | 1,1,2-Trichloroethane                                                                                                                                                                                                       | 63.2                                                         | mg/kg                                                                         | 0.023                                                                                                                   | 0.071                                                                                                 | ND                                       |
|        | 1,1-Dichloroethane                                                                                                                                                                                                          | 63.2                                                         | mg/kg                                                                         | 0.030                                                                                                                   | 0.071                                                                                                 | ND                                       |
|        | 1,1-Dichloroethene                                                                                                                                                                                                          | 63.2                                                         | mg/kg                                                                         | 0.038                                                                                                                   | 0.071                                                                                                 | ND<br>ND                                 |
|        | 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene                                                                                                                                                                               | 63.2<br>63.2                                                 | mg/kg<br>ma/ka                                                                | 0.056<br>0.052                                                                                                          | 0.071<br>0.071                                                                                        | ND<br>ND                                 |
|        | 1,2-Dibromo-3-chloropropane                                                                                                                                                                                                 | 63.2                                                         | mg/kg<br>mg/kg                                                                | 0.052                                                                                                                   | 0.071                                                                                                 | ND ND                                    |
|        | 1,2-Dibromoethane                                                                                                                                                                                                           | 63.2                                                         | mg/kg<br>mg/kg                                                                | 0.039                                                                                                                   | 0.071                                                                                                 | ND<br>ND                                 |
|        | ije oromovanano                                                                                                                                                                                                             | 00.2                                                         | mg/kg                                                                         | 0.024                                                                                                                   | 0.071                                                                                                 | ND                                       |
|        | 1.2-Dichlorobenzene                                                                                                                                                                                                         | 63.2                                                         |                                                                               |                                                                                                                         | 0.07.                                                                                                 |                                          |
|        | 1,2-Dichlorobenzene  1,2-Dichloroethane                                                                                                                                                                                     | 63.2<br><b>63.2</b>                                          |                                                                               |                                                                                                                         | 0.045                                                                                                 | 0.070                                    |
|        | 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane                                                                                                                                                                  | 63.2<br>63.2<br>63.2                                         | mg/kg<br>mg/kg                                                                | 0.045                                                                                                                   | 0.045<br>0.071                                                                                        | 0.070<br>ND                              |
|        | 1,2-Dichloroethane                                                                                                                                                                                                          | 63.2                                                         | mg/kg                                                                         | 0.045                                                                                                                   |                                                                                                       |                                          |
|        | 1,2-Dichloroethane 1,2-Dichloropropane                                                                                                                                                                                      | <b>63.2</b> 63.2                                             | <b>mg/kg</b><br>mg/kg                                                         | <b>0.045</b><br>0.021                                                                                                   | 0.071                                                                                                 | ND                                       |
|        | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene                                                                                                                                                                  | <b>63.2</b><br>63.2<br>63.2                                  | mg/kg<br>mg/kg<br>mg/kg                                                       | 0.045<br>0.021<br>0.027                                                                                                 | 0.071<br>0.071                                                                                        | ND<br>ND                                 |
| -      | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene                                                                                                                                              | 63.2<br>63.2<br>63.2<br>63.2                                 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                              | 0.045<br>0.021<br>0.027<br>0.026                                                                                        | 0.071<br>0.071<br>0.071                                                                               | ND<br>ND<br>ND                           |
| -      | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane                                                                                                                                  | 63.2<br>63.2<br>63.2<br>63.2<br>63.2                         | <b>mg/kg</b><br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                              | 0.045<br>0.021<br>0.027<br>0.026<br>2.8                                                                                 | 0.071<br>0.071<br>0.071<br>3.6                                                                        | ND<br>ND<br>ND<br>ND                     |
| -      | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone                                                                                                                       | 63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2                 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                     | 0.045<br>0.021<br>0.027<br>0.026<br>2.8<br>0.053                                                                        | 0.071<br>0.071<br>0.071<br>3.6<br>0.071                                                               | ND<br>ND<br>ND<br>ND                     |
|        | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone                                                                                                            | 63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2         | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                            | 0.045<br>0.021<br>0.027<br>0.026<br>2.8<br>0.053<br>0.043                                                               | 0.071<br>0.071<br>0.071<br>3.6<br>0.071                                                               | ND<br>ND<br>ND<br>ND<br>ND               |
| -      | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone                                                                                       | 63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                   | 0.045<br>0.021<br>0.027<br>0.026<br>2.8<br>0.053<br>0.043<br>0.035                                                      | 0.071<br>0.071<br>0.071<br>3.6<br>0.071<br>0.071                                                      | ND ND ND ND ND ND ND ND                  |
| -      | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone                                                                               | 63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2 | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                         | 0.045<br>0.021<br>0.027<br>0.026<br>2.8<br>0.053<br>0.043<br>0.035<br>0.33                                              | 0.071<br>0.071<br>0.071<br>3.6<br>0.071<br>0.071<br>0.071                                             | ND ND ND ND ND ND ND ND ND ND            |
| -      | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene                                                                       | 63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2 | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                   | 0.045<br>0.021<br>0.027<br>0.026<br>2.8<br>0.053<br>0.043<br>0.035<br>0.33<br>0.021<br>0.056<br>0.025                   | 0.071<br>0.071<br>0.071<br>3.6<br>0.071<br>0.071<br>0.071<br>0.36                                     | ND ND ND ND ND ND ND ND ND ND ND ND      |
| -      | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromoform                                          | 63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2 | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg | 0.045<br>0.021<br>0.027<br>0.026<br>2.8<br>0.053<br>0.043<br>0.035<br>0.33<br>0.021<br>0.056<br>0.025<br>0.038          | 0.071<br>0.071<br>0.071<br>3.6<br>0.071<br>0.071<br>0.071<br>0.36<br>0.036<br>0.071<br>0.071          | ND ND ND ND ND ND ND ND ND ND ND ND ND N |
| -      | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromomethane                  | 63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2 | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg             | 0.045<br>0.021<br>0.027<br>0.026<br>2.8<br>0.053<br>0.043<br>0.035<br>0.33<br>0.021<br>0.056<br>0.025<br>0.038          | 0.071<br>0.071<br>0.071<br>3.6<br>0.071<br>0.071<br>0.071<br>0.36<br>0.036<br>0.071<br>0.071<br>0.071 | ND ND ND ND ND ND ND ND ND ND ND ND ND N |
| -      | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromomethane Carbon disulfide | 63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2 | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg | 0.045<br>0.021<br>0.027<br>0.026<br>2.8<br>0.053<br>0.043<br>0.035<br>0.33<br>0.021<br>0.056<br>0.025<br>0.038<br>0.036 | 0.071 0.071 3.6 0.071 0.071 0.071 0.071 0.36 0.036 0.071 0.071 0.071 0.071 0.071                      | ND ND ND ND ND ND ND ND ND ND ND ND ND N |
| -      | 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromomethane                  | 63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2<br>63.2 | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg | 0.045<br>0.021<br>0.027<br>0.026<br>2.8<br>0.053<br>0.043<br>0.035<br>0.33<br>0.021<br>0.056<br>0.025<br>0.038          | 0.071<br>0.071<br>0.071<br>3.6<br>0.071<br>0.071<br>0.071<br>0.36<br>0.036<br>0.071<br>0.071<br>0.071 | ND ND ND ND ND ND ND ND ND ND ND ND ND N |

| Lab#: | HSI-SB-10(5.5-6)<br>AD19595-009<br>Soil/Terracore |      |       |       | Collection Date:<br>Receipt Date: |        |
|-------|---------------------------------------------------|------|-------|-------|-----------------------------------|--------|
|       | Chloroethane                                      | 63.2 | mg/kg | 0.041 | 0.071                             | ND     |
|       | Chloroform                                        | 63.2 | mg/kg | 0.14  | 0.14                              | ND     |
|       | Chloromethane                                     | 63.2 | mg/kg | 0.037 | 0.071                             | ND     |
|       | cis-1,2-Dichloroethene                            | 63.2 | mg/kg | 0.045 | 0.071                             | 0.40   |
|       | cis-1,3-Dichloropropene                           | 63.2 | mg/kg | 0.023 | 0.071                             | ND     |
|       | Cyclohexane                                       | 63.2 | mg/kg | 0.035 | 0.071                             | ND     |
|       | Dibromochloromethane                              | 63.2 | mg/kg | 0.017 | 0.071                             | ND     |
|       | Dichlorodifluoromethane                           | 63.2 | mg/kg | 0.044 | 0.071                             | ND     |
|       | Ethylbenzene                                      | 63.2 | mg/kg | 0.033 | 0.071                             | 0.053J |
|       | Isopropylbenzene                                  | 63.2 | mg/kg | 0.035 | 0.071                             | ND     |
|       | m&p-Xylenes                                       | 63.2 | mg/kg | 0.060 | 0.071                             | 0.099  |
|       | Methyl Acetate                                    | 63.2 | mg/kg | 0.050 | 0.071                             | ND     |
|       | Methylcyclohexane                                 | 63.2 | mg/kg | 0.044 | 0.071                             | ND     |
|       | Methylene chloride                                | 63.2 | mg/kg | 0.021 | 0.071                             | ND     |
|       | Methyl-t-butyl ether                              | 63.2 | mg/kg | 0.022 | 0.036                             | ND     |
|       | o-Xylene                                          | 63.2 | mg/kg | 0.049 | 0.071                             | 0.054J |
|       | Styrene                                           | 63.2 | mg/kg | 0.039 | 0.071                             | ND     |
|       | Tetrachloroethene                                 | 63.2 | mg/kg | 0.025 | 0.071                             | 0.028J |
|       | Toluene                                           | 63.2 | mg/kg | 0.023 | 0.071                             | 0.040J |
|       | trans-1,2-Dichloroethene                          | 63.2 | mg/kg | 0.022 | 0.071                             | ND     |
| -     | trans-1,3-Dichloropropene                         | 63.2 | mg/kg | 0.022 | 0.071                             | ND     |
|       | Trichloroethene                                   | 63.2 | mg/kg | 0.025 | 0.071                             | 0.24   |
|       | Trichlorofluoromethane                            | 63.2 | mg/kg | 0.022 | 0.071                             | ND     |
|       | Vinyl chloride                                    | 63.2 | mg/kg | 0.050 | 0.071                             | ND     |
|       | Xylenes (Total)                                   | 63.2 | mg/kg | 0.049 | 0.071                             | 0.15   |

Sample ID: HSI-SB-10(7-7.5) Lab#: AD19595-010

Matrix: Soil/Terracore

Collection Date: 10/1/2020

Receipt Date: 10/2/2020

| Analyte                               | DF   | Units   | RL    |       | Result   |
|---------------------------------------|------|---------|-------|-------|----------|
| % Solids                              | 1    | percent |       |       | 83       |
| olatile Organics (no search) 8260     |      |         |       |       |          |
| Analyte                               | DF   | Units   | MDL   | RL    | Result   |
| 1,1,1-Trichloroethane                 | 61.7 | mg/kg   | 0.027 | 0.074 | ND       |
| 1,1,2,2-Tetrachloroethane             | 61.7 | mg/kg   | 0.033 | 0.074 | ND       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 61.7 | mg/kg   | 0.054 | 0.074 | ND       |
| 1,1,2-Trichloroethane                 | 61.7 | mg/kg   | 0.024 | 0.074 | ND       |
| 1,1-Dichloroethane                    | 61.7 | mg/kg   | 0.032 | 0.074 | ND       |
| 1,1-Dichloroethene                    | 61.7 | mg/kg   | 0.040 | 0.074 | ND       |
| 1,2,3-Trichlorobenzene                | 61.7 | mg/kg   | 0.059 | 0.074 | ND       |
| 1,2,4-Trichlorobenzene                | 61.7 | mg/kg   | 0.054 | 0.074 | ND       |
| 1,2-Dibromo-3-chloropropane           | 61.7 | mg/kg   | 0.062 | 0.074 | ND       |
| 1,2-Dibromoethane                     | 61.7 | mg/kg   | 0.025 | 0.074 | ND       |
| 1,2-Dichlorobenzene                   | 61.7 | mg/kg   | 0.024 | 0.074 | ND       |
| 1,2-Dichloroethane                    | 61.7 | mg/kg   | 0.047 | 0.047 | ND       |
| 1,2-Dichloropropane                   | 61.7 | mg/kg   | 0.022 | 0.074 | ND       |
| 1,3-Dichlorobenzene                   | 61.7 | mg/kg   | 0.028 | 0.074 | ND       |
| 1,4-Dichlorobenzene                   | 61.7 | mg/kg   | 0.027 | 0.074 | ND       |
| 1,4-Dioxane                           | 61.7 | mg/kg   | 2.9   | 3.7   | ND       |
| 2-Butanone                            | 61.7 | mg/kg   | 0.056 | 0.074 | ND       |
| 2-Hexanone                            | 61.7 | mg/kg   | 0.045 | 0.074 | ND       |
| 4-Methyl-2-pentanone                  | 61.7 | mg/kg   | 0.036 | 0.074 | ND       |
| Acetone                               | 61.7 | mg/kg   | 0.34  | 0.37  | ND       |
| Benzene                               | 61.7 | mg/kg   | 0.022 | 0.037 | 0.031J   |
| Bromochloromethane                    | 61.7 | mg/kg   | 0.058 | 0.074 | ND       |
| Bromodichloromethane                  | 61.7 | mg/kg   | 0.026 | 0.074 | ND       |
| Bromoform                             | 61.7 | mg/kg   | 0.040 | 0.074 | ND       |
| Bromomethane                          | 61.7 | mg/kg   | 0.040 | 0.074 | ND ND    |
| Carbon disulfide                      | 61.7 | mg/kg   | 0.037 | 0.074 | ND       |
| Carbon tetrachloride                  | 61.7 | mg/kg   | 0.024 | 0.074 | ND       |
| Chlorobenzene                         | 61.7 |         | 0.025 | 0.074 | 0.81     |
| Chloroethane                          | 61.7 | mg/kg   | 0.023 | 0.074 | ND       |
| Chloroform                            | 61.7 | mg/kg   | 0.043 | 0.074 | ND<br>ND |
|                                       |      | mg/kg   |       |       |          |
| Chloromethane                         | 61.7 | mg/kg   | 0.038 | 0.074 | ND       |
| cis-1,2-Dichloroethene                | 61.7 | mg/kg   | 0.047 | 0.074 | 0.81     |
| cis-1,3-Dichloropropene               | 61.7 | mg/kg   | 0.024 | 0.074 | ND       |
| Cyclohexane                           | 61.7 | mg/kg   | 0.036 | 0.074 | ND       |
| Dibromochloromethane                  | 61.7 | mg/kg   | 0.018 | 0.074 | ND       |
| Dichlorodifluoromethane               | 61.7 | mg/kg   | 0.046 | 0.074 | ND       |
| Ethylbenzene                          | 61.7 | mg/kg   | 0.035 | 0.074 | 0.045J   |
| Isopropylbenzene                      | 61.7 | mg/kg   | 0.037 | 0.074 | ND       |
| m&p-Xylenes                           | 61.7 | mg/kg   | 0.063 | 0.074 | ND       |
| Methyl Acetate                        | 61.7 | mg/kg   | 0.052 | 0.074 | ND       |
| Methylcyclohexane                     | 61.7 | mg/kg   | 0.046 | 0.074 | ND       |
| Methylene chloride                    | 61.7 | mg/kg   | 0.022 | 0.074 | ND       |
| Methyl-t-butyl ether                  | 61.7 | mg/kg   | 0.023 | 0.037 | ND       |
| o-Xylene                              | 61.7 | mg/kg   | 0.051 | 0.074 | ND       |
| Styrene                               | 61.7 | mg/kg   | 0.040 | 0.074 | ND       |
| Tetrachloroethene                     | 61.7 | mg/kg   | 0.027 | 0.074 | ND       |
| Toluene                               | 61.7 | mg/kg   | 0.024 | 0.074 | 0.063J   |
| trans-1,2-Dichloroethene              | 61.7 | mg/kg   | 0.023 | 0.074 | ND       |
| trans-1,3-Dichloropropene             | 61.7 | mg/kg   | 0.023 | 0.074 | ND       |
| Trichloroethene                       | 61.7 | mg/kg   | 0.026 | 0.074 | ND       |
| Trichlorofluoromethane                | 61.7 | mg/kg   | 0.023 | 0.074 | ND       |
| Vinyl chloride                        | 81.7 | mg/kg   | 0.053 | 0.074 | 0.75     |

Sample ID: HSI-SB-10(8-8.5) Lab#: AD19595-011

Matrix: Soil/Terracore

Collection Date: 10/1/2020

Receipt Date: 10/2/2020

#### % Solids SM2540G

| Analyte                               | DF                    | Units          | RL                |                   | Result       |
|---------------------------------------|-----------------------|----------------|-------------------|-------------------|--------------|
| % Solids                              | 1                     | percent        |                   |                   | 82           |
| atile Organics (no search) 8260       |                       |                |                   |                   |              |
| Analyte                               | DF                    | Units          | MDL               | RL                | Result       |
| 1,1,1-Trichloroethane                 | 0.679                 | mg/kg          | 0.00076           | 0.0017            | ND           |
| 1,1,2,2-Tetrachloroethane             | 0.679                 | mg/kg          | 0.00037           | 0.0017            | 0.028        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.679                 | mg/kg          | 0.0012            | 0.0017            | ND           |
| 1,1,2-Trichloroethane                 | 0.679                 | mg/kg          | 0.00038           | 0.0017            | 0.0043       |
| 1,1-Dichloroethane                    | 0.679                 | mg/kg          | 0.00072           | 0.0017            | ND           |
| 1,1-Dichloroethene                    | 0.679                 | mg/kg          | 0.00095           | 0.0017            | ND           |
| 1,2,3-Trichlorobenzene                | 0.679                 | mg/kg          | 0.00046           | 0.0017            | ND           |
| 1,2,4-Trichlorobenzene                | 0.679                 | mg/kg          | 0.00052           | 0.0017            | ND           |
| 1,2-Dibromo-3-chloropropane           | 0.679                 | mg/kg          | 0.00046           | 0.0017            | ND           |
| 1,2-Dibromoethane                     | 0.679                 | mg/kg          | 0.00041           | 0.00083           | ND           |
| 1,2-Dichlorobenzene                   | 0.679                 | mg/kg          | 0.00042           | 0.0017            | ND           |
| 1,2-Dichloroethane                    | 0.679                 | mg/kg          | 0.00034           | 0.0017            | 0.018        |
| 1,2-Dichloropropane                   | 0.679                 | mg/kg          | 0.00068           | 0.0017            | ND           |
| 1,3-Dichlorobenzene                   | 0.679                 | mg/kg          | 0.00046           | 0.0017            | ND           |
| 1,4-Dichlorobenzene                   | 0.679                 | mg/kg          | 0.00044           | 0.0017            | ND           |
| 1,4-Dioxane                           | 0.679                 | mg/kg          | 0.040             | 0.083             | ND           |
| 2-Butanone                            | 0.679                 | mg/kg          | 0.00099           | 0.0017            | ND           |
| 2-Hexanone                            | 0.679                 | mg/kg          | 0.00070           | 0.0017            | ND           |
| 4-Methyl-2-pentanone                  | 0.679                 | mg/kg          | 0.00048           | 0.0017            | ND           |
| Acetone                               | 0.679                 | mg/kg          | 0.0056            | 0.0083            | 0.019        |
| Benzene                               | 0.679                 | mg/kg          | 0.00060           | 0.00083           | 0.0018       |
| Bromochloromethane                    | 0.679                 | mg/kg          | 0.00058           | 0.0017            | ND           |
| Bromodichloromethane                  | 0.679                 | mg/kg          | 0.00039           | 0.0017            | ND           |
| Bromoform                             | 0.679                 | mg/kg          | 0.00027           | 0.0017            | ND           |
| Bromomethane                          | 0.679                 | mg/kg          | 0.0013            | 0.0017            | ND           |
| Carbon disulfide                      | 0.679                 | mg/kg          | 0.0028            | 0.0028            | ND           |
| Carbon tetrachloride                  | 0.679                 | mg/kg          | 0.00080           | 0.0017            | ND           |
| Chlorobenzene                         | 0.679                 | mg/kg          | 0.00051           | 0.0017            | 0.052        |
| Chloroethane                          | 0.679                 | mg/kg          | 0.0016            | 0.0017            | ND           |
| Chloroform                            | 0.679                 | mg/kg          | 0.0011            | 0.0017            | ND           |
| Chloromethane                         | 0.679                 | mg/kg          | 0.0010            | 0.0017            | ND           |
| cis-1,2-Dichloroethene                | 0.679                 | mg/kg          | 0.00067           | 0.0017            | 0.059        |
| cis-1,3-Dichloropropene               | 0.679                 | mg/kg          | 0.00044           | 0.0017            | ND           |
| Cyclohexane                           | 0.679                 | mg/kg          | 0.00099           | 0.0017            | ND           |
| Dibromochloromethane                  | 0.679                 | mg/kg          | 0.00036           | 0.0017            | ND           |
| Dichlorodifluoromethane               | 0.679                 | mg/kg          | 0.0012            | 0.0017            | ND           |
| Ethylbenzene                          | 0.679                 | mg/kg          | 0.00057           | 0.00083           | ND           |
| Isopropylbenzene                      | 0.679                 | mg/kg          | 0.00069           | 0.00083           | ND           |
| m&p-Xylenes                           | 0.679                 | mg/kg          | 0.00099           | 0.00099           | ND           |
| Methyl Acetate                        | 0.679                 | mg/kg          | 0.00080           | 0.0017            | ND           |
| Methylcyclohexane                     | 0.679                 | mg/kg          | 0.00075           | 0.0017            | ND           |
| Methylene chloride                    | 0.679                 | mg/kg          | 0.00062           | 0.0017            | ND           |
| Methyl-t-butyl ether                  | 0.679                 | mg/kg          | 0.00045           | 0.00083           | ND           |
| o-Xylene                              | 0.679                 | mg/kg          | 0.00059           | 0.00083           | ND           |
| Styrene                               | 0.679                 | mg/kg          | 0.00046           | 0.0017            | ND ND        |
| Tetrachloroethene                     | 0.679                 | mg/kg          | 0.00040           | 0.0017            | 0.0035       |
| Toluene                               | 0.679                 | mg/kg          | 0.00055           | 0.00083           | 0.0030       |
| trans-1,2-Dichloroethene              | 0.679                 |                | 0.00099           | 0.00083           | 0.0030       |
| trans-1,3-Dichloropropene             | 0.679                 | mg/kg<br>ma/ka | 0.00099           | 0.0017            | 0.0019<br>ND |
| Trichloroethene                       |                       | mg/kg<br>ma/ka |                   |                   |              |
| Trichlorofluoromethane                | 0.679                 | mg/kg<br>mg/kg | 0.00068           | 0.0017            | 0.061        |
|                                       | 0.679                 | mg/kg          | 0.00098           | 0.0017            | ND<br>0.010  |
| Vinyl chloride  Xylenes (Total)       | <b>0.679</b><br>0.679 | mg/kg<br>mg/kg | 0.0010<br>0.00059 | 0.0017<br>0.00083 | 0.010<br>ND  |

Sample ID: HSI-SB-D2 Lab#: AD19595-012 Matrix: Soil/Terracore Collection Date: 10/1/2020 Receipt Date: 10/2/2020

#### % Solids SM2540G

| Analyte                               | DF   | Units     | RL                                       |       | Result   |
|---------------------------------------|------|-----------|------------------------------------------|-------|----------|
| % Solids                              | 1    | percent   | 40 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |       | 76       |
| atile Organics (no search) 8260       |      |           |                                          |       |          |
| Analyte                               | DF   | Units     | MDL                                      | RL    | Result   |
| 1,1,1-Trichloroethane                 | 70.7 | mg/kg     | 0.033                                    | 0.093 | ND       |
| 1,1,2,2-Tetrachloroethane             | 70.7 | mg/kg     | 0.042                                    | 0.093 | ND       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 70.7 | mg/kg     | 0.068                                    | 0.093 | ND       |
| 1,1,2-Trichloroethane                 | 70.7 | mg/kg     | 0.030                                    | 0.093 | ND       |
| 1,1-Dichloroethane                    | 70.7 | mg/kg     | 0.040                                    | 0.093 | ND       |
| 1,1-Dichloroethene                    | 70.7 | mg/kg     | 0.050                                    | 0.093 | ND       |
| 1,2,3-Trichlorobenzene                | 70.7 | mg/kg     | 0.073                                    | 0.093 | ND       |
| 1,2,4-Trichlorobenzene                | 70.7 | mg/kg     | 0.068                                    | 0.093 | ND       |
| 1,2-Dibromo-3-chloropropane           | 70.7 | mg/kg     | 0.078                                    | 0.093 | ND       |
| 1,2-Dibromoethane                     | 70.7 | mg/kg     | 0.032                                    | 0.093 | ND       |
| 1,2-Dichlorobenzene                   | 70.7 | mg/kg     | 0.030                                    | 0.093 | ND       |
| 1,2-Dichloroethane                    | 70.7 | mg/kg     | 0.059                                    | 0.059 | ND       |
| 1,2-Dichloropropane                   | 70.7 | mg/kg     | 0.028                                    | 0.093 | ND       |
| 1,3-Dichlorobenzene                   | 70.7 | mg/kg     | 0.035                                    | 0.093 | ND       |
| 1,4-Dichlorobenzene                   | 70.7 | mg/kg     | 0.034                                    | 0.093 | ND       |
| 1,4-Dioxane                           | 70.7 | mg/kg     | 3.7                                      | 4.7   | ND       |
| 2-Butanone                            | 70.7 | mg/kg     | 0.070                                    | 0.093 | ND ND    |
| 2-Hexanone                            | 70.7 | mg/kg     | 0.056                                    | 0.093 | ND       |
|                                       | 70.7 | • •       | 0.045                                    | 0.093 | 4.1      |
| 4-Methyl-2-pentanone                  | 70.7 | mg/kg     | 0.43                                     | 0.47  | ND       |
| Acetone                               | 70.7 | mg/kg     |                                          |       |          |
| Benzene                               |      | mg/kg     | 0.028                                    | 0.047 | 0.12     |
| Bromochloromethane                    | 70.7 | mg/kg     | 0.073                                    | 0.093 | ND       |
| Bromodichloromethane                  | 70.7 | mg/kg     | 0.032                                    | 0.093 | ND       |
| Bromoform                             | 70.7 | mg/kg     | 0.050                                    | 0.093 | ND ND    |
| Bromomethane                          | 70.7 | mg/kg     | 0.047                                    | 0.093 | ND<br>ND |
| Carbon disulfide                      | 70.7 | mg/kg     | 0.039                                    | 0.093 | ND       |
| Carbon tetrachloride                  | 70.7 | mg/kg<br> | 0.030                                    | 0.093 | ND       |
| Chlorobenzene                         | 70.7 | mg/kg     | 0.031                                    | 0.093 | 3.7      |
| Chloroethane                          | 70.7 | mg/kg     | 0.054                                    | 0.093 | ND       |
| Chloroform                            | 70.7 | mg/kg     | 0.18                                     | 0.18  | ND       |
| Chloromethane                         | 70.7 | mg/kg<br> | 0.048                                    | 0.093 | ND       |
| cis-1,2-Dichloroethene                | 70.7 | mg/kg     | 0.059                                    | 0.093 | 0.40     |
| cis-1,3-Dichloropropene               | 70.7 | mg/kg     | 0.030                                    | 0.093 | ND       |
| Cyclohexane                           | 70.7 | mg/kg     | 0.045                                    | 0.093 | ND       |
| Dibromochloromethane                  | 70.7 | mg/kg     | 0.022                                    | 0.093 | ND       |
| Dichlorodifluoromethane               | 70.7 | mg/kg     | 0.058                                    | 0.093 | ND       |
| Ethylbenzene                          | 70.7 | mg/kg     | 0.043                                    | 0.093 | 0.069J   |
| Isopropylbenzene                      | 70.7 | mg/kg     | 0.046                                    | 0.093 | ND       |
| m&p-Xylenes                           | 70.7 | mg/kg     | 0.079                                    | 0.093 | 0.25     |
| Methyl Acetate                        | 70.7 | mg/kg     | 0.065                                    | 0.093 | ND       |
| Methylcyclohexane                     | 70.7 | mg/kg     | 0.057                                    | 0.093 | ND<br>   |
| Methylene chloride                    | 70.7 | mg/kg     | 0.027                                    | 0.093 | ND       |
| Methyl-t-butyl ether                  | 70.7 | mg/kg     | 0.029                                    | 0.047 | ND       |
| o-Xylene                              | 70.7 | mg/kg     | 0.064                                    | 0.093 | 0.076J   |
| Styrene                               | 70.7 | mg/kg     | 0.051                                    | 0.093 | ND       |
| Tetrachloroethene                     | 70.7 | mg/kg     | 0.033                                    | 0.093 | ND       |
| Toluene                               | 70.7 | mg/kg     | 0.030                                    | 0.093 | 5.4      |
| trans-1,2-Dichloroethene              | 70.7 | mg/kg     | 0.029                                    | 0.093 | 0.068J   |
| trans-1,3-Dichloropropene             | 70.7 | mg/kg     | 0.029                                    | 0.093 | ND       |
| Trichloroethene                       | 70.7 | mg/kg     | 0.032                                    | 0.093 | ND       |
| Trichlorofluoromethane                | 70.7 | mg/kg     | 0.029                                    | 0.093 | ND       |
| Vinyl chloride                        | 70.7 | mg/kg     | 0.066                                    | 0.093 | 1,1      |
| Xylenes (Total)                       | 70.7 | mg/kg     | 0.064                                    | 0.093 | 0.33     |

Sample ID: HSI-WC-NH Collection Date: 10/1/2020 Lab#: AD19595-013 Receipt Date: 10/2/2020 Matrix: Soil % Solids SM2540G Analyte DF Units RL Result % Solids 1 percent Diesel Range Organics 8015D(C10-C28) DF Analyte Units RL Result 1 70 **Diesel Range Organics** mg/kg ND Gasoline range organics 8015D(C6-C10) Analyte DF Units RL Result Gasoline Range Organics 101 mg/kg 29 ND Mercury (TCLP) 7470A DF Units Analyte RL Result Mercury 0.00050 ND mg/l **PCB 8082** Analyte DF Units RL Result Aroclor (Total) 0.029 ND mg/kg Aroclor-1016 mg/kg 0.029 ND Aroclor-1221 mg/kg 0.029 ND Aroclor-1232 0.029 mg/kg ND Aroclor-1242 mg/kg 0.029 ND Aroclor-1248 0.029 mg/kg ND Aroclor-1254 0.029 ND mg/kg Aroclor-1260 mg/kg 0.029 ND Aroclor-1262 mg/kg 0.029 ND Aroclor-1268 0.029 ND mg/kg **TCLP Metals 6010D** Analyte DF Units RL Result Arsenic 0.10 1 ma/l ND Barium mg/l 0.25 ND Cadmium mg/l 0.050 ND Chromium mg/l 0.10 ND Lead mg/l 0.050 0.10 Nickel 0.10 ND mg/l Selenium mg/l 0.10 ND Silver 0.050 ND mg/l **TCLP Semivolatiles 8270** DF Analyte Units RL Result 2.4.5-Trichlorophenol 0.0080 ND mg/l 2,4,6-Trichlorophenol mg/l 0.0080 ND 2,4-Dinitrotoluene 0.0080 ND mg/l 2-Methylphenol mg/l 0.0020 ND 3&4-Methylphenol ND 0.0020 ma/l Hexachlorobenzene 0.0080 ND mg/l Hexachlorobutadiene mg/l 0.0080 ND Hexachloroethane 0.0080 mg/l ND Nitrobenzene 0.0080 mg/l ND Pentachlorophenol mg/l 0.040 ND Pyridine 0.0083 mg/l ND **TCLP Volatiles 8260** Analyte DF Units RL Result 1.1-Dichloroethene 0.0010 mg/l ND 1,2-Dichloroethane 0.00064 ND mg/l 1,4-Dichlorobenzene 0.0010 ND mg/l 2-Butanone 0.0010 mg/l ND Benzene 0.00050 ND mg/l Carbon tetrachloride 0.0010 mg/l ND Chlorobenzene 0.0010 0.0031 mg/l Chloroform 0.0020 mg/l ND

Tetrachloroethene

mg/l mg/l

1

0.0010

0.0010

ND

ND

 Sample ID: HSI-WC-NH
 Collection Date: 10/1/2020

 Lab#: AD19595-013
 Receipt Date: 10/2/2020

Matrix: Soil

Vinyl chloride 1 mg/l 0.0010 ND

Sample ID: HSI-WC-H Lab#: AD19595-014

Matrix: Soil

Collection Date: 10/1/2020 Receipt Date: 10/2/2020

| % | Sol | ids | SM | 25 | 40 | G |
|---|-----|-----|----|----|----|---|
|   |     |     |    |    |    |   |

| Analyte                              | DF | Units   | RL      | Result |
|--------------------------------------|----|---------|---------|--------|
| % Solids                             | 1  | percent |         | 83     |
| Diesel Range Organics 8015D(C10-C28  | )  |         |         |        |
| Analyte                              | DF | Units   | RL      | Result |
| Diesel Range Organics                | 1  | mg/kg   | 72      | ND     |
| Gasoline range organics 8015D(C6-C10 | 0) |         |         |        |
| Analyte                              | DF | Units   | RL      | Result |
| Gasoline Range Organics              | 99 | mg/kg   | 30      | 94     |
| Mercury (TCLP) 7470A                 |    |         |         |        |
| Analyte                              | DF | Units   | RL      | Result |
| Mercury                              | 1  | mg/l    | 0.00050 | ND     |
| PCB 8082                             |    |         |         |        |
| Analyte                              | DF | Units   | RL      | Result |
| Aroclor (Total)                      | 1  | mg/kg   | 0.030   | ND     |
| Aroclor-1016                         | 1  | mg/kg   | 0.030   | ND     |
| Aroclor-1221                         | 1  | mg/kg   | 0.030   | ND     |
| Aroclor-1232                         | 1  | mg/kg   | 0.030   | ND     |
| Aroclor-1242                         | 1  | mg/kg   | 0.030   | ND     |
| Aroclor-1248                         | 1  | mg/kg   | 0.030   | ND     |
| Aroclor-1254                         | 1  | mg/kg   | 0.030   | ND     |
| Aroclor-1260                         | 11 | mg/kg   | 0.030   | ND     |
| Aroclor-1262                         | 1  | mg/kg   | 0.030   | ND     |
| Aroclor-1268                         | 1  | mg/kg   | 0.030   | ND     |
| TCLP Metals 6010D                    |    |         |         |        |
| Analyte                              | DF | Units   | RL      | Result |
| Arsenic                              | 1  | mg/l    | 0.10    | ND     |
| Barium                               | 1  | mg/l    | 0.25    | ND     |
| Cadmium                              | 1  | mg/l    | 0.050   | ND     |
| Chromium                             | 1  | mg/l    | 0.10    | ND     |
| Lead                                 | 1  | mg/l    | 0.050   | 0.21   |
| Nickel                               | 1  | mg/l    | 0.10    | ND<br> |
| Selenium                             | 1  | mg/l    | 0.10    | ND     |
| Silver                               | 1  | mg/l    | 0.050   | ND     |
| TCLP Semivolatiles 8270              |    |         |         |        |
| Analyte                              | DF | Units   | RL      | Result |
| 2,4,5-Trichlorophenol                | 1  | mg/l    | 0.0080  | ND     |
| 2,4,6-Trichtorophenol                | 1  | mg/l    | 0.0080  | ND     |
| 2,4-Dinitrotoluene                   | 1  | mg/l    | 0.0080  | ND     |
| 2-Methylphenol                       |    | mg/l    | 0.0020  | 0.0069 |
| 3&4-Methylphenol                     | 1  | mg/l    | 0.0020  | 0.012  |

# Pyridine TCLP Volatiles 8260

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

Pentachlorophenol

Nitrobenzene

| Analyte              | DF | Units | RL     | Result |
|----------------------|----|-------|--------|--------|
| 1,1-Dichloroethene   | 10 | mg/l  | 0.010  | ND     |
| 1,2-Dichloroethane   | 10 | mg/l  | 0.0064 | 0.033  |
| 1,4-Dichlorobenzene  | 10 | mg/l  | 0.010  | ND     |
| 2-Butanone           | 10 | mg/l  | 0.010  | ND     |
| Benzene              | 10 | mg/l  | 0.0050 | ND     |
| Carbon tetrachloride | 10 | mg/l  | 0.010  | ND     |
| Chlorobenzene        | 10 | mg/l  | 0.010  | 0.83   |
| Chloroform           | 10 | mg/l  | 0.020  | ND     |
| Tetrachloroethene    | 10 | mg/l  | 0.010  | 0.039  |
| Trichloroethene      | 10 | mg/l  | 0.010  | 0.51   |

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

NOTE: Soil Results are reported to Dry Weigh

Project #: 0100230

0.0080

0.0080

0.0080

0.0080

0.040

0.0083

Page 19 of 20

ND

ND

ND

ND

ND

Sample ID: HSI-WC-H Lab#: AD19595-014

Matrix: Soil

Collection Date: 10/1/2020

Receipt Date: 10/2/2020

Vinyl chloride 10 mg/l 0.010 ND

# **HC Reporting Limit Definitions/Data Qualifiers**

#### REPORTING DEFINITIONS

**DF** = Dilution Factor **NA** = Not Applicable

LCS = Laboratory Control Spike ND = Not Detected

MBS = Method Blank Spike PS = Post Digestion Spike

MS = Matrix Spike RL\* = Reporting Limit

MSD = Matrix Spike Duplicate RT = Retention Time

MDL = Method Detection Limit

#### **DATA QUALIFIERS**

- A- Indicates that the Tentatively Identified Compound (TIC) is suspected to be an aldolcondensation product. These compounds are by-products of acetone and methylene chloride used in the extraction process.
- B- Indicates analyte was present in the Method Blank and sample.
- d- For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- **E-** Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the value is estimated because it is either a Tentatively Identified Compound (TIC) or the reported concentration is greater than the MDL but less than the RL. For samples results between the MDL and RL there is a possibility of false positives or misidentification at the quantitation levels. Additionally, the acceptance criteria for QC samples may not be met.
- **R** Retention Time is out.
- Y- Indicates a contaminant found in the blank at less than 10% of the concentration of a contaminant found in the sample.

<sup>\*</sup>Samples with elevated Reporting Limits (RLs) as a result of a dilution may not achieve client reporting limits in some cases. The elevated RLs are unavoidable consequences of sample dilution required to quantitate target analytes that exceed the calibration range of the instrument.

Client: Chesapeake Geosciences Inc

**HC Project #:** 0100230

Date

10/5/20 00:00

10/8/20 12:44

Ву

RL

**BEENA** 

Method

SM 2540G

**EPA 8260D** 

**Project:** Hot Spot Investigation

**Test Code** 

% Solids SM2540G

Volatile Organics (no search) 8260

| Lab#: AD19595-001                                      | Sa                           | ample ID: HSI-SE | 3-05(4.5-5) |                        |                                |             |
|--------------------------------------------------------|------------------------------|------------------|-------------|------------------------|--------------------------------|-------------|
| Test Code                                              | Prep<br>Method               | Prep<br>Date     | Ву          | Analytical<br>Method   | Analysis<br>Date               | Ву          |
| % Solids SM2540G<br>Volatile Organics (no search) 8260 | EPA5030/5035                 |                  |             | SM 2540G<br>EPA 8260D  | 10/5/20 00:00<br>10/8/20 12:23 | BEENA<br>RL |
| Lab#: AD19595-002                                      | Sa                           | ample ID: HSI-SE | 3-06(4.5-5) |                        |                                |             |
| Test Code                                              | Prep<br>Method               | Prep<br>Date     | Ву          | Analytical<br>Method   | Analysis<br>Date               | Ву          |
| % Solids SM2540G<br>Volatile Organics (no search) 8260 | EPA5030/5035                 |                  |             | SM 2540G<br>EPA 8260D  | 10/5/20 00:00<br>10/9/20 13:41 | BEENA<br>BK |
| Lab#: AD19595-003                                      | Sa                           | ample ID: HSI-SE | 3-07(4.5-5) |                        |                                |             |
| Test Code                                              | Prep<br>Method               | Prep<br>Date     | Ву          | Analytical<br>Method   | Analysis<br>Date               | Ву          |
| % Solids SM2540G<br>Volatile Organics (no search) 8260 | EPA5030/5035                 |                  |             | SM 2540G<br>EPA 8260D  | 10/5/20 00:00<br>10/8/20 11:42 | BEENA<br>RL |
| Lab#: AD19595-004                                      | Sa                           | ample ID: HSI-SE | 3-08(3.5-4) |                        |                                |             |
| Test Code                                              | Prep<br>Method               | Prep<br>Date     | Ву          | Analytical<br>Method   | Analysis<br>Date               | Ву          |
| % Solids SM2540G                                       |                              |                  |             | SM 2540G               | 10/5/20 00:00                  | BEENA       |
| Mercury (Soil/Waste) 7471B                             | EPA 7471B                    | 10/05/20 08:00   | asilva      | EPA 7471B              | 10/5/20 16:11                  | OA          |
| Semivolatile Organics (no search) 8270                 | 3510C/3550C                  | 10/06/20         | jprevilon   | EPA 8270E              | 10/6/20 19:31                  | AH/JKR/JI   |
| FAL Metals 6010D                                       | 3005&10/3050                 | 10/05/20 08:00   | asilva      | EPA 6010D              | 10/5/20 16:02                  | OA          |
| FAL Metals 6010D                                       | 3005&10/3050                 | 10/05/20 08:00   | asilva      | EPA 6010D              | 10/5/20 18:00                  | OA<br>DC    |
| FAL Metals 6020B<br>Volatile Organics (no search) 8260 | 3005&10/3050<br>EPA5030/5035 | 10/05/20 08:00   | asilva      | EPA 6020B<br>EPA 8260D | 10/5/20 14:12<br>10/9/20 14:01 | PC<br>BK    |
| Lab#: AD19595-005                                      | Sa                           | ample ID: HSI-SE | 3-08(8-8.5) |                        |                                |             |
| <del></del> · · · · <del>_</del>                       | Prep                         | Prep             |             | Analytical             | Analysis                       |             |

Project #: 0100230 Page 1 of 4

Ву

Date

Method

EPA5030/5035

Client: Chesapeake Geosciences Inc

**Project:** Hot Spot Investigation

% Solids SM2540G

Volatile Organics (no search) 8260

HC Project #: 0100230

| Lab#:                | AD19595-010                         | Sa                           | ample ID: HSI-SI                 | B-10(7-7.5)   |                                       |                                |             |
|----------------------|-------------------------------------|------------------------------|----------------------------------|---------------|---------------------------------------|--------------------------------|-------------|
|                      | <u> </u>                            |                              |                                  |               |                                       | 19 t - Avaganga                |             |
| v olatile O          | rganics (no search) 6200            | EF M3U3U/3U33                |                                  |               | Era 8200D                             | 10/8/20 [1:21                  | KL          |
|                      | rganics (no search) 8260            | 3005&10/3050<br>EPA5030/5035 | 10/03/20 08:00                   | asilva        | EPA 6020B<br>EPA 8260D                | 10/5/20 14:16<br>10/8/20 11:21 | PC<br>RL    |
| ΓAL Meta<br>ΓAL Meta |                                     | 3005&10/3050                 | 10/05/20 08:00<br>10/05/20 08:00 | asilva        | EPA 6010D<br>EPA 6020B                | 10/5/20 18:04                  | OA<br>PC    |
| TAL Meta             |                                     | 3005&10/3050                 | 10/05/20 08:00                   | asilva        | EPA 6010D                             | 10/5/20 16:06                  | OA          |
|                      | ile Organics (no search) 8270       | 3510C/3550C                  | 10/06/20                         | jprevilon     | EPA 8270E                             | 10/6/20 13:22                  | AH/JKR/JI   |
|                      | Soil/Waste) 7471B                   | EPA 7471B                    | 10/05/20 08:00                   | asilva<br>    | EPA 7471B                             | 10/5/20 16:12                  | OA          |
|                      | 6M2540G                             |                              |                                  |               | SM 2540G                              | 10/5/20 00:00                  | BEENA       |
| Test Co              | de                                  | Prep<br>Method               | Prep<br>Date                     | Ву            | Analytical<br>Method                  | Analysis<br>Date               | Ву          |
| L                    |                                     |                              |                                  |               |                                       | <u> </u>                       |             |
| Lab#:                | AD19595-009                         | Sa                           | ample ID: HSI-SI                 | 3-10(5.5-6)   | · · · · · · · · · · · · · · · · · · · |                                |             |
| Volatile O           | rganics (no search) 8260            | EPA5030/5035                 |                                  |               | EPA 8260D                             | 10/7/20 19:33                  | BK          |
| % Solids S           | 5M2540G                             |                              |                                  |               | SM 2540G                              | 10/5/20 00:00                  | BEENA       |
| Test Co              | de                                  | Prep<br>Method               | Prep<br>Date                     | Ву            | Analytical<br>Method                  | Analysis<br>Date               | Ву          |
| Lab#:                | AD19595-008                         | S:                           | ample ID: HSI-SI                 | 3-09(14-14.5) |                                       |                                |             |
| [ <u>.</u>           |                                     |                              |                                  |               |                                       |                                |             |
| /olatile O           | rganics (no search) 8260            | EPA5030/5035                 |                                  |               | EPA 8260D                             | 10/7/20 19:12                  | BK          |
| 6 Solids S           | SM2540G                             |                              |                                  |               | SM 2540G                              | 10/5/20 00:00                  | BEENA       |
| Test Co              | de                                  | Prep<br>Method               | Prep<br>Date                     | Ву            | Analytical<br>Method                  | Analysis<br>Date               | Ву          |
| Lab#:                | AD19595-007                         | Sa                           | ample ID: HSI-SI                 | 3-08(13-13.5) |                                       |                                |             |
| vojatije O           | rgames (no search) 6200             | EF A3030/3033                |                                  |               | EFA 6200D                             | 10/9/20 14:43                  | DK          |
| % Solids S           | SM2540G<br>rganics (no search) 8260 | EPA5030/5035                 |                                  |               | SM 2540G<br>EPA 8260D                 | 10/5/20 00:00<br>10/9/20 14:43 | BEENA<br>BK |
| Test Co              | de                                  | Prep<br>Method               | Prep<br>Date                     | Ву            | Analytical<br>Method                  | Analysis<br>Date               | Ву          |
| <u> </u>             |                                     | 1 10000                      |                                  |               |                                       |                                |             |

EPA5030/5035

SM 2540G

EPA 8260D

10/5/20 00:00

10/8/20 12:02

**BEENA** 

RL

Client: Chesapeake Geosciences Inc

**Project:** Hot Spot Investigation

HC Project #: 0100230

| Lab#: | AD19595-011 | Sample ID: HSI-SB-10(8-8.5) |  |
|-------|-------------|-----------------------------|--|
|       |             |                             |  |

| Test Code                          | Prep<br>Method | Prep<br>Date | Ву | Analytical<br>Method | Analysis<br>Date | Ву    |
|------------------------------------|----------------|--------------|----|----------------------|------------------|-------|
| % Solids SM2540G                   |                |              |    | SM 2540G             | 10/5/20 00:00    | BEENA |
| Volatile Organics (no search) 8260 | EPA5030/5035   |              |    | EPA 8260D            | 10/7/20 19:54    | BK    |

Lab#: AD19595-012 Sample ID: HSI-SB-D2

| Test Code                                              | Prep<br>Method | Prep<br>Date | Ву | Analytical<br>Method  | Analysis<br>Date               | Ву          |
|--------------------------------------------------------|----------------|--------------|----|-----------------------|--------------------------------|-------------|
| % Solids SM2540G<br>Volatile Organics (no search) 8260 | EPA5030/5035   |              |    | SM 2540G<br>EPA 8260D | 10/5/20 00:00<br>10/9/20 15:03 | BEENA<br>BK |

Lab#: AD19595-013 Sample ID: HSI-WC-NH

|                                       | Prep         | Prep           |           | Analytical | Analysis      |           |  |
|---------------------------------------|--------------|----------------|-----------|------------|---------------|-----------|--|
| Test Code                             | Method       | Date           | Ву        | Method     | Date          | Ву        |  |
| % Solids SM2540G                      |              |                |           | SM 2540G   | 10/5/20 00:00 | BEENA     |  |
| Diesel Range Organics 8015D(C10-C28)  | Mod. Shaker  | 10/05/20 05:16 | marie     | EPA 8015D  | 10/6/20 11:24 | ABM/AH/RR |  |
| Gasoline range organics 8015D(C6-C10) | EPA5030/5035 |                |           | EPA 8015D  | 10/8/20 12:43 | RL        |  |
| Mercury (TCLP) 7470A                  | EPA 7470A    | 10/07/20 11:00 | asilva    | EPA 7470A  | 10/8/20 12:51 | BR        |  |
| PCB 8082                              | 3510C/3550C  | 10/06/20 11:35 | marie     | EPA 8082A  | 10/7/20 14:04 | MS/MLC/ON |  |
| TCLP Metals 6010D                     | 3005&10/3050 | 10/07/20 11:00 | asilva    | EPA 6010D  | 10/7/20 17:22 | CJA       |  |
| TCLP Metals 6010D                     | 3005&10/3050 | 10/07/20 11:00 | asilva    | EPA 6010D  | 10/7/20 20:49 | CJA       |  |
| TCLP Metals Extraction 1311           | EPA 1311     | 10/05/20 14:33 | efaustin  |            | 10/6/20 09:45 | efaustin  |  |
| TCLP Organics Extraction 1311         | EPA 1311     | 10/05/20 14:33 | efaustin  |            | 10/6/20 09:45 | efaustin  |  |
| TCLP Semivolatiles 8270               | EPA 3510     | 10/07/20 12:44 | Lynda     | EPA 8270E  | 10/8/20 10:03 | AH/JKR/JB |  |
| TCLP Volatiles 8260                   | EPA 5030C    |                |           | EPA 8260D  | 10/6/20 17:56 | WP        |  |
| TCLP Zero Headspace Extraction        | EPA 1311     | 10/05/20 14:43 | iprevilon |            |               |           |  |

Client: Chesapeake Geosciences Inc

**Project:** Hot Spot Investigation

HC Project #: 0100230

Lab#: AD19595-014 Sample ID: HSI-WC-H

|                                       | Prep         | Prep           |           | Analytical | Analysis      |           |
|---------------------------------------|--------------|----------------|-----------|------------|---------------|-----------|
| Test Code                             | Method       | Date           | Ву        | Method     | Date          | Ву        |
| % Solids SM2540G                      |              |                |           | SM 2540G   | 10/5/20 00:00 | BEENA     |
| Diesel Range Organics 8015D(C10-C28)  | Mod. Shaker  | 10/05/20 05:16 | marie     | EPA 8015D  | 10/6/20 11:50 | ABM/AH/RR |
| Gasoline range organics 8015D(C6-C10) | EPA5030/5035 |                |           | EPA 8015D  | 10/8/20 13:00 | RL        |
| Mercury (TCLP) 7470A                  | EPA 7470A    | 10/07/20 11:00 | asilva    | EPA 7470A  | 10/8/20 12:55 | BR        |
| PCB 8082                              | 3510C/3550C  | 10/06/20 11:35 | marie     | EPA 8082A  | 10/7/20 14:18 | MS/MLC/ON |
| TCLP Metals 6010D                     | 3005&10/3050 | 10/07/20 11:00 | asilva    | EPA 6010D  | 10/7/20 17:26 | CJA       |
| TCLP Metals 6010D                     | 3005&10/3050 | 10/07/20 11:00 | asilva    | EPA 6010D  | 10/7/20 20:53 | CJA       |
| TCLP Metals Extraction 1311           | EPA 1311     | 10/05/20 14:33 | efaustin  |            | 10/6/20 10:25 | efaustin  |
| TCLP Organics Extraction 1311         | EPA 1311     | 10/05/20 14:33 | efaustin  |            | 10/6/20 10:25 | efaustin  |
| TCLP Semivolatiles 8270               | EPA 3510     | 10/07/20 12:44 | Lynda     | EPA 8270E  | 10/8/20 11:13 | AH/JKR/JB |
| TCLP Volatiles 8260                   | EPA 5030C    |                |           | EPA 8260D  | 10/6/20 20:33 | WP        |
| TCLP Zero Headspace Extraction        | EPA 1311     | 10/05/20 14:43 | jprevilon |            |               |           |

**Chain of Custody** 

| FSP#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HC[] or client[]                               | Internal use: sampling plan (check box) HC[] or client[] | Internal use: samp        |                                                                                         |                                 | ļ.                                        |                          | Kades                                                     | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | entac                 |                                                                   | MUDE RWG                  |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|--------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------|---------------------------|---------------|
| Please note NUMBERED items. If not completed your analytical work may be delayed.  A fee of \$5[samnle will be assessed for storage should sample not be activated for any analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | not completed your ana                         | NUMBERED items. If                                       | Please note               |                                                                                         |                                 |                                           |                          | 7                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .\                    |                                                                   |                           |               |
| 5.01 5.2<br>2000 Composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NJ LSRP Project (also check boxes above/right) | Project (also check t                                    | NJ LSRP F                 |                                                                                         |                                 |                                           |                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                   | Additional Notes          | <u>IPI</u>    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nits Tolk                                      | ecific Reporting Lin                                     | Project-Sp                | 02/20                                                                                   | Date: (O                        |                                           |                          | \$                                                        | 10 TAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                     | nt name):                                                         | 11) Sampler (print name): | اد            |
| A Specific States of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the state |                                                | <u> </u>                                                 | Chec                      | ,                                                                                       | 1                               | `                                         | (                        | <                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )<br>}                | ,                                                                 |                           | - 1           |
| NJDEP SPLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                | SPLP (BN, BNA, Metals)                                   |                           | 1/2/20 17:00                                                                            |                                 | ير گر                                     | クレダ                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4116                  | 0/4                                                               |                           | <u> </u>      |
| NJDEP SRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NJD                                            | VOC (8260C SIM or 8011)                                  | Voc (8260                 | 10/2/20 173                                                                             |                                 | mm                                        | T T                      | York                                                      | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                   | A A                       | _             |
| need to be met:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | current groundwater standards (SPLP for soil):           | current groundwate        | 11/01/10                                                                                |                                 | `                                         |                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                   |                           |               |
| ints, HAZARDS ints, indicate which standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>  pecial F</u>                              | Comments, Notes                                          | 7                         | Date Time                                                                               | \                               | N. C. d                 |                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>}</b>              | led by:                                                           |                           | T             |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |                                                          |                           |                                                                                         |                                 |                                           |                          |                                                           | 1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                                   |                           | ŢΤ            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |                                                          |                           |                                                                                         | <b>*</b>                        | *                                         | <u> </u>                 |                                                           | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000                  | AL AL                                                             | 2/0                       | $\overline{}$ |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                       | 22                                                       |                           | ×                                                                                       | XX                              | X                                         | 7.55                     | 5                                                         | 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/C                  | <b>西-8</b>                                                        | 1 500                     |               |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                              |                                                          |                           |                                                                                         | <b>×</b>                        | ×                                         | 2525                     | יט<br>                                                    | 宣公                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 色を                    | あれる                                                               | 200                       |               |
| رو                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                                              |                                                          |                           |                                                                                         | ×                               | ×                                         | <u>0</u> 23              | 3                                                         | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>4</b> /80          | \$ 100 B                                                          | 007                       |               |
| SHEWE NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>X</b>                                       | ,                                                        |                           |                                                                                         | X                               | ×                                         | 833                      | 3                                                         | 1280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 P                  | 95-TE                                                             | 006                       |               |
| 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>×</b>                                       | •                                                        |                           |                                                                                         | <b>&gt;</b>                     | ×                                         | 830                      | Ŭ                                                         | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000                   | およな                                                               | 800                       | 1             |
| 7 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>&gt;</b>                                    | 9.                                                       |                           | ×                                                                                       | ×                               | <b>&gt;</b>                               | 2010                     | ) DO                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 003                   | かり                                                                | 12                        | T             |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>&gt;</b>                                    |                                                          |                           |                                                                                         | <b>&gt;</b>                     | <br><b>◇</b>                              | 3                        |                                                           | L'A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 25                                                                | 0/                        | 1             |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>\</b>                                       |                                                          |                           |                                                                                         | $\Diamond$                      | <b>△</b>                                  |                          | () \<br>{-                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 34                                                                | 200                       | 一             |
| بدو                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                                              |                                                          |                           |                                                                                         | <b>≤</b>                        | S                                         | がかった                     | <i>J</i>                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                     | されて                                                               | 200                       |               |
| دع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>×</b>                                       |                                                          |                           |                                                                                         | X                               | ×                                         | 943112                   | 5 Apple                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ख्<br>१               | ST-CE                                                             | 100                       |               |
| 로 항 9) Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Na<br>HC                                       | N/g<br>Me                                                |                           | 1.                                                                                      | <u>ଏ</u>                        |                                           | Time                     | Matrix Date                                               | D Z Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r Sample              | 4) Customer Sample                                                | Lab Sample #              | _             |
| os<br>ner:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SO4                                            | он                                                       |                           | ΆL                                                                                      | Vo                              | mpos<br>ıb (G                             | 6) Sample                | 5) 6)                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                   |                           |               |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # of Bottles                                   | -                                                        |                           | M                                                                                       | <u>ه</u><br>که                  |                                           |                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                   | <b>FDH045</b>             | <u></u>       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8)                                             |                                                          |                           | eto                                                                                     | 32<br>8                         | C)<br>                                    | ments)                   | <b>OT</b> - Other (please specify under item 9, Comments) | cify under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) water<br>please spe | OT - Other (please                                                | - 0/2/                    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                          |                           | els                                                                                     | 6<br>A                          |                                           |                          | ge                                                        | SL - Sludge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d Water               | GW - Ground Water                                                 | Ratch #                   | _             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | -                                                        |                           | Lo                                                                                      | 0<br>70                         | Туре                                      |                          | A - Air                                                   | S - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng Water              | DW - Drinking Water                                               | <b>←</b>                  |               |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |                                                          |                           | <b>8</b> 0                                                                              | )                               | Sample                                    |                          |                                                           | Matrix Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ma                    |                                                                   | ONLY                      |               |
| ü                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <=== Check If Contingent <===                  | <=== Ch                                                  |                           |                                                                                         | -                               | nt ===>                                   | Check If Contingent ===> | ==> Checl                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                   | USE                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | lists)                                                   | ethods & parameter lists) | 7) Analysis (specify methods                                                            | 7) A                            |                                           |                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                   | FOR LAB                   | T             |
| e. Please Check with Lab.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Expedited TAT Not Always Available.            | * Expedited                                              |                           |                                                                                         |                                 |                                           |                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                   |                           | Т             |
| Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                | Other:                                                   | 423/oMS                   | blicable): CAPO                                                                         | 2d) Quote/PO # (If Applicable): | 2d) Quote                                 | <                        | 7                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                     | <u>e</u>                                                          | 1d) Send Report to:       | _             |
| [ ] Region 2 or 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NY ASP CatA                                    | 8 Business Days (Stand.)                                 | Marolond                  | The Frest                                                                               | 107                             |                                           |                          |                                                           | ٤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | <u>ĕ</u>                                                          | 1c) Send Invoice to:      |               |
| P CatB [ ] NYDEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) NJ Full / NY ASP CatB                        | 5 Business Days (25%)                                    | Charle 1)C                | ity/State):                                                                             | 2c) Project Location (City      | 2c) Proje                                 | MO                       | LS.                                                       | COS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                   | ₽.<br><b>\</b>                                                    | 1b) Email/Cell/Fax/Ph:    | _0            |
| ne [ ] 4-File [ ]EZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ), [ ]PA Mothe                                 | 4 Business Days (35%)*                                   | 200                       | Now C                                                                                   | ct Mgr:                         | 2b) Project Mgr.                          | S                        | ST072                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B                     | Maylor                                                            |                           |               |
| EQuIS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L<br>J                                         | 3 Business Days (50%)*                                   | SOMMOS                    | resolvery !                                                                             | Mo                              |                                           | 4                        | となり                                                       | NO R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E 13                  | 150K                                                              | Address:                  | 00            |
| EnviroData                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )* Reduced:                                    | 2 Business Days (75%)*                                   | we hadron                 | + Sport La                                                                              | #<br><b>#</b>                   | 2a) Project:                              | Black                    | A COM                                                     | BILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66                    | hoose                                                             | 1a) Customer:             | 23            |
| Vaste) Excel Reg. NJ/NY/PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                | 1 Business Day (100%)*                                   | -                         | Project Information                                                                     | -                               |                                           | f                        | ·                                                         | Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | met Info              | Custome                                                           |                           | 3.Q           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Summary                                        | When Available:                                          |                           | NELAC/NJ #07071   PA #68-00463   NY #11408   CT #PH-0671   KY #90124   DE HSCA Approved | #90124   DE                     | -0671   KY                                | 11408   CT #PH           | -00463   NY                                               | 71   PA #68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AC/NJ #070            | NEL                                                               |                           | _ <b>F</b>    |
| De Electronic Data Deliv.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Report Type                                    | Turnaround                                               | Business Enterprise       | A Women-Owned, Disadvantaged, Small Business Enterprise                                 | men-Owned                       | A WC                                      | - 1                      | 6-780-6056                                                | 57 Fax: 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 856-780-60            | Ph (Service Center): 856-780-6057 Fax: 856-780-6056               | Ph (S                     | 10            |
| nts (Please Circle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3) Reporting Requirements (Please Circle)      | 3) R                                                     | RECORD                    | ر<br>ا                                                                                  | lampton-Clark                   | Hamp                                      | )8054                    | 87   973-439<br>New Jersev                                | nt laurel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Drive Mo              | Ph; 800-426-9992   973-244-9770                                   | Service Cent              | 35            |
| Page of O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                | 0/00250                                                  | CHAIN OF CUSTODY          | CHAIN                                                                                   | _                               | Ī                                         | )7004                    | New Jersey                                                | , Fairfield, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dison Road            | 175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004 | 175 Route 4               | 5_            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab Use Only)                                  | Project # (                                              |                           |                                                                                         | 5                               |                                           | E)                       | DBE/SB                                                    | WBE/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e, Inc. (             | Hampton-Clarke, Inc. (WBE/DBE/SBE)                                | Hamp                      |               |

|                                                                                                                                                                        |                                                |                                         |                                                                             |                                                                                                                      |                                                | , <u> </u> |   |                                        |                                        |             |         |             |                              |                                                    |                                       |                                 |                                |                                                            |                                 |                          | N                      | 10                     | 12                     |                        |                                                                                         | 00                                                                                                                      | <u>3E</u>                                                        | <u>;                                    </u>                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------|---|----------------------------------------|----------------------------------------|-------------|---------|-------------|------------------------------|----------------------------------------------------|---------------------------------------|---------------------------------|--------------------------------|------------------------------------------------------------|---------------------------------|--------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| MDE RMS                                                                                                                                                                | Additional Notes                               | 11) Sampler (print name):               |                                                                             |                                                                                                                      | 10) Halinguis                                  | <i>h</i>   |   | 200                                    | and l                                  | 2/0         | 210     | 110         | Lab Sample #                 | A)19595                                            | Batch #                               | ONLY                            | FOR LAB                        |                                                            | 1d) Send Report to              | 1c) Send Invoice to:     | 1b) Email/Cell/Fax/Ph: | Address                | 1a) Customer: (        |                        |                                                                                         | Service Cer                                                                                                             | Ph: 800-42                                                       | Hamp<br>175 Route                                                                                    |
| 0                                                                                                                                                                      |                                                | int name): '//                          | To the same                                                                 | A A                                                                                                                  | keg by≽                                        | 7          |   |                                        | がこう                                    | 10-10-      | されてア    | -88-五时      | 4) Customer Sample           | OT - Other (plea                                   | GW - Ground Water<br>WW - Waste Water | <u>I</u><br>DW - Drinking Water |                                | į                                                          | ē.                              | to                       | w/Ph:                  | Right Gold             | operation the          | Custome                | NELAC/N                                                                                 | Service Center: 137-D Gattner Drive, mount Lauret, New Jersey 00054 Ph (Service Center): 856-780-6057 Fax: 856-780-6056 | Ph: 800-426-9992   973-244-9770 Fax: 973-244-9787   973-439-1458 | Hampton-Clarke, Inc. (WBE/DBE/SBE) 175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004 |
| orthact Rades                                                                                                                                                          |                                                | Stall                                   |                                                                             |                                                                                                                      |                                                |            |   |                                        | 0,0                                    | S)          | (C)     | 6 53001     | mple ID (Matrix              | OT - Other (please specify under item 9, Comments) | ater SL - Sludge<br>ter OL - Oil      | Matrix Codes<br>ater S - Soil   | -==>                           |                                                            | ~                               | ; <del>C</del>           | decas.                 |                        | Sec.                   | Custome Information    | IJ #07071   PA #68-00                                                                   | /e, Mount Lauret, Nev<br>780-6057 Fax: 856-7                                                                            | Fax: 973-244-9787                                                | <b>nc. (WBE/DBE/SBE)</b><br>ո Road, Fairfield, New Jersey 0700                                       |
| ates                                                                                                                                                                   |                                                | <u>ا</u> م                              | a Car                                                                       |                                                                                                                      | Aecepa                                         |            |   | V (00)                                 | 27.6                                   | 04/40       | 00,500  | 51,206515   | 6) Sample C Date Time        | n 9, Comments)                                     |                                       | A - Air                         | > Check If Contingent ===>     |                                                            | 2                               |                          | mas en                 | 5,000                  | A CONTRACT             | )                      | 463   NY #11408   CT                                                                    | 80-6056                                                                                                                 | 973-439-1458                                                     | 3E/SBE)<br>/ Jersey 07004                                                                            |
|                                                                                                                                                                        | :                                              | Date:                                   | MAN A                                                                       |                                                                                                                      | 20 PRE-                                        |            |   | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 2                                      | X           | ŏ<br>XX | XX          | Compos<br>Grab (G            | )                                                  | 2G                                    | Sample<br>Type                  |                                |                                                            | 2d) Quote/PO # (If Applicable): |                          | 2c) Project Location   | 2b) Project Mgr:       | 2a) Project:           | -                      | NELACINJ #07071   PA #68-00463   NY #11408   CT #PH-0671   KY #90124   DE HSCA Approved | A Women-Ow                                                                                                              | Hampton-C                                                        | Į                                                                                                    |
|                                                                                                                                                                        | 2                                              | 10/0/25                                 | 16/2/20                                                                     | ) b/2/20                                                                                                             | D <sub>a</sub> te                              |            |   |                                        | χ.                                     | X           |         |             | SVX<br>TALI                  | Note Page                                          | )27<br> blo<br> XX                    | 10<br>200<br>20<br>20<br>20     | 7) Analysis (specify methods & |                                                            | f Applicable):                  | BOTH TOO                 | op (City/State):       | Tamos Me               | 100F                   | Project Information    | DE HSCA Approved                                                                        | Burners Business Enterprise A Women-Owned, Disadvantaged, Small Business Enterprise                                     | Clarke                                                           | )<br>달                                                                                               |
| Interna                                                                                                                                                                |                                                |                                         | 17,60 Check                                                                 | Indicate                                                                                                             | Time                                           |            |   | ~ ~ ~                                  | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | × × ×       |         |             | RALLE REPORTED TO            | 7 M<br>60<br>3 8                                   | 27                                    | 150<br>1170<br>2                |                                |                                                            | OKCZ-HOL                        | J Mes                    | SOUTAR                 |                        | MACTICAL               |                        |                                                                                         | Small Business Enter                                                                                                    | RECORD                                                           | CHAIN OF CUSTODY                                                                                     |
| A fee of \$5/sam                                                                                                                                                       | ligh Contaminar                                | roject-Specific I                       | VOC (8260C SIM or 8011) SPLP (BN, BNA, Metals) 1,4 Dioxane k if applicable: | indicate if low-level methods required to meet current groundwater standards (SPLP for soil):  RN or RNA (8270D SIM) | Com                                            |            |   |                                        | メイグ                                    | ×<br>×<br>× |         | ,           | 7PH<br>8011<br>7PH           |                                                    |                                       |                                 | parameter lists)               |                                                            | OWO Other:                      |                          | 5 Busi                 | 4 Busi                 | 2                      |                        |                                                                                         | prise                                                                                                                   |                                                                  |                                                                                                      |
| Please note NUMBERED items. If not completed your A fee of \$5/sample will be assessed for storage should san Internal use: sampling plan (check box) HC[] or client[] | NJ LSRP Project (also check boxes above/right) | Project-Specific Reporting Limits       | or 8011)<br>Metals)                                                         | s required to meet<br>rds (SPLP for soil):<br>D SIM)                                                                 | <u>ments, Notes, Sp</u>                        |            |   |                                        |                                        | •           | ) 1 X   | X<br>X<br>X | MeOH<br>En Core              | # 0                                                |                                       | ×                               | <=== Check                     | Expedited IAT                                              | * Eurodited TAT                 | 8 Business Days (Stand.) | Business Days (25%)    | 4 Business Days (35%)* | 2 Business Days (75%)* | 1 Business Day (100%)* | When Available:                                                                         | Turnaround                                                                                                              | 3) Repo                                                          | 0/00230                                                                                              |
| nple i                                                                                                                                                                 | s above/right)                                 | 141.3-                                  | NJDE<br>NJDE<br>Other                                                       | need to be me                                                                                                        | Comments, Notes, Special Requirements, HAZARDS |            |   |                                        |                                        |             |         |             | NaOH<br>HCI<br>H2SO4<br>HNO3 | # of Bottles                                       | 2                                     |                                 | <=== Check If Contingent <===  | Expedited IAT NOt Always Available. Flease Clieck Will Lab | <br>                            | NY ASP CatA              |                        | [ ]PA X Othe           | Reduced:               | Results + QC (Waste)   | Summary                                                                                 | Report Type                                                                                                             | 3) Reporting Requirements (Please Circle)                        |                                                                                                      |
| lytical work may be not be activated for any FSP#                                                                                                                      |                                                | *************************************** | NJDEP SRS NJDEP SPLP Other (specify):                                       | For NJ LSRP projects, indicate which standards need to be met:                                                       | nts, HAZARDS                                   |            |   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  | No.                                    | •           | z)      | هو          | Other:_                      | لي                                                 | <u> </u>                              | <del></del>                     |                                | . Flease CileCk Wi                                         | Other:_                         |                          |                        | <b>€</b>               | EnviroData             | $\overline{}$          | NJ Hazsite                                                                              | e Electronic                                                                                                            | nts (Please Circ                                                 | Page (2)                                                                                             |
| y analysis.                                                                                                                                                            | Cooler lemperature                             | 1                                       |                                                                             | which standards                                                                                                      |                                                |            | • | 800 VID                                | 1                                      | -           |         |             | 9) Comments                  |                                                    |                                       |                                 |                                | THE LAD.                                                   | <del>-</del>                    | ] Region 2 or 5          | NYDEC                  | [ ] 4-File [ ]EZ       | ata                    | eg NJ/NY/PA            | ite                                                                                     | nic Data Deliv.                                                                                                         | ;ie)                                                             | of Si                                                                                                |

### **CONDITION UPON RECEIPT**

Batch Number AD19595

Entered By: maxwell

Date Entered 10/3/2020 6:00:00 AM

| 1  | Yes   | Is there a corresponding COC included with the samples?                                                            |
|----|-------|--------------------------------------------------------------------------------------------------------------------|
| 2  | Yes   | Are the samples in a container such as a cooler or Ice chest?                                                      |
| 3  | No    | Are the COC seals intact?                                                                                          |
| 4  | T0054 | < Thermometer ID. Please specify the Temperature inside the container (in degC). 3.0,3.3                           |
| 5  | Yes   | Are the samples refrigerated (where required)/have they arrived on ice?                                            |
| 6  | Yes   | Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples: |
| 7  | Yes   | Are all of the sample bottles intact? If no, specify sample numbers broken/leaking                                 |
| 8  | Yes   | Are all of the sample labels or numbers legible? If no specify:                                                    |
| 9  | Yes   | Do the contents match the COC? If no, specify                                                                      |
| 10 | Yes   | Is there enough sample sent for the analyses listed on the COC? If no, specify:                                    |
| 11 | Yes   | Are samples preserved correctly?                                                                                   |
| 12 | Yes   | Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?            |
| 13 | NA    | Other comments Specify (TB date, sample matrix, any missing info, etc.)                                            |
| 14 | NA    | Corrective actions (Specify item number and corrective action taken).                                              |
| 15 | No    | Were any samples for ortho-phosphate or dissolved ferrous iron field filtered?                                     |

| İ                          |                                  | Loc       | 1_       |     |          |             |                                  | Loc         |     |          |          |
|----------------------------|----------------------------------|-----------|----------|-----|----------|-------------|----------------------------------|-------------|-----|----------|----------|
| 1 -64.                     | Det-Ti                           | or        | Bot      |     | Ametoria | 1 -1 "      | D-447***                         | or          | Bot |          | <b>A</b> |
| Lab#:                      | DateTime:                        | User      |          | M   | Analysis | Lab#:       | DateTime:                        | User        | Nu  | M        | Analysis |
| AD19595-001                | 10/02/20 17:00                   | MAXV      | 1        | M   | Received | AD19595-006 | 10/05/20 07:54                   | RL          | 1   | Α        | VOA      |
| AD19595-001                | 10/02/20 17:30                   | MAXV      | i        | М   | Login    | AD19595-006 | 10/05/20 08:06                   | R31         | 1   | Α        | NONE     |
| AD19595-001                | 10/02/20 17:47                   | - 1       | 1        | Α   | NONE     | AD19595-006 | 10/09/20 12:34                   | WP          | 1   | Α        | VOA      |
| AD19595-001                | 10/05/20 07:54                   | RL        | 1        | Α   | VOA      | AD19595-006 | 10/09/20 12:37                   |             | 1   | Α        | NONE     |
| AD19595-001                | 10/05/20 08:06                   | R31       | 1        | A   | NONE     | AD19595-006 | 10/02/20 17:48                   | F18         | 2   | Α        | NONE     |
| AD19595-001                | 10/07/20 21:34                   | R31       | 1        | A   | NONE     | AD19595-006 | 10/02/20 17:48                   | F18         | 3   | Α        | NONE     |
| AD19595-001                | 10/07/20 21:34                   | WP        | 1        | A   | VOA      | AD19595-006 | 10/03/20 08:11                   | 1           | 4   | Α        | NONE     |
| AD19595-001                | 10/02/20 17:48                   | F18       | 2        | A   | NONE     | AD19595-006 | 10/05/20 09:14                   |             | 4   | A        | SOLIDS   |
| AD19595-001                | 10/06/20 19:03                   | WP        | 2        | Α   | VOA      | AD19595-006 | 10/05/20 10:35                   | R12         | 4   | A        | NONE     |
| AD19595-001                | 10/02/20 17:48                   | F18<br>BK | 3        | A   | NONE     | AD19595-007 | 10/02/20 17:00                   | MAXW        |     | M        | Received |
| AD19595-001<br>AD19595-001 | 10/07/20 15:49                   | R12       | 3        | A   | NONE     | AD19595-007 | 10/02/20 17:30                   | MAXW        |     | M        | Login    |
| AD19595-001                | 10/03/20 08:11                   | BCT       | 4        | Á   | 1        | AD19595-007 | 10/02/20 17:47                   | 1           | 1   |          | NONE     |
| AD19595-001                | 10/05/20 09:14                   | R12       | 4        | A   | NONE     | AD19595-007 | 10/05/20 07:54                   | RL          | 1   | A        | IVOA     |
| AD19595-001                | 10/05/20 10:35<br>10/02/20 17:00 | MAXW      | 1 '      | М   | Received | AD19595-007 | 10/05/20 08:06<br>10/09/20 12:34 | 1           | 1   | A        | VOA      |
| AD19595-002                | 10/02/20 17:30                   | MAXV      |          | M - | Login    | AD19595-007 | 10/09/20 12:34                   | 1           | 1   | A        | NONE     |
| AD19595-002                | 10/02/20 17:47                   | R31       | 1        | A   | NONE     | AD19595-007 | 10/02/20 17:48                   |             | 2   | Â        | NONE     |
| AD19595-002                | 10/05/20 07:54                   | RL        | 1        | A   | VOA      | AD19595-007 | 10/06/20 19:03                   | i           | 2   | Â        | VOA      |
| AD19595-002                | 10/05/20 08:06                   | R31       | 1        | A   | NONE     | AD19595-007 | 10/02/20 17:48                   | F18         | 3   | A        | NONE     |
| AD19595-002                | 10/09/20 12:34                   | WP        | 1        | A   | VOA      | AD19595-007 | 10/07/20 15:49                   | BK          | 3   | Α.       | VOA      |
| AD19595-002                | 10/09/20 12:37                   | R31       | 1 -      | A   | NONE     | AD19595-007 | 10/03/20 08:11                   | ì           | 4   | A        | NONE     |
| AD19595-002                | 10/02/20 17:48                   | F18       | 2        | A   | NONE     | AD19595-007 | 10/05/20 09:14                   | ì           | 4   | A        | SOLIDS   |
| AD19595-002                | 10/02/20 17:48                   | F18       | 3        | Ā   | NONE     | AD19595-007 | 10/05/20 10:35                   | i           | 4   | iA       | NONE     |
| AD19595-002                | 10/09/20 12:07                   | WP        | 3        | A   | VOA      | AD19595-008 | 10/03/20 10:33                   | MAXW        |     | M        | Received |
| AD19595-002<br>AD19595-002 | 10/03/20 08:11                   | R12       | 4        | Â   | NONE     | AD19595-008 | 10/02/20 17:30                   | MAXW        |     | M        | Login    |
| AD19595-002                | 10/05/20 09:14                   | BCT       | 4        | A   | SOLIDS   | AD19595-008 | 10/02/20 17:30                   | ì           | 1   | A        | NONE     |
| AD19595-002                | 10/05/20 10:35                   | R12       | 4        | A   | NONE     | AD19595-008 | 10/05/20 07:54                   | 1           | 1   | A        | VOA      |
| AD19595-002                | 10/02/20 17:00                   | MAXW      | 1        | м   | Received | AD19595-008 | 10/05/20 08:06                   | R31         | 1   | Â        | NONE     |
| AD19595-003                | 10/02/20 17:30                   | MAXW      | ì        | M   | Login    | AD19595-008 | 10/03/20 08:00                   | F18         | !   | A        | NONE     |
| AD19595-003                | 10/02/20 17:47                   | R31       | 1        | A   | NONE     | AD19595-008 | 10/06/20 19:03                   | WP          | 2 - | <u>.</u> | VOA      |
| AD19595-003                | 10/05/20 07:54                   | RL        | †† -     | Â   | VOA      | AD19595-008 | 10/02/20 17:48                   | F18         | 3   | ļ^       | NONE     |
| AD19595-003                | 10/05/20 07:54                   | R31       | 1        | A   | NONE     | AD19595-008 | 10/07/20 15:49                   | BK          | 3   | A        | VOA      |
| AD19595-003<br>AD19595-003 | 10/07/20 21:34                   | R31       | 11       | A   | NONE     | 1           |                                  | R12         | :   | Ā        | NONE     |
| AD19595-003<br>AD19595-003 | 10/07/20 21:34                   | WP        | 1        | A   | VOA      | AD19595-008 | 10/03/20 08:11                   | 1           | 4   | A        | i        |
| AD19595-003                |                                  | F18       | 2        | A   | NONE     | AD19595-008 | 10/05/20 09:14                   | BCT         | 4   | A        | SOLIDS   |
| AD19595-003                | 10/02/20 17:48                   | WP        | 2        | Ā   | VOA      | AD19595-008 | 10/05/20 10:35                   | R12         |     | 1        | NONE     |
| 1                          |                                  | 1         | è        | 1   | 1        | AD19595-009 | 10/02/20 17:00                   | MAXW        |     | M        | Received |
| AD19595-003                | 10/02/20 17:48                   | F18       | 3        | A   | NONE     | AD19595-009 | 10/02/20 17:30                   | MAXW        |     | M        | Login    |
| AD19595-003                | 10/07/20 15:49                   | BK        | 3        | A   | VOA      | AD19595-009 | 10/02/20 17:47                   | 1 -         | 1   | A        | NONE     |
| AD19595-003                | 10/03/20 08:11                   | R12       | 4        | A   | NONE     | AD19595-009 | 10/05/20 07:54                   | RL          | Ľ   | A        | VOA      |
| AD19595-003                | 10/05/20 09:14                   | BCT       | 4        | Α.  | SOLIDS   | AD19595-009 | 10/05/20 08:06                   | 1 -         | 1   | Α.       | NONE     |
| AD19595-003                | 10/05/20 10:35                   | R12       | 4        | A   | NONE     | AD19595-009 | 10/07/20 21:34                   | WP          | 1   | Α        | VOA      |
| AD19595-004                | 10/02/20 17:00                   | MAXW      | 1        | М   | Received | AD19595-009 | 10/07/20 21:34                   | 1           | 1   | A        | NONE     |
| AD19595-004                | 10/02/20 17:30                   | MAXW      | -        | M   | Login    | AD19595-009 | 10/02/20 17:48                   | F18         | 2   | A        | NONE     |
| AD19595-004                | 10/02/20 17:47                   | 1         | 1        | Α   | NONE     | AD19595-009 | 10/06/20 19:03                   | WP          | 2   | A        | VOA      |
| AD19595-004                | 10/05/20 07:54                   | RL        | 1        | A   | VOA      | AD19595-009 | 10/02/20 17:48                   | F18         | 3   | A        | NONE     |
| AD19595-004                | 10/05/20 08:06                   | R31       | 1        | ١,, | NONE     | AD19595-009 | 10/07/20 15:49                   | BK          | 3   | A        | VOA      |
| AD19595-004                | 10/09/20 12:34                   | WP        | 1        | A   | VOA      | AD19595-009 | 10/03/20 08:11                   | R12         | 4   | A        | NONE     |
| AD19595-004                | 10/09/20 12:37                   | R31       | 1        | A   | NONE     | AD19595-009 | 10/05/20 10:35                   | R12         | 4   | Α        | NONE     |
| AD19595-004                | 10/02/20 17:48                   | F18       | 2        | A   | NONE     | AD19595-009 | 10/03/20 08:11                   | R12         | 5   | Α.       | NONE     |
| AD19595-004                | 10/02/20 17:48                   | F18       | 3        | Α   | NONE     | AD19595-009 | 10/05/20 08:16                   | ANS         | 5   | A        | MIX      |
| AD19595-004                | 10/09/20 12:09                   | WP        | 3        | A   | VOA      | AD19595-009 | 10/05/20 08:16                   | ANS         | 5   | A        | TDSI/Hg  |
| AD19595-004                | 10/03/20 08:11                   | R12       | 4        | A   | NONE     | AD19595-009 | 10/05/20 09:14                   |             | 5   | IA.      | SOLIDS   |
| AD19595-004                | 10/05/20 08:16                   | ANS       | 4        | A   | TDSI/Hg  | AD19595-009 | 10/05/20 10:35                   | R12         | 5   | A        | NONE     |
| AD19595-004                | 10/05/20 08:16                   | ANS       | 4        | A   | MIX      | AD19595-009 | 10/06/20 07:18                   | JP          | 5   | A        | bna-soil |
| AD19595-004                | 10/05/20 09:14                   | BCT       | 4 -      | A   | SOLIDS   | AD19595-009 | 10/06/20 07:19                   | i           | 5   | A        | NONE     |
| AD19595-004                | 10/05/20 10:35                   | R12       | 4        | A   | NONE     | AD19595-010 | 10/02/20 17:00                   | MAXW        |     | M        | Received |
| AD19595-004                | 10/06/20 07:18                   | JP        | 4        | A   | bna-soil | AD19595-010 | 10/02/20 17:30                   | MAXW        | i   | M        | Login    |
| AD19595-004                | 10/06/20 07:19                   | R12       | 4        | A   | NONE     | AD19595-010 | 10/02/20 17:47                   | !           | 1   | A        | NONE     |
| AD19595-005                | 10/02/20 17:00                   | MAXW      | 1        | М   | Received | AD19595-010 | 10/05/20 07:54                   | i           | 1   | A        | VOA      |
| AD10505-005                | 10/02/20 17:30                   | MAXW      | +        | M   | Login    | AD19595-010 | 10/05/20 08:06                   | i           | 1   | A        | NONE     |
| AD19595-005                | 10/02/20 17:47                   | R31       | 1        | A   | NONE     | AD19595-010 | 10/07/20 21:34                   | 1           | 1   | A        | VOA      |
| AD19595-005                | 10/05/20 07:54                   | RL<br>B24 | 11       | A   | VOA      | AD19595-010 | 10/07/20 21:34                   | 1           | 1   | 'A       | NONE     |
| AD19595-005                | 10/05/20 08:06                   | R31       | 1        | A   | NONE     | AD19595-010 | 10/02/20 17:48                   | i           | 2   | A        | NONE     |
| AD19595-005                | 10/07/20 21:34                   | WP        |          | A   | VOA      | AD19595-010 | 10/06/20 19:03                   | WP          | 2   | <u>A</u> | VOA      |
| AD19595-005                | 10/07/20 21:34                   | R31       | <u> </u> | A   | NONE     | AD19595-010 | 10/02/20 17:48                   | F18         | 3   | A        | NONE     |
| AD19595-005                | 10/02/20 17:48                   | F18       | 2        | A   | NONE     | AD19595-010 | 10/07/20 15:49                   | BK          | 3   | A        | VOA      |
| AD19595-005                | 10/06/20 19:03                   | WP        | 2        | Α   | VOA      | AD19595-010 | 10/03/20 08:11                   | 1           | 4   | Α        | NONE     |
| AD19595-005                | 10/02/20 17:48                   | F18       | 3        | A   | NONE     | AD19595-010 | 10/05/20 09:14                   | 1           | 4   | A        | SOLIDS   |
| AD19595-005                | 10/07/20 15:49                   | BK        | 3        | Α   | VOA      | AD19595-010 | 10/05/20 10:35                   |             | 4 _ | Α        | NONE     |
| AD19595-005                | 10/03/20 08:11                   | R12       | 4        | A   | NONE     | AD19595-011 | 10/02/20 17:00                   | MAXW        |     | М        | Received |
| AD19595-005                | 10/05/20 09:14                   | i         | 4        | Α   | SOLIDS   | AD19595-011 | 10/02/20 17:30                   | MAXW        |     | М        | Login    |
| AD19595-005                | 10/05/20 10:35                   | R12       | 4        | Α   | NONE     | AD19595-011 | 10/02/20 17:47                   | i           | 1   | Α        | NONE     |
| AD19595-006                | 10/02/20 17:00                   | MAXW      | 1        | М   | Received | AD19595-011 | 10/05/20 07:54                   | 1           | 1   | Α        | VOA      |
| AD19595-006                | 10/02/20 17:30                   | MAXW      | 10       | М   | Login    | AD19595-011 | 10/05/20 08:06                   | <del></del> | 1 _ | Α        | NONE     |
| AD19595-006                | 10/02/20 17:47                   | R31       | 11       | Α   | NONE     | AD19595-011 | 10/02/20 17:48                   | F18         | 2   | A        | NONE     |

Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login

|                            |                |             |     |    | internal Chain o | o Cusiouy |           |                    |
|----------------------------|----------------|-------------|-----|----|------------------|-----------|-----------|--------------------|
|                            |                | Loc         |     | T  |                  |           |           | Loc                |
|                            |                | or          | Bot | A  |                  |           |           | or Bot A           |
| Lab#:                      | DateTime:      | User        |     | М  | Analysis         | Lab#:     | DateTime: | User Nu M Analysis |
| AD19595-011                | 10/06/20 19:03 | WP          | 2   | A  | VOA              |           |           |                    |
| AD19595-011                | 10/02/20 17:48 | F18         | 3   | A  | NONE             |           |           |                    |
| AD19595-011                | 10/07/20 15:49 | вк          | 3   | A  | VOA              |           |           |                    |
| AD19595-011                | 10/03/20 08:11 |             | 4   | A  | INONE            |           |           |                    |
| AD19595-011                | 10/05/20 09:14 | BCT         | 4   | A  | SOLIDS           |           |           |                    |
| AD19595-011                | 10/05/20 10:35 |             | 4   | Ā  | NONE             |           |           |                    |
| AD19595-012                | 10/02/20 17:00 | MAXW        | -   | М  | Received         |           |           |                    |
| AD19595-012                | 10/02/20 17:30 | MAXW        |     | М  | Login            |           |           |                    |
| AD19595-012                | 10/02/20 17:47 | R31         | 1   | Α  | NONE             |           |           |                    |
| AD19595-012                | 10/05/20 07:54 | RL          | İ1  | A  | VOA              |           |           |                    |
| AD19595-012                | 10/05/20 08:06 | R31         | 1   | Α  | NONE             |           |           |                    |
| AD19595-012                | 10/09/20 12:34 | WP          | 1   | Α  | VOA              |           |           |                    |
| AD19595-012                | 10/09/20 12:37 | R31         | 1   | iA | NONE             |           |           |                    |
| AD19595-012                | 10/02/20 17:48 | F18         | 2   | A  | NONE             |           |           |                    |
| AD19595-012                | 10/02/20 17:48 | F18         | 3   | İA | NONE             |           |           |                    |
| AD19595-012                | 10/03/20 08:11 | R12         | 4   | Α  | NONE             |           |           |                    |
| AD19595-012                | 10/05/20 09:14 | BCT         | 4   | A  | SOLIDS           |           |           |                    |
| AD19595-012                | 10/05/20 10:35 | R12         | 4   | Α  | NONE             |           |           |                    |
| AD19595-013                | 10/02/20 17:00 | MAXW        | 0   | м  | Received         |           |           |                    |
| AD19595-013                | 10/02/20 17:30 | MAXW        | 0   | м  | Login            |           |           |                    |
| AD19595-013                | 10/03/20 08:11 | R12         | 2   | Α  | NONE             |           |           |                    |
| AD19595-013                | 10/05/20 09:14 | BCT         | 2   | A  | SOLIDS           |           |           |                    |
| AD19595-013                | 10/05/20 10:35 | R12         | 2   | Α  | NONE             |           |           |                    |
| AD19595-013                | 10/05/20 05:16 | MSL         | 3   | Α  | tph              |           |           |                    |
| AD19595-013                | 10/05/20 05:16 | R12         | 3   | A  | NONE             |           |           |                    |
| AD19595-013                | 10/05/20 13:24 | R12         | 3   | Α  | NONE             |           |           |                    |
| AD19595-013                | 10/05/20 13:24 | JP          | 3   | Α  | tclp-zhe         |           |           |                    |
| AD19595-013                | 10/05/20 14:32 | EF          | 3   | Α  | TCLP             |           |           |                    |
| AD19595-013                | 10/05/20 14:33 | EF          | 3   | A  | R12              |           |           |                    |
| AD19595-013                | 10/06/20 11:35 | MSL         | 3   | Α  | p/p              |           |           |                    |
| AD19595-013                | 10/06/20 11:37 | R12         | 3   | Α  | NONE             |           |           |                    |
| AD19595-013                | 10/08/20 10:23 | R30         | 4   | Α  | NONE             |           |           |                    |
| AD19595-013                | 10/08/20 11:32 | WP          | 4   | Α  | VOA              |           |           |                    |
| AD19595-013                | 10/08/20 11:58 | R30         | 4   | Α  | NONE             |           |           |                    |
| AD19595-013                | 10/08/20 12:21 | RL          | 4   | Α  | GRO              |           |           |                    |
| AD19595-013                | 10/08/20 12:27 | R30         | 4   | Α  | NONE             |           |           |                    |
| AD19595-013                | 10/08/20 12:36 | RL          | 5   | Α  | GRO              |           |           |                    |
| AD19595-013                | 10/08/20 12:37 | R31         | 5   | Α  | NONE             |           |           |                    |
| AD19595-014                | 10/02/20 17:00 | MAXW        | !   | М  | Received         |           |           |                    |
| AD19595-014                | 10/02/20 17:30 | MAXW        | i   | М  | Login            |           |           |                    |
| AD19595-014                | 10/03/20 08:11 | <del></del> | 2   | A  | NONE             |           |           |                    |
| AD19595-014                | 10/05/20 09:14 | i           | 2   | Α  | SOLIDS           |           |           |                    |
| AD19595-014                | 10/05/20 10:35 | R12         | 2   | Α  | NONE             |           |           |                    |
| AD19595-014                | 10/03/20 08:11 | R12         | 3   | Α  | NONE             |           |           |                    |
| AD19595-014                | 10/05/20 05:16 | MSL         | 3   | Α  | tph              |           |           |                    |
| AD19595-014                | 10/05/20 05:16 | -           | 3   | A  | NONE             |           |           |                    |
| AD19595-014                | 10/05/20 13:24 | i           | 3   | Α  | NONE             |           |           |                    |
| AD19595-014                | 10/05/20 13:24 | JP          | 3   | Α  | tclp-zhe         |           |           |                    |
| AD19595-014                | 10/05/20 14:32 | EF          | 3   | Α  | TCLP             |           |           |                    |
| AD19595-014                | 10/05/20 14:33 | EF          | 3   | Α  | R12              |           |           |                    |
| AD19595-014                | 10/06/20 11:35 | MSL         | 3   | Α  | ip/p             |           |           |                    |
| AD19595-014                | 10/06/20 11:37 | R12         | 3   | Α  | NONE             |           |           |                    |
| AD19595-014                | 10/08/20 10:23 | R30         | 4   | A  | NONE             |           |           |                    |
| AD19595-014                | 10/08/20 11:32 | WP          | 4   | A  | VOA              |           |           |                    |
| AD19595-014                | 10/08/20 11:58 | R30         | 4   | A  | NONE             |           |           |                    |
| AD19595-014                | 10/08/20 12:21 | RL          | 4   | A  | GRO              |           |           |                    |
| AD19595-014                | 10/08/20 12:27 | R30         | 4   | A  | NONE             |           |           |                    |
| AD19595-014<br>AD19595-014 | 10/08/20 12:36 | RL<br>D24   | 5   | A  | GRO              |           |           |                    |
| AU 19595-014               | 10/08/20 12:37 | R31         | 5   | Α  | NONE             |           |           |                    |
|                            |                |             |     |    |                  |           |           |                    |

Volatile Data

#### ORGANICS VOLATILE REPORT

Sample Number: AD19595-001

Client Id: HSI-SB-05(4.5-5)

Data File: 1M140274.D

Analysis Date: 10/08/20 12:23 Date Rec/Extracted: 10/02/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 7.27g: 10ml

Final Vol: NA

Dilution: 68.8

Solids: 86

| • · · · · · · · · · · · · · · · · · · · | U | nı | ts: | mg/ | Kg |
|-----------------------------------------|---|----|-----|-----|----|
|-----------------------------------------|---|----|-----|-----|----|

| Cas#                     | Compound                       | MDL   | RL    | Conc | g/ <b>ng</b><br>Cas# | Compound                  | MDL   | RL    | Conc   |
|--------------------------|--------------------------------|-------|-------|------|----------------------|---------------------------|-------|-------|--------|
| 71-55-6                  | 1.1.1-Trichloroethane          | 0.029 | 0.080 | U    | 56-23-5              | Carbon Tetrachloride      | 0.026 | 0.080 | U      |
| 79-3 <b>4-5</b>          | 1,1,2,2-Tetrachioroethane      | 0.036 | 0.080 | U    | 108-90-7             | Chlorobenzene             | 0.026 | 0.080 | 0.050J |
| 76-13-1                  | 1,1,2-Trichloro-1,2,2-trifluor | 0.058 | 0.080 | U    | 75-00-3              | Chloroethane              | 0.046 | 0.080 | U.0300 |
| 79- <b>00-</b> 5         | 1,1,2-Trichloroethane          | 0.026 | 0.080 | U :  | 67-66-3              | Chloroform                | 0.16  | 0.16  | U      |
|                          |                                |       |       |      |                      |                           |       |       | -      |
| 75-34-3                  | 1,1-Dichloroethane             | 0.034 | 0.080 | U    | 74-87-3              | Chloromethane             | 0.041 | 0.080 | U      |
| 75-35-4                  | 1,1-Dichloroethene             | 0.043 | 0.080 | U 1  | 156-59-2             | cis-1,2-Dichloroethene    | 0.051 | 0.080 | 0.34   |
| 87-61-6                  | 1,2,3-Trichlorobenzene         | 0.063 | 0.080 | U    | 10061-01-5           | cis-1,3-Dichloropropene   | 0.026 | 0.080 | U      |
| 120-82-1                 | 1,2,4-Trichlorobenzene         | 0.058 | 0.080 | U    | 110-82-7             | Cyclohexane               | 0.039 | 0.080 | U      |
| 96-12-8                  | 1,2-Dibromo-3-Chloropropa      | 0.067 | 0.080 | U    | 124-48-1             | Dibromochloromethane      | 0.019 | 0.080 | U      |
| 106-93-4                 | 1,2-Dibromoethane              | 0.027 | 0.080 | U    | 75-71 <b>-8</b>      | Dichlorodifluoromethane   | 0.050 | 0.080 | U      |
| 95-5 <b>0-</b> 1         | 1,2-Dichlorobenzene            | 0.026 | 0.080 | U    | 100-41-4             | Ethylbenzene              | 0.037 | 0.080 | U      |
| 107-06-2                 | 1,2-Dichloroethane             | 0.051 | 0.051 | 0.10 | 98-82-8              | tsopropylbenzene          | 0.039 | 0.080 | U      |
| 78-87- <b>5</b>          | 1,2-Dichloropropane            | 0.024 | 0.080 | U    | 179601-23-1          | m&p-Xylenes               | 0.068 | 0.080 | U      |
| 541-73-1                 | 1,3-Dichlorobenzene            | 0.030 | 0.080 | U    | 79-20-9              | Methyl Acetate            | 0.056 | 0.080 | U      |
| 106-46-7                 | 1,4-Dichlorobenzene            | 0.029 | 0.080 | U ·  | 108-87-2             | Methylcyclohexane         | 0.049 | 0.080 | U      |
| 123-91-1                 | 1,4-Dioxane                    | 3.1   | 4.0   | υ    | 75-09-2              | Methylene Chloride        | 0.024 | 0.080 | U      |
| 78-93-3                  | 2-Butanone                     | 0.060 | 0.080 | U ·  | 1634-04-4            | Methyl-t-butyl ether      | 0.025 | 0.040 | U      |
| 591- <b>78-6</b>         | 2-Hexanone                     | 0.048 | 0.080 | U ,  | 95-47-6              | o-Xylene                  | 0.055 | 0.080 | U      |
| 108-10-1                 | 4-Methyl-2-Pentanone           | 0.039 | 0.080 | U :  | 100-42-5             | Styrene                   | 0.043 | 0.080 | U      |
| 67-64-1                  | Acetone                        | 0.37  | 0.40  | U    | 127-18-4             | Tetrachloroethene         | 0.029 | 0.080 | 0.059J |
| 71-43-2                  | Benzene                        | 0.024 | 0.040 | U    | 108-88-3             | Toluene                   | 0.026 | 0.080 | U      |
| 74-97-5                  | Bromochloromethane             | 0.063 | 0.080 | U ·  | 156-60-5             | trans-1,2-Dichloroethene  | 0.025 | 0.080 | 0.076J |
| 75-27-4                  | Bromodichloromethane           | 0.028 | 0.080 | U    | 10061-02-6           | trans-1,3-Dichloropropene | 0.025 | 0.080 | U      |
| 75-25-2                  | Bromoform                      | 0.043 | 0.080 | U    | 79-01-6              | Trichloroethene           | 0.028 | 0.080 | 0.85   |
| 74-83-9                  | Bromomethane                   | 0.040 | 0.080 | U    | 75-69-4              | Trichlorofluoromethane    | 0.025 | 0.080 | U      |
| 7 <b>5-</b> 15- <b>0</b> | Carbon Disulfide               | 0.034 | 0.080 | U    | 75-01-4              | Vinyl Chloride            | 0.056 | 0.080 | U      |
| 1330-20-7                | Xylenes (Total)                | 0.055 | 0.080 | U    |                      |                           |       |       |        |
|                          |                                |       |       |      |                      |                           |       |       |        |

Worksheet #: 569869

Total Target Concentration

1.5 Colum

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $<sup>{\</sup>it E}$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Operator : RL Sam Mult : 1 Vial# : 79 Misc : M,MEXT!1 Qt Meth : 1M\_A0909.M Qt On : 10/08/20 13:18 SampleID : AD19595-001 Data File: 1M140274.D Acq On : 10/08/20 12:23 Qt Upd On: 09/10/20 15:58

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-0720\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound                     | R.Т.  | QIon | Response | Conc Units | Dev(Min) |
|------------------------------|-------|------|----------|------------|----------|
| Internal Standards           |       |      |          |            |          |
|                              | 5.336 | 96   | 370489   | 30.00 ug/  | /1 0.00  |
| 52) Chlorobenzene-d5         | 6.989 | 117  | 392819   | 30.00 ug/  | /1 0.00  |
| 70) 1,4-Dichlorobenzene-d4   | 8.281 | 152  | 263631   | 30.00 ug/  | /1 0.00  |
| System Monitoring Compounds  |       |      |          |            |          |
| 37) Dibromofluoromethane     | 4.940 | 111  | 100876   | 29.18 ug/  | /1 0.00  |
| Spiked Amount 30.000         |       |      | Recove   | ery = 97   | 7.27%    |
| 39) 1,2-Dichloroethane-d4    | 5.143 | 67   | 56508    | 30.02 ug/  | /1 0.00  |
| Spiked Amount 30.000         |       |      | Recove   | ry = 100   | 0.07%    |
| 66) Toluene-d8               | 6.198 | 98   | 415370   | 26.17 ug/  | /1 0.00  |
| Spiked Amount 30.000         |       |      | Recove   | ery = 87   | 7.23%    |
| 76) Bromofluorobenzene       | 7.622 | 174  | 204639   | 30.81 ug/  | /1 0.00  |
| Spiked Amount 30.000         |       |      | Recove   | ery = 102  | 2.70%    |
| Target Compounds             |       |      |          |            | Qvalue   |
| 28) trans-1,2-Dichloroethene | 3.940 | 96   | 2164     | 0.9503     | ug/l 77  |
| 30) cis-1,2-Dichloroethene   | 4.657 | 61   | 18447    | 4.2523     | ug/l 97  |
| 40) 1,2-Dichloroethane       | 5.191 | 62   | 4787     | 1.2948     | ug/l 95  |
| 49) Trichloroethene          | 5.538 | 130  | 30492    | 10.6851    | ug/l 91  |
| 65) Tetrachloroethene        | 6.542 | 164  | 2100     | 0.7408     | ug/l 100 |
| 69) Chlorobenzene            | 7.001 | 112  | 5680     | 0.6265     | ug/l 100 |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed



ORGANICS VOLATILE REPORT

Sample Number: AD19595-002

Client Id: HSI-SB-06(4.5-5)

Data File: 1M140342.D Analysis Date: 10/09/20 13:41

Date Rec/Extracted: 10/02/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

0.034

0.054

0.079

0.079

U

0.23

75-01-4

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 7.41g:10ml

Final Vol: NA

Dilution: 67.5

Solids: 85

|                   |                                |       |       | Units: mg | g/Kg        |                           |       |       |        |
|-------------------|--------------------------------|-------|-------|-----------|-------------|---------------------------|-------|-------|--------|
| Cas #             | Compound                       | MDL   | RL    | Conc      | Cas#        | Compound                  | MDL   | RL    | Conc   |
| 71-55-6           | 1,1,1-Trichloroethane          | 0.028 | 0.079 | U         | 56-23-5     | Carbon Tetrachloride      | 0.026 | 0.079 | U      |
| 79-34-5           | 1,1,2,2-Tetrachloroethane      | 0.036 | 0.079 | U ·       | 108-90-7    | Chlorobenzene             | 0.026 | 0.079 | 1.4    |
| 76-13-1           | 1,1,2-Trichloro-1,2,2-trifluor | 0.058 | 0.079 | U         | 75-00-3     | Chloroethane              | 0.046 | 0.079 | U      |
| 79- <b>00-5</b>   | 1,1,2-Trichloroethane          | 0.025 | 0.079 | U         | 67-66-3     | Chloroform                | 0.16  | 0.16  | U      |
| 75-34-3           | 1,1-Dichloroethane             | 0.034 | 0.079 | U         | 74-87-3     | Chloromethane             | 0.041 | 0.079 | U      |
| 75-35-4           | 1,1-Dichloroethene             | 0.042 | 0.079 | U :       | 156-59-2    | cis-1,2-Dichloroethene    | 0.050 | 0.079 | 0.17   |
| 87-61-6           | 1,2,3-Trichlorobenzene         | 0.062 | 0.079 | U         | 10061-01-5  | cis-1,3-Dichloropropene   | 0.025 | 0.079 | U      |
| 120-82-1          | 1,2,4-Trichlorobenzene         | 0.058 | 0.079 | U         | 110-82-7    | Cyclohexane               | 0.039 | 0.079 | U      |
| 96-12-8           | 1,2-Dibromo-3-Chloropropa      | 0.066 | 0.079 | U         | 124-48-1    | Dibromochloromethane      | 0.019 | 0.079 | U      |
| 106-93-4          | 1,2-Dibromoethane              | 0.027 | 0.079 | U         | 75-71-8     | Dichlorodifluoromethane   | 0.049 | 0.079 | U      |
| 95-5 <b>0</b> -1  | 1,2-Dichlorobenzene            | 0.026 | 0.079 | U         | 100-41-4    | Ethylbenzene              | 0.037 | 0.079 | 0.044J |
| 107-06-2          | 1,2-Dichloroethane             | 0.051 | 0.051 | U         | 98-82-8     | Isopropylbenzene          | 0.039 | 0.079 | U      |
| 78-87-5           | 1,2-Dichloropropane            | 0.024 | 0.079 | U         | 179601-23-1 | m&p-Xylenes               | 0.067 | 0.079 | 0.16   |
| 541-7 <b>3</b> -1 | 1,3-Dichlorobenzene            | 0.030 | 0.079 | U         | 79-20-9     | Methyl Acetate            | 0.056 | 0.079 | U      |
| 106-46-7          | 1.4-Dichlorobenzene            | 0.029 | 0.079 | U         | 108-87-2    | Methylcyclohexane         | 0.049 | 0.079 | U      |
| 123-91-1          | 1,4-Dioxane                    | 3.1   | 4.0   | U         | 75-09-2     | Methylene Chloride        | 0.023 | 0.079 | U      |
| 78-93-3           | 2-Butanone                     | 0.059 | 0.079 | U         | 1634-04-4   | Methyl-t-butyl ether      | 0.025 | 0.040 | U      |
| 591-78-6          | 2-Hexanone                     | 0.048 | 0.079 | U         | 95-47-6     | o-Xylene                  | 0.054 | 0.079 | 0.067J |
| 108-10-1          | 4-Methyl-2-Pentanone           | 0.039 | 0.079 | U         | 100-42-5    | Styrene                   | 0.043 | 0.079 | U      |
| 67- <b>64-1</b>   | Acetone                        | 0.36  | 0.40  | U         | 127-18-4    | Tetrachloroethene         | 0.028 | 0.079 | 0.028J |
| 71-43-2           | Benzene                        | 0.023 | 0.040 | U         | 108-88-3    | Toluene                   | 0.026 | 0.079 | 0.39   |
| 74-97-5           | Bromochloromethane             | 0.062 | 0.079 | U         | 156-60-5    | trans-1,2-Dichloroethene  | 0.025 | 0.079 | U      |
| 75-27-4           | Bromodichloromethane           | 0.027 | 0.079 | U         | 10061-02-6  | trans-1,3-Dichloropropene | 0.024 | 0.079 | U      |
| 75-25-2           | Bromoform                      | 0.043 | 0.079 | U         | 79-01-6     | Trichloroethene           | 0.027 | 0.079 | 0.54   |
| 74-83-9           | Bromomethane                   | 0.040 | 0.079 | U         | 75-69-4     | Trichlorofluoromethane    | 0.024 | 0.079 | U      |

Carbon Disulfide

Xylenes (Total)

75-15-0

1330-20-7

Vinyl Chloride

0.056

0.079

U

Worksheet #: 569869

<sup>2.8</sup> ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19595-002 Data File: 1M140342.D Acq On : 10/09/20 13:41 Qt Meth : 1M\_A0909.M Qt On : 10/09/20 13:58 Qt Upd On: 09/10/20 15:58 Operator : BK Sam Mult : 1 Vial# : 16
Misc : M,MEXT!1

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-09-20\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Ur | nits Dev | (Min)  |
|-----------------------------|-------|------|----------|---------|----------|--------|
| Internal Standards          |       |      |          |         |          |        |
|                             | 5.333 | 96   | 349551   | 30.00   | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.986 | 117  | 374999   |         | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.281 | 152  | 258756   | 30.00   | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |          |         |          |        |
| 37) Dibromofluoromethane    | 4.941 | 111  | 99717    | 30.57   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 101.90%  |        |
| 39) 1,2-Dichloroethane-d4   | 5.143 | 67   | 55311    | 31.14   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 103.80%  |        |
| 66) Toluene-d8              | 6.198 | 98   | 391704   | 25.85   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 86.17%   |        |
| 76) Bromofluorobenzene      | 7.622 | 174  | 196349   | 30.12   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery =   | 100.40%  |        |
| Target Compounds            |       |      |          |         |          | Qvalue |
| 30) cis-1,2-Dichloroethene  | 4.654 | 61   | 8719     | 2.130   | )2 ug/1  | . 93   |
| 49) Trichloroethene         | 5.539 | 130  | 18258    | 6.781   | .3 ug/1  | . 92   |
| 65) Tetrachloroethene       | 6.539 | 164  | 969      | 0.358   | 31 ug/l  | . 90   |
| 67) Toluene                 | 6.233 | 92   | 36568    | 4.931   | .2 ug/1  | . 91   |
| 69) Chlorobenzene           | 7.002 | 112  | 149114   | 17.229  | 9 ug/1   | . 97   |
| 74) Ethylbenzene            | 7.047 | 106  | 2295     | 0.558   | 33 ug/1  | 92     |
| 78) m&p-Xylenes             | 7.104 | 106  | 11254    | 2.039   | 8 ug/1   | . 91   |
| 79) o-Xylene                | 7.333 | 106  | 4736     | 0.838   | 13 ug/1  | . 95   |
|                             |       |      |          |         |          |        |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





ORGANICS VOLATILE REPORT

Sample Number: AD19595-003

Client Id: HSI-SB-07(4.5-5)

Data File: 1M140272.D

Analysis Date: 10/08/20 11:42 Date Rec/Extracted: 10/02/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 7.06g: 10ml

Final Vol: NA

Dilution: 70.8

Solids: 86

Units: mg/Kg Compound MDL RL Conc MDL RL Cas# Cas# Compound Conc 71-55-6 1,1,1-Trichloroethane 0.029 0.082 56-23-5 Carbon Tetrachloride 0.027 0.082 U U 79-34-5 1,1,2,2-Tetrachloroethane 0.037 0.082 0.17 108-90-7 0.027 0.082 Chlorobenzene U 1,1,2-Trichloro-1,2,2-trifluor 76-13-1 0.060 0.082 U 75-00-3 Chloroethane 0.048 0.082 U 79-00-5 1,1,2-Trichloroethane 0.026 0.082 U 67-66-3 Chloroform 0.16 0.16 75-34-3 0.035 u 74-87-3 1.1-Dichloroethane 0.082 Chloromethane 0.042 0.082 ш 75-35-4 0.044 0.082 1,1-Dichloroethene 156-59-2 cis-1,2-Dichloroethene 0.052 0.082 87-61-6 1.2.3-Trichlorobenzene 0.065 0.082 U 10061-01-5 0.082 cis-1,3-Dichloropropene 0.026 U 120-82-1 1,2,4-Trichlorobenzene 0.060 0.082 U 110-82-7 Cyclohexane 0.040 0.082 U 96-12-8 1,2-Dibromo-3-Chloropropa 0.069 0.082 u 124-48-1 Dibromochloromethane 0.020 0.082 U 106-93-4 1,2-Dibromoethane 0.028 0.082 75-71-8 Dichlorodifluoromethane 0.082 0.051 U 95-50-1 1,2-Dichlorobenzene 0.027 0.082 U 100-41-4 Ethylbenzene 0.038 0.082 U 107-06-2 0.053 0.087 1.2-Dichloroethane 0.053 98-82-8 0.082 Isopropylbenzene 0.041 U 78-87-5 1,2-Dichloropropane 0.025 0.082 U 179601-23-1 m&p-Xylenes 0.070 0.082 541-73-1 1.3-Dichlorobenzene 0.031 0.082 U 79-20-9 Methyl Acetate 0.058 0.082 U 106-46-7 1,4-Dichlorobenzene 0.030 0.082 U 108-87-2 Methylcyclohexane 0.082 0.051 U 4.1 U 75-09-2 123-91-1 1.4-Dioxane 3.2 Methylene Chloride 0.082 0.024 п

U

Ū

11

1634-04-4

95-47-6

100-42-5

127-18-4

108-88-3

156-60-5

79-01-6

75-69-4

10061-02-6

| 100-10-1  | 4-ivietriyi-2-Fentanone | 0.040 | 0.002 | U |
|-----------|-------------------------|-------|-------|---|
| 67-64-1   | Acetone                 | 0.38  | 0.41  | U |
| 71-43-2   | Benzene                 | 0.024 | 0.041 | U |
| 74-97-5   | Bromochloromethane      | 0.065 | 0.082 | U |
| 75-27-4   | Bromodichloromethane    | 0.028 | 0.082 | U |
| 75-25-2   | Bromoform               | 0.045 | 0.082 | U |
| 74-83-9   | Bromomethane            | 0.041 | 0.082 | U |
| 75-15-0   | Carbon Disulfide        | 0.035 | 0.082 | U |
| 1330-20-7 | Xylenes (Total)         | 0.056 | 0.082 | U |

0.062

0.049

0.040

0.082

0.082

0.082

**Trichloroethene** 

Methyl-t-butyl ether

Tetrachloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

o-Xylene

Styrene

Toluene

78-93-3

591-78-6

108-10-1

2-Butanone

2-Hexanone

4-Methyl-2-Pentanone

R - Retention Time Out

0.026

0.056

0.045

0.029

0.027

0.025

0.025

0.028

0.025

0.058

0.041

0.082

0.082

0.082

0.082

0.082

0.082

0.082

0.082

0.082

U

U

U

U

Ū

U

Ū

U

U

0.11

<sup>75-01-4</sup> Vinyl Chloride

Worksheet #: 569869

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
 d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Ot Meth : 1M\_A0909.M Qt On : 10/08/20 13:17 Qt Upd On: 09/10/20 15:58 SampleID : AD19595-003 Data File: 1M140272.D Acq On : 10/08/20 11:42 SampleID : AD19595-003 Operator : RL Sam Mult : 1 Vial# : 77 Misc : M,MEXT!1

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-0720\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound                      | R.T.  | QIon | Response | Conc U | nits Dev | (Min)  |
|-------------------------------|-------|------|----------|--------|----------|--------|
| Internal Standards            |       |      |          |        |          |        |
| 4) Fluorobenzene              | 5.333 | 96   | 373220   | 30.00  | ug/l     | 0.00   |
| 52) Chlorobenzene-d5          | 6.986 | 117  | 393780   | 30.00  | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4    | 8.281 | 152  | 270998   | 30.00  | ug/l     | 0.00   |
| System Monitoring Compounds   |       |      |          |        |          |        |
| 37) Dibromofluoromethane      | 4.937 | 111  | 103180   | 29.63  | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ery =  | 98.77%   |        |
| 39) 1,2-Dichloroethane-d4     | 5.146 | 67   | 57323    | 30.23  | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry =   | 100.77%  |        |
| 66) Toluene-d8                | 6.198 | 98   | 418623   | 26.31  | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |      |          |        | 87.70%   |        |
| 76) Bromofluorobenzene        | 7.622 | 174  | 211452   | 30.97  | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry =   | 103.23%  |        |
| Target Compounds              |       |      |          |        |          | Qvalue |
| 40) 1,2-Dichloroethane        | 5.185 | 62   | 3915     | 1.05   | 12 ug/:  | l 92   |
| 49) Trichloroethene           | 5.539 | 130  | 3912     | 1.360  | 08 ug/   | l 99   |
| 75) 1,1,2,2-Tetrachloroethane | 7.677 | 83   | 10881    | 2.03   | 39 ug/   | L 98   |
|                               |       |      |          |        |          |        |

<sup>(</sup>#) = qualifier out of range (m) = manual integration (+) = signals summed





ORGANICS VOLATILE REPORT

Sample Number: AD19595-004

Client Id: HSI-SB-08(3.5-4) Data File: 1M140343.D

Analysis Date: 10/09/20 14:01

Date Rec/Extracted: 10/02/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 7.73g:10ml

Final Vol: NA

Dilution: 64.7

Solids: 87

| Units: | mg/                                     | Ka |
|--------|-----------------------------------------|----|
|        | * * * * * * * * * * * * * * * * * * * * |    |

| Cas #         Compound         MDL         RL         Conc         Cas #         Compound         MDL         RL         Conc           71-55-6         1,1,1-Trichloroethane         0.027         0.074         U         56-23-5         Carbon Tetrachloride         0.024         0.074         U           79-34-5         1,1,2-Trichloro-1,2,2-trifluor         0.054         0.074         U         75-00-3         Chlorobenae         0.043         0.074         U           79-00-5         1,1,2-Trichloroethane         0.024         0.074         U         75-03-3         Chloroform         0.15         0.15         U           75-34-3         1,1-Dichloroethane         0.034         0.074         U         75-67-3         Chloromethane         0.043         0.074         U           87-61-6         1,2-Dichroobenzene         0.058         0.074         U         1106-10-15         cis-1,2-Dichloropropene         0.024         0.074         U           10-82-1         1,2-Dichroobenzene         0.054         0.074         U         1108-2-7         Oyclohexane         0.004         0.074         U           10-8-93-4         1,2-Dichlorobenzene         0.024         0.074         U         124-48-1 <td< th=""><th colspan="12">Units: mg/Kg</th></td<>                                                                                                                                                 | Units: mg/Kg             |                                |       |       |        |             |                           |       |       |        |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|-------|-------|--------|-------------|---------------------------|-------|-------|--------|--|--|
| 79-34-5         1,1,2,2-Tetrachioroethane         0.033         0.074         U         108-90-7         Chlorobenzene         0.025         0.074         U           76-13-1         1,1,2-Trichloro-1,2,2-Irifluor         0.054         0.074         U         75-00-3         Chloroethane         0.043         0.074         U           79-00-5         1,1,2-Trichloroethane         0.024         0.074         U         67-68-3         Chloroform         0.15         0.15         U           75-34-3         1,1-Dichloroethane         0.032         0.074         U         156-59-2         cis-1,2-Dichloroethene         0.047         0.074         U           87-61-6         1,2,3-Trichlorobenzene         0.058         0.074         U         1006-101-5         cis-1,3-Dichloropropene         0.024         0.074         U           120-82-1         1,2-Dichlorobenzene         0.054         0.074         U         110-82-7         Cyclohexane         0.036         0.074         U           106-93-4         1,2-Dichlorobenzene         0.052         0.074         U         124-8-1         Dichloroethane         0.048         0.074         U         155-17-8         Dichloroethane         0.064         0.074         U         155-18-8<                                                                                                                                                                   | Cas #                    | Compound                       | MDL   | RL    | Conc   | Cas #       | Compound                  | MDL   | RL    | Conc   |  |  |
| 76-13-1         1,1,2-Trichloro-1,2,2-trifluor         0.054         0.074         U         75-00-3         Chloroethane         0.043         0.074         U           79-00-5         1,1,2-Trichloroethane         0.024         0.074         U         67-68-3         Chloroform         0.15         0.15         U           75-34-3         1,1-Dichloroethane         0.032         0.074         U         74-87-3         Chloroforme         0.038         0.074         U           87-61-6         1,2-3-Trichlorobenzene         0.058         0.074         U         10691-01-5         cis-1,3-Dichloroptene         0.024         0.074         U           120-82-1         1,2-4-Trichlorobenzene         0.054         0.074         U         110-82-7         Cyclohexane         0.036         0.074         U           16-93-4         1,2-Dichlorobenzene         0.052         0.074         U         75-71-8         Dichlorodethane         0.046         0.074         U           106-93-4         1,2-Dichlorobenzene         0.024         0.074         U         75-71-8         Dichlorodethane         0.046         0.074         U           107-06-2         1,2-Dichlorobenzene         0.024         0.074         U                                                                                                                                                                                             | 71-55-6                  | 1,1,1-Trichloroethane          | 0.027 | 0.074 | U i    | 56-23-5     | Carbon Tetrachloride      | 0.024 | 0.074 | U      |  |  |
| 79 00.5         1,1,2-Trichloroethane         0.024         0.074         U         67-66-3         Chloroform         0.15         0.15         U           75-34-3         1,1-Dichloroethane         0.032         0.074         U         74-87-3         Chloromethane         0.038         0.074         U           87-61-6         1,2-Dichloroethene         0.040         0.074         U         156-59-2         cis-1,2-Dichloroethene         0.024         0.074         U           120-82-1         1,2-A-Trichlorobenzene         0.058         0.074         U         110-82-7         Cyclohexane         0.038         0.074         U           96-12-8         1,2-Dibromo-3-Chloropropa         0.062         0.074         U         124-48-1         Dibromochloromethane         0.018         0.074         U           96-93-4         1,2-Dichlorobenzene         0.022         0.074         U         75-71-8         Dichlorodifluoromethane         0.046         0.074         U           96-80-1         1,2-Dichlorobenzene         0.024         0.074         U         98-82-8         Isopropylbenzene         0.035         0.074         U.1           106-93-2         1,2-Dichlorobenzene         0.022         0.074         U                                                                                                                                                                                  | 79-34-5                  | 1,1,2,2-Tetrachloroethane      | 0.033 | 0.074 | U      | 108-90-7    | Chlorobenzene             | 0.025 | 0.074 | 1.3    |  |  |
| 75.34-3         1.1-Dichloroethane         0.032         0.074         U         74-87-3         Chloromethane         0.038         0.074         U           75.35-4         1.1-Dichloroethene         0.040         0.074         U         156-59-2         cis-1,2-Dichloroethene         0.047         0.074         U           87-61-6         1.2.3-Trichlorobenzene         0.058         0.074         U         10061-01-5         cis-1,3-Dichloropropenee         0.024         0.074         U           120-82-1         1.2.4-Trichlorobenzene         0.052         0.074         U         110-82-7         Cyclohexane         0.036         0.074         U           96-12-8         1.2-Dibromo-3-Chloropropane         0.052         0.074         U         75-71-8         Dichlorodifluoromethane         0.018         0.074         U           95-50-1         1,2-Dichlorobenzene         0.024         0.074         U         98-82-8         Isopropylbenzene         0.035         0.074         U           78-87-5         1,2-Dichlorobenzene         0.022         0.074         U         79-20-3         Methyl Acetate         0.052         0.074         U           541-73-1         1,3-Dichlorobenzene         0.028         0.074                                                                                                                                                                               | 76-13-1                  | 1,1,2-Trichloro-1,2,2-trifluor | 0.054 | 0.074 | U      | 75-00-3     | Chloroethane              | 0.043 | 0.074 | U      |  |  |
| 75-35-4         1,1-Dichloroethene         0 040         0 074         U         156-59-2         cis-1,2-Dichloroethene         0 047         0 074         U           87-61-6         1,2,3-Trichlorobenzene         0 058         0.074         U         10061-01-5         cis-1,3-Dichloropropene         0 024         0 074         U           120-82-1         1,2,4-Trichlorobenzene         0 054         0 074         U         110-82-7         Cyclohexane         0 036         0 074         U           16-83-4         1,2-Dibromo-3-Chloropropa         0 062         0 074         U         124-48-1         Dibromochloromethane         0 018         0 074         U           106-93-4         1,2-Dichlorobenzene         0 024         0 074         U         75-71-8         Dichlorodifluoromethane         0 046         0 074         U           95-50-1         1,2-Dichlorobenzene         0 024         0 074         U         98-82-8         Isopropylbenzene         0 037         0 074         U           78-87-5         1,2-Dichlorobenzene         0 022         0 074         U         179-20-9         Methyl Acetate         0 052         0 074         U           104-0-3-1         1,4-Dichlorobenzene         0 027         0 074 <td>79-00-5</td> <td>1,1,2-Trichloroethane</td> <td>0.024</td> <td>0.074</td> <td>U</td> <td>67-66-3</td> <td>Chloroform</td> <td>0.15</td> <td>0.15</td> <td>U</td> | 79-00-5                  | 1,1,2-Trichloroethane          | 0.024 | 0.074 | U      | 67-66-3     | Chloroform                | 0.15  | 0.15  | U      |  |  |
| 87-61-6         1.2,3-Trichlorobenzene         0.058         0.074         U         10061-01-5         cis-1,3-Dichloropropene         0.024         0.074         U           120-82-1         1,2,4-Trichlorobenzene         0.054         0.074         U         110-82-7         Cyclohexane         0.036         0.074         U           96-12-8         1,2-Dibromo-3-Chloropropa         0.062         0.074         U         124-48-1         Dibromochloromethane         0.018         0.074         U           96-12-8         1,2-Dichlorobenzene         0.025         0.074         U         75-71-8         Dichlorodifluoromethane         0.046         0.074         U           95-50-1         1,2-Dichlorobenzene         0.024         0.074         U         98-82-8         Isopropylbenzene         0.035         0.074         U           78-87-5         1,2-Dichloropropane         0.022         0.074         U         79-20-9         Methyl Acetate         0.063         0.074         U           541-73-1         1,3-Dichlorobenzene         0.027         0.074         U         79-20-9         Methyl Acetate         0.056         0.074         U           123-91-1         1,4-Dichlorobenzene         0.025         0.074                                                                                                                                                                                | 75- <b>34-3</b>          | 1,1-Dichloroethane             | 0.032 | 0.074 | U      | 74-87-3     | Chloromethane             | 0.038 | 0.074 | U      |  |  |
| 120-82-1         1,2,4-Trichlorobenzene         0.054         0.074         U         110-82-7         Cyclohexane         0.036         0.074         U           96-12-8         1,2-Dibromo-3-Chloropropa         0.062         0.074         U         124-48-1         Dibromochloromethane         0.018         0.074         U           106-93-4         1,2-Dibromoethane         0.025         0.074         U         75-71-8         Dichlorodifluoromethane         0.046         0.074         U           95-50-1         1,2-Dichlorobenzene         0.024         0.074         U         98-82-8         Isopropylbenzene         0.037         0.074         U           78-87-5         1,2-Dichloropethane         0.022         0.074         U         179-02-3         Methyl Acetate         0.037         0.074         U           741-73-1         1,3-Dichlorobenzene         0.028         0.074         U         79-20-9         Methyl Acetate         0.052         0.074         U           106-45-7         1,4-Dichlorobenzene         0.027         0.074         U         198-87-2         Methylcyclohexane         0.046         0.074         U           123-91-78-6         2-Butanone         0.056         0.074         U                                                                                                                                                                                      | 75- <b>3</b> 5- <b>4</b> | 1,1-Dichloroethene             | 0.040 | 0.074 | U      | 156-59-2    | cis-1,2-Dichloroethene    | 0.047 | 0.074 | U      |  |  |
| 96.12-8         1.2-Dibromo-3-Chloropropa         0.062         0.074         U         124-48-1         Dibromochloromethane         0.018         0.074         U           106-93-4         1.2-Dibromoethane         0.025         0.074         U         75-71-8         Dichlorodifluoromethane         0.046         0.074         U           95-50-1         1,2-Dichlorobenzene         0.024         0.074         U         98-82-8         Isopropylbenzene         0.037         0.074         U           78-87-5         1,2-Dichloropropane         0.022         0.074         U         179601-23-1         m&p-Xylenes         0.063         0.074         U           541-73-1         1,3-Dichlorobenzene         0.028         0.074         U         79-20-9         Methyl Acetate         0.052         0.074         U           106-46-7         1,4-Dichlorobenzene         0.027         0.074         U         108-87-2         Methyl-cyclohexane         0.046         0.074         U           123-91-1         1,4-Dicklorobenzene         0.027         0.074         U         1634-04-4         Methyl-cyclohexane         0.022         0.074         U           591-78-6         2-Butanone         0.056         0.074         U                                                                                                                                                                                   | 87-61-6                  | 1.2.3-Trichlorobenzene         | 0.058 | 0.074 | U      | 10061-01-5  | cis-1,3-Dichloropropene   | 0.024 | 0.074 | U      |  |  |
| 106-93-4         1,2-Dibromoethane         0.025         0.074         U         75-71-8         Dichlorodiffuoromethane         0.046         0.074         U           95-50-1         1,2-Dichlorobenzene         0.024         0.074         0.029J         100-41-4         Ethylbenzene         0.035         0.074         0.11           107-06-2         1,2-Dichloroethane         0.047         0.047         U         98-82-8         Isopropylbenzene         0.037         0.074         U           541-73-1         1,3-Dichlorobenzene         0.028         0.074         U         79-20-9         Methyl Acetate         0.052         0.074         U           106-46-7         1,4-Dichlorobenzene         0.027         0.074         U         108-87-2         Methyl Acetate         0.052         0.074         U           123-91-1         1,4-Dioxane         2.9         3.7         U         75-09-2         Methylecchloride         0.022         0.074         U           78-93-3         2-Butanone         0.056         0.074         U         1634-04-4         Methyl-t-butyl ether         0.023         0.037         U           591-78-6         2-Hexanone         0.045         0.074         U         1634-04-4                                                                                                                                                                                             | 120-82-1                 | 1,2,4-Trichlorobenzene         | 0.054 | 0.074 | U      | 110-82-7    | Cyclohexane               | 0.036 | 0.074 | U      |  |  |
| 95-50-1         1,2-Dichlorobenzene         0.024         0.074         0.029J         100-41-4         Ethylbenzene         0.035         0.074         0.11           107-06-2         1,2-Dichloroethane         0.047         0.047         U         98-82-8         Isopropylbenzene         0.037         0.074         U           78-87-5         1,2-Dichloropropane         0.022         0.074         U         179601-23-1         m&p-Xylenes         0.063         0.074         U           541-73-1         1,3-Dichlorobenzene         0.028         0.074         U         79-20-9         Methyl Acetate         0.052         0.074         U           106-46-7         1,4-Dichlorobenzene         0.027         0.074         U         108-87-2         Methyl-Cetate         0.046         0.074         U           123-91-1         1,4-Dioxane         2.9         3.7         U         75-09-2         Methyl-cethoride         0.022         0.074         U           78-93-3         2-Butanone         0.056         0.074         U         1634-04-4         Methyl-t-butyl ether         0.023         0.037         U           108-10-1         4-Methyl-2-Pentanone         0.036         0.074         U         100-42-5                                                                                                                                                                                            | 96-12-8                  | 1,2-Dibromo-3-Chloropropa      | 0.062 | 0.074 | U ·    | 124-48-1    | Dibromochloromethane      | 0.018 | 0.074 | U      |  |  |
| 107-06-2         1,2-Dichloroethane         0 047         0.047         U         98-82-8         Isopropylbenzene         0.037         0.074         U           78-87-5         1,2-Dichloropropane         0.022         0.074         U         179601-23-1         m&p-Xylenes         0.063         0.074         0.47           541-73-1         1,3-Dichlorobenzene         0.028         0.074         U         79-20-9         Methyl Acetate         0.052         0.074         U           106-46-7         1,4-Dichlorobenzene         0.027         0.074         U         108-87-2         Methylcyclohexane         0.046         0.074         U           123-91-1         1,4-Dioxane         2.9         3.7         U         75-09-2         Methylcyclohexane         0.022         0.074         U           78 93-3         2-Butanone         0.056         0.074         U         1634-04-4         Methyl-t-butyl ether         0.023         0.037         U           591-78-6         2-Hexanone         0.045         0.074         U         1634-04-4         Methyl-t-butyl ether         0.051         0.074         U           108-10-1         4-Methyl-2-Pentanone         0.036         0.074         U         100-42-5                                                                                                                                                                                           | 106-93-4                 | 1,2-Dibromoethane              | 0.025 | 0.074 | U      | 75-71-8     | Dichlorodifluoromethane   | 0.046 | 0.074 | U      |  |  |
| 78-87-5         1,2-Dichloropropane         0.022         0.074         U         179601-23-1         m&p-Xylenes         0.063         0.074         0.47           541-73-1         1,3-Dichlorobenzene         0.028         0.074         U         79-20-9         Methyl Acetate         0.052         0.074         U           106-46-7         1,4-Dichlorobenzene         0.027         0.074         U         108-87-2         Methylcyclohexane         0.046         0.074         U           123-91-1         1,4-Dioxane         2.9         3.7         U         75-09-2         Methylcyclohexane         0.022         0.074         U           78-93-3         2-Butanone         0.056         0.074         U         1634-04-4         Methyl-t-butyl ether         0.023         0.037         U           591-78-6         2-Hexanone         0.045         0.074         U         95-47-6         o-Xylene         0.051         0.074         U           108-10-1         4-Methyl-2-Pentanone         0.036         0.074         U         100-42-5         Styrene         0.040         0.074         U           67-64-1         Acetone         0.34         0.37         U         127-18-4         Tetrachloroethene                                                                                                                                                                                                     | 95-50-1                  | 1,2-Dichlorobenzene            | 0.024 | 0.074 | 0.029J | 100-41-4    | Ethylbenzene              | 0.035 | 0.074 | 0.11   |  |  |
| 541-73-1         1,3-Dichlorobenzene         0.028         0.074         U         79-20-9         Methyl Acetate         0.052         0.074         U           106-46-7         1,4-Dichlorobenzene         0.027         0.074         U         108-87-2         Methylcyclohexane         0.046         0.074         U           123-91-1         1,4-Dioxane         2.9         3.7         U         75-09-2         Methylcyclohexane         0.022         0.074         U           78 93-3         2-Butanone         0.056         0.074         U         1634-04-4         Methyl-t-butyl ether         0.023         0.037         U           591-78-6         2-Hexanone         0.045         0.074         U         95-47-6         o-Xylene         0.051         0.074         0.14           108-10-1         4-Methyl-2-Pentanone         0.036         0.074         U         100-42-5         Styrene         0.040         0.074         U           67-64-1         Acetone         0.34         0.37         U         127-18-4         Tetrachloroethene         0.027         0.074         U           74-97-5         Bromochloromethane         0.058         0.074         U         156-60-5         trans-1,2-Dichloroethen                                                                                                                                                                                             | 107-06-2                 | 1,2-Dichloroethane             | 0.047 | 0.047 | U      | 98-82-8     | Isopropylbenzene          | 0.037 | 0.074 | U      |  |  |
| 106-46-7         1,4-Dichlorobenzene         0.027         0.074         U         108-87-2         Methylcyclohexane         0.046         0.074         U           123-91-1         1,4-Dioxane         2.9         3.7         U         75-09-2         Methylene Chloride         0.022         0.074         U           78 93-3         2-Butanone         0.056         0.074         U         1634-04-4         Methyl-t-butyl ether         0.023         0.037         U           591-78-6         2-Hexanone         0.045         0.074         U         95-47-6         o-Xylene         0.051         0.074         0.14           108-10-1         4-Methyl-2-Pentanone         0.036         0.074         U         100-42-5         Styrene         0.040         0.074         U           67-64-1         Acetone         0.34         0.37         U         127-18-4         Tetrachloroethene         0.027         0.074         U           74-97-5         Bromochloromethane         0.058         0.074         U         108-88-3         Toluene         0.023         0.074         U           75-27-4         Bromodichloromethane         0.058         0.074         U         1061-02-6         trans-1,3-Dichloropropene </td <td>78-87-5</td> <td>1,2-Dichloropropane</td> <td>0.022</td> <td>0.074</td> <td>U</td> <td>179601-23-1</td> <td>m&amp;p-Xylenes</td> <td>0.063</td> <td>0.074</td> <td>0.47</td>         | 78-87-5                  | 1,2-Dichloropropane            | 0.022 | 0.074 | U      | 179601-23-1 | m&p-Xylenes               | 0.063 | 0.074 | 0.47   |  |  |
| 123-91-1         1,4-Dioxane         2.9         3.7         U         75-09-2         Methylene Chloride         0.022         0.074         U           78 93-3         2-Butanone         0.056         0.074         U         1634-04-4         Methylene Chloride         0.023         0.037         U           591-78-6         2-Hexanone         0.045         0.074         U         95-47-6         o-Xylene         0.051         0.074         0.14           108-10-1         4-Methyl-2-Pentanone         0.036         0.074         U         100-42-5         Styrene         0.040         0.074         U           67-64-1         Acetone         0.34         0.37         U         127-18-4         Tetrachloroethene         0.027         0.074         U           71-43-2         Benzene         0.022         0.037         U         108-88-3         Toluene         0.024         0.074         U           74-97-5         Bromochloromethane         0.058         0.074         U         156-60-5         trans-1,2-Dichloropethene         0.023         0.074         U           75-27-4         Bromodichloromethane         0.040         0.074         U         10061-02-6         trans-1,3-Dichloropethene                                                                                                                                                                                                     | 541-73-1                 | 1,3-Dichlorobenzene            | 0.028 | 0.074 | U      | 79-20-9     | Methyl Acetate            | 0.052 | 0.074 | U      |  |  |
| 78 93-3         2-Butanone         0.056         0.074         U         1634-04-4         Methyl-t-butyl ether         0.023         0.037         U           591-78-6         2-Hexanone         0.045         0.074         U         95-47-6         o-Xylene         0.051         0.074         0.14           108-10-1         4-Methyl-2-Pentanone         0.036         0.074         U         100-42-5         Styrene         0.040         0.074         U           67-64-1         Acetone         0.34         0.37         U         127-18-4         Tetrachloroethene         0.027         0.074         U           71-43-2         Benzene         0.022         0.037         U         108-88-3         Toluene         0.024         0.074         0.49           74-97-5         Bromochloromethane         0.058         0.074         U         156-60-5         trans-1,2-Dichloroethene         0.023         0.074         U           75-27-4         Bromodichloromethane         0.026         0.074         U         10061-02-6         trans-1,3-Dichloropropene         0.023         0.074         U           75-25-2         Bromoform         0.040         0.074         U         79-01-6         Trichloroethene                                                                                                                                                                                                   | 106-46-7                 | 1,4-Dichlorobenzene            | 0.027 | 0.074 | U :    | 108-87-2    | Methylcyclohexane         | 0.046 | 0.074 | U      |  |  |
| 591-78-6         2-Hexanone         0.045         0.074         U         95-47-6         o-Xylene         0.051         0.074         0.14           108-10-1         4-Methyl-2-Pentanone         0.036         0.074         U         100-42-5         Styrene         0.040         0.074         U           67-64-1         Acetone         0.34         0.37         U         127-18-4         Tetrachloroethene         0.027         0.074         U           71-43-2         Benzene         0.022         0.037         U         108-88-3         Toluene         0.024         0.074         0.49           74-97-5         Bromochloromethane         0.058         0.074         U         156-60-5         trans-1,2-Dichloroethene         0.023         0.074         U           75-27-4         Bromodichloromethane         0.026         0.074         U         10061-02-6         trans-1,3-Dichloropropene         0.023         0.074         U           75-25-2         Bromoform         0.040         0.074         U         79-01-6         Trichloroethene         0.026         0.074         U           74-83-9         Bromomethane         0.037         0.074         U         75-69-4         Trichlorofluoromethane <td>123-91-1</td> <td>1,4-Dioxane</td> <td>2.9</td> <td>3.7</td> <td>U</td> <td>75-09-2</td> <td>Methylene Chloride</td> <td>0.022</td> <td>0.074</td> <td>U</td>                               | 123-91-1                 | 1,4-Dioxane                    | 2.9   | 3.7   | U      | 75-09-2     | Methylene Chloride        | 0.022 | 0.074 | U      |  |  |
| 108-10-1         4-Methyl-2-Pentanone         0.036         0.074         U         100-42-5         Styrene         0.040         0.074         U           67-64-1         Acetone         0.34         0.37         U         127-18-4         Tetrachloroethene         0.027         0.074         U           71-43-2         Benzene         0.022         0.037         U         108-88-3         Toluene         0.024         0.074         0.49           74-97-5         Bromochloromethane         0.058         0.074         U         156-60-5         trans-1,2-Dichloroethene         0.023         0.074         U           75-27-4         Bromodichloromethane         0.026         0.074         U         10061-02-6         trans-1,3-Dichloropropene         0.023         0.074         U           75-25-2         Bromoform         0.040         0.074         U         79-01-6         Trichloroethene         0.026         0.074         0.030J           74-83-9         Bromomethane         0.037         0.074         U         75-69-4         Trichlorofluoromethane         0.023         0.074         U           75-15-0         Carbon Disulfide         0.031         0.074         U         75-01-4         Vinyl                                                                                                                                                                                             | 78-93-3                  | 2-Butanone                     | 0.056 | 0.074 | U      | 1634-04-4   | Methyl-t-butyl ether      | 0.023 | 0.037 | U      |  |  |
| 67-64-1         Acetone         0.34         0.37         U         127-18-4         Tetrachloroethene         0.027         0.074         U           71-43-2         Benzene         0.022         0.037         U         108-88-3         Toluene         0.024         0.074         0.49           74-97-5         Bromochloromethane         0.058         0.074         U         156-60-5         trans-1,2-Dichloroethene         0.023         0.074         U           75-27-4         Bromodichloromethane         0.026         0.074         U         10061-02-6         trans-1,3-Dichloropropene         0.023         0.074         U           75-25-2         Bromoform         0.040         0.074         U         79-01-6         Trichloroethene         0.026         0.074         U           74-83-9         Bromomethane         0.037         0.074         U         75-69-4         Trichlorofluoromethane         0.023         0.074         U           75-15-0         Carbon Disulfide         0.031         0.074         U         75-01-4         Vinyl Chloride         0.053         0.074         U                                                                                                                                                                                                                                                                                                                | 591-78-6                 | 2-Hexanone                     | 0.045 | 0.074 | U      | 95-47-6     | o-Xylene                  | 0.051 | 0.074 | 0.14   |  |  |
| 71-43-2         Benzene         0.022         0.037         U         108-88-3         Toluene         0.024         0.074         0.49           74-97-5         Bromochloromethane         0.058         0.074         U         156-60-5         trans-1,2-Dichloroethene         0.023         0.074         U           75-27-4         Bromodichloromethane         0.026         0.074         U         10061-02-6         trans-1,3-Dichloropropene         0.023         0.074         U           75-25-2         Bromoform         0.040         0.074         U         79-01-6         Trichloroethene         0.026         0.074         0.030           74-83-9         Bromomethane         0.037         0.074         U         75-69-4         Trichlorofluoromethane         0.023         0.074         U           75-15-0         Carbon Disulfide         0.031         0.074         U         75-01-4         Vinyl Chloride         0.053         0.074         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108-10-1                 | 4-Methyl-2-Pentanone           | 0.036 | 0.074 | U      | 100-42-5    | Styrene                   | 0.040 | 0.074 | U      |  |  |
| 74-97-5         Bromochloromethane         0.058         0.074         U         156-60-5         trans-1,2-Dichloroethene         0.023         0.074         U           75-27-4         Bromodichloromethane         0.026         0.074         U         10061-02-6         trans-1,3-Dichloropropene         0.023         0.074         U           75-25-2         Bromoform         0.040         0.074         U         79-01-6         Trichloroethene         0.026         0.074         0.030J           74-83-9         Bromomethane         0.037         0.074         U         75-69-4         Trichlorofluoromethane         0.023         0.074         U           75-15-0         Carbon Disulfide         0.031         0.074         U         75-01-4         Vinyl Chloride         0.053         0.074         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67-64-1                  | Acetone                        | 0.34  | 0.37  | U      | 127-18-4    | Tetrachloroethene         | 0.027 | 0.074 | U      |  |  |
| 75-27-4         Bromodichloromethane         0.026         0.074         U         10061-02-6 trans-1,3-Dichloropropene         0.023         0.074         U           75-25-2         Bromoform         0.040         0.074         U         79-01-6         Trichloroethene         0.026         0.074         0.030J           74-83-9         Bromomethane         0.037         0.074         U         75-69-4         Trichlorofluoromethane         0.023         0.074         U           75-15-0         Carbon Disulfide         0.031         0.074         U         75-01-4         Vinyl Chloride         0.053         0.074         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71-43-2                  | Benzene                        | 0.022 | 0.037 | U      | 108-88-3    | Toluene                   | 0.024 | 0.074 | 0.49   |  |  |
| 75-25-2         Bromoform         0.040         0.074         U         79-01-6         Trichloroethene         0.026         0.074         0.030           74-83-9         Bromomethane         0.037         0.074         U         75-69-4         Trichlorofluoromethane         0.023         0.074         U           75-15-0         Carbon Disulfide         0.031         0.074         U         75-01-4         Vinyl Chloride         0.053         0.074         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74-97-5                  | Bromochloromethane             | 0.058 | 0.074 | U      | 156-60-5    | trans-1,2-Dichloroethene  | 0.023 | 0.074 | U      |  |  |
| 74-83-9         Bromomethane         0.037         0.074         U         75-69-4         Trichlorofluoromethane         0.023         0.074         U           75-15-0         Carbon Disulfide         0.031         0.074         U         75-01-4         Vinyl Chloride         0.053         0.074         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75-27-4                  | Bromodichloromethane           | 0.026 | 0.074 | U      | 10061-02-6  | trans-1,3-Dichloropropene | 0.023 | 0.074 | U      |  |  |
| 75-15-0 Carbon Disulfide 0.031 0.074 U 75-01-4 Vinyl Chloride 0.053 0.074 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75-25-2                  | Bromoform                      | 0.040 | 0.074 | U      | 79-01-6     | Trichloroethene           | 0.026 | 0.074 | 0.030J |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74-83-9                  | Bromomethane                   | 0.037 | 0.074 | U      | 75-69-4     | Trichlorofluoromethane    | 0.023 | 0.074 | U      |  |  |
| 1330-20-7 Xylenes (Total) 0.051 0.074 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75- <b>15-0</b>          | Carbon Disulfide               | 0.031 | 0.074 | U      | 75-01-4     | Vinyl Chloride            | 0.053 | 0.074 | U      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1330-20-7                | Xylenes (Total)                | 0.051 | 0.074 | 0.61   |             |                           |       |       |        |  |  |

2.6

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 1M\_A0909.M Qt On : 10/09/20 14:19 Qt Upd On: 09/10/20 15:58 Operator : BK Sam Mult : 1 Vial# : 17 Misc : M,MEXT!1 SampleID : AD19595-004 Data File: 1M140343.D Acq On : 10/09/20 14:01 Misc

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-09-20\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Units | s Dev(Min) |
|-----------------------------|-------|------|----------|------------|------------|
| Internal Standards          |       |      |          |            |            |
|                             | 5.333 | 96   | 378849   | 30.00 ug   | /1 0.00    |
|                             |       |      | 407191   |            |            |
| 70) 1,4-Dichlorobenzene-d4  |       |      | 275813   | <b>.</b>   |            |
| System Monitoring Compounds |       |      |          |            |            |
| 37) Dibromofluoromethane    | 4.937 | 111  | 103950   | 29.41 ug/  | /1 0.00    |
| Spiked Amount 30.000        |       |      | Recove   | ry = 98    | 3.03%      |
| 39) 1,2-Dichloroethane-d4   | 5.143 | 67   | 58023    | 30.14 ug,  | /1 0.00    |
| Spiked Amount 30.000        |       |      | Recove   | ry = 100   | 0.47%      |
| 66) Toluene-d8              | 6.198 | 98   | 426674   | 25.93 ug,  | /1 0.00    |
| Spiked Amount 30.000        |       |      | Recove   | ry = 86    | 5.43%      |
| 76) Bromofluorobenzene      | 7.622 | 174  | 213706   | 30.75 ug/  | /1 0.00    |
| Spiked Amount 30.000        |       |      | Recove   | ry = 102   | 2.50%      |
| Target Compounds            |       |      |          |            | Qvalue     |
| 49) Trichloroethene         | 5.535 | 130  | 1159     | 0.3972     | ug/l 79    |
| 67) Toluene                 | 6.233 | 92   | 52644    | 6.5378     | ug/l 92    |
| 69) Chlorobenzene           | 7.002 | 112  | 161135   | 17.1469    | ug/l 99    |
| 74) Ethylbenzene            | 7.047 | 106  | 6533     | 1.4911     | ug/l 94    |
| 78) m&p-Xylenes             | 7.104 | 106  | 36829    | 6.2625     | ug/l 97    |
| 79) o-Xylene                | 7.330 | 106  | 11361    | 1.8866     | ug/l 90    |
| 83) 1,2-Dichlorobenzene     | 8.519 | 146  | 3535     | 0.3952     | ug/l 92    |

(#) = qualifier out of range (m) = manual integration (+) = signals summed





ORGANICS VOLATILE REPORT

Sample Number: AD19595-005

Client Id: HSI-SB-08(8-8.5) Data File: 1M140275.D Matrix: Methanol Extraction Ratio: 7.55g:10ml

Method: EPA 8260D

Analysis Date: 10/08/20 12:44 Date Rec/Extracted: 10/02/20-NA Final Vol: NA Dilution: 66.2

Column: DB-624 25M 0.200mm ID 1.12um film

Solids: 82

| Jnits: | mg/Kg |
|--------|-------|
|--------|-------|

| Units: mg/Kg      |                                |       |       |        |             |                           |       |       |         |  |  |
|-------------------|--------------------------------|-------|-------|--------|-------------|---------------------------|-------|-------|---------|--|--|
| Cas#              | Compound                       | MDL   | RL    | Conc   | Cas #       | Compound                  | MDL   | RL    | Conc    |  |  |
| /1-55- <b>6</b>   | 1,1,1-Trichloroethane          | 0.029 | 0.081 | U      | 56-23-5     | Carbon Tetrachloride      | 0.026 | 0.081 | U       |  |  |
| 79- <b>34-</b> 5  | 1.1,2.2-Tetrachloroethane      | 0.036 | 0.081 | U      | 108-90-7    | Chlorobenzene             | 0.027 | 0.081 | 1.0     |  |  |
| 76-13-1           | 1,1,2-Trichloro-1,2,2-trifluor | 0.059 | 0.081 | U      | 75-00-3     | Chloroethane              | 0.047 | 0.081 | U       |  |  |
| 79- <b>00-5</b>   | 1,1,2-Trichloroethane          | 0.026 | 0.081 | U      | 67-66-3     | Chloroform                | 0.16  | 0.16  | U       |  |  |
| 75-34-3           | 1,1-Dichloroethane             | 0.035 | 0.081 | U      | 74-87-3     | Chloromethane             | 0.042 | 0.081 | U       |  |  |
| 75-35-4           | 1,1-Dichloroethene             | 0.043 | 0.081 | U .    | 156-59-2    | cis-1,2-Dichloroethene    | 0.051 | 0.081 | U       |  |  |
| 87-61-6           | 1,2,3-Trichlorobenzene         | 0.064 | 0.081 | U      | 10061-01-5  | cis-1,3-Dichloropropene   | 0.026 | 0.081 | U       |  |  |
| 120-82-1          | 1,2,4-Trichlorobenzene         | 0.059 | 0.081 | U      | 110-82-7    | Cyclohexane               | 0.039 | 0.081 | U       |  |  |
| 96-12-8           | 1,2-Dibromo-3-Chloropropa      | 0.067 | 0.081 | U      | 124-48-1    | Dibromochloromethane      | 0.019 | 0.081 | U       |  |  |
| 106-93-4          | 1,2-Dibromoethane              | 0.028 | 0.081 | U      | 75-71-8     | Dichlorodifluoromethane   | 0.050 | 0.081 | U       |  |  |
| 95-50-1           | 1,2-Dichlorobenzene            | 0.026 | 0.081 | U      | 100-41-4    | Ethylbenzene              | 0.038 | 0.081 | 0.15    |  |  |
| 107-06-2          | 1,2-Dichloroethane             | 0.052 | 0.052 | U      | 98-82-8     | Isopropylbenzene          | 0.040 | 0.081 | U       |  |  |
| 78- <b>8</b> 7-5  | 1,2-Dichloropropane            | 0.024 | 0.081 | U      | 179601-23-1 | m&p-Xylenes               | 0.069 | 0.081 | 0.56    |  |  |
| 541-73-1          | 1,3-Dichlorobenzene            | 0.030 | 0.081 | U      | 79-20-9     | Methyl Acetate            | 0.057 | 0.081 | U       |  |  |
| 106 46-7          | 1,4-Dichlorobenzene            | 0.030 | 0.081 | U      | 108-87-2    | Methylcyclohexane         | 0.050 | 0.081 | U       |  |  |
| 123-91-1          | 1.4-Dioxane                    | 3.2   | 4.0   | U      | 75-09-2     | Methylene Chloride        | 0.024 | 0.081 | U       |  |  |
| 78-93-3           | 2-Butanone                     | 0.060 | 0.081 | U      | 1634-04-4   | Methyl-t-butyl ether      | 0.025 | 0.040 | U       |  |  |
| 591-7 <b>8-6</b>  | 2-Hexanone                     | 0.048 | 0.081 | U      | 95-47-6     | o-Xylene                  | 0.055 | 0.081 | 0.18    |  |  |
| 108-1 <b>0</b> -1 | 4-Methyl-2-Pentanone           | 0.039 | 0.081 | U      | 100-42-5    | Styrene                   | 0.044 | 0.081 | U       |  |  |
| 67-64-1           | Acetone                        | 0.37  | 0.40  | U      | 127-18-4    | Tetrachloroethene         | 0.029 | 0.081 | U       |  |  |
| 71-43-2           | Benzene                        | 0.024 | 0.040 | 0.040J | 108-88-3    | Toluene                   | 0.026 | 0.081 | 0.053 J |  |  |
| 74-97-5           | Bromochloromethane             | 0.063 | 0.081 | U ·    | 156-60-5    | trans-1,2-Dichloroethene  | 0.025 | 0.081 | U       |  |  |
| 75- <b>27-4</b>   | Bromodichloromethane           | 0.028 | 0.081 | U      | 10061-02-6  | trans-1,3-Dichloropropene | 0.025 | 0.081 | U       |  |  |
| 75-25 <b>-2</b>   | Bromoform                      | 0.044 | 0.081 | U      | 79-01-6     | Trichloroethene           | 0.028 | 0.081 | U       |  |  |
| 74-83-9           | Bromomethane                   | 0.041 | 0.081 | U      | 75-69-4     | Trichlorofluoromethane    | 0.025 | 0.081 | U       |  |  |
| 75-15 <b>-0</b>   | Carbon Disulfide               | 0.034 | 0.081 | U      | 75-01-4     | Vinyl Chloride            | 0.057 | 0.081 | U       |  |  |
| 1330-20-7         | Xylenes (Total)                | 0.055 | 0.081 | 0.74   |             |                           |       |       |         |  |  |

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19595-005 Data File: 1M140275.D Acq On : 10/08/20 12:44 Qt Meth : 1M\_A0909.M Qt On : 10/08/20 13:18 Qt Upd On: 09/10/20 15:58 Operator : RL Sam Mult : 1 Vial# : 80 Misc : M,MEXT!1

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-0720\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Unit | s Dev(M | lin)  |
|-----------------------------|-------|------|----------|-----------|---------|-------|
| Internal Standards          |       |      |          |           |         |       |
|                             | 5.333 | 96   | 367380   | 30.00 ud  | 7/1 0   | 0.00  |
| 52) Chlorobenzene-d5        | 6.985 | 117  | 392001   | 30.00 ug  | g/1 0   | 0.00  |
| 70) 1,4-Dichlorobenzene-d4  | 8.281 | 152  | 261331   | 30.00 ug  | g/1 O   | .00   |
| System Monitoring Compounds |       |      |          |           |         |       |
| 37) Dibromofluoromethane    | 4.940 | 111  | 102513   | 29.91 ug  | g/1 0   | .00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 9    | 99.70%  |       |
| 39) 1,2-Dichloroethane-d4   | 5.146 | 67   | 56478    | 30.25 ug  | g/l 0   | .00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 10   | 0.83%   |       |
| 66) Toluene-d8              | 6.198 | 98   | 415480   | 26.23 ug  | g/l 0   | .00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 8    | 37.43%  |       |
| 76) Bromofluorobenzene      | 7.622 | 174  | 204842   |           |         | .00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 10   | 3.70%   |       |
| Target Compounds            |       |      |          |           | Q       | value |
| 50) Benzene                 | 5.191 | 78   | 4774     | 0.4935    | ug/l    | 100   |
| 67) Toluene                 | 6.233 | 92   | 5121     | 0.6606    |         |       |
| 69) Chlorobenzene           | 7.005 | 112  | 113937   | 12.5942   | ug/l    | 99    |
| 74) Ethylbenzene            | 7.046 | 106  | 7852     | 1.8915    | ug/l    | 96    |
| 78) m&p-Xylenes             | 7.104 | 106  | 38602    | 6.9277    | ug/l    | 95    |
| 79) o-Xylene                | 7.326 | 106  | 12424    | 2.1775    | ug/l    | 94    |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





ORGANICS VOLATILE REPORT

Sample Number: AD19595-006

Client Id: HSI-SB-08(12-13)

Data File: 1M140345.D Analysis Date: 10/09/20 14:43

Date Rec/Extracted: 10/02/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 7.2g: 10ml

Final Vol: NA

Dilution: 69.4

Solids: 76

|       |     |    | Units: | mg/Kg |
|-------|-----|----|--------|-------|
| nound | MDI | RI | Conc   |       |

|                            |                                |       |       | •    | פייש            |                           |       |       |        |
|----------------------------|--------------------------------|-------|-------|------|-----------------|---------------------------|-------|-------|--------|
| Cas #                      | Compound                       | MDL   | RL    | Conc | Cas #           | Compound                  | MDL   | RL    | Conc   |
| 71-55 <b>-6</b>            | 1,1,1-Trichloroethane          | 0.033 | 0.091 | U    | 56-23-5         | Carbon Tetrachlonde       | 0.029 | 0.091 | U      |
| 79-34-5                    | 1,1,2,2-Tetrachloroethane      | 0.041 | 0.091 | U :  | 108-90-7        | Chlorobenzene             | 0.030 | 0.091 | 3.7    |
| 76-13-1                    | 1,1,2-Trichloro-1,2,2-trifluor | 0.066 | 0.091 | U    | 75-00-3         | Chloroethane              | 0.053 | 0.091 | U      |
| 79- <b>00</b> -5           | 1,1,2-Trichloroethane          | 0.029 | 0.091 | U    | 67-66-3         | Chloroform                | 0.18  | 0.18  | U      |
| 75-34-3                    | 1,1-Dichloroethane             | 0.039 | 0.091 | U    | 74-87-3         | Chloromethane             | 0.047 | 0.091 | U      |
| 75-35-4                    | 1,1-Dichloroethene             | 0.049 | 0.091 | U    | 156-59-2        | cis-1,2-Dichloroethene    | 0.058 | 0.091 | U      |
| 87-61-6                    | 1,2,3-Trichlorobenzene         | 0.072 | 0.091 | U    | 10061-01-5      | cis-1,3-Dichloropropene   | 0.029 | 0.091 | U      |
| 120-82-1                   | 1,2,4-Trichlorobenzene         | 0.067 | 0.091 | U    | 110-82-7        | Cyclohexane               | 0.044 | 0.091 | U      |
| 96-12-8                    | 1,2-Dibromo-3-Chloropropa      | 0.076 | 0.091 | U    | 124-48-1        | Dibromochloromethane      | 0.022 | 0.091 | U      |
| 106-93-4                   | 1,2-Dibromoethane              | 0.031 | 0.091 | U    | 75-71-8         | Dichlorodifluoromethane   | 0.057 | 0.091 | U      |
| 95-50-1                    | 1,2-Dichlorobenzene            | 0.030 | 0.091 | U    | 100-41-4        | Ethylbenzene              | 0.043 | 0.091 | 0.065J |
| 107-06-2                   | 1,2-Dichloroethane             | 0.058 | 0.058 | U    | 98-82-8         | Isopropylbenzene          | 0.045 | 0.091 | U      |
| 78-87-5                    | 1,2-Dichloropropane            | 0.027 | 0.091 | U    | 179601-23-1     | m&p-Xylenes               | 0.078 | 0.091 | 0.27   |
| 541-73-1                   | 1,3-Dichlorobenzene            | 0.034 | 0.091 | U    | 79-20-9         | Methyl Acetate            | 0.064 | 0.091 | U      |
| 1 <b>0</b> 6- <b>46</b> -7 | 1,4-Dichlorobenzene            | 0.033 | 0.091 | U    | 108-87-2        | Methylcyclohexane         | 0.056 | 0.091 | U      |
| 123-91-1                   | 1,4-Dioxane                    | 3.6   | 4.6   | U    | 75-09-2         | Methylene Chloride        | 0.027 | 0.091 | U      |
| 78-93-3                    | 2-Butanone                     | 0.068 | 0.091 | U -  | 1634-04-4       | Methyl-t-butyl ether      | 0.029 | 0.046 | U      |
| 591-78-6                   | 2-Hexanone                     | 0.055 | 0.091 | U    | 95-47-6         | o-Xylene                  | 0.062 | 0.091 | 0.068J |
| 108-10-1                   | 4-Methyl-2-Pentanone           | 0.044 | 0.091 | U    | 100-42-5        | Styrene                   | 0.050 | 0.091 | U      |
| 67- <b>64</b> -1           | Acetone                        | 0.42  | 0.46  | U    | 127-18-4        | Tetrachloroethene         | 0.033 | 0.091 | U      |
| 7 <b>1-43-2</b>            | Benzene                        | 0.027 | 0.046 | 0.13 | 108-88-3        | Toluene                   | 0.030 | 0.091 | 1.1    |
| 74-97-5                    | Bromochloromethane             | 0.072 | 0.091 | U    | 156-60-5        | trans-1,2-Dichloroethene  | 0.028 | 0.091 | U      |
| 75-27-4                    | Bromodichloromethane           | 0.032 | 0.091 | U    | 10061-02-6      | trans-1,3-Dichloropropene | 0.028 | 0.091 | U      |
| 75-25-2                    | Bromoform                      | 0.049 | 0.091 | U    | 79-01-6         | Trichloroethene           | 0.032 | 0.091 | U      |
| 74-83-9                    | Bromomethane                   | 0.046 | 0.091 | U :  | 75-69-4         | Trichlorofluoromethane    | 0.028 | 0.091 | U      |
| 75-15-0                    | Carbon Disulfide               | 0.039 | 0.091 | U    | 75-01 <b>-4</b> | Vinyl Chloride            | 0.065 | 0.091 | U      |
| 1330-20-7                  | Xylenes (Total)                | 0.062 | 0.091 | 0.34 |                 |                           |       |       |        |

Worksheet #: 569869

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

5.3

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 1M\_A0909.M Qt On : 10/09/20 15:08 Qt Upd On: 09/10/20 15:58 Operator : BK Sam Mult : 1 Vial# : 19 Misc : M,MEXT!1 SampleID : AD19595-006 Data File: 1M140345.D Acq On : 10/09/20 14:43

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-09-20\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Units | Dev(Min) |
|-----------------------------|-------|------|----------|------------|----------|
| Internal Standards          |       |      |          |            |          |
| 4) Fluorobenzene            | 5.336 | 96   | 374082   | 30.00 ug/  | 1 0.00   |
| 52) Chlorobenzene-d5        | 6.989 | 117  | 397321   | 30.00 ug/  | 1 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.281 | 152  | 257473   | 30.00 ug/  | 1 0.00   |
| System Monitoring Compounds |       |      |          |            |          |
| 37) Dibromofluoromethane    | 4.941 | 111  | 102756   | 29.44 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery = 98   | 3.13%    |
| 39) 1,2-Dichloroethane-d4   | 5.146 | 67   | 57294    | 30.14 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery = 100  | 1.47%    |
| 66) Toluene-d8              | 6.198 | 98   | 418200   | 26.05 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 86    | 5.83%    |
| 76) Bromofluorobenzene      | 7.625 | 174  | 203761   | 31.41 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery = 104  | .70%     |
| Target Compounds            |       |      |          |            | Qvalue   |
| 50) Benzene                 | 5.188 | 78   | 13910    | 1.4122     | ug/l 100 |
| 67) Toluene                 | 6.233 | 92   | 94107    | 11.9774    | ug/l 90  |
| 69) Chlorobenzene           | 7.005 | 112  | 368834   | 40.2238    | ug/l 98  |
| 74) Ethylbenzene            | 7.047 | 106  | 2889     | 0.7064     | ug/l 86  |
| 78) m&p-Xylenes             | 7.104 | 106  | 16060    | 2.9254     | ug/l 82  |
| 79) o-Xylene                | 7.333 | 106  | 4185     | 0.7445     | ug/l 93  |

(#) = qualifier out of range (m) = manual integration (+) = signals summed





#### ORGANICS VOLATILE REPORT

Sample Number: AD19595-007

Client Id: HSI-SB-08(13-13.5)

Data File: 6M133228.D

Analysis Date: 10/07/20 19:12 Date Rec/Extracted: 10/02/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 7.34g

Final Vol: NA

Dilution: 0.681

Solids: 77

Units: ma/Ka

| 0 "              | 0                              | MOL     | D.I     | Onits: mg | •                | Commound                  | MOL     | DI      | Cono   |
|------------------|--------------------------------|---------|---------|-----------|------------------|---------------------------|---------|---------|--------|
| Cas #            | Compound                       | MDL     | RL      | Conc      | Cas #            | Compound                  | MDL     | RL      | Conc   |
| 71-55 <b>-6</b>  | 1,1,1-Trichloroethane          | 0.00081 | 0.0018  | U         | 56-23-5          | Carbon Tetrachloride      | 0.00086 | 0.0018  | U      |
| 7 <b>9-34-</b> 5 | 1,1,2,2-Tetrachloroethane      | 0.00040 | 0.0018  | U         | 108-90-7         | Chlorobenzene             | 0.00055 | 0.0018  | 0.20   |
| 76-13-1          | 1,1,2-Trichloro-1,2,2-trifluor | 0.0012  | 0.0018  | U         | 75-00-3          | Chloroethane              | 0.0017  | 0.0018  | U      |
| 79-0 <b>0-</b> 5 | 1,1,2-Trichloroethane          | 0.00041 | 0.0018  | U         | 67-66-3          | Chloroform                | 0.0012  | 0.0018  | U      |
| 75-34-3          | 1,1-Dichloroethane             | 0.00077 | 0.0018  | U         | 74-87-3          | Chloromethane             | 0.0011  | 0.0018  | U      |
| 75-35-4          | 1,1-Dichloroethene             | 0.0010  | 0.0018  | U         | 156-59-2         | cis-1,2-Dichloroethene    | 0.00072 | 0.0018  | U      |
| 87-61-6          | 1,2,3-Trichlorobenzene         | 0.00049 | 0.0018  | U         | 10061-01-5       | cis-1,3-Dichloropropene   | 0.00047 | 0.0018  | U      |
| 120-82-1         | 1,2,4-Trichlorobenzene         | 0.00056 | 0.0018  | U         | 110-82-7         | Cyclohexane               | 0.0011  | 0.0018  | U      |
| 96-12-8          | 1,2-Dibromo-3-Chloropropa      | 0.00049 | 0.0018  | U         | 124-48-1         | Dibromochloromethane      | 0.00038 | 0.0018  | U      |
| 106-93-4         | 1,2-Dibromoethane              | 0.00043 | 0.00088 | U         | 75-71-8          | Dichlorodifluoromethane   | 0.0012  | 0.0018  | U      |
| 95-50-1          | 1,2-Dichlorobenzene            | 0.00045 | 0.0018  | U         | 100-41-4         | Ethylbenzene              | 0.00061 | 0.00088 | 0.0019 |
| 107-06-2         | 1,2-Dichloroethane             | 0.00036 | 0.0018  | U ,       | 98-82-8          | Isopropylbenzene          | 0.00073 | 0.00088 | U      |
| 78-87-5          | 1,2-Dichloropropane            | 0.00073 | 0.0018  | U         | 179601-23-1      | m&p-Xylenes               | 0.0011  | 0.0011  | 0.0071 |
| 541-73-1         | 1,3-Dichlorobenzene            | 0.00049 | 0.0018  | U         | 79-20-9          | Methyl Acetate            | 0.00085 | 0.0018  | U      |
| 106-46-7         | 1,4-Dichlorobenzene            | 0.00047 | 0.0018  | U         | 108-87-2         | Methylcyclohexane         | 0.00080 | 0.0018  | U      |
| 123-91-1         | 1,4-Dioxane                    | 0.043   | 0.088   | U         | 75-09-2          | Methylene Chloride        | 0.00066 | 0.0018  | U      |
| 78-93-3          | 2-Butanone                     | 0.0011  | 0.0018  | Ų         | 1634-04-4        | Methyl-t-butyl ether      | 0.00048 | 0.00088 | 0.0016 |
| 591- <b>78-6</b> | 2-Hexanone                     | 0.00075 | 0.0018  | U         | 95-47-6          | o-Xylene                  | 0.00063 | 0.00088 | 0.0019 |
| 108-10-1         | 4-Methyl-2-Pentanone           | 0.00051 | 0.0018  | U         | 100-42-5         | Styrene                   | 0.00049 | 0.0018  | U      |
| 67-64-1          | Acetone                        | 0.0060  | 0.0088  | U         | 127-18-4         | Tetrachloroethene         | 0.00087 | 0.0018  | U      |
| 71-43-2          | Benzene                        | 0.00065 | 0.00088 | 0.0086    | 108-88-3         | Toluene                   | 0.00058 | 0.00088 | 0.0035 |
| 74-97-5          | Bromochloromethane             | 0.00062 | 0.0018  | U         | 156-60-5         | trans-1,2-Dichloroethene  | 0.0011  | 0.0018  | U      |
| <b>75-27-4</b>   | Bromodichloromethane           | 0.00042 | 0.0018  | U         | 10061-02-6       | trans-1,3-Dichloropropene | 0.00042 | 0.0018  | U      |
| 75-25-2          | Bromoform                      | 0.00029 | 0.0018  | U         | 79-01 <i>-</i> 6 | Trichloroethene           | 0.00073 | 0.0018  | 0.0033 |
| 74-83-9          | Bromomethane                   | 0.0014  | 0.0018  | U         | 75-69-4          | Trichlorofluoromethane    | 0.0010  | 0.0018  | U      |
| 75-15-0          | Carbon Disulfide               | 0.0030  | 0.0030  | U         | 75-01-4          | Vinyl Chloride            | 0.0011  | 0.0018  | U      |
| 1330-20-7        | Xylenes (Total)                | 0.00063 | 0.00088 | 0.0090    |                  |                           |         |         |        |

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 6M\_S1006.M
Qt On : 10/07/20 19:23 

 SampleID :
 AD19595-007
 Operator :
 BK

 Data File:
 6M133228.D
 Sam Mult :
 1 Vial# :
 21

 Acq On :
 10/07/20 19:12
 Misc :
 5,56!3

 Qt Upd On: 10/07/20 11:33

Data Path : G:\GcMsData\2020\GCMS\_6\Data\10-07-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_6\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Units | Dev(Min) |
|-----------------------------|-------|------|----------|------------|----------|
| Internal Standards          |       |      |          |            |          |
| 4) Fluorobenzene            | 5.123 | 96   | 285338   | 30.00 ug/  | 1 0.00   |
| 52) Chlorobenzene-d5        | 6.763 | 117  | 235170   | 30.00 ug/  | 1 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.050 | 152  | 123170   | 30.00 ug/  | 1 0.00   |
| System Monitoring Compounds |       |      |          |            |          |
| 37) Dibromofluoromethane    | 4.727 | 111  | 82097    | 30.48 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery = 101  | 1.60%    |
| 39) 1,2-Dichloroethane-d4   | 4.934 | 67   | 41778    | 32.62 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery = 108  | 3.73%    |
| 66) Toluene-d8              | 5.983 | 98   | 289613   | 29.44 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 98    | 3.13%    |
| 76) Bromofluorobenzene      | 7.397 | 174  | 90998    | 30.50 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery = 101  | 67%      |
| Target Compounds            |       |      |          |            | Qvalue   |
| 26) Methyl-t-butyl ether    | 3.666 | 73   | 7962     | 1.7759     | ug/l 95  |
| 49) Trichloroethene         | 5.330 | 130  | 9967     | 3.7847     | ug/l 93  |
| 50) Benzene                 | 4.977 | 78   | 84127    | 9.7102     | ug/l 100 |
| 67) Toluene                 | 6.019 | 92   | 24003    | 3.9261     | ug/l 71  |
| 69) Chlorobenzene           | 6.781 | 112  | 1509850  | 223.9777   | ug/l 99  |
| 74) Ethylbenzene            | 6.818 | 106  | 7438     | 2.1132     | ug/l 91  |
| 78) m&p-Xylenes             | 6.879 | 106  | 39329    | 8.0654     | ug/l 91  |
| 79) o-Xylene                | 7.098 | 106  | 10173    | 2.1721     | ug/l 96  |

<sup>(</sup>#) = qualifier out of range (m) = manual integration (+) = signals summed





#### ORGANICS VOLATILE REPORT

Sample Number: AD19595-008

Client Id: HSI-SB-09(14-14.5)

Data File: 6M133229.D

Analysis Date: 10/07/20 19:33 Date Rec/Extracted: 10/02/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 7.17g

Final Vol: NA

Dilution: 0.697

Solids: 80

Units: ma/Ka

| Cas #              | Compound                       | MDL     | RL      | Conc   | Cas#        | Compound                  | MDL     | RL      | Conc   |
|--------------------|--------------------------------|---------|---------|--------|-------------|---------------------------|---------|---------|--------|
| 71-55-6            | 1,1,1-Trichloroethane          | 0.00080 | 0.0017  | U :    | 56-23-5     | Carbon Tetrachloride      | 0.00085 | 0.0017  | U      |
| 79-34-5            | 1,1,2,2-Tetrachloroethane      | 0.00039 | 0.0017  | U      | 108-90-7    | Chlorobenzene             | 0.00054 | 0.0017  | 0.064  |
| 76-13-1            | 1,1,2-Trichloro-1,2,2-trifluor | 0.0012  | 0.0017  | U      | 75-00-3     | Chloroethane              | 0.0017  | 0.0017  | U      |
| 79-00-5            | 1,1,2-Trichloroethane          | 0.00040 | 0.0017  | U      | 67-66-3     | Chloroform                | 0.0012  | 0.0017  | U      |
| 75-34-3            | 1,1-Dichloroethane             | 0.00076 | 0.0017  | U      | 74-87-3     | Chloromethane             | 0.0011  | 0.0017  | U      |
| 75-35-4            | 1,1-Dichloroethene             | 0.0010  | 0.0017  | U      | 156-59-2    | cis-1,2-Dichloroethene    | 0.00071 | 0.0017  | 0.040  |
| 87-61-6            | 1,2,3-Trichlorobenzene         | 0.00048 | 0.0017  | U      | 10061-01-5  | cis-1,3-Dichloropropene   | 0.00046 | 0.0017  | U      |
| 120-82-1           | 1,2,4-Trichlorobenzene         | 0.00055 | 0.0017  | U      | 110-82-7    | Cyclohexane               | 0.0010  | 0.0017  | U      |
| 96-12-8            | 1,2-Dibromo-3-Chloropropa      | 0.00048 | 0.0017  | U :    | 124-48-1    | Dibromochloromethane      | 0.00037 | 0.0017  | U      |
| 106-93-4           | 1,2-Dibromoethane              | 0.00043 | 0.00087 | U      | 75-71-8     | Dichlorodifluoromethane   | 0.0012  | 0.0017  | U      |
| 95-50-1            | 1,2-Dichlorobenzene            | 0.00044 | 0.0017  | U      | 100-41-4    | Ethylbenzene              | 0.00060 | 0.00087 | U      |
| 107-06-2           | 1,2-Dichloroethane             | 0.00036 | 0.0017  | 0.0047 | 98-82-8     | Isopropylbenzene          | 0.00072 | 0.00087 | U      |
| 78-87-5            | 1,2-Dichloropropane            | 0.00071 | 0.0017  | U      | 179601-23-1 | m&p-Xylenes               | 0.0010  | 0.0010  | U      |
| 541-73-1           | 1,3-Dichlorobenzene            | 0.00048 | 0.0017  | υ      | 79-20-9     | Methyl Acetate            | 0.00084 | 0.0017  | U      |
| 106-46-7           | 1.4-Dichlorobenzene            | 0.00046 | 0.0017  | U      | 108-87-2    | Methylcyclohexane         | 0.00078 | 0.0017  | U      |
| 123-91-1           | 1,4-Dioxane                    | 0.042   | 0.087   | U      | 75-09-2     | Methylene Chloride        | 0.00065 | 0.0017  | U      |
| 78-93-3            | 2-Butanone                     | 0.0010  | 0.0017  | U      | 1634-04-4   | Methyl-t-butyl ether      | 0.00047 | 0.00087 | 0.0022 |
| 591-78-6           | 2-Hexanone                     | 0.00074 | 0.0017  | U      | 95-47-6     | o-Xylene                  | 0.00062 | 0.00087 | U      |
| 108-10-1           | 4-Methyl-2-Pentanone           | 0.00051 | 0.0017  | U      | 100-42-5    | Styrene                   | 0.00048 | 0.0017  | U      |
| 67-64-1            | Acetone                        | 0.0059  | 0.0087  | U      | 127-18-4    | Tetrachloroethene         | 0.00085 | 0.0017  | U      |
| 71-43-2            | Benzene                        | 0.00064 | 0.00087 | 0.0039 | 108-88-3    | Toluene                   | 0.00058 | 0.00087 | 0.0038 |
| 74-97-5            | Bromochloromethane             | 0.00061 | 0.0017  | U      | 156-60-5    | trans-1,2-Dichloroethene  | 0.0010  | 0.0017  | 0.010  |
| 75- <b>27-4</b>    | Bromodichloromethane           | 0.00041 | 0.0017  | U      | 10061-02-6  | trans-1,3-Dichloropropene | 0.00041 | 0.0017  | U      |
| 75- <b>25-2</b>    | Bromoform                      | 0.00029 | 0.0017  | U      | 79-01-6     | Trichloroethene           | 0.00071 | 0.0017  | 0.0062 |
| 74-83-9            | Bromomethane                   | 0.0014  | 0.0017  | U      | 75-69-4     | Trichlorofluoromethane    | 0.0010  | 0.0017  | U      |
| 75-15- <b>0</b>    | Carbon Disulfide               | 0.0030  | 0.0030  | U      | 75-01-4     | Vinyl Chloride            | 0.0011  | 0.0017  | 0.0057 |
| 1330-2 <b>0</b> -7 | Xylenes (Total)                | 0.00062 | 0.00087 | U      |             |                           |         |         |        |

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 6M\_S1006.M Qt On : 10/07/20 19:46 Qt Upd On: 10/07/20 11:33 SampleID : AD19595-008 Data File: 6M133229.D Operator : BK Sam Mult : 1 Vial# : 22 Misc : S,5G!3 Acq On : 10/07/20 19:33

| Compound                     | R.T.  | QIon | Response | Conc Units | Dev(Mi        | n)   |
|------------------------------|-------|------|----------|------------|---------------|------|
| Internal Standards           |       |      |          |            |               |      |
| 4) Fluorobenzene             | 5.123 | 96   | 345312   | 30.00 ug/  | /1 0.         | .00  |
| 52) Chlorobenzene-d5         | 6.763 | 117  | 275099   | 30.00 ug/  | /1 0.         | .00  |
| 70) 1,4-Dichlorobenzene-d4   | 8.050 | 152  | 136400   | 30.00 ug/  | /1 0 <i>.</i> | .00  |
| System Monitoring Compounds  |       |      |          |            |               |      |
| 37) Dibromofluoromethane     | 4.727 | 111  | 100804   | 30.93 ug/  | /1 0 <i>.</i> | .00  |
| Spiked Amount 30.000         |       |      | Recove   | ery = 103  | 3.10%         |      |
| 39) 1,2-Dichloroethane-d4    | 4.934 | 67   | 50357    | 32.49 ug/  | /1 O.         | .00  |
| Spiked Amount 30.000         |       |      | Recove   | ery = 108  | 3.30%         |      |
| 66) Toluene-d8               | 5.983 | 98   | 339279   | 29.48 ug/  | /1 0.         | .00  |
| Spiked Amount 30.000         |       |      | Recove   | ery = 98   | 3.27%         |      |
| 76) Bromofluorobenzene       | 7.397 | 174  | 107078   | 32.41 ug/  | /1 0.         | .00  |
| Spiked Amount 30.000         |       |      | Recove   | ery = 108  | 3.03%         |      |
| Target Compounds             |       |      |          |            | Q٧            | alue |
| 9) Vinyl Chloride            | 1.916 | 62   | 22341    | 6.5679     | ug/1          | 100  |
| 26) Methyl-t-butyl ether     | 3.666 | 73   | 13669    | 2.5194     | ug/l          | 92   |
| 28) trans-1,2-Dichloroethene | 3.678 | 96   | 32121    | 11.5794    | ug/l          | 83   |
| 30) cis-1,2-Dichloroethene   | 4.434 | 61   | 186773   | 46.3702    | ug/l          | 93   |
| 40) 1,2-Dichloroethane       | 4.977 | 62   | 18135    | 5.4416     | ug/l          | 90   |
| 49) Trichloroethene          | 5.330 | 130  | 22836    | 7.1652     | ug/l          | 91   |
| 50) Benzene                  | 4.977 | 78   | 46651    | 4.4494     | ug/l          | 100  |
| 67) Toluene                  | 6.019 | 92   | 30886    | 4.3187     | ug/l          | 93   |
| 69) Chlorobenzene            | 6.775 | 112  | 577121   | 73.1865    | ug/l          | 100  |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





#### ORGANICS VOLATILE REPORT

Sample Number: AD19595-009

Client Id: HSI-SB-10(5.5-6)

Data File: 1M140271.D

Analysis Date: 10/08/20 11:21 Date Rec/Extracted: 10/02/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 7.91g:10ml

Final Vol: NA

Dilution: 63.2

Solids: 89

Units: mg/Kg

|                           | Units: mg/Kg                   |       |       |        |                 |                           |       |       |        |  |  |  |  |
|---------------------------|--------------------------------|-------|-------|--------|-----------------|---------------------------|-------|-------|--------|--|--|--|--|
| Cas #                     | Compound                       | MDL   | RL    | Conc   | Cas #           | Compound                  | MDL   | RL    | Conc   |  |  |  |  |
| 71-55-6                   | 1,1,1-Trichloroethane          | 0.025 | 0.071 | U      | 56-23-5         | Carbon Tetrachloride      | 0.023 | 0.071 | U      |  |  |  |  |
| 79-34-5                   | 1,1,2,2-Tetrachloroethane      | 0.032 | 0.071 | 0.052J | 108-90-7        | Chlorobenzene             | 0.023 | 0.071 | 0.17   |  |  |  |  |
| 76-13-1                   | 1,1,2-Trichloro-1,2,2-trifluor | 0.052 | 0.071 | U      | 75-00-3         | Chloroethane              | 0.041 | 0.071 | U      |  |  |  |  |
| 79-00-5                   | 1,1,2-Trichloroethane          | 0.023 | 0.071 | U :    | 67-66-3         | Chloroform                | 0.14  | 0.14  | U      |  |  |  |  |
| 75-34-3                   | 1,1-Dichloroethane             | 0.030 | 0.071 | U      | 74-87-3         | Chloromethane             | 0.037 | 0.071 | U      |  |  |  |  |
| 75-35-4                   | 1,1-Dichloroethene             | 0.038 | 0.071 | U      | 156-59-2        | cis-1,2-Dichloroethene    | 0.045 | 0.071 | 0.40   |  |  |  |  |
| 87-61-6                   | 1,2,3-Trichlorobenzene         | 0.056 | 0.071 | U      | 10061-01-5      | cis-1,3-Dichloropropene   | 0.023 | 0.071 | U      |  |  |  |  |
| 120-82-1                  | 1,2,4-Trichlorobenzene         | 0.052 | 0.071 | U      | 110-82-7        | Cyclohexane               | 0.035 | 0.071 | U      |  |  |  |  |
| 96-12-8                   | 1,2-Dibromo-3-Chloropropa      | 0.059 | 0.071 | U .    | 124-48-1        | Dibromochloromethane      | 0.017 | 0.071 | U      |  |  |  |  |
| 1 <b>0</b> 6-9 <b>3-4</b> | 1.2-Dibromoethane              | 0.024 | 0.071 | U      | 75-71-8         | Dichlorodifluoromethane   | 0.044 | 0.071 | U      |  |  |  |  |
| 95-5 <b>0</b> -1          | 1.2-Dichlorobenzene            | 0.023 | 0.071 | U      | 100-41-4        | Ethylbenzene              | 0.033 | 0.071 | 0.053J |  |  |  |  |
| 107-06-2                  | 1,2-Dichloroethane             | 0.045 | 0.045 | 0.070  | 98-82-8         | Isopropylbenzene          | 0.035 | 0.071 | U      |  |  |  |  |
| 78-87-5                   | 1,2-Dichloropropane            | 0.021 | 0.071 | U      | 179601-23-1     | m&p-Xylenes               | 0.060 | 0.071 | 0.099  |  |  |  |  |
| 541-73-1                  | 1.3-Dichlorobenzene            | 0.027 | 0.071 | U      | 79-20-9         | Methyl Acetate            | 0.050 | 0.071 | U      |  |  |  |  |
| 106-46-7                  | 1,4-Dichlorobenzene            | 0.026 | 0.071 | U      | 108-87-2        | Methylcyclohexane         | 0.044 | 0.071 | U      |  |  |  |  |
| 123-91-1                  | 1,4-Dioxane                    | 2.8   | 3.6   | U      | 75-09-2         | Methylene Chloride        | 0.021 | 0.071 | U      |  |  |  |  |
| 78-9 <b>3-3</b>           | 2-Butanone                     | 0.053 | 0.071 | U      | 1634-04-4       | Methyl-t-butyl ether      | 0.022 | 0.036 | U      |  |  |  |  |
| 591-78-6                  | 2-Hexanone                     | 0.043 | 0.071 | U      | 95-47-6         | o-Xylene                  | 0.049 | 0.071 | 0.054J |  |  |  |  |
| 108-10-1                  | 4-Methyl-2-Pentanone           | 0.035 | 0.071 | U      | 100-42-5        | Styrene                   | 0.039 | 0.071 | U      |  |  |  |  |
| 67-64-1                   | Acetone                        | 0.33  | 0.36  | U      | 127-18-4        | Tetrachloroethene         | 0.025 | 0.071 | 0.028J |  |  |  |  |
| 71-43-2                   | Benzene                        | 0.021 | 0.036 | U      | 108-88-3        | Toluene                   | 0.023 | 0.071 | 0.040J |  |  |  |  |
| 74-97-5                   | Bromochloromethane             | 0.056 | 0.071 | U      | 156-60-5        | trans-1,2-Dichloroethene  | 0.022 | 0.071 | U      |  |  |  |  |
| 75-27-4                   | Bromodichloromethane           | 0.025 | 0.071 | U      | 10061-02-6      | trans-1,3-Dichloropropene | 0.022 | 0.071 | U      |  |  |  |  |
| 75-2 <b>5-2</b>           | Bromoform                      | 0.038 | 0.071 | U      | 79 <b>-01-6</b> | Trichloroethene           | 0.025 | 0.071 | 0.24   |  |  |  |  |
| 74-83-9                   | Bromomethane                   | 0.036 | 0.071 | U      | 75-69-4         | Trichlorofluoromethane    | 0.022 | 0.071 | U      |  |  |  |  |
| 75-15-0                   | Carbon Disulfide               | 0.030 | 0.071 | U      | 75-01-4         | Vinyl Chloride            | 0.050 | 0.071 | U      |  |  |  |  |
| 1330-20-7                 | Xylenes (Total)                | 0.049 | 0.071 | 0.15   |                 |                           |       |       |        |  |  |  |  |

1.2

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $<sup>\</sup>it E$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Iudicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19595-009 Data File: 1M140271.D Acq On : 10/08/20 11:21 Qt Meth : 1M\_A0909.M Qt On : 10/08/20 13:17 Qt Upd On: 09/10/20 15:58 Operator : RL Sam Mult : 1 Vial# : 76 Misc : M,MEXT!1

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-0720\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound                      | R.T.  | QIon | Response | Conc Units | Dev(Min) |
|-------------------------------|-------|------|----------|------------|----------|
| Internal Standards            |       |      |          |            |          |
| 4) Fluorobenzene              | 5.336 | 96   | 372819   | 30.00 ug/  | 1 0.00   |
| 52) Chlorobenzene-d5          | 6.989 | 117  | 388024   | 30.00 ug/  | 1 0.00   |
| 70) 1,4-Dichlorobenzene-d4    | 8.281 | 152  | 262906   | 30.00 ug/  | 1 0.00   |
| System Monitoring Compounds   |       |      |          |            |          |
| 37) Dibromofluoromethane      | 4.940 | 111  | 105934   | 30.45 ug/  | 1 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 101   | 1.50%    |
| 39) 1,2-Dichloroethane-d4     | 5.143 | 67   | 56918    | 30.05 ug/  | 1 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 100   | 17%      |
| 66) Toluene-d8                | 6.198 | 98   | 417770   | 26.64 ug/  | 1 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 88    | 3.80%    |
| 76) Bromofluorobenzene        | 7.622 | 174  | 208161   | 31.42 ug/  | 1 0.00   |
| Spiked Amount 30.000          |       |      | Recove   | ry = 104   | ₹.73%    |
| Target Compounds              |       |      |          |            | Qvalue   |
| 30) cis-1,2-Dichloroethene    | 4.657 | 61   | 24746    | 5.6687     | ug/l 94  |
| 40) 1,2-Dichloroethane        | 5.188 | 62   | 3648     | 0.9806     | ug/l 100 |
| 49) Trichloroethene           | 5.538 | 130  | 9851     | 3.4305     | ug/l 94  |
| 65) Tetrachloroethene         | 6.538 | 164  | 1114     | 0.3978     | ug/l 94  |
| 67) Toluene                   | 6.230 | 92   | 4299     | 0.5603     | ug/l 68  |
| 69) Chlorobenzene             | 7.005 | 112  | 21850    | 2.4400     | ug/l 91  |
| 74) Ethylbenzene              | 7.046 | 106  | 3136     | 0.7509     | ug/l 64  |
| 75) 1,1,2,2-Tetrachloroethane | 7.670 | 83   | 3764     | 0.7252     | ug/l 92  |
| 78) m&p-Xylenes               | 7.108 | 106  | 7779     | 1.3877     | ug/l 88  |
| 79) o-Xylene                  | 7.329 | 106  | 4340     | 0.7561     | ug/l 88  |

(#) = qualifier out of range (m) = manual integration (+) = signals summed





1M A0909.M Wed Oct 14 12:53:25 2020 RPT1

## Form1 ORGANICS VOLATILE REPORT

Sample Number: AD19595-010

Client Id: HSI-SB-10(7-7.5) Data File: 1M140273.D

Analysis Date: 10/08/20 12:02 Date Rec/Extracted: 10/02/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 8.1g:10ml

Final Vol: NA

Dilution: 61.7

Solids: 83

|                            |                                |       |       | Units: mg | g/Kg              |                           |       |       |        |
|----------------------------|--------------------------------|-------|-------|-----------|-------------------|---------------------------|-------|-------|--------|
| Cas #                      | Compound                       | MDL   | RL    | Conc      | Cas#              | Compound                  | MDL   | RL    | Conc   |
| 71-55 <b>-6</b>            | 1,1,1-Trichloroethane          | 0.027 | 0.074 | U         | 56-23-5           | Carbon Tetrachloride      | 0.024 | 0.074 | U      |
| 79-34-5                    | 1,1,2,2-Tetrachloroethane      | 0.033 | 0.074 | U         | 108-90-7          | Chlorobenzene             | 0.025 | 0.074 | 0.81   |
| 76-13-1                    | 1,1,2-Trichloro-1,2,2-trifluor | 0.054 | 0.074 | U -       | 75-00-3           | Chloroethane              | 0.043 | 0.074 | U      |
| 79- <b>00</b> -5           | 1,1,2-Trichloroethane          | 0.024 | 0.074 | U         | 67-66-3           | Chloroform                | 0.15  | 0.15  | U      |
| 75-34-3                    | 1,1-Dichloroethane             | 0.032 | 0.074 | U -       | 74 <b>-8</b> 7-3  | Chloromethane             | 0.038 | 0.074 | U      |
| 75-35-4                    | 1,1-Dichloroethene             | 0.040 | 0.074 | U         | 156-59-2          | cis-1,2-Dichloroethene    | 0.047 | 0.074 | 0.81   |
| 87-61-6                    | 1,2,3-Trichlorobenzene         | 0.059 | 0.074 | U         | 10061-01-5        | cis-1,3-Dichloropropene   | 0.024 | 0.074 | U      |
| 120-82-1                   | 1,2,4-Trichlorobenzene         | 0.054 | 0.074 | U         | 110-82-7          | Cyclohexane               | 0.036 | 0.074 | U      |
| 96-12-8                    | 1,2-Dibromo-3-Chloropropa      | 0.062 | 0.074 | U         | 124-48-1          | Dibromochloromethane      | 0.018 | 0.074 | U      |
| 106-93-4                   | 1,2-Dibromoethane              | 0.025 | 0.074 | U         | 75-71-8           | Dichlorodifluoromethane   | 0.046 | 0.074 | U      |
| 95-50-1                    | 1,2-Dichlorobenzene            | 0.024 | 0.074 | U         | 100-41-4          | Ethylbenzene              | 0.035 | 0.074 | 0.045J |
| 107-06-2                   | 1,2-Dichloroethane             | 0.047 | 0.047 | U         | 98-82-8           | Isopropylbenzene          | 0.037 | 0.074 | U      |
| 78-87-5                    | 1,2-Dichloropropane            | 0.022 | 0.074 | U         | 179601-23-1       | m&p-Xylenes               | 0.063 | 0.074 | U      |
| 541-73-1                   | 1,3-Dichlorobenzene            | 0.028 | 0.074 | U         | 79-20-9           | Methyl Acetate            | 0.052 | 0.074 | U      |
| 106-46-7                   | 1,4-Dichlorobenzene            | 0.027 | 0.074 | U         | 10 <b>8</b> -87-2 | Methylcyclohexane         | 0.046 | 0.074 | U      |
| 123-91-1                   | 1,4-Dioxane                    | 2.9   | 3.7   | U         | 75-09-2           | Methylene Chloride        | 0.022 | 0.074 | U      |
| 78-93-3                    | 2-Butanone                     | 0.056 | 0.074 | U         | 1634-04-4         | Methyl-t-butyl ether      | 0.023 | 0.037 | U      |
| 591-78-6                   | 2-Hexanone                     | 0.045 | 0.074 | U         | 95-47-6           | o-Xylene                  | 0.051 | 0.074 | U      |
| 108-10-1                   | 4-Methyl-2-Pentanone           | 0.036 | 0.074 | U         | 100-42-5          | Styrene                   | 0.040 | 0.074 | U      |
| 67-64-1                    | Acetone                        | 0.34  | 0.37  | U         | 127-18-4          | Tetrachloroethene         | 0.027 | 0.074 | U      |
| 71-43-2                    | Benzene                        | 0.022 | 0.037 | 0.031J    | 108-88-3          | Toluene                   | 0.024 | 0.074 | 0.063J |
| 74-97-5                    | Bromochloromethane             | 0.058 | 0.074 | U         | 156-60-5          | trans-1,2-Dichloroethene  | 0.023 | 0.074 | U      |
| 75-27-4                    | Bromodichloromethane           | 0.026 | 0.074 | U         | 10061-02-6        | trans-1,3-Dichloropropene | 0.023 | 0.074 | U      |
| 75-25- <b>2</b>            | Bromoform                      | 0.040 | 0.074 | U         | 79-01-6           | Trichloroethene           | 0.026 | 0.074 | U      |
| 74-83-9                    | Bromomethane                   | 0.037 | 0.074 | U         | 75-69-4           | Trichlorofluoromethane    | 0.023 | 0.074 | U      |
| 75-15- <b>0</b>            | Carbon Disulfide               | 0.031 | 0.074 | U         | 75-01-4           | Vinyl Chloride            | 0.053 | 0.074 | 0.75   |
| 13 <b>3</b> 0-2 <b>0-7</b> | Xylenes (Total)                | 0.051 | 0.074 | U         |                   |                           |       |       |        |
|                            |                                |       |       |           |                   |                           |       |       |        |

Worksheet #: 569869

Total Target Concentration

2.5

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19595-010 Qt Meth : 1M\_A0909.M Qt On : 10/08/20 13:18 Qt Upd On: 09/10/20 15:58 Operator : RL Sam Mult : 1 Vial# : 78 Misc : M,MEXT!1 Data File: 1M140273.D Acq On : 10/08/20 12:02

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-0720\
Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Units | Dev(Min) |
|-----------------------------|-------|------|----------|------------|----------|
| Internal Standards          |       |      |          |            |          |
| 4) Fluorobenzene            | 5.336 | 96   | 381868   | 30.00 ug/  | 1 0.00   |
| 52) Chlorobenzene-d5        | 6.989 | 117  | 401122   | 30.00 ug/  | 1 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.281 | 152  | 269577   | 30.00 ug/  | 1 0.00   |
| System Monitoring Compounds |       |      |          |            |          |
| 37) Dibromofluoromethane    | 4.941 | 111  | 104453   | 29.31 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 97    | .70%     |
| 39) 1,2-Dichloroethane-d4   | 5.143 | 67   | 59621    | 30.73 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 102   | .43%     |
| 66) Toluene-d8              | 6.198 | 98   | 425188   | 26.23 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 87    | .43%     |
| 76) Bromofluorobenzene      | 7.622 | 174  | 209743   | 30.88 ug/  | 1 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry = 102   | . 93%    |
| Target Compounds            |       |      |          |            | Qvalue   |
| 9) Vinyl Chloride           | 2.391 | 62   | 28372    | 10.0861    | ug/l 100 |
| 30) cis-1,2-Dichloroethene  | 4.654 | 61   | 48900    | 10.9363    | ug/l 97  |
| 50) Benzene                 | 5.188 | 78   | 4154m    | 0.4131     | ug/l     |
| 67) Toluene                 | 6.230 | 92   | 6732     | 0.8487     | ug/l 85  |
| 69) Chlorobenzene           | 7.005 | 112  | 101141   | 10.9256    | ug/l 97  |
| 74) Ethylbenzene            | 7.047 | 106  | 2619m    | 0.6116     | ug/l     |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed





# Form1 ORGANICS VOLATILE REPORT

Sample Number: AD19595-011

Client Id: HSI-SB-10(8-8.5) Data File: 6M133230.D

Analysis Date: 10/07/20 19:54 Date Rec/Extracted: 10/02/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol: 7.36g

Final Vol: NA

Dilution: 0.679

Solids: 82

Units: mg/Kg

|                  |                                |         |         | Onits: m | g/ <b>r</b> \g   |                           |         |         |        |
|------------------|--------------------------------|---------|---------|----------|------------------|---------------------------|---------|---------|--------|
| Cas #            | Compound                       | MDL     | RL      | Conc     | Cas #            | Compound                  | MDL     | RL      | Conc   |
| 71-55- <b>6</b>  | 1,1,1-Trichloroethane          | 0.00076 | 0.0017  | U        | 56-23-5          | Carbon Tetrachloride      | 0.00080 | 0.0017  | U      |
| 79-34-5          | 1,1,2,2-Tetrachloroethane      | 0.00037 | 0.0017  | 0.028    | 108-90-7         | Chlorobenzene             | 0.00051 | 0.0017  | 0.052  |
| 76-13-1          | 1,1,2-Trichloro-1,2,2-trifluor | 0.0012  | 0.0017  | U        | 75-00-3          | Chloroethane              | 0.0016  | 0.0017  | U      |
| 79-00-5          | 1,1,2-Trichloroethane          | 0.00038 | 0.0017  | 0.0043   | 67-66-3          | Chloroform                | 0.0011  | 0.0017  | U      |
| 75-34-3          | 1,1-Dichloroethane             | 0.00072 | 0.0017  | U        | 74-87-3          | Chloromethane             | 0.0010  | 0.0017  | U      |
| 75-35-4          | 1,1-Dichloroethene             | 0.00095 | 0.0017  | U        | 156-59-2         | cis-1,2-Dichloroethene    | 0.00067 | 0.0017  | 0.059  |
| 87-61-6          | 1,2,3-Trichlorobenzene         | 0.00046 | 0.0017  | U        | 10061-01-5       | cis-1,3-Dichloropropene   | 0.00044 | 0.0017  | U      |
| 120-82-1         | 1,2,4-Trichlorobenzene         | 0.00052 | 0.0017  | U        | 110-82-7         | Cyclohexane               | 0.00099 | 0.0017  | U      |
| 96-12-8          | 1,2-Dibromo-3-Chloropropa      | 0.00046 | 0.0017  | U        | 124-48-1         | Dibromochloromethane      | 0.00036 | 0.0017  | U      |
| 106-93-4         | 1,2-Dibromoethane              | 0.00041 | 0.00083 | U        | 75-71-8          | Dichlorodifluoromethane   | 0.0012  | 0.0017  | U      |
| 95-50-1          | 1,2-Dichlorobenzene            | 0.00042 | 0.0017  | U        | 100-41-4         | Ethylbenzene              | 0.00057 | 0.00083 | U      |
| 107- <b>06-2</b> | 1,2-Dichloroethane             | 0.00034 | 0.0017  | 0.018    | 98-82-8          | Isopropylbenzene          | 0.00069 | 0.00083 | U      |
| 78-87-5          | 1,2-Dichloropropane            | 0.00068 | 0.0017  | U        | 179601-23-1      | m&p-Xylenes               | 0.00099 | 0.00099 | U      |
| 541-73-1         | 1,3-Dichlorobenzene            | 0.00046 | 0.0017  | U        | 79-20-9          | Methyl Acetate            | 0.00080 | 0.0017  | U      |
| 106-46-7         | 1,4-Dichlorobenzene            | 0.00044 | 0.0017  | υ        | 108-87-2         | Methylcyclohexane         | 0.00075 | 0.0017  | U      |
| 123-91-1         | 1,4-Dioxane                    | 0.040   | 0.083   | υ        | 75-09-2          | Methylene Chloride        | 0.00062 | 0.0017  | U      |
| 78-93-3          | 2-Butanone                     | 0.00099 | 0.0017  | υ        | 1634-04-4        | Methyl-t-butyl ether      | 0.00045 | 0.00083 | υ      |
| 591-78-6         | 2-Hexanone                     | 0.00070 | 0.0017  | U        | 95-47-6          | o-Xylene                  | 0.00059 | 0.00083 | U      |
| 108-10-1         | 4-Methyl-2-Pentanone           | 0.00048 | 0.0017  | υ        | 100-42-5         | Styrene                   | 0.00046 | 0.0017  | υ      |
| 67-64-1          | Acetone                        | 0.0056  | 0.0083  | 0.019    | 127-18-4         | Tetrachloroethene         | 0.00081 | 0.0017  | 0.0035 |
| 71-43- <b>2</b>  | Benzene                        | 0.00060 | 0.00083 | 0.0018   | <b>108-88-</b> 3 | Toluene                   | 0.00055 | 0.00083 | 0.0030 |
| 74-97-5          | Bromochloromethane             | 0.00058 | 0.0017  | U        | 156-60-5         | trans-1,2-Dichloroethene  | 0.00099 | 0.0017  | 0.0019 |
| 75-27-4          | Bromodichloromethane           | 0.00039 | 0.0017  | U        | 10061-02-6       | trans-1,3-Dichloropropene | 0.00039 | 0.0017  | U      |
| 75-25-2          | Bromoform                      | 0.00027 | 0.0017  | U        | 79-01-6          | Trichloroethene           | 83000.0 | 0.0017  | 0.061  |
| 74-83-9          | Bromomethane                   | 0.0013  | 0.0017  | U        | 75-69-4          | Trichlorofluoromethane    | 0.00098 | 0.0017  | U      |
| 75-15 <b>-0</b>  | Carbon Disulfide               | 0.0028  | 0.0028  | U .      | 75-01-4          | Vinyl Chloride            | 0.0010  | 0.0017  | 0.010  |
| 1330-20-7        | Xylenes (Total)                | 0.00059 | 0.00083 | U        |                  |                           |         |         |        |
|                  |                                |         |         |          |                  |                           |         |         |        |

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 6M\_S1006.M Qt On : 10/07/20 20:13 Qt Upd On: 10/07/20 11:33 Operator : BK Sam Mult : 1 Vial# : 23 Misc : S,5G!3 SampleID : AD19595-011 Data File: 6M133230.D Acq On : 10/07/20 19:54

Data Path : G:\GcMsData\2020\GCMS\_6\Data\10-07-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_6\METHODQT\
Qt Resp Via : Initial Calibration

|                               |       | - <del>-</del> |        | cone or | nits Dev | M1111  |
|-------------------------------|-------|----------------|--------|---------|----------|--------|
| Internal Standards            |       |                |        |         |          |        |
| 4) Fluorobenzene              | 5.123 | 96             | 342747 | 30.00   | ug/l     | 0.00   |
| 52) Chlorobenzene-d5          | 6.763 | 117            | 277307 | 30.00   | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4    | 8.049 | 152            | 141317 | 30.00   | ug/l     | 0.00   |
| System Monitoring Compounds   |       |                |        |         |          |        |
| 37) Dibromofluoromethane      | 4.727 | 111            | 100459 | 31.05   | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |                | Recove | ry =    | 103.50%  |        |
| 39) 1,2-Dichloroethane-d4     | 4.934 | 67             | 50063  | 32.55   | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |                | Recove | ry =    | 108.50%  |        |
| 66) Toluene-d8                | 5.983 | 98             | 343385 | 29.60   | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |                | Recove | ry =    | 98.67%   |        |
| 76) Bromofluorobenzene        | 7.397 | 174            | 103889 | 30.35   | ug/l     | 0.00   |
| Spiked Amount 30.000          |       |                | Recove | ry =    | 101.17%  |        |
| Target Compounds              |       |                |        |         |          | Qvalue |
| 9) Vinyl Chloride             | 1.916 | 62             | 41016  | 12.148  | 33 ug/1  | . 93   |
| 19) Acetone                   | 3.056 | 43             | 12862  | 22.913  | 4 ug/1   | . 84   |
| 28) trans-1,2-Dichloroethene  | 3.672 | 96             | 6235   | 2.264   | 5 ug/1   | . 87   |
| 30) cis-1,2-Dichloroethene    | 4.434 | 61             | 286719 | 71.716  | 55 ug/1  | . 95   |
| 40) 1,2-Dichloroethane        | 4.977 | 62             | 72563  | 21.936  | 1 ug/l   | . 96   |
| 49) Trichloroethene           | 5.330 | 130            | 233670 | 73.867  | /1 ug/l  | . 96   |
| 50) Benzene                   | 4.977 | 78             | 22358  | 2.148   | 34 ug/1  | 100    |
| 60) 1,1,2-Trichloroethane     | 6.220 | 97             | 12402  | 5.197   | /9 ug/l  | . 89   |
| 65) Tetrachloroethene         | 6.318 | 164            | 10796  | 4.196   | 0 ug/1   | . 97   |
| 67) Toluene                   | 6.019 | 92             | 26257  | 3.642   | 2 ug/1   | . 92   |
| 69) Chlorobenzene             | 6.781 | 112            | 496063 | 62.406  |          |        |
| 75) 1,1,2,2-Tetrachloroethane | 7.446 | 83             | 87927  | 33.328  |          |        |

<sup>(#)</sup> = qualifier out of range (m) = manual integration (+) = signals summed





ORGANICS VOLATILE REPORT

Sample Number: AD19595-012

Client Id: HSI-SB-D2 Data File: 1M140346.D

Matrix: Methanol Extraction Ratio: 7.07g:10ml

Method: EPA 8260D

Analysis Date: 10/09/20 15:03 Date Rec/Extracted: 10/02/20-NA

Final Vol: NA Dilution: 70.7

Column: DB-624 25M 0.200mm ID 1.12um film

Solids: 76

| Units: mg/Kg    |                                |       |       |      |                          |                           |       |       |        |  |  |  |
|-----------------|--------------------------------|-------|-------|------|--------------------------|---------------------------|-------|-------|--------|--|--|--|
| Cas #           | Compound                       | MDL   | RL    | Conc | Cas #                    | Compound                  | MDL   | RL    | Conc   |  |  |  |
| 71-55- <b>6</b> | 1,1,1-Trichloroethane          | 0.033 | 0.093 | U    | 56-23-5                  | Carbon Tetrachloride      | 0.030 | 0.093 | U      |  |  |  |
| 79-34-5         | 1,1,2,2-Tetrachloroethane      | 0.042 | 0.093 | U    | 108-90-7                 | Chlorobenzene             | 0.031 | 0.093 | 3.7    |  |  |  |
| 76-13-1         | 1,1,2-Trichloro-1,2,2-trifluor | 0.068 | 0.093 | U    | 75-00-3                  | Chloroethane              | 0.054 | 0.093 | U      |  |  |  |
| 79-00-5         | 1,1.2-Trichloroethane          | 0.030 | 0.093 | U    | 67-66-3                  | Chloroform                | 0.18  | 0.18  | U      |  |  |  |
| 75-34-3         | 1,1-Dichloroethane             | 0.040 | 0.093 | U    | 74-87-3                  | Chloromethane             | 0.048 | 0.093 | U      |  |  |  |
| 75- <b>35-4</b> | 1,1-Dichloroethene             | 0.050 | 0.093 | U    | 156-59-2                 | cis-1,2-Dichloroethene    | 0.059 | 0.093 | 0.40   |  |  |  |
| 87-61-6         | 1,2,3-Trichlorobenzene         | 0.073 | 0.093 | U    | 10061-01-5               | cis-1,3-Dichloropropene   | 0.030 | 0.093 | U      |  |  |  |
| 120-82-1        | 1,2,4-Trichlorobenzene         | 0.068 | 0.093 | U    | 110-82-7                 | Cyclohexane               | 0.045 | 0.093 | U      |  |  |  |
| 96-12-8         | 1.2-Dibromo-3-Chloropropa      | 0.078 | 0.093 | U    | 124-48-1                 | Dibromochloromethane      | 0.022 | 0.093 | U      |  |  |  |
| 106-93-4        | 1,2-Dibromoethane              | 0.032 | 0.093 | U    | 75 <b>-</b> 71 <b>-8</b> | Dichlorodifluoromethane   | 0.058 | 0.093 | U      |  |  |  |
| 95-50-1         | 1,2-Dichlorobenzene            | 0.030 | 0.093 | U    | 100-41-4                 | Ethylbenzene              | 0.043 | 0.093 | 0.069J |  |  |  |
| 107-06-2        | 1,2-Dichloroethane             | 0.059 | 0.059 | U    | 98-82-8                  | Isopropylbenzene          | 0.046 | 0.093 | U      |  |  |  |
| 78-87-5         | 1,2-Dichloropropane            | 0.028 | 0.093 | U    | 179601-23-1              | m&p-Xylenes               | 0.079 | 0.093 | 0.25   |  |  |  |
| 541-73-1        | 1,3-Dichlorobenzene            | 0.035 | 0.093 | U    | 79-20-9                  | Methyl Acetate            | 0.065 | 0.093 | U      |  |  |  |
| 106-46-7        | 1,4-Dichlorobenzene            | 0.034 | 0.093 | U    | 108-87-2                 | Methylcyclohexane         | 0.057 | 0.093 | U      |  |  |  |
| 123-91-1        | 1,4-Dioxane                    | 3.7   | 4.7   | U    | 75-09-2                  | Methylene Chloride        | 0.027 | 0.093 | U      |  |  |  |
| 78-93-3         | 2-Butanone                     | 0.070 | 0.093 | U    | 1634-04-4                | Methyl-t-butyl ether      | 0.029 | 0.047 | U      |  |  |  |
| 591-78-6        | 2-Hexanone                     | 0.056 | 0.093 | U    | 95-47-6                  | o-Xylene                  | 0.064 | 0.093 | 0.076J |  |  |  |
| 108-10-1        | 4-Methyl-2-Pentanone           | 0.045 | 0.093 | 4.1  | 100-42-5                 | Styrene                   | 0.051 | 0.093 | U      |  |  |  |
| 67-64-1         | Acetone                        | 0.43  | 0.47  | U    | 127-18-4                 | Tetrachloroethene         | 0.033 | 0.093 | U      |  |  |  |
| 71-43-2         | Benzene                        | 0.028 | 0.047 | 0.12 | 108-88-3                 | Toluene                   | 0.030 | 0.093 | 5.4    |  |  |  |
| 74-97-5         | Bromochloromethane             | 0.073 | 0.093 | U    | 156-60-5                 | trans-1,2-Dichloroethene  | 0.029 | 0.093 | 0.068J |  |  |  |
| 75-2 <b>7-4</b> | Bromodichloromethane           | 0.032 | 0.093 | U    | 10061-02-6               | trans-1,3-Dichloropropene | 0.029 | 0.093 | U      |  |  |  |
| 75-25-2         | Bromoform                      | 0.050 | 0.093 | U    | 79 <b>-</b> 01-6         | Trichloroethene           | 0.032 | 0.093 | U      |  |  |  |
| 74-83-9         | Bromomethane                   | 0.047 | 0.093 | U ,  | 75 <b>-</b> 69-4         | Trichlorofluoromethane    | 0.029 | 0.093 | U      |  |  |  |
| 75-15-0         | Carbon Disulfide               | 0.039 | 0.093 | U    | 75-01-4                  | Vinyl Chloride            | 0.066 | 0.093 | 1.1    |  |  |  |
| 1330-20-7       | Xylenes (Total)                | 0.064 | 0.093 | 0.33 |                          |                           |       |       |        |  |  |  |

15

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

SampleID : AD19595-012 Qt Meth : 1M\_A0909.M Qt On : 10/09/20 15:28 Qt Upd On: 09/10/20 15:58 Operator : BK Sam Mult : 1 Vial# : 20 Misc : M,MEXT!1 Data File: 1M140346.D Acq On : 10/09/20 15:03

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-09-20\Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\Qt Resp Via : Initial Calibration

| Compound                     | R.T.  | QIon | Response | Conc Units | ; Dev(Min) |
|------------------------------|-------|------|----------|------------|------------|
| Internal Standards           |       |      |          |            |            |
|                              | 5.336 | 96   | 373395   | 30.00 ug/  | 1 0.00     |
| 52) Chlorobenzene-d5         | 6.989 | 117  | 392590   |            |            |
| 70) 1,4-Dichlorobenzene-d4   | 8.281 | 152  | 258244   | 30.00 ug/  | /1 0.00    |
| System Monitoring Compounds  |       |      |          |            |            |
| 37) Dibromofluoromethane     | 4.940 | 111  | 102581   | 29.44 ug/  | /1 0.00    |
| Spiked Amount 30.000         |       |      | Recove   | ry = 98    | 3.13%      |
| 39) 1,2-Dichloroethane-d4    | 5.146 | 67   | 56052    | 29.54 ug/  | /1 0.00    |
| Spiked Amount 30.000         |       |      | Recove   | ry = 98    | 3.47%      |
| 66) Toluene-d8               | 6.198 | 98   | 424412   | 26.75 ug/  | /1 0.00    |
| Spiked Amount 30.000         |       |      | Recove   | ry = 89    |            |
| 76) Bromofluorobenzene       | 7.625 | 174  | 199769   | 30.70 ug/  | /1 0.00    |
| Spiked Amount 30.000         |       |      | Recove   | ry = 102   | ₹.33%      |
| Target Compounds             |       |      |          |            | Qvalue     |
| 9) Vinyl Chloride            | 2.384 | 62   | 32405    | 11.7813    | ug/l 96    |
| 28) trans-1,2-Dichloroethene | 3.947 | 96   | 1685     | 0.7342     | ug/l 80    |
| 30) cis-1,2-Dichloroethene   | 4.661 | 61   | 18935    | 4.3308     | ug/l 92    |
| 50) Benzene                  | 5.188 | 78   | 12353    | 1.2564     | ug/l 100   |
| 63) 4-Methyl-2-Pentanone     | 6.114 | 43   | 156249   | 44.2235    | ug/l 94    |
| 67) Toluene                  | 6.236 | 92   | 452914   | 58.3388    | ug/l 92    |
| 69) Chlorobenzene            | 7.005 | 112  | 361438   | 39.8922    | ug/l 98    |
| 74) Ethylbenzene             | 7.050 | 106  | 3022     | 0.7367     | ug/l 88    |
| 78) m&p-Xylenes              | 7.108 | 106  | 15074    | 2.7376     | ug/l 96    |
| 79) o-Xylene                 | 7.333 | 106  | 4618     | 0.8190     | ug/l 83    |

<sup>(</sup>#) = qualifier out of range (m) = manual integration (+) = signals summed



#### Form1 ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 1M140250.D

Analysis Date: 10/08/20 04:06

Date Rec/Extracted:

Dilution: 100

Extraction Ratio:5g:10ml

Final Vol: NA

Column: DB-624 25M 0.200mm ID 1.12um film

Solids: 100

Method: EPA 8260D

Matrix: Methanol

| Units: | mg/K | g |
|--------|------|---|
|--------|------|---|

|                   |                                |       |       | Omes: me | y/Ny        |                           |       |       | _    |
|-------------------|--------------------------------|-------|-------|----------|-------------|---------------------------|-------|-------|------|
| Cas#              | Compound                       | MDL   | RL    | Conc     | Cas #       | Compound                  | MDL   | RL    | Conc |
| 71-55- <b>6</b>   | 1,1,1-Trichloroethane          | 0.036 | 0.10  | U        | 56-23-5     | Carbon Tetrachloride      | 0.032 | 0.10  | U    |
| 79-34-5           | 1,1,2,2-Tetrachloroethane      | 0.045 | 0.10  | U        | 108-90-7    | Chlorobenzene             | 0.033 | 0.10  | U    |
| 76-13-1           | 1,1,2-Trichloro-1,2,2-trifluor | 0.073 | 0.10  | U        | 75-00-3     | Chloroethane              | 0.058 | 0.10  | U    |
| 79-00-5           | 1,1,2-Trichloroethane          | 0.032 | 0.10  | U        | 67-66-3     | Chloroform                | 0.20  | 0.20  | U    |
| 75-34-3           | 1,1-Dichloroethane             | 0.043 | 0.10  | U        | 74-87-3     | Chloromethane             | 0.052 | 0.10  | U    |
| 75-35-4           | 1,1-Dichloroethene             | 0.053 | 0.10  | U        | 156-59-2    | cis-1,2-Dichloroethene    | 0.064 | 0.10  | U    |
| 87-61-6           | 1,2,3-Trichlorobenzene         | 0.079 | 0.10  | U        | 10061-01-5  | cis-1,3-Dichloropropene   | 0.032 | 0.10  | U    |
| 120-82-1          | 1,2,4-Trichlorobenzene         | 0.073 | 0.10  | U        | 110-82-7    | Cyclohexane               | 0.049 | 0.10  | U    |
| 96-12-8           | 1,2-Dibromo-3-Chloropropa      | 0.083 | 0.10  | U :      | 124-48-1    | Dibromochloromethane      | 0.024 | 0.10  | U    |
| 106-93-4          | 1,2-Dibromoethane              | 0.034 | 0.10  | U        | 75-71-8     | Dichlorodifluoromethane   | 0.062 | 0.10  | U    |
| 95- <b>50</b> -1  | 1,2-Dichlorobenzene            | 0.032 | 0.10  | U        | 100-41-4    | Ethylbenzene              | 0.047 | 0.10  | U    |
| 107- <b>0</b> 6-2 | 1,2-Dichloroethane             | 0.064 | 0.064 | U :      | 98-82-8     | Isopropylbenzene          | 0.049 | 0.10  | U    |
| 78-87-5           | 1,2-Dichloropropane            | 0.030 | 0.10  | U        | 179601-23-1 | m&p-Xylenes               | 0.085 | 0.10  | U    |
| 541-7 <b>3-1</b>  | 1.3-Dichlorobenzene            | 0.038 | 0.10  | U        | 79-20-9     | Methyl Acetate            | 0.070 | 0.10  | U    |
| 106-46-7          | 1.4-Dichlorobenzene            | 0.037 | 0.10  | U        | 108-87-2    | Methylcyclohexane         | 0.061 | 0.10  | U    |
| 123-91-1          | 1.4-Dioxane                    | 3.9   | 5.0   | U        | 75-09-2     | Methylene Chloride        | 0.029 | 0.10  | U    |
| 78-93-3           | 2-Butanone                     | 0.075 | 0.10  | U        | 1634-04-4   | Methyl-t-butyl ether      | 0.031 | 0.050 | U    |
| 591-78-6          | 2-Hexanone                     | 0.060 | 0.10  | U .      | 95-47-6     | o-Xylene                  | 0.068 | 0.10  | U    |
| 108-10-1          | 4-Methyl-2-Pentanone           | 0.049 | 0.10  | U        | 100-42-5    | Styrene                   | 0.054 | 0.10  | U    |
| 67-64-1           | Acetone                        | 0.46  | 0.50  | U        | 127-18-4    | Tetrachloroethene         | 0.036 | 0.10  | U    |
| 71-43-2           | Benzene                        | 0.030 | 0.050 | U :      | 108-88-3    | Toluene                   | 0.033 | 0.10  | U    |
| 74-97-5           | Bromochloromethane             | 0.079 | 0.10  | U        | 156-60-5    | trans-1,2-Dichloroethene  | 0.031 | 0.10  | U    |
| 75-27-4           | Bromodichloromethane           | 0.035 | 0.10  | U        | 10061-02-6  | trans-1,3-Dichloropropene | 0.031 | 0.10  | U    |
| 75-25-2           | Bromoform                      | 0.054 | 0.10  | U        | 79-01-6     | Trichloroethene           | 0.035 | 0.10  | U    |
| 74-83-9           | Bromomethane                   | 0.050 | 0.10  | U        | 75-69-4     | Trichlorofluoromethane    | 0.031 | 0.10  | U    |
| 75-15-0           | Carbon Disulfide               | 0.042 | 0.10  | U        | 75-01-4     | Vinyl Chloride            | 0.071 | 0.10  | U    |
|                   |                                |       |       |          |             |                           |       |       |      |

0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 1M\_A0909.M Qt On : 10/08/20 06:50 Qt Upd On: 09/10/20 15:58 SampleID : DAILY BLANK
Data File: 1M140250.D
Acq On : 10/08/20 04:06 Operator : RL Sam Mult : 1 Vial# : 55 Misc : M,MEOH

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-0720\Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc U | nits Dev | (Min)  |
|-----------------------------|-------|------|----------|--------|----------|--------|
| Internal Standards          |       |      |          |        |          |        |
| 4) Fluorobenzene            | 5.336 | 96   | 340986   | 30.00  | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.985 | 117  | 358722   | 30.00  | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.281 | 152  | 224057   | 30.00  | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |          |        |          |        |
| 37) Dibromofluoromethane    | 4.937 | 111  | 98458    | 30.95  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =   | 103.17%  |        |
| 39) 1,2-Dichloroethane-d4   | 5.143 | 67   | 49851    | 28.77  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =   | 95.90%   |        |
| 66) Toluene-d8              | 6.198 | 98   | 383777   | 26.47  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =   | 88.23%   |        |
| 76) Bromofluorobenzene      | 7.622 | 174  | 170879   | 30.27  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =   | 100.90%  |        |
| Target Compounds            |       |      |          |        |          | Qvalue |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed



ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 1M140333.D Analysis Date: 10/09/20 10:26

Date Rec/Extracted: Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 8260D

Matrix: Methanol

Extraction Ratio: 5g:10ml

Final Vol: NA

Dilution: 100

Solids: 100

Units: mq/Kq

| Cas #           | Compound                       | MDL   | RL    | Conc | Cas #       | Compound                  | MDL   | RL    | Conc |
|-----------------|--------------------------------|-------|-------|------|-------------|---------------------------|-------|-------|------|
| 71-55-6         | 1,1,1-Trichloroethane          | 0.036 | 0.10  | U    | 56-23-5     | Carbon Tetrachloride      | 0.032 | 0.10  | U    |
| 79- <b>34-5</b> | 1,1,2,2-Tetrachloroethane      | 0.045 | 0.10  | U    | 108-90-7    | Chlorobenzene             | 0.033 | 0.10  | U    |
| 76-13-1         | 1,1,2-Trichloro-1,2,2-trifluor | 0.073 | 0.10  | U    | 75-00-3     | Chloroethane              | 0.058 | 0.10  | U    |
| 79 <b>-00-5</b> | 1,1,2-Trichloroethane          | 0.032 | 0.10  | U    | 67-66-3     | Chloroform                | 0.20  | 0.20  | U    |
| 75-34-3         | 1,1-Dichloroethane             | 0.043 | 0.10  | U    | 74-87-3     | Chloromethane             | 0.052 | 0.10  | U    |
| 75-35-4         | 1,1-Dichloroethene             | 0.053 | 0.10  | U    | 156-59-2    | cis-1,2-Dichloroethene    | 0.064 | 0.10  | U    |
| 87-61-6         | 1,2,3-Trichlorobenzene         | 0.079 | 0.10  | U    | 10061-01-5  | cis-1,3-Dichloropropene   | 0.032 | 0.10  | U    |
| 120-82-1        | 1,2,4-Trichlorobenzene         | 0.073 | 0.10  | U    | 110-82-7    | Cyclohexane               | 0.049 | 0.10  | U    |
| 96-12-8         | 1,2-Dibromo-3-Chloropropa      | 0.083 | 0.10  | U    | 124-48-1    | Dibromochloromethane      | 0.024 | 0.10  | U    |
| 106-93-4        | 1,2-Dibromoethane              | 0.034 | 0.10  | U    | 75-71-8     | Dichlorodifluoromethane   | 0.062 | 0.10  | U    |
| 95-50-1         | 1,2-Dichlorobenzene            | 0.032 | 0.10  | U    | 100-41-4    | Ethylbenzene              | 0.047 | 0.10  | U    |
| 107-06-2        | 1,2-Dichloroethane             | 0.064 | 0.064 | U    | 98-82-8     | Isopropylbenzene          | 0.049 | 0.10  | U    |
| 78-87-5         | 1,2-Dichloropropane            | 0.030 | 0.10  | U    | 179601-23-1 | m&p-Xylenes               | 0.085 | 0.10  | U    |
| 541-73-1        | 1,3-Dichlorobenzene            | 0.038 | 0.10  | U    | 79-20-9     | Methyl Acetate            | 0.070 | 0.10  | U    |
| 106-46-7        | 1,4-Dichlorobenzene            | 0.037 | 0.10  | U    | 108-87-2    | Methylcyclohexane         | 0.061 | 0.10  | U    |
| 123-91-1        | 1,4-Dioxane                    | 3.9   | 5.0   | U .  | 75-09-2     | Methylene Chloride        | 0.029 | 0.10  | U    |
| 78-93-3         | 2-Butanone                     | 0.075 | 0.10  | U    | 1634-04-4   | Methyl-t-butyl ether      | 0.031 | 0.050 | U    |
| 591-78-6        | 2-Hexanone                     | 0.060 | 0.10  | U    | 95-47-6     | o-Xylene                  | 0.068 | 0.10  | U    |
| 108-10-1        | 4-Methyl-2-Pentanone           | 0.049 | 0.10  | U    | 100-42-5    | Styrene                   | 0.054 | 0.10  | U    |
| 67-64-1         | Acetone                        | 0.46  | 0.50  | U    | 127-18-4    | Tetrachloroethene         | 0.036 | 0.10  | U    |
| 71-43-2         | Benzene                        | 0.030 | 0.050 | U    | 108-88-3    | Toluene                   | 0.033 | 0.10  | U    |
| 74-97-5         | Bromochloromethane             | 0.079 | 0.10  | U    | 156-60-5    | trans-1,2-Dichloroethene  | 0.031 | 0.10  | U    |
| 75-27-4         | Bromodichloromethane           | 0.035 | 0.10  | U    | 10061-02-6  | trans-1,3-Dichloropropene | 0.031 | 0.10  | U    |
| 75-25-2         | Bromoform                      | 0.054 | 0.10  | U    | 79-01-6     | Trichloroethene           | 0.035 | 0.10  | U    |
| 74-83-9         | Bromomethane                   | 0.050 | 0.10  | U    | 75-69-4     | Trichlorofluoromethane    | 0.031 | 0.10  | U    |
| 75-15- <b>0</b> | Carbon Disulfide               | 0.042 | 0.10  | U    | 75-01-4     | Vinyl Chloride            | 0.071 | 0.10  | U    |
|                 |                                |       |       |      |             |                           |       |       |      |

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Qt Meth : 1M\_A0909.M Qt On : 10/09/20 10:37 Qt Upd On: 09/10/20 15:58 Operator : BK Sam Mult : 1 Vial# : 7 Misc : M,MEOH SampleID : DAILY BLANK Data File: 1M140333.D Acq On : 10/09/20 10:26 Misc

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-09-20\Qt Path : G:\GcMsData\2020\GCMS\_1\MethodQt\Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Ur | nits Dev | (Min)  |
|-----------------------------|-------|------|----------|---------|----------|--------|
| Internal Standards          |       |      |          |         |          |        |
| 4) Fluorobenzene            | 5.339 | 96   | 365030   | 30.00   | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.989 | 117  | 396377   | 30.00   | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.281 | 152  | 254182   | 30.00   | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |          |         |          |        |
| 37) Dibromofluoromethane    | 4.944 | 111  | 106315   | 31.21   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery =   | 104.03%  |        |
| 39) 1,2-Dichloroethane-d4   | 5.146 | 67   | 57783    | 31.15   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery =   | 103.83%  |        |
| 66) Toluene-d8              | 6.201 | 98   | 415052   | 25.91   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery =   | 86.37%   |        |
| 76) Bromofluorobenzene      | 7.625 | 174  | 201372   | 31.44   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ery =   | 104.80%  |        |
| Target Compounds            |       |      |          |         |          | Qvalue |

<sup>(#)</sup> = qualifier out of range (m) = manual integration (+) = signals summed



ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 6M133214.D Analysis Date: 10/07/20 14:06

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Soil

Initial Vol:5g

Final Vol: NA

Dilution: 1.00

Solids: 100

Units: mg/Kg

| Cas#             | Compound                       | MDL     | RL     | Conc | Cas#        | Compound                  | MDL     | RL     | Conc |
|------------------|--------------------------------|---------|--------|------|-------------|---------------------------|---------|--------|------|
| 71-55-6          | 1,1,1-Trichloroethane          | 0.00092 | 0.0020 | U    | 56-23-5     | Carbon Tetrachloride      | 0.00097 | 0.0020 | U    |
| 79-34-5          | 1,1,2,2-Tetrachloroethane      | 0.00045 | 0.0020 | U :  | 108-90-7    | Chlorobenzene             | 0.00062 | 0.0020 | U    |
| 76-13-1          | 1,1,2-Trichloro-1,2,2-trifluor | 0.0014  | 0.0020 | U    | 75-00-3     | Chloroethane              | 0.0020  | 0.0020 | U    |
| 7 <b>9-00</b> -5 | 1,1,2-Trichloroethane          | 0.00046 | 0.0020 | U -  | 67-66-3     | Chloroform                | 0.0014  | 0.0020 | U    |
| 75-34-3          | 1,1-Dichloroethane             | 0.00087 | 0.0020 | U    | 74-87-3     | Chloromethane             | 0.0012  | 0.0020 | U    |
| 75-35-4          | 1,1-Dichloroethene             | 0.0012  | 0.0020 | U    | 156-59-2    | cis-1,2-Dichloroethene    | 0.00081 | 0.0020 | U    |
| 87-61-6          | 1,2,3-Trichlorobenzene         | 0.00055 | 0.0020 | U :  | 10061-01-5  | cis-1,3-Dichloropropene   | 0.00053 | 0.0020 | U    |
| 120-82-1         | 1,2,4-Trichlorobenzene         | 0.00063 | 0.0020 | U .  | 110-82-7    | Cyclohexane               | 0.0012  | 0.0020 | U    |
| 96-12-8          | 1,2-Dibromo-3-Chloropropa      | 0.00055 | 0.0020 | U    | 124-48-1    | Dibromochloromethane      | 0.00043 | 0.0020 | U    |
| 106-93-4         | 1,2-Dibromoethane              | 0.00049 | 0.0010 | U    | 75-71-8     | Dichlorodifluoromethane   | 0.0014  | 0.0020 | U    |
| 95-5 <b>0</b> -1 | 1,2-Dichlorobenzene            | 0.00051 | 0.0020 | U    | 100-41-4    | Ethylbenzene              | 0.00069 | 0.0010 | U    |
| 107-06-2         | 1,2-Dichloroethane             | 0.00041 | 0.0020 | U    | 98-82-8     | Isopropylbenzene          | 0.00083 | 0.0010 | U    |
| 78-87- <b>5</b>  | 1,2-Dichloropropane            | 0.00082 | 0.0020 | U    | 179601-23-1 | m&p-Xylenes               | 0.0012  | 0.0012 | U    |
| 541-73-1         | 1,3-Dichlorobenzene            | 0.00055 | 0.0020 | U    | 79-20-9     | Methyl Acetate            | 0.00096 | 0.0020 | U    |
| 106-46-7         | 1,4-Dichlorobenzene            | 0.00053 | 0.0020 | U    | 108-87-2    | Methylcyclohexane         | 0.00090 | 0.0020 | U    |
| 123-91-1         | 1,4-Dioxane                    | 0.049   | 0.10   | U    | 75-09-2     | Methylene Chloride        | 0.00075 | 0.0020 | U    |
| 78-9 <b>3-3</b>  | 2-Butanone                     | 0.0012  | 0.0020 | U    | 1634-04-4   | Methyl-t-butyl ether      | 0.00054 | 0.0010 | U    |
| 591-78-6         | 2-Hexanone                     | 0.00085 | 0.0020 | U    | 95-47-6     | o-Xylene                  | 0.00071 | 0.0010 | U    |
| 108-10-1         | 4-Methyl-2-Pentanone           | 0.00058 | 0.0020 | U    | 100-42-5    | Styrene                   | 0.00055 | 0.0020 | U    |
| 67-64-1          | Acetone                        | 0.0068  | 0.010  | U ;  | 127-18-4    | Tetrachloroethene         | 0.00098 | 0.0020 | U    |
| 71-43-2          | Benzene                        | 0.00073 | 0.0010 | U :  | 108-88-3    | Toluene                   | 0.00066 | 0.0010 | U    |
| 74-97-5          | Bromochloromethane             | 0.00070 | 0.0020 | U ,  | 156-60-5    | trans-1,2-Dichloroethene  | 0.0012  | 0.0020 | U    |
| 75-27-4          | Bromodichloromethane           | 0.00047 | 0.0020 | U    | 10061-02-6  | trans-1,3-Dichloropropene | 0.00047 | 0.0020 | U    |
| 75-25-2          | Bromoform                      | 0.00033 | 0.0020 | U    | 79-01-6     | Trichloroethene           | 0.00082 | 0.0020 | U    |
| 74-83-9          | Bromomethane                   | 0.0016  | 0.0020 | U    | 75-69-4     | Trichlorofluoromethane    | 0.0012  | 0.0020 | U    |
| 75-15- <b>0</b>  | Carbon Disulfide               | 0.0034  | 0.0034 | U    | 75-01-4     | Vinyl Chloride            | 0.0012  | 0.0020 | U    |
|                  |                                |         |        |      |             |                           |         |        |      |

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 6M\_S1006.M Qt On : 10/07/20 14:24 Qt Upd On: 10/07/20 11:33 SampleID : DAILY BLANK Data File: 6M133214.D Operator : BK Sam Mult : 1 Vial# : 7 Misc : S,5G Acq On : 10/07/20 14:06

Data Path : G:\GcMsData\2020\GCMS\_6\Data\10-07-20\Qt Path : G:\GCMSDATA\2020\GCMS\_6\METHODQT\Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response Co | nc U | nits Dev | (Min)  |
|-----------------------------|-------|------|-------------|------|----------|--------|
| Internal Standards          |       |      |             |      |          |        |
| 4) Fluorobenzene            | 5.123 | 96   | 341074 3    | 0.00 | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.763 | 117  | 276624 3    | 0.00 | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.050 | 152  | 139222 3    | 0.00 | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |             |      |          |        |
| 37) Dibromofluoromethane    | 4.727 | 111  | 95650 2     | 9.71 | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recovery    | =    | 99.03%   |        |
| 39) 1,2-Dichloroethane-d4   | 4.934 | 67   | 46688 3     | 0.50 | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recovery    | =    | 101.67%  |        |
| 66) Toluene-d8              | 5.983 | 98   | 348632 3    | 0.13 | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recovery    | =    | 100.43%  |        |
| 76) Bromofluorobenzene      | 7.391 | 174  | 104714 3    | 1.05 | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recovery    | =    | 103.50%  |        |
| Target Compounds            |       |      |             |      |          | Qvalue |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed



#### FORM2

Surrogate Recovery

Method: EPA 8260D

| <u>Dfile</u> | Sample#               | Matrix | Date/Time      | Surr<br>Dil | Dilute<br>Out<br>Flag | Column1<br>S1<br>Recov | Column1<br>S2<br>Recov | Column1<br>S3<br>Recov | Column1<br>S4<br>Recov | Column0<br>S5<br>Recov | Column0<br>S6<br>Recov |
|--------------|-----------------------|--------|----------------|-------------|-----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| 1M14025      | 0.DDAILY BLANK        | М      | 10/08/20 04:06 | 1           |                       | 103                    | 96                     | 88                     | 101                    |                        |                        |
| 1M14033      | 3.D DAILY BLANK       | М      | 10/09/20 10:26 | 1           |                       | 104                    | 104                    | 86                     | 105                    |                        |                        |
| 6M13321      | 4.D DAILY BLANK       | s      | 10/07/20 14:06 | 1           |                       | 99                     | 102                    | 100                    | 104                    |                        |                        |
| 1M14027      | 4.DAD19595-001        | М      | 10/08/20 12:23 | 1           |                       | 97                     | 100                    | 87                     | 103                    |                        |                        |
| 1M14034      | 2.DAD19595-002        | М      | 10/09/20 13:41 | 1           |                       | 102                    | 104                    | 86                     | 100                    |                        |                        |
| 1M14027      | 2.DAD19595-003        | М      | 10/08/20 11:42 | 1           |                       | 99                     | 101                    | 88                     | 103                    |                        |                        |
| 1M14034      | 3.DAD19595-004        | М      | 10/09/20 14:01 | 1           |                       | 98                     | 100                    | 86                     | 103                    |                        |                        |
| 1M14027      | 5.DAD19595-005        | М      | 10/08/20 12:44 | 1           |                       | 100                    | 101                    | 87                     | 104                    |                        |                        |
| 1M14034      | 5.DAD19595-006        | М      | 10/09/20 14:43 | 1           |                       | 98                     | 100                    | 87                     | 105                    |                        |                        |
| 6M13322      | 8.DAD19595-007        | s      | 10/07/20 19:12 | 1           |                       | 102                    | 109                    | 98                     | 102                    |                        |                        |
| 6M13322      | 9.DAD19595-008        | s      | 10/07/20 19:33 | 1           |                       | 103                    | 108                    | 98                     | 108                    |                        |                        |
| 1M14027      | 1.DAD19595-009        | М      | 10/08/20 11:21 | 1           |                       | 102                    | 100                    | 89                     | 105                    |                        |                        |
| 1M14027      | 3.DAD19595-010        | М      | 10/08/20 12:02 | 1           |                       | 98                     | 102                    | 87                     | 103                    |                        |                        |
| 6M13323      | 0.DAD19595-011        | s      | 10/07/20 19:54 | 1           |                       | 104                    | 108                    | 99                     | 101                    |                        |                        |
| 1M14034      | 6.DAD19595-012        | М      | 10/09/20 15:03 | 1           |                       | 98                     | 98                     | 89                     | 102                    |                        |                        |
| 1M14025      | 9.DAD19619-001(MS)    | М      | 10/08/20 07:12 | 1           |                       | 97                     | 102                    | 90                     | 109                    |                        |                        |
| 1M14026      | 0.DAD19619-001(MSD)   | М      | 10/08/20 07:33 | 1           |                       | 96                     | 95                     | 92                     | 106                    |                        |                        |
| 1M14026      | 2.DMBS89464           | М      | 10/08/20 08:14 | 1           |                       | 98                     | 99                     | 91                     | 104                    |                        |                        |
| 1M14026      | 55.DAD19619-001       | М      | 10/08/20 09:16 | 1           |                       | 100                    | 103                    | 87                     | 104                    |                        |                        |
| 1M14033      | 4.DAD19654-001        | М      | 10/09/20 10:55 | 1           |                       | 102                    | 105                    | 87                     | 106                    |                        |                        |
| 1M14033      | 88.DMBS89475          | М      | 10/09/20 12:18 | 1           |                       | 100                    | 101                    | 91                     | 103                    |                        |                        |
| 1M14034      | 9.DAD19654-001(MS)    | М      | 10/09/20 16:06 | 1           |                       | 99                     | 99                     | 90                     | 104                    |                        |                        |
| 1M14035      | 0.DAD19654-001(MSD)   | М      | 10/09/20 16:26 | 1           |                       | 98                     | 99                     | 90                     | 102                    |                        |                        |
|              | 7.DAD19589-001        | s      | 10/07/20 15:25 | 1           |                       | 104                    | 113                    | 110                    | 129                    |                        |                        |
| -            | 8.DMBS89449           | S      | 10/07/20 15:45 | 1           |                       | 95                     | 94                     | 100                    | 103                    |                        |                        |
| 6M13321      | 9.DAD19589-002(MS:AD  | 19 S   | 10/07/20 16:06 | 1           |                       | 103                    | 102                    | 113                    | 120                    |                        |                        |
| -            | 20.DAD19589-003(MSD:A |        | 10/07/20 16:27 | 1           |                       | 104                    | 105                    | 111                    | 120                    |                        |                        |

Flags: SD=Surrogate diluted out

\*=Surrogate out

Method: EPA 8260D

#### **Soil Laboratory Limits**

|                          | Spike |        |
|--------------------------|-------|--------|
| Compound                 | Amt   | Limits |
| S1=Dibromofluoromethane  | 30    | 63-140 |
| S2=1,2-Dichloroethane-d4 | 30    | 63-143 |
| S3=Toluene-d8            | 30    | 68-122 |
| S4=Bromofluorobenzene    | 30    | 64-129 |

# Form3 Recovery Data Laboratory Limits

QC Batch: MBS89449

Data File

Sample ID: MBS89449

Analysis Date 10/7/2020 3:45:00 PM

Spike or Dup: 6M133218.D

Non Spike(If applicable): Inst Blank(If applicable): Method: 8260D Matrix: Soil Units: mg/Kg QC Type: MBS Spike Sample Expected Lower Upper Analyte: Col Conc Conc Recovery Limit Conc Limit 97 20 130 48.4186 50 Chlorodifluoromethane 0 24.6873 0 <u>50</u> 49 <u>20</u> 130 **Dichlorodifluoromethane** 1 Chloromethane 35.524 0 50 <u>71</u> 20 130 1 **Bromomethane** 41.0165 0 <u>50</u> <u>82</u> <u>20</u> <u>130</u> Vinyl Chloride 37.3573 0 <u>50</u> <u>75</u> <u>20</u> 130 **Chloroethane** 43.6244 0 50 87 <u>20</u> 130 **Trichlorofluoromethane** 0 <u>50</u> <u>87</u> <u>20</u> <u>130</u> 43.6294 ō 50 86 130 50 Ethyl ether 43.2289 0 50 83 50 130 **Furan** 41.3287 1,1,2-Trichloro-1,2,2-trifluoroethane 50.8062 0 <u>50</u> 102 <u>50</u> <u>130</u> 1 **Methylene Chloride** 47.1057 0 <u>50</u> <u>94</u> <u>50</u> <u>130</u> Acrolein 221,9695 0 200 111 20 130 Acrylonitrile 42.417 50 85 20 130 0 50 81 50 130 Iodomethane 40.3424 200 123 20 130 245.9656 0 <u>Acetone</u> **Carbon Disulfide** 42.1873 0 50 84 50 130 1 20 t-Butyl Alcohol 212.1522 0 200 106 130 50 107 50 53.4946 0 130 n-Hexane 50 50 Di-isopropyl-ether 47.2472 0 94 130 1,1-Dichloroethene 44.6242 0 <u>50</u> 89 <u>50</u> <u>130</u> 0 <u>50</u> <u>125</u> <u>50</u> **Methyl Acetate** 1 <u>62.358</u> <u>130</u> 47.0229 0 <u>50</u> 94 <u>50</u> <u>130</u> Methyl-t-butyl ether 1 <u>0</u> <u>50</u> <u>91</u> <u>50</u> <u>130</u> 1,1-Dichloroethane 1 <u>45.3153</u> <u>50</u> <u>91</u> <u>50</u> <u>130</u> trans-1,2-Dichloroethene <u>45.3166</u> 0 50 97 50 Ethyl-t-butyl ether 48.2751 0 130 <u>50</u> 94 <u>50</u> **130** cis-1,2-Dichloroethene 46.9177 1 <u>50</u> <u>95</u> <u>50</u> <u>130</u> **Bromochloromethane** <u>47.2771</u> 50 96 48.0417 0 50 130 2,2-Dichloropropane Ethyl acetate 49.235 0 50 98 50 130 1,4-Dioxane <u>2157.224</u> 0 2500 <u>86</u> <u>50</u> <u>130</u> 0 50 95 50 130 47.4565 1,1-Dichloropropene **Chloroform** 47.4478 0 <u>50</u> <u>95</u> <u>50</u> 130 1 <u>50</u> 100 <u>50</u> **Cyclohexane** 50.0599 0 <u>130</u> 0 <u>50</u> 90 <u>50</u> 130 44.9761 1,2-Dichloroethane 0 50 83 20 130 2-Butanone 1 41.4667 1,1,1-Trichloroethane 47.7045 0 <u>50</u> <u>95</u> <u>50</u> <u>130</u> 48.7324 Q <u>50</u> <u>97</u> <u>50</u> 130 Carbon Tetrachloride 50 71 50 130 Vinyl Acetate 35.2771 <u>50</u> **Bromodichloromethane** 48.3508 <u>97</u> <u>50</u> 130 1 0 <u>50</u> <u>50</u> 130 Methylcyclohexane <u>52.3419</u> 105 50 95 50 130 47.5061 0 Dibromomethane 1,2-Dichloropropane 46.667 0 <u>50</u> 93 <u>50</u> 130 <u>50</u> <u>95</u> <u>50</u> <u>Trichloroethene</u> <u>47.7083</u> 0 <u>130</u> 50 92 <u>50</u> 130 46.136 0 **Benzene** tert-Amyl methyl ether 48.6751 0 50 97 50 130 50 94 50 130 47.1995 0 Iso-propylacetate 93 Methyl methacrylate 46.5123 0 50 50 130 50.0187 50 100 50 130 Dibromochloromethane 1 0 50 375 50 130 2-Chloroethylvinylether 187.6839 0 50 <u>105</u> 130 cis-1,3-Dichloropropene 52.2586 0 <u>50</u> trans-1,3-Dichloropropene 52.2039 <u>50</u> 104 <u>50</u> 130 50 50 Ethyl methacrylate 51.7751 O 104 130 0 <u>50</u> <u>50</u> <u>130</u> 1,1,2-Trichloroethane 49.2472 98 1,2-Dibromoethane 49.8321 0 <u>50</u> 100 <u>50</u> **130** 50 50 1,3-Dichloropropane 50.3016 0 101 130 <u>50</u> 47.9055 0 96 20 130 4-Methyl-2-Pentanone <u>50</u> <u>92</u> <u>20</u> 2-Hexanone 45.8521 0 <u>130</u> <u>50</u> <u>50</u> 49.4315 <u>99</u> <u>130</u> <u>Tetrachloroethene</u> <u>47.152</u> 0 <u>50</u> 94 50 130 <u>Toluene</u> 1,1,1,2-Tetrachloroethane 50 102 50 130 50.7668

<sup>&</sup>lt;u>Chlorobenzene 1 49.876 0 50 100 50 130</u>
\* - Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits

Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix           | c: Soil        |                | Units: mg/K      | (g QC Ty   | e: MBS         |                |
|-----------------------------|------------------|----------------|----------------|------------------|------------|----------------|----------------|
| Analyte:                    | Col              | Spike<br>Conc  | Sample<br>Conc | Expected<br>Conc | Recovery   | Lower<br>Limit | Upper<br>Limit |
| n-Butyl acrylate            | 1                | 45.6839        | 0              | 50               | 91         | 50             | 130            |
| n-Amyl acetate              | 1                | 48.8417        | 0              | 50               | 98         | 50             | 130            |
| Bromoform                   | 1                | <u>54.5357</u> | <u>o</u>       | <u>50</u>        | <u>109</u> | <u>20</u>      | <u>130</u>     |
| Ethylbenzene                | 1                | 46.6033        | <u>0</u><br>0  | 50               | 93         | 50             | 130            |
| 1,1,2,2-Tetrachloroethane   | <u>1</u><br>1    | 56.7118        | Q              | 50               | <u>113</u> | <u>50</u>      | <u>130</u>     |
| Styrene                     |                  | 58.1262        | Q              | <u>50</u>        | 116        | 50             | 130            |
| m&p-Xylenes                 | 1<br>1<br>1      | 97.3957        | <u>0</u>       | 100              | 97         | 50             | 130            |
| o-Xylene                    | 1                | 48.544         | <u> </u>       | 50               | 97         | <u>50</u>      | 130            |
| trans-1,4-Dichloro-2-butene | <u>ī</u>         | 54.2448        | Ō              | 50               | 108        | 20             | 130            |
| 1,3-Dichlorobenzene         | 1                | 53.8484        | <u>0</u>       | <u>50</u>        | <u>108</u> | <u>50</u>      | 130            |
| 1,4-Dichlorobenzene         | ĩ                | 54.4178        | <u> </u>       | <u>50</u>        | 109        | <u>50</u>      | 130            |
| 1,2-Dichlorobenzene         | 1<br>1<br>1<br>1 | 52.239         | <u> </u>       | <u>50</u>        | 104        | <u>50</u>      | 130            |
| Isopropylbenzene            | 1                | 53.7898        | Ō              | <u>50</u>        | 108        | 50             | 130            |
| Cyclohexanone               | <u> </u>         | 236.2275       | ō              | 250              | 94         | 50             | 130            |
| Camphene                    | 1                | 59.3917        | 0              | 50               | 119        | 50             | 130            |
| 1,2,3-Trichloropropane      | 1                | 52.9824        | 0              | 50               | 106        | 50             | 130            |
| 2-Chlorotoluene             | 1                | 51.8258        | 0              | 50               | 104        | 50             | 130            |
| p-Ethyltoluene              | 1                | 52.5433        | 0              | 50               | 105        | 50             | 130            |
| 4-Chlorotoluene             | 1                | 54.8001        | 0              | 50               | 110        | 50             | 130            |
| n-Propylbenzene             | 1                | 51.8382        | 0              | 50               | 104        | 50             | 130            |
| Bromobenzene                | 1                | 53.9671        | 0              | 50               | 108        | 50             | 130            |
| 1,3,5-Trimethylbenzene      | 1                | 54.2389        | Ó              | 50               | 108        | 50             | 130            |
| Butyl methacrylate          | 1                | 48.8935        | Ö              | 50               | 98         | 50             | 130            |
| t-Butylbenzene              | 1                | 54.6254        | Ó              | 50               | 109        | 50             | 130            |
| 1,2,4-Trimethylbenzene      | 1                | 55.5627        | Ö              | 50               | 111        | 50             | 130            |
| sec-Butylbenzene            | 1                | 56.0743        | Ö              | 50               | 112        | 50             | 130            |
| 4-Isopropyltoluene          | 1                | 57.6258        | Ö              | 50               | 115        | 50             | 130            |
| n-Butylbenzene              | 1                | 59.2254        | 0              | 50               | 118        | 50             | 130            |
| p-Diethylbenzene            | 1                | 57.4062        | Ö              | 50               | 115        | 50             | 130            |
| 1,2,4,5-Tetramethylbenzene  | 1                | 53.6358        | Ō              | 50               | 107        | 50             | 130            |
| 1,2-Dibromo-3-Chloropropane | 1                | 48.0551        | Q              | 50               | 96         | <u>50</u>      | 130            |
| Camphor                     | 1                | 437.1007       | Ŏ              | 500              | 87         | 50             | 130            |
| Hexachlorobutadiene         | 1                | 55.9848        | Ŏ              | 50               | 112        | 50             | 130            |
| 1,2,4-Trichlorobenzene      | 1                | 54.0294        | <u>o</u>       | <u>50</u>        | 108        | <u>50</u>      | 130            |
| 1,2,3-Trichlorobenzene      | <u>†</u>         | 49.985         | <u>0</u>       | <u>50</u>        | 100        | <u>50</u>      | 130            |
| Naphthalene                 | 1                | 52.2657        | Ö              | <u>50</u>        | 105        | 50             | 130            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

# Form3 Recovery Data Laboratory Limits

QC Batch: MBS89449

Data File Spike or Dup: 6M133219.D Sample ID: AD19589-002(MS:AD19589-001

Analysis Date

Non Spike(If applicable): 6M133217.D

AD19589-001

10/7/2020 4:06:00 PM 10/7/2020 3:25:00 PM

Inst Blank(If applicable):

Method: 8260D QC Type: MS Matrix: Soil Units: mg/Kg Upper Spike Sample Expected Lower Analyte: Col Conc Conc Conc Recovery Limit Limit Chlorodifluoromethane 54.7136 130 0 50 109 20 **Dichlorodifluoromethane** 26.7016 <u>50</u> 0 <u>53</u> <u>20</u> <u>130</u> 1 0 <u>50</u> <u>72</u> <u>20</u> **Chloromethane** 1 35.9318 <u>130</u> **Bromomethane** 1 38.1669 Õ <u>50</u> <u>76</u> 20 130 50 73 20 Vinyl Chloride 1 36.6293 0 130 **Chloroethane** 46.8173 0 50 <u>94</u> <u> 20</u> 130 92 <u>20</u> **Trichlorofluoromethane** 0 <u>50</u> 130 46.0376 Ethyl ether 49.5584 Ō 50 99 50 130 50 50 92 130 Furan 46.1169 0 50.3152 50 50 101 130 1,1,2-Trichloro-1,2,2-trifluoroethane 0 52.2915 Methylene Chloride 2.7913 50 99 50 130 20 Acrolein 224.2551 0 200 112 130 Acrylonitrile 47.4713 n 50 95 20 130 Iodomethane 43.9647 0 50 88 50 130 **294.5647** 17.0863 <u> 200</u> 139\* <u>20</u> <u>130</u> **Acetone** 1 **Carbon Disulfide** 1 <u>38.2306</u> <u>50</u> <u>76</u> <u>50</u> 130 t-Butyl Alcohol 258.6632 0 200 129 20 130 n-Hexane 39.6192 0 50 79 50 130 53.3767 0 50 107 50 130 Di-isopropyl-ether 1,1-Dichloroethene 45.5094 0 <u>50</u> 91 <u>50</u> **130** 50 **Methyl Acetate** 1 72.8973 0 50 146\* 130 Methyl-t-butyl ether <u>1</u> 55.0157 0 50 110 <u>50</u> 130 0 <u>50</u> <u>99</u> <u>50</u> 130 1,1-Dichloroethane 1 49.3887 50 50 trans-1,2-Dichloroethene 43.5666 0 87 130 1 50 Ethyl-t-butyl ether 57.1387 0 114 50 130 cis-1,2-Dichloroethene 1 46.6389 0 <u>50</u> <u>93</u> <u>50</u> <u>130</u> 46.358 0 <u>50</u> 93 50 130 **Bromochloromethane** 2,2-Dichloropropane 52.3224 0 50 105 50 130 50 50 O 109 130 54.3557 Ethyl acetate 0 2500 105 50 130 1,4-Dioxane 2623.383 1,1-Dichloropropene 45.7351 0 50 91 50 130 <u>50</u> 48.9465 <u>50</u> 98 <u>130</u> **Chloroform** 0 **Cyclohexane** 46.4599 0 <u>50</u> 93 <u>50</u> 130 0 <u>50</u> <u>94</u> <u>50</u> 1,2-Dichloroethane 1 47.0863 130 0 <u>50</u> <u>97</u> <u>20</u> 2-Butanone 48.4745 <u>130</u> 0 <u>50</u> 101 <u>50</u> 1,1,1-Trichloroethane 1 50.3681 130 <u>50</u> 100 <u>50</u> <u>130</u> Carbon Tetrachloride 1 49.8371 0 0 50 Vinyl Acetate 34.9694 70 50 130 49.7825 **Bromodichloromethane** Q <u>50</u> 100 50 130 1 50 **Methylcyclohexane** 40.2529 0 81 50 130 1 50 O 90 50 Dibromomethane 44.8687 130 0 <u>50</u> 101 50 130 50.5036 1,2-Dichloropropane **Trichloroethene** 1 46.6674 0 50 93 50 130 <u>Benzene</u> 47.5958 0 50 <u>95</u> 50 130 tert-Amyl methyl ether 56.7736 0 50 114 50 130 50 131\* Iso-propylacetate 65.6299 0 50 130 50 50 Methyl methacrylate 57.773 0 116 130 **Dibromochloromethane** <u>55.7362</u> 0 <u>50</u> 111 <u>50</u> 130 2-Chloroethylvinylether 220.6386 0 50 441 1 50 130 56.2441 0 <u>50</u> 112 <u>50</u> <u>130</u> cis-1,3-Dichloropropene 1 <u>50</u> <u>107</u> <u>50</u> <u>130</u> trans-1,3-Dichloropropene 53.2583 0 Ethyl methacrylate 62.8668 0 50 126 50 130 1,1,2-Trichloroethane 58.0081 50 116 50 130 1 0 <u>50</u> <u>107</u> <u>50</u> <u>130</u> 1,2-Dibromoethane <u>53.476</u> 1,3-Dichloropropane 57.3695 0 50 115 50 130 <u>50</u> 1331 20 130 4-Methyl-2-Pentanone 66.644 0 <u>50</u> <u> 20</u> <u>130</u> <u>2-Hexanone</u> <u>59.5234</u> 0 <u>119</u> 49.4401 <u>50</u> <u>50</u> <u>Tetrachloroethene</u> 0 <u>99</u> <u>130</u> <u>50</u> <u>104</u> <u>50</u> **Toluene** 52.0407 0 <u>130</u> 1,1,1,2-Tetrachloroethane 57.8016 O 50 116 50 130 Chlorobenzene 1 47.6933 0 50 <u>95</u> <u>50</u> <u>130</u>

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix        | c Soil          |                | Units: mg/Kg     | QC Ty        | pe: MS        |                |
|-----------------------------|---------------|-----------------|----------------|------------------|--------------|---------------|----------------|
| Amalistas                   | Col           | Spike<br>Conc   | Sample<br>Conc | Expected<br>Conc | Doowood      | Lower         | Upper<br>Limit |
| Analyte:                    |               |                 |                |                  | Recovery     | Limit         |                |
| n-Butyl acrylate            | 1             | 61.633          | 0              | 50               | 123          | 50            | 130            |
| n-Amyl acetate              | 1             | 63.1371         | 0              | 50               | 126          | 50            | 130            |
| Bromoform                   | 1             | <u>68.6236</u>  | <u>0</u>       | <u>50</u>        | <u>137*</u>  | <u>20</u>     | <u>130</u>     |
| Ethylbenzene                | 1             | <u>60.1468</u>  | <u>0</u>       | <u>50</u>        | 120          | <u>50</u>     | 130            |
| 1,1,2,2-Tetrachloroethane   | 1             | <u>73.3665</u>  | 0              | <u>50</u>        | <u>147 *</u> | <u>50</u>     | 130            |
| Styrene                     | <u>1</u><br>1 | <u>62.4244</u>  | <u>0</u>       | <u>50</u>        | <u>125</u>   | <u>50</u>     | <u>130</u>     |
| m&p-Xylenes                 | 1             | <u>119.9539</u> | Q              | <u>100</u>       | <u>120</u>   | <u>50</u>     | <u>130</u>     |
| o-Xylene                    | <u>1</u>      | <u>60.5521</u>  | <u>0</u>       | <u>50</u>        | <u>121</u>   | <u>50</u>     | <u>130</u>     |
| trans-1,4-Dichloro-2-butene | 1             | 57.1346         | 0              | 50               | 114          | 20            | 130            |
| 1,3-Dichlorobenzene         | <u>1</u>      | <u>45.6889</u>  | <u>0</u>       | <u>50</u>        | <u>91</u>    | <u>50</u>     | <u>130</u>     |
| 1,4-Dichlorobenzene         | 1             | <u>42.4725</u>  | <u>0</u>       | <u>50</u>        | <u>85</u>    | <u>50</u>     | <u>130</u>     |
| 1,2-Dichlorobenzene         | <u>1</u>      | <u>44.0189</u>  | <u>0</u>       | <u>50</u>        | <u>88</u>    | <u>50</u>     | <u>130</u>     |
| Isopropylbenzene            | 1             | <u>63.3575</u>  | <u>0</u>       | <u>50</u>        | <u>127</u>   | <u>50</u>     | <u>130</u>     |
| Cyclohexanone               | 1             | 431.8169        | 0              | 250              | 173*         | 50            | 130            |
| Camphene                    | 1             | 52.3194         | 0              | 50               | 105          | 50            | 130            |
| 1,2,3-Trichloropropane      | 1             | 67.2041         | 22.6761        | 50               | 89           | 50            | 130            |
| 2-Chlorotoluene             | 1             | 54.8482         | 0              | 50               | 110          | 50            | 130            |
| p-Ethyltoluene              | 1             | 54.3702         | 0              | 50               | 109          | 50            | 130            |
| 4-Chlorotoluene             | 1             | 52.7583         | 0              | 50               | 106          | 50            | 130            |
| n-Propylbenzene             | 1             | 54.1853         | 0              | 50               | 108          | 50            | 130            |
| Bromobenzene                | 1             | 55.498          | 0              | 50               | 111          | 50            | 130            |
| 1,3,5-Trimethylbenzene      | 1             | 57.1396         | 0              | 50               | 114          | 50            | 130            |
| Butyl methacrylate          | 1             | 57.3668         | 0              | 50               | 115          | 50            | 130            |
| t-Butylbenzene              | 1             | 58.2208         | 0              | 50               | 116          | 50            | 130            |
| 1,2,4-Trimethylbenzene      | 1             | 55.9308         | 0              | 50               | 112          | 50            | 130            |
| sec-Butylbenzene            | 1             | 51.8588         | 0              | 50               | 104          | 50            | 130            |
| 4-Isopropyltoluene          | 1             | 53.8115         | 0              | 50               | 108          | 50            | 130            |
| n-Butylbenzene              | 1             | 45.2351         | 0              | 50               | 90           | 50            | 130            |
| p-Diethylbenzene            | 1             | 46.7938         | 0              | 50               | 94           | 50            | 130            |
| 1,2,4,5-Tetramethylbenzene  | 1             | 39.7291         | 0              | 50               | 79           | 50            | 130            |
| 1,2-Dibromo-3-Chloropropane | 1             | 54.2237         | <u>0</u>       | <u>50</u>        | <u>108</u>   | <u>50</u>     | <u>130</u>     |
| Camphor                     | 1             | 760.1582        | ō              | 500              | 152 *        | <del>50</del> | 130            |
| Hexachlorobutadiene         | 1             | 25.9452         | 0              | 50               | 52           | 50            | 130            |
| 1,2,4-Trichlorobenzene      | <u>1</u>      | 24.627          | Ō              | 50               | 49*          | 50            | 130            |
| 1,2,3-Trichlorobenzene      | <u>1</u>      | 22.8213         | Q              | 50               | 46*          | <u>50</u>     | 130            |
| Naphthalene                 | <u>1</u>      | 32.6418         | ō              | 50               | 65           | 50            | 130            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Data File Sample ID:

Spike or Dup: 6M133220.D AD19589-003(MSD:AD19589-0 Non Spike(If applicable): 6M133217.D AD19589-001

10/7/2020 4:27:00 PM 10/7/2020 3:25:00 PM

Analysis Date

Inst Blank(If applicable):

Method: 8260D Matrix: Soil QC Type: MSD Units: mg/Kg Spike Expected Upper Sample Lower Col Conc Conc Conc Recovery Limit Limit Chlorodifluoromethane 1 51.6194 0 50 103 20 130 Dichlorodifluoromethane 28.1335 50 130 1 0 <u>56</u> 20 0 <u>50</u> <u>70</u> <u>20</u> **Chloromethane** 1 <u>35.097</u> <u>130</u> **Bromomethane** 40.3869 0 <u>50</u> <u>81</u> <u>20</u> <u>130</u> Vinyl Chloride 1 36.6329 0 50 <u>73</u> 20 130 0 50 92 20 Chloroethane 1 45.9697 130 <u>Trichlorofluoromethane</u> <u>46.0633</u> 0 <u>50</u> <u>92</u> <u>20</u> <u>130</u> Ethyl ether Ō 50 99 50 130 49.3262 44.6259 0 50 89 50 130 <u>50</u> <u>50</u> 1,1,2-Trichloro-1,2,2-trifluoroethane 52.4817 0 <u>105</u> <u>130</u> 49.7527 50 <u>50</u> Methylene Chloride 94 <u>130</u> <u>2.7913</u> 200 108 20 130 Acrolein 216.8347 0 20 Acrylonitrile 47.3944 0 50 95 130 Iodomethane 1 45.1856 0 50 90 50 130 17.0863 295.158 200 139 \* 130 **Acetone** 1 20 Carbon Disulfide 1 38.2652 0 <u>50</u> <u>77</u> <u>50</u> <u>130</u> 200 1331 20 266.6472 n 130 t-Butyl Alcohol n-Hexane 47.2968 0 50 95 50 130 Di-isopropyl-ether 54.3021 0 50 109 50 130 1,1-Dichloroethene <u>45.8491</u> Q <u>50</u> <u>92</u> <u>50</u> <u>130</u> **Methyl Acetate** 0 <u>50</u> 151 \* <u>50</u> 130 <u>75.653</u> <u>50</u> 50 Methyl-t-butyl ether 1 54.5049 0 109 130 <u>50</u> 1,1-Dichloroethane <u>49.328</u> 0 <u>99</u> <u>50</u> <u>130</u> 0 <u>50</u> 50 trans-1,2-Dichloroethene 44.4297 <u>89</u> **130** 0 50 113 50 130 Ethyl-t-butyl ether 56.6163 cis-1,2-Dichloroethene 46.8121 0 <u>50</u> <u>94</u> <u>50</u> <u>130</u> 92 **Bromochloromethane** 46.2208 0 <u>50</u> <u>50</u> <u>130</u> 52.9817 50 106 2.2-Dichloropropane 130 50 50 130 Ethyl acetate 1 52.9829 0 106 0 2500 101 <u>50</u> 130 1,4-Dioxane 1 2524.737 1.1-Dichloropropene 44.915 0 50 90 50 130 **Chloroform** 49.0867 0 <u>50</u> <u>98</u> <u>50</u> <u>130</u> 1 <u>50</u> 47.8394 0 <u>50</u> <u>96</u> <u>130</u> Cyclohexane 44.4686 0 <u>50</u> <u>89</u> <u>50</u> 130 1,2-Dichloroethane 1 1 0 <u>50</u> 93 20 130 2-Butanone 46.6404 1,1,1-Trichloroethane 50.9699 0 <u>50</u> 102 <u>50</u> <u>130</u> 1 **Carbon Tetrachloride** 1 48.6343 0 <u>50</u> <u>97</u> <u>50</u> 130 Vinyl Acetate 32.813 0 50 66 50 130 <u>50</u> <u>50</u> 1 49.1971 0 <u>98</u> <u>130</u> **Bromodichloromethane** 44.2649 <u>50</u> 130 **Methylcyclohexane** 0 <u>89</u> <u>50</u> Dibromomethane 43.4557 0 50 87 50 130 <u>50</u> 0 101 <u>50</u> 130 1,2-Dichloropropane 50.7169 0 <u>50</u> <u>91</u> <u>50</u> 130 <u>Trichloroethene</u> **45.3363** Benzene 1 47.9157 0 50 96 50 130 113 tert-Amyl methyl ether 50 50 56.3578 0 130 60.3405 0 50 121 50 130 Iso-propylacetate Methyl methacrylate 0 50 50 130 56.1999 112 **Dibromochloromethane** 53,4107 0 <u>50</u> 107 <u>50</u> 130 0 50 50 130 2-Chloroethylvinylether 212.2099 424 cis-1,3-Dichloropropene <u>50</u> 50.4383 0 <u>50</u> 101 130 1 trans-1,3-Dichloropropene 1 45.619 0 <u>50</u> <u>91</u> <u>50</u> <u>130</u> 62.1792 0 50 124 50 130 Ethyl methacrylate 1,1,2-Trichloroethane 55.2344 0 <u>50</u> 110 50 130 48.9441 <u>50</u> <u>98</u> **130** 1,2-Dibromoethane 0 50 106 50 130 53,1519 1,3-Dichloropropane 50 4-Methyl-2-Pentanone 1 62.0668 0 124 20 130 2-Hexanone **57.0063** 0 <u>50</u> 114 20 <u>130</u> 47.7406 Q <u>50</u> <u>95</u> <u>50</u> <u>130</u> <u>Tetrachloroethene</u> 0 50 <u>99</u> <u>50</u> 130 49.4525 Toluene 1,1,1,2-Tetrachloroethane 53.4433 0 50 107 50 130 44.9999 0 <u>50</u> 90 <u>130</u> **Chlorobenzene** 1

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix        | c Soil         |                      | Units: mg/Kg     | QC Ty            | pe: MSD        |                |
|-----------------------------|---------------|----------------|----------------------|------------------|------------------|----------------|----------------|
| Analyte:                    | Col           | Spike<br>Conc  | Sample<br>Conc       | Expected<br>Conc | Recovery         | Lower<br>Limit | Upper<br>Limit |
| n-Butyl acrylate            | 1             | 55.9925        | 0                    | 50               | 112              | 50             | 130            |
| n-Amyl acetate              | 1             | 56.3922        | 0                    | 50               | 113              | 50             | 130            |
| Bromoform                   | <u>1</u>      | 64.3784        | <u>0</u>             | <u>50</u>        | 129              | <u>20</u>      | 130            |
| Ethylbenzene                | <u></u>       | 59.7076        | <u></u>              | 50               | 119              | 50             | 130            |
| 1,1,2,2-Tetrachloroethane   | <u>1</u>      | 68.7043        | <u> </u>             | <u>50</u>        | 137*             | 50             | 130            |
| Styrene                     |               | 58.921         | <u>o</u>             | 50               | 118              | <u>50</u>      | 130            |
| m&p-Xylenes                 | <u>1</u><br>1 | 115.9483       | Ō                    | 100              | 116              | 50             | 130            |
| o-Xylene                    | 1             | 57.4831        | <u>0</u><br>0        | 50               | 115              | 50             | 130            |
| trans-1,4-Dichloro-2-butene | 1             | 55.5002        | ō                    | 50               | 111              | 20             | 130            |
| 1,3-Dichlorobenzene         | 1             | 43.9118        | <u>o</u>             | <u>50</u>        | <u>88</u>        | 50             | 130            |
| 1,4-Dichlorobenzene         | 1             | 40.2189        | <u>0</u><br><u>0</u> | <del>50</del>    | 80               | 50             | 130            |
| 1,2-Dichlorobenzene         | 1<br>1<br>1   | 40.7419        | <u> </u>             | <del>50</del>    | 81               | 50             | 130            |
| Isopropylbenzene            | $\bar{1}$     | 61.5686        | Q                    | <u>50</u>        | 123              | 50             | 130            |
| Cyclohexanone               | <u>1</u>      | 448.1724       | ō                    | 250              | 179*             | 50             | 130            |
| Camphene                    | 1             | 57.9459        | 0                    | 50               | 116              | 50             | 130            |
| 1,2,3-Trichloropropane      | 1             | 62.9276        | 22.6761              | 50               | 81               | 50             | 130            |
| 2-Chlorotoluene             | 1             | 49.9437        | 0                    | 50               | 100              | 50             | 130            |
| p-Ethyltoluene              | 1             | 53.1449        | 0                    | 50               | 106              | 50             | 130            |
| 4-Chlorotoluene             | 1             | 49.1086        | 0                    | 50               | 98               | 50             | 130            |
| n-Propylbenzene             | 1             | 53.7619        | 0                    | 50               | 108              | 50             | 130            |
| Bromobenzene                | 1             | 52.605         | 0                    | 50               | 105              | 50             | 130            |
| 1,3,5-Trimethylbenzene      | 1             | 56.8777        | 0                    | 50               | 114              | 50             | 130            |
| Butyl methacrylate          | 1             | 54.001         | 0                    | 50               | 108              | 50             | 130            |
| t-Butylbenzene              | 1             | 56.7246        | 0                    | 50               | 113              | 50             | 130            |
| 1,2,4-Trimethylbenzene      | 1             | 53.9733        | 0                    | 50               | 108              | 50             | 130            |
| sec-Butylbenzene            | 1             | 52.8297        | 0                    | 50               | 106              | 50             | 130            |
| 4-Isopropyltoluene          | 1             | 53.7115        | 0                    | 50               | 107              | 50             | 130            |
| n-Butylbenzene              | 1             | 46.5427        | 0                    | 50               | 93               | 50             | 130            |
| p-Diethylbenzene            | 1             | 46.5997        | 0                    | 50               | 93               | 50             | 130            |
| 1,2,4,5-Tetramethylbenzene  | 1             | 38.2361        | 0                    | 50               | 76               | 50             | 130            |
| 1,2-Dibromo-3-Chloropropane | 1             | <u>49.9609</u> | Ō                    | <u>50</u>        | <u>100</u>       | <u>50</u>      | <u>130</u>     |
| Camphor                     | 1             | 732.3482       | ō                    | 500              | <del>146</del> * | 50             | 130            |
| Hexachlorobutadiene         | 1             | 31.7145        | 0                    | 50               | 63               | 50             | 130            |
| 1,2,4-Trichlorobenzene      | <u>1</u>      | 24.0597        | <u>0</u>             | <u>50</u>        | 48*              | <u>50</u>      | 130            |
| 1,2,3-Trichlorobenzene      | 1             | 21.0409        | Ō                    | <u>50</u>        | 42*              | 50             | 130            |
| Naphthalene                 | 1             | 30.5296        | ō                    | 50               | 61               | 50             | 130            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

#### Form3 **RPD Data Laboratory Limits**

QC Batch: MBS89449

Data File

Sample ID:

Analysis Date

Spike or Dup: 6M133220.D

Duplicate(If applicable): 6M133219.D

AD19589-003(MSD:AD19589-0 AD19589-002(MS:AD19589-001 10/7/2020 4:06:00 PM

10/7/2020 4:27:00 PM

Inst Blank(If applicable):

Method: 8260D Units: mg/Kg Matrix: Soil QC Type: MSD Dup/MSD/MBSD Sample/MS/MBS Analyte: Column Conc Conc **RPD** Limit Chlorodifluoromethane 51.6194 54.7136 5.8 30 **Dichlorodifluoromethane** 28.1335 26.7016 <u>30</u> 1 5.2 Chloromethane 1 <u>30</u> <u>35.097</u> <u>35.9318</u> <u>2.4</u> **Bromomethane** 1 40.3869 38.1669 <u>30</u> <u>5.7</u> Vinyl Chloride 1 <u>40</u> 36.6329 36.6293 0.01 1 <u>30</u> **Chloroethane** 45.9697 <u>46.8173</u> 1.8 30 30 **Trichlorofluoromethane** 1 46.0633 46.0376 0.06 Ethyl ether 49.3262 49.5584 0.47 30 44.6259 Furan 1 46.1169 3.3 1,1,2-Trichloro-1,2,2-trifluoroethane 1 50.3152 <u>30</u> 52.4817 <u>4.2</u> <u>30</u> Methylene Chloride 1 49.7527 52.2915 30 Acrolein 1 216.8347 224.2551 3.4 Acrylonitrile 47.3944 47.4713 0.16 30 1 Iodomethane 45.1856 30 1 43.9647 2.7 Acetone 1 295.158 294.5647 <u>30</u> 0.2 <u>30</u> Carbon Disulfide 1 0.09 <u>38.2652</u> <u>38.2306</u> 30 t-Butyl Alcohol 266.6472 258.6632 3 30 n-Hexane 47.2968 39.6192 18 30 Di-isopropyl-ether 1 54.3021 53.3767 1.7 1,1-Dichloroethene 45.5094 0.74 40 1 <u>45.8491</u> 1 30 **Methyl Acetate** 75.653 72.8973 3.7 1 <u>30</u> Methyl-t-butyl ether <u>54.5049</u> <u>55.0157</u> 0.93 1 40 49.328 49.3887 0.12 1,1-Dichloroethane trans-1,2-Dichloroethene 1 44.4297 43.5666 30 30 0.92 Ethyl-t-butyl ether 56.6163 57.1387 <u>46.8121</u> cis-1,2-Dichloroethene 1 <u>0.37</u> 30 <u>46.6389</u> 30 **Bromochloromethane** 1 46.2208 <u>46.358</u> 0.3 2,2-Dichloropropane 52.9817 52.3224 1.3 30 52.9829 2.6 Ethyl acetate 30 54.3557 1,4-Dioxane 1 2524.737 2623.383 3.8 30 1,1-Dichloropropene 44.915 45.7351 1.8 30 0.29 40 **Chloroform** 1 49,0867 <u>48.9465</u> 30 **Cyclohexane** 1 47.8394 <u>2.9</u> 46.4599 <u>44.4686</u> 1,2-Dichloroethane 1 47.0863 5.7 40 <u>40</u> <u>46.6404</u> 48.4745 2-Butanone <u>3.9</u> 1 1,1,1-Trichloroethane 50.9699 50.3681 <u>1.2</u> <u>30</u> Carbon Tetrachloride 1 48.6343 49.8371 2.4 40 30 Vinyl Acetate 32.813 34.9694 6.4 **Bromodichloromethane** 1 1.2 30 49.1971 49.7825 **Methylcyclohexane** <u>30</u> 1 44.2649 40.2529 <u>9.5</u> 30 Dibromomethane 43.4557 44.8687 3.2 1,2-Dichloropropane 0.42 30 1 50.7169 50.5036 1 <u>40</u> **Trichloroethene** <u>45.3363</u> 46.6674 <u>2.9</u> <u>40</u> **Benzene** <u>47.9157</u> 47.5958 <u>0.67</u> 30 tert-Amyl methyl ether 56.3578 56.7736 0.74 Iso-propylacetate 60.3405 65.6299 8.4 30 30 Methyl methacrylate 56.1999 57.773 2.8 **Dibromochloromethane** <u>53.4107</u> <u>55.736</u>2 <u>30</u> 1 <u>4.3</u> 30 2-Chloroethylvinylether 212.2099 220.6386 3.9 <u>30</u> cis-1,3-Dichloropropene 1 <u>50.4383</u> 56.2441 <u>11</u> <u>30</u> 1 53.2583 <u>15</u> trans-1,3-Dichloropropene <u>45.619</u> 30 Ethyl methacrylate 62.1792 62.8668 1.1 1,1,2-Trichloroethane 55.2344 58.0081 <u>4.9</u> <u>30</u> 1,2-Dibromoethane 1 <u>53.476</u> 8.8 <u> 30</u> <u>48.9441</u> 30 1.3-Dichloropropane 53.1519 57.3695 7.6 4-Methyl-2-Pentanone 1 62.0668 <u>66.644</u> <u>7.1</u> <u>30</u> <u>30</u> 1 <u>57.0063</u> <u>4.3</u> 2-Hexanone <u>59.5234</u> **Tetrachloroethene** 1 47.7406 49.4401 <u>3.5</u> 40 1 52.0407 <u>40</u> <u>Toluene</u> <u>49.4525</u> <u>5.1</u> 1,1,1,2-Tetrachloroethane 1 53.4433 7.8 30 57.8016 Chlorobenzene <u>40</u> 1 44.9999 47.6933 <u>5.8</u>

<sup>\* -</sup> Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

# Form3 RPD Data Laboratory Limits

QC Batch: MBS89449

| Method: 8260D               | Matrix: Soil     | Units:         | mg/Kg          | QC Type: MSI | )         |
|-----------------------------|------------------|----------------|----------------|--------------|-----------|
|                             |                  | Dup/MSD/MBSD   | Sample/MS/N    | MBS          |           |
| Analyte:                    | Column           | Conc           | Conc           | RPD          | Limit     |
| n-Butyl acrylate            | 1                | 55.9925        | 61.633         | 9.6          | 30        |
| n-Amyl acetate              | 1                | 56.3922        | 63.1371        | 11           | 30        |
| Bromoform                   | <u>1</u>         | 64.3784        | 68.6236        | 6.4          | <u>30</u> |
| Ethylbenzene                |                  | 59.7076        | 60.1468        | 0.73         | 30        |
| 1,1,2,2-Tetrachloroethane   | 1<br>1<br>1      | 68.7043        | 73.3665        | 6.6          | 30        |
| Styrene                     | 1                | 58.921         | 62.4244        | <u>5.8</u>   | <u>30</u> |
| m&p-Xylenes                 | 1 1              | 115.9483       | 119.9539       | 3.4          | 30        |
| o-Xylene                    | 1                | <u>57.4831</u> | 60.5521        | <u>5.2</u>   | 30        |
| trans-1,4-Dichloro-2-butene | 1                | 55.5002        | 57.1346        | 2.9          | 30        |
| 1,3-Dichlorobenzene         | <u>1</u>         | <u>43.9118</u> | <u>45.6889</u> | <u>4</u>     | <u>30</u> |
| 1,4-Dichlorobenzene         | <u>1</u>         | 40.2189        | 42.4725        | <u>5.5</u>   | <u>40</u> |
| 1,2-Dichlorobenzene         | 1<br>1<br>1<br>1 | 40.7419        | 44.0189        | <u>7.7</u>   | <u>40</u> |
| Isopropylbenzene            | 1                | 61.5686        | 63.3575        | 2.9          | 30        |
| Cyclohexanone               | 1                | 448.1724       | 431.8169       | 3.7          | 30        |
| Camphene                    | 1                | 57.9459        | 52.3194        | 10           | 30        |
| 1,2,3-Trichloropropane      | 1                | 62.9276        | 67.2041        | 6.6          | 30        |
| 2-Chlorotoluene             | 1                | 49.9437        | 54.8482        | 9.4          | 30        |
| p-Ethyltoluene              | 1                | 53.1449        | 54.3702        | 2.3          | 30        |
| 4-Chlorotoluene             | 1                | 49.1086        | 52.7583        | 7.2          | 30        |
| n-Propylbenzene             | 1                | 53.7619        | 54.1853        | 0.78         | 40        |
| Bromobenzene                | 1                | 52.605         | 55.498         | 5.4          | 30        |
| 1,3,5-Trimethylbenzene      | 1                | 56.8777        | 57.1396        | 0.46         | 30        |
| Butyl methacrylate          | 1                | 54.001         | 57.3668        | 6            | 30        |
| t-Butylbenzene              | 1                | 56.7246        | 58.2208        | 2.6          | 30        |
| 1,2,4-Trimethylbenzene      | 1                | 53.9733        | 55.9308        | 3.6          | 30        |
| sec-Butylbenzene            | 1                | 52.8297        | 51.8588        | 1.9          | 40        |
| 4-Isopropyltoluene          | 1                | 53.7115        | 53.8115        | 0.19         | 30        |
| n-Butylbenzene              | 1                | 46.5427        | 45.2351        | 2.8          | 30        |
| p-Diethylbenzene            | 1                | 46.5997        | 46.7938        | 0.42         | 30        |
| 1,2,4,5-Tetramethylbenzene  | 1                | 38.2361        | 39.7291        | 3.8          | 30        |
| 1,2-Dibromo-3-Chloropropane | <u>1</u>         | <u>49.9609</u> | <u>54.2237</u> | <u>8.2</u>   | <u>30</u> |
| Camphor                     | <u>1</u>         | 732.3482       | 760.1582       | 3.7          | 30        |
| Hexachlorobutadiene         | 1                | 31.7145        | 25.9452        | 20           | 30        |
| 1,2,4-Trichlorobenzene      | <u>1</u>         | <u>24.0597</u> | <u>24.627</u>  | <u>2.3</u>   | <u>30</u> |
| 1,2,3-Trichlorobenzene      | <u>1</u>         | 21.0409        | 22.8213        | <u>8.1</u>   | <u>30</u> |
| Naphthalene                 | 1                | 30.5296        | 32.6418        | 6.7          | 30        |

Data File Spike or Dup: 1M140262.D

Sample ID: MBS89464

Analysis Date 10/8/2020 8:14:00 AM

Non Spike(If applicable):

| Inst Blank(If applicable):                             |               |                                  |               |                   |                        |                        |                          |
|--------------------------------------------------------|---------------|----------------------------------|---------------|-------------------|------------------------|------------------------|--------------------------|
| Method: 8260D                                          | Matrix        | c: Methanol                      |               | Units: mg/K       | pe: MBS                |                        |                          |
|                                                        |               | Spike                            | Sample        | Expected          |                        | Lower                  | Upper                    |
| Analyte:                                               | Col           | Conc                             | Conc          | Conc              | Recovery               | Limit                  | Limit                    |
| Chlorodifluoromethane                                  | 1             | 17.5687<br><b>21.491</b> 7       | 0<br><u>0</u> | 20<br><b>20</b>   | 88<br><u>107</u>       | 50<br><u><b>50</b></u> | 150<br><u>1<b>50</b></u> |
| <u>Dichlorodifluoromethane</u><br><u>Chloromethane</u> | 11            | 18.6956                          | Q<br>Q        | <u>20</u><br>20   | 93                     | <u>50</u><br>50        | 150<br>150               |
| Bromomethane                                           | <u>†</u>      | 14.3773                          | <u>0</u>      | <u>20</u>         | 72                     | <u>50</u>              | <u>150</u>               |
| Vinyl Chloride                                         | 1             | 20.7868                          | Ō             | <del>20</del>     | <u>104</u>             | <u>50</u>              | 150                      |
| Chloroethane                                           | 1             | 19.9984                          | <u>0</u>      | <u>20</u>         | 100                    | <u>50</u>              | 150                      |
| <u>Trichlorofluoromethane</u>                          | 1             | <u>20.6319</u>                   | <u>Q</u>      | <u>20</u>         | <u>103</u>             | <u>50</u>              | <u>150</u>               |
| Ethyl ether                                            | 1             | 16.8506                          | 0             | 20                | 84<br>91               | 50<br>50               | 150<br>150               |
| Furan 1,1,2-Trichloro-1,2,2-trifluoroethane            | 1<br>1        | 18.2157<br><b>20.6779</b>        | 0<br><u>0</u> | 20<br><b>20</b>   | 103                    | 50<br><u>50</u>        | 150<br>150               |
| Methylene Chloride                                     | 1 1           | 18.4503                          | <u>o</u>      | <u>20</u><br>20   | 92                     | <u> </u>               | 130                      |
| Acrolein                                               | 1             | 81.2743                          | Ö             | 100               | <u>81</u>              | <u>50</u>              | 150                      |
| Acrylonitrile                                          | 1             | 18.9841                          | 0             | 20                | 95                     | 50                     | 150                      |
| lodomethane                                            | 1             | 13.608                           | 0             | 20                | 68                     | 50                     | 150                      |
| Acetone                                                | 1             | <u>83.6851</u>                   | <u>0</u>      | <u>100</u>        | <u>84</u>              | <u>50</u>              | <u>150</u>               |
| Carbon Disulfide                                       | 1             | 18.1415                          | <u>0</u>      | <u>20</u>         | <u>91</u>              | <u>50</u>              | 150                      |
| t-Butyl Alcohol<br>n-Hexane                            | 1             | 94.4778<br>21.2114               | 0<br>0        | 100<br>20         | 94<br>106              | 50<br>70               | 150<br>130               |
| Di-isopropyl-ether                                     | 1             | 16.8192                          | 0             | 20                | 84                     | 70                     | 130                      |
| 1,1-Dichloroethene                                     | 1             | 19.1689                          | <u>o</u>      | 20                | 96                     | <u>70</u>              | 130                      |
| Methyl Acetate                                         | 1             | 20.275                           | Ō             | <u>20</u>         | <u>101</u>             | <u>50</u>              | 150                      |
| Methyl-t-butyl ether                                   | <u>1</u>      | 19.4002                          | <u>0</u>      | <u>20</u>         | 97                     | <u>70</u>              | 130                      |
| 1,1-Dichloroethane                                     | 1             | <u>16.6916</u>                   | <u>0</u>      | <u>20</u>         | <u>83</u>              | <u>70</u>              | <u>130</u>               |
| trans-1,2-Dichloroethene                               | 1             | <u>19.3148</u>                   | <u>0</u>      | <u>20</u>         | <u>97</u>              | <u>70</u>              | <u>130</u>               |
| Ethyl-t-butyl ether                                    | 1             | 17.5509                          | 0             | 20<br><b>20</b>   | 88<br><b>97</b>        | 70<br>70               | 130<br><b>130</b>        |
| <u>cis-1,2-Dichloroethene</u><br>Bromochloromethane    | <u>1</u><br>1 | <u>17.3982</u><br>14.8168        | <u>0</u>      | <u>20</u><br>20   | <u>87</u><br>74        | <u>70</u><br>70        | 130<br>130               |
| 2,2-Dichloropropane                                    | 1             | 14.7021                          | ō             | <u>20</u><br>20   | 74                     | 70                     | 130                      |
| Ethyl acetate                                          | 1             | 17.1513                          | Ō             | 20                | 86                     | 50                     | 150                      |
| 1,4-Dioxane                                            | 1             | 885.8327                         | <u>0</u>      | <u>1000</u>       | <u>89</u>              | <u>50</u>              | <u>150</u>               |
| 1,1-Dichloropropene                                    | 1             | 19.4672                          | 0             | 20                | 97                     | 70                     | 130                      |
| Chloroform                                             | 1             | <u>17.0069</u>                   | <u>0</u>      | <u>20</u>         | <u>85</u>              | <u>70</u>              | <u>130</u>               |
| Cyclohexane                                            | 1             | <u>20.0254</u>                   | <u>0</u>      | <u>20</u>         | <u>100</u>             | <u>70</u>              | 130<br>130               |
| 1,2-Dichloroethane<br>2-Butanone                       | <u>1</u><br>1 | <u>17.3797</u><br>17.7414        | <u>0</u>      | <u>20</u><br>20   | <u>87</u><br>89        | <u>70</u><br><u>50</u> | <u>130</u><br>150        |
| 1,1,1-Trichloroethane                                  | 1             | 18.4042                          | <u>ŏ</u>      | <u>20</u><br>20   | <u>92</u>              | <del>70</del>          | <u>130</u>               |
| Carbon Tetrachloride                                   | <u>1</u>      | 18.425                           | <u>0</u>      | <u>20</u>         | 92                     | 50                     | 150                      |
| Vinyl Acetate                                          | 1             | 14.903                           | 0             | 20                | 75                     | 50                     | 150                      |
| <b>Bromodichloromethane</b>                            | 1             | <u>16.2893</u>                   | <u>0</u>      | <u>20</u>         | <u>81</u>              | <u>70</u>              | <u>130</u>               |
| <u>Methylcyclohexane</u>                               | 1             | <u>20.4169</u>                   | <u>0</u>      | <u>20</u>         | <u>102</u>             | <u>70</u>              | <u>130</u>               |
| Dibromomethane                                         | 1             | 18.1837                          | 0             | 20                | 91                     | 70<br><b>70</b>        | 130                      |
| 1,2-Dichloropropane Trichloroethene                    | <u>1</u><br>1 | <u>16.2599</u><br><u>18.7511</u> | <u>0</u>      | <u>20</u><br>20   | <u>81</u><br>94        | <u>70</u><br>70        | <u>130</u><br>130        |
| Benzene                                                | 1             | <u>17.8144</u>                   | <u>o</u>      | <u>20</u><br>20   | <del>34</del><br>89    | 70                     | 130                      |
| tert-Amyl methyl ether                                 | 1             | 17.5343                          | Ŏ             | 20                | 88                     | <del>70</del>          | 130                      |
| Iso-propylacetate                                      | 1             | 13.7212                          | 0             | 20                | 69*                    | 70                     | 130                      |
| Methyl methacrylate                                    | 1             | 17.8583                          | 0             | 20                | 89                     | 70                     | 130                      |
| Dibromochloromethane                                   | 1             | <u>13.5507</u>                   | <u>0</u>      | <u>20</u>         | <u>68 *</u>            | <u>70</u>              | <u>130</u>               |
| 2-Chloroethylvinylether                                | 1             | 11.4609                          | 0             | 20                | 57*                    | 70                     | 130                      |
| cis-1,3-Dichloropropene<br>trans-1,3-Dichloropropene   | 1             | <u>13.8049</u><br>12.821         | <u>0</u>      | <u>20</u><br>20   | <u>69 *</u>            | <u>70</u><br>70        | <u>130</u><br>130        |
| Ethyl methacrylate                                     | <u>1</u><br>1 | 14.23                            | Ö             | <u>20</u><br>20   | <u>64 *</u><br>71      | 70<br>70               | 130<br>130               |
| 1,1,2-Trichloroethane                                  | 1             | 14.2024                          | Õ             | <u>20</u>         | <u>71</u>              | 70                     | <u>130</u>               |
| 1,2-Dibromoethane                                      | 1             | 14.0487                          | <u>0</u>      | <u>20</u>         | <del>70</del>          | <u>70</u>              | 130                      |
| 1,3-Dichloropropane                                    | 1             | 14.5896                          | 0             | 20                | <del>73</del>          | 70                     | 130                      |
| 4-Methyl-2-Pentanone                                   | 1             | <u>14.1045</u>                   | <u>0</u>      | <u>20</u>         | <u>71</u>              | <u>50</u>              | <u>150</u>               |
| 2-Hexanone                                             | 1             | <u>15.6455</u>                   | <u>0</u>      | <u>20</u>         | <u>78</u>              | <u>50</u>              | <u>150</u>               |
| <u>Tetrachloroethene</u>                               | <u>1</u><br>1 | 17.1117<br>15.8128               | <u>0</u>      | <u>20</u>         | <u>86</u><br>79        | <u>50</u><br>70        | <u>150</u>               |
| Toluene 1,1,1,2-Tetrachloroethane                      | 1             | <u>15.8128</u><br>15.5601        | <u>o</u><br>0 | <b>20</b><br>20   | <u><b>79</b></u><br>78 | <u><b>70</b></u><br>70 | <u>130</u><br>130        |
| Chlorobenzene                                          | 1             | 16.0189                          | Ŏ             | <u>20</u>         | 80                     | <u>70</u>              | 130                      |
|                                                        |               |                                  |               | site but within r |                        |                        |                          |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix      | : Methanol     |          | Units: mg/K   | g QC Ty     | QC Type: MBS  |            |  |
|-----------------------------|-------------|----------------|----------|---------------|-------------|---------------|------------|--|
|                             |             | Spike          | Sample   | Expected      |             | Lower         | Upper      |  |
| Analyte:                    | Col         | Conc           | Conc     | Conc          | Recovery    | Limit         | Limit      |  |
| n-Butyl acrylate            | 1           | 12.468         | 0        | 20            | 62*         | 70            | 130        |  |
| n-Amyl acetate              | 1           | 11.6737        | 0        | 20            | 58 *        | 70            | 130        |  |
| <u>Bromoform</u>            | <u>1</u>    | <u>12.6949</u> | Q        | <u>20</u>     | <u>63*</u>  | <u>70</u>     | <u>130</u> |  |
| Ethylbenzene                | <u>1</u>    | <u>15.6563</u> | Q        | <u>20</u>     | <u>78</u>   | <u>70</u>     | <u>130</u> |  |
| 1,1,2,2-Tetrachloroethane   | <u>1</u>    | 12.0844        | Q        | <u>20</u>     | <u>60 *</u> | <u>70</u>     | <u>130</u> |  |
| Styrene                     | 11          | <u>15.9973</u> | Q        | <u>20</u>     | <u>80</u>   | <u>70</u>     | <u>130</u> |  |
| m&p-Xylenes                 | <u>1</u>    | 33.075         | <u>0</u> | <u>40</u>     | <u>83</u>   | <u>70</u>     | <u>130</u> |  |
| <u>o-Xylene</u>             | 1           | <u>16.295</u>  | <u>0</u> | <u>20</u>     | <u>81</u>   | <u>70</u>     | <u>130</u> |  |
| trans-1,4-Dichloro-2-butene | 1           | 12.6221        | 0        | 20            | 63          | 50            | 150        |  |
| 1,3-Dichlorobenzene         | 1           | 14.6903        | <u>0</u> | <u>20</u>     | <u>73</u>   | <u>70</u>     | <u>130</u> |  |
| 1,4-Dichlorobenzene         | 1           | 14.7703        | <u>o</u> | <u>20</u>     | <u>74</u>   | <u>70</u>     | <u>130</u> |  |
| 1,2-Dichlorobenzene         | 1<br>1<br>1 | 14.6777        | <u>0</u> | <u>20</u>     | <u>73</u>   | <u>70</u>     | <u>130</u> |  |
| Isopropylbenzene            | <u>1</u>    | 16.6977        | Q        | <u>20</u>     | 83          | <u>70</u>     | <u>130</u> |  |
| Cyclohexanone               | 1           | 72.1083        | 0        | 100           | 72          | 50            | 150        |  |
| Camphene                    | 1           | 16.0794        | 0        | 20            | 80          | 70            | 130        |  |
| 1,2,3-Trichloropropane      | 1           | 11.6717        | 0        | 20            | 58*         | 70            | 130        |  |
| 2-Chlorotoluene             | 1           | 14.7358        | 0        | 20            | 74          | 70            | 130        |  |
| p-Ethyltoluene              | 1           | 15.5308        | 0        | 20            | 78          | 70            | 130        |  |
| 4-Chlorotoluene             | 1           | 15.0191        | 0        | 20            | 75          | <b>7</b> 0    | 130        |  |
| n-Propylbenzene             | 1           | 15.4254        | 0        | 20            | 77          | 70            | 130        |  |
| Bromobenzene                | 1           | 14.2941        | 0        | 20            | 71          | 70            | 130        |  |
| 1,3,5-Trimethylbenzene      | 1           | 15.7049        | 0        | 20            | 79          | 70            | 130        |  |
| Butyl methacrylate          | 1           | 13.4193        | 0        | 20            | 67*         | 70            | 130        |  |
| t-Butylbenzene              | 1           | 16.5088        | 0        | 20            | 83          | 70            | 130        |  |
| 1,2,4-Trimethylbenzene      | 1           | 15.2732        | 0        | 20            | 76          | 70            | 130        |  |
| sec-Butylbenzene            | 1           | 16.0626        | 0        | 20            | 80          | 70            | 130        |  |
| 4-Isopropyltoluene          | 1           | 16.3028        | 0        | 20            | 82          | 70            | 130        |  |
| n-Butylbenzene              | 1           | 15.8377        | 0        | 20            | 79          | 70            | 130        |  |
| p-Diethylbenzene            | 1           | 17.129         | 0        | 20            | 86          | 70            | 130        |  |
| 1.2.4.5-Tetramethylbenzene  | 1           | 14.1666        | 0        | 20            | 71          | 70            | 130        |  |
| 1,2-Dibromo-3-Chloropropane | 1           | 12.3473        | <u>0</u> | 20            | <u>62</u>   | 50            | 150        |  |
| Camphor                     | 1           | 106.2492       | Ō        | 200           | 53          | 20            | 150        |  |
| Hexachlorobutadiene         | 1           | 16.4785        | 0        | 20            | 82          | 50            | 150        |  |
| 1,2,4-Trichlorobenzene      | 1           | 15.8917        | <u>0</u> | 20            | <u>79</u>   | 70            | 130        |  |
| 1,2,3-Trichlorobenzene      | 1           | 15.3436        | <u>0</u> | <del>20</del> | 77          | <del>70</del> | 130        |  |
| Naphthalene                 | 1           | 15.3547        | Ō        | 20            | 77          | 50            | 150        |  |

<sup>-</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits 'd and underline - Indicates the compounds reported on form1

Data File Spike or Dup: 1M140259.D Sample ID: AD19619-001(MS) Analysis Date

Non Spike(If applicable): 1M140265.D

AD19619-001

10/8/2020 7:12:00 AM 10/8/2020 9:16:00 AM

Inst Blank(If applicable):

| Method: 8260D                           | Matrix        | c: Methanol                |                | Units: mg/k      | (g QC Typ     | ype: MS             |                   |
|-----------------------------------------|---------------|----------------------------|----------------|------------------|---------------|---------------------|-------------------|
| Analyte:                                | Col           | Spike<br>Conc              | Sample<br>Conc | Expected<br>Conc | Recovery      | Lower<br>Limit      | Upper<br>Limit    |
| Chlorodifluoromethane                   | 1             | 14.0857                    | 0              | 20               | 70            | 50                  | 150               |
| Dichlorodifluoromethane                 | 1             | 9.026                      | <u>0</u>       | 20               | 45*           | 50                  | 150               |
| Chloromethane                           | 1             | 22.2234                    | <u> </u>       | 20               | 111           | 50                  | 150               |
| Bromomethane                            | 1<br>1        | 11.0521                    | <u>o</u>       | 20               | 55            | <u>50</u>           | 150               |
| Vinyl Chloride                          | 1             | 26.7689                    | <u>0</u>       | <u>20</u>        | <u>134</u>    | <u>50</u>           | <u>150</u>        |
| Chloroethane                            | 1             | <u>18.6798</u>             | <u>0</u>       | <u>20</u>        | <u>93</u>     | <u>50</u>           | <u>150</u>        |
| <u>Trichlorofluoromethane</u>           | 1             | <u>23.5096</u>             | <u> </u>       | <u>20</u>        | <u>118</u>    | <u>50</u>           | <u>150</u>        |
| Ethyl ether                             | 1             | 20.551                     | 0              | 20               | 103           | 50                  | 150               |
| Furan                                   | 1             | 19.8 <b>4</b> 85           | 0              | 20               | 99            | 50                  | 150               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane   | _             | 22.839                     | Ō              | <u>20</u>        | <u>114</u>    | <u>50</u>           | <u>150</u>        |
| Methylene Chloride                      | 1             | 21.3928                    | Ō              | <u>20</u>        | <u>107</u>    | <u>70</u>           | <u>130</u>        |
| Acrolein                                | 1             | 105.2704                   | 0              | 100              | 105           | 50                  | 150               |
| Acrylonitrile                           | 1             | 8.403                      | 0              | 20               | 42*           | 50                  | 150               |
| lodomethane                             | 1             | 7.7521                     | 0              | 20               | 39*           | 50                  | 150               |
| Acetone                                 | 1             | <u>100.4613</u>            | <u>0</u>       | <u>100</u>       | <u>100</u>    | <u>50</u>           | <u>150</u>        |
| Carbon Disulfide                        | 1             | <u>20.1625</u>             | <u>0</u>       | <u>20</u>        | <u>101</u>    | <u>50</u>           | <u>150</u>        |
| t-Butyl Alcohol                         | 1             | 52.3179                    | 0              | 100              | 52            | 50                  | 150               |
| n-Hexane                                | 1             | 21.176                     | 0              | 20               | 106           | 70                  | 130               |
| Di-isopropyl-ether                      | 1             | 20.1744                    | 0              | 20               | 101           | 70                  | 130               |
| 1,1-Dichloroethene                      | 1             | <u>21.649</u>              | Q              | <u>20</u>        | <u>108</u>    | <u>70</u>           | <u>130</u>        |
| Methyl Acetate                          | 1             | 22.9207                    | <u>0</u>       | <u>20</u>        | <u>115</u>    | <u>50</u>           | <u>150</u>        |
| Methyl-t-butyl ether                    | 1             | <u>21.9843</u>             | <u>0</u>       | <u>20</u>        | <u>110</u>    | <u>70</u>           | <u>130</u>        |
| 1,1-Dichloroethane                      | 1             | <u>19.5994</u>             | <u>0</u>       | <u>20</u>        | <u>98</u>     | <u>70</u>           | <u>130</u>        |
| trans-1,2-Dichloroethene                | 1             | <u>22.143</u>              | <u>0</u>       | <u>20</u>        | <u>111</u>    | <u>70</u>           | <u>130</u>        |
| Ethyl-t-butyl ether                     | 1             | 20.4926                    | 0              | 20               | 102           | 70<br>70            | 130               |
| cis-1,2-Dichloroethene                  | 1             | 20.2244                    | <u>0</u>       | <u>20</u>        | <u>101</u>    | <u>70</u>           | 130<br>130        |
| Bromochloromethane                      | <u>1</u><br>1 | <u>20.4653</u>             | <u>o</u><br>0  | <u>20</u><br>20  | <u>102</u>    | <u>70</u><br>70     | <u>130</u><br>130 |
| 2,2-Dichloropropane                     | 1             | 17.1324                    | 0              | 20               | 86<br>107     | 70<br>50            | 150               |
| Ethyl acetate                           |               | 21.3199                    |                | 1 <b>000</b>     | 111           | <b>50</b>           | 150               |
| 1.4-Dioxane                             | <u>1</u><br>1 | <u>1108.739</u><br>22.4241 | <u>o</u><br>o  | 20               | 112           | <del>30</del><br>70 | 130               |
| 1,1-Dichloropropene Chloroform          |               | 21.0092                    | <u>0</u>       | 20               | 105           | 70<br><b>70</b>     | 130<br>130        |
| Cyclohexane                             | <u>1</u><br>1 | 24.0228                    | <u>0</u>       | <u>20</u><br>20  | 100<br>120    | <u>70</u><br>70     | 130<br>130        |
| 1,2-Dichloroethane                      | 1             | 19.9662                    | <u>o</u>       | 20               | 100           | <del>70</del><br>70 | 130               |
| 2-Butanone                              | 1             | 20.3969                    | <u>o</u>       | <u>20</u><br>20  | 100<br>102    | <del>70</del><br>50 | 150<br>150        |
| 1,1,1-Trichloroethane                   | 1             | 21.728                     | <u>o</u>       | 20               | 10 <u>9</u>   | <del>30</del><br>70 | 130               |
| Carbon Tetrachloride                    | 1             | 20.8761                    | <u>o</u>       | 20               | 104           | <u>50</u>           | 150<br>150        |
| Vinyl Acetate                           | 1             | 18.9834                    | Ö              | <u>20</u><br>20  | 95            | 50                  | 150               |
| Bromodichloromethane                    | 1             | 20.0889                    | Q              | 20               | 100           | 70                  | 130               |
| Methylcyclohexane                       | <u>†</u>      | <u>26.3878</u>             | Ŏ              | 20               | 132 *         | <del>70</del>       | 130               |
| Dibromomethane                          | 1             | 53.0389                    | Ŏ              | 20               | 265 *         | <del>70</del>       | 130               |
| 1,2-Dichloropropane                     | <u>1</u>      | 19.4403                    | <u>0</u>       | <u>20</u>        | <u>97</u>     | <u>70</u>           | 130               |
| Trichloroethene                         | 1             | 22.3754                    | <u>o</u>       | 20               | <u>112</u>    | <del>70</del>       | 130               |
| Benzene                                 | 1             | 20.5787                    | <u>o</u>       | <u>20</u>        | 103           | <del>70</del>       | 130               |
| tert-Amyl methyl ether                  | ī             | 20.3311                    | Ō              | 20               | 102           | 70                  | 130               |
| Iso-propylacetate                       | 1             | 16.7044                    | Ö              | 20               | 84            | 70                  | 130               |
| Methyl methacrylate                     | 1             | 20.7043                    | 0              | 20               | 104           | 70                  | 130               |
| Dibromochloromethane                    | 1             | 15.2798                    | Q              | <u>20</u>        | <u>76</u>     | <u>70</u>           | 130               |
| 2-Chloroethylvinylether                 | 1             | 16.8605                    | ō              | 20               | 84            | 70                  | 130               |
| cis-1,3-Dichloropropene                 | 1             | <u>17.2666</u>             | <u>0</u>       | <u>20</u>        | <u>86</u>     | <u>70</u>           | <u>130</u>        |
| trans-1,3-Dichloropropene               | <u>1</u>      | 15.4708                    | <u>0</u>       | <u>20</u>        | <u>77</u>     | <u>70</u>           | 130               |
| Ethyl methacrylate                      | 1             | 21.0434                    | ō              | <del>20</del>    | 105           | 70                  | 130               |
| 1,1,2-Trichloroethane                   | 1             | <u>18.4175</u>             | <u>0</u>       | <u>20</u>        | <u>92</u>     | <u>70</u>           | <u>130</u>        |
| 1,2-Dibromoethane                       | 1             | 16.8552                    | <u>0</u>       | 20               | 84            | <u>70</u>           | <u>130</u>        |
| 1,3-Dichloropropane                     | 1             | 17.4069                    | 0              | 20               | 87            | 70                  | 130               |
| 4-Methyl-2-Pentanone                    | 1             | <u>17.0024</u>             | <u>0</u>       | <u>20</u>        | <u>85</u>     | <u>50</u>           | <u>150</u>        |
| 2-Hexanone                              | 1             | <u>38.7471</u>             | <u>0</u>       | <u>20</u>        | <u> 194 *</u> | <u>50</u>           | <u>150</u>        |
| <u>Tetrachloroethene</u>                | 1<br>1<br>1   | <u>20.1855</u>             | <u>0</u>       | <u>20</u>        | <u>101</u>    | <u>50</u>           | <u>150</u>        |
| <u>Toluene</u>                          |               | <u>18.8781</u>             |                | <u>20</u>        | <u>94</u>     | <u>70</u>           | 130               |
| 1,1,1,2-Tetrachloroethane               | 1             | 26.7219                    | 0              | 20               | 134*          | 70                  | 130               |
| Chlorobenzene                           | 1             | 18.9405                    | <u> </u>       | 20               | 95            | 70                  | <u>130</u>        |
| * - Indicates outside of limits # - Ind |               | autoida af a               | tonderd line   | aiddine deed adi | mathad avaaa  | danaa lin           | aita              |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix   | c: Methanol    |                      | Units: mg/l   | Kg QC Ty      | pe: MS         | (              |
|-----------------------------|----------|----------------|----------------------|---------------|---------------|----------------|----------------|
| Analyte:                    | Col      | Spike<br>Conc  | Sample<br>Conc       | Expected Conc | Recovery      | Lower<br>Limit | Upper<br>Limit |
| n-Butyl acrylate            | 1        | 15.8583        | 0                    | 20            | 79            | 70             | 130            |
| n-Amyl acetate              | 1        | 15.7465        | 0                    | 20            | 79            | 70             | 130            |
| Bromoform                   | 1        | <u>15.0963</u> | <u>0</u>             | 20            | <u>75</u>     | <u>70</u>      | <u>130</u>     |
| Ethylbenzene                | <u>1</u> | 16.8322        | <u>0</u>             | 20            | 84            | 70             | 130            |
| 1,1,2,2-Tetrachloroethane   | <u>1</u> | 16.3811        | Q                    | 20            | 82            | 70             | 130            |
| Styrene                     | <u>1</u> | 18.2023        | <u>0</u>             | 20            | <u>91</u>     | <u>70</u>      | 130            |
| m&p-Xylenes                 | <u>1</u> | 35.5031        | <u>0</u>             | 40            | <del>89</del> | 70             | 130            |
| o-Xylene                    | <u>1</u> | 19.3411        | <u></u>              | 20            | 97            | 70             | 130            |
| trans-1,4-Dichloro-2-butene | 1        | 16.2958        | Ō                    | 20            | 81            | 50             | 150            |
| 1,3-Dichlorobenzene         | <u>1</u> | 18.278         | <u>o</u>             | <u>20</u>     | <u>91</u>     | <u>70</u>      | 130            |
| 1,4-Dichlorobenzene         | 1        | 17.3933        | <u>0</u><br><u>0</u> | 20            | 87            | 70             | 130            |
| 1,2-Dichlorobenzene         | <u>1</u> | 17.8551        | <u>o</u>             | 20            | 89            | 70             | 130            |
| Isopropylbenzene            | <u>1</u> | 18.6698        | Q                    | 20            | 93            | 70             | 130            |
| Cyclohexanone               | 1        | 176.6462       | Ō                    | 100           | 177*          | 50             | 150            |
| Camphene                    | 1        | 18.8431        | 0                    | 20            | 94            | 70             | 130            |
| 1,2,3-Trichloropropane      | 1        | 13.9836        | 0                    | 20            | 70            | 70             | 130            |
| 2-Chlorotoluene             | 1        | 16.8016        | 0                    | 20            | 84            | 70             | 130            |
| p-Ethyltoluene              | 1        | 18.5648        | 0                    | 20            | 93            | 70             | 130            |
| 4-Chlorotoluene             | 1        | 17.1629        | 0                    | 20            | 86            | 70             | 130            |
| n-Propylbenzene             | 1        | 18.4567        | 0                    | 20            | 92            | 70             | 130            |
| Bromobenzene                | 1        | 16.9998        | 0                    | 20            | 85            | 70             | 130            |
| 1,3,5-Trimethylbenzene      | 1        | 16.9161        | 0                    | 20            | 85            | 70             | 130            |
| Butyl methacrylate          | 1        | 20.0358        | 0                    | 20            | 100           | 70             | 130            |
| t-Butylbenzene              | 1        | 19.4401        | 0                    | 20            | 97            | 70             | 130            |
| 1,2,4-Trimethylbenzene      | 1        | 17.3211        | 0                    | 20            | 87            | 70             | 130            |
| sec-Butylbenzene            | 1        | 19.3969        | 0                    | 20            | 97            | 70             | 130            |
| 4-Isopropyltoluene          | 1        | 19.753         | 0                    | 20            | 99            | 70             | 130            |
| n-Butylbenzene              | 1        | 18.3133        | 0                    | 20            | 92            | 70             | 130            |
| p-Diethylbenzene            | 1        | 21.3477        | 0                    | 20            | 107           | 70             | 130            |
| 1,2,4,5-Tetramethylbenzene  | 1        | 18.6518        | 0                    | 20            | 93            | 70             | 130            |
| 1,2-Dibromo-3-Chloropropane | 1        | 13.691         | Q                    | 20            | <u>68</u>     | <u>50</u>      | 150            |
| Camphor                     | 1        | 135.9329       | ō                    | 200           | <del>68</del> | 20             | 150            |
| Hexachlorobutadiene         | 1        | 18.4301        | 0                    | 20            | 92            | 50             | 150            |
| 1,2,4-Trichlorobenzene      | <u>1</u> | 17.4529        | <u>0</u>             | 20            | <u>87</u>     | <u>70</u>      | 130            |
| 1,2,3-Trichlorobenzene      | 1        | 17,172         | Q                    | 20            | 86            | 70             | 130            |
| Naphthalene                 | 1        | 17.9139        | ō                    | 20            | 90            | 50             | 150            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits
Bold and underline - Indicates the compounds reported on form1

Data File Spike or Dup: 1M140260.D Sample ID: AD19619-001(MSD) Analysis Date 10/8/2020 7:33:00 AM

Non Spike(If applicable): 1M140265.D

AD19619-001

10/8/2020 9:16:00 AM

Inst Blank(If applicable):

| Method: 8260D                                | Matrix: Methanol |                           |                | Units: mg/Kg QC Type: MSD |                   |                        |                   |
|----------------------------------------------|------------------|---------------------------|----------------|---------------------------|-------------------|------------------------|-------------------|
| Analyte:                                     | Col              | Spike<br>Conc             | Sample<br>Conc | Expected<br>Conc          | Recovery          | Lower<br>Limit         | Upper<br>Limit    |
| Chlorodifluoromethane                        | 1                | 20.9778                   | 0              | 20                        | 105               | 50                     | 150               |
| <u>Dichlorodifluoromethane</u>               | 1                | <u> 26.107</u>            | <u>0</u>       | <u>20</u>                 | <u>131</u>        | <u>50</u>              | <u>150</u>        |
| <u>Chloromethane</u>                         | 1                | <u>20.4511</u>            | <u>0</u>       | <u>20</u>                 | <u>102</u>        | <u>50</u>              | <u>150</u>        |
| Bromomethane                                 | 1                | <u>14.1301</u>            | <u>o</u>       | <u>20</u>                 | . <u>71</u>       | <u>50</u>              | 150               |
| Vinyl Chloride                               | 1                | <u>25.4678</u>            | <u>0</u>       | <u>20</u>                 | <u>127</u>        | <u>50</u>              | <u>150</u>        |
| Chloroethane                                 | 1                | <u>17.6111</u>            | <u>0</u>       | <u>20</u>                 | <u>88</u>         | <u>50</u>              | <u>150</u>        |
| <u>Trichlorofluoromethane</u>                | 1                | 23.6227                   | <u>o</u><br>0  | <u><b>20</b></u><br>20    | <u>118</u>        | <u>50</u><br>50        | <u>150</u><br>150 |
| Ethyl ether                                  | 1<br>1           | 21.2961<br>20.7814        | 0              | 20                        | 106<br>104        | 50<br>50               | 150               |
| Furan 1,1,2-Trichloro-1,2,2-trifluoroethane  | •                | 20.7614<br>23.2906        | <u>0</u>       | 20<br>20                  | 116               | <u>50</u>              | 150<br>150        |
| Methylene Chloride                           | <u>₹ 1</u><br>1  | 23.2500<br>22.1562        | <u>0</u>       | <u>20</u><br>20           | 111               | <u>50</u><br>70        | 130<br>130        |
| Acrolein                                     | 1                | 100.9467                  | 0              | 100                       | 101               | <u>70</u><br>50        | 150               |
| Acrylonitrile                                | i                | 24.3579                   | 0              | 20                        | 122               | 50                     | 150               |
| lodomethane                                  | i                | 12.7538                   | Ö              | 20                        | 64                | 50                     | 150               |
| Acetone                                      | 1                | 103.1273                  | <u>0</u>       | 100                       | 103               | <u>50</u>              | 150               |
| Carbon Disulfide                             | <u> </u>         | 20.4232                   | <u>0</u>       | 20                        | 102               | <u>50</u>              | <u>150</u>        |
| t-Butyl Alcohol                              | 1                | 133.0716                  | Ŏ              | 100                       | 133               | <u>50</u>              | 150               |
| n-Hexane                                     | 1                | 22.3935                   | Ŏ              | 20                        | 112               | 70                     | 130               |
| Di-isopropyl-ether                           | 1                | 20.5354                   | Ō              | 20                        | 103               | 70                     | 130               |
| 1,1-Dichloroethene                           | 1                | 22.3185                   | <u>0</u>       | 20                        | <u>112</u>        | <u>70</u>              | <u>130</u>        |
| Methyl Acetate                               | <u>1</u>         | 22.6431                   | <u> </u>       | <u>20</u>                 | 113               | 50                     | 150               |
| Methyl-t-butyl ether                         | 1                | 23.0931                   | Q              | 20                        | <u>115</u>        | 70                     | 130               |
| 1,1-Dichloroethane                           | 1                | 19.956                    | Q              | <u>20</u>                 | <u>100</u>        | <u>70</u>              | <u>130</u>        |
| trans-1,2-Dichloroethene                     | 1                | 22.4303                   | Q              | <u>20</u>                 | <u>112</u>        | <u>70</u>              | <u>130</u>        |
| Ethyl-t-butyl ether                          | 1                | 21.573                    | 0              | 20                        | 108               | 70                     | 130               |
| cis-1,2-Dichloroethene                       | 1                | <u>20.5498</u>            | <u>0</u>       | <u>20</u>                 | <u>103</u>        | <u>70</u>              | <u>130</u>        |
| <u>Bromochloromethane</u>                    | 1                | <u>21.1757</u>            | Q              | <u>20</u>                 | <u>106</u>        | <u>70</u>              | <u>130</u>        |
| 2,2-Dichloropropane                          | 1                | 17.159                    | 0              | 20                        | 86                | 70                     | 130               |
| Ethyl acetate                                | 1                | 19.6677                   | 0              | 20                        | 98                | 50                     | 150               |
| 1,4-Dioxane                                  | 1                | <u>571.3019</u>           | <u>0</u>       | <u>1000</u>               | <u>57</u>         | <u>50</u>              | <u>150</u>        |
| 1,1-Dichloropropene                          | 1                | 22.7705                   | 0              | 20                        | 114               | 70                     | 130               |
| Chloroform                                   | 1                | <u>20.406</u>             | Ō              | <u>20</u>                 | <u>102</u>        | <u>70</u>              | 130               |
| Cyclohexane                                  | 1                | 24.3092                   | <u>0</u>       | <u>20</u>                 | <u>122</u>        | <u>70</u>              | <u>130</u>        |
| 1,2-Dichloroethane                           | 1                | 20.9287                   | <u>0</u>       | <u>20</u>                 | <u>105</u>        | <u>70</u>              | 130<br>150        |
| 2-Butanone                                   | <u>1</u><br>1    | 18,4274                   | <u>0</u>       | <u>20</u>                 | <u>92</u>         | <u>50</u>              | <u>150</u><br>130 |
| 1,1,1-Trichloroethane                        |                  | 21.3984                   | <u>0</u>       | <u>20</u><br>20           | <u>107</u><br>107 | <u>70</u>              | 150<br>150        |
| <u>Carbon Tetrachloride</u><br>Vinyl Acetate | <u>1</u><br>1    | <u>21.3994</u><br>19.1667 | <u>o</u><br>0  | <u>20</u><br>20           | 96                | <u><b>50</b></u><br>50 | 150<br>150        |
| Bromodichloromethane                         | 1                | 19.4645                   | <u>0</u>       | 20                        | 97                | <u>70</u>              | 130               |
| Methylcyclohexane                            | 1                | 25.2665                   | <u>0</u>       | <u>20</u><br>20           | 1 <u>37</u>       | <u>70</u>              | 130               |
| Dibromomethane                               | 1                | 28.5715                   | Ŏ              | <u>20</u><br>20           | 143*              | <del>70</del>          | 130               |
| 1,2-Dichloropropane                          | 1                | 19.7066                   | <u>0</u>       | <u>20</u>                 | 99                | <u>70</u>              | 130               |
| Trichloroethene                              | <u>†</u>         | 21.7809                   | <u>v</u>       | <u>20</u>                 | <u>109</u>        | <del>70</del>          | 130               |
| Benzene                                      | 1                | 21.7656                   | <u>0</u>       | 20                        | 109               | 70                     | 130               |
| tert-Amyl methyl ether                       | Ť                | 21.1738                   | Ŏ              | 20                        | 106               | 70                     | 130               |
| Iso-propylacetate                            | 1                | 17.3749                   | 0              | 20                        | 87                | 70                     | 130               |
| Methyl methacrylate                          | 1                | 19.1273                   | 0              | 20                        | 96                | 70                     | 130               |
| Dibromochloromethane                         | 1                | 15.5515                   | <u>0</u>       | <u>20</u>                 | <u>78</u>         | <u>70</u>              | <u>130</u>        |
| 2-Chloroethylvinylether                      | 1                | 15.4082                   | ō              | <del>20</del>             | 77                | 70                     | 130               |
| cis-1,3-Dichloropropene                      | 1                | <u>17.2413</u>            | <u>0</u>       | <u>20</u>                 | <u>86</u>         | <u>70</u>              | <u>130</u>        |
| trans-1,3-Dichloropropene                    | 1                | 15.5789                   | <u>o</u>       | <u>20</u>                 | <u>78</u>         | <u>70</u>              | 130               |
| Ethyl methacrylate                           | 1                | 19.5784                   | 0              | 20                        | 98                | 70                     | 130               |
| 1,1,2-Trichloroethane                        | 1                | 20.5042                   | <u>0</u>       | <u>20</u>                 | <u>103</u>        | <u>70</u>              | <u>130</u>        |
| 1,2-Dibromoethane                            | 1                | <u>17.2658</u>            | Q              | <u>20</u>                 | <u>86</u>         | <u>70</u>              | <u>130</u>        |
| 1,3-Dichloropropane                          | 1                | 17.8557                   | 0              | 20                        | 89                | 70                     | 130               |
| 4-Methyl-2-Pentanone                         | 1                | <u>18.0252</u>            | <u>o</u>       | <u>20</u>                 | <u>90</u>         | <u>50</u>              | <u>150</u>        |
| 2-Hexanone                                   | 1                | <u>35.5093</u>            | <u>0</u>       | <u>20</u>                 | <u> 178 *</u>     | <u>50</u>              | <u>150</u>        |
| <u>Tetrachloroethene</u>                     | 1                | <u>21.5809</u>            | Ō              | <u>20</u>                 | <u>108</u>        | <u>50</u>              | 150               |
| Toluene                                      | 1                | <u>19.3369</u>            | <u>0</u>       | <u>20</u>                 | <u>97</u>         | <u>70</u>              | <u>130</u>        |
| 1,1,1,2-Tetrachloroethane                    | 1                | 25.0672                   | 0              | 20                        | 125               | 70                     | 130               |
| Chlorobenzene                                | 1                | 19.803                    | <u>Q</u>       | <u>20</u>                 | 99                | <u>70</u>              | <u>130</u>        |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits

Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix      | : Methanol      |                      | Units: mg/Kg QC Ty |           | pe: MSD        |               |
|-----------------------------|-------------|-----------------|----------------------|--------------------|-----------|----------------|---------------|
| Analyte:                    | Col         | Spike<br>Conc   | Sample<br>Conc       | Expected<br>Conc   | Recovery  | Lower<br>Limit | Uppe<br>Limit |
| n-Butyl acrylate            | 1           | 16.4315         | 0                    | 20                 | 82        | 70             | 130           |
| n-Amyl acetate              | 1           | 15.3653         | 0                    | 20                 | 77        | 70             | 130           |
| Bromoform                   | 1           | <u>16.0655</u>  | <u>0</u>             | <u>20</u>          | <u>80</u> | <u>70</u>      | <u>130</u>    |
| Ethylbenzene                | 1           | 18.4326         | 0                    | 20                 | 92        | 70             | 130           |
| 1,1,2,2-Tetrachloroethane   | <u>1</u>    | 15.1111         | <u>0</u><br>0        | 20                 | <u>76</u> | <u>70</u>      | 130           |
| Styrene                     | 1           | 19.4847         | <u>0</u>             | 20                 | 97        | <u>70</u>      | 130           |
| m&p-Xylenes                 | 1           | 39.0676         | <u>0</u><br><u>0</u> | 40                 | <u>98</u> | <u>70</u>      | 130           |
| o-Xylene                    | <u>1</u>    | 19.3972         | <u>0</u>             | 20                 | 97        | <u>70</u>      | 130           |
| trans-1,4-Dichloro-2-butene | 1           | 15.9621         | 0                    | 20                 | 80        | 50             | 150           |
| 1,3-Dichlorobenzene         | 1           | <u> 18.6673</u> | <u>o</u>             | <u>20</u>          | <u>93</u> | <u>70</u>      | <u>130</u>    |
| 1,4-Dichlorobenzene         | 1<br>1<br>1 | 18.4292         | <u>Q</u><br><u>Q</u> | 20                 | 92        | <del>70</del>  | 130           |
| 1,2-Dichlorobenzene         | <u>1</u>    | 18.5836         | Ō                    | 20                 | 93        | 70             | 130           |
| Isopropylbenzene            | <u>1</u>    | 19.9755         | <u>0</u>             | 20                 | 100       | 70             | 130           |
| Cyclohexanone               | 1           | 142.6603        | ō                    | 100                | 143       | 50             | 150           |
| Camphene                    | 1           | 20.6871         | 0                    | 20                 | 103       | 70             | 130           |
| 1,2,3-Trichloropropane      | 1           | 13.6566         | 0                    | 20                 | 68*       | 70             | 130           |
| 2-Chlorotoluene             | 1           | 17.8135         | 0                    | 20                 | 89        | 70             | 130           |
| p-Ethyltoluene              | 1           | 18.7561         | 0                    | 20                 | 94        | 70             | 130           |
| 4-Chlorotoluene             | 1           | 18.1542         | 0                    | 20                 | 91        | 70             | 130           |
| n-Propylbenzene             | 1           | 19.2623         | 0                    | 20                 | 96        | 70             | 130           |
| Bromobenzene                | 1           | 17.3921         | 0                    | 20                 | 87        | 70             | 130           |
| 1,3.5-Trimethylbenzene      | 1           | 19.1803         | 0                    | 20                 | 96        | 70             | 130           |
| Butyl methacrylate          | 1           | 14.2785         | Ö                    | 20                 | 71        | 70             | 130           |
| t-Butylbenzene              | 1           | 21.5365         | 0                    | 20                 | 108       | 70             | 130           |
| 1,2,4-Trimethylbenzene      | 1           | 19.1133         | Ô                    | 20                 | 96        | 70             | 130           |
| sec-Butylbenzene            | 1           | 20.4997         | Ö                    | 20                 | 102       | 70             | 130           |
| 4-Isopropyltoluene          | 1           | 20.8458         | 0                    | 20                 | 104       | 70             | 130           |
| n-Butylbenzene              | 1           | 19.247          | Ó                    | 20                 | 96        | 70             | 130           |
| p-Diethylbenzene            | 1           | 21.7718         | Ö                    | 20                 | 109       | 70             | 130           |
| 1,2,4,5-Tetramethylbenzene  | 1           | 18.3507         | Ó                    | 20                 | 92        | 70             | 130           |
| 1,2-Dibromo-3-Chloropropane | 1           | 13.3394         | <u>0</u>             | 20                 | 67        | 50             | 150           |
| Camphor                     | Ť           | 132.4758        | Ŏ                    | 200                | 66        | 20             | 150           |
| Hexachlorobutadiene         | 1           | 18.8588         | Ŏ                    | 20                 | 94        | 50             | 150           |
| 1,2,4-Trichlorobenzene      | 1           | 19.5361         | Q                    | 20                 | 98        | 70             | 130           |
| 1,2,3-Trichlorobenzene      | <u>1</u>    | 18.486          | <u>0</u>             | <u>20</u>          | 92        | <u>70</u>      | 130           |
| Naphthalene                 | Ť           | 19.0532         | ŏ                    | 20                 | 95        | 50             | 150           |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

#### Form3 **RPD Data Laboratory Limits**

QC Batch: MBS89464

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M140260.D

Duplicate(If applicable): 1M140259.D

AD19619-001(MSD)

10/8/2020 7:33:00 AM

Inst Blank(If applicable):

AD19619-001(MS)

10/8/2020 7:12:00 AM

| Method: 8260D                         | Matrix: Me       | thanol Units:        | ts: mg/Kg QC Type: MSD |                |           |  |
|---------------------------------------|------------------|----------------------|------------------------|----------------|-----------|--|
| Analyte:                              | Column           | Dup/MSD/MBSD<br>Conc | Sample/MS/MBS<br>Conc  | RPD            | Limit     |  |
| Chlorodifluoromethane                 | 1                | 20.9778              | 14.0857                | 39*            | 30        |  |
| Dichlorodifluoromethane               | 1                | 26.107               | 9.026                  | 97*            | <u>30</u> |  |
| Chloromethane                         | 1                | 20.4511              | 22.2234                | 8.3            | 30        |  |
| Bromomethane                          | 1                | 14.1301              | 11.0521                | <u>24</u>      | 30        |  |
| Vinyl Chloride                        | 1                | 25.4678              | 26.7689                | <u>5</u>       | 40        |  |
| Chloroethane                          | 1                | 17.6111              | 18.6798                | <u>5.9</u>     | 30        |  |
| Trichlorofluoromethane                | 1<br>1<br>1      | 23,6227              | 23.5096                | 0.48           | <u>30</u> |  |
| Ethyl ether                           | 1                | 21.2961              | 20.551                 | 3.6            | 30        |  |
| Furan                                 | 1                | 20.7814              | 19.8485                | 4.6            | 30        |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1                | 23.2906              | 22.839                 | <u>2</u>       | <u>30</u> |  |
| Methylene Chloride                    | <u>1</u>         | 22.1562              | 21.3928                | <u>3.5</u>     | 30        |  |
| Acrolein                              | 1                | 100.9467             | 105.2704               | 4.2            | 30        |  |
| Acrylonitrile                         | 1                | 24.3579              | 8.403                  | 97*            | 30        |  |
| odomethane                            | 1                | 12.7538              | 7.7521                 | 49*            | 30        |  |
| Acetone                               | 1                | 103.1273             | 100.4613               | 2.6            | 30        |  |
| Carbon Disulfide                      | 1                | 20.4232              | 20.1625                | 1.3            | 30        |  |
| t-Butyl Alcohol                       | 1                | 133.0716             | 52.3179                | 87*            | 30        |  |
| n-Hexane                              | 1                | 22.3935              | 21.176                 | 5.6            | 30        |  |
| Di-isopropyl-ether                    | 1                | 20.5354              | 20.1744                | 1.8            | 30        |  |
| 1,1-Dichloroethene                    | 1                | <u>22.3185</u>       | <u>21.649</u>          | <u>3</u>       | <u>40</u> |  |
| Methyl Acetate                        | 1<br>1<br>1<br>1 | 22.6431              | 22.9207                | <u>1.2</u>     | <u>30</u> |  |
| Methyl-t-butyl ether                  | 1                | 23.0931              | 21.9843                | 4.9            | <u>30</u> |  |
| 1,1-Dichloroethane                    | <u>1</u>         | 19.956               | 19.5994                | 1.8            | <u>40</u> |  |
| trans-1,2-Dichloroethene              | <u>1</u>         | 22.4303              | 22.143                 | 1.3            | 30        |  |
| Ethyl-t-butyl ether                   | 1                | 21.573               | 20.4926                | <del>5.1</del> | 30        |  |
| <u>cis-1,2-Dichloroethene</u>         | <u>1</u>         | <u>20.5498</u>       | 20.2244                | <u>1.6</u>     | <u>30</u> |  |
| Bromochloromethane                    | <u>1</u>         | <u>21.1757</u>       | 20.4653                | <u>3.4</u>     | <u>30</u> |  |
| 2,2-Dichloropropane                   | 1                | 17.159               | 17.1324                | 0.16           | 30        |  |
| Ethyl acetate                         | 1                | 19.6677              | 21.3199                | 8.1            | 20        |  |
| <u>1,4-Dioxane</u>                    | 1                | <u>571.3019</u>      | <u>1108.739</u>        | <u>64 *</u>    | <u>30</u> |  |
| 1,1-Dichloropropene                   | 1                | 22.7705              | 22.4241                | 1.5            | 30        |  |
| <u>Chloroform</u>                     | <u>1</u>         | <u>20.406</u>        | <u>21.0092</u>         | <u>2.9</u>     | <u>40</u> |  |
| Cyclohexane                           | 1<br>1<br>1      | <u>24.3092</u>       | <u>24.0228</u>         | <u>1.2</u>     | <u>30</u> |  |
| 1,2-Dichloroethane                    | <u>1</u>         | <u>20.9287</u>       | <u>19.9662</u>         | <u>4.7</u>     | <u>40</u> |  |
| 2-Butanone                            | <u>1</u>         | <u>18.4274</u>       | <u>20.3969</u>         | <u>10</u>      | <u>40</u> |  |
| 1,1,1-Trichloroethane                 | <u>1</u><br>1    | <u>21.3984</u>       | <u>21.728</u>          | <u>1.5</u>     | <u>30</u> |  |
| Carbon Tetrachloride                  | 1                | <u>21.3994</u>       | <u>20.8761</u>         | <u>2.5</u>     | <u>40</u> |  |
| Vinyl Acetate                         | 1                | 19.1667              | 18.9834                | 0.96           | 30        |  |
| Bromodichloromethane                  | 1                | <u>19.4645</u>       | 20.0889                | <u>3.2</u>     | <u>30</u> |  |
| Methylcyclohexane                     | 1                | <u>25.2665</u>       | <u>26.3878</u>         | 4.3            | <u>30</u> |  |
| Dibromomethane                        | 1                | 28.5715              | 53.0389                | 60*            | 30        |  |
| 1,2-Dichloropropane                   | 1                | <u>19.7066</u>       | <u>19.4403</u>         | <u>1.4</u>     | <u>30</u> |  |
| <u>Trichloroethene</u>                | 1                | <u>21.7809</u>       | <u>22.3754</u>         | <u>2.7</u>     | <u>40</u> |  |
| Benzene                               | 1                | <u>21.7656</u>       | <u>20.5787</u>         | <u>5.6</u>     | <u>40</u> |  |
| ert-Amyl methyl ether                 | 1                | 21.1738              | 20.3311                | 4.1            | 30        |  |
| so-propylacetate                      | 1                | 17.3749              | 16.7044                | 3.9            | 30        |  |
| Methyl methacrylate                   | 1                | 19.1273              | 20.7043                | 7.9            | 30        |  |
| Dibromochloromethane                  | 1                | <u>15.5515</u>       | <u>15.2798</u>         | <u>1.8</u>     | <u>30</u> |  |
| 2-Chloroethylvinylether               | 1                | 15.4082              | 16.8605                | 9              | 30        |  |
| cis-1,3-Dichloropropene               | 1                | <u>17.2413</u>       | <u>17.2666</u>         | <u>0.15</u>    | <u>30</u> |  |
| trans-1,3-Dichloropropene             | 1                | <u>15.5789</u>       | <u>15.4708</u>         | <u>0.7</u>     | <u>30</u> |  |
| Ethyl methacrylate                    | 1                | 19.5784              | 21.0434                | 7.2            | 30        |  |
| I,1,2-Trichloroethane                 | 1                | <u>20.5042</u>       | <u>18.4175</u>         | 11             | <u>30</u> |  |
| I.2-Dibromoethane                     | 1                | <u>17.2658</u>       | <u>16.8552</u>         | <u>2.4</u>     | <u>30</u> |  |
| 1,3-Dichloropropane                   | 1                | 17. <b>8</b> 557     | 17.4069                | 2.5            | 30        |  |
| a_mothyl_7_Pontanono                  | 1                | 1 V (1757            | 97 (1074               | <b>E 0</b>     | 70        |  |

<u>18.0252</u>

35.5093

21.5809

19.3369

25.0672

19.803

1,1,1,2-Tetrachloroethane

**Tetrachloroethene** 

Chlorobenzene

2-Hexanone

<u>Toluene</u>

4-Methyl-2-Pentanone

17.0024

38.7471

20.1855

<u> 18.8781</u>

26.7219

<u>30</u>

<u>30</u>

<u>40</u>

<u>40</u>

30

<u>40</u>

<u>5.8</u>

8.7

<u>6.7</u>

2.4 6.4

<u>4.5</u>

1

<sup>\* -</sup> Indicates outside of limits

<sup>18.9405</sup> NA - Both concentrations=0... no result can be calculated

| Method: 8260D                 | Matrix: Meth                           | nanol Units      | :mg/Kg           | QC Type: MSE | )         |
|-------------------------------|----------------------------------------|------------------|------------------|--------------|-----------|
|                               | ······································ | Dup/MSD/MBSD     | Sample/MS/N      | /BS          |           |
| Analyte:                      | Column                                 | Conc             | Conc             | RPD          | Limit     |
| n-Butyl acrylate              | 1                                      | 16.4315          | 15.8583          | 3.6          | 30        |
| n-Amyl acetate                | 1                                      | 15.3653          | 15.7465          | 2.5          | 30        |
| Bromoform                     | <u>1</u>                               | 16.0655          | 15.0963          | <u>6.2</u>   | <u>30</u> |
| Ethylbenzene                  |                                        | 18.4326          | 16.8322          | 9.1          | <u>30</u> |
| 1,1,2,2-Tetrachloroethane     | 1<br>1<br>1<br>1<br>1                  | <u>15.1111</u>   | 16.3811          | 8.1          | <u>30</u> |
| Styrene Styrene               | 1                                      | 19.4847          | 18.2023          | <u>6.8</u>   | 30        |
| m&p-Xylenes                   | 1                                      | 39.0676          | <u>35.5031</u>   | <u>9.6</u>   | <u>30</u> |
| o-Xylene                      | 1                                      | 19.3972          | 19.3411          | 0.29         | <u>30</u> |
| rans-1,4-Dichloro-2-butene    | 1                                      | 15.9621          | 16.2958          | 2.1          | 30        |
| 1,3-Dichlorobenzene           | <u>1</u>                               | <u>18.6673</u>   | 18.278           | <u>2.1</u>   | <u>30</u> |
| 1,4-Dichlorobenzene           | 1<br>1<br>1<br>1                       | 18.4292          | 17.3933          | <u>5.8</u>   | <u>40</u> |
| 1,2-Dichlorobenzene           | 1                                      | <u> 18.5836</u>  | <u>17.8551</u>   | <u>4</u>     | <u>40</u> |
| Isopropyibenzene              | <u>1</u>                               | <u> 19.9755</u>  | <u>18.6698</u>   | <u>6.8</u>   | <u>30</u> |
| Cyclohexanone                 | 1                                      | 142.6603         | 176.6462         | 21           | 30        |
| Camphene                      | 1                                      | 20.6871          | 18.8431          | 9.3          | 30        |
| 1,2,3-Trichloropropane        | 1                                      | 13.6566          | 13.9836          | 2.4          | 30        |
| 2-Chlorotoluene               | 1                                      | 17.8135          | 16.8016          | 5.8          | 30        |
| p-Ethyltoluene                | 1                                      | 18.7561          | 18.5648          | 1            | 30        |
| 4-Chlorotoluene               | 1                                      | 18.1542          | 17.1629          | 5.6          | 30        |
| n-Propylbenzene               | 1                                      | 19.2623          | 18.4567          | 4.3          | 40        |
| Bromobenzene                  | 1                                      | 17.3921          | 16.9998          | 2.3          | 30        |
| 1,3,5-Trimethylbenzene        | 1                                      | 19.1803          | 16.9161          | 13           | 30        |
| Butyl methacrylate            | 1                                      | 14.2785          | 20.0358          | 34 *         | 30        |
| t-Butylbenzene                | 1                                      | 21.5365          | 19.4401          | 10           | 30        |
| 1,2,4-Trimethylbenzene        | 1                                      | 19.1133          | 17.3211          | 9.8          | 30        |
| sec-Butylbenzene              | 1                                      | 20.4997          | 19.3969          | 5.5          | 40        |
| 4-Isopropyltoluene            | 1                                      | 20.8458          | 19.753           | 5.4          | 30        |
| n-Butylbenzene                | 1                                      | 19.247           | 18.3133          | 5            | 30        |
| p-Diethylbenzene              | 1                                      | 21. <b>7</b> 718 | 21.34 <b>7</b> 7 | 2            | 30        |
| 1,2,4,5-Tetramethylbenzene    | 1                                      | 18.3507          | 18.6518          | 1.6          | 30        |
| 1,2-Dibromo-3-Chloropropane   | <u>1</u>                               | <u>13.3394</u>   | <u>13.691</u>    | <u>2.6</u>   | <u>30</u> |
| Camphor                       | 1                                      | 132.4758         | 135.9329         | 2.6          | 30        |
| -lexachlorobutadiene          | 1                                      | 18.8588          | 18.4301          | 2.3          | 30        |
| <u>1,2,4-Trichlorobenzene</u> | <u>1</u>                               | <u>19.5361</u>   | <u>17.4529</u>   | <u>11</u>    | <u>30</u> |
| <u>1,2,3-Trichlorobenzene</u> | 1<br>1<br>1                            | <u>18.486</u>    | <u>17.172</u>    | <u>7.4</u>   | <u>30</u> |
| Naphthalene                   | 1                                      | 19.0532          | 17.9139          | 6.2          | 30        |

Data File Spike or Dup: 1M140338.D Sample ID: MBS89475

Analysis Date 10/9/2020 12:18:00 PM

Non Spike(If applicable):

Inst Blank(If applicable): Method: 8260D QC Type: MBS Matrix: Methanol Units: mg/Kg Spike Sample Expected Lower Upper Col Recovery Analyte: Conc Conc Conc Limit Limit Chlorodifluoromethane 16.3437 82 150 0 20 50 **Dichlorodifluoromethane** 1.6083 <u> 20</u> 8\* <u>50</u> <u>150</u> 0 1 0 <u> 20</u> <u>34</u>\* <u>50</u> <u>150</u> **Chloromethane** <u>6.8355</u> **Bromomethane** 12.2111 0 20 <u>61</u> 50 150 Vinyl Chloride 10.8249 0 <u> 20</u> <u>54</u> 50 150 **Chloroethane** 17.5107 0 <u>20</u> 88 <u>50</u> <u>150</u> Q <u> 20</u> <u>50</u> **Trichlorofluoromethane** <u>96</u> **150** 19.1737 Ethyl ether 20.6542 0 20 103 50 150 20 0 50 150 17.9763 90 Furan <u> 20</u> <u>150</u> 1,1,2-Trichloro-1,2,2-trifluoroethane 22.8111 0 114 <u>50</u> 20 **Methylene Chloride** 21.4514 0 107 <u>70</u> 130 100 50 Acrolein 105.8326 0 106 150 22.8419 Acrylonitrile 0 20 114 50 150 10.1343 20 51 150 Iodomethane 50 98.4305 <u>100</u> <u>98</u> <u>150</u> **Acetone** 0 <u>150</u> Carbon Disulfide <u>16.0963</u> <u> 20</u> <u>80</u> <u>50</u> t-Butyl Alcohol 125.4374 0 100 125 50 150 n-Hexane 20.1288 0 20 101 70 130 20 70 0 Di-isopropyl-ether 19.676 98 130 1,1-Dichloroethene 18.9801 <u> 20</u> <u>95</u> <u>70</u> 130 Q 0 <u>20</u> <u>147</u> <u>50</u> <u>150</u> **Methyl Acetate** 29.312 <u>20</u> Methyl-t-butyl ether 24.1366 0 121 <u>70</u> <u>130</u> Ō <u>20</u> 70 18.9285 <u>95</u> 130 1,1-Dichloroethane 0 <u> 20</u> <u>108</u> <u>70</u> <u>130</u> trans-1,2-Dichloroethene 21.603 1 <del>20</del> 0 106 70 130 Ethyl-t-butyl ether 21.2555 20.0092 20 100 70 130 cis-1,2-Dichloroethene 0 20 70 Bromochloromethane 17.5262 0 88 130 2,2-Dichloropropane 20.6425 0 20 103 70 130 0 20 120 50 150 24.0715 Ethyl acetate 1,4-Dioxane 1035.309 0 1000 104 50 150 1,1-Dichloropropene 20.9777 0 20 105 70 130 20.8717 <u> 20</u> 104 <u>70</u> **Chloroform** 0 130 Cyclohexane 20.5027 0 20 103 70 130 0 <u> 20</u> <u>109</u> <u>70</u> <u>130</u> 1,2-Dichloroethane 21.762 Q <u>20</u> <u>50</u> 2-Butanone 31.9944 160 \* <u>150</u> 20 21.071 0 105 70 130 1,1,1-Trichloroethane **Carbon Tetrachloride** 21.5444 Q <u>20</u> <u>108</u> <u>50</u> <u>150</u> 1 20 O 50 150 Vinyl Acetate 14.2143 71 20 **Bromodichloromethane** 20.4592 0 102 <u>70</u> 130 20 109 70 130 Methylcyclohexane 21.7654 1 ō 20 70 22.4848 112 130 Dibromomethane 0 20 98 <u>70</u> 130 1,2-Dichloropropane 19.5714 **Trichloroethene** 22.9514 0 <u> 20</u> 115 <u>70</u> 130 20 <u>70</u> Benzene 20.3592 0 <u>102</u> <u>130</u> tert-Amyl methyl ether 20 70 21.8399 0 109 130 Iso-propylacetate 17.5629 0 20 88 70 130 Methyl methacrylate 16.9604 0 20 85 70 130 <u> 20</u> **Dibromochloromethane** 18.0132 0 90 <u>70</u> 130 20 0 2531 70 130 2-Chloroethylvinylether 50.5661 cis-1,3-Dichloropropene 18.3427 0 <u> 20</u> <u>92</u> <u>70</u> <u>130</u> <u>20</u> <u>85</u> <u>70</u> <u>130</u> trans-1,3-Dichloropropene 16.9026 0 20 98 70 130 Ethyl methacrylate 19.5985 <u>20</u> 1,1,2-Trichloroethane 17.9872 0 90 <u>70</u> <u>130</u> <u>20</u> 0 <u>130</u> 18.0395 <u>90</u> <u>70</u> 1,2-Dibromoethane 20 70 1,3-Dichloropropane 17.92 90 130 4-Methyl-2-Pentanone 17.977 0 <u>20</u> 90 <u>50</u> <u>150</u> <u>17.3114</u> <u>20</u> <u>87</u> 0 <u>50</u> <u>150</u> <u>2-Hexanone</u> 19.6433 0 <u>20</u> <u>98</u> <u>50</u> <u>150</u> **Tetrachloroethene** 0 <u>20</u> 138\* <u>70</u> <u>130</u> **Toluene** 1 27.5575 1,1,1,2-Tetrachloroethane 20 70 18.3563 n 92 130 0 20 126 70 <u>130</u> Chlorobenzene 1 25.1047

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix      | : Methanol    |                                  | Units: mg/h   | (g QC Ty       | pe: MBS        | MBS           |  |
|-----------------------------|-------------|---------------|----------------------------------|---------------|----------------|----------------|---------------|--|
| Analyte:                    | Col         | Spike<br>Conc | Sample<br>Conc                   | Expected Conc | Recovery       | Lower<br>Limit | Uppe<br>Limit |  |
| n-Butyl acrylate            | 1           | 16.0201       | 0                                | 20            | 80             | 70             | 130           |  |
| n-Amyl acetate              | 1           | 16.1255       | 0                                | 20            | 81             | 70             | 130           |  |
| Bromoform                   | <u>1</u>    | 15.7257       | <u>0</u>                         | <u>20</u>     | <u>79</u>      | <u>70</u>      | 130           |  |
| <u>Ethylbenzene</u>         |             | 16.8626       | <u> </u>                         | <u>20</u>     | <u>84</u>      | <u>70</u>      | 130           |  |
| 1,1,2,2-Tetrachloroethane   | 1           | 16.0213       | <u>0</u>                         | 20            | 80             | 70             | 130           |  |
| Styrene                     | 1<br>1<br>1 | 18.1009       | õ                                | 20            | 91             | 70             | 130           |  |
| m&p-Xylenes                 | <u>1</u>    | 38.2612       | <u>0</u><br><u>0</u>             | 40            | <u>96</u>      | 70             | 130           |  |
| o-Xylene                    | <u>1</u>    | 18.2803       | <u> </u>                         | 20            | <u>91</u>      | <del>70</del>  | 130           |  |
| trans-1,4-Dichloro-2-butene | <u>1</u>    | 15.1538       | ō                                | 20            | <del>76</del>  | <del>50</del>  | 150           |  |
| 1,3-Dichlorobenzene         | 1           | 17.4642       | <u>0</u>                         | 20            | <u>87</u>      | <u>70</u>      | 130           |  |
| 1,4-Dichlorobenzene         | <u>1</u>    | 17.3872       | Ō                                | <u>20</u>     | <u>87</u>      | <del>70</del>  | 130           |  |
| 1,2-Dichlorobenzene         | 1<br>1<br>1 | 17.3575       | <u>0</u><br><u>0</u><br><u>0</u> | <u>20</u>     | <u>87</u>      | <del>70</del>  | 130           |  |
| Isopropylbenzene            | 1           | 18.7332       | ō                                | 20            | 94             | <del>70</del>  | 130           |  |
| Cyclohexanone               | - ī         | 78.7178       | ō                                | 100           | <del>7</del> 9 | <del>50</del>  | 150           |  |
| Camphene                    | 1           | 17.0166       | 0                                | 20            | 85             | 70             | 130           |  |
| 1,2,3-Trichloropropane      | 1           | 14.5972       | 0                                | 20            | 73             | 70             | 130           |  |
| 2-Chlorotoluene             | 1           | 16.9228       | 0                                | 20            | 85             | 70             | 130           |  |
| p-Ethyltoluene              | 1           | 18.5859       | 0                                | 20            | 93             | 70             | 130           |  |
| 4-Chlorotoluene             | 1           | 17.4444       | Ó                                | 20            | 87             | 70             | 130           |  |
| n-Propylbenzene             | 1           | 17.4119       | 0                                | 20            | 87             | 70             | 130           |  |
| Bromobenzene                | 1           | 14.9998       | Ö                                | 20            | 75             | 70             | 130           |  |
| 1,3,5-Trimethylbenzene      | 1           | 17.4792       | Ö                                | 20            | 87             | 70             | 130           |  |
| Butyl methacrylate          | 1           | 17.2062       | 0                                | 20            | 86             | 70             | 130           |  |
| t-Butylbenzene              | 1           | 18.2251       | Ö                                | 20            | 91             | 70             | 130           |  |
| 1,2,4-Trimethylbenzene      | 1           | 17.8257       | Ö                                | 20            | 89             | 70             | 130           |  |
| sec-Butylbenzene            | 1           | 18.073        | Ö                                | 20            | 90             | 70             | 130           |  |
| 4-Isopropyltoluene          | 1           | 18.6287       | Ö                                | 20            | 93             | 70             | 130           |  |
| n-Butylbenzene              | 1           | 17.5934       | Ō                                | 20            | 88             | 70             | 130           |  |
| p-Diethylbenzene            | 1           | 18.9095       | Ö                                | 20            | 95             | 70             | 130           |  |
| 1,2,4,5-Tetramethylbenzene  | 1           | 14.3674       | Ö                                | 20            | 72             | 70             | 130           |  |
| 1,2-Dibromo-3-Chloropropane | 1           | 15.6931       | Q                                | 20            | <u>78</u>      | <u>50</u>      | 150           |  |
| Camphor                     | 1           | 120.3586      | Ŏ                                | 200           | 60             | 20             | 150           |  |
| Hexachlorobutadiene         | i           | 17.4462       | Ö                                | 20            | 87             | 50             | 150           |  |
| 1,2,4-Trichlorobenzene      | 1           | 17.6923       | Q                                | 20            | 88             | <del>70</del>  | 130           |  |
| 1,2,3-Trichlorobenzene      | <u> </u>    | 16.574        | <u>o</u>                         | <u>20</u>     | <u>83</u>      | <u>70</u>      | 130           |  |
| Naphthalene                 | 1           | 17.2641       | Ŏ                                | 20            | 86             | 50             | 150           |  |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Data File Sample ID:

Spike or Dup: 1M140349.D AD19654-001(MS)

DID: Analysis Date
54-001(MS) 10/9/2020 4:06:00 PM

Non Spike(If applicable): 1M140334.D

AD19654-001 10/9/2020 10:55:00 AM

| Inst Blank(If applicable):                             |               |                           | . • . •                  |                        | · · · · · · · · · · · · · · · · · · · |                     |                   |
|--------------------------------------------------------|---------------|---------------------------|--------------------------|------------------------|---------------------------------------|---------------------|-------------------|
| Method: 8260D                                          | Matri         | x: Methanol               |                          | Units: mg/K            | g QC Ty                               | pe: MS              |                   |
| Analyte:                                               | Col           | Spike<br>Conc             | Sample<br>Conc           | Expected<br>Conc       | Recovery                              | Lower<br>Limit      | Uppe              |
| Chlorodifluoromethane                                  | 1             | 21.1017                   | 0                        | 20                     | 106                                   | 50                  | 150               |
| Dichlorodifluoromethane                                | 1             | Q                         | Q                        | 20                     | <u>0*</u>                             | <u>50</u>           | 150               |
| Chloromethane                                          | 1             | <u>6.5106</u>             | <u>0</u>                 | <del>20</del>          | 33*                                   | 50                  | 150               |
| Bromomethane                                           | 1             | 9.6073                    | Ō                        | <del>20</del>          | 48*                                   | 50                  | 150               |
| Vinyl Chloride                                         | 1             | 11.4355                   | <u>o</u>                 | <u>20</u>              | <u>57</u>                             | <u>50</u>           | 150               |
| Chloroethane                                           | <u>1</u><br>1 | 11.8418                   | <u>0</u>                 | 20                     | <u>59</u>                             | <u>50</u>           | <u>150</u>        |
| Trichlorofluoromethane                                 | 1             | <u>17.9205</u>            | <u>o</u>                 | <u>20</u>              | <u>90</u>                             | <u>50</u>           | <u>150</u>        |
| Ethyl ether                                            | 1             | 20.7551                   | 0                        | 20                     | 104                                   | 50                  | 150               |
| Furan                                                  | 1             | 17.3775                   | 0                        | 20                     | 87                                    | 50                  | 150               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane                  |               | <u>21.981</u>             | <u>0</u>                 | <u>20</u>              | <u>110</u>                            | <u>50</u>           | <u>150</u>        |
| Methylene Chloride                                     | 1             | 21.5482                   | <u>0</u>                 | <u>20</u>              | <u>108</u>                            | <u>70</u>           | <u>130</u>        |
| Acrolein                                               | 1             | 110.7009                  | 0                        | 100                    | 111                                   | 50                  | 150               |
| Acrylonitrile                                          | 1             | 24.9355                   | 0                        | 20                     | 125                                   | 50                  | 150               |
| Iodomethane                                            | 1             | 9.5645                    | 0                        | 20                     | 48*                                   | 50                  | 150               |
| Acetone                                                | 1/4           | 110.5759                  | Q                        | <u>100</u>             | <u>111</u>                            | <u>50</u>           | <u>150</u>        |
| Carbon Disulfide                                       | 1             | 15.9888<br>55.7034        | <u>0</u>                 | <u>20</u>              | <u>80</u>                             | <u>50</u>           | 150               |
| t-Butyl Alcohol                                        | 1             | 55.7934<br>20.937         | 0<br>0                   | 100<br>20              | 56<br>105                             | 50<br>70            | 150<br>130        |
| n-Hexane                                               | 1             | 20.937                    | 0                        | 20                     | 100                                   | 70<br>70            | 130               |
| Di-isopropyl-ether  1,1-Dichloroethene                 | 1             | 18.9949                   | <u>o</u>                 | 20                     | 95                                    | 70<br>70            | 130               |
| Methyl Acetate                                         | 1             | 30.3167                   | <u>v</u>                 | <u>20</u><br>20        | 152*                                  | <del>70</del><br>50 | 150               |
| Methyl-t-butyl ether                                   | 1             | 23.6304                   | 0.958                    | <u>20</u><br>20        | 113                                   | <del>30</del><br>70 | 130               |
| 1,1-Dichloroethane                                     | <u> </u>      | <u>18.9154</u>            | <u>0.330</u><br><u>0</u> | <u>20</u>              | 9 <u>5</u>                            | <u>70</u>           | 130               |
| trans-1,2-Dichloroethene                               | 1             | 21.4017                   | ğ                        | <u>20</u><br>20        | 107                                   | 70                  | 130               |
| Ethyl-t-butyl ether                                    | 1             | 21.0541                   | Ŏ                        | 20                     | 105                                   | <del>70</del>       | 130               |
| cis-1,2-Dichloroethene                                 | 1             | 20.4228                   | Q                        | <u>20</u>              | 102                                   | <u>70</u>           | 130               |
| Bromochloromethane                                     | 1             | 20.1477                   | <u>0</u>                 | 20                     | 101                                   | <del>70</del>       | 130               |
| 2,2-Dichloropropane                                    | Ť             | 18.9813                   | Ŏ                        | 20                     | 95                                    | <del>70</del>       | 130               |
| Ethyl acetate                                          | 1             | 25.9632                   | 0                        | 20                     | 130                                   | 50                  | 150               |
| 1,4-Dioxane                                            | 1             | 474.7633                  | <u>0</u>                 | 1000                   | 47*                                   | 50                  | 150               |
| 1,1-Dichloropropene                                    | 1             | 21.57                     | ō                        | 20                     | 108                                   | 70                  | 130               |
| Chloroform                                             | 1             | 20.3488                   | <u>0</u>                 | <u>20</u>              | <u>102</u>                            | <u>70</u>           | <u>130</u>        |
| Cyclohexane                                            | 1             | <u>21.4426</u>            | <u>o</u>                 | <u>20</u>              | <u>107</u>                            | <u>70</u>           | <u>130</u>        |
| 1,2-Dichloroethane                                     | <u>1</u>      | <u>21.1912</u>            | <u>0</u>                 | <u>20</u>              | <u>106</u>                            | <u>70</u>           | <u>130</u>        |
| 2-Butanone                                             | 1             | <u>34.5088</u>            | <u>0</u>                 | <u>20</u>              | <u> 173 *</u>                         | <u>50</u>           | <u>150</u>        |
| 1,1,1-Trichloroethane                                  | <u>1</u>      | <u>20.9688</u>            | <u>0</u>                 | <u>20</u>              | <u>105</u>                            | <u>70</u>           | <u>130</u>        |
| Carbon Tetrachloride                                   | 1             | <u> 20.8195</u>           | <u>0</u>                 | <u>20</u>              | <u>104</u>                            | <u>50</u>           | <u>150</u>        |
| Vinyl Acetate                                          | 1             | 13.8379                   | 0                        | 20                     | 69                                    | 50                  | 150               |
| <u>Bromodichloromethane</u>                            | <u>1</u>      | <u> 20.3805</u>           | <u>0</u>                 | <u>20</u>              | <u>102</u>                            | <u>70</u>           | <u>130</u>        |
| Methylcyclohexane                                      | 1             | <u>21.8967</u>            | <u>0</u>                 | <u>20</u>              | <u>109</u>                            | <u>70</u>           | <u>130</u>        |
| Dibromomethane                                         | 1             | 22.0516                   | 0                        | 20                     | 110                                   | 70                  | 130               |
| 1,2-Dichloropropane                                    | 1             | <u>19.3817</u>            | <u>0</u>                 | <u>20</u>              | <u>97</u>                             | <u>70</u>           | 130               |
| <u>Trichloroethene</u>                                 | 1             | 21.0735                   | <u>0</u>                 | <u>20</u>              | <u>105</u>                            | <u>70</u>           | 130               |
| Benzene                                                | <u>1</u><br>1 | <u>20.1586</u>            | <u>o</u><br>0            | <u>20</u>              | <u>101</u>                            | <u>70</u>           | 130               |
| tert-Amyl methyl ether                                 | 1             | 21.354                    |                          | 20                     | 107                                   | <b>7</b> 0          | 130               |
| Iso-propylacetate                                      | 1             | 17.5601<br>17.6552        | 0<br>0                   | 20<br>20               | 88<br>88                              | 70<br>70            | 130<br>130        |
| Methyl methacrylate                                    |               |                           |                          |                        |                                       |                     |                   |
| <u>Dibromochloromethane</u><br>2-Chloroethylvinylether | 1<br>1        | <u>17.8925</u><br>47.2867 | <u>o</u><br>0            | <b><u>20</u></b><br>20 | <b>89</b><br>236*                     | <u>70</u><br>70     | <u>130</u><br>130 |
| cis-1,3-Dichloropropene                                | 1             | 47.2007<br><b>17.6534</b> | <u>o</u>                 | 20<br>20               | 88                                    | 70<br><b>70</b>     | 130               |
| trans-1,3-Dichloropropene                              | 1             | 16.1808                   | <u>0</u>                 | <u>20</u><br>20        | <u>99</u><br>81                       | <u>70</u><br>70     | 130               |
| Ethyl methacrylate                                     | 1             | 20.3089                   | Ö                        | <u>20</u><br>20        | 102                                   | 70<br>70            | 130               |
| 1,1,2-Trichloroethane                                  | 1             | 18.5285                   | <u>o</u>                 | <u>20</u>              | 93                                    | <u>70</u>           | 130               |
| 1,2-Dibromoethane                                      | 1             | 18.0075                   | <u>o</u>                 | <u>20</u><br>20        | 90                                    | <del>70</del><br>70 | 130               |
| 1,3-Dichloropropane                                    | †             | 18.3382                   | ŏ                        | <u>20</u><br>20        | 92                                    | <del>70</del>       | 130               |
| 4-Methyl-2-Pentanone                                   | 1             | 19.643                    | <u>o</u>                 | <u>20</u>              | <u>98</u>                             | <u>50</u>           | 150               |
| 2-Hexanone                                             | 1             | <u>19.2144</u>            | Q                        | <u>20</u>              | <u>96</u>                             | <u>50</u>           | 150               |
| Tetrachloroethene                                      | <u>i</u>      | 20.076                    | <u>Q</u>                 | <u>20</u>              | <u>100</u>                            | <u>50</u>           | <u>150</u>        |
| Toluene                                                | <u> </u>      | <u>18.9198</u>            | <u>0</u>                 | <u>20</u>              | <u>95</u>                             | <del>70</del>       | 130               |
| 1,1,1,2-Tetrachloroethane                              | <u>†</u>      | 18.1177                   | Ŏ                        | 20                     | 91                                    | <del>70</del>       | 130               |
| Chlorobenzene                                          | 1             | 19.7747                   | Ō                        | 20                     | 99                                    | 70                  | 130               |
|                                                        |               |                           |                          | nits but within r      |                                       |                     |                   |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits
Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix      | : Methanol    |                      | Units: mg/K      | (g QC Ty      | QC Type: MS    |                |
|-----------------------------|-------------|---------------|----------------------|------------------|---------------|----------------|----------------|
| Analyte:                    | Col         | Spike<br>Conc | Sample<br>Conc       | Expected<br>Conc | Recovery      | Lower<br>Limit | Upper<br>Limit |
| n-Butyl acrylate            | 1           | 15.876        | 0                    | 20               | 79            | 70             | 130            |
| n-Amyl acetate              | 1           | 16.1645       | 0                    | 20               | 81            | 70             | 130            |
| Bromoform                   | 1           | 15.444        | <u>o</u>             | <u>20</u>        | <b>77</b>     | <u>70</u>      | 130            |
| Ethylbenzene                |             | 17.394        | <u> </u>             | <u>20</u>        | <u>87</u>     | <u>70</u>      | 130            |
| 1,1,2,2-Tetrachloroethane   | <u> </u>    | 15.7126       | <u> </u>             | 20               | <del>79</del> | 70             | 130            |
| Styrene                     | 1<br>1<br>1 | 19.1253       | Ō                    | <u>20</u>        | 96            | <u>70</u>      | 130            |
| m&p-Xylenes                 | <u>1</u>    | 38.6043       | <u>0</u><br><u>0</u> | 40               | 97            | 70             | 130            |
| o-Xylene                    | <u>1</u>    | 18.572        | Ō                    | 20               | 93            | <del>70</del>  | <u>130</u>     |
| trans-1,4-Dichloro-2-butene | 1           | 15.0851       | ō                    | 20               | 75            | 50             | 150            |
| 1,3-Dichlorobenzene         | <u>1</u>    | 17.8777       | <u>0</u>             | <u>20</u>        | <u>89</u>     | <u>70</u>      | <u>130</u>     |
| 1,4-Dichlorobenzene         | <u>1</u>    | 17.9564       | Ō                    | <u>20</u>        | <u>90</u>     | <u>70</u>      | 130            |
| 1,2-Dichlorobenzene         | 1           | 17.6245       | ō                    | 20               | 88            | <del>70</del>  | 130            |
| Isopropylbenzene            | 1           | 19.5377       | <u>0</u><br><u>0</u> | <del>20</del>    | 98            | <del>70</del>  | 130            |
| Cyclohexanone               | <u> </u>    | 89.7964       | ō                    | 100              | 90            | <del>50</del>  | 150            |
| Camphene                    | 1           | 17.7531       | 0                    | 20               | 89            | 70             | 130            |
| 1,2,3-Trichloropropane      | 1           | 15.3064       | 0                    | 20               | 77            | 70             | 130            |
| 2-Chlorotoluene             | 1           | 17.9022       | 0                    | 20               | 90            | 70             | 130            |
| p-Ethyltoluene              | 1           | 18.0451       | 0                    | 20               | 90            | 70             | 130            |
| 4-Chlorotoluene             | 1           | 18.0952       | 0                    | 20               | 90            | 70             | 130            |
| n-Propylbenzene             | 1           | 17.95         | Ó                    | 20               | 90            | 70             | 130            |
| Bromobenzene                | 1           | 17.3407       | 0                    | 20               | 87            | 70             | 130            |
| 1,3,5-Trimethylbenzene      | 1           | 18.8558       | Ó                    | 20               | 94            | 70             | 130            |
| Butyl methacrylate          | 1           | 17.1211       | Ö                    | 20               | 86            | 70             | 130            |
| t-Butylbenzene              | 1           | 19.1266       | Ó                    | 20               | 96            | 70             | 130            |
| 1,2,4-Trimethylbenzene      | 1           | 18.046        | Ó                    | 20               | 90            | 70             | 130            |
| sec-Butylbenzene            | 1           | 18.8235       | Ŏ                    | 20               | 94            | 70             | 130            |
| 4-isopropyltoluene          | 1           | 19.3173       | Ö                    | 20               | 97            | 70             | 130            |
| n-Butylbenzene              | 1           | 18.39         | Ö                    | 20               | 92            | 70             | 130            |
| p-Diethylbenzene            | 1           | 19.2631       | Ö                    | 20               | 96            | 70             | 130            |
| 1,2,4,5-Tetramethylbenzene  | 1           | 14.3041       | Ö                    | 20               | 72            | 70             | 130            |
| 1,2-Dibromo-3-Chloropropane | 1           | 15.0525       | <u>0</u>             | 20               | <u>75</u>     | <u>50</u>      | 150            |
| Camphor                     | 1           | 129.371       | Ŏ                    | 200              | 65            | <del>20</del>  | 150            |
| Hexachlorobutadiene         | ì           | 19.9953       | Ŏ                    | 20               | 100           | 50             | 150            |
| 1,2,4-Trichlorobenzene      | 1           | 18.0395       | Q                    | 20               | 90            | <u>70</u>      | 130            |
| 1,2,3-Trichlorobenzene      | 1           | 17.4954       | <u>0</u>             | <u>=0</u><br>20  | 87            | <del>70</del>  | 130            |
| Naphthalene                 | 1           | 17.4715       | 0                    | 20               | <u>87</u>     | 50             | 150            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Data File Spike or Dup: 1M140350.D Sample ID: AD19654-001(MSD)

AD19654-001

Analysis Date 10/9/2020 4:26:00 PM 10/9/2020 10:55:00 AM

Non Spike(If applicable): 1M140334.D Inst Blank(If applicable):

| Method: 8260D                             | Matrix        | c: Methanol               |                | Units: mg/k            | (g QC Typ       | e: MSD           |                   |
|-------------------------------------------|---------------|---------------------------|----------------|------------------------|-----------------|------------------|-------------------|
| Analyte:                                  | Col           | Spike<br>Conc             | Sample<br>Conc | Expected<br>Conc       | Recovery        | Lower<br>Limit   | Upper<br>Limit    |
| Chlorodifluoromethane                     | 1             | 18.8133                   | 0              | 20                     | 94              | 50               | 150               |
| Dichlorodifluoromethane                   | 1             | <u>3.0755</u>             | <u>o</u>       | <u>20</u>              | <u>15*</u>      | <u>50</u>        | <u>150</u>        |
| Chloromethane                             | 1             | <u>5.9199</u>             | <u>0</u>       | <u>20</u>              | <u>30 *</u>     | <u>50</u>        | <u>150</u>        |
| Bromomethane                              | 1             | <u>8.1158</u>             | <u>0</u>       | <u>20</u>              | 41*             | <u>50</u>        | <u>150</u>        |
| Vinyl Chloride                            | <u>1</u><br>1 | 5.6087                    | <u>0</u>       | <u>20</u>              | <u>28*</u>      | <u>50</u>        | <u>150</u>        |
| Chloroethane                              |               | 9.9808                    | 0              | <u>20</u>              | <u>50</u>       | <u>50</u>        | <u>150</u><br>150 |
| Trichlorofluoromethane Ethyl ether        | 1             | <u>0</u><br>17.6997       | <u>0</u><br>0  | <u><b>20</b></u><br>20 | <u>0*</u><br>88 | <u>50</u><br>50  | 150<br>150        |
| Furan                                     | 1             | 15.6497                   | 0              | 20                     | 78              | 50               | 150               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane     | •             | 20.0104                   | <u>o</u>       | 20                     | 100             | <u>50</u>        | 150<br>150        |
| Methylene Chloride                        | <u> </u>      | 19.4049                   | <u>ŏ</u>       | <u>20</u>              | <u>97</u>       | <u>70</u>        | 130               |
| Acrolein                                  | 1             | 97.2982                   | Ö              | 100                    | 97              | 50               | 150               |
| Acrylonitrile                             | 1             | 22.5835                   | 0              | 20                     | 113             | 50               | 150               |
| Iodomethane                               | 1             | 10.4425                   | 0              | 20                     | 52              | 50               | 150               |
| Acetone                                   | 1             | 96.1393                   | Q              | 100                    | <u>96</u>       | <u>50</u>        | <u>150</u>        |
| Carbon Disulfide                          | 1             | 13.4225                   | Ō              | <u>20</u>              | <u>67</u>       | <u>50</u>        | 150               |
| t-Butyl Alcohol                           | 1             | 55.9815                   | 0              | 100                    | 56              | 50               | 150               |
| n-Hexane                                  | 1             | 20.1434                   | 0              | 20                     | 101             | 70               | 130               |
| Di-isopropyl-ether                        | 1             | 18.3917                   | 0              | 20                     | 92              | 70               | 130               |
| 1,1-Dichloroethene                        | 1             | <u>17.1609</u>            | <u>0</u>       | <u>20</u>              | <u>86</u>       | <u>70</u>        | <u>130</u>        |
| Methyl Acetate                            | <u>1</u><br>1 | <u>27.3412</u>            | Q              | <u>20</u>              | <u>137</u>      | <u>50</u>        | <u>150</u>        |
| Methyl-t-butyl ether                      | 1             | <u>21.4991</u>            | <u>0.958</u>   | <u>20</u>              | <u>103</u>      | <u>70</u>        | <u>130</u>        |
| 1,1-Dichloroethane                        | 1             | <u>16.9959</u>            | Q              | <u>20</u>              | <u>85</u>       | <u>70</u>        | <u>130</u>        |
| trans-1,2-Dichloroethene                  | 1             | <u>19.5351</u>            | <u>0</u>       | <u>20</u>              | <u>98</u>       | <u>70</u>        | <u>130</u>        |
| Ethyl-t-butyl ether                       | 1             | 19.3418                   | 0              | 20                     | 97              | 70               | 130               |
| cis-1,2-Dichloroethene                    | 1             | <u>18.3196</u>            | <u>0</u>       | <u>20</u>              | <u>92</u>       | <u>70</u>        | <u>130</u>        |
| Bromochloromethane                        | 1             | 18.5446                   | <u>0</u>       | <u>20</u>              | <u>93</u>       | <u>70</u>        | <u>130</u>        |
| 2,2-Dichloropropane<br>Ethyl acetate      | 1<br>1        | 16.756<br>22.8855         | 0<br>0         | 20<br>20               | 84<br>114       | 70<br>50         | 130<br>150        |
| 1,4-Dioxane                               | 1             | 395.5967                  | <u>0</u>       | 1000                   | 40*             | <b>50</b>        | 150<br>150        |
| 1,1-Dichloropropene                       | 1             | 18.7824                   | 0              | 20                     | 94              | <u>90</u><br>70  | 130               |
| Chloroform                                | 1             | 18.4747                   | <u>0</u>       | <u>20</u>              | 92              | <u>70</u>        | 130               |
| Cyclohexane                               | 1             | 19.4517                   | <u>o</u>       | <u>20</u>              | <u>97</u>       | <u>70</u>        | 130               |
| 1,2-Dichloroethane                        | <u>1</u>      | 19.6661                   | Q              | 20                     | 98              | <del>70</del>    | <u>130</u>        |
| 2-Butanone                                | <u>1</u>      | 30.4181                   | <u>0</u>       | 20                     | 152°            | 50               | 150               |
| 1,1,1-Trichloroethane                     | 1             | 18.7995                   | Q              | 20                     | 94              | 70               | 130               |
| Carbon Tetrachloride                      | 1             | 18.6879                   | Ō              | 20                     | 93              | <u>50</u>        | 150               |
| Vinyl Acetate                             | 1             | 12.5666                   | ō              | <del>20</del>          | <del>63</del>   | 50               | 150               |
| Bromodichloromethane                      | <u>1</u>      | <u>17.9689</u>            | <u>0</u>       | <u>20</u>              | <u>90</u>       | <u>70</u>        | <u>130</u>        |
| Methylcyclohexane                         | 1             | <u> 20.6754</u>           | <u>o</u>       | <u>20</u>              | <u>103</u>      | <u>70</u>        | <u>130</u>        |
| Dibromomethane                            | 1             | 19.8323                   | 0              | 20                     | 99              | 70               | 130               |
| 1,2-Dichloropropane                       | 1             | <u>17.5897</u>            | <u>0</u>       | <u>20</u>              | <u>88</u>       | <u>70</u>        | <u>130</u>        |
| <u>Trichloroethene</u>                    | 1             | <u> 19.2606</u>           | <u>0</u>       | <u>20</u>              | <u>96</u>       | <u>70</u>        | <u>130</u>        |
| <u>Benzene</u>                            | 1             | <u>18.229</u>             | Ō              | <u>20</u>              | <u>91</u>       | <u>70</u>        | <u>130</u>        |
| tert-Amyl methyl ether                    | 1             | 19.6078                   | 0              | 20                     | 98              | 70               | 130               |
| Iso-propylacetate                         | 1             | 15.9341                   | 0              | 20                     | 80              | 70               | 130               |
| Methyl methacrylate                       | 1             | 16.2681                   | 0              | 20                     | 81              | 70               | 130               |
| <u>Dibromochloromethane</u>               | 1             | <u>16.0405</u>            | <u>0</u>       | <u>20</u>              | <u>80</u>       | <u>70</u>        | <u>130</u>        |
| 2-Chloroethylvinylether                   | 1             | 45.5427<br>45.7004        | 0              | 20                     | 228*            | 70<br><b>7</b> 0 | 130               |
| cis-1,3-Dichloropropene                   | 1             | 15.7891                   | <u>0</u>       | <u>20</u>              | <u>79</u><br>74 | <u>70</u>        | 130<br>130        |
| trans-1,3-Dichloropropene                 | <u>1</u><br>1 | <u>14.8531</u><br>17.2436 | <u>0</u><br>0  | <b>20</b><br>20        | <u>74</u><br>86 | <u>70</u><br>70  | <u>130</u><br>130 |
| Ethyl methacrylate  1,1,2-Trichloroethane | 1             | 17.2436<br>16.2753        | <u>0</u>       | 20<br>20               | 81              | 70<br>70         | 130<br>130        |
| 1,2-Dibromoethane                         | 1 1           | 16.3442                   | <u>o</u>       | <u>20</u><br>20        | 81<br>82        | <u>70</u><br>70  | 130<br>130        |
| 1,3-Dichloropropane                       | 1             | 16.7281                   | 0              | <u>20</u><br>20        | <u>02</u><br>84 | 70<br>70         | 130<br>130        |
| 4-Methyl-2-Pentanone                      | 1             | 17.1771                   | <u>0</u>       | <u>20</u>              | <u>86</u>       | <u>50</u>        | 150<br>150        |
| 2-Hexanone                                | 1             | 17.0154                   | <u>o</u>       | <u>20</u>              | 85              | <u>50</u>        | 150<br>150        |
| Tetrachloroethene                         | 1             | 17.4875                   | <u>0</u>       | <u>20</u>              | <u>87</u>       | <u>50</u>        | 150<br>150        |
| Toluene                                   | 1             | 16.9129                   | <u>o</u>       | <u>20</u>              | <u>85</u>       | <del>70</del>    | 130<br>130        |
| 1,1,1,2-Tetrachloroethane                 | 1             | 16.5834                   | Ö              | 20                     | 83              | <del>70</del>    | 130               |
| Chlorobenzene                             | 1             | 18.1011                   | <u>o</u>       | 20                     | <u>91</u>       | 70               | 130               |
|                                           |               |                           |                |                        | method exceed   |                  |                   |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix      | Matrix: Methanol |                | Units: mg/K      | g QC Ty <sub>l</sub> | e: MSD     |                |
|-----------------------------|-------------|------------------|----------------|------------------|----------------------|------------|----------------|
| Applyto:                    | Col         | Spike<br>Conc    | Sample<br>Conc | Expected<br>Conc | Recovery             | Lower      | Upper<br>Limit |
| Analyte:                    |             |                  |                |                  | <del></del>          |            |                |
| n-Butyl acrylate            | 1           | 14.6922          | 0              | 20               | 73<br>               | 70         | 130            |
| n-Amyl acetate              | 1           | 14.4364          | 0              | 20               | 72                   | 70         | 130            |
| Bromoform                   | 1           | 13.5391          | <u>Q</u>       | <u>20</u>        | <u>68 *</u>          | <u>70</u>  | <u>130</u>     |
| Ethylbenzene                | 1           | <u>15.4948</u>   | 0              | <u>20</u>        | <u>77</u>            | <u>70</u>  | <u>130</u>     |
| 1,1,2,2-Tetrachloroethane   | 1           | <u>14.0187</u>   | 0              | <u>20</u>        | <u>70</u>            | <u>70</u>  | <u>130</u>     |
| Styrene                     | 1           | <u>17.1792</u>   | <u>0</u>       | <u>20</u>        | <u>86</u>            | <u>70</u>  | <u>130</u>     |
| m&p-Xylenes                 | 1           | <u>35.155</u>    | <u>0</u>       | <u>40</u>        | <u>88</u>            | <u>70</u>  | <u>130</u>     |
| o-Xylene                    | 1           | <u>17.063</u>    | <u>0</u>       | <u>20</u>        | <u>85</u>            | <u>70</u>  | <u>130</u>     |
| trans-1,4-Dichloro-2-butene | 1           | 13.4328          | 0              | 20               | 67                   | 50         | 150            |
| 1,3-Dichlorobenzene         | 1<br>1<br>1 | <u>16.441</u>    | <u>0</u>       | <u>20</u>        | <u>82</u>            | <u>70</u>  | <u>130</u>     |
| 1,4-Dichlorobenzene         | 1           | <u>16.4946</u>   | Ō              | <u>20</u>        | <u>82</u>            | <u>70</u>  | <u>130</u>     |
| 1,2-Dichlorobenzene         | 1           | <u> 16.1699</u>  | Q              | <u>20</u>        | <u>81</u>            | <u>70</u>  | <u>130</u>     |
| Isopropylbenzene            | 1           | <u> 17.8376</u>  | <u>0</u>       | <u>20</u>        | <u>89</u>            | <u>70</u>  | <u>130</u>     |
| Cyclohexanone               | 1           | 82.9164          | 0              | 100              | 83                   | 50         | 150            |
| Camphene                    | 1           | 17.0285          | 0              | 20               | 85                   | <b>7</b> 0 | 130            |
| 1,2,3-Trichloropropane      | 1           | 13.6922          | 0              | 20               | 68*                  | 70         | 130            |
| 2-Chlorotoluene             | 1           | 16.1085          | 0              | 20               | 81                   | 70         | 130            |
| p-Ethyltoluene              | 1           | 16.8207          | 0              | 20               | 84                   | 70         | 130            |
| 4-Chlorotoluene             | 1           | 16.1632          | 0              | 20               | 81                   | 70         | 130            |
| n-Propylbenzene             | 1           | 16.4798          | 0              | 20               | 82                   | 70         | 130            |
| Bromobenzene                | 1           | 15.8868          | 0              | 20               | 79                   | 70         | 130            |
| 1,3,5-Trimethylbenzene      | 1           | 17.4244          | 0              | 20               | 87                   | 70         | 130            |
| Butyl methacrylate          | 1           | 15.2468          | 0              | 20               | 76                   | 70         | 130            |
| t-Butylbenzene              | 1           | 17.8232          | 0              | 20               | 89                   | 70         | 130            |
| 1,2,4-Trimethylbenzene      | 1           | 16.6933          | 0              | 20               | 83                   | 70         | 130            |
| sec-Butylbenzene            | 1           | 17.5415          | 0              | 20               | 88                   | 70         | 130            |
| 4-Isopropyltoluene          | 1           | 17.7047          | 0              | 20               | 89                   | 70         | 130            |
| n-Butylbenzene              | 1           | 17.1214          | 0              | 20               | 86                   | 70         | 130            |
| p-Diethylbenzene            | 1           | 17.9225          | 0              | 20               | 90                   | 70         | 130            |
| 1,2,4,5-Tetramethylbenzene  | 1           | 13.2982          | 0              | 20               | 66*                  | 70         | 130            |
| 1,2-Dibromo-3-Chloropropane | 1           | 13.2101          | <u>o</u>       | 20               | 66                   | <u>50</u>  | <u>150</u>     |
| Camphor                     | 1           | 110.1634         | ō              | 200              | 55                   | 20         | 150            |
| Hexachlorobutadiene         | 1           | 17.1469          | Ö              | 20               | 86                   | 50         | 150            |
| 1,2,4-Trichlorobenzene      | 1           | 16.6717          | <u>o</u>       | 20               | <u>83</u>            | 70         | 130            |
| 1,2,3-Trichlorobenzene      | 1           | 15.951           | <u>o</u>       | 20               | 80                   | 70         | 130            |
| Naphthalene                 | Ť           | 15.5997          | Ŏ              | 20               | 78                   | 50         | 150            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

## Form3 RPD Data Laboratory Limits

QC Batch: MBS89475

Data File

Spike or Dup: 1M140350.D

Sample ID:

AD19654-001(MSD)

Analysis Date

Duplicate(If applicable): 1M140349.D

AD19654-001(MS)

10/9/2020 4:26:00 PM 10/9/2020 4:06:00 PM

Inst Blank(If applicable):

Method: 8260D

Matrix: Methanol

Units: mg/Kg

QC Type: MSD

| Analyte:                                           | Column        | Dup/MSD/MBSD<br>Conc        | Sample/MS/MBS<br>Conc      | RPD                     | Limit           |
|----------------------------------------------------|---------------|-----------------------------|----------------------------|-------------------------|-----------------|
| Chlorodifluoromethane                              | 1             | 18.8133                     | 21.1017                    | 11                      | 30              |
| Dichlorodifluoromethane                            | 1             | 3.0755                      | Q                          | 200 *                   | <u>30</u>       |
| <u>Chloromethane</u>                               | <u>1</u>      | 5.9199                      | 6.5106                     | 9.5                     | 30              |
| romomethane                                        | 1             | <u>8.1158</u>               | 9.6073                     | <u>17</u>               | <u>30</u>       |
| <u>'inyl Chloride</u>                              | 1             | <u>5.6087</u>               | <u>11.4355</u>             | <u>68 *</u>             | <u>40</u>       |
| hloroethane                                        | 1             | <u>9.9808</u>               | <u>11.8418</u>             | <u>17</u>               | 30              |
| <u>richlorofluoromethane</u>                       | 1             | 0                           | <u>17.9205</u>             | <u>200 *</u>            | <u>30</u>       |
| thyl ether                                         | 1             | 17.6997                     | 20.7551                    | 16                      | 30              |
| uran                                               | 1             | 15.6497                     | 1 <b>7</b> .3775           | 10                      | 30              |
| .1,2-Trichloro-1,2,2-trifluoroethane               | 1             | <u>20.0104</u><br>19.4049   | <u>21.981</u>              | <u>9.4</u><br>10        | <u>30</u><br>30 |
| <u>lethylene Chloride</u><br>crolein               | <u>1</u>      | 97.2982                     | <u>21.5482</u><br>110.7009 | 10<br>13                | <u>30</u><br>30 |
| crylonitrile                                       | 1             | 22.5835                     | 24.9355                    | 9.9                     | 30              |
| odomethane                                         | i             | 10.4425                     | 9.5645                     | 8.8                     | 30              |
| cetone                                             | <u>i</u>      | 96.1393                     | 110.5759                   | 14                      | <u>30</u>       |
| arbon Disulfide                                    | <u> 1</u>     | 13.4225                     | 15.9888                    | <del>17</del>           | <u>30</u>       |
| Butyl Alcohol                                      | 1             | 55.9815                     | 55.7934                    | 0.34                    | 30              |
| -Hexane                                            | 1             | 20.1434                     | 20.937                     | 3.9                     | 30              |
| i-isopropyl-ether                                  | 1             | 18.3917                     | 20.0127                    | 8.4                     | 30              |
| 1-Dichloroethene                                   | 1             | <u>17.1609</u>              | <u> 18.9949</u>            | <u>10</u>               | <u>40</u>       |
| lethyl Acetate                                     | 1             | <u>27.3412</u>              | <u>30.3167</u>             | <u>10</u>               | <u>30</u>       |
| ethyl-t-butyl ether                                | 1             | <u>21.4991</u>              | <u>23.6304</u>             | <u>9.4</u>              | <u>30</u>       |
| <u> 1-Dichloroethane</u>                           | 1             | <u>16.9959</u>              | <u>18.9154</u>             | <u>11</u>               | <u>40</u>       |
| ans-1,2-Dichloroethene                             | 1             | <u>19.5351</u>              | <u>21.4017</u>             | <u>9.1</u>              | <u>30</u>       |
| thyl-t-butyl ether                                 | 1             | 19.3418                     | 21.0541                    | 8.5                     | 30              |
| is-1,2-Dichloroethene                              | 1             | <u>18.3196</u>              | 20.4228                    | <u>11</u>               | <u>30</u>       |
| romochloromethane                                  | <u>1</u><br>1 | 18.5446                     | <u>20.1477</u><br>18.9813  | <u><b>8.3</b></u><br>12 | <u>30</u><br>30 |
| 2-Dichloropropane thyl acetate                     | 1             | 16. <b>7</b> 56<br>22.8855  | 25.9632                    | 13                      | 20              |
| ,4-Dioxane                                         | 1             | 395.5967                    | 474.7633                   | 18                      | <u>30</u>       |
| 1-Dichloropropene                                  | 1             | 18.7824                     | 21.57                      | 14                      | <u>30</u><br>30 |
| hloroform                                          | i             | 18.4747                     | 20.3488                    | 9.7                     | <u>40</u>       |
| yclohexane                                         | 1             | 19.4517                     | 21.4426                    | <u>9.7</u>              | <u>30</u>       |
| .2-Dichloroethane                                  | 1             | 19.6661                     | 21.1912                    | <u>7.5</u>              | 40              |
| -Butanone                                          | 1             | 30.4181                     | 34.5088                    | 13                      | 40              |
| .1,1-Trichloroethane                               | 1             | 18.7995                     | 20.9688                    | <u>11</u>               | 30              |
| arbon Tetrachloride                                | 1             | 18.6879                     | 20.8195                    | <u>11</u>               | 40              |
| inyl Acetate                                       | 1             | 12.5666                     | 13.8379                    | 9.6                     | 30              |
| romodichloromethane                                | 1             | <u>17.9689</u>              | <u>20.3805</u>             | <u>13</u>               | <u>30</u>       |
| <u>lethylcyclohexane</u>                           | 1             | <u>20.6754</u>              | <u>21.8967</u>             | <u>5.7</u>              | <u>30</u>       |
| ibromomethane                                      | 1             | 19.8323                     | 22.0516                    | 11                      | 30              |
| 2-Dichloropropane                                  | 1             | <u>17.5897</u>              | <u>19.3817</u>             | <u>9.7</u>              | <u>30</u>       |
| <u>richloroethene</u>                              | 1             | <u>19.2606</u>              | <u>21.0735</u>             | 9                       | <u>40</u>       |
| enzene                                             | <u>1</u><br>1 | 18.229                      | <u>20.1586</u>             | <u>10</u>               | <u>40</u>       |
| ert-Amyl methyl ether                              | 1             | 19.6078                     | 21.354                     | 8.5<br>9.7              | 30<br>30        |
| o-propylacetate<br>lethyl methacrylat <del>e</del> | 1             | 15.93 <b>4</b> 1<br>16.2681 | 17.5601<br>17.6552         | 9.7<br>8.2              | 30<br>30        |
| ibromochloromethane                                | 1             | 16.0405                     | 17.8925                    | 6.2<br><u>11</u>        | 30<br><u>30</u> |
| -Chloroethylvinylether                             | 1             | 45.5427                     | 47.286 <b>7</b>            | 3.8                     | <u>30</u><br>30 |
| is-1,3-Dichloropropene                             | <u>i</u>      | 15.7891                     | 17.6534                    | 11                      | <u>30</u>       |
| ans-1,3-Dichloropropene                            | <u> </u>      | 14.8531                     | <u>16.1808</u>             | <u>8.6</u>              | <u>30</u>       |
| thyl methacrylate                                  | <u>†</u>      | 17.2436                     | 20.3089                    | 16                      | 30              |
| 1,2-Trichloroethane                                | 1             | 16.2753                     | 18.5285                    | <u>13</u>               | <u>30</u>       |
| 2-Dibromoethane                                    | 1             | 16.3442                     | 18.0075                    | 9.7                     | <u>30</u>       |
| 3-Dichloropropane                                  | 1             | 16.7281                     | 18.3382                    | 9.2                     | 30              |
| -Methyl-2-Pentanone                                | 1             | <u>17.1771</u>              | 19.643                     | <u>13</u>               | <u>30</u>       |
| -Hexanone                                          | 1             | <u>17.0154</u>              | <u>19.2144</u>             | <u>12</u>               | <u>30</u>       |
| <u>etrachloroethene</u>                            | <u>1</u>      | <u>17.4875</u>              | <u>20.076</u>              | <u>14</u>               | <u>40</u>       |
| oluene                                             | 1             | <u>16.9129</u>              | <u>18.9198</u>             | <u>11</u>               | <u>40</u>       |
| ,1,1,2-Tetrachloroethane                           | 1             | 16.5834                     | 18.11 <b>7</b> 7           | 8.8                     | 30              |
| <u>hlorobenzene</u>                                | 1             | <u> 18.1011</u>             | <u> 19.7747</u>            | <u>8.8</u>              | <u>40</u>       |

<sup>\* -</sup> Indicates outside of limits

| Method: 8260D                | Matrix: Meth     | ianol Un        | its: mg/Kg      | QC Type: MSI  | )         |
|------------------------------|------------------|-----------------|-----------------|---------------|-----------|
|                              |                  | Dup/MSD/MBSI    | D Sample/MS/N   |               |           |
| Analyte:                     | Column           | Conc            | Conc            | RPD           | Limit     |
| n-Butyl acrylate             | 1                | 14.6922         | 15.876          | 7.7           | 30        |
| n-Amyl acetate               | 1                | 14.4364         | 16.1645         | 11            | 30        |
| Bromoform Promotor Bromoform | <u>1</u>         | <u>13.5391</u>  | <u>15.444</u>   | <u>13</u>     | <u>30</u> |
| <u>Ethylbenzene</u>          | <u>1</u>         | <u> 15.4948</u> | <u>17.394</u>   | <u>12</u>     | <u>30</u> |
| 1,1,2,2-Tetrachloroethane    | 1<br>1<br>1<br>1 | 14.0187         | <u>15.7126</u>  | <u>11</u>     | 30        |
| Styrene                      | 1                | 17.1792         | <u> 19.1253</u> | <u>11</u>     | <u>30</u> |
| n&p-Xylenes                  | <u>1</u>         | <u>35.155</u>   | 38.6043         | 9.4           | <u>30</u> |
| o-Xylene                     | 1                | 17.063          | 18.572          | 8.5           | <u>30</u> |
| rans-1,4-Dichloro-2-butene   | Ī                | 13.4328         | 15.0851         | 12            | 30        |
| 1,3-Dichlorobenzene          | <u>1</u>         | <u>16.441</u>   | <u> 17.8777</u> | <u>8.4</u>    | <u>30</u> |
| 1,4-Dichlorobenzene          | 1                | 16.4946         | <u>17.9564</u>  | <u>8.5</u>    | 40        |
| 1,2-Dichlorobenzene          | 1                | 16.1699         | 17.6245         | <u>8.6</u>    | <u>40</u> |
| sopropylbenzene              | 1<br>1<br>1<br>1 | 17.8376         | <u>19.5377</u>  | <u>9.1</u>    | <u>30</u> |
| Cyclohexanone                | 1                | 82.9164         | 89.7964         | 8             | 30        |
| Camphene                     | 1                | 17.0285         | 17.7531         | 4.2           | 30        |
| ,2,3-Trichloropropane        | 1                | 13.6922         | 15.3064         | 11            | 30        |
| 2-Chlorotoluene              | 1                | 16.1085         | 17.9022         | 11            | 30        |
| -Ethyltoluene                | 1                | 16.8207         | 18.0451         | 7             | 30        |
| l-Chlorotoluene              | 1                | 16.1632         | 18.0952         | 11            | 30        |
| n-Propylbenzene              | 1                | 16.4798         | 17.95           | 8.5           | 40        |
| Bromobenzene                 | 1                | 15.8868         | 17.3407         | 8.8           | 30        |
| 1,3,5-Trimethylbenzene       | 1                | 17.4244         | 18.8558         | 7.9           | 30        |
| Butyl methacrylate           | 1                | 15.2468         | 17.1211         | 12            | 30        |
| -Butylbenzene                | 1                | 17.8232         | 19.1266         | 7.1           | 30        |
| ,2,4-Trimethylbenzene        | 1                | 16.6933         | 18.046          | 7.8           | 30        |
| sec-Butylbenzene             | 1                | 17.5415         | 18.8235         | 7.1           | 40        |
| l-Isopropyltoluene           | 1                | 17.7047         | 19.3173         | 8.7           | 30        |
| i-Butylbenzene               | 1                | 17.1214         | 18.39           | 7.1           | 30        |
| p-Diethylbenzene             | 1                | 17.9225         | 19.2631         | 7.2           | 30        |
| ,2,4,5-Tetramethylbenzene    | 1                | 13.2982         | 14.3041         | 7.3           | 30        |
| ,2-Dibromo-3-Chloropropane   | 1                | <u>13.2101</u>  | <u>15.0525</u>  | <u>13</u>     | <u>30</u> |
| Camphor                      | 1                | 110.1634        | 129.371         | <del>16</del> | 30        |
| lexachlorobutadiene          | 1                | 17.1469         | 19.9953         | 15            | 30        |
| ,2,4-Trichlorobenzene        | 1                | 16.6717         | <u> 18.0395</u> | <u>7.9</u>    | <u>30</u> |
| ,2,3-Trichlorobenzene        | <u>1</u><br>1    | 15.951          | 17.4954         | 9.2           | <u>30</u> |
| Naphthalene                  | <u>1</u>         | 15.5997         | 17.4715         | 11            | 30        |

#### FORM 4 Blank Summary

Blank Number: DAILY BLANK Blank Data File: 6M133214.D

Matrix: Soil

Blank Analysis Date: 10/07/20 14:06

Blank Extraction Date: NA (If Applicable)

Method: EPA 8260D

| Data File  | Analysis Date                                                                    |                                                                                                                                                                            |
|------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6M133228.D | 10/07/20 19:12                                                                   |                                                                                                                                                                            |
| 6M133229.D | 10/07/20 19:33                                                                   |                                                                                                                                                                            |
| 6M133230.D | 10/07/20 19:54                                                                   |                                                                                                                                                                            |
| 6M133218.D | 10/07/20 15:45                                                                   |                                                                                                                                                                            |
| 6M133219.D | 10/07/20 16:06                                                                   |                                                                                                                                                                            |
| 6M133217.D | 10/07/20 15:25                                                                   |                                                                                                                                                                            |
| 6M133220.D | 10/07/20 16:27                                                                   |                                                                                                                                                                            |
|            | 6M133228.D<br>6M133229.D<br>6M133230.D<br>6M133218.D<br>6M133219.D<br>6M133217.D | 6M133228.D 10/07/20 19:12<br>6M133229.D 10/07/20 19:33<br>6M133230.D 10/07/20 19:54<br>6M133218.D 10/07/20 15:45<br>6M133219.D 10/07/20 16:06<br>6M133217.D 10/07/20 15:25 |

#### FORM 4 Blank Summary

Blank Number: DAILY BLANK Blank Data File: 1M140250.D

Matrix: Methanol

Blank Analysis Date: 10/08/20 04:06

Blank Extraction Date: NA (If Applicable)

Method: EPA 8260D

| Sample Number   | Data File  | Analysis Date  |  |
|-----------------|------------|----------------|--|
| AD19595-001     | 1M140274.D | 10/08/20 12:23 |  |
| AD19595-003     | 1M140272.D | 10/08/20 11:42 |  |
| AD19595-005     | 1M140275.D | 10/08/20 12:44 |  |
| AD19595-009     | 1M140271.D | 10/08/20 11:21 |  |
| AD19595-010     | 1M140273.D | 10/08/20 12:02 |  |
| AD19619-001(MS) | 1M140259.D | 10/08/20 07:12 |  |
| AD19619-001     | 1M140265.D | 10/08/20 09:16 |  |
| MBS89464        | 1M140262.D | 10/08/20 08:14 |  |
| AD19619-001(MSD | 1M140260.D | 10/08/20 07:33 |  |

#### FORM 4 Blank Summary

Blank Number: DAILY BLANK Blank Data File: 1M140333.D

Matrix: Methanol

Blank Analysis Date: 10/09/20 10:26

Blank Extraction Date: NA (If Applicable)

Method: EPA 8260D

| Sample Number   | Data File  | Analysis Date  |  |
|-----------------|------------|----------------|--|
| AD19595-002     | 1M140342.D | 10/09/20 13:41 |  |
| AD19595-004     | 1M140343.D | 10/09/20 14:01 |  |
| AD19595-006     | 1M140345.D | 10/09/20 14:43 |  |
| AD19595-012     | 1M140346.D | 10/09/20 15:03 |  |
| AD19654-001     | 1M140334.D | 10/09/20 10:55 |  |
| AD19654-001(MSD | 1M140350.D | 10/09/20 16:26 |  |
| AD19654-001(MS) | 1M140349.D | 10/09/20 16:06 |  |
| MB\$89475       | 1M140338.D | 10/09/20 12:18 |  |

## Form 5

Tune Name: BFB TUNE **Data File:** 1M139257.D Instrument: GCMS I Analysis Date: 09/09/20 18:32
Method: EPA 8260D
Tune Scan/Time Range: Average of 7.599 to 7.635 min

| Tgt  | Rel  | Lo H | Lo Hi Lim |       | Raw   | Pass/ |
|------|------|------|-----------|-------|-------|-------|
| Mass | Mass | Lim  |           | Abund | Abund | Fail  |
| 50   | 95   | 15   | 40        | 15.4  | 2307  | PASS  |
| 75   | 95   | 30   | 60        | 49.5  | 7412  | PASS  |
| 95   | 95   | 100  | 100       | 100.0 | 14974 | PASS  |
| 96   | 95   | 5    | 9         | 6.9   | 1036  | PASS  |
| 173  | 174  | 0.00 | 2         | 1.3   | 171   | PASS  |
| 174  | 95   | 50   | 100       | 90.9  | 13612 | PASS  |
| 175  | 174  | 5    | 9         | 7.3   | 996   | PASS  |
| 176  | 174  | 95   | 101       | 97.3  | 13246 | PASS  |
| 177  | 176  | 5    | 9         | 7.0   | 928   | PASS  |

| Data File           | Sample Number | Analysis Date: |
|---------------------|---------------|----------------|
| 1M139258.D          | BLK           | 09/09/20 18:46 |
| 1M139260.D          | CAL @ 0.5 PPB | 09/09/20 19:28 |
| 1M139261.D          | CAL @ 1 PPB   | 09/09/20 19:48 |
| 1M139262.D          | CAL @ 5 PPB   | 09/09/20 20:09 |
| 1M139263.D          | CAL @ 10 PPB  | 09/09/20 20:30 |
| 1M139264.D          | CAL @ 20 PPB  | 09/09/20 20:51 |
| 1M139266.D          | CAL @ 50 PPB  | 09/09/20 21:33 |
| 1 <b>M</b> 139268.D | CAL @ 500 PPB | 09/09/20 22:14 |
| 1M139271.D          | CAL @ 250 PPB | 09/09/20 23:16 |
| 1M139272.D          | BLK           | 09/09/20 23:37 |
| 1M139274.D          | CAL @ 100 PPB | 09/10/20 00:19 |
| 1M139275.D          | BLK           | 09/10/20 00:40 |
| 1M139279.D          | ICV           | 09/10/20 02:02 |

Data Path : G:\GcMsData\2020\GCMS\_1\Data\09-09-20\

Data File: 1M139257.D

Acq On : 09 Sep 2020 18:32

Operator : WP

Sample : BFB TUNE Misc : A,5ML

ALS Vial : 4 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GcMsData\2020\GCMS\_1\MethodQt\1M\_A0710.M

Title : @GCMS\_1,ug,624,8260

Last Update : Fri Jul 10 13:55:20 2020



Spectrum Information: Average of 7.599 to 7.635 min.

|   | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result  <br>Pass/Fail |
|---|----------------|-----------------|-----------------|-----------------|--------------|------------|-----------------------|
| Ī | 50             | 95              | 15              | 40              | 15.4         | 2307       | PASS                  |
| İ | 75             | 95              | 30              | 60              | 49.5         | 7412       | PASS                  |
| ı | 95             | 95              | 100             | 100             | 100.0        | 14974      | PASS                  |
| İ | 96             | 95              | 5               | 9               | 6.9          | 1036       | PASS                  |
| ı | 173            | 174             | 0.00            | 2               | 1.3          | 171        | PASS                  |
| ı | 174            | 95              | 50              | 100             | 90.9         | 13612      | PASS                  |
| ı | 175            | 174             | 5               | 9               | 7.3          | 996        | PASS                  |
| ı | 176            | 174             | 95              | 101             | 97.3         | 13246      | PASS                  |
|   | 177            | 176             | 5               | 9               | 7.0          | 928        | PASS                  |

M

## Form 5

Tune Name: BFB TUNE

**Data File:** 6M133169.D Instrument: GCMS 6 Analysis Date: 10/06/20 09:09 Method: EPA 8260D
Tune Scan/Time Range: Average of 7.385 to 7.397 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/ |
|------|------|------|-------|-------|-------|-------|
| Mass | Mass | Lim  |       | Abund | Abund | Fail  |
| 50   | 95   | 15   | 40    | 15.2  | 5179  | PASS  |
| 75   | 95   | 30   | 60    | 51.5  | 17560 | PASS  |
| 95   | 95   | 100  | 100   | 100.0 | 34118 | PASS  |
| 96   | 95   | 5    | 9     | 7.8   | 2650  | PASS  |
| 173  | 174  | 0.00 | 2     | 1.7   | 499   | PASS  |
| 174  | 95   | 50   | 100   | 85.9  | 29312 | PASS  |
| 175  | 174  | 5    | 9     | 8.9   | 2614  | PASS  |
| 176  | 174  | 95   | 101   | 98.2  | 28777 | PASS  |
| 177  | 176  | 5    | 9     | 6.4   | 1839  | PASS  |

| Data File  | Sample Number | Analysis Date: |
|------------|---------------|----------------|
| 6M133170.D | BLK           | 10/06/20 09:24 |
| 6M133171.D | BLK           | 10/06/20 09:45 |
| 6M133172.D | BLK           | 10/06/20 10:05 |
| 6M133173.D | BLK           | 10/06/20 10:26 |
| 6M133174.D | CAL @ 0.5 PPB | 10/06/20 10:47 |
| 6M133175.D | CAL @ 1 PPB   | 10/06/20 11:07 |
| 6M133176.D | CAL @ 2 PPB   | 10/06/20 11:28 |
| 6M133177.D | CAL @ 5 PPB   | 10/06/20 11:49 |
| 6M133178.D | CAL @ 20 PPB  | 10/06/20 12:10 |
| 6M133179.D | CAL @ 50 PPB  | 10/06/20 12:30 |
| 6M133180.D | CAL @ 100 PPB | 10/06/20 12:51 |
| 6M133181.D | BLK           | 10/06/20 13:12 |
| 6M133182.D | BLK           | 10/06/20 13:33 |
| 6M133183.D | 250 PPB       | 10/06/20 13:53 |
| 6M133184.D | BLK           | 10/06/20 14:14 |
| 6M133185.D | BLK           | 10/06/20 14:35 |
| 6M133186.D | 500 PPB       | 10/06/20 14:56 |
| 6M133187.D | BLK           | 10/06/20 15:16 |
| 6M133188.D | BLK           | 10/06/20 15:37 |
| 6M133189.D | BLK           | 10/06/20 15:58 |
| 6M133190.D | 500 PPB       | 10/06/20 16:19 |
| 6M133191.D | BLK           | 10/06/20 16:39 |
| 6M133192.D | BLK           | 10/06/20 17:00 |
| 6M133193.D | BLK           | 10/06/20 17:21 |
| 6M133194.D | CAL @ 250 PPB | 10/06/20 17:42 |
| 6M133195.D | BLK           | 10/06/20 18:02 |
| 6M133196.D | BLK           | 10/06/20 18:23 |
| 6M133197.D | BLK           | 10/06/20 18:44 |
| 6M133198.D | BLK           | 10/06/20 19:05 |
| 6M133199.D | BLK           | 10/06/20 19:26 |
| 6M133200.D | BLK           | 10/06/20 19:46 |
| 6M133201.D | ICV           | 10/06/20 20:07 |
| 6M133202.D | BLK           | 10/06/20 20:28 |
| 6M133203.D | BLK           | 10/07/20 07:33 |
| 6M133204.D | BLK           | 10/07/20 07:54 |
| 6M133205.D | BLK           | 10/07/20 08:15 |
| 6M133206.D | BLK           | 10/07/20 08:35 |
| 6M133207.D | DAILY BLANK   | 10/07/20 08:56 |

Data Path : G:\GcMsData\2020\GCMS 6\Data\10-06-20\

Data File : 6M133169.D

Acq On : 06 Oct 2020 09:09

Operator : BK

Sample : BFB TUNE Misc : S,5G

ALS Vial : 1 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GCMSDATA\2020\GCMS\_6\METHODQT\6M\_S1006.M

Title : @GCMS\_6,ug,624,8260

Last Update : Wed Oct 07 11:27:46 2020



Spectrum Information: Average of 7.385 to 7.397 min.

|   | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|---|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
| Ī | 50             | 95              | 15              | 40              | 15.2         | 5179       | PASS                |
| 1 | 75             | 95              | 30              | 60              | 51.5         | 17560      | PASS                |
| İ | 95             | 95              | 100             | 100             | 100.0        | 34118      | PASS                |
| Ì | 96             | 95              | 5               | 9               | 7.8          | 2650       | PASS                |
|   | 173            | 174             | 0.00            | 2               | 1.7          | 499        | PASS                |
| İ | 174            | 95              | 50              | 100             | 85.9         | 29312      | PASS                |
| ı | 175            | 174             | 5               | 9               | 8.9          | 2614       | PASS                |
| İ | 176            | 174             | 95              | 101             | 98.2         | 28777      | PASS                |
| İ | 177            | 176             | 5               | 9               | 6.4          | 1839       | PASS                |
|   |                |                 |                 |                 |              |            |                     |

## Form 5

Tune Name: BFB TUNE **Data File:** 6M133208.D Analysis Date: 10/07/20 11:49 Method: EPA 8260D Instrument: GCMS 6

| Tune Sc: | <u>an/Time R</u> | <u> Range: Average (</u> | of 7.385 to | 7.397 min |
|----------|------------------|--------------------------|-------------|-----------|
| Tgt      | Rel              | Lo Hi Lim                | Rel         | Raw       |

| Tgt  | Rel  | Lo H | li Lim | Rel   | Raw   | Pass/ |
|------|------|------|--------|-------|-------|-------|
| Mass | Mass | Lim  |        | Abund | Abund | Fail  |
| 50   | 95   | 15   | 40     | 16.9  | 7720  | PASS  |
| 75   | 95   | 30   | 60     | 47.6  | 21726 | PASS  |
| 95   | 95   | 100  | 100    | 100.0 | 45627 | PASS  |
| 96   | 95   | 5    | 9      | 6.9   | 3160  | PASS  |
| 173  | 174  | 0.00 | 2      | 1.4   | 522   | PASS  |
| 174  | 95   | 50   | 100    | 79.0  | 36056 | PASS  |
| 175  | 174  | 5    | 9      | 7.7   | 2790  | PASS  |
| 176  | 174  | 95   | 101    | 96.9  | 34928 | PASS  |
| 177  | 176  | 5    | 9      | 6.8   | 2366  | PASS  |

| Data File  | Sample Number   | Analysis Date: |
|------------|-----------------|----------------|
| 6M133209.D | BLK             | 10/07/20 12:15 |
| 6M133210.D | CAL @ 50 PPB    | 10/07/20 12:30 |
| 6M133211.D | BLK             | 10/07/20 12:59 |
| 6M133212.D | BLK             | 10/07/20 13:20 |
| 6M133213.D | BLK             | 10/07/20 13:40 |
| 6M133214.D | DAILY BLANK     | 10/07/20 14:06 |
| 6M133215.D | AD19542-001     | 10/07/20 14:37 |
| 6M133216.D | BLK             | 10/07/20 15:04 |
| 6M133217.D | AD19589-001     | 10/07/20 15:25 |
| 6M133218.D | MBS89449        | 10/07/20 15:45 |
| 6M133219.D | AD19589-002(MS: | 10/07/20 16:06 |
| 6M133220.D | AD19589-003(MSD | 10/07/20 16:27 |
| 6M133222.D | BLK             | 10/07/20 17:08 |
| 6M133223.D | BLK             | 10/07/20 17:29 |
| 6M133224.D | AD19589-004     | 10/07/20 17:49 |
| 6M133225.D | AD19589-005     | 10/07/20 18:10 |
| 6M133226.D | AD19589-006     | 10/07/20 18:31 |
| 6M133227.D | AD19595-003     | 10/07/20 18:51 |
| 6M133228.D | AD19595-007     | 10/07/20 19:12 |
| 6M133229.D | AD19595-008     | 10/07/20 19:33 |
| 6M133230.D | AD19595-011     | 10/07/20 19:54 |
| 6M133231.D | AD19595-009     | 10/07/20 20:14 |
| 6M133232.D | AD19595-010     | 10/07/20 20:35 |
| 6M133233.D | AD19595-005     | 10/07/20 20:56 |
| 6M133234.D | AD19595-001     | 10/07/20 21:16 |
| 6M133235.D | BLK             | 10/07/20 21:37 |
| 6M133236.D | AD19644-002     | 10/07/20 21:58 |
| 6M133237.D | AD19644-004     | 10/07/20 22:18 |
| 6M133238.D | AD19644-006     | 10/07/20 22:39 |
| 6M133239.D | AD19644-005     | 10/07/20 23:00 |
| 6M133240.D | AD19644-008     | 10/07/20 23:20 |
| 6M133241.D | AD19644-007     | 10/07/20 23:41 |
| 6M133242.D | AD19643-002     | 10/08/20 00:02 |
| 6M133243.D | MBS89455        | 10/08/20 00:22 |
| 6M133244.D | BLK             | 10/08/20 00:43 |
| 6M133245.D | BLK             | 10/08/20 01:03 |
| 6M133246.D | BLK             | 10/08/20 01:24 |
| 6M133247.D | BLK             | 10/08/20 01:45 |
| 6M133248.D | BLK             | 10/08/20 02:05 |
|            |                 |                |

Data Path : G:\GcMsData\2020\GCMS 6\Data\10-07-20\

Data File : 6M133208.D

Acq On : 07 Oct 2020 11:49

Operator : BK

Sample : BFB TUNE Misc : S,5G

ALS Vial : 1 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GCMSDATA\2020\GCMS\_6\METHODQT\6M\_S1006.M

Title : @GCMS\_6,ug,624,8260

Last Update : Wed Oct 07 11:27:46 2020



Spectrum Information: Average of 7.385 to 7.397 min.

| Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
| 50             | 95              | 15              | 40              | 16.9         | 7720       | PASS                |
| j 75 j         | 95              | 30              | 60              | 47.6         | 21726      | PASS                |
| 95             | 95              | 100             | 100             | 100.0        | 45627      | PASS                |
| 96             | 95              | 5               | 9               | 6.9          | 3160       | PASS                |
| 173            | 174             | 0.00            | 2               | 1.4          | 522        | PASS                |
| 174            | 95              | 50              | 100             | 79.0         | 36056      | PASS                |
| 175            | 174             | 5               | 9               | 7.7          | 2790       | PASS                |
| 176            | 174             | 95              | 101             | 96.9         | 34928      | PASS                |
| 177            | 176             | 5               | 9               | 6.8          | 2366       | PASS                |
| ·              |                 | · ·             |                 |              | ·<br>      |                     |

## Form 5

Tune Name: BFB TUNE **Data File: 1M140245.D** Instrument: GCMS 1 Analysis Date: 10/08/20 02:23

Method: EPA 8260D

Tune Scan/Time Range: Average of 7.619 to 7.625 min

| Lune Sc | :an/11me | Kange: A | verage | 017.019 ( | <u> 7.625 min</u> |       |
|---------|----------|----------|--------|-----------|-------------------|-------|
| Tgt     | Rel      | Lo H     | li Lim | Rel       | Raw               | Pass/ |
| Mass    | Mass     | Lim      | _      | Abund     | Abund             | Fail  |
| 50      | 95       | 15       | 40     | 18.8      | 27296             | PASS  |
| 75      | 95       | 30       | 60     | 48.9      | 71120             | PASS  |
| 95      | 95       | 100      | 100    | 100.0     | 145493            | PASS  |
| 96      | 95       | 5        | 9      | 6.9       | 10000             | PASS  |
| 173     | 174      | 0.00     | 2      | 0.0       | 0                 | PASS  |
| 174     | 95       | 50       | 100    | 94.9      | 138024            | PASS  |
| 175     | 174      | 5        | 9      | 8.0       | 11104             | PASS  |
| 176     | 174      | 95       | 101    | 97.0      | 133861            | PASS  |
| 177     | 176      | 5        | 9      | 6.4       | 8578              | PASS  |

| 1M140246.D         CAL @ 20 PPB         10/08/20 02:43           1M140247.D         20 PPB         10/08/20 03:04           1M140248.D         BLK         10/08/20 03:45           1M140249.D         BLK         10/08/20 03:45           1M140250.D         DAILY BLANK         10/08/20 04:06           1M140251.D         DAILY BLANK         10/08/20 04:27           1M140252.D         AD19636-002(400u         10/08/20 05:49           1M140253.D         AD19587-007         10/08/20 05:29           1M140254.D         AD19586-002         10/08/20 05:29           1M140255.D         AD19581-003         10/08/20 05:49           1M140255.D         AD19581-001(400u         10/08/20 06:10           1M140257.D         AD19581-001(400u         10/08/20 06:10           1M140258.D         AD19517-004         10/08/20 06:51           1M140259.D         AD19619-001(MS)         10/08/20 07:12           1M140260.D         AD19619-001(MS)         10/08/20 07:53           1M140261.D         MBS89456         10/08/20 07:53           1M140262.D         MBS89464         10/08/20 08:35           1M140263.D         BLK         10/08/20 08:35           1M140265.D         AD19619-001         10/08/20 08:35                                                                                 | Data File  | Sample Number    | Analysis Date: |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|----------------|
| 1M140248.D         BLK         10/08/20 03:25           1M140249.D         BLK         10/08/20 03:45           1M140250.D         DAILY BLANK         10/08/20 04:45           1M140251.D         DAILY BLANK         10/08/20 04:27           1M140252.D         AD19636-002(400u         10/08/20 04:47           1M140253.D         AD19587-007         10/08/20 05:08           1M140254.D         AD19581-003         10/08/20 05:29           1M140255.D         AD19581-003         10/08/20 05:29           1M140255.D         AD19581-001(400u         10/08/20 06:10           1M140257.D         AD19581-001(400u         10/08/20 06:51           1M140258.D         AD19517-004         10/08/20 06:51           1M140259.D         AD19619-001(MS)         10/08/20 07:12           1M140260.D         AD19619-001(MSD         10/08/20 07:53           1M140261.D         MBS89456         10/08/20 07:53           1M140262.D         MBS89464         10/08/20 08:35           1M140263.D         BLK         10/08/20 08:35           1M140265.D         AD19619-001         10/08/20 08:35           1M140265.D         AD19619-001         10/08/20 09:37           1M140266.D         AD19619-001         10/08/20 09:37                                                                             | 1M140246.D | CAL @ 20 PPB     | 10/08/20 02:43 |
| 1M140249.D         BLK         10/08/20 03:45           1M140250.D         DAILY BLANK         10/08/20 04:06           1M140251.D         DAILY BLANK         10/08/20 04:47           1M140252.D         AD19636-002(400u         10/08/20 04:47           1M140253.D         AD19587-007         10/08/20 05:08           1M140254.D         AD19581-003         10/08/20 05:29           1M140255.D         AD19581-003         10/08/20 06:51           1M140256.D         AD19581-001(400u         10/08/20 06:31           1M140258.D         AD19559-001(400u         10/08/20 06:51           1M140259.D         AD19517-004         10/08/20 06:51           1M140259.D         AD19619-001(MS)         10/08/20 07:12           1M140260.D         AD19619-001(MSD         10/08/20 07:53           1M140261.D         MBS89456         10/08/20 07:53           1M140262.D         MBS89464         10/08/20 08:35           1M140263.D         BLK         10/08/20 08:35           1M140265.D         AD19619-001         10/08/20 08:35           1M140265.D         AD19619-001         10/08/20 09:37           1M140266.D         AD19629-002         10/08/20 09:36           1M140269.D         AD19580-001(MS)         10/08/20 09:36 <td>1M140247.D</td> <td>20 PPB</td> <td>10/08/20 03:04</td>     | 1M140247.D | 20 PPB           | 10/08/20 03:04 |
| 1M140250.D         DAILY BLANK         10/08/20 04:06           1M140251.D         DAILY BLANK         10/08/20 04:27           1M140252.D         AD19636-002(400u         10/08/20 04:27           1M140253.D         AD19587-007         10/08/20 05:08           1M140254.D         AD19598-002         10/08/20 05:29           1M140255.D         AD19581-003         10/08/20 05:49           1M140256.D         AD19581-001(400u         10/08/20 06:10           1M140257.D         AD19559-001(400u         10/08/20 06:31           1M140258.D         AD19517-004         10/08/20 07:12           1M140259.D         AD19619-001(MSD         10/08/20 07:13           1M140260.D         AD19619-001(MSD         10/08/20 07:53           1M140261.D         MBS89456         10/08/20 08:14           1M140263.D         BLK         10/08/20 08:55           1M140264.D         BLK         10/08/20 08:55           1M140265.D         AD19619-001         10/08/20 09:37           1M140266.D         AD19629-002         10/08/20 09:37           1M140268.D         AD19639-001         10/08/20 09:58           1M140269.D         AD19580-001(MS)         10/08/20 10:38           1M140271.D         AD19580-001(MSD         10/08/20 1                                                              | 1M140248.D | BLK              | 10/08/20 03:25 |
| 1M140251.D         DAILY BLANK         10/08/20 04:27           1M140252.D         AD19636-002(400u         10/08/20 04:47           1M140253.D         AD19587-007         10/08/20 05:08           1M140254.D         AD19596-002         10/08/20 05:29           1M140255.D         AD19581-003         10/08/20 05:49           1M140256.D         AD19581-001(400u         10/08/20 06:10           1M140257.D         AD19559-001(400u         10/08/20 06:31           1M140258.D         AD19517-004         10/08/20 06:51           1M140259.D         AD19619-001(MS)         10/08/20 07:33           1M140260.D         AD19619-001(MSD         10/08/20 07:33           1M140261.D         MBS89456         10/08/20 07:53           1M140262.D         MBS89464         10/08/20 08:14           1M140263.D         BLK         10/08/20 08:14           1M140264.D         BLK         10/08/20 09:16           1M140265.D         AD19619-001         10/08/20 09:37           1M140266.D         AD19619-001         10/08/20 09:37           1M140267.D         AD19629-002         10/08/20 09:58           1M140268.D         AD19580-001(MS)         10/08/20 10:39           1M140270.D         AD19580-001(MS)         10/08/20 10:3                                                              | 1M140249.D | BLK              | 10/08/20 03:45 |
| 1M140252.D         AD19636-002(400u         10/08/20 04:47           1M140253.D         AD19587-007         10/08/20 05:08           1M140254.D         AD19596-002         10/08/20 05:29           1M140255.D         AD19581-003         10/08/20 06:19           1M140256.D         AD19581-001(400u         10/08/20 06:10           1M140257.D         AD19559-001(400u         10/08/20 06:51           1M140259.D         AD19517-004         10/08/20 07:53           1M140259.D         AD19619-001(MSD         10/08/20 07:33           1M140261.D         MBS89456         10/08/20 07:53           1M140262.D         MBS89464         10/08/20 08:35           1M140263.D         BLK         10/08/20 08:35           1M140264.D         BLK         10/08/20 08:35           1M140265.D         AD19619-001         10/08/20 09:36           1M140266.D         AD19619-001         10/08/20 09:37           1M140267.D         AD19629-002         10/08/20 09:37           1M140268.D         AD19580-001(MS)         10/08/20 10:38           1M140270.D         AD19580-001(MS)         10/08/20 10:38           1M140271.D         AD19580-001(MS)         10/08/20 11:00           1M140273.D         AD19595-003         10/08/20 11:0                                                              | 1M140250.D | DAILY BLANK      |                |
| 1M140253.D         AD19587-007         10/08/20 05:08           1M140254.D         AD19596-002         10/08/20 05:29           1M140255.D         AD19581-003         10/08/20 06:30           1M140256.D         AD19581-001(400u         10/08/20 06:31           1M140257.D         AD19559-001(400u         10/08/20 06:51           1M140258.D         AD19517-004         10/08/20 06:51           1M140259.D         AD19619-001(MS)         10/08/20 07:12           1M140260.D         AD19619-001(MSD         10/08/20 07:53           1M140261.D         MBS89456         10/08/20 07:53           1M140262.D         MBS89464         10/08/20 08:35           1M140263.D         BLK         10/08/20 08:35           1M140264.D         BLK         10/08/20 08:35           1M140265.D         AD19619-001         10/08/20 09:37           1M140266.D         AD19619-001         10/08/20 09:37           1M140268.D         AD19629-002         10/08/20 09:37           1M140268.D         AD19580-001(MS)         10/08/20 10:38           1M140270.D         AD19580-001(MSD         10/08/20 10:39           1M140271.D         AD19595-003         10/08/20 11:01           1M140273.D         AD19595-001         10/08/20 12:02 <td>1M140251.D</td> <td>DAILY BLANK</td> <td>10/08/20 04:27</td> | 1M140251.D | DAILY BLANK      | 10/08/20 04:27 |
| 1M140254.D         AD19596-002         10/08/20 05:29           1M140255.D         AD19581-003         10/08/20 05:49           1M140256.D         AD19581-001(400u         10/08/20 06:10           1M140257.D         AD19559-001(400u         10/08/20 06:51           1M140259.D         AD19517-004         10/08/20 06:51           1M140259.D         AD19619-001(MS)         10/08/20 07:12           1M140260.D         AD19619-001(MSD         10/08/20 07:33           1M140261.D         MBS89456         10/08/20 07:53           1M140262.D         MBS89464         10/08/20 08:35           1M140263.D         BLK         10/08/20 08:35           1M140264.D         BLK         10/08/20 08:55           1M140265.D         AD19619-001         10/08/20 09:16           1M140266.D         AD19629-002         10/08/20 09:37           1M140268.D         AD19629-001         10/08/20 09:58           1M140268.D         AD19580-001(MS)         10/08/20 10:38           1M140270.D         AD19580-001(MSD         10/08/20 10:39           1M140271.D         AD19580-001(MSD         10/08/20 11:00           1M140272.D         AD19595-003         10/08/20 11:42           1M140274.D         AD19595-005         10/08/20 12:44                                                              | 1M140252.D | AD19636-002(400u |                |
| 1M140255.D         AD19581-003         10/08/20 05:49           1M140256.D         AD19581-001(400u         10/08/20 06:10           1M140257.D         AD19559-001(400u         10/08/20 06:31           1M140259.D         AD19517-004         10/08/20 07:12           1M140259.D         AD19619-001(MS)         10/08/20 07:12           1M140261.D         MBS89456         10/08/20 07:53           1M140262.D         MBS89464         10/08/20 08:14           1M140263.D         BLK         10/08/20 08:55           1M140264.D         BLK         10/08/20 08:55           1M140265.D         AD19619-001         10/08/20 09:37           1M140266.D         AD19629-002         10/08/20 09:37           1M140267.D         AD19629-001         10/08/20 09:58           1M140268.D         AD19580-001(MS)         10/08/20 10:38           1M140270.D         AD19580-001(MSD         10/08/20 10:39           1M140271.D         AD19580-001(MSD         10/08/20 11:00           1M140272.D         AD19595-003         10/08/20 11:42           1M140273.D         AD19595-001         10/08/20 12:02           1M140274.D         AD19595-005         10/08/20 12:44           1M140275.D         AD19595-005         10/08/20 12:44 <td></td> <td></td> <td></td>                                    |            |                  |                |
| 1M140256.D         AD19581-001(400u         10/08/20 06:10           1M140257.D         AD19559-001(400u         10/08/20 06:31           1M140258.D         AD19517-004         10/08/20 06:31           1M140259.D         AD19619-001(MS)         10/08/20 07:12           1M140260.D         AD19619-001(MSD         10/08/20 07:33           1M140261.D         MBS89456         10/08/20 07:53           1M140262.D         MBS89464         10/08/20 08:34           1M140263.D         BLK         10/08/20 08:35           1M140264.D         BLK         10/08/20 09:16           1M140265.D         AD19619-001         10/08/20 09:16           1M140266.D         AD19629-002         10/08/20 09:37           1M140267.D         AD19629-001         10/08/20 09:58           1M140268.D         AD19580-001(MS)         10/08/20 10:18           1M140270.D         AD19580-001(MSD         10/08/20 10:18           1M140271.D         AD19580-001(MSD         10/08/20 11:00           1M140272.D         AD19595-009         10/08/20 11:02           1M140273.D         AD19595-001         10/08/20 12:02           1M140274.D         AD19595-005         10/08/20 12:04           1M140275.D         AD19595-005         10/08/20 12:04                                                              |            |                  |                |
| 1M140257.D         AD19559-001(400u         10/08/20 06:31           1M140258.D         AD19517-004         10/08/20 06:51           1M140259.D         AD19619-001(MS)         10/08/20 07:33           1M140260.D         AD19619-001(MSD         10/08/20 07:53           1M140261.D         MBS89456         10/08/20 08:35           1M140263.D         BLK         10/08/20 08:35           1M140264.D         BLK         10/08/20 08:35           1M140265.D         AD19619-001         10/08/20 09:36           1M140266.D         AD19619-001         10/08/20 09:37           1M140267.D         AD19629-002         10/08/20 09:38           1M140268.D         AD19580-001(MS)         10/08/20 10:38           1M140270.D         AD19580-001(MS)         10/08/20 10:38           1M140271.D         AD19580-001(MSD         10/08/20 11:00           1M140272.D         AD19595-009         10/08/20 11:01           1M140273.D         AD19595-003         10/08/20 11:21           1M140275.D         AD19595-001         10/08/20 12:02           1M140275.D         AD19595-005         10/08/20 12:44           1M140276.D         AD19595-005         10/08/20 13:05                                                                                                                                |            |                  |                |
| 1M140258.D         AD19517-004         10/08/20 06:51           1M140259.D         AD19619-001(MS)         10/08/20 07:32           1M140260.D         AD19619-001(MSD)         10/08/20 07:53           1M140261.D         MBS89456         10/08/20 08:14           1M140263.D         BLK         10/08/20 08:35           1M140264.D         BLK         10/08/20 08:55           1M140265.D         AD19619-001         10/08/20 09:37           1M140266.D         AD19629-002         10/08/20 09:37           1M140267.D         AD19629-001         10/08/20 09:58           1M140268.D         AD19580-001(MS)         10/08/20 10:38           1M140270.D         AD19598-012         10/08/20 10:38           1M140271.D         AD19598-001(MSD)         10/08/20 11:20           1M140272.D         AD19595-003         10/08/20 11:21           1M140273.D         AD19595-010         10/08/20 12:02           1M140275.D         AD19595-005         10/08/20 12:44           1M140276.D         AD19636-002(80uL         10/08/20 13:05                                                                                                                                                                                                                                                                  |            |                  |                |
| 1M140259.D         AD19619-001(MS)         10/08/20 07:12           1M140260.D         AD19619-001(MSD         10/08/20 07:33           1M140261.D         MBS89456         10/08/20 08:35           1M140263.D         BLK         10/08/20 08:35           1M140264.D         BLK         10/08/20 08:55           1M140265.D         AD19619-001         10/08/20 09:16           1M140266.D         AD19629-002         10/08/20 09:37           1M140267.D         AD19629-001         10/08/20 09:38           1M140268.D         AD19580-001(MS)         10/08/20 10:38           1M140269.D         AD19588-012         10/08/20 10:39           1M140270.D         AD19588-001(MSD         10/08/20 11:00           1M140271.D         AD19595-009         10/08/20 11:21           1M140272.D         AD19595-003         10/08/20 11:42           1M140273.D         AD19595-010         10/08/20 12:23           1M140275.D         AD19595-005         10/08/20 12:24           1M140275.D         AD19595-005         10/08/20 12:44           1M140276.D         AD19636-002(80uL         10/08/20 13:05                                                                                                                                                                                                    |            |                  |                |
| 1M140260.D       AD19619-001(MSD       10/08/20 07:33         1M140261.D       MBS89456       10/08/20 07:53         1M140262.D       MBS89464       10/08/20 08:14         1M140263.D       BLK       10/08/20 08:55         1M140264.D       BLK       10/08/20 08:55         1M140265.D       AD19619-001       10/08/20 09:16         1M140266.D       AD19629-002       10/08/20 09:37         1M140268.D       AD19529-001       10/08/20 09:58         1M140269.D       AD19580-001(MS)       10/08/20 10:39         1M140270.D       AD19580-001(MSD       10/08/20 10:39         1M140271.D       AD19580-001(MSD       10/08/20 11:00         1M140272.D       AD19595-009       10/08/20 11:21         1M140273.D       AD19595-010       10/08/20 12:02         1M140274.D       AD19595-005       10/08/20 12:23         1M140275.D       AD19595-005       10/08/20 12:44         1M140276.D       AD19636-002(80uL       10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                     |            |                  |                |
| 1M140261.D         MBS89456         10/08/20 07:53           1M140262.D         MBS89464         10/08/20 08:14           1M140263.D         BLK         10/08/20 08:35           1M140264.D         BLK         10/08/20 09:16           1M140265.D         AD19619-001         10/08/20 09:16           1M140266.D         AD19629-002         10/08/20 09:37           1M140267.D         AD19580-001 (MS)         10/08/20 10:39           1M140268.D         AD19580-001(MS)         10/08/20 10:39           1M140269.D         AD19580-001(MSD)         10/08/20 10:39           1M140270.D         AD19580-001(MSD)         10/08/20 11:00           1M140271.D         AD19595-009         10/08/20 11:21           1M140272.D         AD19595-003         10/08/20 11:42           1M140273.D         AD19595-010         10/08/20 12:02           1M140275.D         AD19595-005         10/08/20 12:44           1M140276.D         AD19636-002(80uL         10/08/20 13:05                                                                                                                                                                                                                                                                                                                                    |            |                  |                |
| 1M140262.D       MBS89464       10/08/20 08:14         1M140263.D       BLK       10/08/20 08:35         1M140264.D       BLK       10/08/20 09:35         1M140265.D       AD19619-001       10/08/20 09:36         1M140266.D       AD19629-002       10/08/20 09:37         1M140267.D       AD19580-001(MS)       10/08/20 10:38         1M140269.D       AD19580-001(MS)       10/08/20 10:38         1M140270.D       AD19580-001(MSD       10/08/20 11:00         1M140271.D       AD19595-009       10/08/20 11:00         1M140272.D       AD19595-003       10/08/20 11:21         1M140273.D       AD19595-010       10/08/20 12:02         1M140275.D       AD19595-001       10/08/20 12:02         1M140275.D       AD19595-005       10/08/20 12:44         1M140276.D       AD19636-002(80uL       10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                  |                |
| 1M140263.D         BLK         10/08/20 08:35           1M140264.D         BLK         10/08/20 08:55           1M140265.D         AD19619-001         10/08/20 09:16           1M140266.D         AD19629-002         10/08/20 09:37           1M140267.D         AD19629-001         10/08/20 09:58           1M140268.D         AD19580-001(MS)         10/08/20 10:18           1M140269.D         AD19598-012         10/08/20 10:39           1M140270.D         AD19580-001(MSD         10/08/20 11:00           1M140271.D         AD19595-009         10/08/20 11:21           1M140272.D         AD19595-003         10/08/20 11:42           1M140273.D         AD19595-010         10/08/20 12:23           1M140274.D         AD19595-005         10/08/20 12:23           1M140275.D         AD19595-005         10/08/20 12:44           1M140276.D         AD19636-002(80uL         10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                         |            |                  |                |
| 1M140264.D         BLK         10/08/20 08:55           1M140265.D         AD19619-001         10/08/20 09:16           1M140266.D         AD19629-002         10/08/20 09:37           1M140267.D         AD19629-001         10/08/20 09:38           1M140268.D         AD19580-001(MS)         10/08/20 10:38           1M140269.D         AD19598-012         10/08/20 10:39           1M140270.D         AD19580-001(MSD         10/08/20 11:00           1M140271.D         AD19595-009         10/08/20 11:21           1M140272.D         AD19595-003         10/08/20 11:42           1M140273.D         AD19595-010         10/08/20 12:23           1M140274.D         AD19595-001         10/08/20 12:23           1M140275.D         AD19595-005         10/08/20 12:44           1M140276.D         AD19636-002(80uL         10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                  |                |
| 1M140265.D         AD19619-001         10/08/20 09:16           1M140266.D         AD19629-002         10/08/20 09:37           1M140267.D         AD19629-001         10/08/20 09:58           1M140268.D         AD19580-001(MS)         10/08/20 10:39           1M140269.D         AD19589-012         10/08/20 10:39           1M140270.D         AD19580-001(MSD         10/08/20 11:00           1M140271.D         AD19595-009         10/08/20 11:21           1M140272.D         AD19595-003         10/08/20 11:42           1M140273.D         AD19595-010         10/08/20 12:02           1M140274.D         AD19595-001         10/08/20 12:23           1M140275.D         AD19595-005         10/08/20 12:44           1M140276.D         AD19636-002(80uL         10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                  |                |
| 1M140266.D       AD19629-002       10/08/20 09:37         1M140267.D       AD19629-001       10/08/20 09:58         1M140268.D       AD19580-001(MS)       10/08/20 10:38         1M140269.D       AD19598-012       10/08/20 10:39         1M140270.D       AD19580-001(MSD       10/08/20 11:00         1M140271.D       AD19595-009       10/08/20 11:21         1M140272.D       AD19595-003       10/08/20 11:42         1M140273.D       AD19595-010       10/08/20 12:02         1M140274.D       AD19595-001       10/08/20 12:23         1M140275.D       AD19595-005       10/08/20 12:44         1M140276.D       AD19636-002(80uL       10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                  |                |
| 1M140267.D         AD19629-001         10/08/20 09:58           1M140268.D         AD19580-001(MS)         10/08/20 10:38           1M140270.D         AD19598-012         10/08/20 10:39           1M140270.D         AD19598-001(MSD         10/08/20 11:00           1M140271.D         AD19595-009         10/08/20 11:21           1M140272.D         AD19595-003         10/08/20 11:42           1M140273.D         AD19595-010         10/08/20 12:02           1M140274.D         AD19595-001         10/08/20 12:23           1M140275.D         AD19595-005         10/08/20 12:44           1M140276.D         AD19636-002(80uL         10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                  |                |
| 1M140268.D       AD19580-001(MS)       10/08/20 10:18         1M140269.D       AD19598-012       10/08/20 10:39         1M140270.D       AD19580-001(MSD       10/08/20 11:00         1M140271.D       AD19595-009       10/08/20 11:21         1M140272.D       AD19595-003       10/08/20 11:21         1M140273.D       AD19595-010       10/08/20 12:02         1M140274.D       AD19595-001       10/08/20 12:23         1M140275.D       AD19595-005       10/08/20 12:44         1M140276.D       AD19636-002(80uL       10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                  |                |
| 1M140269.D       AD19598-012       10/08/20 10:39         1M140270.D       AD19580-001(MSD       10/08/20 11:00         1M140271.D       AD19595-009       10/08/20 11:21         1M140272.D       AD19595-003       10/08/20 11:42         1M140273.D       AD19595-010       10/08/20 12:23         1M140274.D       AD19595-001       10/08/20 12:23         1M140275.D       AD19595-005       10/08/20 12:44         1M140276.D       AD19636-002(80uL       10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                  |                |
| 1M140270.D         AD19580-001(MSD         10/08/20 11:00           1M140271.D         AD19595-009         10/08/20 11:21           1M140272.D         AD19595-003         10/08/20 11:42           1M140273.D         AD19595-010         10/08/20 12:22           1M140274.D         AD19595-001         10/08/20 12:23           1M140275.D         AD19595-005         10/08/20 12:44           1M140276.D         AD19636-002(80uL         10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                  |                |
| 1M140271.D     AD19595-009     10/08/20 11:21       1M140272.D     AD19595-003     10/08/20 11:42       1M140273.D     AD19595-010     10/08/20 12:02       1M140274.D     AD19595-001     10/08/20 12:23       1M140275.D     AD19595-005     10/08/20 12:44       1M140276.D     AD19636-002(80uL     10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                  |                |
| 1M140272.D       AD19595-003       10/08/20 11:42         1M140273.D       AD19595-010       10/08/20 12:02         1M140274.D       AD19595-001       10/08/20 12:23         1M140275.D       AD19595-005       10/08/20 12:44         1M140276.D       AD19636-002(80uL       10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                  |                |
| 1M140273.D       AD19595-010       10/08/20 12:02         1M140274.D       AD19595-001       10/08/20 12:23         1M140275.D       AD19595-005       10/08/20 12:44         1M140276.D       AD19636-002(80uL       10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                  |                |
| 1M140274.D AD19595-001 10/08/20 12:23<br>1M140275.D AD19595-005 10/08/20 12:44<br>1M140276.D AD19636-002(80uL 10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                  |                |
| 1M140275.D AD19595-005 10/08/20 12:44<br>1M140276.D AD19636-002(80uL 10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                  |                |
| 1M140276.D AD19636-002(80uL 10/08/20 13:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                  |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                  |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                  |                |
| 1M140278.D AD19598-014 10/08/20 13:46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                  |                |
| 1M140279.D AD19568-002 10/08/20 14:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                  |                |

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-0720\

Data File: 1M140245.D

Acq On : 08 Oct 2020 02:23

Operator : RL

Sample : BFB TUNE Misc : A,5ML

ALS Vial : 50 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GcMsData\2020\GCMS 1\MethodQt\1M A0909.M

Title : @GCMS 1,ug,624,8260

Last Update : Thu Sep 10 15:56:53 2020



Spectrum Information: Average of 7.619 to 7.625 min.

| Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
| 50             | 95              | 15              | 40              | 18.8         | 27296      | PASS                |
| 75             | 95              | 30              | 60              | 48.9         | 71120      | PASS                |
| 95             | 95              | 100             | 100             | 100.0        | 145493     | PASS                |
| 96             | 95              | 5               | 9               | 6.9          | 10000      | PASS                |
| 173            | 174             | 0.00            | 2               | 0.0          | i oi       | PASS                |
| 174            | 95              | 50              | 100             | 94.9         | 138024     | PASS                |
| 175            | 174             | 5               | 9               | 8.0          | 11104      | PASS                |
| 176            | 174             | 95              | 101             | 97.0         | 133861     | PASS                |
| 177            | 176             | 5               | 9               | 6.4          | 8578       | PASS                |

M

## Form 5

Tune Name: BFB TUNE Data File: 1M140327.D Instrument: GCMS 1 Analysis Date: 10/09/20 08:01 Method: EPA 8260D

Tune Scan/Time Range: Average of 7.612 to 7.619 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/ |
|------|------|------|-------|-------|-------|-------|
| Mass | Mass | Lim  |       | Abund | Abund | Fail  |
| 50   | 95   | 15   | 40    | 19.9  | 11282 | PASS  |
| 75   | 95   | 30   | 60    | 51.9  | 29459 | PASS  |
| 95   | 95   | 100  | 100   | 100.0 | 56771 | PASS  |
| 96   | 95   | 5    | 9     | 7.3   | 4151  | PASS  |
| 173  | 174  | 0.00 | 2     | 0.4   | 198   | PASS  |
| 174  | 95   | 50   | 100   | 95.3  | 54075 | PASS  |
| 175  | 174  | 5    | 9     | 8.1   | 4361  | PASS  |
| 176  | 174  | 95   | 101   | 97.2  | 52539 | PASS  |
| 177  | 176  | 5    | 9     | 6.6   | 3478  | PASS  |

| Data File  | Sample Number    | Analysis Date: |
|------------|------------------|----------------|
| 1M140328.D | 20 PPB           | 10/09/20 08:15 |
| 1M140329.D | CAL @ 20 PPB     | 10/09/20 08:41 |
| 1M140330.D | BLK              | 10/09/20 09:11 |
| 1M140331.D | BLK              | 10/09/20 09:31 |
| 1M140332.D | DAILY BLANK      | 10/09/20 09:56 |
| 1M140333.D | DAILY BLANK      | 10/09/20 10:26 |
| 1M140334.D | AD19654-001      | 10/09/20 10:55 |
| 1M140335.D | AD19616-001      | 10/09/20 11:16 |
| 1M140336.D | AD19539-012(400u | 10/09/20 11:36 |
| 1M140337.D | AD19539-014(40uL | 10/09/20 11:57 |
| 1M140338.D | MBS89475         | 10/09/20 12:18 |
| 1M140339.D | MBS89476         | 10/09/20 12:39 |
| 1M140340.D | AD19598-012      | 10/09/20 12:59 |
| 1M140341.D | AD19539-012      | 10/09/20 13:20 |
| 1M140342.D | AD19595-002      | 10/09/20 13:41 |
| 1M140343.D | AD19595-004      | 10/09/20 14:01 |
| 1M140344.D | 19595-007        | 10/09/20 14:22 |
| 1M140345.D | AD19595-006      | 10/09/20 14:43 |
| 1M140346.D | AD19595-012      | 10/09/20 15:03 |
| 1M140347.D | AD19616-002(MS:  | 10/09/20 15:24 |
| 1M140348.D | AD19616-003(MSD  | 10/09/20 15:45 |
| 1M140349.D | AD19654-001(MS)  | 10/09/20 16:06 |
| 1M140350.D | AD19654-001(MSD  | 10/09/20 16:26 |
| 1M140351.D | BLK              | 10/09/20 16:47 |
| 1M140352.D | BLK              | 10/09/20 17:07 |
| 1M140353.D | AD19592-002      | 10/09/20 17:28 |
| 1M140354.D | AD19592-003      | 10/09/20 17:49 |
| 1M140355.D | AD19591-003      | 10/09/20 18:10 |
| 1M140356.D | AD19591-004      | 10/09/20 18:30 |
| 1M140357.D | AD19616-006      | 10/09/20 18:51 |
| 1M140358.D | AD19592-001      | 10/09/20 19:12 |
| 1M140359.D | AD19593-001      | 10/09/20 19:33 |
| 1M140360.D | AD19593-003      | 10/09/20 19:54 |
| 1M140361.D | AD19616-004      | 10/09/20 20:14 |
| 1M140362.D | AD19616-005      | 10/09/20 20:35 |
| 1M140363.D | 19517-004        | 10/09/20 20:56 |
| 1M140364.D | MBS89482         | 10/09/20 21:16 |
| 1M140365.D | BLK              | 10/09/20 21:37 |
| 1M140366.D | BLK              | 10/09/20 21:58 |
| 1M140367.D | BLK              | 10/09/20 22:18 |
| 1M140368.D | BLK              | 10/09/20 22:39 |
| 1M140369.D | BLK              | 10/09/20 23:00 |
| 1M140370.D | BLK              | 10/09/20 23:21 |
| 1M140371.D | BLK              | 10/09/20 23:41 |
|            |                  |                |

Data Path : G:\GcMsData\2020\GCMS\_1\Data\10-09-20\

Data File: 1M140327.D

Acq On : 09 Oct 2020 08:01

Operator : BK

Sample : BFB TUNE Misc : A,5ML

ALS Vial : 1 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GcMsData\2020\GCMS\_1\MethodQt\1M\_A0909.M

Title : @GCMS\_1,ug,624,8260

Last Update : Thu Sep 10 15:56:53 2020



Spectrum Information: Average of 7.612 to 7.619 min.

|   | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |       |
|---|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|-------|
| Ī | 50             | 95              | 15              | 40              | 19.9         | 11282      | PASS                | -<br> |
| İ | 75             | 95              | 30              | 60              | 51.9         | 29459      | PASS                | İ     |
| İ | 95             | 95              | 100             | 100             | 100.0        | 56771      | PASS                | İ     |
| İ | 96             | 95              | 5               | 9               | 7.3          | 4151       | PASS                | İ     |
| İ | 173            | 174             | 0.00            | 2               | 0.4          | 198        | PASS                | İ     |
| İ | 174            | 95              | 50              | 100             | 95.3         | 54075      | PASS                | İ     |
| İ | 175            | 174             | 5               | 9               | 8.1          | 4361       | PASS                | İ     |
| ı | 176            | 174             | 95              | 101             | 97.2         | 52539      | PASS                | İ.    |
| İ | 177            | 176             | 5               | 9               | 6.6          | 3478       | PASS                | 1     |
| _ | <b></b> -      |                 |                 |                 |              |            |                     | _ /   |

# Form 6 Initial Calibration

Instrument: GCMS\_1

|             |                                                         |                                                         |                                                         |                                                         |                                                         |                                                                |                                                         |                                                         |                                                         |                                                  |                                                  |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |              |                                                                                                                    |                                                                                                                    |                                                         |                                                  |                                                  |                                                         |                                                         |                                    |                                                                                                                    |                       |                                                            | טט             | Z              | 3              | V              | ß              | 1                |
|-------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|------------------|
|             | Bromodichloromethan                                     | Vinyl Acetate                                           | Carbon Tetrachloride                                    | 1.1.1-Trichloroethane                                   | 2-Butanone                                              | 1.2-Dichloroethane                                             | 1.2-Dichloroethane-d4                                   | Cyclohexane                                             | Dibromofluoromethan                                     | Chloroform                                       | 1,1-Dichloropropene                              | 1,4-Dioxane                                             | Ethyl acetate                                           | 2.2-Dichloropropane                                     | Bromochloromethane                                      | cis-1.2-Dichloroethene                                  | Ethyl-t-butyl ether                                     | trans-1,2-Dichloroethe                                  | 1,1-Dichloroethane                                      | Methyl-t-butyl ether                                    | Methyl Acetate                                          | 1,1-Dichloroethene                                      | Di-isopropyl-ether                                      | n-Hexane                                                | t-Butyl Alcohol                                         | Carbon Disulfide                                        | Acetone                                                 | lodomethane                                             | Acrylonitrile                                           | Acrolein     | Methylene Chloride                                                                                                 | Furan                                                                                                              | Ethyl ether                                             | Trichlorofluoromethan                            | Chloroethane                                     | Vinyl Chloride                                          | Bromomethane                                            | Chloromethane                      | Dichlorodifluorometha                                                                                              | Chlorodiffuoromothoro | Compound                                                   | 9              | 7              | OI ·           | ω.             |                | - 255            |
|             | 1 0 A                                                   | 1 0 A                                                   |                                                         |                                                         | 1 0 A                                                   | 1 0 A                                                          | 1 0 A                                                   | 1 0 A                                                   | 1 0 A                                                   | 1 0 A                                            | 1 0 A                                            | 1 0 A                                                   | 1 0 A                                                   | 1 0 A                                                   | 1 0 A                                                   | 1 0 A                                                   | 1 0 A                                                   | 1 0 A                                                   | 1<br>0<br>A                                             | 1<br>0<br>A                                             | 1 0 A                                                   | 1 0 A                                                   | 1<br>0<br>8                                             | 1 0 A                                                   |                                                         | 1<br>0<br>A                                             | 1<br>0<br>A                                             | 1 .<br>0 ?                                              |                                                         |              | <br>                                                                                                               |                                                                                                                    |                                                         | 1 0 A                                            | 1 0 A                                            |                                                         | 1 0 0 A                                                 | 1 0 0<br>A 1                       | <u> </u>                                                                                                           |                       | Col Mr                                                     | 1M139260.D     | 1M139268 D     | 1M139274.D     | 1M139263.D     | 1M139264 D     |                  |
|             | Avg 0.2                                                 | Avq 0.6                                                 |                                                         |                                                         | Avg 0.2                                                 | Avg 0.2                                                        |                                                         |                                                         |                                                         | Avg 0.3                                          |                                                  |                                                         | Avg 0.2                                                 |                                                         | Avg 0.2                                                 |                                                         |                                                         |                                                         |                                                         |                                                         | - 1                                                     |                                                         | _                                                       |                                                         |                                                         | i                                                       |                                                         |                                                         | _                                                       | 0.0          | - 1                                                                                                                |                                                                                                                    |                                                         |                                                  | į                                                |                                                         |                                                         |                                    | Ava 0.1                                                                                                            |                       | Fit: RF1                                                   | 60.D           | 58<br>D        | 74.D           | 63 D           |                | 7<br>2<br>5<br>1 |
|             | 891 0.27                                                | 993 0.64                                                | 896 0.26                                                | 268 0.31                                                | 053 0.20                                                | 958 0.28                                                       | 538 0.15                                                | 227 0.20                                                | 752 0.28                                                | 808 0.35                                         | 0.2655 0.23                                      | 041 0.00                                                | 938 0.25                                                | 892 0.28                                                | 176 0.19                                                | 525 0.31                                                | 106 0.42                                                | 877 0.17                                                | 692 0.33                                                | 649 0.44                                                | 557 0.18                                                | 526 0.24                                                | 659 0.49                                                | 518 0.15                                                | 228 0.02                                                | 240 0.47                                                | 759 0.07                                                | 479 0.18                                                | 926 0.00                                                | 33000        | 00 0                                                                                                               | 03/ 0.28                                                                                                           | 464 0.13                                                | 0.2772 0.25                                      | 0.1327 0.12                                      | 196 0.20                                                | 164 0.11                                                | 861 0 27                           | 0.367 0.17<br>0.1967 0.17                                                                                          |                       | 1 RF2                                                      |                |                |                | CA (           | 5              | !                |
|             | 78 0.28                                                 | 140 0.66                                                | 81 0.29                                                 | 73 0.33                                                 | <b>340 0.19</b>                                         | 30 0.29                                                        | 515 0.14                                                | )46 0.24                                                | 322 0.27                                                | 57 0.36                                          | 383 0.26                                         | 34 0.00                                                 | 585 0.29                                                | 345 0.30                                                | 953 0.18                                                | 195 0.33                                                | 95 0.47                                                 | 722 0.18                                                | 35 0.36                                                 | 130 0.45                                                | 362 0.15                                                | 164 0.25                                                | 971 0.53                                                | 596 O.18                                                | 242 0.02                                                | 74 0.51                                                 | 797 0.07                                                | 391 0.22                                                | 39 0 09                                                 | 205 0.20     | 2000                                                                                                               | 74/0.29                                                                                                            | 304 0.14                                                | 594 0.29                                         | 250 0.13                                         | )25 0.22                                                | 100 0.11                                                | 703 0 28                           | 0.3044 0.4236                                                                                                      | כו ה וויי             | 2 RF3                                                      | @ 0.5 PPB      |                |                | 0 10 PPB       | 20 PPR         | 201              |
|             | 17 0.274                                                | 99 0.665                                                | 89 0.283                                                | 22 0.308                                                | 26 0.246                                                | 80 0.274                                                       | 92 0.150                                                | 88 0.248                                                | 98 0.274                                                | 79 0.351                                         | 52 0.263                                         | 37 0.003                                                | 51 0.287                                                | 04 0.271                                                | 18 0.201                                                | 62 0.329                                                | 16 0.494                                                | 40 0.170                                                | 29 0.339                                                | 03 0.433                                                | 62 0.148                                                | 66 0.235                                                | 11 0.527                                                | 66 0.157                                                | 17 0.020                                                | 76 0.492                                                | 85 0.068                                                | 36 0.240                                                | 21 0 083                                                |              | 06018                                                                                                              | 10 0.2/6                                                                                                           | 29 0.129                                                | 30 0.263                                         | 17 0.120                                         | 27 0.198                                                | 42 0.112                                                | 73 0 244                           | 46 0.183                                                                                                           | 26 0 26               | 자<br>자<br>주                                                | Φ,             | Ď              | ÖÖ '           | ω (            | ٠<br>- القام   |                  |
|             | 0.2891 0.2778 0.2817 0.2741 0.3018 0.3169 0.3265 0.2742 | 0.6993 0.6440 0.6699 0.6659 0.7176 0.7514 0.7364 0.6836 | 0.2896 0.2681 0.2989 0.2835 0.3152 0.3235 0.3234 0.2862 | 0.3268 0.3173 0.3322 0.3087 0.3426 0.3525 0.3537 0.3306 | 0.2053 0.2040 0.1926 0.2469 0.2450 0.2515 0.2157 0.1924 | 0.2958 0.2830 0.2980 0.2749 0.2996 0.3070 0.3125 0.3154 0.3077 | 0.1538 0.1515 0.1492 0.1500 0.1468 0.1495 0.1513 0.1615 | 0.2227 0.2046 0.2488 0.2485 0.2957 0.3165 0.3100 0.2068 | 0.2752 0.2822 0.2798 0.2749 0.2726 0.2713 0.2802 0.2926 | 0.3808 0.3557 0.3679 0.3510 0.3823 0.3915 0.3876 | 0.2383 0.2652 0.2634 0.2963 0.3047 0.3020 0.2285 | 0.0041 0.0034 0.0037 0.0031 0.0042 0.0043 0.0042 0.0030 | 0.2938 0.2585 0.2951 0.2876 0.3129 0.3223 0.3102 0.2503 | 0.2892 0.2845 0.3004 0.2716 0.2898 0.3049 0.3099 0.2927 | 0.2176 0.1953 0.1818 0.2015 0.2156 0.2199 0.2191 0.2399 | 0.3525 0.3195 0.3362 0.3296 0.3657 0.3774 0.3926 0.3363 | 0.5106 0.4295 0.4716 0.4943 0.5666 0.5894 0.5731 0.4374 | 0.1877 0.1722 0.1840 0.1706 0.1843 0.1862 0.1845 0.2053 | 0.3692 0.3335 0.3629 0.3393 0.3635 0.3756 0.4046 0.3515 | 0.4649 0.4430 0.4503 0.4337 0.4856 0.5095 0.4848 0.4951 | 0.1557 0.1862 0.1562 0.1489 0.1612 0.1685 0.1567 0.2300 | 0.2526 0.2464 0.2566 0.2356 0.2621 0.2928 0.2833 0.2621 | 0.5659 0.4971 0.5311 0.5274 0.5971 0.6018 0.5743 0.5315 | 0.1518 0.1596 0.1866 0.1577 0.1801 0.1906 0.1856 0.1725 | 0.0228 0.0242 0.0217 0.0202 0.0219 0.0231 0.0212 0.0237 | 0.5240 0.4774 0.5176 0.4922 0.5602 0.5804 0.5592 0.5677 | 0.0759 0.0797 0.0785 0.0681 0.0765 0.0780 0.0714 0.1024 | 0.2479 0.1891 0.2236 0.2407 0.2448 0.2726 0.2630 0.1769 | 0.0026 0.0230 0.0021 0.0826 0.0802 0.0003 0.0032 0.0031 | 0.2003       | 0.1166 0.1153 0.1531 0.1182 0.1307 0.1363 0.1256 0.1363<br>0.2005 0.1889 0.2006 0.1844 0.1976 0.2011 0.1968 0.2464 | 0.303/ 0.284/ 0.2910 0.2/62 0.3108 0.3246 0.3081 0.3354<br>0.4466 0.4463 0.4364 0.4483 0.4367 0.4366 0.3081 0.3354 | 0.1464 0.1304 0.1429 0.1293 0.1452 0.1491 0.1392 0.1537 | 0.2594 0.2930 0.2630 0.3149 0.3519 0.3382 0.2914 | 0.1250 0.1317 0.1203 0.1309 0.1314 0.1183 0.1485 | 0.2196 0.2025 0.2227 0.1988 0.2280 0.2411 0.2315 0.2234 | 0.1164 0.1100 0.1142 0.1120 0.1418 0.1458 0.1337 0.1352 | 0 2861 0 2703 0 2873 0 2445 0 2718 | 0.3673 0.3644 0.4236 0.3679 0.4144 0.4436 0.4172 0.4236<br>0.1967 0.1757 0.1946 0.1832 0.2138 0.2260 0.2132 0.1820 | 0                     | RF5                                                        | 09/09          | 09/09          | 09/10          | 09/09          | 00/00          | >                |
|             | 3 0.3169                                                | 5 0.7514                                                | 2 0.3235                                                | 0.3525                                                  | 0.2515                                                  | 5 0.3070                                                       | 3 0.1495                                                | 7 0.3165                                                | 5 0.2713                                                | 3 0.3915                                         | 3 0.3047                                         | 2 0.0043                                                | 9 0.3223                                                | 8 0.3049                                                | 5 0.2199                                                | 7 0.3774                                                | 5 0.5894                                                | 3 0.1862                                                | 5 0.3756                                                | 5 0.5095                                                | 2 0.1685                                                | 1 0.2928                                                | 1 0.6018                                                | 1 0.1906                                                | 9 0.0231                                                | 2 0.5804                                                | 5 0.0780                                                | 8 0.2726                                                |                                                         | 10020        | 0.1363                                                                                                             | 0.3246                                                                                                             | 2 0.1491                                                | 9 0.3519                                         | 9 0. 1314                                        | 0.2411                                                  | 8 0.1458                                                | R 0 2797                           | 3 0.2260                                                                                                           | 0 1                   | RF6                                                        | 09/09/20 19:28 | 09/09/20 22:14 | 09/10/20 00:19 | 09/09/20 20:30 | 09/09/20 20:51 |                  |
|             | 0.3265                                                  | 0.7364                                                  | 0.3234                                                  | 0.3537                                                  | 0.2157                                                  | 0.3125                                                         | 0.1513                                                  | 0.3100                                                  | 0.2802                                                  | 0.3876                                           | 0.3020                                           | 0.0042                                                  | 0.3102                                                  | 0.3099                                                  | 0.2191                                                  | 0.3926                                                  | 0.5731                                                  | 0.1845                                                  | 0.4046                                                  | 0.4848                                                  | 0.1567                                                  | 0.2833                                                  | 0.5743                                                  | 0.1856                                                  | 0.0212                                                  | 0.5592                                                  | 0.0714                                                  | 0.2630                                                  | 0.0002                                                  | 0.1900       | 0.1250                                                                                                             | 0.3081                                                                                                             | 0.1392                                                  | 0.3382                                           | 0.1183                                           | 0.2315                                                  | 0.1337                                                  | 0 2797 0 2580 0 2894               | 0.4172                                                                                                             | 0 4 7 0               | RF7                                                        | ω.             | . 4            | Φ,             | <b>.</b>       | ) ale/ I iii   |                  |
|             | 0.2742 -                                                | 0.6836 -                                                | 0.2862 -                                                | 0.3306 -                                                | 0.1924 -                                                | 0.3154 (                                                       | 0.1615 (                                                |                                                         |                                                         | 0.3756 -                                         | 0.2285 -                                         | 0.0030 -                                                | 0.2503 -                                                | 0.2927 -                                                | 0.2399 -                                                | 0.3363 -                                                | 0.4374 -                                                | 0.2053 -                                                |                                                         | 0.4951 (                                                | 0.2300 -                                                | 0.2621 -                                                | 0.5315 -                                                | 0.1725                                                  | 0.0237 -                                                | 0.5677 -                                                | 0.1024                                                  | 0.1769 -                                                | 0.0331                                                  | 0.2404       | 0.1369                                                                                                             | 0.3354 -                                                                                                           | 0.1537 -                                                | 0.2914 -                                         | 0.1485 -                                         | 0.2234 -                                                | 0.1352 -                                                | 0 2894                             | 0.4290 -<br>0.1820 -                                                                                               |                       | RF8                                                        |                |                |                |                | į              | )                |
|             | İ                                                       |                                                         | İ                                                       | ı                                                       | 1                                                       | ).3077                                                         | 0.1579                                                  |                                                         | 0.2902                                                  | į                                                | -                                                | •                                                       | •                                                       | 1                                                       | 1                                                       |                                                         | İ                                                       | İ                                                       |                                                         | 0.3564                                                  |                                                         | •                                                       | İ                                                       | İ                                                       |                                                         | 1                                                       | İ                                                       | İ                                                       |                                                         |              |                                                                                                                    | l                                                                                                                  | İ                                                       | ļ                                                |                                                  |                                                         |                                                         | İ                                  |                                                                                                                    |                       | RF9                                                        |                | <b>)</b> 00 (  | თ .            | 1 4            | Level #        | 2                |
|             | 0.293 5.81                                              | 0.6964.30                                               | 0.299 5.08                                              | 0.333 4.98                                              | 0.2194.68                                               | 0.299 5.19                                                     | 0.1525.15                                               | 0.257 5.03                                              | 0.280 4.95                                              | 0.3744.85                                        | 0.2715.07                                        | 0.00380 5.73                                            | 0.291 4.69                                              | 0.293 4.67                                              | 0.2114.82                                               | 0.351 4.66                                              | 0.5094.56                                               | 0.1843.96                                               | 0.363 4.28                                              | 0.4583.96                                               | 0.1703.64                                               | 0.2613.36                                               | 0.553 4.31                                              | 0.1734.17                                               | 0.0224 3.80                                             | 0.5353.57                                               | 0.0789338                                               | 0.232 3.50                                              | 0.0322 3.27                                             | 0.2023.74    | 0.12/ 3.33                                                                                                         | 0.304 3.20                                                                                                         | 0.1423.17                                               | 0.299 2.96                                       | 0.1302.74                                        | 0.221 2.37                                              | 0.126 2.66                                              | 0 273 2 30                         | 0.4062.14                                                                                                          | 2 9                   | AvgRf                                                      |                | <b>1</b>       | <b>1</b>       | <b>=</b>       |                | ŧ                |
|             | 5.81 1                                                  | 4.30                                                    | 5.08 1                                                  | 4.98 1                                                  | 4.68 0                                                  | 5.19 1                                                         | 5.15                                                    | 5.03 0                                                  | 4.95                                                    | 4.85 1                                           | 5.07 1                                           | 5.73 0                                                  | 4.69 1                                                  | 4.67 1                                                  | 4.82 1                                                  | 4.66 1                                                  | 4.56 1                                                  | 3.96 1                                                  | 4.28 0                                                  | 3.96 0                                                  | 3.64 0                                                  | 3.36 0                                                  | 4.31 0                                                  | 4.17 1                                                  | 3.80<br>0                                               | 1                                                       | 338 0                                                   | _                                                       | 3 65                                                    | 2 7 4        | 374                                                                                                                | 3.20 0                                                                                                             | 3.17 0                                                  | 2.96 0                                           | 2.74 0                                           | •                                                       | 2.66 0                                                  | 230 0                              | 212 0                                                                                                              |                       | 円<br>()                                                    | 0000           | 1M139261 F     | 1M139271 C     | 1M139266 F     | M130262 D      | ?                |
|             | .00                                                     | .00                                                     |                                                         | 8                                                       | -                                                       | _                                                              |                                                         | .999 1.                                                 |                                                         |                                                  | ı                                                | w                                                       |                                                         |                                                         |                                                         | 8                                                       |                                                         |                                                         |                                                         |                                                         | - 1                                                     |                                                         | w                                                       |                                                         |                                                         | 999                                                     | 90                                                      | 999                                                     | 8                                                       | 3 8          | -10                                                                                                                |                                                                                                                    |                                                         | .999 0.                                          | 1                                                | 999                                                     | 998                                                     |                                    | 999                                                                                                                | 3                     | Ξ ¦                                                        |                |                |                | •              | -<br>-         |                  |
|             | 00 6.                                                   | 5.                                                      |                                                         | .00 4.8                                                 | Ψ                                                       |                                                                |                                                         | <br>1                                                   | 2.7                                                     |                                                  | 1.00                                             | w                                                       |                                                         | 1.00 4.2                                                |                                                         | 1.00 7.2                                                |                                                         | 5.8                                                     |                                                         |                                                         | Ì                                                       | w                                                       |                                                         |                                                         | 0.999 6.0                                               |                                                         |                                                         | U                                                       | 100 73                                                  | 100 53       | 9                                                                                                                  |                                                                                                                    |                                                         | w                                                |                                                  | 1.00 6.4                                                | u                                                       |                                    | 0.999 9.0                                                                                                          |                       | Corr2 %Rsd                                                 |                | CA (           | CAL @ 250 PPB  | CA (0)         | ລ .            | 2                |
|             | 9 0.20                                                  | ω                                                       |                                                         | 8 0.10                                                  | 11 0.10                                                 |                                                                |                                                         | 18 0.10                                                 |                                                         | 9 0.20                                           | -                                                | 14                                                      | 00                                                      | 2                                                       | 4                                                       |                                                         |                                                         |                                                         |                                                         |                                                         | 16 0.10                                                 | 2 0.10                                                  | 7                                                       | <b>σ</b> (                                              |                                                         | -                                                       | 13 0.10                                                 | 5 6                                                     | ມ (                                                     | ء د<br>ج     | <b>.</b>                                                                                                           |                                                                                                                    |                                                         |                                                  | i                                                |                                                         |                                                         |                                    | 0 0.10                                                                                                             | 3                     | <u>8</u>                                                   | ,              | O 1 PPR        | O PPB          | @ 50 PPB       | S DDR          |                  |
|             | 20.0                                                    | 20.0                                                    |                                                         |                                                         |                                                         |                                                                |                                                         |                                                         |                                                         |                                                  | 20.0                                             | <b>1</b> 00                                             | 20.0                                                    | 20.0                                                    | 20.00                                                   |                                                         | a                                                       |                                                         |                                                         |                                                         |                                                         |                                                         | 20.0                                                    | 20.0                                                    |                                                         |                                                         | ນ                                                       | 20.0                                                    | 20.5                                                    |              |                                                                                                                    | a                                                                                                                  | Ø                                                       | 20.00                                            |                                                  |                                                         |                                                         |                                    | 20.00                                                                                                              | ર :                   | [V]                                                        | ,              | _              | <b>.</b>       | ~ .            |                | !                |
|             | 0 5.00                                                  | 5.00                                                    | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 0 5.00                                                         | 30.00 30.00                                             | 20.00 5.00                                              | 0 30.00                                                 | 20.00 5.00                                       | 20.00 5.00                                       | 1000. 250.0                                             | 20.00 5.00                                              | 20.00 5.00                                              | 0 5.00                                                  | 20.00 5.00                                              | 0 5.00                                                  | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 20.00 5.00                                              | 20,00 5.00                                              | 20.00 5.00                                              | 100.0 25.00                                             | 20.00 5.00                                              | 100 0 25 00                                             | 20.00 5.00                                              | 20.00 5.00                                              | 100 0 25 00  | 20.00                                                                                                              | 0 5.00                                                                                                             | 20.00 5.00                                              | 0 5.00                                           | 0 5.00                                           | 0 5.00                                                  | 0 5.00                                                  | 500                                | 0 5 00                                                                                                             | 3                     | 11<br>LVI2                                                 | 70000          | 09/09/20 19:48 | 09/09/20 23:16 | 09/09/20 21:33 | OO:OC OC/OO/OO | ><br>i           |
|             | 10.00 5                                                 | 10.00 5                                                 | 10.00 5                                                 | 10.00 5                                                 | 10.00 50.00                                             | 10.00 50.00                                                    | 30.00 30.00                                             | 10.00 5                                                 | 30.00 3                                                 | 10.00 5                                          | 10.00 50.00                                      | 500.0 2                                                 | 10.00 5                                                 | 10.00 5                                                 | 10.00 5                                                 | 10.00 50.00                                             | 10.00 50.00                                             | 10.00 50.00                                             | 10.00 50.00                                             | 10.00 50.00                                             | 10.00 50.00                                             | 10.00 50.00                                             | 10.00 50.00                                             | 10.00 5                                                 | 50.00 250.0                                             | 10.00 50.00                                             | 50 00 2                                                 | 10.00 50.00                                             | 10 00 50 00                                             | 50.00 250.00 | 10.00 50.00                                                                                                        | 10.00 50.00                                                                                                        | 10.00 5                                                 | 10.00 50.00                                      | 10.00 5                                          | 10.00 5                                                 | 10.00 5                                                 | 10005                              | 10 00 5                                                                                                            |                       | Calibrat<br>Lvi3                                           | Ġ              | 10.48          | 23.16          | 21:33          | 9/20 20:00     | 7                |
|             | 50.00 100.0                                             | 10.00 50.00 100.0                                       | 10.00 50.00 100.0                                       | 10.00 50.00 100.0                                       | 0.00 100.0                                              | 0.00 100.0                                                     | 0.00 30.00                                              | 50.00 100.0                                             | 30.00 30.00                                             | 10.00 50.00 100.0                                | 0.00 100.0                                       | 500.0 2500. 5000.                                       | 50.00 100.0                                             | 50.00 100.0                                             | 50.00 100.0                                             | 0.00 100.0                                              | 0.00 100.0                                              | 0.00 100.0                                              | 0.00 100.0                                              | 0.00 100.0                                              | 0.00 100.0                                              | 0.00 100.0                                              | 0.00 100.0                                              | 10.00 50.00 100.0                                       | 50.0 500.0                                              | 0.00 100.0                                              | 50 00 250 0 500 0                                       | 0.00 100.0                                              | 000 100 0                                               |              | 100.0                                                                                                              | 0.00 100.0                                                                                                         | 10.00 50.00 100.0                                       | 0.00 100.0                                       | 10.00 50.00 100.0                                | 10.00 50.00 100.0                                       | 10.00 50.00 100.0                                       | 10 00 50 00 100 0                  | 10.00 50.00 100.0                                                                                                  | 3                     | Calibration Level Concentrations  Lvi3 Lvi4 Lvi5 Lvi6 Lvi7 |                |                |                |                | 7              |                  |
| 1           | ).0 250.0                                               |                                                         |                                                         |                                                         | 0.0 250.0                                               | 0.0 250.0                                                      |                                                         |                                                         |                                                         |                                                  |                                                  |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         | 0 050 0                                                 |              |                                                                                                                    |                                                                                                                    |                                                         |                                                  |                                                  |                                                         |                                                         |                                    | 0.0 250.0                                                                                                          | 2                     | V5 LV                                                      |                |                |                |                |                |                  |
| Pag         | 0 500.0                                                 |                                                         |                                                         |                                                         | 0 500.0                                                 | 0 500.0                                                        |                                                         |                                                         |                                                         |                                                  | 0 500.0 1.00                                     | 0 25000                                                 |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         | 500.0                                                   | 2500                                                    |                                                         | 5000                                                    |              |                                                                                                                    | 500.0                                                                                                              |                                                         | 0 500.0                                          |                                                  |                                                         |                                                         |                                    | 500.0                                                                                                              | 5<br>5<br>5           | itrations<br>6 Lvl7                                        |                |                |                |                |                |                  |
| Page 1 of 3 | 1.00                                                    | 1.00                                                    | 1.00                                                    |                                                         | 1.00                                                    | <u>1</u> .8                                                    | 30.00                                                   | 1.00                                                    | 0                                                       | <u>.</u><br>8                                    | 8                                                | 2500050.00                                              | 1.00                                                    | 1.00                                                    |                                                         |                                                         |                                                         |                                                         | 0                                                       | 200                                                     |                                                         |                                                         |                                                         |                                                         |                                                         | 2.0                                                     |                                                         |                                                         | 3 8                                                     |              | 3 8                                                                                                                | 1.00                                                                                                               |                                                         |                                                  |                                                  |                                                         |                                                         |                                    | 8 8                                                                                                                | 3                     | L/18 (                                                     |                |                |                |                |                |                  |
| 1           |                                                         |                                                         |                                                         |                                                         |                                                         | 0.50                                                           | 30.00                                                   |                                                         | 30.00                                                   |                                                  | İ                                                |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         | ,                                                       | 0.50                                                    | İ                                                       |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |                                                         |              |                                                                                                                    |                                                                                                                    |                                                         |                                                  | and the same                                     |                                                         |                                                         |                                    |                                                                                                                    | 1                     | LVI9                                                       |                |                |                |                |                |                  |

Flags

Note:

Avg Rsd: 8.758

a - failed the min tf criteria

Corr I = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Correlation Coefficient for Quadratic Curve was used for compound.

# Form 6 Initial Calibration

Instrument: GCMS\_1

| . 4                                 |                          |                                                          |                                                         |                           |            |            |                 |                |                                                                                 |
|-------------------------------------|--------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------|------------|------------|-----------------|----------------|---------------------------------------------------------------------------------|
| Level #:                            | Data File                | )<br>:                                                   | ate/Time                                                | Level #:                  | Data File  |            | Cal Identifier: |                | Analysis Date/Time                                                              |
|                                     | 1M139264.D               | CAL @ 20 PPB                                             | 09/09/20 20:51                                          | 2 1M13                    | M139262.D  | CAL<br>@ 5 | ב<br>ב<br>ב     |                | 3.33                                                                            |
|                                     | 1M139274.D               | CAL @ 100 PPB                                            | 09/10/20 00:19                                          |                           | 1M139271.D | CAL @ 2:   | . @ 250 PPB     | 09/09/20 23:16 | 9.16                                                                            |
| 9 7                                 | 1M139268.D<br>1M139260.D | CAL @ 500 PPB<br>CAL @ 0.5 PPB                           | 09/09/20 22:1 <b>4</b><br>09/09/20 19:28                |                           | 1M139261.D | CAL @ 1    | PP8             | 09/09/20 19:48 | 9:48                                                                            |
| Compound                            | Col Mr Fit:              | RF1 RF2 RF3 RF4                                          | RF5 RF6 RF7 RF8 RF9                                     | AvgRf RT                  | Corri      | Corr2 %Rsd | isd             | LVI1 LVI2      | Calibration Level Concentrations  Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 Lvl8 Lvl9            |
|                                     |                          | 0.1912 0.1790 0.2181 0.2191                              | 1 0.2678 0.2859 0.2836 0.1912                           | 0.230 5.66                | 66 1.00    | 1.00 1     | 19 0.10         | 5.00           | 1.00                                                                            |
| Dibromomethane                      |                          | 0.1709 0.1553 0.1636 0.1557 0.1707                       | 7 0.1707 0.1763 0.1796 0.1526                           | 0.166 5.73                |            |            |                 | 5.8            | 50.00 100.0 250.0 500.0                                                         |
| 1.2-Dichloropropane Trichloroethene |                          | 0.2171                                                   | 0.2171                                                  | 0.215 5.67                |            |            |                 | 3 5            | 50.00 100.0 250.0 500.0                                                         |
| Benzene                             | 1 0 AVA 0 AVA            | 0.8430 0.7706 0.8042 0.789                               | 0.8430                                                  | 40 0.790 5.19             | 1.00       | 1.00       | 10 0.50         | 20.00 5.00 1   | 10.00 50.00 100.0 250.0 500.0 1.00 0.50                                         |
| tert-Amyl methyl ether              | ,                        | 0.4764 0.3856 0.4327 0.4839 0.5435 0.5557                | 9 0.5435 0.5557 0.5684 0.4341                           | ĺ                         | ļ          |            | 14              | 5.00           | 50.00 100.0 250.0 500.0 1.00                                                    |
| Iso-propylacetate                   |                          | 0.4523 0.4180 0.4318 0.4373 0.4709 0.4620                | 3 0.4709 0.4620 0.4113 0.3976                           | 0.435 5.19                | _          |            | 0.50            | 20.00 5.00     | 50.00 100.0 250.0 500.0                                                         |
| Dibromochloromethan                 | 1 0 AVG                  | 0.2939                                                   | 0 0.2983 0.3087 0.3063 0.2409                           | 0.283 6.67                | 67 1.00    | 1.00       | 8.3 0.10        | 20.00 5.00     | 10.00 50.00 100.0 250.0 500.0 1.00                                              |
| 2-Chloroethylvinylethe              | _                        | 0.0594 0.0473 0.0535 0.0597 0.0693 0.0697                |                                                         | 0.0577 5.95               | 0.9        | :          |                 | 5.00           | 50.00 100.0 250.0 500.0                                                         |
| cis-1,3-Dichloropropen              | 1 0 Ava                  | 0.3782 0.3292 0.3575 0.367                               | 0.3782                                                  | 0.364 6.05                |            | 1.00 9.7   | 7 0.20          | 20.00 5.00 1   | 10.00 50.00 100.0 250.0 500.0 1.00                                              |
| Ethyl methacrylate                  |                          | 0.2363 0.1856 0.2061 0.227                               | 0.2363 0.1856 0.2061 0.2277 0.2521 0.2504 0.2413 0.1938 | 0.224 6.36                |            |            |                 | 5.00           | 50.00 100.0 250.0 500.0                                                         |
| 1,1,2-Trichloroethane               |                          | 0.2401 0.2249 0.2463 0.226                               | 0.2401 0.2249 0.2463 0.2263 0.2362 0.2361 0.2262 0.2333 | 0.234 6.44                | 1.00       |            |                 | 5.00           | 50.00 100.0 250.0 500.0                                                         |
| 1,3-Dichloropropane                 | 1 0 Avg                  | 0.4174 0.3828 0.4056 0.3874 0.4138 0.4141                | 0.4174 0.3828 0.4056 0.3874 0.4138 0.4141 0.3943 0.3792 | 0.399 6.54                | -          | 1.00 3.8   | 8 (             | 20.00 5.00 1   | 10.00 50.00 100.0 250.0 500.0 1.00                                              |
| 4-Methyl-2-Pentanone                | _                        | 0.2873 0.2403 0.2558 0.2725 0.2986 0.2995                | 5 0.2986 0.2995 0.2795 0.2260                           | 0.2706.11                 |            |            |                 | 5.00           | 50.00 100.0 250.0 500.0                                                         |
| ∠-⊓exanone<br>Tetrachloroethene     | 1 0 Avg                  | 0.2138                                                   | 0.2138                                                  | 0.205 6.55                | 54 0.999   | 1.00       | 7 0.20          | 5.00           | 10.00 50.00 100.0 250.0 500.0 1.00                                              |
| Toluene-d8                          | 1 0 Avg                  | 1.2585 1.2420 1.2649 1.247                               |                                                         | į                         | 1          | 1          |                 | 30.00          | 30.00 30.00 30.00 30.00                                                         |
| Toluene                             |                          | 0.6226                                                   | 7 0.6115 0.6037 0.5659 0.5761                           | 0.593 6.24                |            | 1.00 3.8   | 8 0.40          |                | 50.00 100.0 250.0 500.0                                                         |
| Chlorobenzene                       | 1 0 Ava                  | 0.2012 0.2339 0.2313 0.241<br>0.7099 0.6515 0.7119 0.656 | 0.7099                                                  | 0.6927.01                 |            |            | 6 0.50          |                | 10.00 50.00 100.0 250.0 500.0 1.00                                              |
| n-Butyl acrylate                    |                          | 0.7654 0.6133 0.6768 0.7684 0.8869 0.9466                | 4 0.8869 0.9466 0.9217 0.6136                           | 0.7747.25                 | 25 1.00    |            |                 |                | 50.00 100.0 250.0 500.0                                                         |
| n-Amyl acetate                      | !                        | 0.8011 0.6638 0.7252 0.757                               | 0.8011                                                  | 0.7557.37                 | 1          | i          |                 |                | 50.00 100.0 250.0 500.0                                                         |
| Ethylbenzene                        | 1 0 Avg (                | 0.3694 0.3972 0.4713 0.450                               | 0.4694 0.3972 0.4713 0.4501 0.4912 0.5144 0.4975 0.5210 | 0.4777.05                 |            | 1.00 8.4   | 0.10            | 20.00 5.00 1   | 10.00 50.00 100.0 250.0 500.0 1.00                                              |
| 1,1.2.2-Tetrachloroeth              | _                        | 0.5926 0.5820 0.5843 0.5347 0.5733 0.5996                | 0.5862 0.6850                                           |                           | 68 1.00    |            |                 | •              | 50.00 100.0 250.0 500.0 1.00                                                    |
| Styrene                             | 1 0 Avg                  | 0.7353                                                   | 0.7353                                                  | 44 0.7567.63<br>1 14 7 34 | 263<br>100 |            | 10 030          | 30.00 30.00 3  | 30.00 30.00 30.00 30.00 30.00 30.00 30.00<br>10.00 50.00 100 0 250 0 500 0 1.00 |
| m&p-Xylenes                         | _ İ                      | 0.6832 0.5682 0.6548 0.6583 0.7010 0.7136                | 0.6990 0.6183                                           | 0                         | 1.0        |            |                 | 9              | 100.0 200.0 500.0 1000.                                                         |
| o-Xylene                            | 1 0 Avg                  | 0.6924                                                   | 0.6924                                                  | 0.655 7.33                | 33 1.00    | 1.00 9.7   | 7 0.30          |                | 10.00 50.00 100.0 250.0 500.0 1.00                                              |
| 1,3-Dichlorobenzene                 |                          | 1.0187 0.9494 1.0109 0.940                               | 1.0187 0.9494 1.0109 0.9406 1.0208 1.0446 0.9888 0.9041 | 0.985 8.25                | 0.9        |            | 9 0.60          | 20.00 5.00 1   | 50.00 100.0                                                                     |
| 1,4-Dichlorobenzene                 |                          | 1.0385 0.9920 1.0448 0.968                               | 1.0385 0.9920 1.0448 0.9688 1.0456 1.0712 1.0134 1.0830 | 1.03 8.30                 | -          | 1.00       | 7 0.50          |                | 50.00 100.0 250.0 500.0                                                         |
| 1.2-Dichlorobenzene                 |                          | ).9899                                                   | 0.9899                                                  | 0.9738.52                 |            |            |                 |                | 50.00 100.0 250.0 500.0                                                         |
| Cyclohexanone                       | 1 0 Ava                  | 0.0229 0.0150 0.0220 0.0203 0.0230 0.0229                | 0.0229 0.0150 0.0220 0.0203 0.0230 0.0229 0.0210 0.0169 | 0.02057.60                | 60 0.998   | 1.00       | 다<br>다<br>다     | 100.0 25.00 5  | 50.00 250.0 500.0 1250. 2500. 5.00                                              |
| Camphene                            |                          | 0.4118 0.3948 0.4759 0.4454 0.5182 0.5685                | 4 0.5182 0.5685 0.5711 0.4618                           | 0.4817.70                 | 0.0        | 1.00       | 4               |                | 50.00 100.0 250.0 500.0                                                         |
| 1.2.3-Trichloropropane              | 1 0 Avq                  | 0.7382 0.7074 0.7201 0.691                               | 0.7382 0.7074 0.7201 0.6910 0.7463 0.7785 0.7440 0.8067 | 0.7427.72                 | 0.0        | 1.00       | )   -           | ١.             | 100.0 250.0                                                                     |
| 2-Cniorotomene                      | 1 O AVQ                  | 1. 1665 1.0354 1.1522 1.090                              | 1.1665 1.0354 1.1522 1.0906 1.1791 1.2253 1.1366 1.1868 | 1.157.82                  | 82 0.999   | 1.00       | 2               | 20.00 5.00     | 10.00 50.00 100.0 250.0 500.0 1.00                                              |
|                                     |                          |                                                          |                                                         |                           |            |            |                 |                |                                                                                 |

a - failed the min rf criteria

a - failed the min rf criteria

Corr l = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

c - failed the minimum correlation coeff criteria(if applicable) Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Avg Rsd: 8.758

Note:

Page 2 of 3

Form 6

| 3 T <b>C</b> C | Method: EPA 8260D  Level #: | Data File    | File: Cal Identifier:                     | Ini<br>Analysis Date/Time                                      | Initial Calibration Level #: | tion<br>Data   | File        |               | Cal Identific  | Cal Identifier: Anah               |
|----------------|-----------------------------|--------------|-------------------------------------------|----------------------------------------------------------------|------------------------------|----------------|-------------|---------------|----------------|------------------------------------|
| ٧              | ا <b>د س</b><br>ا           | 1M139264.D   | CAL<br>@                                  | 09/09/20 20:51                                                 | 0 4                          | 1M139262.D     |             | @ 50 PPB      |                | 09/09/20 20:09<br>09/09/20 21:33   |
| . د            | <b>G</b> 1 (                | 1M139274.D   | CAL @ 100 PPB                             | 09/10/20 00:19                                                 | თ .                          | 1M139271.D     |             | CAL @ 250 PPB |                | 23:16                              |
| 2              | 7 .                         | 1M139268.D   | CAL @ 500 PPB                             | 09/09/20 22:14                                                 | œ                            | 1M139261.D     |             | @ 1 PPB       | 09/09/20 19:48 | 19:48                              |
|                | 9                           | 1M139260.D   | CAL @ 0.5 PPB                             | 09/09/20 19:28                                                 |                              |                |             |               |                |                                    |
| _              |                             | Col Mr. Fig. | DE1 DE2 DE3 DE4                           | DER DE6 DE7 DE8                                                | DEO ANDE                     |                | Series Comp | %Ded          | - <u> </u>     | Calibration Level Concentrations   |
| ַ ו            | one                         | 1 0 Ava      | 1.7532 1.5023 1.7302 1.728                | 7 1.8820 2.0542 1.8689                                         | !                            | 57.81          | 998 0.999   |               | σı             | 10.00 50.00 100.0 250.0 500.0 1    |
|                | 4-Chiorotoluene             | 1 0 Avg      | 1.1573 1.1275 1.1800 1.094                | .1573 1.1275 1.1800 1.0949 1.1893 1.2361 1.1622 1.0712         | 1                            |                | 0.999 1.00  |               | 20.00 5.00     | 10.00 50.00 100.0 250.0 500.0 1.00 |
| _              | n-Propylbenzene             | 1 0 Avg      | 2.0890 1.9142 2.0944 2.020                | 1.9142 2.0944 2.0200 2.2275 2.3088 2.1481 1.9328               |                              | 2.097.75 0.    |             |               | 20.00 5.00     | 10.00 50.00 100.0 250.0 500.0 1.00 |
| _              | Bromobenzene                | 1 0 Avg      | 1.1504 1.0913 1.1763 1.087                | .1504 1.0913 1.1763 1.0879 1.1865 1.2520 1.1489 1.1688         | -                            | 1.167.72 0.    | 998 0.999   | _             | 20.00 5.00     | 10.00 50.00 100.0 250.0 500.0 1.00 |
|                | 1,3,5-Trimethylbenzen       | 1 0 Avg      | 1.5327 1.3812 1.5427 1.470                | 1.3812 1.5427 1.4700 1.6057 1.5433 1.4780 1.2648               |                              | 1.487.84 0.    |             | 7.4           | 20.00 5.00     | 10.00 50.00 100.0 250.0 500.0 1.00 |
| _              | Butyl methacrylate          | 1 0 Avg      | 0.6097 0.4882 0.5561 0.560                | 0.4882 0.5561 0.5600 0.6167 0.6000 0.6039 0.4915               | 0.                           | 0.566 7.85 1.  | 00 1.00     |               | 20.00 5.00     | 10.00 50.00 100.0 250.0 500.0 1.00 |
| _              | -Butylbenzene               | 1 0 Avg      | 1.3485 1.1612 1.3213 1.403                | .3485 1.1612 1.3213 1.4036 1.5745 1.6580 1.5849 1.1234         | 1                            | 1.408.04 0.    | 999 1.00    | 14            | 20.00 5.00     | 10.00 50.00 100.0 250.0 500.0 1.00 |
|                | 1.2.4-Trimethylbenzen       | 1 0 Avg      | 1.6021 1.3113 1.5381 1.5620 1.7149 1.7535 | 0 1.7149 1.7535 1.6331 1.1645                                  | 1                            | 1.538.06 0.    | 999 1.00    | 13            | 20.00 5.00     | 10.00 50.00 100.0 250.0 500.0 1.00 |
|                | sec-Butylbenzene            | 1 0 Avg      | 1.7088 1.4499 1.7186 1.746                | .7088 1.4499 1.7186 1.7469 1.9874 2.0480 1.9082 1.3809         | 1                            | 1.748.16 0.    | 999 1.00    | 14            | 20.00 5.00     | 10.00 50.00 100.0 250.0 500.0 1.00 |
|                | 4-Isopropyttoluene          | 1 0 Avg      | 1.5212 1.2438 1.5053 1.569                | .5212 1.2438 1.5053 1.5690 1.7712 1.8092 1.6738 1.0820         | -<br> -                      | 1.528.23 0.    | 998_1.00    | į             | 20.00 5.00     | 10.00 50.00 100.0 250.0 500.0 1.00 |
| _              | n-Butylbenzene              | 1 0 Avg      | 1.7386 1.4656 1.7391 1.7444 1.9201        | <b>И</b> 1.9201 1.9371 1.7642 1.4282                           |                              | 1.728.47 0.    | 998 1.00    | 11            | 20.00 5.00     | 10.00 50.00 100.0 250.0 500.0 1.00 |
|                | p-Diethylbenzene            | 1 0 Avg      | 0.8574 0.6848 0.8049 0.903                | 0.8574 0.6848 0.8049 0.9035 1.0320 1.0606 0.9849 0.6668        | 0.                           | 0.8748.45 0.   | 998 1.00    |               | 20.00 5.00     | 10.00 50.00 100.0 250.0 500.0 1.00 |
|                | 1.2.4.5-Tetramethylbe       | 1 0 Qua      | 1.2716 0.8768 1.0787 1.394                | .2716 0.8768 1.0787 1.3943 1.6251 1.6484 1.5055 0.8930         | 1                            | 1.298.91 0.    | 998 1.00    |               | 20.00 5.00     | 10.00 50.00 100.0 250.0 500.0 1.00 |
|                | 1.2-Dibromo-3-Chloro        | 1 0 Avg      | 0.1620 0.1512 0.1566 0.159                | 0.1620 0.1512 0.1566 0.1595 0.1769 0.1794 0.1657 0.1606        | - 0.                         | 0.1648.97 0.   | 998 1.00    |               | 20.00 5.00     | 0.00 50.00 100.0 250.0             |
| _              | Camphor                     | 1 0 Qua      | 0.0666 0.0451 0.0541 0.07                 | 0.0666 0.0451 0.0541 0.0715 0.0851 0.0855 0.0834 0.0447 0.0385 |                              | 0.0639 9.41 1. | 00 1.00     |               | 200.0 50.00    | 00.0 500.0 1000                    |
| _              | Hexachlorobutadiene         |              | 0.2847 0.2671 0.3023 0.283                | 0.2847 0.2671 0.3023 0.2831 0.3126 0.3067 0.2923 0.2771        | 0.                           | 0.291 9.55 0.  | 999 1.00    |               | 20.00 5.00     | 0.00 50.00 100.0 250.0             |
|                | 1,2,4-Trichlorobenzen       | 1 0 Avg      | 0.6761 0.5550 0.6347 0.644                | 0.6761 0.5550 0.6347 0.6448 0.6965 0.6776 0.6353 0.5276        | 0.                           | 0.631 9.46 0.  | 999 1.00    |               | 20.00 5.00     | 0.00 50.00 100.0 250.0             |
|                | 1.2.3-Trichlorobenzen       | 1 0 Avg      | 0.5997 0.5032 0.5646 0.576                | 0.5997 0.5032 0.5646 0.5762 0.6366 0.6201 0.5926 0.5602        | 0.                           | 0.582 9.76 0.  | 999 1.00    |               | 20.00 5.00 1   | 0.00 50.00 100.0 250.0             |
|                |                             |              |                                           |                                                                |                              |                |             |               |                |                                    |

Naphthalene

1 0 Avg 1.7064 1.2728 1.5139 1.7305 1.9502 1.8956 1.7245 1.1797 ----

1.62 9.62 0.997 1.00

17

20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00

Avg Rsd: 8.758

Note:

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

c - failed the minimum correlation coeff criteria(if applicable) Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Page 3 of 3

# Form 6 Initial Calibration

Instrument: GCMS\_6

| 1                                       | Bro                         | ۷in                         | Car                                       | 11                          | 2-B                                       | 1.2                                | 1.2                                | δ                                  | Dib                         | 단                                  | <u>.</u>                           | 1.4                         | E !                                | ر<br>د د                                                                 | D CK-                       | Ē                                         | trar                               | <u>.</u>             | Mei                         | <u> </u>                                  | <u> </u>           | ! 구<br>: 王                         | <u>₽</u>           | Car<br>Car                                | <u>ک</u> ک                         | <u>₹</u> ₫                         | A Cr                               | Me                          |                                    | Furan             | T = =                 | <u> </u>                                  | ζin.                        | Bro                         | 오 :           | <u> </u>                                     |              |                                  | 00             | 23                               | ں ز            |            |
|-----------------------------------------|-----------------------------|-----------------------------|-------------------------------------------|-----------------------------|-------------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------|------------------------------------|------------------------------------|-----------------------------|------------------------------------|--------------------------------------------------------------------------|-----------------------------|-------------------------------------------|------------------------------------|----------------------|-----------------------------|-------------------------------------------|--------------------|------------------------------------|--------------------|-------------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------|------------------------------------|-------------------|-----------------------|-------------------------------------------|-----------------------------|-----------------------------|---------------|----------------------------------------------|--------------|----------------------------------|----------------|----------------------------------|----------------|------------|
|                                         | Bromodichloromethan         | Vinyl Acetate               | Carbon Tetrachloride                      | 1,1,1-Trichloroethane       | 2-Butanone                                | .2-Dichloroethane                  | .2-Dichloroethane-d4               | Cyclohexane                        | Dibromofluoromethan         | Chloroform                         | 1-Dichloropropene                  | .4-Dioxane                  | Ethyl acetate                      | 2.2-Dichloropropane                                                      | cis-1.2-Dichloroethene      | Ethyl-t-butyl ether                       | trans-1,2-Dichloroethe             | 1,1-Dichloroethane   | Methyl-t-butyl ether        | Methyl Acetate                            | Di-isopropyl-ether | n-Hexane                           | t-Butyl Alcohol    | Carbon Disulfide                          | Acetone                            | Acrylonanie                        | Acrolein                           | Methylene Chloride          | 1, 1, 2-Trichloro-1, 2, 2-tr       | Furan             | Trichlorotluoromethan | Chloroethane                              | Vinyl Chloride              | Bromomethane                | Chloromethane | Cniorodifluorometha<br>Dichlorodifluorometha | Compound     |                                  | -              | 7 5                              | ω              | -          |
| Flags<br>a - failed th                  | 1 0 Ava                     | 1 0 Avg                     | 1 0 Avg                                   | 1 0 Avg                     | 1 0 Avg                                   | 1 0 Avg                            | 1 0 Avg                            |                                    | Α                           |                                    | - 1                                |                             | _                                  | 1 0 AVO                                                                  |                             | 10                                        | 1 0 Avg                            | 1 0 Avg              | 1 0 Avg                     |                                           | 1 0 Avg            |                                    | 1 0 Avg            |                                           | 1 0 Qua                            |                                    |                                    | 1 0 Qua                     |                                    | 1 0 Ava           | 1 0 Avg               |                                           | 1 0 Avg                     | 1 0 Avg                     | 1 0 Qua       | 1 0 AV                                       |              | ξ                                | 04100100       | 6M133180.D                       | 6M133176.D     | 0.00       |
| Flags<br>a - failed the min rf criteria | 0.2856 0.2958 0.            | 0.5028 0.4778 0.            | 0.2848 0.3679 0.                          | 0.3329 0.4040 0.            | 0.0811 0.1226 0.                          | 0.2786 0.2985 0.                   | 0.1308 0.1336 0.                   | 0.2476 0.3111 0.                   |                             | 0.3963 0.4312 0.                   | 0.2807 0.3440 0.                   | 0.0032                      | 0.1855 0.1575 0.                   | 0.1392 0.1031 0.                                                         | 0.3269 0.3414 0.            | 0.4490 0.4453 0.                          |                                    | 0.3276 0.3959 0.     | 0.4603 0.4280 0.            | 0.1147 0.1179 0                           | 0.4398 0.4431 0.   | 0.1757 0.2292 0.                   | 0.0199 0.0205 0.   | 0.5764 0.7304 0.                          | 0.0509 0.0601 0.0855               | 0.0645 0.0574 0.                   | 0.0268 0.0282 0.                   | 0.2207 0.2544 0.            | 0.1425 0.1930 0.                   | 0.2647            | 0.3986 0.5399 0.      | 0.1581 0.2353 0.                          |                             |                             | 0.2945        | 0.2219 0.2816 0.                             | 77.          | D :                              | ראב (® וידידים | S                                | CA             | 5          |
|                                         | 0.3267 0.2933 0.3000 0.3007 | 0.5164 0.5343 0.5449 0.5477 | 0.2848 0.3679 0.3909 0.3248 0.3358 0.3439 | 0.4131 0.3613 0.3659 0.3776 | 0.0811 0.1226 0.0854 0.0817 0.0806 0.0876 | 0.2985 0.3611 0.2680 0.2690 0.2617 | 0.1336 0.1417 0.1399 0.1316 0.1234 | 0.3111 0.3117 0.2690 0.2732 0.2718 | 0.2790 0.2801 0.2772 0.2802 | 0.4312 0.4917 0.4008 0.4029 0.4016 | 0.3440 0.3953 0.3009 0.3016 0.3052 | 0.0040 0.0032 0.0032 0.0032 | 0.1575 0.1685 0.1730 0.1714 0.1741 | 0.1651 0.1926 0.1504 0.1495 0.1419<br>0.3226 0.3541 0.3020 0.3107 0.3265 | 0.4047 0.3430 0.3387 0.3446 | 0.4490 0.4453 0.4216 0.4616 0.4824 0.4806 | 0.2560 0.2710 0.2234 0.2322 0.2340 | 0.4478 0.3398 0.3513 | 0.4590 0.4580 0.4712 0.4768 | 0.1147 0.1179 0.1180 0.1182 0.1164 0.1186 | 0.4398             | 0.2292 0.3071 0.1967 0.2009 0.1957 | 0.0312 0.0219 0.02 | 0.5764 0.7304 0.8360 0.6018 0.6134 0.6228 | 0.0601 0.0855 0.0504 0.0495 0.0513 | 0.0574 0.0849 0.0696 0.0661 0.0670 | 0.0282 0.0339 0.0280 0.0279 0.0287 | 0.3922 0.2176 0.2243 0.2152 | 0.1930 0.1958 0.1539 0.1577 0.1595 | 0.1235            | 0.4412                | 0.1581 0.2353 0.2619 0.1709 0.1732 0.1720 | 0.3710 0.2670 0.2747 0.2707 | 0.2607 0.1951 0.2060 0.2224 | 0.2484        | 0.2989 0.2342 0.2352                         | 774          | 0                                |                |                                  | j              | •          |
|                                         | 000 0.3007                  | 449 0.5477                  | 358 0.3439                                | 659 0.3776                  | 806 0.0876                                | 590 0.2617                         | 316 0.1234                         | 732 0.2718                         | 772 0.2802                  | 029 0.4016                         | 016 0.3052                         | 032 0.0032                  | 714 0 1741                         | 107 0 3265                                                               | 387 0.3446                  | 824 0.4806                                | 322 0.2340                         | 513 0.3462           | 712 0.4768                  | 164 0 1186                                | 573 0.4534         | 009 0.1957                         | 0.0213 0.0230      | 134 0.6228                                | 495 0.0513                         | 96 0 2690                          | 279 0.0287                         | 243 0.2152                  | 577 0.1595                         | 0.2291 0.2331     | 147 0.4484            | 732 0.1720                                | 747 0.2707                  | 060 0.2224                  | 377 0.2327    | 352 0.2353                                   |              | 0<br>n<br>n                      | 10100120 11.01 | 10/06/20 12:51<br>10/06/20 11:07 | 10/06/20 11:28 | 10,00,00   |
| Note:                                   | 1                           | 1                           |                                           | ł                           |                                           |                                    | 0.1368                             |                                    | 0.2862 0.2947               | -                                  |                                    |                             |                                    |                                                                          | -                           | 1                                         |                                    |                      | 0.5460                      |                                           |                    | -                                  | -                  |                                           |                                    | 1                                  | 1                                  |                             |                                    |                   | 1                     | -                                         | 1                           |                             | -             |                                              | X TO         | D<br>n<br>o                      |                |                                  |                |            |
|                                         | 1                           |                             |                                           | i                           |                                           | -                                  | 0.1368 0.1390                      | -                                  | 0.2947                      | i                                  | 1                                  | l                           |                                    |                                                                          | 1                           | -                                         | l                                  |                      | 1                           | l (1                                      |                    | İ                                  | 1                  |                                           |                                    | İ                                  | 1                                  |                             |                                    |                   | ł                     | İ                                         | 1                           | Ì                           | İ             |                                              | Z<br>G       | 0<br>0                           | o              | • ത                              | 4 .            |            |
| Correlation Coefficien                  | 0.300 5.59                  | 0.5214.05                   | 0.341 4.86                                | 0.3764.76                   | 0.0899 4.43                               | 0.2904.98                          | 0.1354.93                          | 0.281 4.80                         | 0.283 4.73                  | 0.421 4.63                         | 0.3214.85                          | 0.00334 5.53                | 0.1724.46                          | 0.1004.59                                                                | 0.3504.44                   | 0.457 4.32                                | 0.241 3.68                         | 0.3684.03            | 0.471 3.67                  | 0.1173.34                                 | 0.4504.06          | 0.218 3.90                         | 0.0230 3.51        | 0.663 3.23                                | 0.0580 3.05                        | 0.06833.64                         | 0.0290 2.92                        | 0.254 3.43                  | 0.167 3.01                         | 0.2462.84         | 0.479 2.56            | 0.1952.32                                 | 0.296 1.92                  | 0.225 2.23                  | 0.272 1.81    | 0.2/9 1.63                                   | AVGRITA      | i                                | 014100174      | 6M133194                         | 6M133179       | 0111.0011. |
| ~                                       | 1.00                        | 1.00                        | 1.<br>8                                   | 1.00                        | 0.999                                     | 1.00                               | <u>.</u>                           | 1.00                               | <u>.</u>                    | 1.00                               | 2                                  | 1.00                        | 1.00                               | 0.999                                                                    | 3.0                         | 1.00                                      | 1.00                               | 1.00                 | 1.00                        | 8                                         | 3 8                | 1.00                               | 0.999              | 0                                         | 1.00                               | 1.0                                | 2<br>8                             | 1.00                        | 1.00                               | 1.00              | 3 .0                  | 1.00                                      | 1.00                        | 0.999                       | 1.00          | . <u>.</u>                                   | Corr         | 3                                |                | 2 2                              |                |            |
| Avg Rsd: 12.54                          | 1.00                        | 1.00                        | 1.00                                      | 1.00                        | 1.00                                      | 1.00                               | <u>-</u>                           | 1.00                               | <u>.</u>                    | 1.00                               | 8                                  | 1.00                        | 2 6                                | 3 5                                                                      | 3 8                         | 9                                         | 1.00                               | 1.00                 | 1.00                        | 8                                         | 3 8                | 1.00                               | 1.00               | 1.00                                      | 1.00                               | 2.0                                | 1.00                               | 1.00                        | 1.00                               | 1.00              | 3 8                   | 1.00                                      | 1.00                        | 1.00                        | 1.00          | 1 :<br>8 :                                   | Conz         | 3                                | 5              | 2 2                              | CAL            | !          |
| £ 5.5                                   | 4.7                         | 5.2                         | =                                         | 7.8                         | <b>1</b> 8                                |                                    | 4.5                                |                                    |                             |                                    | ವೆ.                                | <b>=</b> 8                  | υ ·                                | 7,5                                                                      | 7.9                         |                                           |                                    |                      |                             | <u>.</u><br>ω (                           |                    | 22                                 | <b>1</b> 8         | i                                         | 2 2                                | 2 7                                | 8.7                                |                             |                                    | <b>1</b> 7        |                       | 22                                        |                             | 15                          | 21            | ನ ಶ                                          | à            | 0                                | 0.0            | _ @ 250 PPB                      | 50 PP          |            |
|                                         | 0.20                        | :                           | 0.10                                      | 0.10                        | 0.10 a                                    | 0.10                               |                                    | 0.10                               |                             | 0.20                               |                                    |                             |                                    |                                                                          | 0.10                        | 0.50 a                                    | 0.10                               | 0.20                 | 0.10                        | 0.10                                      | 2                  |                                    |                    | 0.10                                      | 0.10 a                             |                                    |                                    | 0.10                        | 0.10                               | 0.50 a            | 0.10                  | 0.10                                      | 0.10                        | 0.10                        | 0.10          | 0 0                                          | 5            | ļ                                | ď              | ĕ &                              | 00             |            |
|                                         | 20.00 5.00                  | 20.00 5.00                  | 20.00 5.00                                | 20.00 5.00                  | 20.00 5.00                                | 20.00 5.00                         | 30.00                              | 5.00                               | 0                           |                                    | 20.00 5.00                         | 1000. 250.0                 | 20.00 5.00                         | 20.00 5.00                                                               | 20.00 5.00                  | 20.00 5.00                                | 20.00 5.00                         | 20.00 5.00           | 20.00 5.00                  | 20.00 5.00                                | 20.00 5.00         |                                    | 0                  | 20.00 5.00                                | 100.0 25.00                        | 3 6                                | 0                                  | 20.00 5.00                  | 20.00 5.00                         | 20.00 5.00        | 20.00 5.00            | 20.00 5.00                                | 20.00 5.00                  | 20.00 5.00                  | 20.00 5.00    | 20.00 5.00                                   | ווי          |                                  | 10/00/20 10:4/ | 10/06/20 17:42                   | 10/06/20 12:30 |            |
|                                         |                             | 2.00 50                     |                                           |                             |                                           | 2.00                               | 30.00                              | 2.00                               | 30.00                       |                                    | 2.00                               | 100.0                       |                                    | 200 50.00                                                                |                             | 1                                         | 2.00 50.                           |                      |                             | - 1                                       | 2.00 50.           |                                    | 10.00              | 2.00 50.00                                | 10.00 250.0                        |                                    | 10.00                              | 2.00 50.00                  |                                    | 2.00 50           |                       |                                           | Ì                           |                             |               | 2.00 50                                      |              |                                  | 0.47           | 17:42                            | 12:30          |            |
|                                         | 100.0                       | 50.00 100.0 250.0           | 50.00 100.0 250.0                         | 50.00 100.0 250.0           | 50.00 100.0 250.0                         | 50.00 100.0 250.0                  | 30.00                              | 100.0                              | 30.00                       | 100.0                              | 100.0                              | 5000                        | 1000                               |                                                                          | 50.00 100.0 250.0           | 100.0                                     | 100.0                              | 100.0                | 50.00 100.0 250.0           | 50.00 100.0 250.0                         | 100.0              | 100.0                              | 500.0              | 100.0                                     | 0.0 500.0 1250.                    |                                    | 500.0                              | 100.0                       | 100.0                              | 50.00 100.0 250.0 | 100.0                 | 100.0                                     |                             | 100.0                       | 100.0         | 50.00 100.0 250.0                            | יאוא באוס בל | Calibration Level Concentrations |                |                                  |                |            |
| Page 1 of 3                             | 0.0                         | 0.0                         | 0.0                                       | 0.0                         | 0.0                                       |                                    | .00 30.00 30.00                    |                                    | .00 30.00 30.00             | 250.0                              | 0.0                                | 12500                       | ) O                                | 0.0                                                                      | 0.0                         | 0.0                                       | 0.0                                |                      | 0.0 1.00                    | 0.0                                       | 0.0                | 0.0                                | 50.                | 9.0                                       | 50 S                               | 0.0                                | <b>5</b> 0.                        | 0.0                         | 5.0                                | 2.0               | 0.0                   | 9.0                                       | 0.0                         | 9.0                         | 5.0           | 2.0                                          | NO LAIV LAIG |                                  |                |                                  |                |            |

Form 6 Initial Calibration

| a - failed the min rf criteria   |                | 2-Chlorotoluene           | 1,2,3-Trichloropropane                    | Camphene                                  | Cyclohexanone                             |                                           | Isopropylbenzene          | 1.2-Dichlorobenzene Isopropylbenzene | 1.4-Dichlorobenzene 1.2-Dichlorobenzene Isopropylbenzene | 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Isopropylbenzene | trans-1.4-Dichloro-2-b 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene Isopropylbenzene | o-Xylene trans-1,4-Dichloro-2-b 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Isopropylbenzene | m&p-Xylenes o-Xylene trans-1,4-Dichloro-2-b 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Isopropylbenzene | Styrene m&p-Xylenes o-Xylene trans-1,4-Dichloro-2-b 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene lsopropylbenzene | Styrene Styrene Styrene Styrene m&p-Xylenes o-Xylene trans-1,4-Dichloro-2-b 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene lsopropylbenzene | 1.1.2.2-Tetrachloroeth Bromofluorobenzene Styrene m&p-Xylenes o-Xylene trans-1.4-Dichloro-2-b 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene lsopropylbenzene | Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene Styrene m&p-Xylenes o-Xylene trans-1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene lsopropylbenzene | n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene Styrene m&p-Xylenes o-Xylene trans-1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene Styrene m&p-Xylenes o-Xylene trans-1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene Styrene m&p-Xylenes o-Xylene trans-1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | 1.1.1.2-Tetrachloroeth Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene Styrene m&p-Xylenes o-Xylene trans-1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | Toluene 1.1.1.2-Tetrachloroeth Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene Styrene m&p-Xylenes o-Xylene trans-1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth Chlorobenzene n-Butvl acrylate n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene Styrene m&p-Xylenes o-Xylene trans-1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | Tetrachloroethene Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth Chlorobenzene n-Butvl acrylate n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene Styrene m&p-Xylenes o-Xylene trans-1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | 2-Hexanone Tetrachloroethene Toluene-d8 Toluene 1.1.1,2-Tetrachloroeth Chlorobenzene n-Butvl acrylate n-Amyl acelate Bromoform Ethylbenzene 1.1.2,2-Tetrachloroeth Bromofluorobenzene \$tyrene m&p-Xylenes o-Xylene trans-1,4-Dichlorobenzene 1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene \$\text{Styrene}\$ m&p-Xylenes o-Xylene trans-1,4-Dichlorobenzene 1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | 1.2-Diplomoethane 1.3-Dichloropropane 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2.1-Dichlorobenzene trans-1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | 1.1.2- Irichloroethane 1.2-Dibromoethane 1.3-Dichloropropane 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2.1-Dichlorobenzene 1.2-Dichlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | Ethyl methacrylate 1.1.2-Trichloroethane 1.2-Dibromoethane 1.2-Dibromoethane 1.3-Dichloropropane 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2-Dichlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | trans-1,3-Dichloroprop Ethyl methacrylate 1,1,2-Trichloroethane 1,2-Dibromoethane 1,2-Dibromoethane 1,3-Dichloropropane 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene-d8 Toluene 1,1,1,2-Tetrachloroeth Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene 1,1,2,2-Tetrachloroeth Bromofluorobenzene 1,1,2,2-Tetrachloroeth Bromofluorobenzene 1,1,2-Tetrachloroeth Bromofluorobenzene 1,1,2-Tetrachloroeth Bromofluorobenzene 1,1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene | cis-1.3-Dichloropropen trans-1.3-Dichloropropen trans-1.3-Dichloropropen Ethyl methacrylate 1.1.2-Trichloroethane 1.2-Dibromoethane 1.3-Dichloropropane 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2-Tetrachloroeth Bromofluorobenzene 1.1.2-Dichlorobenzene trans-1.4-Dichlorobenzene 1.3-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | 2-Chloroethylvinylethe cis-1.3-Dichloropropen trans-1.3-Dichloropropen trans-1.3-Dichloropropen Ethyl methacrylate 1.1.2-Trichloroethane 1.2-Dibromoethane 1.3-Dichloropropane 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2-Dichlorobenzene trans-1.4-Dichlorobenzene 1.3-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | Dibromochloromethan 2-Chloroethylvinylethe cis-1.3-Dichloropropen trans-1.3-Dichloroprope Ethyl methacrylate 1.1.2-Trichloroethane 1.2-Dibromoethane 1.3-Dichloropropane 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2.2-Tetrachloroeth Styriene 1.3-Dichlorobenzene 1.3-Dichlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | Methyl methacrylate Dibromochrylethe cis-1.3-Dichloropropen trans-1.3-Dichloropropen trans-1.3-Dichloropropen trans-1.3-Dichloropropen trans-1.3-Dichloropropen trans-1.3-Dichloropropane 1.2-Dibromoethane 1.2-Dibromoethane 1.3-Dichloropropane 4-Methyl-2-Pentanone Tetrachloroethene Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2-Dichlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | tert-Amyl methyl ether Iso-propylacetate Methyl methacrylate Dibromochloromethan 2-Chloroethylvinylethe cis-1,3-Dichloropropen trans-1,3-Dichloropropen trans-1,3-Dichloropropane 1,2-Dibromoethane 1,2-Dibromoethane 2-Hexanone 2-Hexanone Tetrachloroethene Toluene-d8 Toluene 1,1,1,2-Tetrachloroeth Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene 1,1,2,2-Tetrachloroeth Bromofluorobenzene 1,1,2,2-Tetrachloroeth Bromofluorobenzene 1,1,2,2-Tetrachloroeth Bromofluorobenzene 1,1,2,2-Tetrachloroeth Bromofluorobenzene 1,1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene Isopropylbenzene Isopropylbenzene | Benzene tert-Amyl methyl ether iso-propylacetate Methyl methacrylate Dibromochloromethan 2-Chloroethylvinylethe cis-1.3-Dichloropropen trans-1.3-Dichloropropen trans-1.3-Dichloroethane 1.2-Dibromoethane 1.2-Dibromoethane 1.3-Dichloroethene 1.4-Exanone 2-Hexanone Tetrachloroethene Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth 1.1.1.2-Tetrachloroeth Chlorobenzene 1.1.2.2-Tetrachloroeth Chlorobenzene 1.1.2.2-Tetrachloroeth Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Chlorobenzene 1.1.2.1-Tetrachloroeth Chlorobenzene 1.1.2.3-Dichlorobenzene 1.2-Dichlorobenzene 1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | Trichloroethene Benzene tert-Amvl methyl ether Iso-propylacetate Methyl methacrylate Dibromochloromethan 2-Chloroethylvinylethe cis-1.3-Dichloroprope Ethyl methacrylate 1.2-Trichloroethane 1.2-Dibromoethane 1.2-Dibromoethane 1.3-Dichloropropane 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth 1.1.1.2-Tetrachloroeth Chlorobenzene 1.1.2.2-Tetrachloroeth Chlorobenzene 1.1.2.2-Tetrachloroeth Bromoform Ethylbenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2.1-Dichlorobenzene 1.2-Dichlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene Isopropylbenzene | 1.2-Dichloropropane Trichloroethene Benzene tert-Amvl methyl ether Iso-propylacetate Methyl methacrylate Dibromochloromethan 2-Chloroethylvinylethe cis-1.3-Dichloroprope Ethyl methacrylate 1.2-Trichloroethane 1.2-Dibromoethane 1.3-Dichloroethene 1.4-Dene-d8 Toluene-d8 Toluene Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth Chlorobenzene 1.1.2.7-Tetrachloroeth Chlorobenzene 1.1.2.2-Tetrachloroeth Chlorobenzene 1.1.2.2-Tetrachloroeth Chlorobenzene 1.1.2.1-Tetrachloroeth Chlorobenzene 1.1.2.1-Tetrachloroeth Chlorobenzene 1.1.2.1-Tetrachloroeth Chlorobenzene 1.1.2.1-Tetrachloroeth Chlorobenzene 1.1.2.1-Tetrachloroeth Chlorobenzene 1.1.2.1-Tetrachloroeth Chlorobenzene 1.1.2.1-Tetrachloroeth Chlorobenzene 1.1.2.1-Tetrachloroeth Chlorobenzene 1.2-Dichlorobenzene 1.3-Dichlorobenzene 1.3-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene | Dibromomethane 1.2-Dichloropropane Trichloroethene Benzene tert-Amvl methyl ether Iso-propylacetate Methyl methacrylate Dibromochloromethan 2-Chloroethylvinylethe cis-1.3-Dichloropropen trans-1.3-Dichloropropen trans-1.3-Dichloroethane 1.2-Dibromoethane 1.2-Dibromoethane 1.4-Dichloroethene Tetrachloroethene Toluene-d8 Toluene Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromofluorobenzene 1.1.2.2-Tetrachloroeth Chlorobenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2.3-Dichlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene Isopropylbenzene | Methylcyclohexane Dibromomethane 1.2-Dichloropropane Trichloroethene Benzene tert-Amyl methyl ether Iso-propylacetate Methyl methacrylate Dibromochloromethan 2-Chloroethylvinylethe cis-1.3-Dichloroprope Ethyl methacrylate 1.2-Trichloroethane 1.2-Dibromoethane 1.2-Dibromoethane 1.4-Dichloroethene Tetrachloroethene Toluene-d8 Toluene Toluene-d8 Toluene 1.1.1.2-Tetrachloroeth Chlorobenzene 1.1.2.7-Tetrachloroeth Chlorobenzene 1.1.2.7-Tetrachloroeth Chlorobenzene 1.1.2.7-Tetrachloroeth Chlorobenzene 1.1.2.7-Tetrachloroeth Chlorobenzene 1.1.2.7-Tetrachloroeth Chlorobenzene 1.1.2.7-Tetrachloroeth Chlorobenzene 1.1.2.7-Tetrachloroeth Chlorobenzene 1.1.2.7-Tetrachloroeth Chlorobenzene 1.1.2.7-Tetrachloroeth Chlorobenzene 1.1.2.7-Tetrachloroeth Chlorobenzene 1.2-Dichlorobenzene 1.3-Dichlorobenzene 1.3-Dichlorobenzene 1.3-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene |                | Compound Methylcyclohexane Dibromomethane 1.2-Dichloropropane Trichloroethene Benzene tert-Amyl methyl ether Iso-propylacetate Methyl methacrylate Dibromochloromethan 2-Chloroethylvinylethe cis-1.3-Dichloroprope Ethyl methacrylate 1.1.2-Trichloroethane 1.2-Dibromoethane 1.2-Dichloropropane 4-Methyl-2-Pentanone 1-Hexanone 1-Hexanone 1-Itrachloroethene 1.1.1.2-Tetrachloroeth Chlorobenzene n-Butyl acrylate 1.1.1.2-Tetrachloroeth Chlorobenzene 1.1.2.2-Tetrachloroeth Chlorobenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2.2-Tetrachloroeth Bromofluorobenzene 1.1.2.1-Tetrachloroeth Bromofluorobenzene 1.2-Dichlorobenzene Styrlene 1.2-Dichlorobenzene 1.2-Dichlorobenzene Isopropylbenzene Isopropylbenzene | Compound 7 Rethylcyclohexane Dibromomethane 1.2-Dichloropropane Trichloroethene Benzene tert-Amyl methyl ether Iso-propylacetate Methyl methacrylate Dibromochloromethan 2-Chloroethylvinylethe cis-1.3-Dichloropropane thans-1.3-Dichloropropane 1.1.2-Trichloroethane 1.3-Dichloropropane 4-Methyl-2-Pentanone Tetrachloroethene 1.1.1.2-Tetrachloroeth Toluene 1.1.1.2-Tetrachloroeth Permoform Ethylbenzene 1.1.2-Tetrachloroeth 1.1.2-Tetrachloroeth Chlorobenzene p-Amyl acetate Bromofluorobenzene 1.1.2-Tetrachloroeth Styrlene 1.1.2-Tetrachloroeth Bromofluorobenzene 1.1.2-Tolichlorobenzene Styrlene 1.2-Dichlorobenzene 1.4-Dichlorobenzene Isopropylbenzene Isopropylbenzene | Compound 7  Nethylcyclohexane Dibromomethane 1.2-Dichloropropane tert-Amyl methyl ether Iso-propylacetate Methyl methacrylate Dibromochloromethane 2-Chloroethylninylethe cis-1.3-Dichloropropane 1.1.1.2-Trichloroethane 1.2-Dibromoethane 1.2-Dibromoethane 1.1.1.2-Tetrachloroethene 1.1.1.2-Tetrachloroethene 1.1.1.2-Tetrachloroethene 1.1.1.2-Tetrachloroethene 1.1.1.2-Tetrachloroethene 1.1.2-Tirochloroethene 1.1.2-Tirochloroethene 1.1.2-Tetrachloroethene 1.1.2-Tetrachloroethene 1.1.2-Tetrachloroethene 1.1.2-Tetrachloroethene 1.1.2-Tetrachloroethene 1.1.2-Tetrachloroethene 1.1.2-Tetrachloroethene 1.1.2-Tetrachloroethene 1.1.2-Tetrachloroethene 1.1.2-Tetrachloroethene 1.1.2-Tetrachloroethene Bromofluorobenzene Styriene 1.1.2-Dichlorobenzene Isopropylbenzene Isopropylbenzene | Compound 3 5 7 Methylcyclohexane Dibromomethane 1.2-Dichloropropane Trichloroethene Benzene tert-Amyl methyl ether Iso-propylacetate Methyl methacrylate Dibromochloromethane 2-Chloroethylvinylethe cis-1.3-Dichloropropane trans-1.3-Dichloropropane thyl methacrylate 1.1.2-Trichloroethane 1.2-Dibromoethane 1.1-Dichloroethene Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluene-d8 Toluen |
|----------------------------------|----------------|---------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flags                            |                | 1 0 Avg 1                 |                                           |                                           | _                                         | 1 0 Avg 2                                 | i                         |                                      |                                                          |                                                                              |                                                                                                     | _ i                                                                                                          |                                                                                                                          | 1 0 Avo                                                                                                                          |                                                                                                                                                          |                                                                                                                                                                            | 1 0 Avg 0                                                                                                                                                                        | 1 0 Qua 0                                                                                                                                                                                          |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   | . !                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 | 1 0 Ava 0                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                   | i                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 0 Ava 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 0 Avg 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ol Mr Fit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6M133175.D     | 6M133180 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6M133178.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Data File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                | 1.4360 1.6916 1.8028 1.49 | 0.7236 0.7293 0.7710 0.7116 0.6986 0.5688 | 0.7474 0.8346 0.9742 0.8430 0.8801 0.6326 | 0.0196 0.0239 0.0458 0.0182 0.0182 0.0147 | 2.2874 2.8550 3.0632 2.5001 2.5199 1.8083 | 1.0684 1.2848 1.4627 1.11 | 1.1219 1.2981 1.5419 1.1889 1.2074   | 1.1487 1.3813 1.3825 1.1988 1.1993                       | 0.2203 0.2358 0.2681 0.2431 0.2486 0.1838                                    | 1.0090 1.2006                                                                                       | 0.9341 1.1020 1.1867 0.95                                                                                    | 1 5317 1 6242 1 5822 1 5687 1 6289 0 9703                                                                                | 0.6121 0.5920 0.5436 0.6266 0.6007 0.3651                                                                                        | 0.6261                                                                                                                                                   | 0.3315                                                                                                                                                                     | 0.6187 0.6292 0.7682 0.6092 0.5963 0.4818                                                                                                                                        | 0.6515 0.6145 0.8204 0.6935 0.7148 0.4056                                                                                                                                                          | 0.7994 0.8785 1.0127 0.8281 0.8313 0.8093                                                                                                                                                                           | 0.2622 0.2603 0.2815 0.2774 0.2919 0.2938                                                                                                                                                                                         | 0.7124 0.7998 0.8489 0.7294 0.7293 0.7208                                                                                                                                                                                                                                    | 1.2648 1.2521 1.2652 1.3022 1.2431 1.2535                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                 | 0.1484 0.1559 0.1881 0.1635 0.1595 0.1602                                                                                                                                                                                                                                                                         | 0.4112 0.3832 0.4337 0.4033 0.4041 0.3860<br>0.4013 0.2019 0.2180 0.2166 0.2140 0.2211                                                                                                                                                                                                                                                            | 0.2583 0.2466 0.2740 0.2642 0.2682 0.2656                                                                                                                                                                                                                                                                                                                                                            | 0.2541 0.2637 0.2753 0.2517 0.2559 0.2478                                                                                                                                                                                                                                                                                                                                                                                    | 0.1614 0.1496 0.1267 0.1669 0.1712 0.1771                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3073 0.2949                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3730 0.3569 0.3925 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0361 0.0308 0.0378 0.0375 0.0381 0.0385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2714 0.2572 0.3084 0.3084 0.3146 0.3156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4697 0.3985 0.4939 0.4854 0.5022 0.4979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8296 0.9399 1.0247 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2950 0.3182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2092 0.2296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1592 0.1534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2729 0.3234 0.3727 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RF1 RF2 RF3 RF4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>(9</b> )    | CAL @ 2 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CAL @ 20 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  | :              | 1.4933 1.4747 1.5524      | 116 0.6986 0.5688                         | 130 0.8801 0.6326                         | 182 0.0182 0.0147                         | 001 2.5199 1.8083                         | 1.1186 1.1141 1.0200      | 389 1.2074 1.1610                    | 988 1.1993 1.0020                                        | 131 0.2486 0.1838                                                            | 199 0.9514 0.5623                                                                                   | 0.9571 0.9828 0.5335                                                                                         | 387 1 6289 0 9703                                                                                                        | 366 0 7315 0 5989                                                                                                                | S 14 U.7 182 U.3964                                                                                                                                      | 37 0.3776 0.2992                                                                                                                                                           | )92 0.5963 0.4818                                                                                                                                                                | 935 0.7148 0.4056                                                                                                                                                                                  | 281 0.8313 0.8093                                                                                                                                                                                                   | 74 0.2919 0.2938                                                                                                                                                                                                                  | 294 0.7293 0.7208                                                                                                                                                                                                                                                            | )22 1.2431 1.2535                                                                                                                                                                                                                                                                    | 37 0.2679 0.2647                                                                                                                                                                                                                                                                                | 35 0.1595 0.1602                                                                                                                                                                                                                                                                                                  | 106 0 2140 0 2211                                                                                                                                                                                                                                                                                                                                 | )42 0.2682 0.2656                                                                                                                                                                                                                                                                                                                                                                                    | 0.2559 0.2478                                                                                                                                                                                                                                                                                                                                                                                                                | 69 0.1712 0.1771                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 04 0.3777 0.3708                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4049 0.4250 0.4160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 375 0.0381 0.0385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )84 0.3146 0.3156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32 0 1654 0 1671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 354 0.5022 0.4979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8682 0.8663 0.8713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2628 0.2691 0.2730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3075 0.3118 0.3127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 RF5 RF6 RF7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/06/20 11:07 | 10/06/20 12:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/06/20 12:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analysis Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Com 1 = Ca                       | Note:          |                           |                                           |                                           |                                           | 2.4956                                    |                           |                                      |                                                          | 1                                                                            | 1.0441                                                                                              | 1 2291 1 2725                                                                                                | 0.1200 0.10                                                                                                              | 0 7283 0 7594                                                                                                                    | 0.6933                                                                                                                                                   | 0 0000                                                                                                                                                                     |                                                                                                                                                                                  | -                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   | 0.9184                                                                                                                                                                                                                                                                       | 1.2293 1.2294                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                   | 0.2689                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                              | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RF8 RF9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Corr 1 = Correlation Coefficient |                | 1.58 7.59                 | 0.701 7.48                                | 0.8197.47                                 | 0.02357.37                                | 2.50 7.29                                 | 1.188.29                  | 1.25 8.07                            | 1.228.02                                                 | 0.233 7.47                                                                   | 0                                                                                                   |                                                                                                              |                                                                                                                          | 0.5007.45                                                                                                                        | 0.740 0.02                                                                                                                                               | 0.3387.23                                                                                                                                                                  | 0.6177.13                                                                                                                                                                        | 0.650 7.02                                                                                                                                                                                         | 0.860 6.78                                                                                                                                                                                                          | 0.278 6.81                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                            | İ                                                                                                                                                                                                                                                                                    | 0.2786.32                                                                                                                                                                                                                                                                                       | 0.163 6.33                                                                                                                                                                                                                                                                                                        | 0.4000.32                                                                                                                                                                                                                                                                                                                                         | 0.264 6.53                                                                                                                                                                                                                                                                                                                                                                                           | 0.258 6.22                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1596.14                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.341 6.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.395 5.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0365 5.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.296 6.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.34/4.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.475 5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9114.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.277 5.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.206 5.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.155 5.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AygRf RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 6M133174.E   | 6 6M133194 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 6M133177.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ent for linear Eq.               | Avg Rs         | 1.00 1.00                 | 1                                         |                                           |                                           |                                           | _                         | 1.00 1.00                            |                                                          |                                                                              |                                                                                                     |                                                                                                              | 0 929 0 997                                                                                                              | -1 -1                                                                                                                            |                                                                                                                                                          |                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                    | 1.00 1.00                                                                                                                                                                                                           |                                                                                                                                                                                                                                   | 1.00 1.00                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      | 1.00 1.00                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   | 1.60                                                                                                                                                                                                                                                                                                                                              | !                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ij                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Corr1 Corr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ear Ea.                          | Avg Rsd: 12.54 |                           |                                           | w                                         |                                           | 0.999 16                                  |                           |                                      |                                                          |                                                                              |                                                                                                     | 0.996 23                                                                                                     |                                                                                                                          | -1 73                                                                                                                            |                                                                                                                                                          |                                                                                                                                                                            |                                                                                                                                                                                  | 7                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   | 2 5<br>2 5                                                                                                                                                                                                                                                                                                                                        | İ                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 12                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ტ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ŏ<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r/2 %Rsd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAL @ 0.5 PPB  | CAL @ 250 PPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  | !              |                           |                                           |                                           |                                           | 0.10                                      | 0.40                      | 0.50                                 | 0.60                                                     | ;                                                                            | 0.30                                                                                                | 010                                                                                                          | 2                                                                                                                        | 5                                                                                                                                | 2 5                                                                                                                                                      | 0.10                                                                                                                                                                       | 0.50 a                                                                                                                                                                           | 0.50 a                                                                                                                                                                                             | 0.50                                                                                                                                                                                                                |                                                                                                                                                                                                                                   | 0.40                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      | 0.20                                                                                                                                                                                                                                                                                            | 0.10                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.50 a                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PPB (          | ם<br>מפק                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ğà                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cal Identifier:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                | 5.00                      | 5.00                                      | 5.00                                      | 25.00                                     |                                           |                           | ı                                    |                                                          | 20.00 5.00 2                                                                 |                                                                                                     | ٠,                                                                                                           |                                                                                                                          | _                                                                                                                                | 20.00 5.00 2                                                                                                                                             |                                                                                                                                                                            | 20.00 5.00 2                                                                                                                                                                     |                                                                                                                                                                                                    |                                                                                                                                                                                                                     | 20.00 5.00 2                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   | 20.00 5.00 2                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.00 5.00 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.00 5.00 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lvi1 Lvi2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/06/20 10:47 | 10/06/20 17:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/06/20 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| for linear Eq.                   |                | 50.00                     | 50.00                                     | 50.00                                     | 250.0                                     | 50.00                                     | 2.00 50.00 1              | 50.00                                | 50.00                                                    | 2.00 50.00 1                                                                 | 50.00                                                                                               | 100.0                                                                                                        | 500                                                                                                                      | 30.00                                                                                                                            | 200 50.00                                                                                                                                                | 50.00                                                                                                                                                                      | 2.00 50.00 100.0                                                                                                                                                                 | 50.00                                                                                                                                                                                              | 50.00                                                                                                                                                                                                               | 2.00 50.00 1                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                              | 30.00                                                                                                                                                                                                                                                                                | 50.00                                                                                                                                                                                                                                                                                           | 2.00 50.00 1                                                                                                                                                                                                                                                                                                      | 500                                                                                                                                                                                                                                                                                                                                               | 50.00                                                                                                                                                                                                                                                                                                                                                                                                | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00 50.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00 50.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.00 50.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Calibration Lev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0:47           | 7.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analysis Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  | _              | 100.0 250.0               | 1                                         | 100.0 250.0                               | 500.0 1250.                               | 100.0 250.0                               | 100.0 250.0               | 100.0 250.0                          |                                                          |                                                                              |                                                                                                     |                                                                                                              |                                                                                                                          | 30,00,30,00                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                            | 00.0 250.0                                                                                                                                                                       | 100.0 250.0                                                                                                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 | 100.0 250.0                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100.0 250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.0 250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.0 250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calibration Level Concentrations  Lvi3 Lvi4 Lvi5 Lvi6 Lvi7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  | Page 2 of 3    |                           | <br> <br> <br>                            |                                           |                                           | 1.00                                      |                           |                                      |                                                          | į                                                                            |                                                                                                     | 2.00                                                                                                         | 00.00                                                                                                                    | 30                                                                                                                               |                                                                                                                                                          | 3                                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                                                                                                         | 30.00                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lvi8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  | -              | İ                         | İ                                         |                                           |                                           |                                           |                           |                                      |                                                          |                                                                              | •                                                                                                   | 8                                                                                                            | 0                                                                                                                        | 30 00                                                                                                                            |                                                                                                                                                          |                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   | ļ                                                                                                                                                                                                                                                                            | 30.00                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lvi9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                                                                                                                                                         |                                                                                        |                                                                                                                                     |                                           |                                                                                        |                                           |                                           |                                           |                                                                                        | 01                              | 002                                   | :36            | )              | 01                 | 29                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------|---------------------------------------|----------------|----------------|--------------------|----------------------------|
| Hexachlorobutadiene 1.2,4-Trichlorobenzen 1.2,3-Trichlorobenzen Naphthalene                                                                                             | 1,2-Dibromo-3-Chloro Camphor                                                           | n-Butylbenzene p-Diethylbenzene 1.2.4.5-Tetramethylbe                                                                               | 4-Isopropyltoluene                        | 1.2.4-Trimethylbenzen                                                                  | Butyl methacrylate                        | 1.3.5-Trimethylbenzen                     | n-Propylbenzene                           | p-Ethyttoluene 4-Chlorotoluene                                                         | CompoundC                       | 7                                     | თა             |                | Level#:            | Method: EPA 8260D          |
| 1 0 Avg 0.0<br>1 0 Qua 0.0<br>1 0 Qua 0.0<br>1 0 Avg 1.1                                                                                                                |                                                                                        | 1 0 Avg 2.                                                                                                                          | 1                                         | AVQ<br>1                                                                               |                                           | 1 0 Avg 1.8                               |                                           | 1 0 Avg 2.3                                                                            | Col Mr Fit: R                   | 6M133175.D                            | 6M133180.D     | 6M133178.D     | Data Fi            | -                          |
| 3435 0.4260 0.5092 (<br>5598 0.6998 0.9387 (<br>5166 0.7020 0.8588 (<br>7754 1.8141 2.2017                                                                              | 1514 0.1361 0.1821 (<br>0653 0.0754 0.1316 (                                           | 2527 2.7667 3.1706 ;<br>1853 1.3088 1.5985 ;<br>5875 1.8280 2.1917 ;                                                                | 0339 2.4791 2.5912 :                      | 9105 2.2473 2.2886                                                                     | 4945 0.5392 0.7032                        | 8435 2.1699 2.2087                        | 5900 3.1978 3.7908 :                      | 3424 2.7687 3.0256 2<br>3632 1.5991 1.8008                                             | RF1_RF2_RF3                     | CAL @ 1 PPB                           | CAL @ 100 PPB  |                | le: Cal Identifier |                            |
| 0.3435 0.4260 0.5092 0.3917 0.4065 0.2852 0.6598 0.6998 0.9387 0.7414 0.7324 0.4611 0.6166 0.7020 0.8588 0.7015 0.6803 0.4126 1.7754 1.8141 2.2017 1.9308 1.9081 1.1660 | 0.1514 0.1361 0.1821 0.1463 0.1529 0.1966<br>0.0653 0.0754 0.1316 0.0689 0.0677 0.0463 | 2.2527 2.7667 3.1706 2.4308 2.4522 1.7122<br>1.1853 1.3088 1.5985 1.2730 1.2987 1.1142<br>1.6875 1.8280 2.1917 1.8907 1.9578 2.1208 | 2.0339 2.4791 2.5912 2.2358 2.2902 1.6955 | 1.8764 2.3393 2.3760 2.0653 2.0872 1.7908<br>1.9105 2.2473 2.2886 2.0467 2.0248 1.4432 | 0.4945 0.5392 0.7032 0.5050 0.4975 0.4067 | 1.8435 2.1699 2.2087 1.9945 1.9598 1.9347 | 2.6900 3.1978 3.7908 2.8856 2.8725 2.8847 | 2.3424 2.7687 3.0256 2.4705 2.4649 2.6381<br>1.3632 1.5991 1.8008 1.4132 1.3965 1.1989 | RF4 RF5 RF6 RF7                 | 10/06/20 11:07                        | 10/06/20 12:51 | 10/06/20 12:10 | r Analysis Date/   |                            |
| 2.2633                                                                                                                                                                  |                                                                                        | 2.2140                                                                                                                              | 2.0407                                    | 2.0967                                                                                 |                                           | 1.8518                                    | 3.3477                                    |                                                                                        | 7 RF8 RF9                       | · · · · · · · · · · · · · · · · · · · | <b>0</b> 4     | . 2            | Time Level#        | Form 6 Initial Calibration |
| 0.394 9.32 0.9<br>0.706 9.24 0.9<br>0.662 9.54 0.9<br>1.87 9.40 0.9                                                                                                     |                                                                                        | 2.43 8.24 0.9<br>1.30 8.22 0.9<br>1.95 8.68 0.9                                                                                     |                                           |                                                                                        |                                           | 1.997.61 1.                               |                                           | 2.627.58 0.1<br>1.467.65 0.1                                                           | AvgRf RT Co                     | 6M133174.E                            | 6M133194.D     | 6M133177.E     | Ι, ,               | n 6<br>ibration            |
| 0.971 0.998 19<br>0.944 0.998 22<br>0.932 0.998 22<br>0.939 0.998 19                                                                                                    | 1.00                                                                                   | 1.00                                                                                                                                | 0.999                                     | 0.999                                                                                  | 1.00                                      | 2 8                                       | 3 8                                       | 1.00<br>1.00                                                                           | orr1 Corr2 %Rsd                 | ) CAL @ 0.5                           | CAL @ 250 PPB  | ?              |                    |                            |
| 0.20                                                                                                                                                                    | 0.05                                                                                   |                                                                                                                                     |                                           |                                                                                        | 0.50 a                                    | <br> <br>                                 |                                           |                                                                                        |                                 | PP8                                   | ) PPB          | <b>8</b> 8     | Cal Identifier:    |                            |
| 20.00 5.00 2.00<br>20.00 5.00 2.00<br>20.00 5.00 2.00<br>20.00 5.00 2.00                                                                                                | 20.00                                                                                  | 8 8 8                                                                                                                               | 8 8                                       | 888                                                                                    | 88                                        | 8                                         | 38                                        | 00 5.00 2.00<br>00 5.00 2.00                                                           |                                 | 10/06/20 10:47                        | 10/06/20 17:42 | 10/06/20 11:49 | Analysis Date/Time |                            |
| 50.00 100.0<br>50.00 100.0<br>50.00 100.0<br>50.00 100.0                                                                                                                | 50.00 100.0 250.0<br>500.0 1000. 2500.                                                 | 50.00 100.0 250.0<br>50.00 100.0 250.0<br>50.00 100.0 250.0                                                                         | 50.00 100.0 250.0                         | 50.00 100.0 250.0                                                                      | 50.00 100.0 250.0                         | 50.00 100.0 250.0                         | 50.00 100.0 250.0                         | 50.00 100.0 250.0<br>50.00 100.0 250.0                                                 | Lvi4 Lvi5                       |                                       |                |                | te/Time            | Instrument: GCMS_6         |
| 1.00                                                                                                                                                                    | ō                                                                                      |                                                                                                                                     | <br> <br>                                 | 1.00                                                                                   |                                           | 1.00                                      | 1.00                                      | O                                                                                      | centrations Lvl6 Lvl7 Lvl8 Lvl9 |                                       |                |                |                    | €CMS_6                     |
|                                                                                                                                                                         |                                                                                        |                                                                                                                                     |                                           |                                                                                        |                                           |                                           |                                           |                                                                                        | 9                               |                                       |                |                |                    |                            |

Flags

a - failed the min rf criteria

failed the min rf criteria

| Corr I = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| failed the minimum correlation coeff criteria(if applicable) | Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound. Note: Avg Rsd: 12.54

Form7
Continuing Calibration

Calibration Name: CAL @ 50 PPB
Cont Calibration Date/Time 10/7/2020 12:30:00 P

Data File: 6M133210.D Method: EPA 8260D Instrument: GCMS 6

| TxtCompd:                          | Col# | Multi<br>Num | Туре | RT    | Conc    | Conc<br>Exp | Lo<br>Lim |             | Initial<br>RF | RF    | %Diff Flag |
|------------------------------------|------|--------------|------|-------|---------|-------------|-----------|-------------|---------------|-------|------------|
| luorobenzene                       | 1    | 0            | ı    | 5.12  | 30.00   | 30          | **        |             |               | 0.000 | 0.00       |
| Chlorodifluoromethane              | 1    | 0            |      | 1.64  | 54.15   | 50          | 20        | 0.1         | 0.279         | 0.302 | 8.29       |
| Dichlorodifluoromethane            | 1.   | 0            |      | 1.64  | 44.73   | 50          | 20        | 0.1         | 0.251         | 0.225 | 10.55      |
| Chloromethane                      | 1    | 0            |      | 1.81  | 47.55   | 50          | 20        | 0.1         | 0.272         | 0.230 | 4.90       |
| Bromomethane                       | 1    | 0            |      | 2.23  | 45.11   | 50          | 20        | 0.1         | 0.225         | 0.203 | 9.77       |
| /inyl Chloride                     | 1    | 0            |      | 1.92  | 45.70   | 50          | 20        | 0.1         | 0.296         | 0.270 | 8.60       |
| Chloroethane                       | 1    | 0            |      | 2.32  | 46.98   | 50          | 20        | 0.1         | 0.195         | 0.162 | 6.04       |
| <b>Frichlorofluoromethane</b>      | 1    | 0            |      | 2.56  | 46.65   | 50          | 20        | 0.1         | 0.479         | 0.447 | 6.70       |
| Ethyl ether                        | 1    | 0            |      | 2.81  | 43.57   | 50          | 20        | 0.5         | 0.132         | 0.115 | 12.85      |
| uran                               | 1    | 0            |      | 2.84  | 42.45   | 50          | 20        | 0.5         | 0.246         | 0.209 | 15.10      |
| ,1,2-Trichloro-1,2,2-trifluoroetha | 1    | 0            |      | 3.01  | 46.73   | 50          | 20        | 0.1         | 0.167         | 0.156 | 6.55       |
| Methylene Chloride                 | 1    | 0            |      | 3.43  | 46.74   | 50          | 20        | 0.1         | 0.254         | 0.210 | 6.53       |
| Acrolein                           | 1    | 0            |      | 2.92  | 216.55  | 250         | 20        |             | 0.029         | 0.025 | 13.38      |
| Acrylonitrile                      | 1    | 0            |      | 3.64  | 41.96   | 50          | 20        |             | 0.068         | 0.057 | 16.09      |
| odomethane                         | 1    | 0            |      | 3.17  | 41.87   | 50          | 20        |             | 0.209         | 0.232 | 16.26      |
| Acetone                            | 1    | 0            |      | 3.06  | 246.68  | 250         | 20        | 0.1         | 0.058         | 0.049 | 1.33       |
| Carbon Disulfide                   | 1    | 0            |      | 3.23  | 44.66   | 50          | 20        | 0.1         | 0.663         | 0.593 | 10.68      |
| -Butyl Alcohol                     | 1    | 0            |      | 3.50  | 200.65  | 250         | 20        |             | 0.023         | 0.018 | 19.74      |
| n-Hexane                           | 1    | 0            |      | 3.91  | 52.68   | 50          | 20        |             | 0.218         | 0.210 | 5.37       |
| Di-isopropyl-ether                 | 1    | 0            |      | 4.06  | 43.03   | 50          | 20        |             | 0.450         | 0.387 | 13.94      |
| ,1-Dichloroethene                  | 1    | 0            |      | 3.02  | 43.73   | 50          | 20        | 0.1         | 0.294         | 0.258 | 12.55      |
| Methyl Acetate                     | 1    | 0            |      | 3.34  | 45.04   | 50          | 20        | 0.1         | 0.117         | 0.106 | 9.92       |
| Methyl-t-butyl ether               | 1    | 0            |      | 3.67  | 44.18   | 50          | 20        | 0.1         | 0.471         | 0.417 | 11.64      |
| ,1-Dichloroethane                  | 1    | 0            |      | 4.03  | 43.14   | 50          | 20        | 0.2         | 0.368         | 0.318 | 13.71      |
| rans-1,2-Dichloroethene            | 1    | 0            |      | 3.68  | 46.14   | 50          | 20        | 0.1         | 0.241         | 0.222 | 7.72       |
| Ethyl-t-butyl ether                | 1    | 0            |      | 4.32  | 45.13   | 50          | 20        | 0.5         | 0.457         | 0.412 | 9.75       |
| is-1,2-Dichloroethene              | 1    | 0            |      | 4.44  | 45.93   | 50          | 20        | 0.1         | 0.350         | 0.321 | 8.14       |
| Bromochloromethane                 | 1    | 0            |      | 4.59  | 44.98   | 50          | 20        |             | 0.156         | 0.141 | 10.04      |
| 2,2-Dichloropropane                | 1    | 0            |      | 4.45  | 45.65   | 50          | 20        |             | 0.317         | 0.289 | 8.70       |
| Ethyl acetate                      | 1    | 0            |      | 4.46  | 48.79   | 50          | 20        |             | 0.172         | 0.168 | 2.41       |
| ,4-Dioxane                         | 1    | 0            |      | 5.52  | 2058.00 | 2500        | 20        | w           | 0.003         | 0.003 | 17.68      |
| ,1-Dichtoropropene                 | 1    | 0            |      | 4.85  | 45.55   | 50          | 20        |             | 0.321         | 0.293 | 8.91       |
| Chloroform                         | 1    | 0            |      | 4.64  | 44.04   | 50          | 20        | 0.2         | 0.421         | 0.371 | 11.92      |
| Dibromofluoromethane               | 1    | 0            | s    | 4.73  | 28.82   | 75          | **        |             | 0.283         | 0.272 | 3.94       |
| Cyclohexane                        | 1    | 0            |      | 4.81  | 49.29   | 50          | 20        | 0.1         | 0.281         | 0.277 | 1.43       |
| ,2-Dichloroethane-d4               | 1    | 0            | S    | 4.93  | 28.92   | 75          | **        |             | 0.135         | 0.130 | 3.60       |
| ,2-Dichloroethane                  | 1    | 0            |      | 4.98  | 41.92   | 50          | 20        | 0.1         | 0.290         | 0.243 | 16.16      |
| -Butanone                          | 1    | 0            |      | 4.43  | 47.42   | 50          | 20        |             | 0.090         | 0.085 | 5.16       |
| ,1,1-Trichloroethane               | 1    | 0            |      | 4.76  | 45.05   | 50          | 20        |             | 0.376         | 0.339 | 9.89       |
| Carbon Tetrachloride               | 1    | 0            |      | 4.86  | 45.95   | 50          | 20        |             | 0.341         | 0.314 | 8.11       |
| /inyl Acetate                      | Ť    | 0            |      | 4.05  | 45.92   | 50          | 20        |             | 0.521         | 0.478 | 8.15       |
| Fromodichloromethane               | 1    | Ō            |      | 5.59  | 44.48   | 50          | 20        | 0.2         | 0.300         | 0.267 | 11.05      |
| Methylcyclohexane                  | 1    | 0            |      | 5.45  | 49.18   | 50          | 20        |             | 0.317         | 0.312 | 1.64       |
| Dibromomethane                     | 1    | 0            |      | 5.53  | 42.91   | 50          | 20        |             | 0.155         | 0.133 | 14.17      |
| ,2-Dichloropropane                 | 1    | 0            |      | 5.46  | 43.64   | 50          | 20        | 0.1         | 0.206         | 0.180 | 12.71      |
| richloroethene                     | 1    | 0            |      | 5.33  | 44.61   | 50          | 20        |             | 0.277         | 0.247 | 10.78      |
| Benzene                            | 1    | Ō            |      | 4.98  | 45.02   | 50          | 20        |             | 0.911         | 0.820 | 9.95       |
| ert-Amyl methyl ether              | 1    | Ö            |      | 5.02  | 43.90   | 50          | 20        | J. <b>J</b> | 0.475         | 0.417 | 12.20      |
| Chlorobenzene-d5                   | 1    | Ö            | 1    | 6.76  | 30.00   | 30          | **        |             | <del>-</del>  | 0.000 | 0.00       |
| so-propylacetate                   | 1    | Ö            | •    | 4.98  | 46.04   | 50          | 20        | 0.5         | 0.347         | 0.320 | 7.91       |
| Methyl methacrylate                | 1    | 0            |      | 5.48  | 44.19   | 50          | 20        |             | 0.175         | 0.155 | 11.62      |
|                                    | •    |              |      | U. TU |         |             |           |             |               |       |            |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 2

Calibration Name: CAL @ 50 PPB
Cont Calibration Date/Time 10/7/2020 12:30:00 P

Data File: 6M133210.D Method: EPA 8260D Instrument: GCMS 6

| TxtCompd:                   | Col#     | Multi<br>Num | Туре     | RT   | Conc                       | Conc<br>Exp | Lim | MIN<br>RF | Initial<br>RF | RF    | %Diff Flag |
|-----------------------------|----------|--------------|----------|------|----------------------------|-------------|-----|-----------|---------------|-------|------------|
| 2-Chloroethylvinylether     | 1        | 0            |          | 5.73 | 44.21                      | 50          | 20  |           | 0.037         | 0.032 | 11.59      |
| cis-1,3-Dichloropropene     | 1        | 0            |          | 5.83 | 48.47                      | 50          | 20  |           | 0.395         | 0.383 | 3.06       |
| rans-1,3-Dichloropropene    | 1        | 0            |          | 6.12 | 48.18                      | 50          | 20  |           | 0.341         | 0.328 | 3.64       |
| Ethyl methacrylate          | 1        | 0            |          | 6.14 | 48.88                      | 50          | 20  | 0.5       | 0.159         | 0.155 | 2.24       |
| 1,1,2-Trichloroethane       | 1        | 0            |          | 6.22 | 44.10                      | 50          | 20  |           | 0.258         | 0.228 | 11.81      |
| 1,2-Dibromoethane           | 1        | 0            |          | 6.53 | 46.98                      | 50          | 20  | 0.1       | 0.264         | 0.248 | 6.04       |
| 1,3-Dichloropropane         | 1        | 0            |          | 6.32 | 46.35                      | 50          | 20  |           | 0.406         | 0.377 | 7.30       |
| 4-Methyl-2-Pentanone        | 1        | 0            |          | 5.90 | 43.35                      | 50          | 20  | 0.1       | 0.211         | 0.183 | 13.31      |
| 2-Hexanone                  | 1        | 0            |          | 6.33 | 41.77                      | 50          | 20  | 0.1       | 0.163         | 0.136 | 16.46      |
| Tetrachloroethene           | 1        | 0            |          | 6.32 | 45.42                      | 50          | 20  | 0.2       | 0.278         | 0.253 | 9.16       |
| Foluene-d8                  | 1        | 0            | S        | 5.98 | 31.15                      | 75          | **  |           | 1.255         | 1.303 | 3.84       |
| Toluene                     | 1        | 0            |          | 6.02 | 44.55                      | 50          | 20  | 0.4       | 0.780         | 0.695 | 10.90      |
| 1,1,1,2-Tetrachloroethane   | 1        | 0            |          | 6.81 | 45.71                      | 50          | 20  |           | 0.278         | 0.254 | 8.59       |
| Chlorobenzene               | 1        | 0            |          | 6.78 | 45.73                      | 50          | 20  | 0.5       | 0.860         | 0.787 | 8.53       |
| 1,4-Dichlorobenzene-d4      | 1        | 0            | <b>I</b> | 8.05 | 30.00                      | 30          | **  |           |               | 0.000 | 0.00       |
| n-Butyl acrylate            | 1        | 0            |          | 7.02 | 38.62                      | 50          | 20  | 0.5       | 0.650         | 0.610 | 22.76 C1   |
| n-Amyl acetate              | 1        | 0            |          | 7.13 | 44.81                      | 50          | 20  | 0.5       | 0.617         | 0.553 | 10.37      |
| Bromoform                   | 1        | 0            |          | 7.23 | 45.19                      | 50          | 20  | 0.1       | 0.338         | 0.306 | 9.61       |
| Ethylbenzene                | 1        | 0            |          | 6.82 | 43.18                      | 50          | 20  | 0.1       | 0.746         | 0.675 | 13.64      |
| 1,1,2,2-Tetrachloroethane   | 1        | 0            |          | 7.44 | 48.26                      | 50          | 20  | 0.1       | 0.560         | 0.541 | 3.49       |
| Bromofluorobenzene          | 1        | 0            | S        | 7.39 | 29.37                      | 75          | **  |           | 0.727         | 0.711 | 2.10       |
| Styrene                     | 1        | 0            |          | 7.10 | 51.06                      | 50          | 20  | 0.3       | 1.484         | 1.516 | 2.13       |
| n&p-Xylenes                 | 1        | 0            |          | 6.88 | 86.86                      | 100         | 20  | 0.1       | 1.025         | 0.941 | 13.14      |
| o-Xylene                    | 1        | 0            |          | 7.10 | 42.65                      | 50          | 20  | 0.3       | 0.947         | 0.893 | 14.70      |
| rans-1,4-Dichloro-2-butene  | 1        | 0            |          | 7.47 | 48.07                      | 50          | 20  |           | 0.233         | 0.224 | 3.86       |
| ,3-Dichlorobenzene          | 1        | 0            |          | 8.02 | 47.64                      | 50          | 20  | 0.6       | 1.219         | 1.161 | 4.72       |
| 1,4-Dichlorobenzene         | 1        | 0            |          | 8.07 | 46.67                      | 50          | 20  | 0.5       | 1.253         | 1.170 | 6.66       |
| 1,2-Dichlorobenzene         | 1        | 0            |          | 8.29 | 46.08                      | 50          | 20  | 0.4       | 1.178         | 1.086 | 7.83       |
| sopropylbenzene             | 1        | 0            |          | 7.29 | 48.25                      | 50          | 20  | 0.1       | 2.504         | 2.417 | 3.50       |
| Cyclohexanone               | 1        | 0            |          | 7.37 | 225.24                     | 250         | 20  |           | 0.023         | 0.017 | 9.90       |
| Camphene                    | 1        | 0            |          | 7.47 | 52.40                      | 50          | 20  |           | 0.819         | 0.858 | 4.81       |
| 1,2,3-Trichloropropane      | 1        | 0            |          | 7.48 | 46.09                      | 50          | 20  |           | 0.701         | 0.646 | 7.83       |
| 2-Chlorotoluene             | 1        | 0            |          | 7.59 | 45.33                      | 50          | 20  |           | 1.575         | 1.428 | 9.33       |
| o-Ethyltoluene              | 1        | 0            |          | 7.58 | 46.65                      | 50          | 20  |           | 2.618         | 2.443 | 6.70       |
| 4-Chlorotoluene             | 1        | 0            |          | 7.65 | 49.05                      | 50          | 20  |           | 1.462         | 1.434 | 1.90       |
| n-Propylbenzene             | 1        | 0            |          | 7.52 | 45.89                      | 50          | 20  |           | 3.096         | 2.841 | 8.23       |
| Bromobenzene                | 1        | 0            |          | 7.49 | 46.76                      | 50          | 20  |           | 1.422         | 1.330 | 6.48       |
| 1,3,5-Trimethylbenzene      | 1        | 0            |          | 7.60 | 47.49                      | 50          | 20  |           | 1.995         | 1.895 | 5.01       |
| Butyl methacrylate          | 1        | 0            |          | 7.61 | 44.73                      | 50          | 20  | 0.5       | 0.524         | 0.469 | 10.54      |
| -Butylbenzene               | 1        | 0            |          | 7.81 | 48.40                      | 50          | 20  |           | 2.033         | 1.968 | 3.21       |
| 1,2,4-Trimethylbenzene      | 1        | 0            |          | 7.83 | 48.59                      | 50          | 20  |           | 2.008         | 1.952 | 2.82       |
| sec-Butylbenzene            | 1        | Ö            |          | 7.93 | 49.60                      | 50          | 20  |           | 2.694         | 2.672 | 0.80       |
| I-Isopropyltoluene          | 1        | Ö            |          | 8.00 | 50.94                      | 50          | 20  |           | 2.195         | 2.237 | 1.88       |
| n-Butylbenzene              | 1        | Ö            |          | 8.24 | 51.73                      | 50          | 20  |           | 2.429         | 2.513 | 3.47       |
| p-Diethylbenzene            | 1        | Ö            |          | 8.22 | 49.76                      | 50          | 20  |           | 1.296         | 1.290 | 0.49       |
| 1,2,4,5-Tetramethylbenzene  | 1        | 0            |          | 8.68 | 46.75                      | 50          | 20  |           | 1.946         | 1.820 | 6.51       |
| 1,2-Dibromo-3-Chloropropane | 1        | 0            |          | 8.74 | 42.85                      | 50          | 20  | 0.05      | 0.161         | 0.138 | 14.30      |
| Camphor                     | 1        | Ö            |          | 9.18 | 406.90                     | 500         | 20  | 3.33      | 0.076         | 0.060 | 18.62      |
| Hexachlorobutadiene         | 1        | 0            |          | 9.32 | 50.53                      | 50          | 20  |           | 0.394         | 0.398 | 1.07       |
| 1,2,4-Trichlorobenzene      | 1        | o            |          | 9.23 | 46.95                      | 50          | 20  | 0.2       | 0.706         | 0.398 | 6.09       |
| 1,2,3-Trichlorobenzene      | ! .<br>1 | 0            |          | 9.54 | 43.36                      | 50          | 20  | J.2       | 0.662         | 0.650 | 13.27      |
| Naphthalene                 | 1        | 0            |          | 9.40 | 43.3 <del>6</del><br>47.25 | 50<br>50    | 20  |           | 1.866         | 1.763 | 5.50       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 2

Calibration Name: CAL @ 20 PPB Cont Calibration Date/Time 10/8/2020 2:43:00 A Data File: 1M140246.D Method: EPA 8260D Instrument: GCMS 1

| TxtCompd:                            | Co# | Multi<br>Num | Туре | RT           | Conc           | Conc<br>Exp | Lo f<br>Lim | MIN<br>RF    | Initial<br>RF | RF             | %Diff Flag   |
|--------------------------------------|-----|--------------|------|--------------|----------------|-------------|-------------|--------------|---------------|----------------|--------------|
| luorobenzene                         | 1   | 0            | 1    | 5.34         | 30.00          | 30          | **          |              |               | 0.000          | 0.00         |
| Chlorodifluoromethane                | 1   | 0            |      | 2.15         | 20.00          | 20          | 20          | 0.1          | 0.408         | 0.408          | 0.01         |
| Dichlorodifluoromethane              | 1   | 0            |      | 2.13         | 22.33          | 20          | 20          | 0.1          | 0.198         | 0.221          | 11.67        |
| Chloromethane                        | 1   | 0            |      | 2.31         | 22.76          | 20          | 20          | 0.1          | 0.273         | 0.311          | 13.78        |
| Bromomethane                         | 1   | 0            |      | 2.67         | 17.08          | 20          | 20          | 0.1          | 0.126         | 0.108          | 14.59        |
| /inyl Chloride                       | 1   | 0            |      | 2.38         | 24.35          | 20          | 20          | 0.1          | 0.221         | 0.269          | 21.76 C1     |
| Chloroethane                         | 1   | 0            |      | 2.75         | 26.19          | 20          | 20          | 0.1          | 0.130         | 0.170          | 30.96 C1     |
| richlorofluoromethane                | 1   | 0            |      | 2.96         | 22.84          | 20          | 20          | 0.1          | 0.299         | 0.341          | 14.18        |
| thyl ether                           | 1   | 0            |      | 3.17         | 21.80          | 20          | 20          | 0.5          | 0.142         | 0.155          | 9.01         |
| uran                                 | 1   | 0            |      | 3.22         | 19.64          | 20          | 20          | 0.5          | 0.304         | 0.299          | 1.79         |
| ,1,2-Trichloro-1,2,2-trifluoroetha   | 1   | 0            |      | 3.36         | 22.45          | 20          | 20          | 0.1          | 0.127         | 0.143          | 12.26        |
| flethylene Chloride                  | 1   | 0            |      | 3.73         | 21.66          | 20          | 20          | 0.1          | 0.202         | 0.219          | 8.29         |
| crolein                              | 1   | 0            |      | 3.27         | 92.54          | 100         | 20          |              | 0.032         | 0.030          | 7.46         |
| crylonitrile                         | 1   | 0            |      | 3.93         | 21.72          | 20          | 20          |              | 0.088         | 0.095          | 8.62         |
| odomethane                           | 1   | 0            |      | 3.51         | 12.30          | 20          | 20          |              | 0.232         | 0.143          | 38.49 C1     |
| cetone                               | 1   | 0            |      | 3.39         | 96.02          | 100         | 20          | 0.1          | 0.079         | 0.076          | 3.98         |
| arbon Disulfide                      | 1   | 0            |      | 3.57         | 22.12          | 20          | 20          |              | 0.535         | 0.592          | 10.60        |
| Butyl Alcohol                        | 1   | 0            |      | 3.81         | 104.69         | 100         | 20          |              | 0.022         | 0.023          | 4.69         |
| -Hexane                              | 1   | 0            |      | 4.17         | 21.55          | 20          | 20          |              | 0.173         | 0.187          | 7.77         |
| Pi-isopropyl-ether                   | 1   | 0            |      | 4.31         | 20.96          | 20          | 20          |              | 0.553         | 0.580          | 4.81         |
| ,1-Dichloroethene                    | 1   | 0            |      | 3.37         | 21.97          | 20          | 20          | 0.1          | 0.261         | 0.287          | 9.85         |
| lethyl Acetate                       | 1   | 0            |      | 3.65         | 21.97          | 20          | 20          |              | 0.170         | 0.187          | 9.84         |
| lethyl-t-butyl ether                 | 1   | 0            |      | 3.96         | 21.96          | 20          | 20          |              | 0.458         | 0.503          | 9.81         |
| ,1-Dichloroethane                    | 1   | 0            |      | 4.28         | 21.40          | 20          | 20          |              | 0.363         | 0.388          | 7.02         |
| ans-1,2-Dichloroethene               | 1   | 0            |      | 3.96         | 22.78          | 20          | 20          |              | 0.184         | 0.210          | 13.89        |
| thyl-t-butyl ether                   | 1   | 0            |      | 4.56         | 19.96          | 20          | 20          |              | 0.509         | 0.508          | 0.22         |
| is-1,2-Dichloroethene                | 1   | 0            |      | 4.66         | 21.07          | 20          | 20          |              | 0.351         | 0.370          | 5.37         |
| romochloromethane                    | 1   | 0            |      | 4.82         | 21.12          | 20          | 20          | •            | 0.211         | 0.223          | 5.59         |
| ,2-Dichloropropane                   | 1   | 0            |      | 4.67         | 17.48          | 20          | 20          |              | 0.293         | 0.256          | 12.60        |
| thyl acetate                         | 1   | 0            |      | 4.69         | 19.79          | 20          | 20          |              | 0.291         | 0.288          | 1.07         |
| ,4-Dioxane                           | 1   | 0            |      | 5.73         | 990.27         | 1000        | 20          |              | 0.004         | 0.004          | 0.97         |
| ,1-Dichloropropene                   | 1   | 0            |      | 5.07         | 21.59          | 20          | 20          |              | 0.271         | 0.292          | 7.96         |
| Chloroform                           | 1   | 0            |      | 4.85         | 20.95          | 20          | 20          | 0.2          | 0.374         | 0.392          | 4.74         |
| ibromofluoromethane                  | 1   | 0            | s    | 4.94         | 29.74          | 30          | **          | 0.2          | 0.280         | 0.332          | 0.85         |
| Syclohexane                          | 1   | 0            | 3    | 5.02         | 21.30          | 20          | 20          | Λ1           | 0.257         | 0.273          | 6.49         |
| ,2-Dichloroethane-d4                 | 1   | 0            | s    | 5.15         | 28.29          | 30          | 20          | <u> </u>     | 0.152         | 0.144          | 5.69         |
| ,2-Dichloroethane                    | 1   | 0            | 3    | 5.15<br>5.19 | 19.92          | 20          | 20          | 0.1          | 0.132         | 0.144          | 0.39         |
| -Butanone                            | 1   | 0            |      | 4.69         | 19.92          | 20          | 20          |              | 0.219         | 0.298          | 0.39         |
|                                      | 1   | 0            |      | 4.09         | 20.10          | 20          | 20          |              | 0.333         | 0.219          | 0.21         |
| ,1,1-Trichloroethane                 | 1   | -            |      |              |                |             |             |              |               |                |              |
| arbon Tetrachloride<br>/invl Acetate | -   | 0            |      | 5.08         | 20.61<br>19.26 | 20<br>20    | 20          | <b>U</b> . 1 | 0.299         | 0.308<br>0.670 | 3.05<br>3.69 |
| •                                    | 1   | -            |      | 4.29<br>5.81 |                |             | 20          | 0.2          |               |                |              |
| romodichloromethane                  | 1   | 0            |      | 5.81<br>5.66 | 20.47          | 20          | 20          |              | 0.293         | 0.300          | 2.37         |
| lethylcyclohexane                    | 4   | 0            |      | 5.66<br>5.73 | 20.28          | 20          | 20          | 0.1          | 0.230         | 0.233          | 1.38         |
| ibromomethane                        | 1   | 0            |      | 5.73<br>5.67 | 22.05          | 20          | 20          | 0.4          | 0.166         | 0.183          | 10.27        |
| ,2-Dichloropropane                   |     | 0            |      | 5.67         | 20.44          | 20          | 20          |              | 0.215         | 0.220          | 2.21         |
| richloroethene                       | 1   | 0            |      | 5.54         | 21.61          | 20          | 20          |              | 0.231         | 0.250          | 8.06         |
| Senzene                              | 1   | 0            |      | 5.19         | 22.17          | 20          | 20          | 0.5          | 0.790         | 0.876          | 10.84        |
| ert-Amyl methyl ether                | 1   | 0            |      | 5.24         | 20.03          | 20          | 20          |              | 0.485         | 0.486          | 0.15         |
| Chlorobenzene-d5                     | 1   | 0            | I    | 6.99         | 30.00          | 30          | **          |              |               | 0.000          | 0.00         |
| so-propylacetate                     | _1  | 0            |      | 5.19         | 16.49          | 20          | 20          |              | 0.435         | 0.359          | 17.55        |
| flethyl methacrylate                 | 1   | 0            |      | 5.69         | 18.23          | 20          | 20          |              | 0.236         | 0.216          | 8.83         |
| Pibromochloromethane                 | 1   | 0            |      | 6.67         | 17.74          | 20          | 20          | 0.1          | 0.283         | 0.251          | 11.32        |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 2

Calibration Name: CAL @ 20 PPB Cont Calibration Date/Time 10/8/2020 2:43:00 A Data File: 1M140246.D Method: EPA 8260D Instrument: GCMS 1

| TxtCompd:                         |     | Multi<br>Num | Туре | RT           | Conc  | Conc<br>Exp |    | RF    | nitial<br>RF                | RF    | %Diff Flag    |
|-----------------------------------|-----|--------------|------|--------------|-------|-------------|----|-------|-----------------------------|-------|---------------|
| 2-Chloroethylvinylether           | 1   | 0            |      | 5.94         | 12.70 | 20          | 20 | C     | 0.058                       | 0.037 | 36.50 C1      |
| cis-1,3-Dichloropropene           | 1   | 0            |      | 6.04         | 17.52 | 20          | 20 | 0.2 ( | 0.364                       | 0.319 | 12.40         |
| rans-1,3-Dichloropropene          | 1   | 0            |      | 6.33         | 16.06 | 20          | 20 | 0.1   | 0.368                       | 0.295 | 19.69         |
| Ethyl methacrylate                | 1   | 0            |      | 6.36         | 17.39 | 20          | 20 | 0.5   | ).224                       | 0.195 | 13.03         |
| 1,1,2-Trichloroethane             | _ 1 | 0            |      | 6.44         | 18.55 | 20_         | 20 | 0.1 0 | ).234                       | 0.217 | 7.27          |
| 1,2-Dibromoethane                 | 1   | 0            |      | 6.75         | 17.60 | 20          | 20 | 0.1 0 | ).252                       | 0.222 | 12.02         |
| 1,3-Dichloropropane               | 1   | 0            |      | 6.54         | 18.19 | 20          | 20 | C     | ).399                       | 0.363 | 9.07          |
| 4-Methyl-2-Pentanone              | 1   | 0            |      | 6.11         | 17.20 | 20          | 20 | 0.1 0 | ).270                       | 0.232 | 13.98         |
| 2-Hexanone                        | 1   | 0            |      | 6.55         | 16.91 | 20          | 20 | 0.1 0 | 0.205                       | 0.174 | 15.43         |
| Tetrachloroethene                 | 1   | 0            |      | 6.54         | 20.03 | 20          | 20 | 0.2 ( | ).216                       | 0.217 | 0.16          |
| Foluene-d8                        | 1   | 0            | S    | 6.20         | 28.11 | 30          | ** | 1     | 1.212                       | 1.136 | 6.29          |
| Toluene                           | 1   | 0            |      | 6.24         | 19.15 | 20          | 20 | 0.4 ( | ).593                       | 0.568 | 4.24          |
| I,1,1,2-Tetrachloroethane         | 1   | 0            |      | 7.04         | 17.80 | 20          | 20 | (     | ).257                       | 0.229 | 11.01         |
| Chlorobenzene                     | 1   | 0            |      | 7.00         | 18.86 | 20          | 20 | 0.5   | 0.692                       | 0.653 | 5.69          |
| 1,4-Dichlorobenzene-d4            | 1   | 0            | ı    | 8.28         | 30.00 | 30          | ** |       | _                           | 0.000 | 0.00          |
| n-Butyl acrylate                  | 1   | 0            |      | 7.25         | 15.75 | 20          | 20 | 0.5   | ).774                       | 0.610 | 21.25 C1      |
| n-Amyl acetate                    | 1   | 0            |      | 7.37         | 16.09 | 20          | 20 | 0.5   | ).755                       | 0.608 | 19.53         |
| 3romoform                         | 1   | 0            |      | 7.46         | 15.76 | 20          | 20 | 0.1 ( | 0.368                       | 0.290 | 21.21 C1      |
| Ethylbenzene                      | 1   | 0            |      | 7.05         | 18.15 | 20          | 20 | 0.1   |                             | 0.432 | 9.27          |
| I,1,2,2-Tetrachloroethane         | 1   | 0            |      | 7.67         | 16.85 | 20          | 20 | 0.1   |                             | 0.499 | 15.75         |
| Bromofluorobenzene                | 1   | 0            | S    | 7.63         | 30.40 | 30          | ** |       | ).756                       | 0.766 | 1.34          |
| Styrene                           | 1   | 0            |      | 7.33         | 19.03 | 20          | 20 | 0.3 1 | 1.139                       | 1.084 | 4.85          |
| m&p-Xylenes                       | 1   | 0            |      | 7.11         | 39.53 | 40          | 20 | 0.1 ( | 0.640                       | 0.632 | 1.18          |
| o-Xylene                          | 1   | 0            |      | 7.33         | 18.74 | 20          | 20 | 0.3 ( |                             | 0.614 | 6.30          |
| rans-1,4-Dichloro-2-butene        | 1   | 0            |      | 7.70         | 15.01 | 20          | 20 |       | ).225                       | 0.169 | 24.96 C1      |
| I,3-Dichlorobenzene               | 1   | 0            |      | 8.25         | 18.16 | 20          | 20 | 0.6 ( | ···                         | 0.894 | 9.19          |
| ,4-Dichlorobenzene                | 1   | 0            |      | 8.30         | 17.83 | 20          | 20 | 0.5 1 |                             | 0.920 | 10.87         |
| 1,2-Dichlorobenzene               | 1   | 0            |      | 8.52         | 18.17 | 20          | 20 | 0.4   |                             | 0.884 | 9.16          |
| sopropylbenzene                   | 1   | 0            |      | 7.53         | 18.52 | 20          | 20 | 0.1 1 |                             | 1.528 | 7.39          |
| Cyclohexanone                     | 1   | 0            |      | 7.60         | 78.77 | 100         | 20 |       | 0.021                       | 0.016 | 21.23 C1      |
| Camphene                          | 1   | 0            |      | 7.70         | 16.70 | 20          | 20 |       | ).481                       | 0.402 | 16.48         |
| 1,2,3-Trichloropropane            | 1   | 0            |      | 7.72         | 15.16 | 20          | 20 |       | ).742                       | 0.562 | 24.19 C1      |
| 2-Chlorotoluene                   | 1   | 0            |      | 7.82         | 18.12 | 20          | 20 |       | 1.147                       | 1.039 | 9.41          |
|                                   | 1   | 0            |      | 7.81         | 18.90 | 20          | 20 |       | 1.1 <del>4</del> 7<br>1.746 | 1.650 | 5.52          |
| p-Ethyltoluene<br>I-Chlorotoluene | 1   | 0            |      | 7.88         | 17.61 | 20          | 20 |       | 1.7 <del>40</del><br>1.152  | 1.030 | 11.96         |
|                                   |     |              |      | 7.75         | 18.04 | 20          | 20 |       | 2.092                       | 1.887 | 9.79          |
| n-Propylbenzene                   | 1   | 0            |      |              |       | 20          |    |       |                             |       | 9.79<br>14.34 |
| Bromobenzene                      | 1   | 0            |      | 7.72<br>7.94 | 17.13 |             | 20 |       | l.158<br>l.477              | 0.992 |               |
| 1,3,5-Trimethylbenzene            | 1   | 0            |      | 7.84<br>7.85 | 18.04 | 20          | 20 |       |                             | 1.332 | 9.81          |
| Butyl methacrylate                | 1   | 0            |      | 7.85         | 16.69 | 20          | 20 | 0.5 ( |                             | 0.472 | 16.56         |
| -Butylbenzene                     | 1   | 0            |      | 8.04         | 18.39 | 20          | 20 |       | 1.397                       | 1.284 | 8.07          |
| 1,2,4-Trimethylbenzene            | 1   | 0            |      | 8.06         | 18.27 | 20          | 20 |       | 1.535                       | 1.402 | 8.63          |
| sec-Butylbenzene                  | 1   | 0            |      | 8.16         | 18.56 | 20          | 20 |       | 1.744                       | 1.618 | 7.22          |
| I-Isopropyltoluene                | 1   | 0            |      | 8.23         | 18.77 | 20          | 20 |       | 1.522                       | 1.428 | 6.15          |
| n-Butylbenzene                    | 1   | 0            |      | 8.47         | 18.03 | 20          | 20 |       | 1.717                       | 1.548 | 9.87          |
| o-Diethylbenzene                  | 1   | 0            |      | 8.45         | 18.36 | 20          | 20 |       | 0.874                       | 0.803 | 8.18          |
| ,2,4,5-Tetramethylbenzene         | 1   | 0            |      | 8.91         | 13.27 | 20          | 20 |       | 1.287                       | 1.130 | 33.63 C1      |
| 1,2-Dibromo-3-Chloropropane       | 1   | 0            |      | 8.97         | 16.17 | 20          | 20 | 0.05  |                             | 0.133 | 19.16         |
| Camphor                           | 1   | 0            |      | 9.41         | 99.79 | 200         | 20 |       | 0.064                       | 0.042 | 50.10 C1      |
| Hexachlorobutadiene               | 1   | 0            |      | 9.55         | 18.10 | 20          | 20 |       | 0.291                       | 0.263 | 9.50          |
| 1,2,4-Trichlorobenzene            | 1   | 0            |      | 9.46         | 17.87 | 20          | 20 | 0.2   |                             | 0.564 | 10.63         |
| 1,2,3-Trichlorobenzene            | 1   | 0            |      | 9.76         | 16.83 | 20          | 20 |       | 0.582                       | 0.489 | 15.85         |
| Naphthalene                       | 1   | 0            |      | 9.62         | 16.34 | 20          | 20 | 1     | 1.622                       | 1.325 | 18.28         |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

1-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 2

Calibration Name: CAL @, 20 PPB Cont Calibration Date/Time 10/9/2020 8:41:00 A Data File: 1M140329.D Method: EPA 8260D Instrument: GCMS 1

|                                    | Col#     | Multi<br>Num | Туре        | RT           | Conc    | Conc<br>Exp | Lim | MIN<br>RF | Initial<br>RF | RF    | %Diff Flag |
|------------------------------------|----------|--------------|-------------|--------------|---------|-------------|-----|-----------|---------------|-------|------------|
| luorobenzene                       | 1        | 0            | 1           | 5.34         | 30.00   | 30          | **  |           |               | 0.000 | 0.00       |
| Chlorodifluoromethane              | 1        | 0            |             | 2.15         | 15.35   | 20          | 20  |           | 0.408         | 0.313 | 23.26 C1   |
| Dichlorodifluoromethane            | 1        | 0            |             | 2.13         | 10.83   | 20          | 20  | 0.1       | 0.198         | 0.107 | 45.84 C1   |
| Chloromethane                      | 1        | 0            |             | 2.30         | 15.32   | 20          | 20  | 0.1       | 0.273         | 0.209 | 23.38 C1   |
| Bromomethane                       | 1        | 0            |             | 2.67         | 17.26   | 20          | 20  | 0.1       | 0.126         | 0.109 | 13.70      |
| /inyl Chloride                     | 1        | 0            |             | 2.39         | 17.35   | 20          | 20  | 0.1       | 0.221         | 0.192 | 13.27      |
| Chloroethane                       | 1        | 0            |             | 2.74         | 22.44   | 20          | 20  | 0.1       | 0.130         | 0.146 | 12.22      |
| richlorofluoromethane              | 1        | 0            |             | 2.95         | 21.39   | 20          | 20  | 0.1       | 0.299         | 0.319 | 6.93       |
| Ethyl ether                        | 1        | 0            |             | 3.17         | 20.98   | 20          | 20  | 0.5       | 0.142         | 0.149 | 4.90       |
| furan                              | 1        | 0            |             | 3.21         | 18.99   | 20          | 20  | 0.5       | 0.304         | 0.289 | 5.04       |
| ,1,2-Trichloro-1,2,2-trifluoroetha | 1        | 0            |             | 3.36         | 22.39   | 20          | 20  | 0.1       | 0.127         | 0.142 | 11.95      |
| Methylene Chloride                 | 1        | 0            |             | 3.73         | 21.53   | 20          | 20  | 0.1       | 0.202         | 0.218 | 7.64       |
| Acrolein                           | 1        | 0            |             | 3.28         | 109.29  | 100         | 20  |           | 0.032         | 0.035 | 9.29       |
| Acrylonitrile                      | 1        | 0            |             | 3.93         | 22.69   | 20          | 20  |           | 0.088         | 0.100 | 13.43      |
| odomethane                         | 1        | 0            |             | 3.50         | 17.05   | 20          | 20  |           | 0.232         | 0.198 | 14.76      |
| Acetone                            | 1        | 0            | · - · · · · | 3.39         | 103.61  | 100         | 20  | 0.1       | 0.079         | 0.082 | 3.61       |
| Carbon Disulfide                   | 1        | 0            |             | 3.57         | 18.78   | 20          | 20  |           | 0.535         | 0.502 | 6.11       |
| -Butyl Alcohol                     | 1        | 0            |             | 3.80         | 124.57  | 100         | 20  |           | 0.022         | 0.028 | 24.57 C1   |
| -Hexane                            | 1        | 0            |             | 4.17         | 21.67   | 20          | 20  |           | 0.173         | 0.188 | 8.36       |
| Di-isopropyl-ether                 | 1        | 0            |             | 4.31         | 20.35   | 20          | 20  |           | 0.553         | 0.563 | 1.75       |
| ,1-Dichloroethene                  | 1        | 0            |             | 3.37         | 20.26   | 20          | 20  | 0.1       | 0.261         | 0.265 | 1.32       |
| Methyl Acetate                     | 1        | 0            |             | 3.64         | 22.46   | 20          | 20  |           | 0.170         | 0.191 | 12.28      |
| Methyl-t-butyl ether               | 1        | 0            |             | 3.96         | 24.30   | 20          | 20  |           | 0.458         | 0.557 | 21.52 C1   |
| ,1-Dichloroethane                  | 1        | 0            |             | 4.28         | 18.88   | 20          | 20  |           | 0.363         | 0.342 | 5.61       |
| rans-1,2-Dichloroethene            | 1        | 0            |             | 3.96         | 22.11   | 20          | 20  |           | 0.184         | 0.204 | 10.57      |
| Ethyl-t-butyl ether                | 1        | 0            |             | 4.56         | 20.85   | 20          | 20  |           | 0.509         | 0.531 | 4.24       |
| sis-1,2-Dichloroethene             | 1        | Ō            |             | 4.66         | 20.12   | 20          | 20  |           | 0.351         | 0.353 | 0.58       |
| Bromochloromethane                 | 1        | 0            |             | 4.81         | 17.61   | 20          | 20  |           | 0.211         | 0.186 | 11.96      |
| ,2-Dichloropropane                 | 1        | 0            |             | 4.68         | 20.72   | 20          | 20  |           | 0.293         | 0.303 | 3.58       |
| Ethyl acetate                      | 1        | Ō            |             | 4.69         | 19.02   | 20          | 20  |           | 0.291         | 0.277 | 4.88       |
| .4-Dioxane                         | 1        | 0            |             | 5.73         | 1100.64 | 1000        | 20  |           | 0.004         | 0.004 | 10.06      |
| ,1-Dichloropropene                 | 1        | Ö            |             | 5.07         | 20.79   | 20          | 20  |           | 0.271         | 0.281 | 3.95       |
| Chloroform                         | 1        | Ö            |             | 4.85         | 20.12   | 20          | 20  | 0.2       | 0.374         | 0.376 | 0.59       |
| Dibromofluoromethane               | 1        | 0            | s           | 4.94         | 30.53   | 30          | **  |           | 0.280         | 0.285 | 1.78       |
| Cyclohexane                        | 1        | 0            | •           | 5.02         | 19.69   | 20          | 20  | 0.1       | 0.257         | 0.253 | 1.54       |
| ,2-Dichloroethane-d4               | 1        | 0            | S           | 5.15         | 29.78   | 30          | **  |           | 0.152         | 0.151 | 0.73       |
| ,2-Dichloroethane                  | 1        | 0            | •           | 5.19         | 20.88   | 20          | 20  | 0.1       | 0.299         | 0.313 | 4.40       |
| -Butanone                          | 1        | 0            |             | 4.69         | 20.33   | 20          | 20  |           | 0.219         | 0.223 | 1.64       |
| ,1,1-Trichloroethane               | 1        | 0            |             | 4.98         | 20.49   | 20          | 20  |           | 0.333         | 0.223 | 2.45       |
| Carbon Tetrachloride               | 1        | 0            |             | 5.08         | 20.40   | 20          | 20  |           | 0.299         | 0.305 | 2.02       |
| /inyl Acetate                      |          | - <u>~</u>   |             | 4.30         | 20.11   | 20          | 20  |           | 0.696         | 0.700 | 0.54       |
| Bromodichloromethane               | 1        | 0            |             | 5.81         | 20.11   | 20          | 20  | 0.2       | 0.293         | 0.700 | 1.07       |
| flethylcyclohexane                 | 1        | 0            |             | 5.66         | 21.15   | 20          | 20  |           | 0.230         | 0.243 | 5.74       |
| Dibromomethane                     | 1        | 0            |             | 5.73         | 21.13   | 20          | 20  | Ų. I      | 0.230         | 0.243 | 7.12       |
| ,2-Dichloropropane                 | 1        |              |             | 5.73<br>5.67 | 18.94   | 20          | 20  | 0.1       | 0.100         | 0.177 | 5.30       |
| richloroethene                     | . '<br>1 | 0            |             | 5.54         | 20.37   | 20          | 20  |           | 0.213         | 0.235 | 1.86       |
|                                    | •        |              |             |              |         |             |     |           |               |       |            |
| Benzene                            | 1        | 0            |             | 5.19         | 19.71   | 20          | 20  | 0.5       | 0.790         | 0.779 | 1.45       |
| ert-Amyl methyl ether              | 1        | 0            |             | 5.24         | 21.74   | 20          | 20  |           | 0.485         | 0.527 | 8.69       |
| Chlorobenzene-d5                   | 1        | 0            | 1           | 6.99         | 30.00   | 30          |     |           | 0.405         | 0.000 | 0.00       |
| so-propylacetate                   | 1        | 0            |             | 5.19         | 17.69   | 20          | 20  | 0.5       | 0.435         | 0.385 | 11.53      |
| Methyl methacrylate                | 1        | 0            |             | 5.69         | 17.79   | 20          | 20  |           | 0.236         | 0.210 | 11.06      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 2

Calibration Name: CAL @ 20 PPB Cont Calibration Date/Time 10/9/2020 8:41:00 A Data File: 1M140329.D Method: EPA 8260D Instrument: GCMS !

| TxtCompd:                   | Col#       | Multi<br>Num | Туре | RT   | Conc   | Conc<br>Exp | Lo I<br>Lim | RF   | Initial<br>RF | RF    | %Diff | Flag |
|-----------------------------|------------|--------------|------|------|--------|-------------|-------------|------|---------------|-------|-------|------|
| 2-Chloroethylvinylether     | 1          | 0            |      | 5.95 | 12.99  | 20          | 20          |      | 0.058         | 0.037 | 35.03 | C1   |
| cis-1,3-Dichloropropene     | 1          | 0            |      | 6.04 | 17.83  | 20          | 20          | 0.2  | 0.364         | 0.324 | 10.84 |      |
| trans-1,3-Dichloropropene   | 1          | 0            |      | 6.33 | 16.53  | 20          | 20          | 0.1  | 0.368         | 0.304 | 17.33 |      |
| Ethyl methacrylate          | 1          | 0            |      | 6.36 | 20.04  | 20          | 20          | 0.5  | 0.224         | 0.225 | 0.21  |      |
| 1,1,2-Trichloroethane       | 11         | 0            |      | 6.44 | 17.86  | 20          | 20          | 0.1  | 0.234         | 0.209 | 10.71 |      |
| 1,2-Dibromoethane           | 1          | 0            |      | 6.74 | 17.67  | 20          | 20          | 0.1  | 0.252         | 0.223 | 11.66 |      |
| 1,3-Dichloropropane         | 1          | 0            |      | 6.54 | 17.45  | 20          | 20          |      | 0.399         | 0.348 | 12.76 |      |
| 4-Methyl-2-Pentanone        | 1          | 0            |      | 6.11 | 18.22  | 20          | 20          | 0.1  | 0.270         | 0.246 | 8.89  |      |
| 2-Hexarione                 | 1          | 0            |      | 6.55 | 18.03  | 20          | 20          | 0.1  | 0.205         | 0.185 | 9.83  |      |
| Tetrachloroethene           | 1          | 0            |      | 6.54 | 19.38  | 20          | 20          | 0.2  | 0.216         | 0.210 | 3.08  |      |
| Toluene-d8                  | 1          | 0            | S    | 6.20 | 27.28  | 30          | **          |      | 1.212         | 1.102 | 9.06  |      |
| Toluene                     | 1          | 0            |      | 6.24 | 17.93  | 20          | 20          | 0.4  | 0.593         | 0.532 | 10.34 |      |
| 1,1,1,2-Tetrachloroethane   | 1          | 0            |      | 7.04 | 17.65  | 20          | 20          |      | 0.257         | 0.227 | 11.75 |      |
| Chlorobenzene               | 1          | 0            |      | 7.00 | 18.78  | 20          | 20          | 0.5  | 0.692         | 0.650 | 6.10  |      |
| 1,4-Dichlorobenzene-d4      | 1          | 0_           | t    | 8.28 | 30.00  | 30          | **          |      |               | 0.000 | 0.00  |      |
| n-Butyl acrylate            | 1          | 0            |      | 7.25 | 16.49  | 20          | 20          | 0.5  | 0.774         | 0.638 | 17.54 |      |
| n-Amyl acetate              | 1          | 0            |      | 7.37 | 16.37  | 20          | 20          | 0.5  | 0.755         | 0.618 | 18.14 |      |
| Bromoform                   | 1          | 0            |      | 7.46 | 16.00  | 20          | 20          | 0.1  | 0.368         | 0.294 | 20.02 |      |
| Ethylbenzene                | 1          | 0            |      | 7.05 | 16.98  | 20          | 20          | 0.1  | 0.477         | 0.405 | 15.10 |      |
| 1,1,2,2-Tetrachloroethane   | 1          | 0            |      | 7.67 | 15.53  | 20          | 20          | 0.1  | 0.592         | 0.460 | 22.33 | C1   |
| Bromofluorobenzene          | 1          | 0            | S    | 7.62 | 31.36  | 30          | **          |      | 0.756         | 0.790 | 4.52  |      |
| Styrene                     | 1          | 0            |      | 7.33 | 18.56  | 20          | 20          | 0.3  | 1.139         | 1.057 | 7.20  |      |
| n&p-Xylenes                 | 1          | 0            |      | 7.11 | 38.62  | 40          | 20          | 0.1  | 0.640         | 0.618 | 3.44  |      |
| o-Xylene                    | 1          | 0            |      | 7.33 | 18.55  | 20          | 20          | 0.3  | 0.655         | 0.608 | 7.24  |      |
| trans-1,4-Dichloro-2-butene | 1          | 0            |      | 7.70 | 15.89  | 20          | 20          |      | 0.225         | 0.179 | 20.53 | C1   |
| 1,3-Dichlorobenzene         | 1          | 0            |      | 8.25 | 17.40  | 20          | 20          | 0.6  | 0.985         | 0.857 | 13.00 |      |
| 1,4-Dichlorobenzene         | 1          | 0            |      | 8.30 | 17.48  | 20          | 20          | 0.5  | 1.032         | 0.902 | 12.62 |      |
| 1,2-Dichlorobenzene         | 1          | 0            |      | 8.52 | 17.14  | 20          | 20          |      | 0.973         | 0.834 | 14.30 |      |
| sopropylbenzene             | 1          | 0            |      | 7.53 | 18.73  | 20          | 20          | 0.1  | 1.650         | 1.545 | 6.37  |      |
| Cyclohexanone               | 1          | 0            |      | 7.60 | 94.33  | 100         | 20          |      | 0.021         | 0.019 | 5.67  |      |
| Camphene                    | 1          | 0            |      | 7.70 | 17.77  | 20          | 20          |      | 0.481         | 0.427 | 11.15 |      |
| 1,2,3-Trichloropropane      | 1          | 0            |      | 7.71 | 15.29  | 20          | 20          |      | 0.742         | 0.567 | 23.56 | C1   |
| 2-Chlorotoluene             | 1          | 0            |      | 7.82 | 17.10  | 20          | 20          |      | 1.147         | 0.980 | 14.50 |      |
| p-Ethyltoluene              | 1          | 0            |      | 7.81 | 18.51  | 20          | 20          |      | 1.746         | 1.617 | 7.43  |      |
| 4-Chlorotoluene             | 1          | 0            |      | 7.88 | 17.00  | 20          | 20          |      | 1.152         | 0.979 | 15.01 |      |
| n-Propylbenzene             | 1          | 0            |      | 7.75 | 17.54  | 20          | 20          |      | 2.092         | 1.834 | 12.31 |      |
| Bromoberizene               | 1          | 0            |      | 7.73 | 17.00  | 20          | 20          |      | 1.158         | 0.984 | 15.00 |      |
| 1,3,5-Trimethylbenzene      | 1          | 0            |      | 7.84 | 17.58  | 20          | 20          |      | 1.477         | 1.299 | 12.10 |      |
| Butyl methacrylate          | 1          | 0            |      | 7.85 | 16.98  | 20          | 20          |      | 0.566         | 0.480 | 15.10 |      |
| -Butylbenzene               | 1          | 0            |      | 8.04 | 18.22  | 20          | 20          |      | 1.397         | 1.272 | 8.92  |      |
| 1,2,4-Trimethylbenzene      | <u>·</u> 1 | <u> </u>     |      | 8.06 | 17.88  | 20          | 20          |      | 1.535         | 1.372 | 10.62 |      |
| sec-Butylbenzene            | 1          | 0            |      | 8.16 | 17.97  | 20          | 20          |      | 1.744         | 1.566 | 10.17 |      |
| 4-Isopropyltoluene          | 1          | Ō            |      | 8.23 | 18.71  | 20          | 20          |      | 1.522         | 1.424 | 6.47  |      |
| n-Butylbenzene              | 1          | Ō            |      | 8.47 | 17.52  | 20          | 20          |      | 1.717         | 1.505 | 12.38 |      |
| p-Diethylbenzene            | 1          | ō            |      | 8.45 | 18.33  | 20          | 20          |      | 0.874         | 0.801 | 8.35  |      |
| 1,2,4,5-Tetramethylbenzene  | 1          | Ö            |      | 8.91 | 14.86  | 20          | 20          |      | 1.287         | 1.264 | 25.71 |      |
| 1,2-Dibromo-3-Chloropropane | 1          | Ö            |      | 8.97 | 15.76  | 20          | 20          | 0.05 |               | 0.129 | 21.21 |      |
| Camphor                     | 1          | Ö            |      | 9.41 | 133.20 | 200         | 20          |      | 0.064         | 0.057 | 33.40 |      |
| Hexachlorobutadiene         | 1          | Ō            |      | 9.55 | 18.36  | 20          | 20          |      | 0.291         | 0.267 | 8.21  | Ψ,   |
| 1,2,4-Trichlorobenzene      | 1          | Ö            |      | 9.46 | 18.39  | 20          | 20          |      | 0.631         | 0.580 | 8.03  |      |
| 1,2,3-Trichlorobenzene      | 1          | -0           |      | 9.76 | 17.58  | 20          | 20          |      | 0.582         | 0.511 | 12.09 |      |
| Naphthalene                 | 1          | 0            |      | 9.62 | 18.52  | 20          | 20          |      | 1.622         | 1.502 | 7.40  |      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 2

FORM8

Internal Standard Areas

Evaluation Std Data File: 1M139264.D

Method: EPA 8260D

Analysis Date/Time: 09/09/20 20:51

Lab File ID: CAL @ 20 PPB

| E e                      | =             |              | 2             |          | ឆ            | 4       | 5    |   | <u></u> |      | 17     |   |
|--------------------------|---------------|--------------|---------------|----------|--------------|---------|------|---|---------|------|--------|---|
|                          | Area          | -            | Area          | 괵        | Area RT      | Area RT | Area | 뀍 | Area    | R    | Area   | 끽 |
| Eval File Area/RT:       | 340053 5.34   |              |               | 6.99     | 188560 8.28  |         |      |   |         |      |        | i |
| Eval File Area Limit:    | 170026-680106 | <u>გ</u>     | 145637-582548 | <b>4</b> | 94280-377120 |         |      |   | 1       |      | - !    | į |
| Eval File Rt Limit:      | 4.84-5.84     | !            | 6.49-7.49     |          | 7.78-8.78    |         |      |   |         |      |        |   |
| Data File Sample#        |               |              |               |          |              |         |      |   |         |      | !<br>! |   |
| 1M139258.D BLK           | 305672        | 5.34         | 266592        | 6.99     | 149667       | 8.28    |      |   |         |      |        |   |
| 1M139260.D CAL @ 0.5 PPB | 308077        | 5.34         | 265447        | 6.90     | 151034       | 8.28    |      |   |         |      |        |   |
| 1M139261.D CAL @ 1 PPB   | 306556        | 5.34         | 272359        | 6.90     | 154590       | 8.28    |      |   |         |      |        |   |
| 1M139262.D CAL @ 5 PPB   | 326134        | 5.34         | 278828        | 6.90     | 174032       | 8.28    |      |   |         |      |        |   |
| 1M139263.D CAL @ 10 PPB  | 333407        | 5.34         | 281542        | 6.90     | 179860       | 3.28    |      |   | ļ<br>   | <br> |        |   |
| 1M139264.D CAL @ 20 PPB  | 340053        | 5.34         | 291274        | 6.99     | 188560       | 8.28    |      |   |         |      |        |   |
| 1M139266.D CAL @ 50 PPB  | 344963        | 5.34         | 296582        | 6.90     | 195857       | 3.28    |      |   |         |      |        |   |
| 1M139268.D CAL @ 500 PPB | 338072        | 5.34         | 353086        | 6.9      | 227068       | 8.28    |      |   |         |      |        |   |
| 1M139271.D CAL @ 250 PPB | 350686        | 5.34         | 335254        | 6.90     | 221713       | 8.28    |      |   |         |      |        |   |
| 1M139272.D BLK           | 377940        | 5.34         | 320880        | 6.9      | 196577       | 8.28    |      |   |         | ]    |        | ļ |
| 1M139274.D CAL @ 100 PPB | 352301        | 5.34         | 314499        | 6.90     | 208956       | 8.28    |      |   |         |      |        |   |
| 1M139275.D BLK           | 356564        | 5.34         | 308564        | 6.9      | 186298       | 8.28    |      |   |         |      |        |   |
| 1M139279.D ICV           | 314855        | 5.3 <b>4</b> | 270761        | 6.9      | 174786       | 8.28    |      |   |         |      |        |   |

| Interr  | ,                                                        |
|---------|----------------------------------------------------------|
| nal Sta |                                                          |
| indard  | 13 =                                                     |
| Areas   | -07                                                      |
| 100     | Fluorobenzene<br>Chlorobenzene-d5<br>1,4-Dichlorobenze   |
|         | luorobenzene<br>hlorobenzene-d5<br>,4-Dichlorobenzene-d4 |
|         | ne-d4                                                    |

**17** =

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Retention Times:

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8260 Internal Standard concentration = 30 ug/L
524 Internal Standard concentration = 5ug/L

R - Indicates the compound failed the internal standard retention time criteria.

Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

Eval File Area Limit: Eval File Rt Limit:

175848-703394 136646-546582

4.62-5.62

6.26-7.26

Eval File Area/RT

351697

5.12

273291 Area

6.76

148795 Area

8.05 끅

> Area 4

RT.

Area

끅

Area ᢐ

깍

Area

즤

74398-297590

7.55-8.55

RT

ದ

Area

# FORM8

Internal Standard Areas

Evaluation Std Data File: 6M133178.D

Analysis Date/Time: 10/06/20 12:10 Lab File ID: CAL @ 20 PPB

Method: EPA 8260D

| 524 Internal Standard concentration = 5ug/L                           |      |        |      | <b>5</b> " 1 | 4    | 1,4-Dichlorobenzene-d4 | 3 :           |            |
|-----------------------------------------------------------------------|------|--------|------|--------------|------|------------------------|---------------|------------|
| 625/8270 Internal Standard concentration = 40 mg/L (in final extract) | 11   | 17     |      | <b>4</b>     |      | Fluorobenzene          | ; =<br>;      |            |
|                                                                       | 8.05 | 145796 | 6.76 | 252168       |      | 336606                 | ₹<br> <br>    | 6M133201.D |
|                                                                       | 8.05 | 72920  | 6.76 | 137195       | 5.12 | 172606                 | BLK           | 6M133200.D |
|                                                                       | 8.05 | 143471 | 6.76 | 274318       | 5.12 | 345478                 | 문             | 6M133199.D |
|                                                                       | 8.05 | 146737 | 6.76 | 283618       |      | 344127                 | BLK           | 6M133198.D |
|                                                                       | 8.05 | 151930 | 6.76 | 293714       | 5.12 | 363568                 | BLK           | 6M133197.D |
|                                                                       | 8.05 | 137690 | 6.76 | 261647       | 5.12 | 326572                 | BLK           | 6M133196.D |
|                                                                       | 8.05 | 154807 | 6.76 | 288543       | 5.12 | 352643                 | BLK           | 6M133195.D |
|                                                                       | 8.05 | 264083 | 6.76 | 259425       |      | 326617                 | CAL @ 250 PPB | 6M133194.D |
|                                                                       | 8.05 | 128431 | 6.76 | 252008       |      | 326600                 | BLK           | 6M133193.D |
|                                                                       | 8.05 | 150582 | 6.76 | 277665       | 5.12 | 353873                 | BLK           | 6M133192.D |
|                                                                       | 8.06 | 155695 | 6.76 | 286647       |      | 354508                 | BLK           | 6M133191.D |
|                                                                       | 8.05 | 354017 | 6.76 | 328223       | 5.12 | 407741                 | 500 PPB       | 6M133190.D |
|                                                                       | 8.05 | 151311 | 6.76 | 278692       |      | 362143                 | BÇ            | 6M133189.D |
|                                                                       | 8.05 | 150476 | 6.76 | 276528       |      | 344384                 | BLK           | 6M133188.D |
|                                                                       | 8.05 | 160986 | 6.76 | 296427       |      | 367041                 | BLK           | 6M133187.D |
|                                                                       | 8.06 | 363055 | 6.76 | 327043       |      | 410821                 | 500 PPB       | 6M133186.D |
|                                                                       | 8.06 | 144865 | 6.76 | 272389       | 5.13 | 350378                 | BLK           | 6M133185.D |
|                                                                       | 8.05 | 155890 | 6.76 | 290160       |      | 350763                 | 뜻             | 6M133184.D |
|                                                                       | 8.05 | 310072 | 6.76 | 288090       |      | 363451                 | 250 PPB       | 6M133183.D |
|                                                                       | 8.05 | 59562  | 6.76 | 117301       |      | 144655                 | BLK           | 6M133182.D |
|                                                                       | 8.05 | 136209 | 6.76 | 258879       |      | 315570                 | BLK           | 6M133181.D |
|                                                                       | 8.05 | 148699 | 6.76 | 262981       |      | 333766                 | CAL @ 100 PPB | 6M133180.D |
|                                                                       | 8.05 | 145208 | 6.76 | 259427       | 5.12 | 331341                 |               | 6M133179.D |
|                                                                       | 8.05 | 148795 | 6.76 | 273291       |      | 351697                 | CAL @ 20 PPB  | 6M133178.D |
|                                                                       | 8.05 | 108297 | 6.76 | 209933       |      | 260289                 | CAL @ 5 PPB   | 6M133177.D |
|                                                                       | 8.05 | 100735 | 6.76 | 191968       |      | 242206                 |               | 6M133176.D |
|                                                                       | 8.06 | 129115 | 6.76 | 245033       |      | 308954                 | CAL @ 1 PPB   | 6M133175.D |
|                                                                       | 8.05 | 124570 | 6.76 | 237747       |      | 296032                 | CAL @ 0.5 PPB | 6M133174.D |
|                                                                       | 8.05 | 137392 | 6.76 | 261607       | 5.12 | 329354                 | BLK           | 6M133173.D |
|                                                                       | 8.05 | 148265 | 6.76 | 276954       | 5.12 | 343274                 | BLK           | 6M133172.D |
|                                                                       | 8.05 | 128967 | 6.76 | 249977       |      | 304285                 | BLK           | 6M133171.D |
|                                                                       | 8.05 | 161755 | 6.76 | 294347       | 5.13 | 360423                 | BLK           | 6M133170.D |
|                                                                       |      |        |      |              |      |                        | Sample#       | Data File  |
|                                                                       | i    |        |      |              |      |                        |               |            |

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt

Retention Times:

A - Indicates the compound failed the internal standard area criteria

FORM8

Evaluation Std Data File: 6M133178.D Internal Standard Areas

Analysis Date/Time: 10/06/20 12:10 Lab File ID: CAL @ 20 PPB

Method: EPA 8260D

Area

즤

Area ಹ

괵

Area

짂

7

ত

| 5          |                        | !            | -      |        |             |              |              |        | ******   |   |
|------------|------------------------|--------------|--------|--------|-------------|--------------|--------------|--------|----------|---|
| 2.         |                        | =            |        |        | 2           |              | <u></u>      |        | Z        |   |
| O          |                        | Area         | RT     | Area   | ٦,          | _            | Area         | 괵      | Area     | 꼭 |
| 10         | Eval File Area/RT:     |              | 5.12   | 273291 | 6.76        |              | 148795       | 8.05   |          |   |
| U          | Eval File Area Limit:  | 175848-70339 | 03394  | 1366   | 36646-54658 | <sub>'</sub> | 74398-297590 | 7590   |          |   |
|            | Eval File Rt Limit     | 4.62-5.62    | 62     | 6      | 6.26-7.26   |              | 7.55-8.55    | 55     |          |   |
| Data File  | Sample#                |              |        |        |             |              |              |        |          | ! |
| 6M133202.C | •                      | 15035        |        |        | 14148       | 6.76         | 6176         |        | <i>ъ</i> |   |
| 6M133203   | 3.D BLK                | 645953       | 3 5.12 |        | 497682      | 6.76         | 259602       | 2 8.05 | й        |   |
| 6M133204.D | ID BLK                 | 16060        |        |        | 29116       | 6.76         | 6988         |        | й        |   |
| 6M133205   | S.D. BLK               | 33338        |        |        | 71456       | 6.76         | 14114        |        | й        |   |
| 6M133206   | D BLK                  | 17547        | !      |        | 14605       | 6.76         | 7361         |        | ŭ        | : |
| 6M133207   | 6M133207.D DAILY BLANK | 32636        |        |        | 59937       | 6.76         | 13420        |        | й        |   |
|            |                        |              |        |        |             |              |              |        |          |   |

| Lower Limit = - 50% of internal standard area from daily cal or mid pt.          | Upper Limit = + 100% of internal standard area from daily cal or mid pt. | Internal Standard Areas | II = Fluorobenzene                                                                                                                                                       |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R - Indicates the compound failed the internal standard retention time criteria. | A - Indicates the compound failed the internal standard area criteria    | Flags:                  | 17 = 625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration = 5ug/L |

Internal Standard Areas

Evaluation Std Data File: 6M133210.D Analysis Date/Time: 10/07/20 12:30

Method: EPA 8260D

Lab File ID: CAL @ 50 PPB

| į        |                         |                                             |                                                                                                                                                         |                                           | 1                 |                     |              |      | ****         |         |                |               | 1           |                                         |                      |                  |
|----------|-------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------|---------------------|--------------|------|--------------|---------|----------------|---------------|-------------|-----------------------------------------|----------------------|------------------|
|          | ug/L (10 iinai extract) | ntration = 40<br>ntration = 30<br>on =5ug/L | 623/67 (Internal Standard concentration = 40 mg/L<br>624/8260 Internal Standard concentration = 30 mg/L<br>524 Internal Standard concentration = 5 mg/L | /V Internal<br>60 Internal<br>ternal Stan | 624/82<br>524 Int |                     |              |      | J7 ==        |         |                | 6 E E         | Ġ.          | Chlorobenzene-d5 1,4-Dichlorobenzene-d4 | 3 = 1                |                  |
| _        |                         |                                             | S-1-1-1                                                                                                                                                 |                                           |                   | -                   |              |      | :<br>!       |         |                |               | !           |                                         | 1                    |                  |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 127486       |         | Ī              | 259187        |             | 325431                                  | AD19643-002          | 6M133242.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 113937       | 6.76 1  |                | 241238        | 5.12        | 323494                                  | AD19644-007          | 6M133241.D       |
| İ        |                         |                                             |                                                                                                                                                         | !<br>i<br>i                               | !                 | į<br>i              | <br> -<br> - | 8.05 | 115817       | 6.76    |                | 246254        |             | 307466                                  | AD19644-008          | 6M133240.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 120747       | 6.76    | _              | 249729        | 5.12        | 316803                                  | AD19644-005          | 6M133239.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 131474       | 6.76    | •              | 262195        | 5.12        | 329496                                  | AD19644-006          | 6M133238.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 136378       | 6.76    | •              | 272755        | 5.12        | 344495                                  | AD19644-004          | 6M133237.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 127032       |         | )66 6.76       | 262966        | 5.12        | 328869                                  | AD19644-002          | 6M133236.D       |
| İ        | <br>                    | ί<br>[<br>i                                 |                                                                                                                                                         | !<br>!                                    |                   |                     |              | 8.05 | 141524       |         | 57 6.76        | 276657        | 5.12        | 345102                                  | BC                   | 6M133235.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 151528       |         |                | 281701        | 5.12        | 353501                                  | AD19595-001          | 6M133234.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 128860       | 6.76    |                | 244322        | 5.12        | 301903                                  | AD19595-005          | 6M133233.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 146157       | 6.76    |                | 287066        | 5.12        | 350384                                  | AD19595-010          | 6M133232.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 144432       | 6.76    | -              | 286345        | 5.12        | 347686                                  | AD19595-009          | 6M133231.D       |
| į<br>į   | <br>                    |                                             |                                                                                                                                                         | <br> <br>                                 |                   | İ                   |              | 8.05 | 141317       | 6.76    | ļ<br>İ         | 277307        | 5.12        | 342747                                  | AD19595-011          | 6M133230.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 136400       | 6.76    |                | 275099        | 5.12        | 345312                                  | AD19595-008          | 6M133229.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 123170       | 6.76 12 |                | 235170        | 5.12        | 285338                                  | AD19595-007          | 6M133228.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 144377       | 6.76 14 | -              | 288715        | 5.13        | 354879                                  | AD19595-003          | 6M133227.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 96055        |         | 44 6.76        | 228644        | 5.13        | 302243                                  | AD19589-006          | 6M133226.D       |
| <u> </u> | :<br>:<br>:<br>:        |                                             |                                                                                                                                                         |                                           | !                 |                     | İ<br>İ<br>İ  | 8.05 | 111266       | ļ<br>:  | 6.76           | 247460        | 5.13        | 309475                                  | AD19589-005          | 6M133225.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 113493       |         |                | 254992        | 5.13        | 324584                                  | AD19589-004          | 6M133224.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 73193        |         | 95 6.76        | 145995        | 5.12        | 183519                                  | BLK                  | 6M133223.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 137030       |         | 60 6.76        | 259260        | 5.12        | 330415                                  | BLK                  | 6M133222.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 96643        |         | 78 6.76        | 225278        | 5.13        | ):A 325284                              | AD19589-003(MSD:A    | 6M133220.D       |
| [        |                         |                                             |                                                                                                                                                         |                                           | !<br>!            |                     |              | 8.05 |              |         |                | 215544        | 5.12        |                                         | AD19589-002(MS:AD    | 6M133219.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.06 | 138884       |         | 62 6.76        | 258262        | 5.12        | 333743                                  | MBS89449             | 6M133218.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 74104        |         | 74 6.76        | 210174        | 5.12        | 312186                                  | AD19589-001          | 6M133217.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 133544       | 6.76    |                | 261179        | 5.12        | 330455                                  | BLK                  | 6M133216.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 67601        |         | 367 6.76       | 187867        | 5.12        | 289587                                  | AD19542-001          | 6M133215.D       |
| i<br>i   |                         |                                             |                                                                                                                                                         | :                                         | :<br>!<br>:       |                     |              | 8.05 | 139222       |         | 24 6.76        | 276624        | 5.12        | 341074                                  | DAILY BLANK          | 6M133214.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 83969        |         | i20 6.76       | 166520        | 5.12        | 208690                                  | BLK                  | 6M133213.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 80670        | 6.76    |                | 157386        | 5.12        | 203469                                  | BL                   | 6M133212.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 57226        |         | 175 6.76       | 114475        | 5.12        | 146932                                  | BLK                  | 6M133211.D       |
|          |                         |                                             |                                                                                                                                                         |                                           |                   |                     |              | 8.05 | 50392        | 76      |                | 96524         | 5.11        | 122257                                  | BLK                  | 6M133209.D       |
| 1        | !                       |                                             |                                                                                                                                                         | !                                         |                   | [<br>[              | :<br>!<br>   | !    | !            | !<br>!  |                | 1             | ·<br>•      |                                         | Sample#              | Data File        |
|          |                         | <br> <br>                                   |                                                                                                                                                         | !<br>!                                    |                   | <br>                |              |      | 7.55-8.55    | 7.5     | 7.26           | 6.26-7.26     | ; . <b></b> | 4.62-5.62                               | Eval File Rt Limit   |                  |
| ļ        |                         | <u> </u>                                    |                                                                                                                                                         |                                           |                   | <br>                | į<br>į       |      | 70876-283502 | 7087    | 500248         | 125062-500248 | 482         | 162870-651482                           | Eval File Area Limit | ·<br>-<br>-<br>- |
| i        |                         |                                             |                                                                                                                                                         |                                           |                   | -                   |              | . O. | 8.05         | 141751  | 6.76           | 250124        | 5.12        |                                         | Eval File Area/RT    |                  |
|          | Area RT                 | RT                                          | Area                                                                                                                                                    | RT                                        | Area              | 꾸                   | Area         |      | <u>.</u>     | Area    | <br>  <b>김</b> | Area          | R           | Area                                    |                      |                  |
| i.       | 17                      | <br>                                        | 5                                                                                                                                                       | ]:<br> -<br> -                            | 5                 | \{\dagger}{\dagger} | 4            | 1    | ಷ            | + -     | 1              | - 12          |             |                                         |                      |                  |
| ;        | i                       | <br>                                        | ;                                                                                                                                                       | :                                         | ï                 | i                   | :            | -    | ; '          |         |                | ;<br>;        | :           |                                         | _                    |                  |

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt

Retention Times:

A - Indicates the compound failed the internal standard area criteria

Eval File Area Limit

162870-651482

125062-500248

70876-283502

7.55-8.55

6.26-7.26

4.62-5.62

Eval File Rt Limit

Eval File Area/RT 325741

5.12 끽

Area RT 250124 6.76

Area RT Area 141751 8.05

Агеа

Area

Агеа

ធ

RT

Агеа

FORM8

Evaluation Std Data File: 6M133210.D Internal Standard Areas

Lab File ID: CAL @ 50 PPB

Analysis Date/Time: 10/07/20 12:30 Method: EPA 8260D

| 6M133248.D BLK | 6M133247.D BLK | 6M133246.D BLK | 6M133245.D BLK | 6M133244.D BLK | 6M133243.D MBS89455 | Data File Sample# |
|----------------|----------------|----------------|----------------|----------------|---------------------|-------------------|
| 327637         | 308824         | 325265         | 312003         | 336591         | 342044              |                   |
| 5.12           | 5.12           | 5.12           | 5.12           | 5.12           | 5.12                |                   |
| 253591         | 249514         | 256732         | 250859         | 266965         | 261461              |                   |
| 6.76           | 6.76           | 6.76           | 6.76           | 6.76           | 6.76                | :                 |
| 129463         | 123378         | 129473         | 127541         | 136070         | 144809              | !                 |
| 8.05           | 8.05           | 8.05           | 8.05           | 8.05           | 8.05                |                   |
|                | į<br>į         |                |                |                |                     |                   |

| Internal St.<br>Upper Limit                                                                      | - · · · · · · · · · · · · · · · · · · · |
|--------------------------------------------------------------------------------------------------|-----------------------------------------|
| al Standard Are<br>Limit = + 100%                                                                |                                         |
| Internal Standard Areas Upper Limit = + 100% of internal standard area from daily cal or mid pt. | 1                                       |
| from daily                                                                                       | 22.2                                    |
| cal or mid p                                                                                     |                                         |
| 9.                                                                                               |                                         |
|                                                                                                  | 17=                                     |
| Flags:<br>A - Ind                                                                                |                                         |
| Flags:<br>A - Indicates t                                                                        |                                         |

Fluorobenzene

Lower Limit = - 50% of internal standard area from daily cal or mid pt.

the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8350 Internal Standard concentration = 30 ng/L
524 Internal Standard concentration = 5 ng/L

# FORM8

Internal Standard Areas

Evaluation Std Data File: 1M140246.D Analysis Date/Time: 10/08/20 02:43

Method: EPA 8260D

Lab File ID: CAL @ 20 PPB

|                  | !                                                                     |             |                                                   |                | !           |             | !              | i      |               |        |                  |          |                  | . !                | . [                   |           |
|------------------|-----------------------------------------------------------------------|-------------|---------------------------------------------------|----------------|-------------|-------------|----------------|--------|---------------|--------|------------------|----------|------------------|--------------------|-----------------------|-----------|
|                  | ug/L                                                                  | ation =5u   | 524 Internal Standard concentration = Sug/L       | Internal Stand | 5241        |             |                |        |               |        | <b>6</b> =       | 4        | Dichlorobenzene- | 13 = 1,4-1         |                       |           |
| ) final extract) | 625/8270 Internal Standard concentration = 40 mg/L (in final extract) | centratio   | 625/8270 Internal Standard concentration = 40 mg/ | 8270 Internal  | 625A        |             |                | 17=    |               |        | <b>7 4</b>       |          | Fluorobenzene    |                    |                       |           |
|                  |                                                                       |             |                                                   |                |             | i<br>!      | 8              | 5 8.28 | 274765        | 6.99   | 415015           | 5.34     | 391575           | 3014               | AD19598-014           | M140278.D |
|                  |                                                                       |             |                                                   |                |             |             | w              |        | 298549        | 6.99   | 447208           | 5.34     | 420744           | 3-013              | _                     | M140277.D |
|                  | :<br> <br> -<br> -                                                    | l<br>İ<br>İ | [<br>[<br>[                                       | !<br>!<br>!    | !<br>!      | i<br>i      |                | 7 8.28 | 274367        | 6.99   | 418779           | 5.34     | 401639           | AD19636-002(80uL)  | _                     | M140276.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 1 8.28 | 261331        | 6.99   | 392001           | 5.33     | 367380           | 5-005              | AD19595-005           | M140275.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 1 8.28 | 263631        | 6.99   | 392819           | 5.34     | 370489           | 5-001              | AD19595-001           | M140274.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 7 8.28 | 269577        | 6.99   | 401122           | 5.34     | 381868           | 5-010              | AD19595-010           | M140273.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 8 8.28 | 270998        | 6.99   | 393780           | 5.33     | 373220           | 5-003              | AD19595-003           | M140272.D |
|                  | · · · · · · · · · · · · · · · · · · ·                                 | :           | 1                                                 |                | !<br>!      | i<br>i<br>i | 9              | 6 8.28 | 262906        | 6.99   | 388024           | 5.34     | 372819           | 9009               | AD19595-009           | M140271.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 3 8.28 | 280933        | 6.99   | 411817           | 5.34     | 407719           | AD19580-001(MSD)   |                       | M140270.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 3 8.28 | 293813        | 6.99   | 431357           | 5.34     | 420314           | 3-012              | AD19598-012           | M140269.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 0 8.28 | 324400        | 6.99   | 453289           | 5.34     | 450394           | AD19580-001(MS)    | _                     | M140268.D |
|                  |                                                                       |             |                                                   |                |             |             | w              |        | 143961        | 6.99   | 420898           | 5.33     | 392238           | 001                | AD19629-001           | M140267.D |
|                  |                                                                       | !<br>!      | [<br> <br> <br>                                   | !<br>!<br>!    | !<br>!      | !<br>!<br>! | <b></b>        | ļ      | 320932        | 6.99   | 412531           | 5.33     | 380011           | 002                | AD19629-002           | M140266.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | _      | 265689        | 6.99   | 401576           | 5.34     | 373329           | -001               | AD19619-001           | M140265.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 2 8.28 | 286152        | 6.99   | 435788           | 5.34     | 413471           |                    | BLK                   | M140264.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 4 8.28 | 269214        | 6.99   | 410892           | 5.34     | 385180           |                    | PK                    | M140263.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 3 8.28 | 264833        | 6.99   | 387322           | 5.33     | 383072           | 2                  | MBS89464              | M140262.D |
|                  |                                                                       | :<br>!<br>! |                                                   |                |             | !           | 5              | 7 8.28 | 285487        | 6.99   | 405871           | 5.34     | 408927           | 56                 | MBS89456              | M140261.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 7 8.28 | 273257        | 6.99   | 387819           | 5.33     | 393141           | AD19619-001(MSD)   | _                     | M140260.D |
|                  |                                                                       |             |                                                   |                |             |             | w              |        | 290097        | 6.99   | 397019           | 5.34     | 406316           | AD19619-001(MS)    |                       | M140259.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 9 8.28 | 134709        | 6.99   | 403050           | 5.34     | 388372           | 7-004              | AD19517-004           | M140258.D |
|                  |                                                                       |             |                                                   |                |             |             | 50             |        | 276454        | 6.99   | 395020           | 5.34     | 391617           | AD19559-001(400uL) |                       | M140257.D |
|                  |                                                                       | -           |                                                   |                | !           |             | 3              | 08.28  | 305500        | 6.99   | 395699           | 5.34     | 385796           | AD19581-001(400uL) |                       | M140256.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 1 8.28 | 312911        | 6.99   | 441506           | 5.33     | 408517           | 1-003              | AD19581-003           | M140255.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 0 8.28 | 274920        | 6.99   | 393532           | 5.33     | 366694           | 5-002              | AD19596-002           | M140254.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | •      | 241442        | 6.99   | 369479           | 5.33     | 349907           | -007               | AD19587-007           | M140253.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 9 8.28 | 237169        | 6.99   | 362159           | 5.34     | 351050           | AD19636-002(400uL) | _                     | M140252.D |
|                  | i<br>                                                                 |             | 1                                                 |                |             | •           | 3              | '      | 227527        | 6.99   | 371796           | 5.34     | 353142           | LANK<br>N          | i T                   | M140251.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | Ī      | 224057        | 6.99   | 358722           | 5.34     | 340986           | LANK               | _                     | M140250.D |
|                  |                                                                       |             |                                                   |                |             |             | w              |        | 231895        | 6.99   | 367841           | 5.34     | 354481           |                    |                       | M140249.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 8.28   | 240878        | 6.99   | 373642           | 5.34     | 362576           |                    | BLK                   | M140248.D |
|                  |                                                                       |             |                                                   |                |             |             | w              | 2 8.28 | 257292        | 6.99   | 370952           | 5.34     | 376969           |                    | 20 PPB                | M140247.D |
|                  |                                                                       |             |                                                   |                | :<br>!<br>! |             | <br>           |        | !<br>!<br>!   | į<br>: |                  |          | :<br>!<br>!      |                    | Sample#               | ata File  |
|                  | : : : : : : : : : : : : : : : : : : : :                               | :<br>:<br>i |                                                   |                |             | :<br>:      |                | 78     | 7.78-8.78     | ;<br>; | 6.49-7.49        | <u></u>  | 4.84-5.84        | A Limit            | Eval File Rt Limit    |           |
|                  | !<br>! -                                                              | :           | !                                                 | <br>           |             | !<br>!      |                | 4490   | 121122-484490 | 3522   | 177130-708522    | 362<br>⊥ | 177966-711862    | Limit              | Eval File Area Limit: | Į m       |
| -                | .i. !!!                                                               | i .         | !                                                 | i              | 1           | 1           | !              | - -    |               | 1      | <u>.</u>         | -        |                  |                    | .  <br>               | п -       |
|                  | . 4                                                                   | . 1         |                                                   |                |             | 1           | <br> <br> <br> | 8.28   | 242245        | 6.99   | - 1              | 5.34 3   | -                |                    | Eval File Area/RT:    | <br>I     |
| P.               | Area                                                                  | RT          | Area                                              | P              | Area        | 깍           | Area           | 직      | Area          | 깍      | Area             | 즤        | Area             |                    |                       |           |
| 17               |                                                                       |             | 6                                                 |                | 55          |             | <b>4</b>       |        | ప             |        | 12               |          | =                |                    |                       |           |
|                  | :                                                                     |             | !                                                 |                | :           | :           |                |        | : : :         | :      | !<br>!<br>!<br>! |          | i :              |                    |                       |           |

# Internal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Flags:

A - Indicates the compound failed the internal standard area criteria

Data File

1M140279.D AD19568-002

381895

5.34

405515

6.99

261736

8.28

FORM8

Internal Standard Areas Evaluation Std Data File: 1M140246.D

luation Std Data File: 1M140246.D Analysis Date/Time: 10/08/20 02:43

02:43

ಹ

RT.

Method: EPA 8260D

Lab File ID: CAL @ 20 PPB

2 | 13 | RT | Area | RT | Area | 6.99 | 242245 | 8.28

|                                         |                    | . <u>.                                   </u> |         |                 |
|-----------------------------------------|--------------------|-----------------------------------------------|---------|-----------------|
| Sample#                                 | Eval File Rt Limit | Eval File Area Limit:                         | rea/RT: |                 |
|                                         | 4.84-5.84          | 177966-711862                                 | 355931  | Area            |
| i<br>:<br>:                             |                    | 11862                                         | 5.34    | :<br>  2        |
|                                         | 6.49-7.49          | _                                             | 354261  | Area            |
|                                         | 7.49               | 77130-708522                                  | 6.99    | <u>ر</u>        |
|                                         | 7.78-8.78          | 12                                            | 242245  | Area            |
|                                         | 3.78               | 184490                                        | 8.28    | :<br>: 건<br>: 건 |
| :                                       |                    |                                               |         | Area            |
|                                         |                    |                                               |         | 2               |
| !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |                    |                                               |         | Area            |
| :                                       |                    |                                               |         | ; <u>.</u>      |
| : : :                                   |                    |                                               |         | Area            |
|                                         |                    |                                               |         | 2               |
| 1 1                                     | 1                  | !!!                                           |         | Area            |
| :<br>:<br>:                             | !<br>!             | . :                                           |         |                 |
| 1                                       |                    |                                               |         |                 |

# Internal Standard Areas

13 =

Fluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d4

Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Retention Times:

17 =

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30 ug/L 524 Internal Standard concentration = 5 ug/L

R - Indicates the compound failed the internal standard retention time criteria.

Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

# FORM8

Internal Standard Areas

Evaluation Std Data File: 1M140329.D Analysis Date/Time: 10/09/20 08:41

Lab File ID: CAL @ 20 PPB

Method: EPA 8260D

|                                                                                                                         |         |               | i                  |        | ,                                 | tomal Standard Arga    | 7          |
|-------------------------------------------------------------------------------------------------------------------------|---------|---------------|--------------------|--------|-----------------------------------|------------------------|------------|
| 524 Internal Standard concentration =Sug/L                                                                              |         |               | "                  |        | 1,4-Dichlorobenzene-d4            |                        |            |
| 625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ms/L |         | ]7=           |                    | 15     | Fluorobenzene<br>Chlorobenzene-d5 | 12 = F                 |            |
|                                                                                                                         | 1.28    | 279600 8.     | 401863 6.99        | 5.34   | 391204                            | D AD19593-003          | 1M140360.D |
|                                                                                                                         | 8.28    | 112729        | 149121 6.99        | 5.34   | 55851                             | _                      | 1M140359.D |
|                                                                                                                         | 8.28    | 251611        | 386666 6.99        | 5.34   | 363436                            |                        | 1M140358.D |
|                                                                                                                         | 8.28    | 249538        | 388890 6.99        | 5.34   | 368403                            | AD19616-006            | 1M140357.D |
|                                                                                                                         | 8.28    | 253559        | 394417 6.99        | 5.34   | 369116                            | AD19591-004            | 1M140356.D |
|                                                                                                                         | 8.28    | 251903        | 389312 6.99        | 5.34   | 366099                            | AD19591-003            | 1M140355.D |
|                                                                                                                         | 8.28    | 251481        | 390483 6.99        | 5.34   | 366475                            | _                      | 1M140354.D |
|                                                                                                                         | 8.28    | 274224        | 423279 6.99        | 5.34   | 399962                            | AD19592-002            | 1M140353.D |
|                                                                                                                         | 8.28    | 260557        | 401212 6.99        | 5.34   | 377406                            | BLK                    | 1M140352.D |
|                                                                                                                         | 8.28    | 253733        | 389861 6.99        | 5.34   | 365607                            | ) BLK                  | 1M140351.D |
|                                                                                                                         | 8.28    | 271819        | 380560 6.99        | 5.33   | 372473                            | D AD19654-001(MSD)     | 1M140350.D |
|                                                                                                                         | 8.28    | 247612        | 349474 6.99        |        | 341378                            | AD19654-001(MS)        | 1M140349.D |
|                                                                                                                         | 8.28    | 271295        | 397424 6.99        | 5.34   | A 388621                          | D AD19616-003(MSD:A    | 1M140348.D |
|                                                                                                                         | 8.28    | 278279        | 409067 6.99        | 5.34   | D 407471                          | D AD19616-002(MS:AD    | 1M140347.D |
|                                                                                                                         | 8.28    | 258244        | 392590 6.99        | 5.34   | 373395                            | AD19595-012            | 1M140346.D |
|                                                                                                                         | 8.28    | 257473        | 397321 6.99        | 5.34   | 374082                            | AD19595-006            | 1M140345.D |
|                                                                                                                         | 8.28    | 250133        | •                  |        | 352612                            | ) 19595-007            | 1M140344.D |
|                                                                                                                         | 8.28    | 275813        | 407191 6.99        | 5.33   | 378849                            | AD19595-004            | 1M140343.D |
|                                                                                                                         | 8.28    | 258756        | 374999 6.99        | 5.33   | 349551                            | AD19595-002            | 1M140342.D |
|                                                                                                                         | 8.28    | 250948        | 379066 6.99        | 5.33   | 357563                            | AD19539-012            | 1M140341.D |
|                                                                                                                         | 8.28    | 261826        | 389506 6.99        | 5.34   | 381486                            | AD19598-012            | 1M140340.D |
|                                                                                                                         | 8.28    | 274785        | 396711 6.99        | 5.34   | 393888                            | MBS89476               | 1M140339.D |
|                                                                                                                         | 8.28    | 270019        | 385156 6.99        | 5.34   | 379647                            | MBS89475               | 1M140338.D |
|                                                                                                                         | 8.28    | 265203        | 401823 6.99        | 5.34   | 378004                            | D AD19539-014(40uL)    | 1M140337.D |
|                                                                                                                         | 8.28    | 244935        | 383680 6.99        | 5.34   | L) 364335                         | D AD19539-012(400uL)   | 1M140336.D |
|                                                                                                                         | 8.28    | 265313        | 418046 6.99        |        | 401236                            | AD19616-001            | 1M140335.D |
|                                                                                                                         | 8.28    | 254222        | 398400 6.99        | 5.34   | 365186                            | _                      | 1M140334.D |
|                                                                                                                         | 8.28    | 254182        | 396377 <u>6.99</u> | 5.34   | 365030                            | DAILY BLANK            | 1M140333.D |
|                                                                                                                         | 8.28    | 259481        | 398073 6.99        |        | 374548                            | DAILY BLANK            | 1M140332.D |
|                                                                                                                         | 8.28    | 254771        | 393036 6.99        | 5.34   | 374870                            | BLK                    | 1M140331.D |
|                                                                                                                         | 8.28    | 258045        | 399836 6.99        | 5.34   | 371150                            | BLK                    | 1M140330.D |
|                                                                                                                         | 8.28    | 305725        | 447412 6.99        | 5.34   | 412075                            |                        | 1M140328.D |
|                                                                                                                         |         |               |                    | •      |                                   | Sample#                | Data File  |
|                                                                                                                         |         | 7.78-8.78     | 6.49-7.49          | :<br>: | 4.84-5.84                         | Eval File Rt Limit     | ***        |
|                                                                                                                         |         | 06/070-00/101 | 193/19-//40/0      |        | #7C#0/-1C11E1                     | Eval File Alea Cillin. |            |
|                                                                                                                         |         | 134700 536700 | 710 771076         | :      | 101131 76153                      |                        | n -        |
|                                                                                                                         |         | 263399 8.28   | 8 6.99             | ယ္က    | 382262 5.34                       | Eval File Area/RT      | I          |
| Area RT Area RT Area RT                                                                                                 | Area RT | Area RT       | a)<br>RT           | Area   | Area RT                           | -1                     |            |
| 15 16 17                                                                                                                | 4       | ឆ             | 2                  |        | =                                 |                        |            |
|                                                                                                                         |         |               | 1                  | 1 1    |                                   | _                      |            |

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Retention Times:

Flags:

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention tim

Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt. R - Indicates the compound failed the internal standard retention time criteria.

FORM8

Internal Standard Areas

Evaluation Std Data File: 1M140329.D Analysis Date/Time: 10/09/20 08:41

Method: EPA 8260D

Lab File ID: CAL @ 20 PPB

| ۷,         |                      | =             |         | 2             | <u>3</u>      | <b>a</b> |   | 5      |           | <u>6</u> |   | 17     |    |
|------------|----------------------|---------------|---------|---------------|---------------|----------|---|--------|-----------|----------|---|--------|----|
|            |                      | Area RT       | Area    | 직             | Area          | T Area   | 직 | Area   | 직         | Area     | ┚ | Area   | P. |
|            | Eval File Area/RT:   | 382262 5.34   | 387438  | 6.99          | 263399 8.28   | œ i      | : | :      |           | !        | i |        |    |
|            | Eval File Area Limit | 191131-764524 | -       | 193719-774876 | 131700-526798 | 8        | : | ;<br>; | _         | ļ        | 1 | ;<br>; |    |
| r · ·—r    | Eval File Rt Limit:  | 4.84-5.84     | 6.4     | 6.49-7.49     | 7.78-8.78     |          |   |        | <br> <br> |          | 1 |        |    |
| Data File  | Sample#              | :<br>:<br>:   |         | <br>          | :<br>:        |          |   |        | ;<br>!    | 1        | ! | •      |    |
| 1M140361.D | D AD19616-004        | 374919        | 5.34 30 | 391436 6      | 6.99 264870   | 8.28     |   |        |           |          |   |        |    |
| 1M140362.D | D AD19616-005        | 365605        |         |               |               | 8.28     |   |        |           |          |   |        |    |
| 1M140363.D | D 19517-004          |               |         |               |               | 8.28     |   |        |           |          |   |        |    |
| 1M140364.D | D MBS89482           |               |         |               |               | 8.28     |   |        |           |          |   |        |    |
| 1M140365.D | D BLX                | i<br>I        |         | 1             |               | 8.28     |   |        |           |          | : |        |    |
| 1M140366.D |                      |               |         |               |               | 8.28     |   |        |           |          |   |        |    |
| 1M140367.D |                      | 392750        | 5.34 41 | 419086 6      | 6.99 283002   | 8.28     |   |        |           |          |   |        |    |
| 1M140368.D | DBLK                 |               |         |               |               | 8.28     |   |        |           |          |   |        |    |
| 1M140369.D |                      |               |         |               |               | 8.28     |   |        |           |          |   |        |    |
| 1M140370.D | D BLK                |               |         | !             | :             | 8.28     |   | ;<br>( |           | <br>     |   |        |    |
| 1M140371.D | D BLK                | 390264        |         |               | .99 276180    | 8.28     |   |        |           |          |   |        |    |
|            |                      |               |         |               |               |          |   |        |           |          |   |        |    |

# Internal Standard Areas

11 = 12 = 13 =

Fluorobenzene
Chlorobenzene-d5
1,4-Dichlorobenzene-d4

554

17 =

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration = 5ug/L

**TCLP Volatile Data** 

#### Form1

#### ORGANICS VOLATILE REPORT

Sample Number: AD19595-013(T)

Client Id: HSI-WC-NH

Data File: 2M142777.D Analysis Date: 10/06/20 17:56

Date Rec/Extracted: 10/02/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

.. ..

Units: mg/L

| Cas #    | Compound             | RL      | Conc |   | Cas #            | Compound          | RL     | Conc   |
|----------|----------------------|---------|------|---|------------------|-------------------|--------|--------|
| 75-35-4  | 1,1-Dichloroethene   | 0.0010  | U    |   | 108-90-7         | Chlorobenzene     | 0.0010 | 0.0031 |
| 107-06-2 | 1,2-Dichloroethane   | 0.00064 | U    | ! | 67 <b>-6</b> 6-3 | Chloroform        | 0.0020 | U      |
| 106-46-7 | 1,4-Dichlorobenzene  | 0.0010  | U    |   | 127-18-4         | Tetrachloroethene | 0.0010 | U      |
| 78-93-3  | 2-Butanone           | 0.0010  | U    |   | 79-01-6          | Trichloroethene   | 0.0010 | U      |
| 71-43-2  | Benzene              | 0.00050 | U    |   | 75-01-4          | Vinyl Chloride    | 0.0010 | U      |
| 56-23-5  | Carbon Tetrachloride | 0.0010  | U    |   |                  |                   |        |        |

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Operator : WP Sam Mult : 1 Vial# : 11 Misc : A,5ML!18 Ot Meth : 2M\_A0929.M Qt On : 10/06/20 18:26 Qt Upd On: 09/30/20 18:32 SampleID : AD19595-013(T) Data File: 2M142777.D Acq On : 10/06/20 17:56

Data Path : G:\GcMsData\2020\GCMS\_2\Data\10-0620\
Qt Path : G:\GCMSDATA\2020\GCMS\_2\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc U | nits Dev | (Min)  |
|-----------------------------|-------|------|----------|--------|----------|--------|
| Internal Standards          |       |      |          |        |          |        |
| 4) Fluorobenzene            | 5.099 | 96   | 390864   | 30.00  | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.733 | 117  | 328290   | 30.00  | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.019 | 152  | 192684   | 30.00  | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |          |        |          |        |
| 37) Dibromofluoromethane    | 4.703 | 111  | 113195   | 30.23  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =   | 100.77%  |        |
| 39) 1,2-Dichloroethane-d4   | 4.910 | 67   | 59926    | 31.00  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =   | 103.33%  |        |
| 66) Toluene-d8              | 5.952 | 98   | 423240   | 32.95  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =   | 109.83%  |        |
| 76) Bromofluorobenzene      | 7.367 | 174  | 158055   | 31.23  | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =   | 104.10%  |        |
| Target Compounds            |       |      |          |        |          | Qvalue |
| 69) Chlorobenzene           | 6.751 | 112  | 30079    | 3.10   | 84 ug/   | 1 97   |

<sup>(</sup>#) = qualifier out of range (m) = manual integration (+) = signals summed



#### Form1

#### ORGANICS VOLATILE REPORT

Sample Number: AD19595-014(10X)(T)

Client Id: HSI-WC-H Data File: 2M142785.D

Analysis Date: 10/06/20 20:33 Date Rec/Extracted: 10/02/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260D

Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA

Dilution: 10.0

Solids: 0

| Units: | mg/L |
|--------|------|
|--------|------|

| Cas#     | Compound             | RL     | Conc  | Cas #            | Compound          | RL    | Conc  |
|----------|----------------------|--------|-------|------------------|-------------------|-------|-------|
| 75-35-4  | 1,1-Dichloroethene   | 0.010  | U     | 108-90-7         | Chlorobenzene     | 0.010 | 0.83  |
| 107-06-2 | 1,2-Dichloroethane   | 0.0064 | 0.033 | 67 <b>-66-</b> 3 | Chloroform        | 0.020 | U     |
| 106-46-7 | 1.4-Dichlorobenzene  | 0.010  | U     | 127-18-4         | Tetrachloroethene | 0.010 | 0.039 |
| 78-93-3  | 2-Butanone           | 0.010  | U     | 79-01-6          | Trichloroethene   | 0.010 | 0.51  |
| 71-43-2  | Benzene              | 0.0050 | U     | 75-01-4          | Vinyl Chloride    | 0.010 | U     |
| 56-23-5  | Carbon Tetrachloride | 0.010  | U     |                  |                   |       |       |

1.4

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Qt Meth : 2M\_A0929.M Qt On : 10/06/20 22:14 Qt Upd On: 09/30/20 18:32 Data File: 2M142785.D Acq On : 10/06/20 20:33 Misc

Data Path : G:\GcMsData\2020\GCMS\_2\Data\10-0620\
Qt Path : G:\GCMSDATA\2020\GCMS\_2\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Un | its Dev( | (Min)  |
|-----------------------------|-------|------|----------|---------|----------|--------|
| Internal Standards          |       |      |          |         |          |        |
| 4) Fluorobenzene            | 5.099 | 96   | 375629   | 30.00   | ug/l     | 0.00   |
| 52) Chlorobenzene-d5        | 6.732 | 117  | 354760   | 30.00   | ug/l     | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.019 | 152  | 182191   | 30.00   | ug/l     | 0.00   |
| System Monitoring Compounds |       |      |          |         |          |        |
| 37) Dibromofluoromethane    | 4.708 | 111  | 106680   | 29.65   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 98.83%   |        |
| 39) 1,2-Dichloroethane-d4   | 4.910 | 67   | 55500    | 29.87   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 99.57%   |        |
| 66) Toluene-d8              | 5.952 | 98   | 375195   | 27.03   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 90.10%   |        |
| 76) Bromofluorobenzene      | 7.366 | 174  | 152942   | 31.96   | ug/l     | 0.00   |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 106.53%  |        |
| Target Compounds            |       |      |          |         |          | Qvalue |
| 40) 1,2-Dichloroethane      | 4.952 | 62   | 18062    | 3.323   | 3 ug/l   | . 95   |
| 49) Trichloroethene         | 5.300 | 130  | 201730   | 50.793  | 3 ug/l   | . 97   |
| 65) Tetrachloroethene       | 6.287 | 164  | 12496    | 3.913   | 3 ug/1   | . 95   |
| 69) Chlorobenzene           | 6.751 | 112  | 872373   | 83.425  | 2 ug/1   | . 99   |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed



#### Form1

#### **ORGANICS VOLATILE REPORT**

Sample Number: DAILY BLANK

Client Id:

Data File: 2M142770.D

Analysis Date: 10/06/20 15:32

Date Rec/Extracted:

56-23-5 Carbon Tetrachloride

Column:DB-624 25M 0.200mm ID 1.12um film

0.0010

Method: EPA 8260D

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

|          |                     |         | Units: m | g/L      |                   |        |      |
|----------|---------------------|---------|----------|----------|-------------------|--------|------|
| Cas #    | Compound            | RL      | Conc     | Cas #    | Compound          | RL     | Conc |
| 75-35-4  | 1,1-Dichloroethene  | 0.0010  | U        | 108-90-7 | Chlorobenzene     | 0.0010 | U    |
| 107-06-2 | 1,2-Dichloroethane  | 0.00064 | U -      | 67-66-3  | Chloroform        | 0.0020 | U    |
| 106-46-7 | 1,4-Dichlorobenzene | 0.0010  | U        | 127-18-4 | Tetrachloroethene | 0.0010 | U    |
| 78-93-3  | 2-Butanone          | 0.0010  | υ        | 79-01-6  | Trichloroethene   | 0.0010 | U    |
| 71-43-2  | Benzene             | 0.00050 | U        | 75-01-4  | Vinyl Chloride    | 0.0010 | U    |

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 $<sup>\</sup>it E$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

 $<sup>{\</sup>it J}$  - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Quantitation Report (QT Reviewed) 0100230 0153

Qt Meth : 2M\_A0929.M Qt On : 10/06/20 15:53 Operator : WP Sam Mult : 1 Vial# : 6 Misc : A,5ML SampleID : DAILY BLANK Data File: 2M142770.D Acq On : 10/06/20 15:32 Qt Upd On: 09/30/20 18:32

Data Path : G:\GcMsData\2020\GCMS\_2\Data\10-0620\
Qt Path : G:\GCMSDATA\2020\GCMS\_2\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    |       | _   | Response |       |         | (Min)  |
|-----------------------------|-------|-----|----------|-------|---------|--------|
| Internal Standards          |       |     |          |       |         |        |
| 4) Fluorobenzene            | 5.098 | 96  | 371657   | 30.00 | ug/l    | 0.00   |
| 52) Chlorobenzene-d5        | 6.732 | 117 | 345686   | 30.00 | ug/l    | 0.00   |
| 70) 1,4-Dichlorobenzene-d4  | 8.019 | 152 | 180982   | 30.00 | ug/l    | 0.00   |
| System Monitoring Compounds |       |     |          |       |         |        |
| 37) Dibromofluoromethane    | 4.708 | 111 | 108035   | 30.34 | ug/l    | 0.00   |
| Spiked Amount 30.000        |       |     | Recove   | ry =  | 101.13% |        |
| 39) 1,2-Dichloroethane-d4   | 4.909 | 67  | 54987    | 29.91 | ug/l    | 0.00   |
| Spiked Amount 30.000        |       |     | Recove   | ry =  | 99.70%  |        |
| 66) Toluene-d8              | 5.952 | 98  | 402737   | 29.78 | ug/l    | 0.00   |
| Spiked Amount 30.000        |       |     | Recove   | ry =  | 99.27%  |        |
| 76) Bromofluorobenzene      | 7.366 | 174 | 149653   | 31.48 | ug/l    | 0.00   |
| Spiked Amount 30.000        |       |     | Recove   | ry =  | 104.93% |        |
| Target Compounds            |       |     |          |       |         | Qvalue |

(#) = qualifier out of range (m) = manual integration (+) = signals summed



#### Form1

#### ORGANICS VOLATILE REPORT

Sample Number: EF-V1-335534(100620)

Client Id:

Method: EPA 8260D

Matrix: Aqueous Initial Vol:5ml

Data File: 2M142789.D

Final Vol: NA

Analysis Date: 10/06/20 21:55

Dilution: 1.00

Date Rec/Extracted:

Solids: 0

Column: DB-624 25M 0.200mm ID 1.12um film

Units: mg/L

|          |                      |         | • • • • • • • • • • • • • • • • • • • • |          |                   |        |      |
|----------|----------------------|---------|-----------------------------------------|----------|-------------------|--------|------|
| Cas #    | Compound             | RL      | Conc                                    | Cas #    | Compound          | RL     | Conc |
| 75-35-4  | 1,1-Dichloroethene   | 0.0010  | U                                       | 108-90-7 | Chlorobenzene     | 0.0010 | U    |
| 107-06-2 | 1,2-Dichloroethane   | 0.00064 | U                                       | 67-66-3  | Chloroform        | 0.0020 | U    |
| 106-46-7 | 1,4-Dichlorobenzene  | 0.0010  | U                                       | 127-18-4 | Tetrachloroethene | 0.0010 | U    |
| 78-93-3  | 2-Butanone           | 0.0010  | U                                       | 79-01-6  | Trichloroethene   | 0.0010 | U    |
| 71-43-2  | Benzene              | 0.00050 | U                                       | 75-01-4  | Vinyl Chloride    | 0.0010 | U    |
| 56-23-5  | Carbon Tetrachloride | 0.0010  | U                                       |          |                   |        |      |

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Quantitation Report (QT Reviewed) 0100230 0156

SampleID : EF-V1-335534(100620 Operator : WP
Data File: 2M142789.D Sam Mult : 1 Vial# : 23
Acq On : 10/06/20 21:55 Misc : A,5ML!22 Qt Meth : 2M\_A0929.M Qt On : 10/06/20 22:15 Qt Upd On: 09/30/20 18:32

Data Path : G:\GcMsData\2020\GCMS\_2\Data\10-0620\
Qt Path : G:\GCMSDATA\2020\GCMS\_2\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.  | QIon | Response | Conc Un | nits Dev | (Min) |
|-----------------------------|-------|------|----------|---------|----------|-------|
| Internal Standards          |       |      |          |         |          |       |
| 4) Fluorobenzene            | 5.099 | 96   | 356707   | 30.00   | uq/l     | 0.00  |
| 52) Chlorobenzene-d5        | 6.732 | 117  | 334466   | 30.00   | ug/l     | 0.00  |
| 70) 1,4-Dichlorobenzene-d4  | 8.019 | 152  | 159221m  | 30.00   | ug/l     | 0.00  |
| System Monitoring Compounds |       |      |          |         |          |       |
| 37) Dibromofluoromethane    | 4.702 | 111  | 103381   | 30.25   | ug/l     | 0.00  |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 100.83%  |       |
| 39) 1,2-Dichloroethane-d4   | 4.910 | 67   | 53408    | 30.27   | ug/l     | 0.00  |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 100.90%  |       |
| 66) Toluene-d8              | 5.952 | 98   | 388226   | 29.67   | ug/l     | 0.00  |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 98.90%   |       |
| 76) Bromofluorobenzene      | 7.367 | 174  | 138793m  | 33.19   | ug/l     | 0.00  |
| Spiked Amount 30.000        |       |      | Recove   | ry =    | 110.63%  |       |

Target Compounds Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed



2M\_A0929.M Wed Oct 14 16:18:05 2020 SYSTEM1

#### FORM2

Surrogate Recovery

Method: EPA 8260D

|              |                        |        | <b>5</b> .4.5.671 | Surr | Dilute<br>Out | Column1<br>S1 | Column1<br>S2 | Column1<br>S3 | Column1<br>S4 | Column0<br>S5 | Column0<br>S6 |
|--------------|------------------------|--------|-------------------|------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| <u>Dfile</u> | Sample#                | Matrix | Date/Time         | Dil  | Flag          | Recov         | Recov         | Recov         | Recov         | Recov         | Recov         |
| 2M14277      | O.D DAILY BLANK        | Α      | 10/06/20 15:32    | 1    |               | 101           | 100           | 99            | 105           |               |               |
| 2M14278      | 9.DEF-V1-335534(100620 | ) A    | 10/06/20 21:55    | 1    |               | 101           | 101           | 99            | 111           |               |               |
| 2M14277      | 7.DAD19595-013(T)      | Α      | 10/06/20 17:56    | 1    |               | 101           | 103           | 110           | 104           |               |               |
| 2M14278      | 5.DAD19595-014(10X)(T) | Α      | 10/06/20 20:33    | 1    |               | 99            | 100           | 90            | 107           |               |               |
| 2M14277      | 5.DAD19542-001(T)      | Α      | 10/06/20 17:17    | 1    |               | 98            | 100           | 98            | 106           |               |               |
| 2M14277      | 9.DMBS89438            | Α      | 10/06/20 18:35    | 1    |               | 100           | 104           | 99            | 102           |               |               |
| 2M14278      | 7.DAD19542-001(T:MS)   | Α      | 10/06/20 21:16    | 1    |               | 94            | 91            | 85            | 100           |               |               |
| 2M14278      | 8.DAD19542-001(T:MSD)  | Α      | 10/06/20 21:36    | 1    |               | 97            | 101           | 99            | 104           |               |               |

Flags: SD=Surrogate diluted out

\*=Surrogate out

Method: EPA 8260D

#### **Aqueous Laboratory Limits**

| Compound                 | Spike<br>Amt | Limits |
|--------------------------|--------------|--------|
| S1=Dibromofluoromethane  | 30           | 73-131 |
| S2=1,2-Dichloroethane-d4 | 30           | 78-128 |
| S3=Toluene-d8            | 30           | 79-111 |
| S4=Bromofluorobenzene    | 30           | 82-112 |

### Form3 Recovery Data Laboratory Limits

QC Batch: MBS89438

Data File Spike or Dup: 2M142779.D Sample ID: MBS89438

Analysis Date 10/6/2020 6:35:00 PM

Non Spike(If applicable): Inst Blank(If applicable):

Method: 8260D Matrix: Aqueous Units: ug/L QC Type: MBS Spike Sample Expected Lower Upper Analyte: Col Conc Conc Conc Recovery Limit Limit Chlorodifluoromethane 18.7778 Dichlorodifluoromethane 11,4743 Chloromethane 13.1453 Bromomethane 11.2894 <u>77</u> Vinyl Chloride **15.4014** <u>20</u> <u>50</u> <u>150</u> Chloroethane 13.2962 Trichlorofluoromethane 12.204 Ethyl ether 14.2929 Furan 13.5464 1,1,2-Trichloro-1,2,2-trifluoroethane 15.5216 16.3693 Methylene Chloride Acrolein 69.3496 Acrylonitrile 17.2223 Iodomethane 13.9781 O 72.4312 Acetone 16.336 Carbon Disulfide 88.012 t-Butyl Alcohol n-Hexane 18.6324 Di-isopropyl-ether 16.346 <u>20</u> <u>70</u> 1,1-Dichloroethene 14.9172 <u>75</u> <u>130</u> 26.0488 Methyl Acetate Methyl-t-butyl ether 14.9216 1,1-Dichloroethane 16.6287 trans-1,2-Dichloroethene 16.4057 Ethyl-t-butyl ether 16.7185 cis-1,2-Dichloroethene 15.9753 16.9682 Bromochloromethane 2,2-Dichloropropane 17.2761 Ethyl acetate 16.9417 701.8288 1,4-Dioxane 1,1-Dichloropropene 16.6829 **Chloroform** 16.5779 <u>20</u> <u>130</u> 17.3763 Cyclohexane <u>20</u> <u>75</u> <u>70</u> 1,2-Dichloroethane 15.076 2-Butanone 16.5978 1,1,1-Trichloroethane 16.7466 16.7268 <u>20</u> Carbon Tetrachloride <u>84</u> 12.8929 Vinyl Acetate n Bromodichloromethane 14.9979 17.137 Methylcyclohexane Dibromomethane 15.748 1,2-Dichloropropane 16.2716 **Trichloroethene** 17.7399 <u>89</u> <u>130</u> 16.291 <u>20</u> <u>81</u> **Benzene** tert-Amyl methyl ether 15.9646 17.0262 O Iso-propylacetate Methyl methacrylate 16.126 Dibromochloromethane 16.4495 2-Chloroethylvinylether 73.7994 cis-1.3-Dichloropropene 16.2043 trans-1,3-Dichloropropene 15.8597 15.7898 Ethyl methacrylate 1,1,2-Trichloroethane 15.7013 1,2-Dibromoethane 16.1775 1,3-Dichloropropane 15.4552 4-Methyl-2-Pentanone 18.5778 2-Hexanone 17.2777 <u>20</u> <u>80</u> <u>50</u> **Tetrachloroethene** 16.0707 <u>150</u> Toluene 18.0525 1,1,1,2-Tetrachloroethane 15.1299 <u>19.1266</u> <u>20</u> <u>96</u> <u>70</u> <u>130</u> <u>Chlorobenzene</u>

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

QC Type: MBS Method: 8260D Matrix: Aqueous Units: ug/L Spike Sample Expected Lower Upper Analyte: Col Conc Conc Conc Recovery Limit Limit n-Butyl acrylate 17.8736 17.6826 n-Amyl acetate **Bromoform** 16.9507 Ethylbenzene 18.2507 19.2282 1,1,2,2-Tetrachloroethane Styrene 17.0341 m&p-Xylenes 33.27 17.2555 o-Xylene trans-1,4-Dichloro-2-butene 20.04 15.8488 1.3-Dichlorobenzene 1,4-Dichlorobenzene 15.3678 <u>20</u> <u>77</u> <u>70</u> <u>130</u> 1,2-Dichlorobenzene 15.4754 n Isopropylbenzene 17.79 Cyclohexanone 83.2813 Camphene 16.1793 1,2,3-Trichloropropane 16.5899 2-Chlorotoluene 17.0735 p-Ethyltoluene 17.1215 4-Chlorotoluene 17.5317 n-Propylbenzene 17.295 Bromobenzene 15.568 1,3,5-Trimethylbenzene 16.7972 Butyl methacrylate 15.9206 t-Butylbenzene 17.5757 1,2,4-Trimethylbenzene 17.0842 sec-Butylbenzene 17.6946 4-Isopropyltoluene 17.1671 n-Butylbenzene 18.0279 p-Diethylbenzene 17.6786 1,2,4,5-Tetramethylbenzene 17.2157 17.0524 1,2-Dibromo-3-Chloropropane n 219.4095 Camphor Hexachlorobutadiene 15.4361 15.3954 O 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene 15.8378 

18.8974

Naphthalene

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

### Form3 Recovery Data Laboratory Limits

QC Batch: MBS89438

Data File Spike or Dup: 2M142787.D

Non Spike(If applicable): 2M142775.D

Sample ID: AD19542-001(T:MS) AD19542-001(T) Analysis Date 10/6/2020 9:16:00 PM 10/6/2020 5:17:00 PM

inst Blank(If applicable):

Method: 8260D Matrix: Aqueous Units: ug/L QC Type: MS Upper Spike Sample Expected Lower Col Recovery Analyte: Conc Conc Conc Limit Limit Chlorodifluoromethane 16.5533 20 83 50 150 0 Dichlorodifluoromethane 10.8545 0 20 54 50 150 20 56 50 150 Chloromethane 11.1546 n Bromomethane 20 63 150 12.6506 0 50 Vinyl Chloride 20 72 50 **150** <u>14.3114</u> 0 20 74 50 150 Chloroethane 14.7442 0 85 Trichlorofluoromethane 17.048 0 20 50 150 Ethyl ether 22.6516 0 20 113 50 150 20 0 78 50 150 15.5902 Furan 1,1,2-Trichloro-1,2,2-trifluoroethane 17.635 0 20 88 50 150 Methylene Chloride 68.0471 0 20 340\* 70 130 6.9\* 150 6.8788 100 50 Acrolein O Acrylonitrile 10.1282 0 20 51 50 150 Iodomethane 13.8134 20 69 50 150 100 70 50 150 Acetone 69.6792 0 15.1168 20 76 50 150 Carbon Disulfide 0 54.009 t-Butyl Alcohol 0 100 54 50 150 n-Hexane 18.589 0 20 93 70 130 80 70 15.9633 0 20 130 Di-isopropyl-ether 1,1-Dichloroethene 16.5384 0 <u>20</u> <u>83</u> 70 130 1 Methyl Acetate 5.7023 0 20 291 50 150 12.5502 20 63 70 0 130 Methyl-t-butyl ether 20 1,1-Dichloroethane 16.561 0 83 70 130 70 trans-1,2-Dichloroethene 16.1286 0 20 81 130 Ethyl-t-butyl ether 16.0025 0 20 80 70 130 cis-1.2-Dichloroethene 14.9501 0 20 75 70 130 Bromochloromethane 16.7832 0 20 84 70 130 20 86 70 130 2,2-Dichloropropane 17.2013 n Ethyl acetate 6.5586 0 20 33\* 50 150 1,4-Dioxane 492.4296 0 1000 49\* 50 150 16.8892 20 84 70 130 1,1-Dichloropropene 0 17.2262 0 <u>20</u> <u>86</u> <u>70</u> 130 **Chloroform** 17.2031 0 20 86 70 130 Cyclohexane <u>20</u> 1,2-Dichloroethane 14.2266 Q <u>71</u> <u>70</u> <u>130</u> 1 12.8109 <u>0</u> <u>20</u> <u>64</u> <u>50</u> 2-Butanone 1 <u>150</u> 20 0 88 70 130 1,1,1-Trichloroethane 17.683 <u>20</u> <u>88</u> <u>50</u> **Carbon Tetrachloride** 17.6123 0 <u>150</u> 1 20 7 2301 0 36 50 150 Vinyl Acetate Bromodichloromethane 12.4863 20 621 70 130 0 20 Methylcyclohexane 15.4458 0 77 70 130 20 63\* 70 130 12.6339 O Dibromomethane 1.2-Dichloropropane 14.0753 0 20 70 70 130 **Trichloroethene** 26.8144 0 20 134 70 <u>130</u> <u>20</u> <u>70</u> 130 **Benzene** <u>16.5332</u> 0 <u>83</u> 20 70 tert-Amyl methyl ether 15.2918 0 76 130 20 Iso-propylacetate 6.7712 0 34 \* 70 130 Methyl methacrylate 2.3298 n 20 12\* 70 130 20 Dibromochloromethane 15.5395 0 78 70 130 2-Chloroethylvinylether 45.0506 0 20 225\* 70 130 20 66\* 70 130 cis-1,3-Dichloropropene 13.1213 0 trans-1,3-Dichloropropene 14.9835 0 20 75 70 130 Ethyl methacrylate 5.7726 0 20 29\* 70 130 20 1,1,2-Trichloroethane 67 \* 70 130 13.3555 n 0 20 68\* 70 130 1,2-Dibromoethane 13.5749 1,3-Dichloropropane 13.8199 20 69\* 70 130 461 4-Methyl-2-Pentanone 9.1804 0 20 50 150 2-Hexanone 10.5137 0 20 53 50 150 **Tetrachloroethene** 17.3137 0 20 87 **50** 150 1 20 70 Toluene 14.6676 0 73 130 1,1,1,2-Tetrachloroethane 0 20 80 70 130 1 15.972 16.8637 0 20 84 70 130 Chlorobenzene 1

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               | Matrix   | : Aqueous     |                | Units: ug/L      | QC Ty         |                |                |
|-----------------------------|----------|---------------|----------------|------------------|---------------|----------------|----------------|
| Analyte:                    | Col      | Spike<br>Conc | Sample<br>Conc | Expected<br>Conc | Recovery      | Lower<br>Limit | Upper<br>Limit |
| n-Butyl acrylate            | 1        | 2.7781        | 0              | 20               | 14*           | 70             | 130            |
| n-Amyl acetate              | 1        | 2.5325        | 0              | 20               | 13*           | 70             | 130            |
| Bromoform                   | 1        | 13.8075       | 0              | 20               | 69*           | 70             | 130            |
| Ethylbenzene                | 1        | 17.3165       | 0              | 20               | 87            | 70             | 130            |
| 1,1,2,2-Tetrachloroethane   | 1        | 0             | 0              | 20               | 0*            | 70             | 130            |
| Styrene                     | 1        | 16.9455       | 0              | 20               | 85            | 70             | 130            |
| m&p-Xylenes                 | 1        | 32.8164       | 0              | 40               | 82            | 70             | 130            |
| o-Xylene                    | 1        | 16.9531       | 0              | 20               | 85            | 70             | 130            |
| trans-1,4-Dichloro-2-butene | 1        | 16.6546       | 0              | 20               | 83            | 50             | 150            |
| 1.3-Dichlorobenzene         | 1        | 16.3152       | 0              | 20               | 82            | 70             | 130            |
| 1,4-Dichlorobenzene         | 1        | 15.7506       | <u>0</u>       | 20               | 7 <b>9</b>    | <u>70</u>      | 130            |
| 1,2-Dichlorobenzene         | <u> </u> | 15.573        | ō              | 20               | <del>78</del> | 70             | 130            |
| Isopropylbenzene            | 1        | 17.5942       | 0              | 20               | 88            | 70             | 130            |
| Cyclohexanone               | 1        | 64.5234       | 0              | 100              | 65            | 50             | 150            |
| Camphene                    | 1        | 16.8444       | 0              | 20               | 84            | 70             | 130            |
| 1,2,3-Trichloropropane      | 1        | 11.8567       | 0              | 20               | 59*           | 70             | 130            |
| 2-Chlorotoluene             | 1        | 17.7083       | 0              | 20               | 89            | 70             | 130            |
| p-Ethyltoluene              | 1        | 17.9752       | 0              | 20               | 90            | 70             | 130            |
| 4-Chlorotoluene             | 1        | 17.3889       | 0              | 20               | 87            | 70             | 130            |
| n-Propylbenzene             | 1        | 17.4481       | 0              | 20               | 87            | 70             | 130            |
| Bromobenzene                | 1        | 14.8418       | 0              | 20               | 74            | 70             | 130            |
| 1,3,5-Trimethylbenzene      | 1        | 17.6514       | 0              | 20               | 88            | 70             | 130            |
| Butyl methacrylate          | 1        | 10.0708       | 0              | 20               | 50*           | 70             | 130            |
| t-Butylbenzene              | 1        | 18.3201       | Ö              | 20               | 92            | 70             | 130            |
| 1,2,4-Trimethylbenzene      | 1        | 17.2902       | 0              | 20               | 86            | 70             | 130            |
| sec-Butylbenzene            | 1        | 18.5164       | 0              | 20               | 93            | 70             | 130            |
| 4-Isopropyltoluene          | 1        | 18.4826       | 0              | 20               | 92            | 70             | 130            |
| n-Butylbenzene              | 1        | 18.4622       | 0              | 20               | 92            | 70             | 130            |
| p-Diethylbenzene            | 1        | 18.4539       | 0              | 20               | 92            | 70             | 130            |
| 1,2,4,5-Tetramethylbenzene  | 1        | 17.6809       | 0              | 20               | 88            | 70             | 130            |
| 1,2-Dibromo-3-Chloropropane | 1        | 10.6466       | Ö              | 20               | 53            | 50             | 150            |
| Camphor                     | 1        | 173.2843      | Ö              | 200              | 87            | 20             | 150            |
| Hexachlorobutadiene         | 1        | 15.3102       | Ō              | 20               | 77            | 50             | 150            |
| 1,2,4-Trichlorobenzene      | 1        | 15.5885       | Ö              | 20               | 78            | 70             | 130            |
| 1,2,3-Trichlorobenzene      | 1        | 15.2077       | Ŏ              | 20               | 76            | 70             | 130            |
| Naphthalene                 | 1        | 13.3958       | Ö              | 20               | 67            | 50             | 150            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

Spike or Dup: 2M142788.D

Data File

Sample ID:

Analysis Date

Non Spike(If applicable): 2M142775.D

AD19542-001(T:MSD) AD19542-001(T) 10/6/2020 9:36:00 PM 10/6/2020 5:17:00 PM

| Inst Blank(If applicable):            |     |                     |                |                     |                    |                 |                          |
|---------------------------------------|-----|---------------------|----------------|---------------------|--------------------|-----------------|--------------------------|
| Method: 8260D                         |     | c: Aqueous          |                | Units: ug/L         | QC Ty <sub>l</sub> |                 |                          |
| Analyte:                              | Col | Spike<br>Conc       | Sample<br>Conc | Expected<br>Conc    | Recovery           | Lower<br>Limit  | Upper<br>Limit           |
| Chlorodifluoromethane                 | 1   | 14.0871             | 0              | 20                  | 70                 | 50              | 150                      |
| Dichlorodifluoromethane               | 1   | 8.6301              | 0              | 20                  | 43*                | 50              | 150                      |
| Chloromethane                         | 1   | 10.974              | 0              | 20                  | 55                 | 50              | 150                      |
| Bromomethane                          | 1   | 13.3402             | 0              | 20                  | 67                 | 50              | 150                      |
| Vinyi Chloride                        | 1   | <u>12.168</u>       | <u>o</u>       | <u>20</u>           | <u>61</u>          | <u>50</u>       | <u>150</u>               |
| Chloroethane                          | 1   | 12.8116             | 0              | 20                  | 64                 | 50              | 150                      |
| Trichlorofluoromethane                | 1   | 13.1334             | 0              | 20                  | 66                 | 50              | 150                      |
| Ethyl ether                           | 1   | 23.4265             | 0              | 20                  | 117                | 50              | 150                      |
| Furan                                 | 1   | 13.699              | 0              | 20                  | 68<br>70           | 50              | 150                      |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1   | 14.3148             | 0              | 20                  | 72                 | 50<br>70        | 150                      |
| Methylene Chloride                    | 1   | 61.0115             | 0              | 20                  | 305*<br>11*        | 70<br>50        | 130                      |
| Acrolein                              | 1   | 11.1724             | 0<br>0         | 100                 |                    | 50<br>50        | 150                      |
| Acrylonitrile                         | 1   | 15.7304             | 0              | 20<br>20            | 79<br>69           | 50<br>50        | 150<br>150               |
| Iodomethane                           | 1   | 13.8705<br>114.6118 | 0              | 100                 | 115                | 50              | 150                      |
| Acetone<br>Carbon Disulfide           | 1   | 13.0398             | 0              | 20                  | 65                 | 50<br>50        | 150                      |
| t-Butyl Alcohol                       | i   | 83.2749             | Ö              | 100                 | 83                 | 50              | 150                      |
| n-Hexane                              | i   | 14.1604             | Ö              | 20                  | 71                 | 70              | 130                      |
| Di-isopropyl-ether                    | i   | 14.4591             | Ö              | 20                  | 72                 | 70              | 130                      |
| 1,1-Dichloroethene                    | 1   | 14.3968             | <u>o</u>       | 20                  | 72                 | <u>70</u>       | 130                      |
| Methyl Acetate                        | 1   | 6.6561              | ŏ              | <del>20</del><br>20 | 33 *               | <u>50</u>       | 150                      |
| Methyl-t-butyl ether                  | i   | 13.7485             | Ŏ              | 20                  | 69*                | 70              | 130                      |
| 1,1-Dichloroethane                    | 1   | 14.3819             | Ö              | 20                  | 72                 | 70              | 130                      |
| trans-1,2-Dichloroethene              | 1   | 13.7075             | Ö              | 20                  | 69*                | 70              | 130                      |
| Ethyl-t-butyl ether                   | 1   | 15.0189             | 0              | 20                  | 75                 | 70              | 130                      |
| cis-1,2-Dichloroethene                | 1   | 12.9296             | 0              | 20                  | 65*                | 70              | 130                      |
| Bromochloromethane                    | 1   | 15.9077             | 0              | 20                  | 80                 | 70              | 130                      |
| 2,2-Dichloropropane                   | 1   | 14.3146             | 0              | 20                  | 72                 | 70              | 130                      |
| Ethyl acetate                         | 1   | 10.0574             | 0              | 20                  | 50                 | 50              | 150                      |
| 1,4-Dioxane                           | 1   | 919.0422            | 0              | 1000                | 92                 | 50              | 150                      |
| 1,1-Dichloropropene                   | 1   | 13.9698             | 0              | 20                  | 70                 | 70              | 130                      |
| <u>Chloroform</u>                     | 1   | <u>14.7064</u>      | <u>0</u>       | <u>20</u>           | <u>74</u>          | <u>70</u>       | <u>130</u>               |
| Cyclohexane                           | 1   | 13.946              | 0              | 20                  | 70                 | 70              | 130                      |
| 1,2-Dichloroethane                    | 1   | 14.0649             | Ō              | <u>20</u>           | <u>70</u>          | <u>70</u>       | <u>130</u>               |
| 2-Butanone                            | 1   | <u>19.6453</u>      | <u>0</u>       | <u>20</u>           | <u>98</u>          | <u>50</u>       | <u>150</u>               |
| 1,1,1-Trichloroethane                 | 1   | 14.6234             | 0              | 20                  | 73                 | 70<br>50        | 130                      |
| Carbon Tetrachloride                  | 1 1 | 14.3598             | <u>0</u>       | <u>20</u>           | 7 <u>2</u><br>33*  | <u>50</u><br>50 | <u>1<b>50</b></u><br>150 |
| Vinyl Acetate                         | 1   | 6.5644<br>13.5192   | 0              | 20<br>20            | 68*                | 70              | 130                      |
| Bromodichloromethane                  | 1   | 13.5192             | 0              | 20                  | 70                 | 70<br>70        | 130                      |
| Methylcyclohexane Dibromomethane      | 1   | 15.4819             | 0              | 20                  | 70<br>77           | 70<br>70        | 130                      |
| 1,2-Dichloropropane                   | 1   | 14.4986             | Ö              | 20                  | 72                 | 70              | 130                      |
| Trichloroethene                       | 1   | 25.9707             | <u>0</u>       | <u>20</u>           | 130                | <u>70</u>       | 130                      |
| Benzene                               | 1   | 13.9959             | <u>o</u>       | <u>20</u>           | <u>70</u>          | <u>70</u>       | 130                      |
| tert-Amyl methyl ether                | 1   | 15.1184             | Ö              | 20                  | 76                 | <del>70</del>   | 130                      |
| Iso-propylacetate                     | i   | 9.2596              | ŏ              | 20                  | 46*                | 70              | 130                      |
| Methyl methacrylate                   | 1   | 2.3635              | Ö              | 20                  | 12*                | 70              | 130                      |
| Dibromochloromethane                  | 1   | 15.3032             | Ó              | 20                  | 77                 | 70              | 130                      |
| 2-Chloroethylvinylether               | 1   | 68.2081             | 0              | 20                  | 341*               | 70              | 130                      |
| cis-1,3-Dichloropropene               | 1   | 15.0409             | 0              | 20                  | 75                 | 70              | 130                      |
| trans-1,3-Dichloropropene             | 1   | 15.1427             | 0              | 20                  | 76                 | 70              | 130                      |
| Ethyl methacrylate                    | 1   | 6.1249              | 0              | 20                  | 31 *               | 70              | 130                      |
| 1,1,2-Trichloroethane                 | 1   | 14.2089             | 0              | 20                  | 71                 | <b>7</b> 0      | 130                      |
| 1,2-Dibromoethane                     | 1   | 15.5623             | 0              | 20                  | 78                 | 70              | 130                      |
| 1,3-Dichloropropane                   | 1   | 14.8901             | 0              | 20                  | 74                 | 70              | 130                      |
| 4-Methyl-2-Pentanone                  | 1   | 17.144              | 0              | 20                  | 86                 | 50              | 150                      |
| 2-Hexanone                            | 1   | 18.2049             | 0              | 20                  | 91                 | 50              | 150                      |
| <u>Tetrachloroethene</u>              | 1   | 14.3089             | <u>0</u>       | <u>20</u>           | <u>72</u>          | <u>50</u>       | <u>150</u>               |
| Toluene                               | 1   | 14.1589             | 0              | 20                  | 71                 | 70              | 130                      |
| 1,1,1,2-Tetrachloroethane             | 1   | 14.308              | 0              | 20                  | 72                 | 70              | 130                      |
| Chlorobenzene                         | 1_  | <u>14.8516</u>      | <u> </u>       | 20                  | 74                 | 70              | <u> 130</u>              |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

| Method: 8260D               |          | : Aqueous     |                | Units: ug/L      | QC Ty         | e: MSD         |                |
|-----------------------------|----------|---------------|----------------|------------------|---------------|----------------|----------------|
| Analyte:                    | Col      | Spike<br>Conc | Sample<br>Conc | Expected<br>Conc | Recovery      | Lower<br>Limit | Upper<br>Limit |
| n-Butyl acrylate            | 1        | 2.9391        | 0              | 20               | 15*           | 70             | 130            |
| n-Amyl acetate              | 1        | 3.588         | 0              | 20               | 18*           | 70             | 130            |
| Bromoform                   | 1        | 18.164        | 0              | 20               | 91            | 70             | 130            |
| Ethylbenzene                | 1        | 17.1018       | 0              | 20               | 86            | 70             | 130            |
| 1,1,2,2-Tetrachloroethane   | 1        | 0             | 0              | 20               | 0*            | 70             | 130            |
| Styrene                     | 1        | 16.7394       | 0              | 20               | 84            | 70             | 130            |
| m&p-Xylenes                 | 1        | 32.0211       | 0              | 40               | 80            | 70             | 130            |
| o-Xylene                    | 1        | 16.6855       | 0              | 20               | 83            | 70             | 130            |
| trans-1,4-Dichloro-2-butene | 1        | 18.9587       | 0              | 20               | 95            | 50             | 150            |
| 1,3-Dichlorobenzene         | 1        | 14.3007       | 0              | 20               | 72            | 70             | 130            |
| 1,4-Dichlorobenzene         | 1        | 14.2617       | <u>0</u>       | <u>20</u>        | <u>71</u>     | <u>70</u>      | <u>130</u>     |
| 1,2-Dichlorobenzene         | <u> </u> | 15.0363       | ō              | <del>20</del>    | <del>75</del> | 70             | 130            |
| Isopropylbenzene            | 1        | 15.762        | 0              | 20               | 79            | 70             | 130            |
| Cyclohexanone               | 1        | 108.5412      | 0              | 100              | 109           | 50             | 150            |
| Camphene                    | 1        | 13.4741       | 0              | 20               | 67*           | 70             | 130            |
| 1,2,3-Trichloropropane      | 1        | 15.9173       | 0              | 20               | 80            | 70             | 130            |
| 2-Chlorotoluene             | 1        | 14.9585       | 0              | 20               | 75            | 70             | 130            |
| p-Ethyltoluene              | 1        | 15.6396       | 0              | 20               | 78            | 70             | 130            |
| 4-Chlorotoluene             | 1        | 15.489        | 0              | 20               | 77            | 70             | 130            |
| n-Propylbenzene             | 1        | 14.9443       | 0              | 20               | 75            | 70             | 130            |
| Bromobenzene                | 1        | 14.1849       | 0              | 20               | 71            | 70             | 130            |
| 1,3,5-Trimethylbenzene      | 1        | 14.9946       | 0              | 20               | 75            | 70             | 130            |
| Butyl methacrylate          | 1        | 9.1326        | 0              | 20               | 46*           | 70             | 130            |
| t-Butylbenzene              | 1        | 15.7727       | 0              | 20               | 79            | 70             | 130            |
| 1,2,4-Trimethylbenzene      | 1        | 14.9043       | Ö              | 20               | 75            | 70             | 130            |
| sec-Butylbenzene            | 1        | 15.8227       | Ö              | 20               | 79            | 70             | 130            |
| 4-Isopropyltoluene          | 1        | 15.6006       | 0              | 20               | 78            | 70             | 130            |
| n-Butylbenzene              | 1        | 15.5437       | Ó              | 20               | 78            | 70             | 130            |
| p-Diethylbenzene            | 1        | 15.1617       | Ö              | 20               | 76            | 70             | 130            |
| 1,2,4,5-Tetramethylbenzene  | 1        | 17.9284       | Ö              | 20               | 90            | 70             | 130            |
| 1,2-Dibromo-3-Chloropropane | 1        | 18.1352       | Ö              | 20               | 91            | 50             | 150            |
| Camphor                     | 1        | 379.84        | Ŏ              | 200              | 190*          | 20             | 150            |
| Hexachlorobutadiene         | 1        | 17.5186       | Ŏ              | 20               | 88            | 50             | 150            |
| 1,2,4-Trichlorobenzene      | 1        | 18.1814       | Ŏ              | 20               | 91            | 70             | 130            |
| 1,2,3-Trichlorobenzene      | 1        | 19.8851       | ŏ              | 20               | 99            | 70             | 130            |
| Naphthalene                 | 1        | 20.8744       | Ö              | 20               | 104           | 50             | 150            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

#### Form3 **RPD Data Laboratory Limits**

QC Batch: MBS89438

Data File

Sample ID:

Analysis Date

Spike or Dup: 2M142788.D

AD19542-001(T:MSD) Duplicate(If applicable): 2M142787.D AD19542-001(T:MS)

10/6/2020 9:36:00 PM 10/6/2020 9:16:00 PM

Inst Blank(If applicable):

Method: 8260D

Matrix: Aqueous

Units: ug/L

QC Type: MSD

| Analyte:                              | Column        | Dup/MSD/MBSD<br>Conc | Sample/MS/MBS<br>Conc | RPD         | Limit     |
|---------------------------------------|---------------|----------------------|-----------------------|-------------|-----------|
| Chlorodifluoromethane                 | 1             | 14.0871              | 16.5533               | 16          | 30        |
| Dichlorodifluoromethane               | 1             | 8.6301               | 10.8545               | 23          | 30        |
| Chloromethane                         | 1             | 10.974               | 11.1546               | 1.6         | 30        |
| Bromomethane                          | 1             | 13.3402              | 12.6506               | 5.3         | 30        |
| Vinyl Chloride                        | <u>1</u>      | <u>12.168</u>        | <u>14.3114</u>        | <u>16</u>   | <u>40</u> |
| Chloroethane                          | 1             | 12.8116              | 14.7442               | 14          | 30        |
| Trichlorofluoromethane                | 1             | 13.1334              | 17.048                | 26          | 30        |
| Ethyl ether                           | 1             | 23.4265              | 22.6516               | 3.4         | 30        |
| Furan                                 | 1             | 13.699               | 15.5902               | 13          | 30        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1             | 14.3148              | 17.635                | 21          | 30        |
| Methylene Chloride                    | 1             | 61.0115              | 68.0471               | 11          | 30        |
| Acrolein                              | 1             | 11.1724              | 6.8788                | 48*         | 30        |
| Acrylonitrile                         | 1             | 15.7304              | 10.1282               | 43*         | 30        |
| Iodomethane                           | 1             | 13.8705              | 13.8134               | 0.41        | 30        |
| Acetone                               | i             | 114.6118             | 69.6792               | 49*         | 30        |
| Carbon Disulfide                      | i             | 13.0398              | 15.1168               | 15          | 30        |
| t-Butyl Alcohol                       | i             | 83.2749              | 54.009                | 43*         | 30        |
|                                       | i             | 14.1604              | 18.589                | 27          | 30        |
| n-Hexane                              | i             | 14.4591              | 15.9633               | 9.9         | 30        |
| Di-isopropyl-ether                    | •             |                      |                       |             | -         |
| 1,1-Dichloroethene                    | 1             | <u>14.3968</u>       | 16.5384<br>5.7022     | <u>14</u>   | <u>40</u> |
| Methyl Acetate                        | 1             | 6.6561               | 5.7023                | 15          | 30        |
| Methyl-t-butyl ether                  | 1             | 13.7485              | 12.5502               | 9.1         | 30        |
| 1,1-Dichloroethane                    | 1             | 14.3819              | 16.561                | 14          | 40        |
| trans-1,2-Dichloroethene              | 1             | 13.7075              | 16.1286               | 16          | 30        |
| Ethyl-t-butyl ether                   | 1             | 15.0189              | 16.0025               | 6.3         | 30        |
| cis-1,2-Dichloroethene                | 1             | 12.9296              | 14.9501               | 14          | 30        |
| Bromochloromethane                    | 1             | 15.9077              | 16.7832               | 5.4         | 30        |
| 2,2-Dichloropropane                   | 1             | 14.3146              | 17.2013               | 18          | 30        |
| Ethyl acetate                         | 1             | 10.0574              | 6.5586                | 42*         | 30        |
| 1,4-Dioxane                           | 1             | 919.0422             | 492.4296              | 60 <b>*</b> | 30        |
| 1,1-Dichloropropene                   | 1             | 13.9698              | 16.8892               | 19          | 30        |
| <u>Chloroform</u>                     | <u>1</u>      | <u>14.7064</u>       | <u>17.2262</u>        | <u>16</u>   | <u>40</u> |
| Cyclohexane                           | 1             | 13.946               | 17.2031               | 21          | 30        |
| 1,2-Dichloroethane                    | <u>1</u>      | <u>14.0649</u>       | <u>14.2266</u>        | <u>1.1</u>  | <u>40</u> |
| 2-Butanone                            | <u>1</u>      | <u> 19.6453</u>      | <u>12.8109</u>        | <u>42*</u>  | <u>40</u> |
| 1,1,1-Trichloroethane                 | 1             | 14.6234              | 17.683                | 19          | 30        |
| Carbon Tetrachloride                  | 1             | 14.3598              | <u>17.6123</u>        | <u>20</u>   | <u>40</u> |
| Vinyl Acetate                         | 1             | 6.5644               | 7.2301                | 9.7         | 30        |
| Bromodichloromethane                  | 1             | 13.5192              | 12.4863               | 7.9         | 30        |
| Methylcyclohexane                     | 1             | 13.93                | 15.4458               | 10          | 30        |
| Dibromomethane                        | 1             | 15.4819              | 12.6339               | 20          | 30        |
| 1,2-Dichloropropane                   | 1             | 14.4986              | 14.0753               | 3           | 30        |
| Trichloroethene                       | 1             | 25.9707              | 26.8144               | 3.2         | 40        |
| Benzene                               |               | 13.9959              | 16.5332               | <u>17</u>   | 40        |
| tert-Amyl methyl ether                | <u>1</u><br>1 | 15.1184              | 15.2918               | 1.1         | 30        |
| Iso-propylacetate                     | 1             | 9.2596               | 6.7712                | 31*         | 30        |
| Methyl methacrylate                   | i             | 2.3635               | 2.3298                | 1.4         | 30        |
| Dibromochloromethane                  | 1             | 15.3032              | 15.5395               | 1.5         | 30        |
| 2-Chloroethylvinylether               | 1             | 68.2081              | 45.0506               | 41 *        | 30        |
| cis-1,3-Dichloropropene               | 1             | 15.0409              | 13.1213               | 14          | 30        |
| • •                                   | 1             |                      | 14.9835               | 1.1         | 30        |
| trans-1,3-Dichloropropene             |               | 15.1427              | 5.7726                | 5.9         | 30        |
| Ethyl methacrylate                    | 1<br>1        | 6.1249               |                       |             | 30        |
| 1,1,2-Trichloroethane                 | -             | 14.2089              | 13.3555               | 6.2         |           |
| 1,2-Dibromoethane                     | 1             | 15.5623              | 13.5749               | 14<br>7.5   | 30        |
| 1,3-Dichloropropane                   | 1             | 14.8901              | 13.8199               | 7.5         | 30        |
| 4-Methyl-2-Pentanone                  | 1             | 17.144               | 9.1804                | 61*         | 30        |
| 2-Hexanone                            | 1             | 18.2049              | 10.5137               | 54*         | 30        |
| <u>Tetrachloroethene</u>              | 1             | 14.3089              | <u>17.3137</u>        | <u>19</u>   | <u>40</u> |
| Toluene                               | 1             | 14.1589              | 14.6676               | 3.5         | 40        |
| 1,1,1,2-Tetrachloroethane             | 1             | 14.308               | 15.972                | 11          | 30        |
| Chlorobenzene                         | 1             | <u>14.8516</u>       | <u>16.8637</u>        | <u>13</u>   | <u>40</u> |

<sup>\* -</sup> Indicates outside of limits

| Method: 8260D              | Matrix: Aqu | ueous Units:         | ug/L C                | C Type: MSC | )         |
|----------------------------|-------------|----------------------|-----------------------|-------------|-----------|
| Analyte:                   | Column      | Dup/MSD/MBSD<br>Conc | Sample/MS/MBS<br>Conc | S<br>RPD    | Limit     |
| n-Butyl acrylate           | 1           | 2.9391               | 2.7781                | 5.6         | 30        |
| n-Amyl acetate             | 1           | 3.588                | 2.5325                | 34*         | 30        |
| Bromoform                  | 1           | 18.164               | 13.8075               | 27          | 30        |
| Ethylbenzene               | 1           | 17.1018              | 17.3165               | 1.2         | 30        |
| 1,1,2,2-Tetrachloroethane  | 1           | 0                    | 0                     | NA          | 30        |
| Styrene                    | 1           | 16.7394              | 16.9455               | 1.2         | 30        |
| n&p-Xylenes                | 1           | 32.0211              | 32.8164               | 2.5         | 30        |
| o-Xylene                   | 1           | 16.6855              | 16.9531               | 1.6         | 30        |
| rans-1,4-Dichloro-2-butene | 1           | 18.9587              | 16.6546               | 13          | 30        |
| 1,3-Dichlorobenzene        | 1           | 14.3007              | 16.3152               | 13          | 30        |
| 1,4-Dichlorobenzene        | <u>1</u>    | 14.2617              | <u>15.7506</u>        | <u>9.9</u>  | <u>40</u> |
| 1,2-Dichlorobenzene        | <u>1</u>    | 15.0363              | 15.573                | 3.5         | 40        |
| sopropylbenzene            | 1           | 15.762               | 17.5942               | 11          | 30        |
| Cyclohexanone              | 1           | 108.5412             | 64.5234               | 51*         | 30        |
| Camphene                   | 1           | 13.4741              | 16.8444               | 22          | 30        |
| 1,2,3-Trichloropropane     | 1           | 15.9173              | 11.8567               | 29          | 30        |
| 2-Chlorotoluene            | 1           | 14.9585              | 17. <b>7</b> 083      | 17          | 30        |
| p-Ethyltoluene             | 1           | 15.6396              | 17.9752               | 14          | 30        |
| 1-Chlorotoluene            | 1           | 15.489               | 17.3889               | 12          | 30        |
| n-Propylbenzene            | 1           | 14.9443              | 17.4481               | 15          | 40        |
| Bromobenzene               | 1           | 14.1849              | 14.8418               | 4.5         | 30        |
| I,3,5-Trimethylbenzene     | 1           | 14.9946              | 17.6514               | 16          | 30        |
| Butyl methacrylate         | 1           | 9.1326               | 10.0708               | 9.8         | 30        |
| -Butylbenzene              | 1           | 15.7727              | 18.3201               | 15          | 30        |
| 1,2,4-Trimethylbenzene     | 1           | 14.9043              | 17.2902               | 15          | 30        |
| sec-Butylbenzene           | 1           | 15.8227              | 18.5164               | 16          | 40        |
| 1-Isopropyltoluene         | 1           | 15.6006              | 18.4826               | 17          | 30        |
| n-Butylbenzene             | 1           | 15.5437              | 18.4622               | 17          | 30        |
| p-Diethylbenzene           | 1           | 15.1617              | 18.4539               | 20          | 30        |
| 1,2,4,5-Tetramethylbenzene | 1           | 17.9284              | 17.6809               | 1.4         | 30        |
| ,2-Dibromo-3-Chloropropane | 1           | 18.1352              | 10.6466               | 52 *        | 30        |
| Camphor                    | 1           | 379.84               | 173.2843              | 75*         | 30        |
| lexachlorobutadiene        | 1           | 17.5186              | 15.3102               | 13          | 30        |
| 1,2,4-Trichlorobenzene     | 1           | 18.1814              | 15.5885               | 15          | 30        |
| 1,2,3-Trichlorobenzene     | 1           | 19.8851              | 15.2077               | 27          | 30        |
| Naphthalene                | 1           | 20.8744              | 13.3958               | 44 *        | 30        |

### FORM 4 Blank Summary

Blank Number: DAILY BLANK Blank Data File: 2M142770.D Matrix: Aqueous Blank Analysis Date: 10/06/20 15:32 Blank Extraction Date: NA (If Applicable)

Method: EPA 8260D

| <br>Sample Number | Data File  | Analysis Date  |  |
|-------------------|------------|----------------|--|
| AD19595-013(T)    | 2M142777.D | 10/06/20 17:56 |  |
| AD19595-014(10X)  | 2M142785.D | 10/06/20 20:33 |  |
| EF-V1-335534(100  | 2M142789.D | 10/06/20 21:55 |  |
| AD19542-001(T:M   | 2M142788.D | 10/06/20 21:36 |  |
| AD19542-001(T:M   | 2M142787.D | 10/06/20 21:16 |  |
| MBS89438          | 2M142779.D | 10/06/20 18:35 |  |
| AD19542-001(T)    | 2M142775.D | 10/06/20 17:17 |  |

### Form 5

Tune Name: BFB TUNE Data File: 2M142484.D Instrument: GCMS 2 Analysis Date: 09/29/20 14:14
Method: EPA 8260D
Tune Scan/Time Range: Average of 7.336 to 7.379 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/ |
|------|------|------|-------|-------|-------|-------|
| Mass | Mass | Lim  |       | Abund | Abund | Fail  |
| 50   | 95   | 15   | 40    | 18.6  | 3176  | PASS  |
| 75   | 95   | 30   | 60    | 48.8  | 8328  | PASS  |
| 95   | 95   | 100  | 100   | 100.0 | 17082 | PASS  |
| 96   | 95   | 5    | 9     | 6.7   | 1137  | PASS  |
| 173  | 174  | 0.00 | 2     | 1.2   | 175   | PASS  |
| 174  | 95   | 50   | 100   | 87.8  | 15005 | PASS  |
| 175  | 174  | 5    | 9     | 7.3   | 1088  | PASS  |
| 176  | 174  | 95   | 101   | 97.0  | 14548 | PASS  |
| 177  | 176  | 5    | 9     | 5.8   | 850   | PASS  |

| Data File  | Sample Number | Analysis Date: |
|------------|---------------|----------------|
| 2M142487.D | CAL @ 0.5 PPB | 09/29/20 15:09 |
| 2M142488.D | CAL @ 1 PPB   | 09/29/20 15:28 |
| 2M142489.D | CAL @ 5 PPB   | 09/29/20 15:48 |
| 2M142490.D | CAL @ 10 PPB  | 09/29/20 16:08 |
| 2M142492.D | CAL @ 20 PPB  | 09/29/20 16:47 |
| 2M142494.D | CAL @ 50 PPB  | 09/29/20 17:26 |
| 2M142496.D | CAL @ 100 PPB | 09/29/20 18:05 |
| 2M142499.D | CAL @ 250 PPB | 09/29/20 19:04 |
| 2M142502.D | CAL @ 500 PPB | 09/29/20 20:03 |
| 2M142508.D | ICV           | 09/29/20 22:00 |

Data Path : G:\GcMsData\2020\GCMS 2\Data\09-29-20\

Data File : 2M142484.D

Acq On : 29 Sep 2020 14:14

Operator : JR

Sample : BFB TUNE Misc : A,5ML

ALS Vial : 6 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GCMSDATA\2020\GCMS\_2\METHODQT\2M\_A0909.M

Title : @GCMS\_2,ug,624,8260

Last Update : Thu Sep 10 14:44:02 2020



Spectrum Information: Average of 7.336 to 7.379 min.

| Target<br>Mass | Rel. to | Lower<br>Limit% | Upper<br>Limit* | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|----------------|---------|-----------------|-----------------|--------------|------------|---------------------|
| 50             | 95      | 15              | 40              | 18.6         | 3176       | PASS                |
| 75             | 95      | 30              | 60              | 48.8         | 8328       | PASS                |
| 95             | 95      | 100             | 100             | 100.0        | 17082      | PASS                |
| 96             | 95      | 5               | 9               | 6.7          | 1137       | PASS                |
| 173            | 174     | 0.00            | 2               | 1.2          | 175        | PASS                |
| 174            | 95      | 50              | 100             | 87.8         | 15005      | PASS                |
| 175            | 174     | 5 İ             | 9               | 7.3          | 1088       | PASS                |
| 176            | 174     | 95              | 101             | 97.0         | 14548      | PASS                |
| 177            | 176     | 5               | 9               | 5.8          | 850        | PASS                |

### Form 5

Tune Name: BFB TUNE **Data File:** 2M142766.D Instrument: GCMS 2 Analysis Date: 10/06/20 14:14
Method: EPA 8260D
Tune Scan/Time Range: Average of 7.355 to 7.367 min

| Tgt          | Rel  | Lo H | i Lim | Rel   | Raw    | Pass/ |
|--------------|------|------|-------|-------|--------|-------|
| <u> Mass</u> | Mass | Lim  |       | Abund | Abund  | Fail  |
| 50           | 95   | 15   | 40    | 19.4  | 24411  | PASS  |
| 75           | 95   | 30   | 60    | 52.6  | 66155  | PASS  |
| 95           | 95   | 100  | 100   | 100.0 | 125664 | PASS  |
| 96           | 95   | 5    | 9     | 6.4   | 8032   | PASS  |
| 173          | 174  | 0.00 | 2     | 0.0   | 0      | PASS  |
| 174          | 95   | 50   | 100   | 83.9  | 105371 | PASS  |
| 175          | 174  | 5    | 9     | 7.6   | 7967   | PASS  |
| 176          | 174  | 95   | 101   | 96.4  | 101629 | PASS  |
| 177          | 176  | 5    | 9     | 6.5   | 6617   | PASS  |

| Data File                | Sample Number                    | Analysis Date: |
|--------------------------|----------------------------------|----------------|
| 2M142767.D               | CAL @ 20 PPB                     | 10/06/20 14:33 |
| 2M142768.D               | 20 PPB                           | 10/06/20 14:53 |
| 2M142769.D               | BLK                              | 10/06/20 15:12 |
| 2M142770.D               | DAILY BLANK                      | 10/06/20 15:32 |
| 2M142771.D               | DAILY BLANK                      | 10/06/20 15:51 |
| 2M142772.D               | BLK                              | 10/06/20 16:11 |
| 2M142773.D               | AD19615-001                      | 10/06/20 16:30 |
| 2M142774.D               | BLKTEST                          | 10/06/20 16:57 |
| 2M142775.D               | AD19542-001(T)                   | 10/06/20 17:17 |
| 2M142776.D               | AD19560-001(T)                   | 10/06/20 17:37 |
| 2M142777.D               | AD19500-001(T)<br>AD19595-013(T) | 10/06/20 17:56 |
| 2M142778.D               | AD19595-013(T)<br>AD19595-014(T) | 10/06/20 17:56 |
| 2M142778.D<br>2M142779.D |                                  |                |
|                          | MBS89438                         | 10/06/20 18:35 |
| 2M142780.D               | AD19548-001(T)                   | 10/06/20 18:55 |
| 2M142781.D               | AD19543-001(T)                   | 10/06/20 19:14 |
| 2M142782.D               | AD19526-002(T)                   | 10/06/20 19:34 |
| 2M142783.D               | AD19527-002(T)                   | 10/06/20 19:54 |
| 2M142784.D               | AD19548-001(T)                   | 10/06/20 20:13 |
| 2M142785.D               | AD19595-014(10X)                 | 10/06/20 20:33 |
| 2M142787.D               | AD19542-001(T:M                  | 10/06/20 21:16 |
| 2M142788.D               | AD19542-001(T:M                  | 10/06/20 21:36 |
| 2M142789.D               | EF-V1-335534(100                 | 10/06/20 21:55 |
| 2M142790.D               | BLK                              | 10/06/20 22:15 |
| 2M142791.D               | AD19615-001                      | 10/06/20 22:34 |
| 2M142792.D               | AD19598-001                      | 10/06/20 22:54 |
| 2M142793.D               | AD19598-002                      | 10/06/20 23:13 |
| 2M142794.D               | AD19598-003                      | 10/06/20 23:33 |
| 2M142795.D               | AD19598-004                      | 10/06/20 23:52 |
| 2M142796.D               | AD19598-005                      | 10/07/20 00:12 |
| 2M142797.D               | AD19598-006                      | 10/07/20 00:32 |
| 2M142798.D               | AD19598-007                      | 10/07/20 00:51 |
| 2M142799.D               | AD19598-008                      | 10/07/20 01:11 |
| 2M142800.D               | AD19598-009                      | 10/07/20 01:30 |
| 2M142801.D               | AD19598-010                      | 10/07/20 01:50 |
| 2M142802.D               | AD19598-011                      | 10/07/20 02:09 |
| 2M142803.D               | AD19568-002                      | 10/07/20 02:29 |
| 2M142804.D               | MBS89439                         | 10/07/20 02:48 |
| 2M142805.D               | BLK                              | 10/07/20 03:08 |
| 2M142806.D               | BLK                              | 10/07/20 03:28 |
| 2M142807.D               | BLK                              | 10/07/20 03:20 |
| 2M142808.D               | BLK                              | 10/07/20 03:47 |
| 2M142809.D               | BLK                              | 10/07/20 04:07 |
| 2M142810.D               | BLK                              | 10/07/20 04:27 |
| 2M142811.D               | BLK                              | 10/07/20 04:46 |
| 2141172011.0             | DEIX                             | 10/07/20 03:00 |
|                          |                                  |                |

Data Path : G:\GcMsData\2020\GCMS 2\Data\10-0620\

Data File : 2M142766.D

: 06 Oct 2020 14:14 Acq On

Operator : WP

Sample : BFB TUNE : A,5ML Misc

ALS Vial : 2 Sample Multiplier: 1

Integration File: RTEINT.P

: G:\GCMSDATA\2020\GCMS\_2\METHODQT\2M\_A0929.M :  $@GCMS_2$ ,ug,624,8260

Title

Last Update : Wed Sep 30 10:28:52 2020



Spectrum Information: Average of 7.355 to 7.367 min.

|   | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>  Pass/Fail |
|---|----------------|-----------------|-----------------|-----------------|--------------|------------|-----------------------|
| Ī | 50             | 95              | 15              | 40              | 19.4         | 24411      | l pass                |
| ı | 75             | 95              | 30              | 60              | 52.6         | 66155      | PASS                  |
| ı | 95             | 95              | 100             | 100             | 100.0        | 125664     | PASS                  |
| İ | 96             | 95              | 5               | 9               | 6.4          | 8032       | PASS                  |
| İ | 173            | 174             | 0.00            | 2               | 0.0          | 0          | PASS                  |
| İ | 174            | 95              | 50              | 100             | 83.9         | 105371     | PASS                  |
| İ | 175            | 174             | 5               | 9               | 7.6          | 7967       | PASS                  |
| İ | 176            | 174             | 95              | 101             | 96.4         | 101629     | PASS                  |
| Ì | 177            | 176             | 5               | 9               | 6.5          | 6617       | PASS                  |
| _ |                |                 |                 | :               |              |            |                       |

### Form 6 Initial Calibration

Instrument: GCMS\_2

| <b>91</b> 7              | Level #:  | Data File     | ile: Cal Identifier:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analysis Date/Time                                                                                                 | Level #: |             | Data File:            | o        | Cal Identifier: | <u></u>    | Analy    | Analvsis Date/Time                                                  |
|--------------------------|-----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|-------------|-----------------------|----------|-----------------|------------|----------|---------------------------------------------------------------------|
|                          |           | 2M142492.D    | CAL @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 09/29/20 16:47                                                                                                     | 2        | 2M1424      |                       | CAL @    | 5 PPB           | Č          | )        | 09/29/20 15:48                                                      |
|                          |           | 2M142490.D    | CAL @ 10 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 09/29/20 16:08                                                                                                     | 4        | 2M142494.D  | Ö                     |          | @ 50 PPB        |            |          | 09/29/20 17:26                                                      |
| 23                       | 101       | 2M142496.D    | <b>@</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 09/29/20 18:05                                                                                                     | თ        | 2M142499.I  | )9.D                  |          | @ 250 PPB       | w          |          | 09/29/20 19:04                                                      |
|                          |           | 2M142487.D    | CAL @ 0.5 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 09/29/20 15:09                                                                                                     | α        | ZM14Z468.1  | Š                     | @<br>CAL | @<br>- TT<br>0  |            |          | 05/67/60                                                            |
| O 1<br>Compound          | 0         | Col Mr Fit: 1 | RF1 RF2 RF3 RF4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 RF5 RF6 RF7 RF8                                                                                                  | RF9 Av   | vgRf RT     | Corr1 (               | Corr2 %  | Rsd             |            |          | Calibration Level Concentrations LvI1 LvI2 LvI3 LvI4 LvI5 LvI6 LvI7 |
|                          | methane   |               | .3084 0.3044 0.2719 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3084 0.3044 0.2719 0.3264 0.3317 0.3264 0.3218 0.2561                                                            |          | 0.306 1.69  | 1.00                  | 8        | 9.1 0.10        | =          | 2        | 20.00 5.00                                                          |
| Dichlorodifluorometha    | rometha   |               | .3267 0.3071 0.2716 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3267 0.3071 0.2716 0.3305 0.3409 0.3349 0.3272 0.2258                                                            |          | 0.308 1.68  | 1.00                  | 1.8      | 13 0.10         |            |          | 0 20.00 5.00                                                        |
| Chloromethane            | Ō         | AVQ           | .3208 0.3455 0.3030 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3434                                                                                                             | -        | 0.343 1.85  |                       | 1.00     |                 | ٠.         |          | 20.00 5.00                                                          |
| Bromomethane             | ā         | ۸             | 0.1427 0.1504 0.1402 0.1526 0.1877 0.2192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 526 0.1877 0.2192 0.1737                                                                                           | 1        | 0.167 2.25  |                       | 8 8      | 7               |            | 5 6      | 20.00 5.00                                                          |
| Chloroethane             |           | O AVO         | 2427 0 2454 0 2330 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3/12 0.39/5 0.33/0 0.38/4 0.4038 0.3891 0.3690 0.3256<br>0.2427 0.2454 0.2330 0.2520 0.2602 0.2632 0.2708 0.2210 |          | 0.3/31.95   | 100                   | 3 8      | ה<br>ה          | >          | 5 6      | 0.10 20.00 5.00 10.00 50.00                                         |
| Trichlorofluoromethan    | methan    | A<br>O        | .5649 0.5937 0.5441 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5649 0.5937 0.5441 0.5973 0.6141 0.6010 0.5927 0.4597                                                            | 1        | 0.5712.57   | 8                     | 8        | 00              | 0          |          | 20.00 5.00                                                          |
| Ethyl ether              |           | ΑVQ           | .1834 0.2015 0.1816 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1834 0.2015 0.1816 0.1983 0.2124 0.2081 0.2124 0.1881                                                            | -        | 0.1982.80   | 1.00                  |          | 6.4             | 0          | മ        | a 20.00 5.00                                                        |
| Furan                    |           |               | .3176 0.3432 0.3104 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3176 0.3432 0.3104 0.3268 0.3519 0.3501 0.3537 0.3281                                                            | i        | 0.335 2.84  | 0                     |          | 5.0             | 0          | a        | a 20.00 5.00                                                        |
| 1,1,2-Trichloro-1,2,2-tr | -1,2,2-tr | 1             | .1928 0.2050 0.1789 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1928 0.2050 0.1789 0.2064 0.2137 0.2108 0.2197 0.1739                                                            | -        | 0.2003.00   | 1.00                  |          | œ               | 0          |          | 20.00 5.00                                                          |
| Methylene Chloride       | loride    |               | .2692 0.2961 0.2518 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2692 0.2961 0.2518 0.2796 0.2975 0.2895 0.2877 0.2943                                                            |          | 0.283 3.42  | 1.00                  |          | 56              | 0          | 0.10     | 0.10 20.00 5.00                                                     |
| Acrolein                 |           |               | .0436 0.0448 0.0416 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0436                                                                                                             |          | 0.0453 2.92 | 3 8                   | 3 8      | n 0             | <i>,,</i>  |          | 700.0 25.00<br>20.00 5.00                                           |
| lodomethane              |           | 1 0 Qua 0     | 0.1842 0.1649 0.1597 0.2148 0.2704 0.2893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 148 0.2704 0.2893 0.1873                                                                                           |          | 0.2103.15   |                       | (J)      | 22 8            | - `        |          | 20.00 5.00 10.00 50.00                                              |
| Acetone                  |           |               | .0724 0.0805 0.0736 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0782                                                                                                             | 0        | 0.0807 3.04 |                       |          | 9 !             |            | 0.10 a   | 0.10 a 100.0 25.00                                                  |
| Carbon Disulfide         | de        |               | .7173 0.8037 0.6973 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7173 0.8037 0.6973 0.7494 0.7799 0.7709 0.7692 0.8299                                                            |          | 0.765 3.21  | -1<br>8               |          | 57              |            | 0.10     | 0.10 20.00 5.00                                                     |
| t-Butyl Alcohol          | _         |               | .0240 0.0260 0.0247 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0240 0.0260 0.0247 0.0264 0.0274 0.0284 0.0273 0.0236                                                            | 0        | 0.0260 3.48 | 1.00                  |          | 6.6             |            |          | 100.0 25.00                                                         |
| n-Hexane                 | Ī         |               | .2239 0.2349 0.2319 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2239 0.2349 0.2319 0.2427 0.2551 0.2505 0.2547 0.2015                                                            | İ        | 0.237 3.87  | 3.0                   |          | 7               |            |          | 20.00 5.00                                                          |
| 1.1-Dichloroethene       | hene      | 1 0 AVG 0     | .6484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6484 0.6639 0.6085 0.6783 0.7334 0.7412 0.7590 0.5936<br>0.3732 0.3939 0.3528 0.3913 0.4108 0.4089 0.4224 0.3327 |          | 0.6/84.03   | 9 8                   | 3 8      | ж<br>С          | >          | 5        | 0 10 20 00 5 00 10 00 50 00                                         |
| Methyl Acetate           | æ         |               | .1654 0.1951 0.1782 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1654 0.1951 0.1782 0.1758 0.1829 0.1831 0.1793 0.1966                                                            | !        | 0.1823.32   | 1.00                  |          | 56              | 0          | 0        | 20.00 5.00                                                          |
| Methyl-t-butyl ether     | ether     |               | .6903 0.7095 0.6580 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    | 0.6760   | 0.726 3.64  | 1.00                  |          | 8.4             | 0          |          | 20.00 5.00                                                          |
| 1,1-Dichloroethane       | hane      |               | .4511 0.4789 0.4094 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4511 0.4789 0.4094 0.4701 0.4999 0.4976 0.5042 0.4522                                                            | İ        | 0.4704.00   | 1.00                  |          | 0.00            |            | 0.20     | 0.20 20.00 5.00                                                     |
| Ethyl-t-butyl ether      | ther      | 1 0 Ava 0     | .7025 0.7205 0.6735 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7025 0.7205 0.6735 0.7352 0.7971 0.7992 0.8129 0.6313                                                            |          | 0.734 4.29  | <u>.</u>              |          | œς<br>(α)       |            | 0.50     |                                                                     |
| cis-1.2-Dichloroethene   | oethene   |               | .4472 0.4819 0.4211 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4472 0.4819 0.4211 0.4700 0.4999 0.5089 0.5261 0.4699                                                            |          | 0.4784.41   | 1.00                  | 1.00     | 7               |            | 0.10     | 0.10 20.00 5.00                                                     |
| Bromochloromethane       | nethane   |               | .2157 0.2288 0.2019 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2157 0.2288 0.2019 0.2157 0.2198 0.1993 0.2032 0.2145                                                            | i        | 0.2124.57   | 1.00                  |          | 4.1             | ò          |          | 20.00 5.00                                                          |
| Ethyl acetate            | opane     | 1 0 AVG 0     | .4060 0.4366 0.3652 0.4<br>.2318 0.2533 0.2229 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4060 0.4388 0.3852 0.4197 0.4452 0.4418 0.4433 0.3919<br>0.2318 0.2533 0.2229 0.2446 0.2531 0.2523 0.2546 0.2435 |          | 0.4224.42   | 2 :<br>8 :            | 8 8      | <b>A</b> ()     | 9.0<br>4.7 |          | . 6 20.00 5.00 10.00 50.00                                          |
| 1.4-Dioxane              |           |               | .0032 0.0032 0.0034 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0032 0.0032 0.0034 0.0035 0.0036 0.0038 0.0039 0.0026                                                            | 0.0      | .00344 5.50 | 1.00                  |          |                 | 12         |          | 1000. 250.0                                                         |
| 1,1-Dichloropropene      | opene     |               | .3798 0.4031 0.3497 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3798 0.4031 0.3497 0.3978 0.4190 0.4300 0.4551 0.3564                                                            |          | 0.399 4.82  | 0.999                 |          | ဖ               |            |          | 20.00 5.00                                                          |
| Chloroform               | methan    | 1 0 Avg 0     | .5013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5013                                                                                                             | 0 2011   | 0.512 4.60  | 1.00                  | 1.00     | ათ              |            | 0.20     |                                                                     |
| Cyclohexane              |           |               | .3426 0.3485 0.3316 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    |          | 0.354 4.77  | 1.00                  | <br>8    | တ၊              |            | 0.10     | 0.10 20.00 5.00                                                     |
| 1.2-Dichloroethane-d4    | hane-d4   | i             | .1495 0.1453 0.1515 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1495 0.1453 0.1515 0.1499 0.1544 0.1467 0.1430 0.1463 0.1486                                                     |          | 0.148 4.91  | -1                    |          | IN              | ì          |          | 30.00 30.00                                                         |
| 1.2-Dichloroethane       | hane      |               | .3888 0.4296 0.3712 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3888 0.4296 0.3712 0.4102 0.4423 0.4534 0.4858 0.3889 0.5360                                                     |          | 0.434 4.95  | 0.999                 | .00      | 12              |            | 0.10     | 0.10 20.00 5.00                                                     |
| 2-Butanone               | <b>*</b>  |               | .1134 0.1161 0.1032 0.1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1134                                                                                                             | -        | 0.125 4.40  | 38                    |          | ို့ လ           |            | 0.10 a   | 0.10 a 20.00 5.00                                                   |
| 1,1,1-i richloroethane   | hloride   |               | .445/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.445/                                                                                                             |          | 0.454 4.73  | 3 8                   |          | 1.8             |            | 0.10     | 0.10 20.00 5.00                                                     |
| Vinvi Acetate            | 21010     | 1 0 Ava 0     | .3/33 0.3/04 0.3392 0.3<br>.7428 0.7848 0.7015 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3733 0.3704 0.3332 0.3839 0.4126 0.4227 0.4417 0.3237<br>0.7428 0.7848 0.7015 0.7561 0.8298 0.7989 0.7759 0.6959 |          | 0.3634.63   | -<br>-<br>-<br>-<br>- | 8 8      | <u> </u>        |            | 5        | 5                                                                   |
| Bromodichloromethan      | methan    | - 1           | .3920 0.4190 0.3781 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3920 0.4190 0.3781 0.4240 0.4488 0.4432 0.4635 0.3515                                                            | 1        | 0.415 5.57  | 1.00                  | 1.8      | ဖြ              | 0          | 2 0.20 2 | 20.00 5.00                                                          |
|                          |           |               | The section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the se | 10 C C C C C C C C C C C C C C C C C C C                                                                           |          |             |                       |          |                 |            |          |                                                                     |

a - failed the min rf criteria

failed the min rf criteria

| Corr 1 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Avg Rsd: 10.08

Page 1 of 3

Form 6
Initial Calibration

| 1230 V1<br>Level #     | Data File<br>2M142492.D<br>2M142490.D<br>2M142496.D<br>2M142502.D | CAL @ 20 PPB CAL @ 10 PPB CAL @ 10 PPB CAL @ 100 PPB CAL @ 500 PPB       | Analysis <u>Date/Time</u><br>09/29/20 16:47<br>09/29/20 16:08<br>09/29/20 18:05<br>09/29/20 20:03 | Level #<br>2<br>4<br>6 | Data<br>2M142489.D<br>2M142494.D<br>2M142499.D<br>2M142488.D | E E                     |            | 5 PPE<br>5 PPE<br>50 PI<br>250 P | Cal Identifier:<br>CAL @ 5 PPB<br>CAL @ 50 PPB<br>CAL @ 250 PPB<br>CAL @ 1 PPB | er: 09/2<br>09/2<br>09/2<br>09/2                          | Analysis Date/Time 5 PPB 09/29/20 15:48 50 PPB 09/29/20 17:26 250 PPB 09/29/20 19:04 1 PPB 09/29/20 15:28 |
|------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------|-------------------------|------------|----------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| N Compound             | Col Mr Fit:                                                       | RF1 RF2 RF3 RF4                                                          | RF5 RF6 RF7 RF8                                                                                   | RF9 AvgRf              | RT Co                                                        | rr1 Corr2               | %Rsd       |                                  | Lvi1 Lvi2                                                                      | Calibration Level Concentrations Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 | rations<br>Lvl7 Lvl8                                                                                      |
|                        |                                                                   | 0.3212 0.3500 0.3057 0.3390 0.3640 0.3671 0.3909                         | 0 0.3640 0.3671 0.3909 0.3040                                                                     | 0.00                   | 35.42 0.                                                     | 5 99                    | 9.1        | 0.10                             | 5.00                                                                           | 10.00 50.00 100.0 250.0                                   |                                                                                                           |
| 1.2-Dichloropropane    | 1 0 Avg                                                           | 0.2630 0.2805 0.2534 0.2766 0.2987 0.3061 0.3250                         | 6 0.2987 0.3061 0.3250 0.1896                                                                     | 0.5                    | 0.282 5.43 0.9                                               | 999 1.00                | 9.2<br>9.2 | 0.10                             | 20.00 5.00                                                                     | 10.00 50.00 100.0 250.0<br>10.00 50.00 100.0 250.0        | 500.0 1.00                                                                                                |
| Trichloroethene        |                                                                   | 0.3015 0.3095 0.2835 0.314                                               | 0.3015 0.3095 0.2835 0.3148 0.3301 0.3354 0.3542 0.3081                                           | 0.3                    | 0                                                            | _                       | 6.9        | 0.20                             | 5.00                                                                           |                                                           | 500.0                                                                                                     |
| Benzene                | 1 0 Avq                                                           | 1.0566 1.1138 1.0147 1.110                                               |                                                                                                   | 1.0677 1               | <u>-</u>                                                     | -                       | 8.8        | 0.50                             | 5.00                                                                           | 100.0                                                     | 500.0                                                                                                     |
| tert-Amyl methyl ether | 1 0 Avg                                                           | 0.7223 0.7775 0.6761 0.778                                               |                                                                                                   |                        | 0                                                            | ٥,                      | 14         |                                  | 5.00                                                                           | 100.0                                                     |                                                                                                           |
| Iso-propylacetate      |                                                                   | 0.4767 0.4834 0.4634 0.526                                               | 0.4767 0.4834 0.4634 0.5264 0.5658 0.5730 0.6223 0.4683                                           | - 0.5                  |                                                              | _                       | <b>1</b>   | 0.50 a                           | 5.00                                                                           | 100.0                                                     | 500.0                                                                                                     |
| Methyl methacrylate    |                                                                   | 0.2432 0.2604 0.2316 0.254                                               | 0.2432 0.2604 0.2316 0.2544 0.2694 0.2609 0.2713 0.2225                                           | 0.2                    | <u>-</u>                                                     | _                       | 7.0        | 0.50 a                           | 5.00                                                                           | 100.0                                                     | 500.0                                                                                                     |
| Dibromochloromethan    |                                                                   | 0.3365 0.3563 0.3267 0.358                                               | 0.3365 0.3563 0.3267 0.3584 0.3898 0.3725 0.3978 0.2746                                           | 0.3                    | 0                                                            |                         | : =        | 0.10                             |                                                                                |                                                           | 500.0                                                                                                     |
| 2-Chloroethylvinylethe | 1 0 Avg                                                           | 0.0366 0.0366 0.0303 0.041                                               | 0.0366 0.0366 0.0303 0.0412 0.0451 0.0436 0.0460 0.0276                                           | 0.03                   | 0.0384 5.71 0.9                                              | 999 1.00                | 18         | 9<br>                            | 20.00 5.00                                                                     | 10.00 50.00 100.0 250.0                                   | 500.0 1.00                                                                                                |
| trans-1,3-Dichloroprop | 1 0 Avg                                                           | 0.4268 0.4649 0.4115 0.448                                               | 0.4268 0.4649 0.4115 0.4484 0.4908 0.4751 0.5129 0.4299                                           | 0.0                    | 0                                                            | <u>.</u>                | 7.6        | 0.10                             | 5 6                                                                            | 100.0                                                     | 500.0                                                                                                     |
| Ethyl methacrylate     |                                                                   | 0.2412 0.2608 0.2334 0.262                                               | 0.2412 0.2608 0.2334 0.2628 0.2845 0.2806 0.3345 0.2182                                           | 1 0.2                  | 0                                                            |                         | 14         | 0.50 a                           |                                                                                |                                                           | 500.0                                                                                                     |
| 1,1,2-Trichloroethane  | 1 0 Avg                                                           | 0.2825 0.2949 0.2767 0.295                                               | 0.2825 0.2949 0.2767 0.2959 0.3139 0.3048 0.3393 0.2668                                           | - 0.2                  | 0                                                            | <u></u>                 | 7.7        |                                  |                                                                                | 100.0                                                     | 500.0                                                                                                     |
| 1,2-Dibromoethane      | 1 0 Avg                                                           | 0.3028 0.3235 0.2770 0.314                                               | 0.3028                                                                                            | 0.3                    | <u>۔</u> اِ                                                  | حاد                     | 6.0        | 0.10                             | 20.00 5.00                                                                     | 1000                                                      | 500.0                                                                                                     |
| 4-Methyl-2-Pentanone   | 1 0 Avg                                                           | 0.2679 0.2873 0.2564 0.280                                               | 0.2679 0.2873 0.2564 0.2800 0.2930 0.2921 0.3042 0.2595                                           | 0.5                    |                                                              | 00 1.00                 | 6.2        | 0.10                             |                                                                                | 10.00 50.00 100.0 250.0                                   | 500.0 1.00                                                                                                |
| 2-Hexanone             |                                                                   | 0.1896 0.2087 0.1802 0.208                                               | 0.1896 0.2087 0.1802 0.2084 0.2158 0.2206 0.2480 0.1963                                           | - 0.2                  | 0                                                            |                         | 10         | 0.10                             |                                                                                |                                                           | 500.0                                                                                                     |
| Tetrachloroethene      | 1 0 Avg                                                           | 0.2589 0.2738 0.2401 0.268                                               | 0.2589                                                                                            |                        | 0.270 6.29 0.9                                               | 998 1.00                | 9.9<br>9.9 | 0.20                             | 20.00 5.00                                                                     | 10.00 50.00 100.0 250.0<br>30.00 30.00 30.00 30.00        | 30.00 30.00                                                                                               |
| Toluene                | 1 0 Avg                                                           | 0.7568 0.8301 0.6967 0.785                                               | 0.7568 0.8301 0.6967 0.7850 0.8350 0.8184 0.8811 0.7363                                           | İ                      | 0                                                            | 999 1.00                | 7.6        | 0.40                             | - 1                                                                            |                                                           | - 1                                                                                                       |
| 1,1,1.2-Tetrachloroeth | 1 0 Avg                                                           | 0.2858 0.3239 0.2828 0.305                                               | 0.2858 0.3239 0.2828 0.3050 0.3414 0.3426 0.3885 0.2699                                           | 0.3                    | 0                                                            |                         | 12         |                                  |                                                                                |                                                           | 500.0                                                                                                     |
| Chlorobenzene          | 1 0 Ava                                                           | 0.8546 0.9026 0.7999 0.872                                               | 0.8546                                                                                            | 0.8                    | <u>-</u> -                                                   |                         |            | 0.50                             |                                                                                | 1000                                                      | 500.0                                                                                                     |
| n-Amyl acetate         | 1 0 Aya                                                           | 0.8680 0.8958 0.8281 0.9223 1.0274 0.9167                                | 3 1.0274 0.9167 0.7816                                                                            | 0                      | 0.8917.11 0.1                                                | 997 0.999               | 8 .        | 0.50                             | 20.00 5.00                                                                     | 10.00 50.00 100.0 250.0                                   | 1.00                                                                                                      |
| Bromoform              | 1 0 Avg                                                           | 0.4460 0.4727 0.4144 0.463                                               | 0.4182                                                                                            | 0.0                    | 0                                                            |                         |            | 0.10                             |                                                                                | 100.0                                                     | 500.0                                                                                                     |
| Ethylbenzene           |                                                                   | 0.7215 0.7124 0.6496 0.7088 0.7993 0.6198                                | 8 0.7993 0.6198 0.5676                                                                            | 0.6                    | 0                                                            |                         |            | 0.10                             |                                                                                | 100.0                                                     | <br> -<br> -                                                                                              |
| 1,1,2,2-Tetrachloroeth | 1 0 Avg                                                           | 0.7637 0.8266 0.7271 0.784                                               | 0.7637                                                                                            | 0.8116 0.8             | 0.803 7.42 0.9<br>0.788 7.37 _1                              | 956 0.99 <b>4</b><br>-1 | 6.3        | 0.10                             | 30.00 5.00                                                                     | 10.00 50.00 100.0 250.0<br>30.00 30.00 30.00 30.00        | 30.00 30.00                                                                                               |
| Styrene                | 1 0 Avg                                                           | 1.7747 1.8889 1.6569 1.830                                               | 1.7747 1.8889 1.6569 1.8301 2.0008 1.8243 1.0632 1.6717                                           |                        | 0.                                                           | 905 0.997               |            | 0.30                             |                                                                                | 100.0                                                     | 500.0                                                                                                     |
| m&p-Xylenes            | 1 0 Avg                                                           | 1.0340 1.0939 0.9659 1.040                                               |                                                                                                   | 1.1927 1               | 0                                                            |                         |            | 0.10                             | 9                                                                              | 200.0                                                     |                                                                                                           |
| o-Xylene               | 1 0 Avg                                                           | 1.0041 1.0710 0.9276 1.041                                               | 1.0041 1.0710 0.9276 1.0414 1.1310 1.0054 0.7052 0.9830                                           | - 0.9                  | 0                                                            |                         |            | 0.30                             |                                                                                | 100.0                                                     | 500.0 1.00                                                                                                |
| trans-1,4-Dichloro-2-b | 1 0 Avg                                                           | 0.1883 0.1749 0.1528 0.2071 0.2387                                       |                                                                                                   | 0.1                    | 0                                                            | 0                       | 16         |                                  |                                                                                | 100.0                                                     |                                                                                                           |
| 1.3-Dichlorobenzene    | 1 0 Avg                                                           | 1.1796 1.2835 1.1410 1.2034 1.2969                                       |                                                                                                   |                        | · <u>-</u>                                                   |                         | 4.2        | 0.60                             | 8 8                                                                            | 100.0                                                     | 500.0                                                                                                     |
| 1.4-Dichlorobenzene    |                                                                   | 1.1/68 1.2810 1.1266 1.2036 1.30/9                                       |                                                                                                   |                        | ء اد                                                         |                         | 6.5        | 0.50                             | 5.00                                                                           | 50.00 100.0                                               |                                                                                                           |
| i.2-Diciliotopenzene   |                                                                   | 1.0779 1.1950 1.0564 1.0979 1.2106<br>2 5331 2 7005 2 3666 2 5515 2 7377 | \$ 1.2100 1.1601 1.2217 1.2032<br>\$ 2.7377 2.3033 1.5864 2.3166                                  | ا<br>ـ د               | 2.40.7.26 0.3                                                | 999 1.00                | , o        | 2 6                              |                                                                                | 10.00 50.00 100.0 250.0                                   | 0.00                                                                                                      |
| Cyclohexanone          | 1 0 Ava                                                           | 0.0216 0.0272 0.0214 0.021                                               | 0.0216 0.0272 0.0214 0.0218 0.0213 0.0189 0.0142 0.0191                                           | 0.02                   | 0                                                            | 975 1.00                |            | 5                                | 25.00                                                                          | 250.0 500.0                                               |                                                                                                           |
| Camphene               | 1 0 Avg                                                           | 0.6702 0.7217 0.6523 0.687                                               | 0.6702 0.7217 0.6523 0.6872 0.7358 0.5838 0.9876 0.6258                                           | 0.7                    | 0                                                            |                         | 17         |                                  |                                                                                | 100.0                                                     | 500.0                                                                                                     |
| 1,2,3-Trichloropropane | 1 0 Avg                                                           | 0.7874 0.8061 0.7283 0.843                                               | 0.7874 0.8061 0.7283 0.8437 0.9464 0.8308 1.2755 0.7426                                           | -<br>  0.8             | 0                                                            |                         | 20         |                                  | !                                                                              | i                                                         | 500.0                                                                                                     |
| 2-Chlorotoluene        | _                                                                 | 1.4787 1.6277 1.4300 1.553                                               | 1.4787 1.6277 1.4300 1.5536 1.6953 1.4416 0.9231 1.3925                                           | !                      |                                                              | 933 0.999               | 16         |                                  | 20.00 5.00                                                                     |                                                           | 500.0 1.00                                                                                                |
|                        |                                                                   |                                                                          |                                                                                                   |                        |                                                              |                         |            |                                  |                                                                                |                                                           | Page 2 of 3                                                                                               |

Flags

a - failed the min rf criteria

- failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Note:

Avg Rsd: 10.08

## Form 6 Initial Calibration

Instrument: GCMS\_2

| Level#:   Data File:   Calidentifier:   Analysis Date/Time   Level#:   Data File:   Calidentifier:   Analysis Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| La File:   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Identifier   Cal Ident    |
| CAL @ 20 PPB         Cog220 16:47         Level #         Data File         Cal Identifier         Analysis Date/Time           CAL @ 10 PPB         09/29/20 16:08         4         2/11/42/489 D         CAL @ 5 PPB         09/29/20 17:26           CAL @ 10 PPB         09/29/20 16:08         4         2/11/42/489 D         CAL @ 5 PPB         09/29/20 17:26           CAL @ 10 PPB         09/29/20 16:09         6         2/11/42/489 D         CAL @ 5 PPB         09/29/20 17:26           CAL @ 10 PPB         09/29/20 15:09         6         2/11/42/489 D         CAL @ 5 PPB         09/29/20 15:04           CAL @ 0.5 PPB         09/29/20 15:09         8         2/11/42/489 D         CAL @ 2.50 PPB         09/29/20 15:04           CAL @ 0.5 PPB         09/29/20 15:09         8         2/11/42/489 D         CAL @ 2.50 PPB         09/29/20 15:04           CAL @ 0.5 PPB         09/29/20 15:09         1/1         2/11/42/489 D         CAL @ 2.50 PPB         09/29/20 15:04           CAL @ 0.5 PPB         09/29/20 15:09         1/1         2/1         2/1         2/1           CAL @ 2.5 PPB         09/29/20 15:05         1/1         2/1         2/1         2/1           CAL @ 2.5 PPB         09/29/20 15:05         1/1         2/1         2/1         2/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Level# Data File: Cal Identifier: Analysis Date/Time  2 2M142489.D CAL @ 5 PPB 4 2M142499.D CAL @ 50 PPB 6 2M142499.D CAL @ 50 PPB 8 2M142499.D CAL @ 1 PPB 9/29/20 15:28  Call @ 50 PPB 9/29/20 15:28  Call @ 50 PPB 9/29/20 15:28  Call @ 50 PPB 9/29/20 15:28  Call @ 50 PPB 9/29/20 15:28  Call @ 1 PPB 9/29/20 15:28  Call @ 1 PPB P/29/20 15:28  Call @ 1 PPB P/29/20 15:28  Call @ 1 PPB P/29/20 15:28  Call @ 1 PPB P/29/20 15:28  Call @ 1 PPB P/29/20 15:28  Call @ 1 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:28  Call @ 50 PPB P/29/20 15:2 |
| Level #         Data File:         Cal Identifier:         Analysis Date/Time           2         2M142489.D         CAL @ 5 PPB         09/29/20 15:48           4         2M142499.D         CAL @ 50 PPB         09/29/20 15:28           6         2M142499.D         CAL @ 1 PPB         09/29/20 15:28           Call management         2417.55         0.912 0.994         15         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00           1.47 7.62         0.885 0.992         18         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00         1.00           2.89 7.49         0.972 1.00         11         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00         1.00           1.87 7.57         0.904 0.994         17         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00         1.00           1.87 7.80         0.986 1.00         9.8 0.50         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00         1.00           1.92 7.96 0.937 0.998 18         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00         1.00         2.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00           1.98 2.00 0.937 0.998 18         20.00 5.00 10.00 50.00 100.0 250.0 500.0 10.0         2.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00           1.98 2.00 0.937 0.998 19         20.00 5.00 10.00 50.00 10.00 50.00 100.0 250.0 500.0 1.00         1.00 50.00 10.00 50.00 10.00 250.0 500.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Data File:         Cal Identifier:         Analysis Date/Time           2489.D         CAL @ 5 PPB         09/29/20 15;48           2499.D         CAL @ 50 PPB         09/29/20 17;26           2499.D         CAL @ 250 PPB         09/29/20 15;28           Corr1 Corr2 %Rsd         Lv11 Lv12 Lv13 Lv14 Lv15 Lv16 Lv17 Lv18           Corr1 Corr2 %Rsd         Lv11 Lv12 Lv13 Lv14 Lv15 Lv16 Lv17 Lv18           5 0.912 0.994 15         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00           2 0.885 0.992 18         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00           3 0.97 1.2         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00           4 0.983 0.997 12         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00           5 0.985 0.998 18         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00           6 0.987 0.998 18         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00           7 0.998 1.00 8.2         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00           8 0.999 1.00 8.2         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00           9 0.988 1.00 8.2         20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00           10 0.988 0.999 9.2 0.05 20.05 20.00 50.00 10.00 50.00 100.0 250.0 500.0 1.00           20 0.05 5.00 10.00 50.00 10.00 50.00 10.00 250.0 500.0 1.00           20 0.05 5.00 10.00 50.00 10.00 250.0 500.0 1.00           20 0.05 5.00 10.00 50.00 10.00 250.0 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| File: Cal Identifier: Analysis Date/Time  CAL @ 5 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| er: Analysis Date/Time 09/29/20 15:48 09/29/20 17:26 09/29/20 17:26 09/29/20 15:28  Calibration Level Concentrations Lvi1 Lvi2 Lvi3 Lvi4 Lvi5 Lvi6 Lvi7 Lvi8 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00 20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sis Date/Time 15:48 17:26 19:04 15:28 10:00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sis Date/Time 15:48 17:26 19:04 15:28 10:00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00 10.00 50.00 100.0 250.0 500.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Flags a - failed the min rf criteria

Note:

- Jailed the min rf criteria

- Corr 1 = Correlation Coefficient for linear Eq.

- Corr 2 = Correlation Coefficient for quad Eq.

- Jailed the minimum correlation coeff criteria(if applicable)

- Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Form7
Continuing Calibration

Calibration Name: CAL @ 20 PPB Cont Calibration Date/Time 10/6/2020 2:33:00 P Data File: 2M142767.D Method: EPA 8260D Instrument: GCMS 2

| xtCompd:                           | Col#     | Multi<br>Num | Туре | RT   | Conc   | Conc<br>Exp |    | RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Initial<br>RF | RF    | %Diff | Flag  |
|------------------------------------|----------|--------------|------|------|--------|-------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|-------|-------|
| luorobenzene                       | 1        | 0            | i    | 5.10 | 30.00  | 30          | ** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 0.000 | 0.00  |       |
| Chlorodifluoromethane              | 1        | 0            |      | 1.70 | 18.59  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.306         | 0.284 | 7.04  |       |
| Dichlorodifluoromethane            | 1        | 0            |      | 1.68 | 16.41  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.308         | 0.253 | 17.93 |       |
| Chloromethane                      | 1        | 0            |      | 1.86 | 18.57  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.343         | 0.319 | 7.13  |       |
| Bromomethane                       | 1        | 0            |      | 2.26 | 16.89  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.167         | 0.141 | 15.54 |       |
| /inyl Chloride                     | 1        | 0            |      | 1.95 | 18.55  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.373         | 0.346 | 7.23  |       |
| Chloroethane                       | 1        | 0            |      | 2.35 | 17.96  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.249         | 0.223 | 10.20 |       |
| richlorofluoromethane              | 1        | 0            |      | 2.56 | 17.17  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.571         | 0.490 | 14.16 |       |
| Ethyl ether                        | 1        | 0            |      | 2.80 | 18.54  | 20          | 20 | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.198         | 0.184 | 7.32  |       |
| uran                               | 1        | 0            |      | 2.85 | 18.70  | 20          | 20 | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.335         | 0.314 | 6.48  |       |
| ,1,2-Trichloro-1,2,2-trifluoroetha | 1        | 0            |      | 3.00 | 17.04  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.200         | 0.171 | 14.82 |       |
| flethylene Chloride                | 1        | 0            |      | 3.42 | 18.90  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.283         | 0.268 | 5.49  |       |
| crolein                            | 1        | 0            |      | 2.92 | 93.47  | 100         | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.045         | 0.042 | 6.53  |       |
| crylonitrile                       | 1        | 0            |      | 3.62 | 19.64  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.098         | 0.097 | 1.82  |       |
| odomethane                         | 1        | 0            |      | 3.16 | 17.57  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.210         | 0.188 | 12.15 |       |
| cetone                             | 1        | 0            |      | 3.05 | 92.00  | 100         | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.081         | 0.074 | 8.00  |       |
| Carbon Disulfide                   | 1        | 0            |      | 3.22 | 18.65  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.765         | 0.713 | 6.74  |       |
| Butyl Alcohol                      | 1        | 0            |      | 3.48 | 100.58 | 100         | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.026         | 0.026 | 0.58  |       |
| -Hexane                            | 1        | 0            |      | 3.88 | 16.98  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.237         | 0.201 | 15.09 |       |
| i-isopropyl-ether                  | 1        | 0            |      | 4.03 | 19.35  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.678         | 0.656 | 3.23  |       |
| ,1-Dichloroethene                  | 1        | 0            |      | 3.02 | 18.34  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.386         | 0.354 | 8.28  | . *** |
| lethyl Acetate                     | 1        | 0            |      | 3.32 | 25.40  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.182         | 0.231 | 27.02 | C1    |
| lethyl-t-butyl ether               | 1        | 0            |      | 3.64 | 17.26  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.726         | 0.696 | 13.69 |       |
| ,1-Dichloroethane                  | 1        | 0            |      | 4.00 | 19.16  | 20          | 20 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.470         | 0.451 | 4.21  |       |
| ans-1,2-Dichloroethene             | 1        | 0            |      | 3.65 | 18.06  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.285         | 0.257 | 9.71  |       |
| thyl-t-butyl ether                 | 1        | 0            |      | 4.29 | 20.05  | 20          | 20 | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.734         | 0.736 | 0.25  |       |
| is-1,2-Dichloroethene              | 1        | 0            |      | 4.41 | 18.66  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.478         | 0.446 | 6.72  |       |
| romochloromethane                  | 1        | 0            |      | 4.57 | 20.51  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.212         | 0.218 | 2.52  |       |
| ,2-Dichloropropane                 | 1        | 0            |      | 4.42 | 19.94  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.422         | 0.420 | 0.32  |       |
| thyl acetate                       | 1        | 0            |      | 4.44 | 21.27  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.245         | 0.260 | 6.35  |       |
| ,4-Dioxane                         | 1        | 0            |      | 5.49 | 977.66 | 1000        | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003         | 0.003 | 2.23  |       |
| ,1-Dichloropropene                 | 1        | 0            |      | 4.83 | 18.37  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.399         | 0.366 | 8.13  |       |
| hloroform                          | 1        | 0            |      | 4.61 | 19.07  | 20          | 20 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512         | 0.489 | 4.63  |       |
| bibromofluoromethane               | 1        | 0            | s    | 4.70 | 30.29  | 30          | ** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.287         | 0.290 | 0.95  |       |
| yclohexane                         | 1        | 0            |      | 4.77 | 16.64  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.354         | 0.294 | 16.82 |       |
| ,2-Dichloroethane-d4               | 1        | 0            | S    | 4.91 | 29.77  | 30          | ** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.148         | 0.147 | 0.77  |       |
| ,2-Dichloroethane                  | 1        | 0            |      | 4.95 | 17.53  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.434         | 0.380 | 12.37 |       |
| -Butanone                          | 1        | 0            |      | 4.42 | 19.33  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.125         | 0.121 | 3.35  |       |
| ,1,1-Trichloroethane               | 1        | 0            |      | 4.73 | 18.87  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.454         | 0.429 | 5.64  |       |
| arbon Tetrachloride                | 1        | 0            |      | 4.83 | 17.98  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.385         | 0.346 | 10.12 |       |
| inyl Acetate                       | 1        | 0            |      | 4.02 | 21.30  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.761         | 0.810 | 6.52  |       |
| romodichloromethane                | 1        | 0            |      | 5.57 | 17.32  | 20          | 20 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.415         | 0.397 | 13.38 |       |
| lethylcyclohexane                  | 1        | 0            |      | 5.42 | 16.20  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.343         | 0.278 | 18.99 |       |
| ibromomethane                      | 1        | 0            |      | 5.50 | 19.21  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.206         | 0.198 | 3.95  |       |
| ,2-Dichloropropane                 | 1        | 0            |      | 5.43 | 18.66  | 20          | 20 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.282         | 0.263 | 6.68  |       |
| richloroethene                     | 1        | 0            |      | 5.30 | 18.67  | 20          | 20 | No. of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the con | 0.317         | 0.296 | 6.67  |       |
| enzene                             | 1        | Ō            |      | 4.95 | 18.61  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.123         | 1.045 | 6.95  |       |
| ert-Amyl methyl ether              | 1        | Ö            |      | 4.99 | 18.85  | 20          | 20 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.790         | 0.744 | 5.76  |       |
| chlorobenzene-d5                   | 1        | Ö            | 1    | 6.73 | 30.00  | 30          | ** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 0.000 | 0.00  |       |
| so-propylacetate                   | 1        | Ö            | •    | 4.95 | 22.71  | 20          | 20 | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.522         | 0.593 | 13.53 |       |
| lethyl methacrylate                | <u>i</u> | 0            |      | 5.45 | 20.83  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.252         | 0.262 | 4.17  |       |
| ibromochloromethane                | 1        | 0            |      | 6.42 | 21.42  | 20          | 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.352         | 0.202 | 7.11  |       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 2

Form7
Continuing Calibration

Calibration Name: CAL @ 20 PPB Cont Calibration Date/Time 10/6/2020 2:33:00 P Data File: 2M142767.D Method: EPA 8260D Instrument: GCMS 2

| TxtCompd:                   | Co#        |     | Туре | RT                                    | Conc   | Conc<br>Exp | Lo<br>Lim |                                       | Initial<br>RF | RF    | %Diff Flag   |
|-----------------------------|------------|-----|------|---------------------------------------|--------|-------------|-----------|---------------------------------------|---------------|-------|--------------|
| 2-Chloroethylvinylether     | 1          | 0   |      | 5.71                                  | 24.79  | 20          | 20        |                                       | 0.038         | 0.048 | 23.93 C1     |
| cis-1,3-Dichloropropene     | 1          | 0   |      | 5.80                                  | 21.44  | 20          | 20        |                                       | 0.481         | 0.515 | 7.20         |
| rans-1,3-Dichloropropene    | 1          | 0   |      | 6.09                                  | 21.14  | 20          | 20        |                                       | 0.458         | 0.484 | 5.72         |
| Ethyl methacrylate          | 1          | 0   |      | 6.11                                  | 20.95  | 20          | 20        |                                       | 0.265         | 0.277 | 4.77         |
| 1,1,2-Trichloroethane       | 1          | 0   |      | 6.20                                  | 20.57  | 20          | 20        |                                       | 0.297         | 0.305 | 2.86         |
| 1,2-Dibromoethane           | 1          | 0   |      | 6.50                                  | 20.95  | 20          | 20        | 0.1                                   | 0.313         | 0.328 | 4.74         |
| 1,3-Dichloropropane         | 1          | 0   |      | 6.29                                  | 20.35  | 20          | 20        |                                       | 0.519         | 0.528 | 1.73         |
| I-Methyl-2-Pentanone        | 1          | 0   |      | 5.87                                  | 20.97  | 20          | 20        | 0.1                                   | 0.280         | 0.294 | 4.87         |
| 2-Hexanone                  | 1          | 0   |      | 6.30                                  | 19.99  | 20          | 20        | 0.1                                   | 0.208         | 0.208 | 0.07         |
| Tetrachloroethene           | 1          | 0   |      | 6.29                                  | 19.35  | 20          | 20        | 0.2                                   | 0.270         | 0.261 | 3.24         |
| Foluene-d8                  | 1          | 0   | S    | 5.95                                  | 33.33  | 30          | **        |                                       | 1.174         | 1.304 | 11.10        |
| Toluene                     | 1          | 0   |      | 5.99                                  | 20.41  | 20          | 20        | 0.4                                   | 0.792         | 0.809 | 2.04         |
| 1,1,1,2-Tetrachloroethane   | 1          | 0   |      | 6.78                                  | 17.81  | 20          | 20        |                                       | 0.318         | 0.283 | 10.94        |
| Chlorobenzene               | 1          | 0   |      | 6.75                                  | 18.59  | 20          | 20        | 0.5                                   | 0.884         | 0.822 | 7.07         |
| 1,4-Dichlorobenzene-d4      | 1          | 0   | 1    | 8.02                                  | 30.00  | 30          | **        | · · · · · · · · · · · · · · · · · · · |               | 0.000 | 0.00         |
| n-Butyl acrylate            | 1          | 0   |      | 6.99                                  | 19.82  | 20          | 20        | 0.5                                   | 1.012         | 1.003 | 0.91         |
| n-Amyl acetate              | 1          | 0   |      | 7.11                                  | 19.08  | 20          | 20        | 0.5                                   | 0.891         | 0.850 | 4.60         |
| Bromoform                   | 1          | 0   |      | 7.20                                  | 20.04  | 20          | 20        | 0.1                                   | 0.448         | 0.449 | 0.19         |
| Ethylbenzene                | 1          | 0   |      | 6.79                                  | 20.68  | 20          | 20        | 0.1                                   | 0.683         | 0.706 | 3.38         |
| 1,1,2,2-Tetrachloroethane   | 1          | 0   |      | 7.42                                  | 18.15  | 20          | 20        | 0.1                                   | 0.803         | 0.729 | 9.24         |
| Bromofluorobenzene          | 1          | 0   | S    | 7.36                                  | 30.94  | 30          | **        |                                       | 0.788         | 0.813 | 3.14         |
| Styrene                     | 1          | 0   |      | 7.08                                  | 19.57  | 20          | 20        | 0.3                                   | 1.714         | 1.677 | 2.13         |
| n&p-Xylenes                 | 1          | 0   |      | 6.85                                  | 36.44  | 40          | 20        | 0.1                                   | 1.039         | 0.947 | 8.90         |
| o-Xylene                    | 1          | 0   |      | 7.07                                  | 18.75  | 20          | 20        | 0.3                                   | 0.984         | 0.922 | 6.26         |
| rans-1,4-Dichloro-2-butene  | 1          | 0   |      | 7.44                                  | 21.29  | 20          | 20        |                                       | 0.190         | 0.202 | 6.46         |
| I,3-Dichlorobenzene         | 1          | 0   |      | 7.98                                  | 18.32  | 20          | 20        | 0.6                                   | 1.220         | 1.118 | 8.38         |
| I,4-Dichlorobenzene         | 1          | 0   |      | 8.03                                  | 17.70  | 20          | 20        |                                       | 1.249         | 1.105 | 11.50        |
| 1,2-Dichlorobenzene         | 1          | 0   |      | 8.26                                  | 17.78  | 20          | 20        |                                       | 1.151         | 1.023 | 11.09        |
| sopropylbenzene             | 1          | 0   |      | 7.27                                  | 19.43  | 20          | 20        |                                       | 2.399         | 2.331 | 2.83         |
| Cyclohexanone               | 1          | 0   |      | 7.34                                  | 96.49  | 100         | 20        |                                       | 0.021         | 0.020 | 3.51         |
| Camphene                    | 1          | 0   |      | 7.44                                  | 15.34  | 20          | 20        |                                       | 0.708         | 0.543 | 23.29 C1     |
| 1,2,3-Trichloropropane      | 1          | 0   |      | 7.46                                  | 18.73  | 20          | 20        |                                       | 0.870         | 0.815 | 6.34         |
| 2-Chlorotoluene             | 1          | Ö   |      | 7.56                                  | 19.29  | 20          | 20        |                                       | 1.443         | 1.391 | 3.57         |
| p-Ethyltoluene              | 1          | Ö   |      | 7.55                                  | 19.88  | 20          | 20        |                                       | 2.414         | 2.400 | 0.61         |
| 4-Chlorotoluene             | 1          | Ö   |      | 7.62                                  | 19.33  | 20          | 20        |                                       | 1.470         | 1.421 | 3.33         |
| n-Propylbenzene             | 1          | ō   |      | 7.49                                  | 18.86  | 20          | 20        |                                       | 2.888         | 2.724 | 5.68         |
| Bromobenzene                | 1          | Ö   |      | 7.47                                  | 17.79  | 20          | 20        |                                       | 1.606         | 1.429 | 11.03        |
| 1,3,5-Trimethylbenzene      | 1          | 0   |      | 7.58                                  | 18.25  | 20          | 20        |                                       | 1.870         | 1.707 | 8.75         |
| Butyl methacrylate          | 1          | 0   |      | 7.58                                  | 19.11  | 20          | 20        | 0.5                                   | 0.731         | 0.698 | 4.45         |
| -Butylbenzene               | 1          | 0   |      | 7.77                                  | 19.13  | 20          | 20        | 0.0                                   | 1.825         | 1.745 | 4.38         |
| 1,2,4-Trimethylbenzene      | _ <u>'</u> | - 0 |      | 7.80                                  | 18.74  | 20          | 20        |                                       | 2.015         | 1.888 | 6.30         |
| sec-Butylbenzene            | 1          | 0   |      | 7.89                                  | 18.96  | 20          | 20        |                                       | 2.255         | 2.138 | 5.18         |
| 4-Isopropyltoluene          | 1          | 0   |      | 7.9 <del>3</del>                      | 18.80  | 20          | 20        |                                       | 1.915         | 1.800 | 5.99         |
| n-Butylbenzene              | 1          | 0   |      | 8.20                                  | 18.95  | 20          | 20        |                                       | 1.981         | 1.878 | 5.99<br>5.24 |
| •                           | 1          | 0   |      | 8.19                                  | 18.61  | 20          | 20        |                                       | 1.083         | 1.008 | 6.94         |
| D-Diethylbenzene            | ·· .       |     |      | · · · · · · · · · · · · · · · · · · · | 18.28  |             | 20        |                                       | 1.583         | 1.447 | 8.59         |
| 1,2,4,5-Tetramethylbenzene  | 1          | 0   |      | 8.64                                  |        | 20          |           | 0.05                                  |               |       |              |
| 1,2-Dibromo-3-Chloropropane | 1          | 0   |      | 8.71                                  | 18.95  | 20          | 20        | 0.05                                  | 0.163         | 0.155 | 5.26         |
| Camphor                     | 1          | 0   |      | 9.14                                  | 188.64 | 200         | 20        |                                       | 0.064         | 0.061 | 5.68         |
| Hexachlorobutadiene         | 1          | 0   |      | 9.28                                  | 17.71  | 20          | 20        |                                       | 0.248         | 0.220 | 11.46        |
| 1,2,4-Trichlorobenzene      | 1          | 0   |      | 9.20                                  | 17.69  | 20          | 20        | 0.2                                   | 0.591         | 0.523 | 11.55        |
| 1,2,3-Trichlorobenzene      | 1          | 0   |      | 9.50                                  | 16.82  | 20          | 20        |                                       | 0.490         | 0.412 | 15.89        |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 2

FORM8

Evaluation Std Data File: 2M142492.D Internal Standard Areas

Analysis Date/Time: 09/29/20 16:47

Lab File ID: CAL @ 20 PPB

Method: EPA 8260D

|                         | =             |        | 12            |        | ឆ            |       | 4    |    | <del>15</del> |   | <del>1</del> 6 |    | 17   | <b>-</b> |
|-------------------------|---------------|--------|---------------|--------|--------------|-------|------|----|---------------|---|----------------|----|------|----------|
|                         | Area          | RT     | Area          | RT     | Area         | Ŗ     | Area | RT | Area          | R | Area           | RT | Area | RT       |
| Eval File Area/RT       | 359594        | 5.10   | 324303        | 6.73   | 173285       | 8.02  |      |    |               |   |                |    |      |          |
| Eval File Area Limit    | 179797-719188 | 19188  | 162152-648606 | 648606 | 86642-346570 | 46570 | İ    | !  |               |   |                |    |      |          |
| Eval File Rt Limit      | 4.6-5.6       | 6      | 6.23-7.23     | 7.23   | 7.52-8.52    | 8.52  |      |    |               |   |                |    |      |          |
| ata File Sample#        |               |        |               |        |              |       |      |    |               |   |                |    |      |          |
| 1142487.D CAL @ 0.5 PPB | 34641         |        | 10 307168     | -      |              |       | 02   |    |               |   |                |    |      |          |
| 1142488.D CAL @ 1 PPB   | 387579        | 9 5.10 |               | -      | 6.73 180533  |       | 8.02 |    |               |   |                |    |      |          |
| M142489.D CAL @ 5 PPB   | 34049         |        |               | •      |              |       | 2    |    |               |   |                |    |      |          |
| 1142490.D CAL @ 10 PPB  | 38719         |        |               | -      |              |       | 20   |    |               |   |                |    |      |          |
| M142492.D CAL @ 20 PPB  | 35959         |        |               |        | :            |       | 2    |    |               |   |                |    |      |          |
| 1142494.D CAL @ 50 PPB  | 34131         |        |               | _      |              |       | 22   |    |               |   |                |    |      |          |
| 1142496.D CAL @ 100 PPB | 34710         |        |               | -      |              |       | 2    |    |               |   |                |    |      |          |
| 1142499.D CAL @ 250 PPB | 35457         |        |               |        |              |       | 200  |    |               |   |                |    |      |          |
| 1142502.D CAL @ 500 PPB | 37898         |        |               |        |              |       | 3    |    |               |   |                |    |      |          |
| /142508.D ICV           |               |        |               |        |              |       | 22   |    |               |   |                |    |      |          |

| Internal Standard A | the comment of the second | 13 =                   | 12 =             | ======================================= |
|---------------------|---------------------------|------------------------|------------------|-----------------------------------------|
| reas                |                           | 1,4-Dichlorobenzene-d4 | Chlorobenzene-d5 | Fluorobenzene                           |
|                     |                           | 16=                    | <u> 5=</u>       | 14=                                     |
|                     |                           |                        |                  |                                         |
| <u>Flags:</u>       |                           |                        |                  | 17 =                                    |
| gs:                 |                           |                        |                  |                                         |
|                     | -                         |                        |                  |                                         |

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Retention Times:

Upper Limit = + 100% of internal standard area from daily cal or mid pt.

R - Indicates the compound failed the internal standard retention time criteria. A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30 ng/L 524 Internal Standard concentration = 5 ng/L

Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

Internal Standard Areas

Evaluation Std Data File: 2M142767.D Analysis Date/Time: 10/06/20 14:33

Method: EPA 8260D

Eval File Area Limit: Eval File Area/RT: Eval File Rt Limit: 341576 170788-683152 Area 4.6-5.6 5.10 즤 Lab File ID: CAL @ 20 PPB

| 6.23-7.23 | 143606-574424 | 287212 6.73 149984 | Area | 12 |
|-----------|---------------|--------------------|------|----|
| 7.23      | 574424        | 6.73               | 꼭    |    |
| 7.52-8.52 | 4             | 149984             | Area | ವ  |
| 3.52      | 99968         | 8.02               | RT A |    |
|           |               |                    | Area | 4  |
|           |               |                    | Ŗ    |    |
|           |               |                    | Area | 55 |
|           |               |                    | RT   | 5  |
|           |               |                    | Area | 6  |
|           |               |                    | 곡    |    |
|           |               |                    | Area | 17 |

즤

| 624/8260 Internal Standard concentration = 30ug/L<br>524 Internal Standard concentration = 5ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |        |      | 5      | 4    | Chlorobenzene-d5 1,4-Dichlorobenzene-d4 | 13 =               |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|------|--------|------|-----------------------------------------|--------------------|------------|
| 625/8270 Internal Standard concentration = 40 mg/L (in final extract)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "    | 17 =   |      | 14 =   |      | Fluorobenzene                           | =                  |            |
| THE REPORT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF  | 8.02 | 147914 | 6.73 | 301423 | 5.10 | 318001                                  | BLK                | 2M142807.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 154954 | 6.73 | 302024 | 5.10 | 318602                                  | BLK                | 2M142806.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 157845 | 6.73 | 308686 | 5.10 | 322530                                  | BCK                | 2M142805.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 159459 | 6.73 | 290883 | 5.09 | 306348                                  | MBS89439           | 2M142804.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 152685 | 6.73 | 291270 | 5.10 | 311017                                  | AD19568-002        | 2M142803.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 152650 | 6.73 | 296900 | 5.10 | 359100                                  | AD19598-011        | 2M142802.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 178446 | 6.73 | 341531 | 5.10 | 354765                                  | AD19598-010        | 2M142801.D |
| TO THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH | 8.02 | 175056 | 6.73 | 339508 | 5.10 | 358798                                  | AD19598-008        | 2M142799.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 164099 | 6.73 | 306910 | 5.10 | 377706                                  | AD19598-007        | 2M142798.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 160249 | 6.73 | 338948 | 5.10 | 365519                                  | AD19598-005        | 2M142796.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 173241 | 6.73 | 336510 | 5.10 | 365838                                  | AD19598-002        | 2M142793.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 169421 | 6.73 | 337072 | 5.10 | 356750                                  | BLK                | 2M142790.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 159221 | 6.73 | 334466 | 5.10 | 0620 356707                             | EF-V1-335534(10062 | 2M142789.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 146852 | 6.73 | 302168 | 5.10 | _                                       | AD19542-001(T:MSD  | 2M142788.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 309897 | 6.73 | 540966 | 5.10 |                                         | AD19542-001(T:MS)  | 2M142787.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 182191 | 6.73 | 354760 | 5.10 | J                                       | AD19595-014(10X)(T | 2M142785.D |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.02 | 180225 | 6.73 | 347213 | 5.10 | 373844                                  | AD19548-001(T)     | 2M142784.D |

2M142783.D AD19527-002(T)

365542 382287

2M142782.D

AD19526-002(T) AD19543-001(T)

> 374127 367415 371948 354260 390864 373854 358725 366913 359666

5.10 5.10

313880 353021 344291 350313

6.73 6.73 6.73

8.02 8.02 8.02 8.02

345236

175029 183657 181411 174329 187520

8.02

5.10 5.10

2M142780.D

AD19548-001(T)

2M142781.D

2M142779.D MBS89438 2M142778.D AD19595-014(T)

2M142777.D 2M142776.D 2M142775.D

AD19560-001(T)

AD19542-001(T)

AD19595-013(T)

2M142774.D BLKTEST 2M142772.D BLK 2M142771.D

2M142770.D DAILY BLANK

DAILY BLANK

368821 371657

5.10 5.10 5

> 309860 345686 343232

335385

160862 167763 176661

180982 175202 180454

8.02 8.02 8.02

5.10

5.10 5.10 5.10 5.10

350765 328290

355320

6.73 6.73 6.73 6.73 6.73 6.73 6.73 6.73

184022 192684 175072

8.02 8.02 8.02 8.02 8.02 8.02 8.02

6.73

337266 343625

172636

2M142769.D 2M142768.D 20 PPB

372443 376395

345669

Data File

Sample#

### **Internal Standard Areas**

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

### Flags:

- A Indicates the compound failed the internal standard area criteria
- R Indicates the compound failed the internal standard retention time criteria.

FORM8

Evaluation Std Data File: 2M142767.D Internal Standard Areas

Analysis Date/Time: 10/06/20 14:33

Method: EPA 8260D

Lab File ID: CAL @ 20 PPB

|       | 8.02                      | 149984 | 6.73 | 287212 |
|-------|---------------------------|--------|------|--------|
| Area  | 꼰                         | Area   | 꾸    | Area   |
| 4     |                           | 13     |      | 22     |
| 20770 | Lab File ID. CAL @ 20 FFD | Labrad |      | :      |

낔

Area

곡

Area ਗ

즤

Агеа

곡

7

5

| Data File Sample# |        | 1    |        |      |        | :    |
|-------------------|--------|------|--------|------|--------|------|
| 2M142808.D BLK    | 322135 | 5.10 | 299530 | 6.73 | 153316 | 8.02 |
| 2M142809.D BLK    | 331233 | 5.10 | 267303 | 6.73 | 63498  | 8.02 |
| 2M142810.D BLK    | 326967 | 5.10 | 263558 | 6.73 | 59289  | 8.02 |
| 2M142811.D BLK    | 362962 | 5.10 | 296680 | 6.73 | 74918  | 8.02 |
|                   |        |      |        |      |        |      |

2M142808. Data File

Eval File Area Limit: Eval File Area/RT:

170788-683152

143606-574424

74992-299968 7.52-8.52

6.23-7.23

4.6-5.6

341576

5.10 괵

Area

Eval File Rt Limit:

# Internal Standard Areas

12 = 13

Fluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d4

554

7=

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Retention Times:

Flags:

A - Indicates the compound failed the internal standard area criteria

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30 ug/L 524 Internal Standard concentration = 5 ug/L

R - Indicates the compound failed the internal standard retention time criteria.

Base Neutral/Acid Extractable Data

### Form1

### ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19595-004

Client Id: HSI-SB-08(3.5-4)

Data File: 7M109909.D

Analysis Date: 10/06/20 19:31

Date Rec/Extracted: 10/02/20-10/06/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil

Initial Vol: 30g

Final Vol: 0.5ml

Dilution: 1

Solids: 87

Units: mg/Kg

|                           |                            |        |        | Units: m | ig/Kg    |                             |         |        |        |
|---------------------------|----------------------------|--------|--------|----------|----------|-----------------------------|---------|--------|--------|
| Cas #                     | Compound                   | MDL    | RL     | Conc     | Cas #    | Compound                    | MDL     | RL     | Conc   |
| 92-52-4                   | 1,1'-Biphenyl              | 0.011  | 0.038  | 0.10     | 50-32-8  | Benzo(a)pyrene              | 0.013   | 0.038  | U      |
| 95-94-3                   | 1,2,4,5-Tetrachlorobenzene | 0.013  | 0.038  | U        | 205-99-2 | Benzo[b]fluoranthene        | 0.014   | 0.038  | U      |
| 123-91-1                  | 1,4-Dioxane                | 0.019  | 0.0096 | U        | 191-24-2 | Benzo[g,h,i]perylene        | 0.00026 | 0.038  | U      |
| 5 <b>8</b> -9 <b>0-</b> 2 | 2,3,4,6-Tetrachlorophenol  | 0.014  | 0.038  | U        | 207-08-9 | Benzo[k]fluoranthene        | 0.014   | 0.038  | U      |
| 95-95-4                   | 2,4,5-Trichlorophenol      | 0.011  | 0.038  | U        | 111-91-1 | bis(2-Chloroethoxy)methan   | 0.011   | 0.038  | U      |
| 88-06-2                   | 2,4,6-Trichlorophenol      | 0.030  | 0.038  | U        | 111-44-4 | bis(2-Chloroethyl)ether     | 0.0093  | 0.038  | U      |
| 120-83-2                  | 2,4-Dichlorophenol         | 0.014  | 0.0096 | U        | 108-60-1 | bis(2-chloroisopropyl)ether | 0.015   | 0.038  | U      |
| 105-67-9                  | 2,4-Dimethylphenol         | 0.019  | 0.0096 | U        | 117-81-7 | bis(2-Ethylhexyl)phthalate  | 0.034   | 0.038  | 0.38   |
| 51-28-5                   | 2.4-Dinitrophenol          | 0.17   | 0.19   | U        | 85-68-7  | Butylbenzylphthalate        | 0.029   | 0.038  | U      |
| 121-14-2                  | 2,4-Dinitrotoluene         | 0.012  | 0.038  | U        | 105-60-2 | Caprolactam                 | 0.031   | 0.038  | U      |
| 606-20-2                  | 2,6-Dinitrotoluene         | 0.020  | 0.038  | U        | 86-74-8  | Carbazole                   | 0.012   | 0.038  | U      |
| 91-58-7                   | 2-Chloronaphthalene        | 0.017  | 0.038  | U        | 218-01-9 | Chrysene                    | 0.013   | 0.038  | U      |
| 95-57-8                   | 2-Chlorophenol             | 0.013  | 0.038  | U        | 53-70-3  | Dibenzo[a,h]anthracene      | 0.014   | 0.038  | U      |
| 91-57-6                   | 2-Methylnaphthalene        | 0.012  | 0.038  | 0.12     | 132-64-9 | Dibenzofuran                | 0.0097  | 0.0096 | U      |
| 95-48-7                   | 2-Methylphenol             | 0.011  | 0.0096 | U        | 84-66-2  | Diethylphthalate            | 0.025   | 0.038  | U      |
| 88-74-4                   | 2-Nitroaniline             | 0.018  | 0.038  | U        | 131-11-3 | Dimethylphthalate           | 0.011   | 0.038  | U      |
| 88-75-5                   | 2-Nitrophenol              | 0.017  | 0.038  | U        | 84-74-2  | Di-n-butylphthalate         | 0.044   | 0.0096 | 0.064  |
| 106-44-5                  | 3&4-Methylphenol           | 0.011  | 0.0096 | 0.021    | 117-84-0 | Di-n-octylphthalate         | 0.025   | 0.038  | U      |
| 91-94-1                   | 3,3'-Dichlorobenzidine     | 0.031  | 0.038  | U        | 206-44-0 | Fluoranthene                | 0.015   | 0.038  | U      |
| 99-09-2                   | 3-Nitroaniline             | 0.015  | 0.038  | U        | 86-73-7  | Fluorene                    | 0.010   | 0.038  | U      |
| 534-52-1                  | 4,6-Dinitro-2-methylphenol | 0.13   | 0.19   | U        | 118-74-1 | Hexachlorobenzene           | 0.016   | 0.038  | U      |
| 101-55- <b>3</b>          | 4-Bromophenyl-phenylether  | 0.011  | 0.038  | U        | 87-68-3  | Hexachlorobutadiene         | 0.017   | 0.038  | U      |
| 59-5 <b>0</b> -7          | 4-Chloro-3-methylphenol    | 0.0092 | 0.038  | U        | 77-47-4  | Hexachlorocyclopentadiene   | 0.12    | 0.038  | U      |
| 106-47-8                  | 4-Chloroaniline            | 0.017  | 0.0096 | U        | 67-72-1  | Hexachloroethane            | 0.017   | 0.038  | U      |
| 7005-72-3                 | 4-Chlorophenyl-phenylether | 0.012  | 0.038  | U        | 193-39-5 | Indeno[1,2,3-cd]pyrene      | 0.017   | 0.038  | U      |
| 100-01-6                  | 4-Nitroaniline             | 0.015  | 0.038  | U        | 78-59-1  | Isophorone                  | 0.012   | 0.038  | U      |
| 100-02-7                  | 4-Nitrophenol              | 0.029  | 0.038  | U        | 91-20-3  | Naphthalene                 | 0.011   | 0.0096 | 0.10   |
| 83-32-9                   | Acenaphthene               | 0.011  | 0.038  | U        | 98-95-3  | Nitrobenzene                | 0.0016  | 0.038  | U      |
| 208-96-8                  | Acenaphthylene             | 0.011  | 0.038  | U        | 621-64-7 | N-Nitroso-di-n-propylamine  | 0.014   | 0.0096 | U      |
| 98-86-2                   | Acetophenone               | 0.014  | 0.038  | U        | 86-30-6  | n-Nitrosodiphenylamine      | 0.13    | 0.038  | U      |
| 120-12-7                  | Anthracene                 | 0.011  | 0.038  | U        | 87-86-5  | Pentachlorophenol           | 0.18    | 0.19   | U      |
| 1912-24-9                 | Atrazine                   | 0.015  | 0.038  | U        | 85-01-8  | Phenanthrene                | 0.012   | 0.038  | 0.019J |
| 100-52-7                  | Benzaldehyde               | 0.42   | 0.038  | U        | 108-95-2 | Phenol                      | 0.011   | 0.038  | U      |
| 56-55-3                   | Benzo(a)anthracene         | 0.013  | 0.038  | U        | 129-00-0 | Pyrene                      | 0.013   | 0.038  | U      |

Worksheet #: 569892

Total Target Concentration

0.8 ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Data Path : G:\GcMsData\2020\GCMS\_7\Data\10-0620\
Qt Path : G:\GCMSDATA\2020\GCMS\_7\METHODQT\

Qt Resp Via : Initial Calibration

| Compound                    | R.T.   | QIon | Response C | Conc Units    | Dev   | (Min)  |
|-----------------------------|--------|------|------------|---------------|-------|--------|
| Internal Standards          |        |      |            |               |       |        |
| 7) 1,4-Dioxane-d8(INT)      | 2.687  | 96   | 81461      | 40.00 ng      |       | -0.01  |
| 21) 1,4-Dichlorobenzene-d4  | 5.895  | 152  | 179484     | 40.00 ng      |       | 0.00   |
| 31) Naphthalene-d8          | 6.900  | 136  | 665487     | 40.00 ng      |       | 0.00   |
| 50) Acenaphthene-d10        | 8.339  | 164  | 337148     | 40.00 ng      |       | 0.00   |
| 77) Phenanthrene-dl0        | 9.826  | 188  | 620533     | 40.00 ng      |       | 0.00   |
| 91) Chrysene-d12            | 12.893 | 240  |            | 40.00 ng      |       | 0.00   |
| 103) Perylene-d12           | 14.544 | 264  | 506697     | 40.00 ng      |       | 0.00   |
| System Monitoring Compounds |        |      |            |               |       |        |
| 11) 2-Fluorophenol          | 4.737  | 112  | 339677     | 70.81 ng      |       | 0.02   |
| Spiked Amount 100.000       |        |      | Recovery   | ' <b>±</b> 70 | .81%  |        |
| 16) Phenol-d5               | 5.595  | 99   | 453225     | 78.63 ng      |       | 0.02   |
| Spiked Amount 100.000       |        |      |            | <i>r</i> = 78 | . 63% |        |
| 32) Nitrobenzene-d5         | 6.341  | 128  | 91600      | 34.65 ng      |       | 0.00   |
| Spiked Amount 50.000        |        |      | Recovery   |               | .30%  |        |
| 55) 2-Fluorobiphenyl        | 7.746  | 172  | 403249     |               |       | 0.00   |
| Spiked Amount 50.000        |        |      |            | r = 71        |       |        |
| 80) 2,4,6-Tribromophenol    | 9.091  | 330  |            | 74.11 ng      |       | 0.00   |
| Spiked Amount 100.000       |        |      |            | 7 = 74        |       |        |
| 94) Terphenyl-d14           | 11.641 | 244  |            | 40.89 ng      |       | 0.00   |
| Spiked Amount 50.000        |        |      | Recovery   | y = 81        | .78%  |        |
| Target Compounds            |        |      |            |               |       | Qvalue |
| 30) 3&4-Methylphenol        | 6.230  | 108  | 6025       | 1.1190        | ng    | 94     |
|                             | 6.911  | 128  | 91996m     | 5.3155        | ng    |        |
| 46) 2-Methylnaphthalene     | 7.452  | 142  | 72762      | 6.2292        | ng    | 100    |
| 49) 1,1'-Biphenyl           | 7.828  | 154  | 73642      | 5.3660        | ng    | 95     |
| 86) Phenanthrene            | 9.849  | 178  | 16387m     | 1.0055        | ng    |        |
| 89) Di-n-butylphthalate     |        | 149  | 62618      | 3.3302        | ng    | 97     |
| 102) bis(2-Ethylhexyl)phtha |        | 149  |            | 19.9369       | ng    | 95     |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed



### Form1

### ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19595-009

Client Id: HSI-SB-10(5.5-6)

Data File: 9M101551.D

Analysis Date: 10/06/20 13:22 Date Rec/Extracted: 10/02/20-10/06/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil

Initial Vol: 30g

Final Vol: 0.5ml

Dilution: 1

Solids: 89

| Units: | mg/Kg |
|--------|-------|
| _      |       |

| Cas#                    | Compound                   | MDL    | RL     | Conc | Cas #            | Compound                    | MDL     | ŖL     | Conc |
|-------------------------|----------------------------|--------|--------|------|------------------|-----------------------------|---------|--------|------|
| 92-52-4                 | 1,1'-Biphenyl              | 0.011  | 0.037  | U    | 50-32-8          | Benzo[a]pyrene              | 0.013   | 0.037  | U    |
| 95-94-3                 | 1,2,4,5-Tetrachlorobenzene | 0.013  | 0.037  | U    | 205-99-2         | Benzo(b)fluoranthene        | 0.013   | 0.037  | U    |
| 123- <b>91-1</b>        | 1,4-Dioxane                | 0.019  | 0.0094 | U    | 191-24-2         | Benzo[g,h,i]perylene        | 0.00026 | 0.037  | U    |
| 58-90-2                 | 2,3,4,6-Tetrachlorophenol  | 0.014  | 0.037  | U    | 207-08-9         | Benzo[k]fluoranthene        | 0.014   | 0.037  | U    |
| 95-95-4                 | 2,4,5-Trichlorophenol      | 0.011  | 0.037  | U -  | 111-91-1         | bis(2-Chloroethoxy)methan   | 0.011   | 0.037  | U    |
| 88-06-2                 | 2,4,6-Trichlorophenol      | 0.029  | 0.037  | U    | 111-44-4         | bis(2-Chloroethyl)ether     | 0.0091  | 0.0094 | U    |
| 120-83-2                | 2,4-Dichlorophenol         | 0.014  | 0.0094 | U    | 108-60-1         | bis(2-chloroisopropyl)ether | 0.015   | 0.037  | U    |
| 105-67-9                | 2,4-Dimethylphenol         | 0.018  | 0.0094 | U    | 117-81-7         | bis(2-Ethylhexyl)phthalate  | 0.033   | 0.037  | U    |
| 51-2 <b>8-5</b>         | 2.4-Dinitrophenol          | 0.16   | 0.19   | U    | 85-68-7          | Butylbenzylphthalate        | 0.029   | 0.037  | U    |
| 121-14-2                | 2,4-Dinitrotoluene         | 0.012  | 0.037  | U    | 105-60-2         | Caprolactam                 | 0.030   | 0.037  | U    |
| 606-20-2                | 2,6-Dinitrotoluene         | 0.019  | 0.037  | U    | 86-74 <b>-</b> 8 | Carbazole                   | 0.012   | 0.037  | U    |
| 91-58-7                 | 2-Chloronaphthalene        | 0.017  | 0.037  | U    | 218-01-9         | Chrysene                    | 0.013   | 0.037  | U    |
| 95-57-8                 | 2-Chlorophenol             | 0.012  | 0.037  | U    | 53-70-3          | Dibenzo[a,h]anthracene      | 0.014   | 0.037  | U    |
| 91-57-6                 | 2-Methylnaphthalene        | 0.012  | 0.037  | U    | 132-64-9         | Dibenzofuran                | 0.0095  | 0.0094 | U    |
| 95-48-7                 | 2-Methylphenol             | 0.011  | 0.0094 | U    | 84-66-2          | Diethylphthalate            | 0.024   | 0.037  | U    |
| 88-74-4                 | 2-Nitroaniline             | 0.018  | 0.037  | U    | 131-11-3         | Dimethylphthalate           | 0.011   | 0.037  | U    |
| <b>88</b> -75 <b>-5</b> | 2-Nitrophenol              | 0.017  | 0.037  | U    | 84-74-2          | Di-n-butylphthalate         | 0.043   | 0.0094 | U    |
| 106-44-5                | 3&4-Methylphenol           | 0.011  | 0.0094 | U    | 117-84-0         | Di-n-octylphthalate         | 0.025   | 0.037  | U    |
| 91-94-1                 | 3,3'-Dichlorobenzidine     | 0.030  | 0.037  | U    | 206-44-0         | Fluoranthene                | 0.014   | 0.037  | U    |
| 99-09-2                 | 3-Nitroaniline             | 0.015  | 0.037  | U    | 86-73-7          | Fluorene                    | 0.010   | 0.037  | U    |
| 534-52-1                | 4,6-Dinitro-2-methylphenol | 0.13   | 0.19   | U    | 118-74-1         | Hexachlorobenzene           | 0.016   | 0.037  | U    |
| 101-55-3                | 4-Bromophenyl-phenylether  | 0.010  | 0.037  | U    | 87-68-3          | Hexachlorobutadiene         | 0.017   | 0.037  | U    |
| 59-50-7                 | 4-Chloro-3-methylphenol    | 0.0090 | 0.037  | U    | 77-47-4          | Hexachlorocyclopentadiene   | 0.12    | 0.037  | U    |
| 106-47-8                | 4-Chloroaniline            | 0.016  | 0.0094 | U    | 67-72-1          | Hexachloroethane            | 0.017   | 0.037  | U    |
| 7005-72-3               | 4-Chlorophenyl-phenylether | 0.011  | 0.037  | U    | 193-39-5         | Indeno[1,2,3-cd]pyrene      | 0.017   | 0.037  | U    |
| 100-01-6                | 4-Nitroaniline             | 0.014  | 0.037  | U    | 78-59-1          | Isophorone                  | 0.012   | 0.037  | U    |
| 100-02-7                | 4-Nitrophenol              | 0.028  | 0.037  | U    | 91-20-3          | Naphthalene                 | 0.011   | 0.0094 | U    |
| 83-32-9                 | Acenaphthene               | 0.011  | 0.037  | U    | 98-95-3          | Nitrobenzene                | 0.0015  | 0.037  | U    |
| 208-96-8                | Acenaphthylene             | 0.011  | 0.037  | U    | 621-64-7         | N-Nitroso-di-n-propylamine  | 0.014   | 0.0094 | U    |
| 98-86-2                 | Acetophenone               | 0.013  | 0.037  | U    | 86-30-6          | n-Nitrosodiphenylamine      | 0.13    | 0.037  | U    |
| 120-12-7                | Anthracene                 | 0.010  | 0.037  | U    | 87-86-5          | Pentachlorophenol           | 0.18    | 0.19   | U    |
| 1912-24-9               | Atrazine                   | 0.015  | 0.037  | U    | 85-01-8          | Phenanthrene                | 0.012   | 0.037  | U    |
| 100-52-7                | Benzaldehyde               | 0.41   | 0.037  | U    | 108-95-2         | Phenol                      | 0.010   | 0.037  | U    |
| 56- <b>55-3</b>         | Benzo(a)anthracene         | 0.012  | 0.037  | U    | 129-00-0         | Pyrene                      | 0.013   | 0.037  | U    |
|                         | * *                        |        |        |      |                  |                             |         |        |      |

Worksheet #: 569892

Total Target Concentration

0 R - Retention Time Out ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Operator : AH/JKR/JB Sam Mult : 1 Vial# : 8 Misc : S,BNA Qt Meth : 9M\_0917.M Qt On : 10/06/20 14:01 Qt Upd On: 09/29/20 13:20 SampleID : AD19595-009 Data File: 9M101551.D Acq On : 10/ 6/20 13:22

Data Path : G:\GcMsData\2020\GCMS\_9\Data\10-06-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_9\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.   | QIon | Response | Conc U | nits Dev(Min) |
|-----------------------------|--------|------|----------|--------|---------------|
| Internal Standards          |        |      |          |        |               |
| 7) 1,4-Dioxane-d8(INT)      | 2.690  | 96   | 57576    | 40.00  | ng -0.01      |
| 21) 1,4-Dichlorobenzene-d4  | 5.901  | 152  | 105065   | 40.00  |               |
| 31) Naphthalene-d8          | 6.907  | 136  | 405724   | 40.00  | ng 0.00       |
| 50) Acenaphthene-d10        | 8.342  | 164  | 212977   | 40.00  | ng 0.00       |
|                             | 9.819  |      | 414463   | 40.00  | ng 0.00       |
| 91) Chrysene-d12            | 12.877 | 240  | 415843   | 40.00  | ng -0.01      |
| 103) Perylene-d12           | 14.513 | 264  | 408841   | 40.00  | ng -0.02      |
| System Monitoring Compounds |        |      |          |        |               |
| 11) 2-Fluorophenol          | 4.713  | 112  | 172680   | 57.33  | ng 0.00       |
| Spiked Amount 100.000       |        |      |          |        | 57.33%        |
| 16) Phenol-d5               | 5.578  | 99   | 224206   |        |               |
| Spiked Amount 100.000       |        |      | Recove   | ry =   | 61.54%        |
| 32) Nitrobenzene-d5         | 6.348  | 128  | 44273    | 30.34  | ng 0.00       |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 60.68%        |
| 55) 2-Fluorobiphenyl        | 7.748  | 172  | 224900   | 30.86  | ng 0.00       |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 61.72%        |
| 80) 2,4,6-Tribromophenol    | 9.089  | 330  | 59372    | 62.21  | ng 0.00       |
| Spiked Amount 100.000       |        |      |          |        | 62.21%        |
| 94) Terphenyl-d14           | 11.624 | 244  | 200842   | 33.18  | ng -0.01      |
| Spiked Amount 50.000        |        |      | Recove   | ry ≃   | 66.36%        |
| Target Compounds            |        |      |          |        | Qvalue        |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed



### Form1 ORGANICS SEMIVOLATILE REPORT

Sample Number: SMB88132

Client Id:

Data File: 9M101549.D Analysis Date: 10/06/20 12:34

Date Rec/Extracted: NA-10/06/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Soil

Initial Vol: 30g

Final Vol: 0.5ml

Dilution: 1 Solids: 100

| Units: | mg/Kg |
|--------|-------|
| Conc   |       |

|                  |                            | 1451   |        | Onits: mg | _        | C                           | MOI     | 01     | Cono |
|------------------|----------------------------|--------|--------|-----------|----------|-----------------------------|---------|--------|------|
| Cas #            | Compound                   | MDL    | RL     | Conc      | Cas #    | Compound                    | MDL     | RL     | Conc |
| 92-52-4          | 1,1'-Biphenyl              | 0.0096 | 0.033  | U         | 50-32-8  | Benzo(a)pyrene              | 0.011   | 0.033  | U    |
| 95-94-3          | 1,2,4,5-Tetrachlorobenzene | 0.011  | 0.033  | U ,       | 205-99-2 | Benzo[b]fluoranthene        | 0.012   | 0.033  | U    |
| 123-91-1         | 1,4-Dioxane                | 0.017  | 0.0083 | U         | 191-24-2 | Benzo[g,h,i]perylene        | 0.00023 | 0.033  | U    |
| 58-90-2          | 2,3,4,6-Tetrachlorophenol  | 0.013  | 0.033  | U         | 207-08-9 | Benzo[k]fluoranthene        | 0.012   | 0.033  | U    |
| 95-95-4          | 2,4,5-Trichlorophenol      | 0.0095 | 0.033  | U         | 111-91-1 | bis(2-Chloroethoxy)methan   | 0.0094  | 0.033  | U    |
| 88-06-2          | 2.4.6-Trichlorophenol      | 0.026  | 0.033  | U         | 111-44-4 | bis(2-Chloroethyl)ether     | 0.0081  | 0.0083 | U    |
| 120-83-2         | 2,4-Dichlorophenol         | 0.013  | 0.0083 | υ         | 108-60-1 | bis(2-chloroisopropyl)ether | 0.013   | 0.033  | U    |
| 105-67-9         | 2.4-Dimethylphenol         | 0.016  | 0.0083 | υ         | 117-81-7 | bis(2-Ethylhexyl)phthalate  | 0.029   | 0.033  | U    |
| 51-28-5          | 2.4-Dinitrophenol          | 0.14   | 0.17   | U         | 85-68-7  | Butylbenzylphthalate        | 0.026   | 0.033  | U    |
| 121-1 <b>4-2</b> | 2.4-Dinitrotoluene         | 0.010  | 0.033  | U         | 105-60-2 | Caprolactam                 | 0.027   | 0.033  | U    |
| 606-20-2         | 2.6-Dinitrotoluene         | 0.017  | 0.033  | U         | 86-74-8  | Carbazole                   | 0.010   | 0.033  | U    |
| 91-58-7          | 2-Chloronaphthalene        | 0.015  | 0.033  | υ         | 218-01-9 | Chrysene                    | 0.011   | 0.033  | U    |
| 95-57-8          | 2-Chlorophenol             | 0.011  | 0.033  | U         | 53-70-3  | Dibenzo[a,h]anthracene      | 0.012   | 0.033  | U    |
| 91-57-6          | 2-Methylnaphthalene        | 0.010  | 0.033  | υ         | 132-64-9 | Dibenzofuran                | 0.0084  | 0.0083 | U    |
| 95-48-7          | 2-Methylphenol             | 0.0096 | 0.0083 | υ         | 84-66-2  | Diethylphthalate            | 0.021   | 0.033  | U    |
| 88-74-4          | 2-Nitroaniline             | 0.016  | 0.033  | U ,       | 131-11-3 | Dimethylphthalate           | 0.0094  | 0.033  | U    |
| 88-75-5          | 2-Nitrophenol              | 0.015  | 0.033  | U         | 84-74-2  | Di-n-butylphthalate         | 0.038   | 0.0083 | U    |
| 106-44-5         | 3&4-Methylphenol           | 0.0097 | 0.0083 | U .       | 117-84-0 | Di-n-octylphthalate         | 0.022   | 0.033  | U    |
| 91-94-1          | 3,3'-Dichlorobenzidine     | 0.027  | 0.033  | υ         | 206-44-0 | Fluoranthene                | 0.013   | 0.033  | U    |
| 99-09-2          | 3-Nitroaniline             | 0.013  | 0.033  | υ         | 86-73-7  | Fluorene                    | 0.0091  | 0.033  | U    |
| 534-52-1         | 4,6-Dinitro-2-methylphenol | 0.12   | 0.17   | U         | 118-74-1 | Hexachlorobenzene           | 0.014   | 0.033  | U    |
| 101-55-3         | 4-Bromophenyl-phenylether  | 0.0093 | 0.033  | U         | 87-68-3  | Hexachlorobutadiene         | 0.015   | 0.033  | U    |
| 59-50-7          | 4-Chloro-3-methylphenol    | 0.0080 | 0.033  | υ         | 77-47-4  | Hexachlorocyclopentadiene   | 0.11    | 0.033  | U    |
| 106-47-8         | 4-Chloroaniline            | 0.015  | 0.0083 | υ         | 67-72-1  | Hexachloroethane            | 0.015   | 0.033  | U    |
| 7005-72-3        | 4-Chlorophenyl-phenylether | 0.010  | 0.033  | υ         | 193-39-5 | Indeno[1,2,3-cd]pyrene      | 0.015   | 0.033  | U    |
| 100-01-6         | 4-Nitroaniline             | 0.013  | 0.033  | U         | 78-59-1  | Isophorone                  | 0.011   | 0.033  | U    |
| 100-02-7         | 4-Nitrophenol              | 0.025  | 0.033  | υ         | 91-20-3  | Naphthalene                 | 0.0096  | 0.0083 | U    |
| 83-32-9          | Acenaphthene               | 0.0095 | 0.033  | U         | 98-95-3  | Nitrobenzene                | 0.0013  | 0.033  | U    |
| 208-96-8         | Acenaphthylene             | 0.010  | 0.033  | U ,       | 621-64-7 | N-Nitroso-di-n-propylamine  | 0.013   | 0.0083 | U    |
| 98-86-2          | Acetophenone               | 0.012  | 0.033  | U .       | 86-30-6  | n-Nitrosodiphenylamine      | 0.11    | 0.033  | U    |
| 120-12-7         | Anthracene                 | 0.0092 | 0.033  | υ         | 87-86-5  | Pentachlorophenol           | 0.16    | 0.17   | U    |
| 1912-24-9        | Atrazine                   | 0.013  | 0.033  | Ū         | 85-01-8  | Phenanthrene                | 0.011   | 0.033  | U    |
| 100-52-7         | Benzaldehyde               | 0.36   | 0.033  | U         | 108-95-2 | Phenol                      | 0.0092  | 0.033  | U    |
| 56-55-3          | Benzo[a]anthracene         | 0.011  | 0.033  | U         | 129-00-0 | Pyrene                      | 0.011   | 0.033  | U    |
|                  |                            | •.•.   |        | -         |          |                             | • • • • |        | -    |

Worksheet #: 569892

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used.

Qt Meth : 9M\_0917.M Qt On : 10/06/20 13:08 Qt Upd On: 09/29/20 13:20 Operator : AH/JKR/JB Sam Mult : 1 Vial# : 6 Misc : S,BNA SampleID : SMB88132 Data File: 9M101549.D Acq On : 10/ 6/20 12:34

Data Path : G:\GcMsData\2020\GCMS\_9\Data\10-06-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_9\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.   | QIon | Response | Conc U | nits Dev(M | (in) |
|-----------------------------|--------|------|----------|--------|------------|------|
| Internal Standards          |        |      |          |        |            |      |
| 7) 1,4-Dioxane-d8(INT)      | 2.684  | 96   | 48355    | 40.00  | ng - (     | 0.02 |
| 21) 1,4-Dichlorobenzene-d4  | 5.901  | 152  | 86785    | 40.00  | ng (       | 00.0 |
|                             | 6.907  | 136  | 328473   | 40.00  | ng (       | 0.00 |
| 50) Acenaphthene-d10        | 8.342  | 164  | 168631   | 40.00  | ng (       | 0.00 |
| 77) Phenanthrene-d10        | 9.819  | 188  | 326648   | 40.00  | ng (       | 00.0 |
| 91) Chrysene-d12            | 12.877 | 240  | 304927   | 40.00  | ng ~(      | 0.01 |
| 103) Perylene-d12           | 14.512 | 264  | 304884   | 40.00  | ng - (     | 0.02 |
| System Monitoring Compounds |        |      |          |        |            |      |
| 11) 2-Fluorophenol          | 4.713  | 112  | 206548   | 81.66  | ng (       | 00.0 |
| Spiked Amount 100.000       |        |      | Recove   | ery =  | 81.66%     |      |
| 16) Phenol-d5               | 5.578  | 99   | 257161   | 84.05  | ng (       | 0.00 |
| Spiked Amount 100.000       |        |      | Recove   | ry =   | 84.05%     |      |
| 32) Nitrobenzene-d5         | 6.348  | 128  | 50199    | 42.49  | ng (       | 0.00 |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 84.98%     |      |
| 55) 2-Fluorobiphenyl        | 7.748  | 172  | 257444   | 44.61  | ng (       | 0.00 |
| Spiked Amount 50.000        |        |      |          |        | 89.22%     |      |
| 80) 2,4,6-Tribromophenol    | 9.089  | 330  | 61496    | 81.75  | ng (       | 00.0 |
| Spiked Amount 100.000       |        |      |          |        | 81.75%     |      |
| 94) Terphenyl-d14           | 11.624 | 244  |          |        | ng -(      | 0.01 |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 101.00%    |      |

Target Compounds Qvalue

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed



### FORM2

Surrogate Recovery

Method: EPA 8270E

|        |                        |                    |                |      | Dilute | Column1 | Column1 | Column1 | Column1 | Column1 | Column1 |
|--------|------------------------|--------------------|----------------|------|--------|---------|---------|---------|---------|---------|---------|
|        |                        | <b>6.5</b> - 6 - 5 | D. 1. (T)      | Surr | Out    | S1      | S2      | S3      | S4      | S5      | S6      |
| Dfile  | Sample#                | Matrix             | Date/Time      | Dil  | Flag   | Recov   | Recov   | Recov   | Recov   | Recov   | Recov   |
| 9M1015 | 49.D SMB88132          | S                  | 10/06/20 12:34 | 1    |        | 82      | 84      | 85      | 89      | 82      | 101     |
| 7M1099 | 09.DAD19595-004        | S                  | 10/06/20 19:31 | 1    |        | 71      | 79      | 69      | 72      | 74      | 82      |
| 9M1015 | 51.DAD19595-009        | S                  | 10/06/20 13:22 | 1    |        | 57      | 62      | 61      | 62      | 62      | 66      |
| 7M1099 | 10 DAD19562-002        | S                  | 10/06/20 19:55 | 1    |        | 71      | 77      | 69      | 73      | 69      | 80      |
| 7M1099 | 11.DAD19562-004(MS:AD  | 19 S               | 10/06/20 20:18 | 1    |        | 73      | 78      | 70      | 72      | 76      | 86      |
| 7M1099 | 12.DAD19562-006(MSD:AI | D1 S               | 10/06/20 20:42 | 1    |        | 69      | 77      | 70      | 74      | 77      | 86      |
| 9M1015 | 48.D SMB88132(MS)      | s                  | 10/06/20 12:11 | 1    |        | 80      | 87      | 91      | 95      | 103     | 104     |

Flags: SD=Surrogate diluted out

\*=Surrogate out

Method: EPA 8270E

### **Soil Laboratory Limits**

|                         | Spike |          |
|-------------------------|-------|----------|
| Compound                | Amt   | Limits _ |
| S1=2-Fluorophenol       | 100   | 43-128   |
| S2=Phenol-d5            | 100   | 49-129   |
| S3=Nitrobenzene-d5      | 50    | 52-129   |
| S4=2-Fluorobiphenyl     | 50    | 58-125   |
| S5=2,4,6-Tribromophenol | 100   | 54-145   |
| S6=Terphenyl-d14        | 50    | 58-148   |

### Form3 **Recovery Data Laboratory Limits**

QC Batch: SMB88132

Data File

Spike or Dup: 9M101548.D

Sample ID:

SMB88132(MS)

**Analysis Date** 

10/6/2020 12:11:00 PM

Non Spike(If applicable):

Inst Blank(If applicable): Method: 8270E QC Type: MBS Matrix: Soil Units: mg/Kg Sample Expected Lower Upper Spike Col Conc Recovery Limit Limit Analyte: Conc Conc 25.2364 50 50 150 O **Pyridine** N-Nitrosodimethylamine 40.8154 0 50 82 50 130 1 Benzaldehyde 40.7399 0 <u>50</u> <u>81</u> <u>20</u> 220 1 52 20 150 50 25.9014 0 Aniline Pentachloroethane 36.7234 0 50 73 50 130 1 <u>92</u> <u>50</u> bis(2-Chloroethyl)ether 45.9948 0 <u>50</u> 130 1 <u> 20</u> <u>78</u> <u>150</u> Phenol 78.1802 100 2-Chlorophenol 1 82.2506 0 100 <u>82</u> <u>50</u> 130 20 31.2811 0 50 63 130 N-Decane 60 130 1,3-Dichlorobenzene 40.98 0 50 82 60 1 4-Dichlorobenzene 46.3334 0 50 93 130 46.142 0 50 92 50 130 1.2-Dichlorobenzene 20 Benzyl alcohol 48.725 0 50 97 130 <u>50</u> <u>40</u> <u>45.5304</u> <u>0</u> <u>91</u> 130 bis(2-chloroisopropyl)ether 1 0 100 <u>94</u> <u>50</u> 130 94.0137 2-Methylphenol <u>1</u> Acetophenone 1 45.4438 0 50 91 50 130 50 <u>50</u> <u>130</u> Hexachloroethane 1 45.9821 Q <u>92</u> <u>40</u> 1 <u>52.1323</u> 0 <u>50</u> 104 <u>130</u> N-Nitroso-di-n-propylamine 100 99 <u>70</u> <u>130</u> 3&4-Methylphenol 1 98.8253 <u>0</u> <u>105</u> <u>70</u> 130 **Nitrobenzene** 1 52.343 <u>50</u> 51.4584 0 <u>50</u> 103 <u>60</u> 130 Isophorone 1 100 <u>70</u> 2-Nitrophenol 1 92.9534 0 93 130 2,4-Dimethylphenol 103,2401 0 <u>100</u> <u> 103</u> <u>40</u> <u>130</u> 28 20 28.3762 0 100 130 Benzoic Acid bis(2-Chloroethoxy)methane 53.244 0 50 106 <u>60</u> 130 2.4-Dichlorophenol 1 95.0002 0 100 95 70 130 ō 50 101 50 130 1,2,4-Trichlorobenzene 1 50.3274 **Naphthalene** <u>49.5156</u> <u>0</u> <u>50</u> <u>99</u> <u>50</u> 130 <u>1</u> 4-Chloroaniline 1 28.3205 Õ <u>50</u> <u>57</u> <u>10</u> 150 <u>60</u> **Hexachlorobutadiene** 1 48.0823 0 <u>50</u> <u>96</u> **130** <u>50</u> **Caprolactam** 1 52.9506 0 <u>50</u> <u>106</u> <u>130</u> <u>50</u> 4-Chloro-3-methylphenol 1 95.0676 <u>0</u> 100 95 130 2-Methylnaphthalene 1 48.3377 <u>50</u> <u>97</u> <u>70</u> <u>130</u> 0 50 99 70 130 1-Methylnaphthalene 49.5763 84 60 1.1'-Biphenyl 42.0938 0 50 130 1 1,2,4,5-Tetrachlorobenzene 1 <u>45.24</u> 0 <u>50</u> <u>90</u> <u>70</u> <u>130</u> <u> 20</u> **Hexachlorocyclopentadiene** 52.3968 <u>50</u> <u> 105</u> 160 0 2,4,6-Trichlorophenol 1 93.4661 0 100 93 <u>70</u> 130 2,4,5-Trichlorophenol 0 100 70 130 1 95.3092 95 <u>70</u> 2-Chloronaphthalene 1 54.8822 50 110 130 70 1,4-Dimethylnaphthalene ō 50 42.5953 85 130 50 70 Diphenyl Ether 1 49.4685 0 99 130 53.9294 2-Nitroaniline 1 <u>50</u> 108 <u>50</u> 130 ō 50 70 130 Coumarin 47.1065 94 57.7765 **Acenaphthylene** 0 <u>50</u> 116 <u>70</u> 130 1 **Dimethylphthalate** 1 **55.06** <u>50</u> 110 <u>70</u> <u>130</u> 113 56.5044 <u>50</u> <u>70</u> 130 2,6-Dinitrotoluene 0 <u>50</u> 109 <u>50</u> 130 **Acenaphthene** 1 <u>54.555</u> <u>50</u> <u>10</u> 130 3-Nitroaniline 1 42.4376 0 <u>85</u> <u>100</u> <u>20</u> 2,4-Dinitrophenol **26.1825** <u>0</u> <u> 26</u> <u>150</u> <u>Dibenzofuran</u> <u>52.0037</u> <u>o</u> <u>50</u> 104 70 130 <u>40</u> 20 2,4-Dinitrotoluene 56.8677 <u>0</u> 50 114 130 1 100 **150** 4-Nitrophenol 84.8796 õ <u>70</u> <u>100</u> <u>87</u> 2,3,4,6-Tetrachlorophenol 1 <u>87.1629</u> <u>130</u> <u>50</u> 0 <u>50</u> 109 130 54.7413 Fluorene 1 4-Chlorophenyl-phenylether 55.3846 <u>50</u> 111 <u>70</u> 130 <u>70</u> <u>50</u> 0 **130 Diethylphthalate** <u>55.5981</u> <u>111</u> 4-Nitroaniline 55.0749 0 <u>50</u> 110 <u>50</u> 130 1 <u>50</u> <u>53.152</u> <u>50</u> 106 130 <u>Atrazine</u> 1 <u>49.7756</u> 40 4,6-Dinitro-2-methylphenol 1 0 <u>100</u> <u>50</u> <u>130</u>

0

<u>50</u>

94

50

130

46.8118

1

n-Nitrosodiphenylamine

<sup># -</sup> Indicates outside of standard limits but within method exceedance limits \* - Indicates outside of limits Bold and underline - Indicates the compounds reported on form1

### Form3 Recovery Data Laboratory Limits QC Batch: SMB88132

| Method: 8270E               | Matrix        | c: Soil        |                      | Units: mg/K      | (g QC Ty   | e: MBS         |            |
|-----------------------------|---------------|----------------|----------------------|------------------|------------|----------------|------------|
| Analyte:                    | Col           | Spike<br>Conc  | Sample<br>Conc       | Expected<br>Conc | Recovery   | Lower<br>Limit | Upper      |
| 1,2-Diphenylhydrazine       | 1             | 55.7864        | 0                    | 50               | 112        | 70             | 130        |
| 4-Bromophenyl-phenylether   | 1             | <u>56.1557</u> | <u>o</u>             | <u>50</u>        | <u>112</u> | <u>70</u>      | <u>130</u> |
| <u>Hexachlorobenzene</u>    | 1             | <u>51.3841</u> | <u>0</u>             | <u>50</u>        | <u>103</u> | <u>70</u>      | <u>130</u> |
| N-Octadecane                | 1             | 56.8282        | 0                    | 50               | 114        | 70             | 130        |
| <u>Pentachlorophenol</u>    | 1             | 89.9256        | <u>o</u>             | <u>100</u>       | <u>90</u>  | <u>40</u>      | <u>130</u> |
| <u>Phenanthrene</u>         | 1             | <u>55.8146</u> | <u>o</u>             | <u>50</u>        | <u>112</u> | <u>70</u>      | <u>130</u> |
| Anthracene                  | <u>1</u>      | <u>55.9455</u> | Q                    | <u>50</u>        | <u>112</u> | <u>70</u>      | <u>130</u> |
| Carbazole                   | <u>1</u>      | 48.2992        | <u>o</u>             | <u>50</u>        | <u>97</u>  | <u>70</u>      | <u>130</u> |
| Di-n-butylphthalate         | 1             | 55.3138        | <u>0</u>             | <u>50</u>        | <u>111</u> | <u>70</u>      | 130        |
| Fluoranthene                | <u>1</u><br>1 | 57.5641        | <u>0</u>             | 50               | 115        | <u>70</u>      | 130        |
| Pyrene                      | <u>1</u>      | 56.1276        | <u>o</u>             | <u>50</u>        | 112        | <u>50</u>      | 130        |
| Benzidine                   | 1             | 7.6824         | Ō                    | 50               | 15         | 1              | 130        |
| <u>Butylbenzylphthalate</u> | 1             | 54.6642        | <u>0</u>             | <u>50</u>        | 109        | <u>50</u>      | 130        |
| 3,3'-Dichlorobenzidine      | <u>1</u>      | 34.9351        | <u> </u>             | <u>50</u>        | 70         | <u>10</u>      | 130        |
| Benzo[a]anthracene          | <u>1</u>      | 51.9931        | <u>0</u>             | 50               | 104        | 70             | 130        |
| Chrysene                    | 1             | 47.4162        | <u>0</u>             | <u>50</u>        | 95         | 60             | 130        |
| bis(2-Ethylhexyl)phthalate  | 1<br>1<br>1   | 55.8205        | <u>0</u><br><u>0</u> | <u>50</u>        | 112        | <u>70</u>      | 130        |
| Di-n-octylphthalate         | 1             | 55.3487        | <u> </u>             | <u>50</u>        | <u>111</u> | 70             | 130        |
| Benzo[b]fluoranthene        | 1             | 65.0384        | <u>0</u>             | <u>50</u>        | 130        | 70             | 130        |
| Benzo[k]fluoranthene        | <u>1</u>      | 58.6368        | <u> </u>             | <u>50</u>        | 117        | <del>70</del>  | 130        |
| Benzo[a]pyrene              | 1             | 61.6032        | <u>o</u>             | <u>50</u>        | 123        | <u>70</u>      | 130        |
| Indeno[1,2,3-cd]pyrene      | <u>1</u>      | 60.395         | <u>o</u>             | 50               | 121        | <del>70</del>  | 130        |
| Dibenzo[a,h]anthracene      | 1<br>1<br>1   | 60.2045        | <u>0</u>             | <u>50</u>        | 120        | <u>60</u>      | 130        |
| Benzo[g,h,i]perylene        | ī             | 59.7774        | Ō                    | 50               | 120        | 70             | 130        |

### Form3 **Recovery Data Laboratory Limits**

QC Batch: SMB88132

Data File

Sample ID:

**Analysis Date** 

Spike or Dup: 7M109911.D Non Spike(If applicable): 7M109910.D

AD19562-004(MS:AD19562-002 AD19562-002

10/6/2020 8:18:00 PM 10/6/2020 7:55:00 PM

Inst Blank(If applicable):

Matrix: Soil QC Type: MS Units: mg/Kg

Method: 8270E Expected Upper Spike Sample Lower Col Analyte: Conc Conc Conc Recovery Limit 1 imit 22.8741 50 46 150 Pyridine 1 0 1 74 N-Nitrosodimethylamine 36.875 0 50 50 130 40.8931 <u>50</u> <u>20</u> 220 **Benzaldehyde** 1 0 <u>82</u> ō 50 Aniline 1.5219 20 150 0 50 50 Pentachloroethane 35.5288 71 130 50 bis(2-Chloroethyl)ether 43.0896 0 86 <u>50</u> 130 1 0 100 74 20 150 **Phenol** 73.6316 2-Chlorophenol 75.0948 Q 100 <u>75</u> <u>50</u> <u>130</u> 1 õ 20 130 N-Decane 30.461 50 61 1.3-Dichlorobenzene 35.4379 0 50 71 60 130 1 35.2333 0 50 70 60 130 1,4-Dichlorobenzene 0 50 50 1.2-Dichlorobenzene 35.4288 71 130 20 35.0915 0 50 70 130 Benzyl alcohol 1 40.9178 0 50 <u>40</u> 130 bis(2-chloroisopropyl)ether <u>82</u> 2-Methylphenol 73.3382 0 100 73 <u>50</u> 130 80 <u>50</u> Acetophenone 39.9659 0 <u>50</u> <u>130</u> 0 <u>50</u> 31.8803 <u>50</u> <u>64</u> 130 **Hexachloroethane** 0 <u>83</u> <u>40</u> N-Nitroso-di-n-propylamine 1 41.6008 <u>50</u> <u>130</u> 0 100 <u>70</u> 3&4-Methylphenol 75.2684 <u>75</u> <u>130</u> 0 <u>42.6034</u> <u>50</u> <u>85</u> <u>70</u> 130 <u>Nitrobenzene</u> 0 50 <u>60</u> Isophorone 1 40.4114 81 130 0 <u>70</u> 2-Nitrophenol 1 71.9668 100 <u>72</u> <u>130</u> 0 <u>40</u> 100 2,4-Dimethylphenol <u>78.575</u> <u>130</u> 50.8458 0 20 Benzoic Acid 100 130 0 50 86 60 130 bis(2-Chloroethoxy)methane 1 42.7739 <u>70</u> 0 100 2,4-Dichlorophenol 1 70.7819 <u>71</u> 130 ō 50 77 50 130 1,2,4-Trichlorobenzene 38.4523 50 Naphthalene 1 37.9852 Q 50 <u>76</u> 130 4-Chloroaniline 18.6172 Q <u>50</u> <u>37</u> <u>10</u> <u>150</u> <u>Hexachlorobutadiene</u> 35.1499 0 <u>50</u> 70 <u>60</u> <u>130</u> Caprolactam 1 42.049 <u>0</u> 50 84 <u>50</u> 130 <u>70</u> <u>50</u> 4-Chloro-3-methylphenol 1 70.1841 <u>0</u> 100 <u>130</u> <u>36.1122</u> <u>0</u> <u>70</u> 2-Methylnaphthalene <u>50</u> <u>72</u> 130 1-Methylnaphthalene 0 50 70 41.5176 130 1,1'-Biphenyl 1 33.1605 <u>0</u> <u>50</u> <u>66</u> <u>60</u> <u>130</u> 0 <u>70</u> 1,2,4,5-Tetrachlorobenzene <u>38.9158</u> <u>50</u> <u>130</u> <u>0</u> 50 0\* 20 160 **Hexachlorocyclopentadiene** 2,4,6-Trichlorophenol 1 72.5256 <u>0</u> 100 73 70 130 <u>70</u> 0 100 2,4,5-Trichlorophenol 75.8462 <u>76</u> 130 0 <u>50</u> <u>70</u> 2-Chloronaphthalene <u>42.0134</u> <u>84</u> <u>130</u> 1,4-Dimethylnaphthalene ō 50 72 70 36.2316 130 Diphenyl Ether 41.0301 0 50 82 70 130 2-Nitroaniline <u>44.5786</u> 0 <u>50</u> <u>89</u> <u>50</u> 130 ō 50 70 Coumarin 38.0624 76 130 **Acenaphthylene** 43.1541 0 <u>50</u> 86 <u>70</u> 1 <u>130</u> <u>50</u> <u>70</u> **Dimethylphthalate** 41.7784 <u>0</u> <u>84</u> <u>130</u> 0 50 <u>70</u> 130 2,6-Dinitrotoluene 42.8226 86 Acenaphthene 1 42.1443 0 50 84 50 130 <u>70</u> 3-Nitroaniline 31.7996 <u>0</u> <u>50</u> <u>130</u> 2,4-Dinitrophenol 19.8407 0 100 <u>20</u> <u>20</u> 150 0 70 <u>Dibenzofuran</u> 39.0638 50 78 130 50 <u>40</u> 2,4-Dinitrotoluene <u>41.9356</u> 130 0 100 20 <u>72</u> <u>150</u> 4-Nitrophenol **72.1157** Q <u>70</u> <u>100</u> 66\* <u>130</u> 2,3,4,6-Tetrachlorophenol 66.4552 42.8903 0 <u>50</u> <u>86</u> <u>50</u> 130 **Fluorene** 0 <u>70</u> 4-Chlorophenyl-phenylether <u>42.2303</u> <u>50</u> <u>84</u> <u>130</u> Q <u>50</u> <u>85</u> <u>70</u> **Diethylphthalate** 42.7186 <u>130</u> 4-Nitroaniline 1 38.5286 Q <u>50</u> <u>77</u> <u>50</u> <u>130</u> 0 50 <u>76</u> <u>50</u> <u>130</u> 38.0617 <u>Atrazine</u> 4,6-Dinitro-2-methylphenol 31.3089 0 100 31\* 40 130 1 n-Nitrosodiphenylamine 37.0389 0 <u>50</u> <u>74</u> <u>50</u>

<sup># -</sup> Indicates outside of standard limits but within method exceedance limits \* - Indicates outside of limits Bold and underline - Indicates the compounds reported on form1

### Form3 Recovery Data Laboratory Limits QC Batch: SMB88132

| Method: 8270E              | Matrix        | :: Soil        |                                  | Units: mg/K      | ig QC Typ   | oe: MS         |                |
|----------------------------|---------------|----------------|----------------------------------|------------------|-------------|----------------|----------------|
| Analyte:                   | Col           | Spike<br>Conc  | Sample<br>Conc                   | Expected<br>Conc | Recovery    | Lower<br>Limit | Upper<br>Limit |
| 1,2-Diphenylhydrazine      | 1             | 50.2523        | 0                                | 50               | 101         | 70             | 130            |
| 4-Bromophenyl-phenylether  | 1             | 42.4892        | Ō                                | <u>50</u>        | <u>85</u>   | <u>70</u>      | <u>130</u>     |
| <u>Hexachlorobenzene</u>   | 1             | <u>40.1565</u> | <u>0</u>                         | <u>50</u>        | <u>80</u>   | <u>70</u>      | <u>130</u>     |
| N-Octadecane               | 1             | 49.3111        | 0                                | 50               | 99          | 70             | 130            |
| <u>Pentachlorophenol</u>   | <u>1</u>      | <u>71.3457</u> | <u>0</u>                         | <u>100</u>       | <u>71</u>   | <u>40</u>      | <u>130</u>     |
| <u>Phenanthrene</u>        | 1             | 47.5828        |                                  | <u>50</u>        | <u>95</u>   | <u>70</u>      | 130            |
| Anthracene                 | 1             | 43.9529        | <u>Q</u><br>Q                    | <u>50</u>        | <u>88</u>   | <u>70</u>      | <u>130</u>     |
| Carbazole                  | 1             | 36.4639        | <u>0</u>                         | 50               | <u>73</u>   | 70             | 130            |
| Di-n-butylphthalate        | 1             | <u>45.8245</u> |                                  | <u>50</u>        | 92          | <u>70</u>      | <u>130</u>     |
| Fluoranthene               | <u>1</u>      | 49.7557        | <u>0</u>                         | <u>50</u>        | 100         | <u>70</u>      | 130            |
| Pyrene                     | <u>1</u>      | 55.3869        | <b>0</b><br>0                    | <u>50</u>        | 111         | 50             | 130            |
| Benzidine                  | 1             | 0              | ō                                | 50               | <u>_</u> 0* | 1              | 130            |
| Butylbenzylphthalate       | <u>1</u>      | 51.0076        | Q                                | <u>50</u>        | <u>102</u>  | <u>50</u>      | <u>130</u>     |
| 3,3'-Dichlorobenzidine     | <u>1</u>      | 31.7695        | <u>o</u>                         | <u>50</u>        | <u>64</u>   | <u>10</u>      | 130            |
| Benzo[a]anthracene         | <u>1</u><br>1 | 45.8941        | <u>0</u>                         | <u>50</u>        | 92          | <u>70</u>      | 130            |
| Chrysene                   |               | 42.2928        | <u>o</u>                         | <u>50</u>        | <u>85</u>   | <u>60</u>      | 130            |
| bis(2-Ethylhexyl)phthalate | <u>1</u><br>1 | <u>51.2163</u> | <u>0</u>                         | <u>50</u>        | 102         | <u>70</u>      | 130            |
| Di-n-octylphthalate        | <u>1</u>      | 52.9673        | <u>Q</u><br><u>Q</u><br><u>Q</u> | <u>50</u>        | 106         | <u>70</u>      | 130            |
| Benzo[b]fluoranthene       | <u>1</u>      | 55.5178        | <u> </u>                         | <u>50</u>        | <u>111</u>  | 70             | 130            |
| Benzo[k]fluoranthene       | <u>1</u>      | <u>59.2585</u> | 0                                | <u>50</u>        | 119         | <u>70</u>      | 130            |
| Benzo[a]pyrene             | <u>1</u>      | 49.6008        | 0                                | <u>50</u>        | 99          | <u>70</u>      | 130            |
| Indeno[1,2,3-cd]pyrene     | <u>1</u>      | 48.0288        | <u>o</u><br>0                    | <u>50</u>        | <u>96</u>   | <u>70</u>      | 130            |
| Dibenzo[a,h]anthracene     | <u>1</u>      | 47.7943        | <u>0</u>                         | <u>50</u>        | <u>96</u>   | <u>60</u>      | 130            |
| Benzo[g,h,i]perylene       | <u>1</u>      | 46.399         | <u>0</u>                         | <del>50</del>    | <u>93</u>   | 70             | 130            |

### Form3 Recovery Data Laboratory Limits

QC Batch: SMB88132

Data File

Sample ID:

Analysis Date

Spike or Dup: 7M109912.D

09912.D AD19562-006(MSD:AD19562-0

10/6/2020 8:42:00 PM

Non Spike(If applicable): 7M109910.D AD19562-002

002

10/6/2020 7:55:00 PM

Inst Blank(If applicable):

| Method: 8270E                                        | Matrix               | c Soil                           |                | Units: mg/k            | (g QC Typ         | e: MSD          |                   |
|------------------------------------------------------|----------------------|----------------------------------|----------------|------------------------|-------------------|-----------------|-------------------|
| Analyte:                                             | Col                  | Spike<br>Conc                    | Sample<br>Conc | Expected<br>Conc       | Recovery          | Lower<br>Limit  | Uppe<br>Limit     |
| Pyridine                                             | 1                    | 21.1594                          | 0              | 50                     | 42                | 1               | 150               |
| N-Nitrosodimethylamine                               | 1                    | 36.7461                          | 0              | 50                     | 73                | 50              | 130               |
| <u>Benzaldehyde</u>                                  | 1                    | <u>38.4919</u>                   | <u>0</u>       | <u>50</u>              | <u>77</u>         | <u>20</u>       | 220               |
| Aniline                                              | 1                    | 19.6779                          | 0<br>0         | 50<br>50               | 39<br>65          | 20<br>50        | 150<br>130        |
| Pentachloroethane<br>bis(2-Chloroethyl)ether         | 1<br>1               | 32.5201<br><b>42.571</b>         | <u>0</u>       | 50<br>50               | 85                | 50<br>50        | 130               |
| Phenol                                               | 1                    | 71.2754                          | <u>o</u>       | <u>50</u><br>100       | <u>33</u><br>71   | <u>20</u>       | 150               |
| 2-Chlorophenol                                       | <u> </u>             | 72.1208                          | <u>o</u>       | 100                    | <del>72</del>     | <u>50</u>       | 130               |
| N-Decane                                             | 1                    | 27.9422                          | Ŏ              | 50                     | <del>56</del>     | 20              | 130               |
| 1,3-Dichlorobenzene                                  | 1                    | 34.0505                          | 0              | 50                     | 68                | 60              | 130               |
| 1,4-Dichlorobenzene                                  | 1                    | 35.5674                          | 0              | 50                     | 71                | 60              | 130               |
| 1,2-Dichlorobenzene                                  | 1                    | 35.729                           | 0              | 50                     | 71                | 50              | 130               |
| Benzyl alcohol                                       | 1                    | 36.3293                          | 0              | 50                     | 73                | 20              | 130               |
| bis(2-chloroisopropyl)ether                          | 1                    | <u>41.4884</u>                   | <u>0</u>       | <u>50</u>              | <u>83</u>         | <u>40</u>       | 130               |
| 2-Methylphenol                                       | 1                    | <u>73.634</u><br>39.7427         | Q              | <u>100</u><br>50       | <u>74</u><br>79   | <u>50</u>       | 130<br>130        |
| <u>Acetophenone</u><br>Hexachloroethane              | <u>1</u><br>1        | 39.7427<br>31.5209               | <u>0</u><br>0  | <u>50</u><br>50        | 63                | <u>50</u><br>50 | 130               |
| N-Nitroso-di-n-propylamine                           | <u>1</u><br>1        | 42.1098                          | <u>o</u>       | <u>50</u><br>50        | <u>83</u><br>84   | <u>30</u><br>40 | 130<br>130        |
| 3&4-Methylphenol                                     | 1                    | 76.6268                          | <u>ŏ</u>       | 100                    | 77                | <del>70</del>   | 130               |
| Nitrobenzene                                         | <u> </u>             | 42.4423                          | <u>o</u>       | 50                     | 85                | <del>70</del>   | 130               |
| Isophorone                                           | 1                    | 41.1362                          | <u>0</u>       | 50                     | <u>82</u>         | 60              | 130               |
| 2-Nitrophenol                                        | <u></u>              | 71.5407                          | <u>o</u>       | <u>100</u>             | <u>72</u>         | <u>70</u>       | 130               |
| 2,4-Dimethylphenol                                   | <u>1</u>             | 77.4908                          | <u>o</u>       | 100                    | <u>77</u>         | 40              | 130               |
| Benzoic Acid                                         | 1                    | 61.5026                          | 0              | 100                    | 62                | 20              | 130               |
| bis(2-Chloroethoxy)methane                           | 1                    | <u>43.8515</u>                   | Q              | <u>50</u>              | <u>88</u>         | <u>60</u>       | <u>130</u>        |
| 2,4-Dichlorophenol                                   | 1                    | <u>70.359</u>                    | <u>0</u>       | <u>100</u>             | <u>70</u>         | <u>70</u>       | <u>130</u>        |
| 1,2,4-Trichlorobenzene                               | 1                    | 38.6323                          | 0              | 50                     | 77<br>——          | 50              | 130               |
| Naphthalene                                          | 1                    | 38.4442                          | <u>0</u>       | <u>50</u>              | <u>77</u>         | <u>50</u>       | <u>130</u>        |
| 4-Chloroaniline                                      | 1                    | <u>23.8718</u><br><u>35.4718</u> | ō              | <u>50</u>              | <u>48</u>         | <u>10</u>       | 150               |
| <u>Hexachlorobutadiene</u><br>Caprolactam            | <u>1</u><br>1        | <u>35.4718</u><br><u>40.3373</u> | <u>0</u>       | <u>50</u><br>50        | <u>71</u><br>81   | <u>60</u><br>50 | <u>130</u><br>130 |
| 4-Chloro-3-methylphenol                              | 1 1                  | 71.0551                          | <u>0</u>       | <u>50</u><br>100       | <u>71</u>         | <u>50</u><br>50 | 130               |
| 2-Methylnaphthalene                                  | <u> </u>             | 37.5402                          | <u>o</u>       | <u>100</u><br>50       | <del>75</del>     | <u>50</u><br>70 | 130               |
| 1-Methylnaphthalene                                  | <u> </u>             | 41.7299                          | ŏ              | <u>50</u><br>50        | 83                | 70              | 130               |
| 1,1'-Bipheny!                                        | 1                    | 33.7939                          | <u>0</u>       | 50                     | <u>68</u>         | <u>60</u>       | 130               |
| 1,2,4,5-Tetrachlorobenzene                           | $\bar{1}$            | 39.0931                          | <u> </u>       | 50                     | <del>78</del>     | 70              | 130               |
| Hexachlorocyclopentadiene                            | 1                    | <u>0</u>                         | Q              | <u>50</u>              | <u></u>           | 20              | 160               |
| 2,4,6-Trichlorophenol                                | 1                    | <u>73.1778</u>                   | <u>0</u>       | <u>100</u>             | <u>73</u>         | <u>70</u>       | <u>130</u>        |
| 2,4,5-Trichlorophenol                                | 1                    | <u>76.1086</u>                   | <u>0</u>       | <u>100</u>             | <u>76</u>         | <u>70</u>       | <u>130</u>        |
| <u>2-Chloronaphthalene</u>                           | 1                    | <u>43.8318</u>                   | <u>o</u>       | <u>50</u>              | <u>88</u>         | <u>70</u>       | <u>130</u>        |
| 1,4-Dimethylnaphthalene                              | 1                    | 36.086                           | 0              | 50                     | 72                | 70              | 130               |
| Diphenyl Ether                                       | 1                    | 41.4878                          | 0              | 50<br>50               | 83                | 70              | 130               |
| 2-Nitroaniline                                       | <u>1</u><br>1        | <u>45.1187</u><br>37.9448        | <u>0</u>       | <u><b>50</b></u><br>50 | <u>90</u><br>76   | <u>50</u>       | 130<br>130        |
| Coumarin<br><u>Acenaphthylene</u>                    | 1                    | 37.9448<br>45.1583               | 0<br><u>0</u>  | 50<br><u>50</u>        | 76<br><b>90</b>   | 70<br><b>70</b> | 130<br>130        |
| <u>Acenaphthylene</u><br>Dimethylphthalate           | 1                    | 43.1968                          | <u>0</u>       | <u>50</u><br>50        | <u>90</u><br>86   | <u>70</u><br>70 | 130               |
| 2.6-Dinitrotoluene                                   | <u> </u>             | 44.6917                          | <u>0</u>       | <u>50</u>              | <u>89</u>         | <u>70</u>       | 130               |
| Acenaphthene                                         | <u> </u>             | 43.3758                          | <u>v</u>       | <u>50</u>              | <u>87</u>         | <u>50</u>       | 130               |
| 3-Nitroaniline                                       |                      | 35.0681                          | <u>0</u>       | <u>50</u>              | <del>70</del>     | <del>70</del>   | 130               |
| 2,4-Dinitrophenol                                    | <u>1</u><br><u>1</u> | 23.0472                          | Ō              | 100                    | 23                | <u>20</u>       | 150               |
| Dibenzofuran                                         | <u>1</u>             | 40.1191                          | <u> </u>       | 50                     | 80                | <del>70</del>   | 130               |
| 2,4-Dinitrotoluene                                   | 1                    | 43.9625                          | <u>o</u>       | <u>50</u>              | <u>88</u>         | <u>40</u>       | 130               |
| 4-Nitrophenol                                        | <u>1</u>             | 71.3957                          | Q              | 100                    | <u>71</u>         | <u>20</u>       | 150               |
| 2,3,4,6-Tetrachlorophenol                            | 1                    | <u>67.9045</u>                   | <u>o</u>       | <u>100</u>             | <u>68</u> *       | <u>70</u>       | <u>130</u>        |
| Fluorene                                             | 1                    | 44.0296                          | <u>0</u>       | <u>50</u>              | <u>88</u>         | <u>50</u>       | <u>130</u>        |
| 4-Chlorophenyl-phenylether                           | 1                    | <u>44.1141</u>                   | <u>0</u>       | <u>50</u>              | <u>88</u>         | <u>70</u>       | 130               |
| Diethylphthalate                                     | 1                    | 44.3062                          | <u>0</u>       | <u>50</u>              | <u>89</u>         | <u>70</u>       | 130               |
| 4-Nitroaniline                                       | 1                    | 40.3658                          | Ō              | <u>50</u>              | <u>81</u>         | <u>50</u>       | 130               |
| Atrazine 4.6 Dinitro 2 methylphenol                  | 1                    | 37.6435<br>35.1408               | <u>0</u>       | <u>50</u><br>100       | <u>75</u><br>35*  | <u>50</u>       | 130<br>130        |
| 4,6-Dinitro-2-methylphenol<br>n-Nitrosodiphenylamine | <u>1</u><br>1        | <u>35.1408</u><br>37.2313        | <u>0</u><br>0  | <u>100</u><br>50       | <u>35 *</u><br>74 | <u>40</u><br>50 | 130               |
|                                                      |                      |                                  |                | ··                     | method excee      |                 |                   |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits
Bold and underline - Indicates the compounds reported on form1

### Form3 Recovery Data Laboratory Limits QC Batch: SMB88132

| Method: 8270E               | Matrix           | :: Soil        |                      | Units: mg/K      | (g QC Ty               | pe: MSD        |                |
|-----------------------------|------------------|----------------|----------------------|------------------|------------------------|----------------|----------------|
| Analyte:                    | Col              | Spike<br>Conc  | Sample<br>Conc       | Expected<br>Conc | Recovery               | Lower<br>Limit | Upper<br>Limit |
| 1,2-Diphenylhydrazine       | 1                | 51.1776        | 0                    | 50               | 102                    | 70             | 130            |
| 4-Bromophenyl-phenylether   | <u>1</u>         | <u>43.6632</u> | <u>o</u>             | <u>50</u>        | <u>87</u>              | <u>70</u>      | <u>130</u>     |
| Hexachlorobenzene           | <u>1</u>         | <u>41.3089</u> | <u>0</u><br>0        | <u>50</u>        | <u>83</u>              | <u>70</u>      | <u>130</u>     |
| N-Octadecane                | 1                | 48.0089        | 0                    | 50               | 96                     | 70             | 130            |
| <u>Pentachlorophenol</u>    | <u>1</u>         | <u>71.3338</u> | <u>0</u>             | <u>100</u>       | <u>71</u>              | <u>40</u>      | <u>130</u>     |
| <u>Phenanthrene</u>         | 1                | 44.6643        | <u>0</u>             | <u>50</u>        | <u>89</u>              | <u>70</u>      | <u>130</u>     |
| Anthracene                  | <u>1</u>         | 43.5229        | <u>o</u>             | <u>50</u>        | 87                     | <u>70</u>      | 130            |
| Carbazole                   | 1<br>1<br>1      | 35.7121        | <u>0</u>             | <u>50</u>        | <u>71</u>              | <u>70</u>      | <u>130</u>     |
| Di-n-butylphthalate         | 1                | 45.6275        |                      | <u>50</u>        | <u>91</u>              | <u>70</u>      | 130            |
| Fluoranthene                |                  | 43.331         | <u>o</u><br>0        | <u>50</u>        | <u>87</u>              | <u>70</u>      | 130            |
| Pyrene                      | 1 1              | 49.0554        | <u> </u>             | <u>50</u>        | <u>98</u>              | <u>50</u>      | 130            |
| Benzidine                   | 1                | 0              | Ō                    | 50               | 0*                     | 1              | 130            |
| <u>Butylbenzylphthalate</u> | <u>1</u>         | <u>52.1399</u> | <u>0</u>             | <u>50</u>        | <u>104</u>             | <u>50</u>      | <u>130</u>     |
| 3,3'-Dichlorobenzidine      |                  | 36.026         | <u>o</u>             | <u>50</u>        | <u>72</u>              | <u>10</u>      | <u>130</u>     |
| Benzo[a]anthracene          | <u>1</u><br>1    | <u>41.4821</u> | <u>0</u><br><u>0</u> | <u>50</u>        | <u>72</u><br>83        | <u>70</u>      | <u>130</u>     |
| <u>Chrysene</u>             |                  | <u>39.0371</u> | <u>0</u><br><u>0</u> | <u>50</u>        | <u>78</u>              | <u>60</u>      | <u>130</u>     |
| bis(2-Ethylhexyl)phthalate  | <u>1</u>         | 52.0217        | <u>o</u>             | <u>50</u>        | 104                    | <u>70</u>      | 130            |
| Di-n-octylphthalate         | 1                | <u>52.9278</u> | <u>0</u>             | <u>50</u>        | <u>106</u>             | <u>70</u>      | <u>130</u>     |
| Benzo[b]fluoranthene        | 1<br>1<br>1<br>1 | <u>50.3211</u> | <u>0</u>             | <u>50</u>        | <u>101</u>             | <u>70</u>      | <u>130</u>     |
| Benzo[k]fluoranthene        | 1                | 45.23          | <u>o</u>             | <u>50</u>        | 90                     | <u>70</u>      | 130            |
| Benzo[a]pyrene              | <u>1</u>         | 46.5094        | <u>o</u>             | <u>50</u>        | 93                     | <u>70</u>      | 130            |
| Indeno[1,2,3-cd]pyrene      | <u>1</u>         | 46.6381        | 0                    | <u>50</u>        | 93                     | <u>70</u>      | 130            |
| Dibenzo[a,h]anthracene      | 1<br>1<br>1      | 46.3343        | <u>0</u>             | <u>50</u>        | <u>93</u><br><u>93</u> | <u>60</u>      | 130            |
| Benzo[g,h,i]perylene        | 1                | 44.7993        | Ō                    | <u>50</u>        | 90                     | 70             | 130            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

### Form3 **RPD Data Laboratory Limits**

QC Batch: SMB88132

Data File

Sample ID:

Analysis Date

Spike or Dup: 7M109912.D

Duplicate(If applicable): 7M109911.D

AD19562-006(MSD:AD19562-0

10/6/2020 8:42:00 PM AD19562-004(MS:AD19562-002 10/6/2020 8:18:00 PM

Inst Blank(If applicable):

Method: 8270E

Matrix: Soil

Units: mg/Kg

QC Type: MSD

| Analyte: Column Conc Conc RPD Limit Conc Conc Conc RPD Limit Conc Conc Conc RPD Limit Conc Conc Conc Conc RPD Limit Conc Conc Conc Conc RPD Limit Conc Conc Conc Conc RPD Limit Conc Conc Conc Conc Conc RPD Limit Conc Conc Conc Conc Conc Conc Conc Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method: 8270E                           | Matrix: Soil  | Units: mg/Kg                          |                | QC Type: MSD |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|---------------------------------------|----------------|--------------|-----------|--|
| Pyridine 1 21:1594 22:3741 7.8 30 N-Nirosodimethylamine 1 36:7461 36:875 0.35 30 Benzaldehyde 1 38.4419 40.8331 5 32 Aniline 1 19:6779 1.5219 171 30 Pentachloroethane 1 32:5201 35:5288 8.8 30 bis(2-Chloroethylether 1 42:571 43.0896 1.2 30 Pentachloroethylether 1 42:571 43.0896 1.2 30 Pentachloroethylether 1 42:571 43.0896 1.2 30 Pentachloroethylether 1 42:571 43.0896 1.2 30 Pentachloroethylether 1 72:724 73:6316 3.3 40 Pentachloroethylether 1 72:724 73:6316 3.3 40 Pentachloroethylether 1 72:7242 30:461 8.6 30 Pentachloroethylether 1 72:7292 30:461 8.6 30 Pentachloroethylether 1 34:0505 35:4379 4 30 1.3-Dichlorobenzene 1 35:574 35:2333 0.94 40 1.3-Dichlorobenzene 1 35:574 35:2333 0.94 40 1.2-Dichlorobenzene 1 35:574 35:2333 0.94 40 1.2-Dichlorobenzene 1 35:574 35:2333 0.94 40 1.2-Dichlorobenzene 1 35:574 35:2333 0.94 40 1.2-Dichlorobenzene 1 35:574 35:2333 0.94 40 Acetophenone 1 35:4384 40.9178 1.4 30 Dist(2-chloroisopropyllether 1 41.4884 40.9178 1.4 30 Acetophenone 1 39:7427 39:9559 0.56 30 Dist(2-chloroisopropyllether 1 41.4884 40.9178 1.4 30 Acetophenone 1 39:7427 39:9559 0.56 30 Heiszechloroethane 1 31:5209 31:8903 1.1 30 Heiszechloroethane 1 42:4098 71:5284 1.8 30 Heiszechloroethane 1 42:4098 71:5284 1.8 30 Dist(2-Chloroethoxylmethane 1 42:4098 71:5284 1.8 30 Dist(2-Chloroethoxylmethane 1 71:5407 71:9869 0.99 30 Dist(2-Chloroethoxylmethane 1 71:5407 71:9869 0.99 30 Dist(2-Chloroethoxylmethane 1 71:5407 71:9869 0.99 30 Dist(2-Chloroethoxylmethane 1 71:5407 71:9869 0.99 30 Dist(2-Chloroethoxylmethane 1 71:5407 71:9869 0.99 30 Dist(2-Chloroethoxylmethane 1 33:7399 1.5199 0.91 30 Dist(2-Chloroethoxylmethane 1 33:7399 1.519 0.91 30 Dist(2-Chloroethoxylmethane 1 33:7399 1.519 0.91 30 Dist(2-Chloroethoxylmethane 1 33:7399 1.519 0.91 30 Dist(2-Chloroethoxylmethane 1 33:7399 1.519 0.91 30 Dist(2-Chloroethoxylmethane 1 33:7399 1.519 0.91 30 Dist(2-Chloroethoxylmethane 1 33:7399 1.519 0.91 30 Dist(2-Chloroethoxylmethane 1 33:7399 1.519 0.91 30 Dist(2-Chloroethoxylmethane 1 34:43818 42:0134 4.2 30 Dillathylphthalate 1 |                                         |               | Dup/MSD/MBSD                          | Sample/MS/M    |              |           |  |
| N-Mirosodimethylamine 1 36.7461 36.875 0.35 30 Benzzaldehyde 1 38.4919 40.8931 6 30 Aniline 1 19.6779 1.5219 171* 30 Aniline 1 19.6779 1.5219 171* 30 Aniline 1 19.6779 1.5219 171* 30 Benzaldehyde 1 32.5201 35.5288 8.8 30 Benzaldehyde 1 42.571 43.8898 1.2 30 Phenol 1 71.2754 73.8318 3.3 40 Phenol 1 77.12798 75.9948 4 40 D-Cecane 1 27.9422 30.461 8.6 30 1.4-Dichlorobenzene 1 34.0505 35.4379 4 30 1.4-Dichlorobenzene 1 35.5674 35.2333 0.94 40 1.4-Dichlorobenzene 1 35.729 35.4288 0.84 30 Benzyl alcohol biel/2-chlorosporovilether 1 41.4884 40.9178 1.4 30 Benzyl alcohol biel/2-chlorosporovilether 1 38.4281 73.3382 0.4 40 Acetophenone 1 39.7427 39.9859 0.56 30 Hexachlorosethane 1 31.5209 31.8803 1.1 30 Hexachlorosethane 1 31.5209 31.8803 1.1 30 Hexachlorosethane 1 31.5209 31.8803 1.1 30 Hexachlorosethane 1 42.1098 41.6008 1.2 40 Asetophenone 1 42.1098 41.6008 1.2 40 Asetophenone 1 42.1098 41.6008 1.2 40 Asetophenone 1 42.1098 41.6008 1.2 40 Asetophenone 1 42.1098 41.6008 1.2 40 Asetophenone 1 42.1098 41.6008 1.2 40 Asetophenone 1 41.1362 40.4114 1.8 30 Anitrobenzene 1 41.1362 40.4114 1.8 30 Anitrobenzene 1 41.1362 40.4114 1.8 30 Anitrobenzene 1 41.1362 40.4114 1.8 30 Anitrobenzene 1 77.4908 76.576 1.4 40 Benzolc Acid bies Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and Accidente and  | Analyte:                                | Column        | Conc                                  | Conc           | RPD          | Limit     |  |
| Benzaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pyridine                                |               | 21.1594                               |                |              |           |  |
| Aniline   1   19.6779   1.5219   171   30   Pentachloroethane   1   32.5201   35.5288   8.8   30   Dist(2-Chloroethyl)ether   1   42.571   43.0896   1.2   30   Phenol   1   71.2754   73.8316   3.3   40   Phenol   1   71.2754   73.8316   3.3   40   Phenol   1   72.1208   75.0248   4   40   Phenol   1   72.1208   75.0248   4   40   Phenol   1   72.1208   75.0248   4   40   Phenol   1   73.5316   3.3   40   Phenol   1   73.532   30.461   8.6   30   Phenol   1   73.532   30.461   8.6   30   Phenol   1   73.532   30.461   8.6   30   Phenol   1   75.729   53.4288   0.84   40   Phenol   1   75.729   53.4288   0.84   40   Phenol   1   75.729   53.4288   0.84   40   Phenol   1   73.534   73.3382   0.4   40   Phenol   1   73.534   73.3382   0.4   40   Phenol   1   73.534   73.3382   0.4   40   Phenol   1   73.534   73.3382   0.4   40   Phenol   1   73.534   73.3382   0.5   40   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   1.1   30   Phenol   1   73.529   31.8803   31   30   Phenol   1   73.529   31.8803   31   30   Phenol   1   73.529   31.8803   31   30   Phenol   1   73.529   31.8803   31   30   Phenol   1   73.529   31.8803   31   30   Phenol    | N-Nitrosodimethylamine                  | 1             | 36.7461                               | 36.875         | 0.35         | 30        |  |
| Pentachrorethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Benzaldehyde                            | <u>1</u>      | <u>38.4919</u>                        |                |              |           |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 1             | 19.6779                               | 1.5219         | 171*         | 30        |  |
| Preno    1   71,2754   73,6316   3.3   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pentachloroethane                       | 1             | 32.5201                               | 35.5288        | 8.8          | 30        |  |
| Preno    1   71,2754   73,6316   3.3   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ois(2-Chloroethyl)ether                 | 1             | 42.571                                | 43.0896        | <u>1.2</u>   | <u>30</u> |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | <u> </u>      | 71.2754                               | 73.6316        | 3.3          |           |  |
| N-Decane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | <u>1</u>      |                                       |                |              |           |  |
| A-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 1             |                                       |                |              |           |  |
| 1.4-Dichlorobenzene    1   35.5674   35.2333   0.94   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 1             |                                       | 35,4379        | 4            | 30        |  |
| 2.Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • • • • • • • • • • • • • • • • • • • • |               |                                       |                | 0.94         |           |  |
| Senzyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                       |               |                                       |                |              | -         |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                       |               |                                       |                |              |           |  |
| 2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                       |               |                                       |                |              |           |  |
| Acetophenone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | <u> </u>      |                                       |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | <u> </u>      |                                       |                |              |           |  |
| N-Nitroso-din-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | <u> </u>      |                                       |                |              |           |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 1             |                                       |                |              |           |  |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 1             |                                       |                |              |           |  |
| Sophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 1             |                                       |                |              |           |  |
| 2.4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 1             |                                       |                |              |           |  |
| 2.4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 1             |                                       |                |              |           |  |
| Senzoic Acid   1   61.5026   50.8458   19   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 1             |                                       |                |              |           |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |               |                                       |                |              |           |  |
| 2.4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |               |                                       |                |              |           |  |
| 1   38.6323   38.4523   0.47   40   Naphthalene   1   38.4442   37.9852   1.2   40   40   Chloroaniline   1   23.8718   18.6172   25   30   18.40172   25   30   18.40172   25   30   18.40172   25   30   18.40172   25   30   18.40172   25   30   18.40172   25   30   18.40172   25   30   18.40172   35   35.1499   0.91   30   23.40184   1.2   40   40.3373   42.049   4.2   30   40.40190   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.2   30   4.3   30   4.3   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   30   4.4   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2   4.2    | ois(2-Chloroethoxy)methane              | 1             | <u>43.8515</u>                        | 42.7739        | <u>2.5</u>   | <u>30</u> |  |
| Alaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,4-Dichlorophenol                      | <u>1</u>      | <u>70.359</u>                         | <u>70.7819</u> | <u>0.6</u>   | <u>30</u> |  |
| Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,2,4-Trichlorobenzene                  |               | 38.6323                               | 38.4523        | 0.47         | 40        |  |
| Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Naphthalene                             | <u>1</u>      | <u>38.4442</u>                        | <u>37.9852</u> | <u>1.2</u>   | <u>40</u> |  |
| Acces   1   35.4718   35.1499   0.91   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l-Chloroaniline                         | <u>1</u>      | <u>23.8718</u>                        | <u>18.6172</u> | <u>25</u>    | <u>30</u> |  |
| Caprolactam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lexachlorobutadiene                     | 1             | 35.4718                               | 35.1499        | 0.91         |           |  |
| 1   1.0551   70.1841   1.2   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1             |                                       |                |              |           |  |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | <u>-</u> 1    |                                       |                |              |           |  |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 1             | · · · · · · · · · · · · · · · · · · · |                |              |           |  |
| 1.1'-Biphenyl       1       33.7939       33.1605       1.9       30         1.2.4.5-Tetrachlorobenzene       1       39.0931       38.9158       0.45       30         Hexachlorocyclopentadiene       1       0       0       NA       30         2.4.6-Trichlorophenol       1       73.1778       72.5256       0.9       30         2.4.5-Trichlorophenol       1       75.1086       75.8462       0.35       30         2.4.5-Trichlorophenol       1       43.8318       42.0134       4.2       30         2.4.5-Trichlorophenol       1       36.086       36.2316       0.4       30         2.4.5-Initrophichlalene       1       36.086       36.2316       0.4       30         Diphenyl Ether       1       41.4878       41.0301       1.1       30         2.Nitroanilline       1       45.1187       44.5786       1.2       30         Acenaphthylene       1       45.1583       43.1541       4.5       30         Dimethylphthalate       1       43.9688       41.7784       3.3       30         Acenaphthene       1       44.6917       42.8226       4.3       30         Acenaphthene       1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |               |                                       |                |              |           |  |
| 1,2,4,5-Tetrachlorobenzene         1         39.0931         38.9158         0.45         30           Hexachlorocyclopentadiene         1         0         0         NA         30           2,4,5-Trichlorophenol         1         73.1778         72.5256         0,9         30           2,4,5-Trichlorophenol         1         76.1086         75.8462         0.35         30           2,-Chloronaphthalene         1         43.8318         42.0134         4.2         30           1, 4-Dimethylnaphthalene         1         36.086         36.2316         0.4         30           Diphenyl Ether         1         41.4878         41.0301         1.1         30           2-Nitroaniline         1         45.1187         44.5786         1.2         30           Coumarin         1         37.9448         38.0624         0.31         30           Acenaphthylene         1         45.1583         43.1541         4.5         30           Dimethylphthalate         1         43.9688         41.7784         3.3         30           2.6-Dinitrotoluene         1         43.3758         42.1443         2.9         40           3-Nitroaniline         1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |               |                                       |                |              |           |  |
| 2-Chloronaphthalene         1         43.8318         42.0134         4.2         30           1,4-Dimethylnaphthalene         1         36.086         36.2316         0.4         30           Diphenyl Ether         1         41.4878         41.0301         1.1         30           2-Nitroaniline         1         45.1187         44.5786         1.2         30           Coumarin         1         37.9448         38.0624         0.31         30           Acenaphthylene         1         45.1583         43.1541         4.5         30           Dimethylphthalate         1         43.1968         41.7784         3.3         30           2,6-Dinitrotoluene         1         44.6917         42.8226         4.3         30           Acenaphthene         1         43.3758         42.1443         2.9         40           3-Nitroaniline         1         35.0681         31.7996         9.8         30           2,4-Dinitrotohenol         1         23.0472         19.8407         15         30           Dibenzofuran         1         40.1191         39.0638         2.7         30           2,4-Dinitrotoluene         1         43.9625         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |               | · · · · · · · · · · · · · · · · · · · |                |              |           |  |
| 2-Chloronaphthalene         1         43.8318         42.0134         4.2         30           1,4-Dimethylnaphthalene         1         36.086         36.2316         0.4         30           Diphenyl Ether         1         41.4878         41.0301         1.1         30           2-Nitroaniline         1         45.1187         44.5786         1.2         30           Coumarin         1         37.9448         38.0624         0.31         30           Acenaphthylene         1         45.1583         43.1541         4.5         30           Dimethylphthalate         1         43.1968         41.7784         3.3         30           2.6-Dinitrotoluene         1         44.6917         42.8226         4.3         30           Acenaphthene         1         43.3758         42.1443         2.9         40           3-Nitroaniline         1         35.0681         31.7996         9.8         30           2,4-Dinitrophenol         1         23.0472         19.8407         15         30           Dibenzofuran         1         40.1191         39.0638         2.7         30           2,4-Dinitrotoluene         1         43.9625 <t< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 1             |                                       |                |              |           |  |
| 2-Chloronaphthalene         1         43.8318         42.0134         4.2         30           1,4-Dimethylnaphthalene         1         36.086         36.2316         0.4         30           Diphenyl Ether         1         41.4878         41.0301         1.1         30           2-Nitroaniline         1         45.1187         44.5786         1.2         30           Coumarin         1         37.9448         38.0624         0.31         30           Acenaphthylene         1         45.1583         43.1541         4.5         30           Dimethylphthalate         1         43.1968         41.7784         3.3         30           2.6-Dinitrotoluene         1         44.6917         42.8226         4.3         30           Acenaphthene         1         43.3758         42.1443         2.9         40           3-Nitroaniline         1         35.0681         31.7996         9.8         30           2,4-Dinitrothylphenol         1         23.0472         19.8407         15         30           Dibenzofuran         1         40.1191         39.0638         2.7         30           2,4-Dinitrotoluene         1         43.9625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | <u> </u>      | _                                     |                |              |           |  |
| 2-Chloronaphthalene         1         43.8318         42.0134         4.2         30           1,4-Dimethylnaphthalene         1         36.086         36.2316         0.4         30           Diphenyl Ether         1         41.4878         41.0301         1.1         30           2-Nitroaniline         1         45.1187         44.5786         1.2         30           Coumarin         1         37.9448         38.0624         0.31         30           Acenaphthylene         1         45.1583         43.1541         4.5         30           Dimethylphthalate         1         43.1968         41.7784         3.3         30           2,6-Dinitrotoluene         1         44.6917         42.8226         4.3         30           Acenaphthene         1         43.3758         42.1443         2.9         40           3-Nitroaniline         1         35.0681         31.7996         9.8         30           2,4-Dinitrotohenol         1         23.0472         19.8407         15         30           Dibenzofuran         1         40.1191         39.0638         2.7         30           2,4-Dinitrotoluene         1         43.9625         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | <u>+</u>      |                                       |                |              |           |  |
| 1,4-Dimethylnaphthalene       1       36.086       36.2316       0.4       30         Diphenyl Ether       1       41.4878       41.0301       1.1       30         2-Nitroaniline       1       45.1187       44.5786       1.2       30         Coumarin       1       37.9448       38.0624       0.31       30         Acenaphthylene       1       45.1583       43.1541       4.5       30         Dimethylphthalate       1       43.1968       41.7784       3.3       30         2,6-Dinitrotoluene       1       44.6917       42.8226       4.3       30         Acenaphthene       1       43.3758       42.1443       2.9       40         3-Nitroaniline       1       35.0681       31.7996       9.8       30         2,4-Dinitrophenol       1       23.0472       19.8407       15       30         Dibenzofuran       1       40.1191       39.0638       2.7       30         2,4-Dinitrotoluene       1       43.9625       41.9356       4.7       40         4-Nitrophenol       1       71.3957       72.1157       1       40         2,3.4,6-Tetrachlorophenol       1       67.9045 <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | <u> </u>      |                                       |                |              |           |  |
| Diphenyl Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |               |                                       |                |              |           |  |
| 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |               |                                       |                |              |           |  |
| Coumarin         1         37.9448         38.0624         0.31         30           Acenaphthylene         1         45.1583         43.1541         4.5         30           Dimethylphthalate         1         43.1968         41.7784         3.3         30           2.6-Dinitrotoluene         1         44.6917         42.8226         4.3         30           Acenaphthene         1         43.3758         42.1443         2.9         40           3-Nitroaniline         1         35.0681         31.7996         9.8         30           2.4-Dinitrophenol         1         23.0472         19.8407         15         30           Dibenzofuran         1         40.1191         39.638         2.7         30           2.4-Dinitrotoluene         1         43.9625         41.9356         4.7         40           4-Nitrophenol         1         71.3957         72.1157         1         40           2.3.4.6-Tetrachlorophenol         1         66.4552         2.2         30           4-Chlorophenyl-phenylether         1         44.0296         42.8903         2.6         40           4-Chlorophenyl-phenylether         1         44.3062         42.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |               |                                       |                |              | -         |  |
| Acenaphthylene       1       45.1583       43.1541       4.5       30         Dimethylphthalate       1       43.1968       41.7784       3.3       30         2,6-Dinitrotoluene       1       44.6917       42.8226       4.3       30         Acenaphthene       1       43.3758       42.1443       2.9       40         3-Nitroaniline       1       35.0681       31.7996       9.8       30         2,4-Dinitrophenol       1       23.0472       19.8407       15       30         Dibenzofuran       1       40.1191       39.0638       2.7       30         2,4-Dinitrotoluene       1       43.9625       41.9356       4.7       40         4-Nitrophenol       1       71.3957       72.1157       1       40         2,3,4,6-Tetrachlorophenol       1       67.9045       66.4552       2.2       30         4-Chlorophenyl-phenylether       1       44.0296       42.8903       2.6       40         4-Chlorophenyl-phenylether       1       44.3062       42.7166       3.6       30         4-Nitroaniline       1       40.3658       38.5286       4.7       30         Atrazine       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1             |                                       |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                                       |               |                                       |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1             |                                       |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1             |                                       |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                             | <u>1</u>      |                                       |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1             |                                       |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | <u>1</u>      |                                       |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,4-Dinitrophenol                       | <u>1</u>      | <u>23.0472</u>                        | <u>19.8407</u> |              | <u>30</u> |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1             | <u>40.1191</u>                        | <u>39.0638</u> |              | <u>30</u> |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,4-Dinitrotoluene                      | <u>1</u>      | <u>43.9625</u>                        | 41.9356        | <u>4.7</u>   |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | <u>1</u>      |                                       |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | ĩ             |                                       |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1             |                                       |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1             |                                       |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | <u>.</u><br>1 |                                       |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |                                       |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I-Nitroaniline                          | 1             |                                       | 38.5286        | 4.7          | 30        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1 1           | <u>40.3658</u>                        |                |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Atrazine                                | 1 1           | <u>40.3658</u><br><u>37.6435</u>      | 38.0617        | <u>1.1</u>   | <u>30</u> |  |

<sup>\* -</sup> Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

### Form3 RPD Data Laboratory Limits QC Batch: SMB88132

| Method: 8270E               | Matrix: Soil | Units:         | mg/Kg          | QC Type: MSE | )                      |
|-----------------------------|--------------|----------------|----------------|--------------|------------------------|
|                             | <del></del>  | Dup/MSD/MBSD   | Sample/MS/ME   | <br>BS       |                        |
| Analyte:                    | Column       | Conc           | Conc           | RPD          | Limit                  |
| 1,2-Diphenylhydrazine       | 1            | 51.1776        | 50.2523        | 1.8          | 30                     |
| 4-Bromophenyi-phenylether   | <u>1</u>     | <u>43.6632</u> | <u>42.4892</u> | <u>2.7</u>   | <u>30</u>              |
| <u>Hexachlorobenzene</u>    | 1            | <u>41.3089</u> | <u>40.1565</u> | <u>2.8</u>   | <u>30</u><br>30        |
| N-Octadecane                | 1            | 48.0089        | 49.3111        | 2.7          | 30                     |
| Pentachlorophenol           | <u>1</u>     | <u>71.3338</u> | <u>71.3457</u> | <u>0.02</u>  | <u>40</u>              |
| Phenanthrene                | 1            | <u>44.6643</u> | 47.5828        | <u>6.3</u>   | <u>30</u>              |
| Anthracene                  | <u>1</u>     | 43.5229        | 43.9529        | 0.98         | 30                     |
| <u>Carbazole</u>            | <u>1</u>     | 35.7121        | 36.4639        | 2.1          | 30                     |
| Di-n-butylphthalate         | <u>1</u>     | <u>45.6275</u> | <u>45.8245</u> | <u>0.43</u>  | 30<br>30<br>30         |
| Fluoranthene                | <u>1</u>     | 43.331         | 49.7557        | 14           | 30                     |
| Pyrene                      | <u>1</u>     | 49.0554        | 55.3869        | 12           | 40                     |
| Benzidine                   | 1            | 0              | 0              | NA           | 30                     |
| Butylbenzylphthalate        | <u>1</u>     | <u>52.1399</u> | <u>51.0076</u> | <u>2.2</u>   | <u>40</u>              |
| 3,3'-Dichlorobenzidine      | <u>1</u>     | <u>36.026</u>  | <u>31.7695</u> | <u>13</u>    | <u>30</u>              |
| <u>Benzo[a]anthracene</u>   | 1            | <u>41.4821</u> | 45.8941        | <u>10</u>    | <u>30</u><br><u>30</u> |
| <u>Chrysene</u>             | <u>1</u>     | <u>39.0371</u> | <u>42.2928</u> | <u>8</u>     | <u>30</u>              |
| bis(2-Ethylhexyl)phthalate  | <u>1</u>     | <u>52.0217</u> | <u>51.2163</u> | <u>1.6</u>   | <u>30</u>              |
| <u>Di-n-octylphthalate</u>  | <u>1</u>     | <u>52.9278</u> | <u>52.9673</u> | <u>0.07</u>  | <u>30</u><br><u>30</u> |
| <u>Benzo[b]fluoranthene</u> | <u>1</u>     | <u>50.3211</u> | <u>55.5178</u> | <u>9.8</u>   | <u>30</u>              |
| Benzo[k]fluoranthene        | <u>1</u>     | <u>45.23</u>   | 59.2585        | <u>27</u>    | <u>30</u>              |
| <u>Benzo[a]pyrene</u>       | <u>1</u>     | <u>46.5094</u> | 49.6008        | <u>6.4</u>   | 30<br>30               |
| ndeno[1,2,3-cd]pyrene       | <u>1</u>     | <u>46.6381</u> | 48.0288        | 2.9          | <u>30</u>              |
| Dibenzo[a,h]anthracene      | <u>1</u>     | 46.3343        | 47.7943        | <u>3.1</u>   | 30                     |
| Benzo[g,h,i]perylene        | <u>1</u>     | 44.7993        | 46.399         | 3.5          | <u>30</u><br><u>30</u> |

### FORM 4 Blank Summary

Blank Number: SMB88132 Blank Data File: 9M101549.D

Matrix: Soil

Blank Analysis Date: 10/06/20 12:34

Blank Extraction Date: 10/06/20

(If Applicable)

Method: EPA 8270E

| Sample Number   | Data File  | Analysis Date  |  |
|-----------------|------------|----------------|--|
| AD19595-004     | 7M109909.D | 10/06/20 19:31 |  |
| AD19595-009     | 9M101551.D | 10/06/20 13:22 |  |
| SMB88132(MS)    | 9M101548.D | 10/06/20 12:11 |  |
| AD19562-006(MSD | 7M109912.D | 10/06/20 20:42 |  |
| AD19562-004(MS: | 7M109911.D | 10/06/20 20:18 |  |
| AD19562-002     | 7M109910.D | 10/06/20 19:55 |  |

### Form 5

Tune Name: CAL DFTPP **Data File:** 7M109431.D Instrument: GCMS 7 Analysis Date: 09/17/20 09:43
Method: EPA 8270E
Tune Scan/Time Range: Average of 10, 108 to 10, 108 min

| Tune Scall/ Time Range: Average of 10,100 to 10,100 filli |      |      |        |       |        |       |  |  |  |  |  |
|-----------------------------------------------------------|------|------|--------|-------|--------|-------|--|--|--|--|--|
| Tgt                                                       | Rel  | Lo H | li Lim | Rel   | Raw    | Pass/ |  |  |  |  |  |
| Mass                                                      | Mass | Lim  |        | Abund | Abund  | Fail  |  |  |  |  |  |
| 51                                                        | 198  | 30   | 60     | 35.1  | 42072  | PASS  |  |  |  |  |  |
| 68                                                        | 69   | 0.00 | 2      | 0.0   | 0      | PASS  |  |  |  |  |  |
| 69                                                        | 198  | 0.00 | 100    | 45.6  | 54704  | PASS  |  |  |  |  |  |
| 70                                                        | 69   | 0.00 | 2      | 0.7   | 373    | PASS  |  |  |  |  |  |
| 127                                                       | 198  | 40   | 60     | 53.1  | 63672  | PASS  |  |  |  |  |  |
| 197                                                       | 198  | 0.00 | 1      | 0.0   | 0      | PASS  |  |  |  |  |  |
| 198                                                       | 198  | 100  | 100    | 100.0 | 120000 | PASS  |  |  |  |  |  |
| 199                                                       | 198  | 5    | 9      | 6.8   | 8197   | PASS  |  |  |  |  |  |
| 275                                                       | 198  | 10   | 30     | 20.8  | 24936  | PASS  |  |  |  |  |  |
| 365                                                       | 198  | 1    | 100    | 2.2   | 2683   | PASS  |  |  |  |  |  |
| 441                                                       | 443  | 0.01 | 100    | 72.0  | 7872   | PASS  |  |  |  |  |  |
| 442                                                       | 198  | 40   | 100    | 47.1  | 56488  | PASS  |  |  |  |  |  |
| 443                                                       | 442  | 17   | 23     | 19.3  | 10930  | PASS  |  |  |  |  |  |

| Data File  | Sample Number | Analysis Date: |
|------------|---------------|----------------|
| 7M109432.D | CAL BNA@2PPM  | 09/17/20 10:08 |
| 7M109433.D | CAL BNA@10PPM | 09/17/20 10:32 |
| 7M109434.D | CAL BNA@196PP | 09/17/20 10:55 |
| 7M109435.D | CAL BNA@160PP | 09/17/20 11:22 |
| 7M109436.D | CAL BNA@120PP | 09/17/20 11:46 |
| 7M109437.D | CAL BNA@80PPM | 09/17/20 12:09 |
| 7M109438.D | CAL BNA@20PPM | 09/17/20 12:33 |
| 7M109439.D | CAL BNA@0.5PP | 09/17/20 12:57 |
| 7M109440.D | CAL BNA@50PPM | 09/17/20 13:20 |
| 7M109441.D | ICV BNA@50PPM | 09/17/20 13:44 |

Data Path : G:\GcMsData\2020\GCMS\_7\Data\09-17-20\

Data File: 7M109431.D

Acq On : 17 Sep 2020 9:43

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_7\METHODQT\7M\_EVALN.M

Title : @GCMS\_7

Last Update : Thu Sep 10 08:21:04 2020



Spectrum Information: Average of 10.108 to 10.108 min.

|   | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |     |
|---|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|-----|
| - | 51             | 198             | 30              | 60              | 35.1         | 42072      | l pass              | Ī   |
| İ | 68             | 69              | 0.00            | 2               | 0.0          | i o        | PASS                | İ   |
| ١ | 69             | 198             | 0.00            | 100             | 45.6         | 54704      | PASS                |     |
| İ | 70             | 69              | 0.00            | 2               | 0.7          | 373        | PASS                |     |
|   | 127            | 198             | 40              | 60              | 53.1         | 63672      | PASS                | İ   |
| - | 197            | 198             | 0.00            | 1               | 0.0          | j o        | PASS                |     |
|   | 198            | 198             | 100             | 100             | 100.0        | 120000     | PASS                |     |
| Ì | 199            | 198             | 5               | 9               | 6.8          | 8197       | PASS                |     |
|   | 275            | 198             | 10              | 30              | 20.8         | 24936      | PASS                | i   |
|   | 365            | 198             | j 1             | 100             | 2.2          | 2683       | PASS                | İ   |
| - | 441            | 443             | 0.01            | 100             | 72.0         | 7872       | PASS                | Ì   |
| İ | 442            | 198             | 40              | 100             | 47.1         | 56488      | PASS                | İ   |
| ı | 443            | 442             | 17              | 23              | 19.3         | 10930      | PASS                | 1 2 |
| _ |                |                 | ·<br>           |                 |              |            | '<br>               | ; L |

### Form 5

Tune Name: CAL DFTPP

**Data File:** 9M101312.D

Instrument: GCMS 9 Analysis Date: 09/17/20 09:43
Method: EPA 8270E
Tune Scan/Time Range: Average of 10.107 to 10.107 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw    | Pass/ |
|------|------|------|-------|-------|--------|-------|
| Mass | Mass | Lim  |       | Abund | Abund  | Fail  |
| 51   | 198  | 30   | 60    | 34.3  | 42992  | PASS  |
| 68   | 69   | 0.00 | 2     | 0.0   | 0      | PASS  |
| 69   | 198  | 0.00 | 100   | 38.1  | 47736  | PASS  |
| 70   | 69   | 0.00 | 2     | 0.4   | 213    | PASS  |
| 127  | 198  | 40   | 60    | 50.6  | 63424  | PASS  |
| 197  | 198  | 0.00 | 1     | 0.0   | 0      | PASS  |
| 198  | 198  | 100  | 100   | 100.0 | 125368 | PASS  |
| 199  | 198  | 5    | 9     | 6.6   | 8281   | PASS  |
| 275  | 198  | 10   | 30    | 23.1  | 28904  | PASS  |
| 365  | 198  | 1    | 100   | 2.9   | 3594   | PASS  |
| 441  | 443  | 0.01 | 100   | 85.2  | 12575  | PASS  |
| 442  | 198  | 40   | 100   | 59.7  | 74840  | PASS  |
| 443  | 442  | 17   | 23    | 19.7  | 14757  | PASS  |

| Data File  | Sample Number | Analysis Date: |
|------------|---------------|----------------|
| 9M101313.D | CAL BNA@10PPM | 09/17/20 10:10 |
| 9M101314.D | CAL BNA@2PPM  | 09/17/20 10:34 |
| 9M101315.D | CAL BNA@196PP | 09/17/20 11:00 |
| 9M101316.D | CAL BNA@160PP | 09/17/20 11:24 |
| 9M101317.D | CAL BNA@120PP | 09/17/20 11:47 |
| 9M101318.D | CAL BNA@80PPM | 09/17/20 12:12 |
| 9M101319.D | CAL BNA@20PPM | 09/17/20 12:35 |
| 9M101320.D | CAL BNA@0.5PP | 09/17/20 12:58 |
| 9M101321.D | CAL BNA@50PPM | 09/17/20 13:22 |
| 9M101322.D | ICV BNA@50PPM | 09/17/20 13:47 |
| 9M101323.D | SMB88017      | 09/17/20 14:11 |
| 9M101324.D | SMB88018      | 09/17/20 14:34 |
| 9M101326.D | 88018         | 09/17/20 15:48 |

Data Path : G:\GcMsData\2020\GCMS\_9\Data\09-17-20\

Data File: 9M101312.D

Acq On : 17 Sep 2020 9:43

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autointl.e

Method : G:\GCMSDATA\2020\GCMS\_9\METHODQT\9M\_EVALN.M

Title : @GCMS\_9

Last Update : Tue Sep 15 10:50:50 2020



Spectrum Information: Average of 10.107 to 10.107 min.

|   | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result  <br>  Pass/Fail |
|---|----------------|-----------------|-----------------|-----------------|--------------|------------|-------------------------|
| Ī | 51             | 198             | 30              | 60              | 34.3         | 42992      | l PASS                  |
| 1 | 68             | 69              | 0.00            | 2               | 0.0          | 0          | PASS                    |
| i | 69             | 198             | 0.00            | 100             | 38.1         | 47736      | PASS                    |
|   | 70             | 69              | 0.00            | 2               | 0.4          | 213        | PASS                    |
| İ | 127            | 198             | 40              | 60              | 50.6         | 63424      | PASS                    |
|   | 197            | 198             | 0.00            | 1               | 0.0          | 0          | PASS                    |
| - | 198            | 198             | 100             | 100             | 100.0        | 125368     | PASS                    |
| İ | 199            | 198             | 5               | 9               | 6.6          | 8281       | PASS                    |
| - | 275            | 198             | 10              | 30              | 23.1         | 28904      | PASS                    |
| Ì | 365            | 198             | 1               | 100             | 2.9          | 3594       | PASS                    |
| İ | 441            | 443             | 0.01            | 100             | 85.2         | 12575      | PASS                    |
| İ | 442            | 198             | 40              | 100             | 59.7         | 74840      | PASS                    |
| İ | 443            | 442             | 17              | 23              | 19.7         | 14757      | PASS                    |



### Form 5

Tune Name: CAL DFTPP **Data File: 9M101544.D** Instrument: GCMS 9 Analysis Date: 10/06/20 08:03
Method: EPA 8270E
Tune Scan/Time Range: Average of 10.095 to 10.113 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw   | Pass/ |
|------|------|------|-------|-------|-------|-------|
| Mass | Mass | Lim  |       | Abund | Abund | Fail  |
| 51   | 198  | 30   | 60    | 31.6  | 22462 | PASS  |
| 68   | 69   | 0.00 | 2     | 0.0   | 0     | PASS  |
| 69   | 198  | 0.00 | 100   | 34.9  | 24835 | PASS  |
| 70   | 69   | 0.00 | 2     | 0.4   | 95    | PASS  |
| 127  | 198  | 40   | 60    | 48.4  | 34436 | PASS  |
| 197  | 198  | 0.00 | 1     | 0.0   | 0     | PASS  |
| 198  | 198  | 100  | 100   | 100.0 | 71194 | PASS  |
| 199  | 198  | 5    | 9     | 6.7   | 4781  | PASS  |
| 275  | 198  | 10   | 30    | 26.1  | 18549 | PASS  |
| 365  | 198  | 1    | 100   | 3.1   | 2237  | PASS  |
| 441  | 443  | 0.01 | 100   | 87.5  | 10723 | PASS  |
| 442  | 198  | 40   | 100   | 89.2  | 63514 | PASS  |
| 443  | 442  | 17   | 23    | 19.3  | 12261 | PASS  |

| Data File  | Sample Number   | Analysis Date: |
|------------|-----------------|----------------|
| 9M101545.D | CAL BNA@50PPM   | 10/06/20 08:27 |
| 9M101546.D | OMB88168(MS)    | 10/06/20 11:24 |
| 9M101547.D | OMB88168        | 10/06/20 11:47 |
| 9M101548.D | SMB88132(MS)    | 10/06/20 12:11 |
| 9M101549.D | SMB88132        | 10/06/20 12:34 |
| 9M101550.D | AD19539-011     | 10/06/20 12:59 |
| 9M101551.D | AD19595-009     | 10/06/20 13:22 |
| 9M101552.D | SMB88133        | 10/06/20 13:45 |
| 9M101553.D | SMB88133(MS)    | 10/06/20 14:09 |
| 9M101554.D | SMB88095(MS)    | 10/06/20 14:32 |
| 9M101555.D | SMB88095        | 10/06/20 14:56 |
| 9M101556.D | AD19501-003(MS) | 10/06/20 15:19 |
| 9M101557.D | AD19501-003(MSD | 10/06/20 15:42 |

Data Path: G:\GcMsData\2020\GCMS 9\Data\10-06-20\

Data File: 9M101544.D

Acq On : 6 Oct 2020 8:03

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_9\METHODQT\9M\_EVALN.M

Title : @GCMS\_9

Last Update : Tue Sep 15 10:50:50 2020



Spectrum Information: Average of 10.095 to 10.113 min.

|     | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |       |
|-----|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|-------|
| Ī   | 51             | 198             | 30              | 60              | 31.6         | 22462      | PASS                | -<br> |
| - 1 | 68             | 69              | 0.00            | 2               | 0.0          | 0          | PASS                |       |
| İ   | 69             | 198             | 0.00            | 100             | 34.9         | 24835      | PASS                |       |
| - 1 | 70             | 69              | 0.00            | 2               | 0.4          | 95         | PASS                |       |
| - 1 | 127            | 198             | 40              | 60              | 48.4         | 34436      | PASS                | İ     |
| İ   | 197            | 198             | 0.00            | 1               | 0.0          | 0          | PASS                |       |
|     | 198            | 198             | 100             | 100             | 100.0        | 71194      | PASS                |       |
|     | 199            | 198             | 5               | 9               | 6.7          | 4781       | PASS                |       |
| ı   | 275            | 198             | 10              | 30              | 26.1         | 18549      | PASS                |       |
|     | 365            | 198             | 1               | 100             | 3.1          | 2237       | PASS                | l     |
|     | 441            | 443             | 0.01            | 100             | 87.5         | 10723      | PASS                | İ     |
| - 1 | 442            | 198             | 40              | 100             | 89.2         | 63514      | PASS                |       |
| İ   | 443            | 442             | 17              | 23              | 19.3         | 12261      | PASS                | 1     |

### Form 5

Tune Name: CAL DFTPP Data File: 7M109897.D Instrument: GCMS 7 Analysis Date: 10/06/20 14:33
Method: EPA 8270E
Tune Scan/Time Range: Average of 10.108 to 10.114 min

| Tgt  | Rel  | Lo H  | i Lim | Rel   | Raw    | Pass/ |
|------|------|-------|-------|-------|--------|-------|
| Mass | Mass | _Lim_ |       | Abund | Abund  | Fail  |
| 51   | 198  | 30    | 60    | 32.9  | 61300  | PASS  |
| 68   | 69   | 0.00  | 2     | 0.0   | 0      | PASS  |
| 69   | 198  | 0.00  | 100   | 42.4  | 78872  | PASS  |
| 70   | 69   | 0.00  | 2     | 0.7   | 527    | PASS  |
| 127  | 198  | 40    | 60    | 50.4  | 93736  | PASS  |
| 197  | 198  | 0.00  | 1     | 0.0   | 0      | PASS  |
| 198  | 198  | 100   | 100   | 100.0 | 186048 | PASS  |
| 199  | 198  | 5     | 9     | 6.9   | 12813  | PASS  |
| 275  | 198  | 10    | 30    | 24.5  | 45612  | PASS  |
| 365  | 198  | 1     | 100   | 2.8   | 5185   | PASS  |
| 441  | 443  | 0.01  | 100   | 73.4  | 17511  | PASS  |
| 442  | 198  | 40    | 100   | 65.7  | 122176 | PASS  |
| 443  | 442  | 17    | 23    | 19.5  | 23847  | PASS  |

| Data File  | Sample Number    | Analysis Date: |
|------------|------------------|----------------|
| 7M109898.D | CAL BNA@50PPM    | 10/06/20 14:57 |
| 7M109899.D | SMB88132         | 10/06/20 15:37 |
| 7M109900.D | OMB88168         | 10/06/20 16:00 |
| 7M109901.D | AD19542-001      | 10/06/20 16:24 |
| 7M109902.D | AD19542-001(MS)  | 10/06/20 16:47 |
| 7M109903.D | AD19542-001(MSD  | 10/06/20 17:10 |
| 7M109904.D | AD19587-007(5X)  | 10/06/20 17:34 |
| 7M109905.D | AD19539-007      | 10/06/20 17:57 |
| 7M109906.D | AD19539-013      | 10/06/20 18:20 |
| 7M109907.D | AD19539-014      | 10/06/20 18:44 |
| 7M109908.D | AD19539-017      | 10/06/20 19:08 |
| 7M109909.D | AD19595-004      | 10/06/20 19:31 |
| 7M109910.D | AD19562-002      | 10/06/20 19:55 |
| 7M109911.D | AD19562-004(MS:  | 10/06/20 20:18 |
| 7M109912.D | AD19562-006(MSD  | 10/06/20 20:42 |
| 7M109913.D | AD19562-008      | 10/06/20 21:05 |
| 7M109914.D | AD19551-001      | 10/06/20 21:29 |
| 7M109915.D | AD19599-001      | 10/06/20 21:52 |
| 7M109916.D | AD19599-002      | 10/06/20 22:16 |
| 7M109917.D | AD19582-001(3X)  | 10/06/20 22:39 |
| 7M109918.D | AD19482-005(3X)  | 10/06/20 23:03 |
| 7M109919.D | AD19517-002(5X)  | 10/06/20 23:26 |
| 7M109920.D | AD19517-004(5X)  | 10/06/20 23:50 |
| 7M109921.D | AD19517-001(5X)  | 10/07/20 00:13 |
| 7M109922.D | AD19517-003(10X) | 10/07/20 00:37 |
| 7M109923.D | AD19551-002(5X)  | 10/07/20 01:01 |
|            |                  |                |

Data Path : G:\GcMsData\2020\GCMS\_7\Data\10-0620\

Data File: 7M109897.D

Acq On : 6 Oct 2020 14:33

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_7\METHODQT\7M\_EVALN.M

Title : @GCMS\_7

Last Update : Thu Sep 10 08:21:04 2020



Spectrum Information: Average of 10.108 to 10.114 min.

|   | Target<br>Mass | Rel. to | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |      |
|---|----------------|---------|-----------------|-----------------|--------------|------------|---------------------|------|
| - | 51             | 198     | 30              | 60              | 32.9         | 61300      | PASS                | Ī    |
|   | 68             | 69      | 0.00            | 2               | 0.0          | 0          | PASS                |      |
|   | 69             | 198     | 0.00            | 100             | 42.4         | 78872      | PASS                | i    |
| i | 70             | 69      | 0.00            | 2               | 0.7          | 527        | PASS                | 1    |
|   | 127            | 198     | 40              | 60              | 50.4         | 93736      | PASS                | İ    |
| İ | 197            | 198     | 0.00            | 1               | 0.0          | j 0        | PASS                | İ    |
| ŀ | 198            | 198     | 100             | 100             | 100.0        | 186048     | PASS                |      |
| İ | 199            | 198     | 5               | 9               | 6.9          | 12813      | PASS                | İ    |
| İ | 275            | 198     | 10              | 30              | 24.5         | 45612      | PASS                |      |
|   | 365            | 198     | 1               | 100             | 2.8          | 5185       | PASS                |      |
| Ì | 441            | 443     | 0.01            | 100             | 73.4         | 17511      | PASS                | j    |
| i | 442            | 198     | 40              | 100             | 65.7         | 122176     | PASS                | 1 .0 |
|   | 443            | 442     | 17              | 23              | 19.5         | 23847      | PASS                | VX   |

Level#:

Data File: Cal Identifier: 7M109440.D CAL BNA@50PPM

Analysis Date/Time 09/17/20 13:20

Lev<u>el</u> #:

Data File: Cal Identifier: 7M109432.D CAL BNA@2PPM

Analysis Date/Time 09/17/20 10:08

### Form 6 Initial Calibration

Instrument: GCMS\_7

|   | 1,2,4,5-Tet                                             | 1.1'-Biphenyl                                           | Methylnapi                                              | 1-Methylnaphthalene                                     | 2-Methylnaphthalene                       | 4-Chloro-3-methylphe                             | Caprolactam                                      | Hexachlorobutadiene                                     | 4-Chloroaniline                                         | Naphthalene                                             | 1.2,4-Trich                                             | 2.4-Dichlorophenol                                      | bis(2-Chlor                                             | Benzoic Acid                              | 2,4-Dimethylpheno                                       | 2-Nitrophenol                                           | Isophorone                                              | Nitrobenzene                                            | Nitrobenzene-d5  | 3&4-Methyiphenoi                                 | N-Nitroso-c                                             | Hexachloroethane                                        | Acetophenone                                     | 2-Methylphenol                                         | bis(2-chlore                                            | Benzyl alcohol                                          | 1.2-Dichlorobenzene                                     | 1,4-Dichlorobenzene                                     | 1,3-Dichlorobenzene                       | N-Decane                                               | 2-Chlorophenol                                          | Phenol                                                | Phenol-d5                                               | bis(2-Chlor                               | Pentachloroethane                                | Aniline                                          | Benzaldehyde                                     | 2-Fluorophenol                     | N-Nitrosod                                              | Pyridine         | 4-Dioxane            | 1Compound                | 9 6 | 92             | 3              | 0              | ļ              |
|---|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------|--------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------|---------------------------------------------------------|------------------|----------------------|--------------------------|-----|----------------|----------------|----------------|----------------|
|   | 1,2,4,5-Tetrachloroben                                  | <u>&lt;</u><br>                                         | Methylnaphthalenes (T                                   | phthalene                                               | phthalene                                 | methylphe                                        | 3                                                | butadiene                                               | iline                                                   | ĕ                                                       | 1.2,4-Trichlorobenzen                                   | ophenol                                                 | bis(2-Chloroethoxy)me                                   | ă                                         | vlphenol                                                | ₫                                                       |                                                         | ne<br>e                                                 | ne-d5            | phenol                                           | N-Nitroso-di-n-propyla                                  | ethane                                                  | one                                              | enol                                                   | bis(2-chloroisopropyl)e                                 | <u>ŏ</u>                                                | obenzene                                                | obenzene                                                | obenzene                                  |                                                        | enol                                                    | <br>                                                  |                                                         | bis(2-Chloroethyl)ether                   | oethane                                          |                                                  | /de                                              | enol                               | N-Nitrosodimethylamin                                   |                  | æ                    |                          |     | မှ             | 7              | Ċ'n            | ω              |
|   | 10                                                      | 1 0 Avg                                                 | 1 0                                                     |                                                         | 1 0 Avg                                   | 1 0 Avg                                          | 1 0 Avg                                          | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Qua                                   | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avq                                                 | 1 0 Avg                                                 | 1 0 Avg          | 1 0 Avg                                          | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                          | 10                                                     | 10                                                      | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                                 | 1 0 Avg                                   | 1 0 Avg                                                | 1 0 Avg                                                 | 1 0 Avg                                               | 10                                                      | <u> </u>                                  | 1 0 Avg                                          | 1 0 Avg                                          | 1 0 Avg                                          | 1 0 Avq                            | 10                                                      | 1 0 Avg          | 1 0 Avg              | Col Mr Fit:              |     | 7M109439.D     | 7M109435 D     | 7M109437.D     | 7M109433.D     |
|   | 0.6206 0.6                                              | 0.8308 0.8                                              | 0.6864 0.7                                              | 0.6665 0.7                                              | 0.7067 0.7453                             | 0.3084 0.3                                       | 0.1184 0.1                                       | 0.1875 0.1                                              | 0.4150 0.4                                              | 1.0361 1.1                                              | 0.3297 0.3                                              | 0.3043 0.3                                              | 0.3943 0.4                                              | 0.2265                                    | 0.3144 0.3                                              | 0.1976 0.1                                              | 0.6350 0.6                                              | 0.3459 0.3                                              | 0.1576 0.1       | 1.1925 1.3                                       | 0.8428 0.9                                              | 0.5702 0.6                                              | 1.7996 2.0                                       | 1.1784 1.2                                             | 1.1229 1.2                                              | 0.8438 0.9                                              | 1.4100 1.5                                              | 1.4926 1.5                                              | 2.9113 3.2906                             | 1.8656 2.2                                             | 2.6981 2.9                                              | 3.3862 3.9                                            | 2.7898 2.9                                              |                                           | 0.8172 0.9                                       | 3.6292 4.1                                       | 2.2528 2.5                                       | 2.3080 2.4                         | 1.4514 1.4                                              | 2.2822 2.7       | 0.9568 1.1           | RF1 RF2                  | i   |                |                |                | _              |
|   | 526 0.7126                                              | 728 0.9106                                              | 304 0.7551                                              | 154 0.7299                                              | 453 0.7803                                | 0.3084 0.3338 0.3341 0.2883 0.2971 0.2991 0.2952 | 0.1184 0.1106 0.1229 0.1121 0.1169 0.1159 0.1185 | 926 0.1999                                              | 514 0.4611                                              | 179 1.1376                                              | 827 0.3653                                              | 012 0.3405                                              | 111 0.4283                                              | - 0.1668                                  | 281 0.3550                                              | 932 0.2095                                              | 864 0.6859                                              | 723 0.3763                                              | 658 0.1718       | 190 1.3216                                       | 300 0.9489                                              | 156 0.6237                                              | 492 2.0634                                       | 528 1.2572                                             | 085 1.2299                                              | 017 0.8937                                              | 061 1.5397                                              | 648 1.6299                                              | 906 3.3604                                | 904 2.2050                                             | 972 3.1158                                              | 079 3.9643                                            | 699 3.1464                                              | 2.7789 2.7857                             | 204 0.9396                                       | 426 4.0564                                       | 614 2.5996                                       | 2.4029 2.5400                      | 804 1.5365                                              | 2.7150 2.4197    | 1.1816 1.1240 0.9562 | 2 RF3                    |     | CAL BNA@0.5PPM | CAL BNA@160PPM | CAL BNA@80PPM  | CAL BNA@10PPM  |
|   | 0.6023 0.62                                             | 0.8018 0.79                                             | 0.6600 0.65                                             | 0.6366 0.63                                             | 0.6834 0.67                               | 0.2883 0.29                                      | 0.1121 0.11                                      | 0.1756 0.18                                             | 0.4066 0.39                                             | 0.9819 0.98                                             | 0.3192 0.32                                             | 0.2945 0.29                                             | 0.3771 0.37                                             | 0.1856 0.25                               | 0.3012 0.30                                             | 0.1844 0.19                                             | 0.6102 0.60                                             | 0.3326 0.33                                             | 0.1508 0.15      | 1.1468 1.11                                      | 0.8133 0.76                                             | 0.5454 0.55                                             | 1.7758 1.66                                      | 1.1146 1.12                                            | 1.0841 1.08                                             | 0.7937 0.80                                             | 1.3662 1.36                                             | 1.4220 1.43                                             | 2.9118 2.96                               | 1.8633 1.87                                            | 2.6442 2.64                                             | 3.3198 3.33                                           | 2.7032 2.78                                             | 2.3989 2.39                               | 0.8129 0.81                                      | 3.5853 3.63                                      | 2.2023 2.23                                      | 2.5400 2.1946 2.3315 2.3477 2.3726 | 1.3723 1.44                                             | 2.1866 2.2357    | 0.9562 0.9473        | RF4 RF5                  |     |                |                |                |                |
|   | 15 0.6039 0                                             | 56 0.7989 0                                             | 65 0.6573 0                                             | 83 0.6405 0                                             | 50 0.6755 0                               | 71 0.2991 0                                      | 69 0.1159 0                                      | 51 0.1861 0                                             | 60 0.3873 0                                             | 19 0.9910 0                                             | 00 0.3188 0                                             | 80 0.2977 0                                             | 41 0.3611 0                                             | 00 0.2566 0                               | 22 0.3036 0                                             | 56 0.1936 0                                             | 11 0.5961 0                                             | 53 0.3278 0                                             | 90 0.1535 0      | 28 1.1207 1                                      | 16 0.7632 0                                             | 55 0.5509 0                                             | 07 1.6769 1                                      | 27 1.1367 1                                            | 06 1.0423 1                                             | 50 0.8188 0                                             | 59 1.3678 1                                             | 69 1,4550 1                                             | 49 2.8746 2                               | 40 1.7770 1                                            | 97 2.6532 2                                             | 85 3.3020 3                                           | 53 2.7657 2                                             | 68 2.3181 2                               | 17 0.7990 0                                      | 64 3.6033 3                                      | 83 2.2249 2                                      | 15 2.3477 2                        | 11 1.4720 1                                             | 57 2.2432 2.3058 | 0.9547               | RF6                      |     | 09/17/20 12:57 | 09/17/20 11:22 | 09/17/20 12:09 | 09/17/20 10:32 |
|   | 0.6206 0.6526 0.7126 0.6023 0.6215 0.6039 0.6014 0.6028 | 0.8308 0.8728 0.9106 0.8018 0.7956 0.7989 0.7859 0.8023 | 0.6864 0.7304 0.7551 0.6600 0.6565 0.6573 0.6492 0.6601 | 0.6665 0.7154 0.7299 0.6366 0.6383 0.6405 0.6302 0.6399 | 0.7803 0.6834 0.6750 0.6755 0.6696 0.6806 | .2952 0.3049                                     | 1185 0 1316                                      | 0.1875 0.1926 0.1999 0.1756 0.1851 0.1861 0.1848 0.1911 | 0.4150 0.4514 0.4611 0.4066 0.3960 0.3873 0.3786 0.3848 | 1.0361 1.1179 1.1376 0.9819 0.9819 0.9910 0.9631 0.9839 | 0.3297 0.3827 0.3653 0.3192 0.3200 0.3188 0.3163 0.3218 | 0.3043 0.3012 0.3405 0.2945 0.2980 0.2977 0.2926 0.3023 | 0.3943 0.4111 0.4283 0.3771 0.3741 0.3611 0.3547 0.3641 | 0.1668 0.1856 0.2500 0.2566 0.2660 0.2815 | 0.3144 0.3281 0.3550 0.3012 0.3022 0.3036 0.2996 0.3089 | 0.1976 0.1932 0.2095 0.1844 0.1956 0.1936 0.1908 0.1975 | 0.6350 0.6864 0.6859 0.6102 0.6011 0.5961 0.5921 0.6090 | 0.3459 0.3723 0.3763 0.3326 0.3353 0.3278 0.3205 0.3297 | 0.1576           | 1.3190 1.3216 1.1468 1.1128 1.1207 1.0690 1.0898 | 0.8428 0.9300 0.9489 0.8133 0.7616 0.7632 0.7421 0.7603 | 0.5702 0.6156 0.6237 0.5454 0.5555 0.5509 0.5449 0.5631 | 2.0492 2.0634 1.7758 1.6607 1.6769 1.6185 1.6464 | .1784 1.2528 1.2572 1.1146 1.1227 1.1367 1.1139 1.1486 | 1.1229 1.2085 1.2299 1.0841 1.0806 1.0423 1.0131 1.0438 | 0.8438 0.9017 0.8937 0.7937 0.8050 0.8188 0.8038 0.8352 | 1.4100 1.5061 1.5397 1.3662 1.3659 1.3678 1.3445 1.3765 | 1.4926 1.5648 1.6299 1.4220 1.4369 1.4550 1.4263 1.4465 | 3.3604 2.9118 2.9649 2.8746 2.8642 2.7747 | .8656 2.2904 2.2050 1.8633 1.8740 1.7770 1.7474 1.7152 | 2.6981 2.9972 3.1158 2.6442 2.6497 2.6532 2.6524 2.5832 | 3862 3.9079 3.9643 3.3198 3.3385 3.3020 3.2681 3.1926 | 2.7898 2.9699 3.1464 2.7032 2.7853 2.7657 2.7658 2.7168 | 2.7857 2.3989 2.3968 2.3181 2.3009 2.2391 | 0.9204 0.9396 0.8129 0.8117 0.7990 0.8039 0.7847 | 4.1426 4.0564 3.5853 3.6364 3.6033 3.6378 3.5147 | 2.5614 2.5996 2.2023 2.2383 2.2249 2.1906 2.1155 | .3726 2.3458                       | 1.4514 1.4804 1.5365 1.3723 1.4411 1.4720 1.4796 1.4964 | .3058 2.2885     | 0.9719 0.9869        | RF7 RF8                  |     |                |                |                |                |
|   | 8                                                       | ω<br>                                                   | 1                                                       | 9                                                       | 6                                         | 9  -                                             | 6                                                | 1                                                       | 8 0.4809                                                | 9 1.1686                                                | 8                                                       | 3 0.3192                                                | 1                                                       | 5                                         | 9 0.3684                                                | 5                                                       | 0                                                       | 7                                                       | 1                |                                                  | 3 1.0232                                                | 1                                                       | 4                                                | 6 1.2225                                               | 8                                                       | 2                                                       | 5                                                       | 5                                                       | 7                                         | 2 —                                                    | 2                                                       | 6                                                     |                                                         | 1 2.9791                                  | 7                                                | 7 4.2846                                         | 5                                                | 8                                  | 4                                                       |                  | 9 1.2364             | RF9 A                    |     | •              | oo ,           | 6              | 4              |
|   | 0.6277.59                                               | 0.8257.83                                               | 0.682 7.46                                              | 0.662 7.54                                              | 0.7027.46                                 | 0.308 7.32                                       | 0.1187.22                                        | 0.1887.01                                               | 0.4186.95                                               | 1.04 6.92                                               | 0.334 6.85                                              | 0.306 6.79                                              | 0.3836.70                                               | 0.2336.68                                 | 0.320 6.63                                              | 0.1956.61                                               | 0.627 6.54                                              | 0.343 6.35                                              | 0.1596.34        | 1.206.22                                         | 0.8436.22                                               | 0.571 6.31                                              | 1.796.22                                         | 1.176.09                                               | 1.106.12                                                | 0.837 6.01                                              | 1.416.04                                                | 1.48 5.91                                               | 2.99 5.85                                 | 1.92 5.77                                              | 2.755.72                                                | 3.46 5.59                                             | 2.83 5.58                                               | 2.51 5.67                                 | 0.836 5.66                                       | 3.79 5.62                                        | 2.30 5.52                                        | 2.36 4.71                          | 1.47 3.15                                               | 2.33 3.22        | 1.04 2.74            | AvgRf RT                 |     |                | 7M109434       | 7M109436.D     | 7M1094         |
|   | 1.00                                                    | 1.00                                                    | 1.00 1.                                                 | 1.00                                                    | _                                         |                                                  | 0.993 0.                                         | _                                                       | 0.999 1.                                                |                                                         | 1.00 1.                                                 | İ                                                       |                                                         | 7                                         | 1.00 1.                                                 |                                                         |                                                         | 0.999 0.9                                               |                  | 0.999                                            | 0.998                                                   | 0.999                                                   | 0.999 0.9                                        |                                                        |                                                         | 0.999 1.0                                               |                                                         |                                                         |                                           |                                                        | ۳                                                       |                                                       |                                                         | Ψ                                         |                                                  |                                                  | l                                                | 0.998 0.9                          | 1.00 1.0                                                | 1.00 1.0         | 1.00 1.0             | Corr1 Co                 |     | i              |                |                |                |
|   | 00 6.2                                                  | 00 5.4                                                  | 00 5.8                                                  | 00 5.9                                                  | .00 5.7                                   | Ç                                                |                                                  |                                                         | 1.00 8.9                                                | 1.00 7.6                                                | 1.00 7.6                                                | 1.00 5.0                                                | 0.999 6.8                                               | 1.00 18                                   |                                                         | 1.00 3.7                                                |                                                         |                                                         |                  |                                                  | _                                                       |                                                         | 0.999 10                                         |                                                        | u                                                       |                                                         | 1.00 5.2                                                |                                                         |                                           |                                                        |                                                         |                                                       |                                                         |                                           | 1.00 7.1                                         | 00 7.6                                           | 1.00 7.8                                         | 0.998 4.1                          | 1.00 3.3                                                | 00 7.2           | 00<br>11             | Corr2 %Rsd               | 1   |                | AI BNA®        | AL BNA®        | CAL BNA@20PPM  |
|   | 0.0 <b>1</b>                                            | 0.01                                                    |                                                         | 0.40                                                    | 0.40                                      | 0.20                                             | 0.01                                             |                                                         |                                                         | 0.70                                                    |                                                         | 1                                                       |                                                         |                                           |                                                         |                                                         | 40                                                      | 0.20                                                    |                  |                                                  | 0.50                                                    | 0.30                                                    | 0.01                                             | 0.70                                                   | 0.01                                                    |                                                         |                                                         |                                                         |                                           |                                                        |                                                         | 0.80                                                  |                                                         |                                           | 0.05                                             |                                                  | 0.01                                             |                                    |                                                         |                  |                      |                          | •   |                | 196PPM         | 120PPM         | 20PPM          |
|   | 50.00 2.00                                              | 50.00 2.00                                              | 100.0 4.00                                              | 50.00 2.00                                              | 50.00 2.00                                | 50.00 2.00                                       | 50.00 2.00                                       | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                              | 50.00                                     | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                              | 25 00 1 00       | 50.00 2.00                                       | 50.00 2.00                                              | 50.00 2.00                                              | 50.00 2.00                                       | 50.00 2.00                                             | 50.00 2.00                                              | 50.00 2.00                                              |                                                         | 50.00 2.00                                              | 50.00 2.00                                | 50.00 2.00                                             | 50.00 2.00                                              | 50.00 2.00                                            | 50.00 2.00                                              | 50.00 2.00                                | 50.00 2.00                                       | 50.00 2.00                                       | 50.00 2.00                                       | 50 00 2 00                         | 50.00 2.00                                              | 50.00 2.00       | 50.00 2.00           | Lvi1 Lvi2                |     | •              | 09/17/20 10:55 | 09/17/20 11:46 | 09/17/20 12:33 |
|   | 10.00 20.00                                             | 10.00 20.00 80.00                                       | 20.00 40.00 160.0                                       | 10.00 20.00                                             | 10.00 20.00                               | 10.00 20.00                                      | 10.00 20.00                                      | 10.00 20.00                                             | 10.00 20.00                                             | 10.00 20.00 80.00                                       | 10.00 20.00                                             | 10.00 20.00 80.00                                       | 10.00 20.00 80.00                                       | 10.00 20.00 80.00                         | 10.00 20.00                                             | 10.00 20.00 80.00                                       | 10.00 20.00                                             | 10.00 20.00 80.00                                       | 5.00 10.00 40.00 | 10.00 20.00 80.00                                | 10.00 20.00                                             | 10.00 20.00 80.00                                       | 10.00 20.00                                      | 10.00 20.00                                            | 10.00 20.00                                             | 10.00 20.00 80.00                                       | 10.00 20.00 80.00                                       | 10.00 20.00 80.00                                       | 10.00 20.00 80.00                         | 10.00 20.00 80.00                                      | 10.00 20.00                                             | 10.00 20.00 80.00                                     | 10.00 20.00                                             | 10.00 20.00 80.00                         | 10.00 20.00                                      | 10.00 20.00                                      | 10.00 20.00 80.00                                | 10.00 20.00                        | 10.00 20.00                                             | 10.00 20.00      | 10.00 20.00          | ۱ ر                      |     |                | 10:55          | 11:46          | 12:33          |
|   | 80.00                                                   |                                                         |                                                         |                                                         | 80.00                                     | 80.00                                            | 80.00                                            | 80.00                                                   | 80.00                                                   |                                                         | 80.00                                                   | 1                                                       |                                                         |                                           |                                                         |                                                         |                                                         |                                                         |                  |                                                  |                                                         |                                                         | 20.00 80.00 1                                    |                                                        |                                                         |                                                         |                                                         |                                                         |                                           |                                                        |                                                         |                                                       |                                                         |                                           | 80.00                                            |                                                  |                                                  | 80.00                              | 80.00                                                   | 80.00            | 80.00                | Lvi3 Lvi4 Lvi5 Lvi6 Lvi7 |     |                |                |                |                |
| i | 120.0 160.0                                             | 120.0 160                                               |                                                         |                                                         |                                           | 120.0 160.0                                      |                                                  | 120.0 160.0                                             | 120.0 160.0                                             | 120.0 160.0                                             | 120.0 160.0                                             | 120.0 160                                               | 120.0 160.0                                             | 120.0 160.0                               | 120.0 160.0                                             |                                                         | 120.0 160.0                                             | 120.0 160.0                                             |                  |                                                  | 120.0 160.0                                             | 120.0 160.0                                             | 120.0 160.0                                      |                                                        |                                                         |                                                         |                                                         |                                                         |                                           |                                                        |                                                         | 120.0 160.0                                           |                                                         | 120.0 160.0                               | 120.0 160                                        |                                                  | 120.0 160.0                                      | 120.0 160.0                        | 120.0 160.0                                             | 120.0 160.0      | 120.0 160.0          | Lvl6 Lvl7                |     |                |                |                |                |
|   | 0.0 196.0                                               | 160.0 196.0                                             | 0.392.0                                                 | 0.0196.0                                                | 0 196.0                                   | 196                                              | 196                                              | 196                                                     | 196.0                                                   | 196.0                                                   | 0 196.0                                                 | 160.0 196.0 0.                                          | 0 196.0                                                 | 0 196.0                                   | 0 196.0 0                                               | 0 196.0                                                 | 0 196.0                                                 | 0 196.0                                                 | 00 98.00         | 196.0                                            | 196.0                                                   | 0 196.0                                                 | 0 196.0                                          | 0 196.0 0                                              | 0 196 0                                                 | .0 196.0                                                | 0 196.0                                                 | .0 196.0                                                | 0 196.0                                   | 0 196.0                                                | 160.0 196.0                                             | 0 196.0                                               |                                                         | .0 196.0 0.                               | .0 196.0                                         | .0 196.0 0                                       | .0 196.0                                         | .0 196.0                           | .0 196.0                                                | .0 196.0         | 196.0                | Lvl8                     |     |                |                |                |                |
| ! |                                                         | 1                                                       |                                                         |                                                         |                                           |                                                  | 1                                                |                                                         | 0.50                                                    | 0.50                                                    |                                                         | ).50                                                    |                                                         |                                           | ).50                                                    |                                                         | i                                                       |                                                         |                  | 0.50                                             | 0.50                                                    |                                                         |                                                  | ).50                                                   |                                                         |                                                         |                                                         |                                                         |                                           |                                                        | •                                                       |                                                       |                                                         | ).50                                      |                                                  | ).50                                             |                                                  |                                    |                                                         |                  | 0.50                 | LVI9                     | ]   |                |                |                |                |

Flags

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

c - failed the minimum correlation coeff criteria(if applicable)

Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound. Avg Rsd: 6.036

Note:

Page 1 of 3

# Form 6 Initial Calibration

Instrument: GCMS\_7

| 26<br>Level#           | Data        | Data File: Cal Identifier:                                 | Analysis Date/Time                                                                                                 | Level#:               | Data File: | Ca       | Cal Identifier: | Analy          | ysis Date/Time                                                        |
|------------------------|-------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------|------------|----------|-----------------|----------------|-----------------------------------------------------------------------|
|                        | 7M109440.D  |                                                            | 09/17/20 13:20                                                                                                     |                       |            | CAL BNA  | BNA@2PPM        | 09/17/20       | 09/17/20 10:08<br>09/17/20 13:33                                      |
|                        | 7M109437.D  | CAL BNA@80PPM                                              | 09/17/20 12:09                                                                                                     | 6 7M109436.D          |            | CAL BNA  | CAL BNA@120PPM  | 09/17/20 11:46 | 11:46                                                                 |
|                        | 7M109435.D  |                                                            | 09/17/20 11:22                                                                                                     |                       |            | CAL BNA  | BNA@196PPM      | 09/17/20 10:55 | 10:55                                                                 |
| <b>0</b> 2             | 7M109439.D  |                                                            | 09/17/20 12:57                                                                                                     |                       |            | 1        |                 |                |                                                                       |
| 1 Compound             | Col Mr Fit: | RF1 RF2 RF3 RF4                                            | RF5 RF6 RF7 RF8 F                                                                                                  | RF9 AvgRf RT          | Corr1 C    | orr2 %Rs | 3sd<br>∫        | Lvi1 Lvi2      | Calibration Level Concentrations 2 Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 Lvl8 Lvl9 |
| Hexachlorocyclopenta   | _           | ເນ                                                         | 0.3706 0.3814                                                                                                      | 0.351                 |            | ĺ        |                 | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 196.0                                   |
| 2,4,6-Trichlorophenol  | 1 0         | 0.4057 0.4322 0.4593 0.3890                                | 0.4593 0.3890 0.4150 0.4043 0.4080 0.4190                                                                          | - 0.4177.68           | -          | 1.00 5   | .1 0.20         |                | 10.00 20.00 80.00 120.0 160.0 196.0                                   |
| 2,4,5-Trichlorophenol  | 1 0 Avg     | 0.4324 0.4206 0.4802 0.4166 0.4353 0.4324 0.4227           | 6 0.4353 0.4324 0.4227 0.4329                                                                                      | 0.4347.71             |            | 1.00 4   | 6               | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 196.0                                   |
| 2-Fluorobiphenyl       | 1 0 Avg     | 1.3133 1.3642 1.4686 1.2956 1.3154 1.3008 1.2946           | 1.2946                                                                                                             | - 1.337.75            | 1.00       |          | 4.4             | 25.00 1.00     | 60.00                                                                 |
| 2-Chloronaphthalene    | 1 0         | 1.1889 1.3080 1.3442 1.1837 1.1714 1.1470                  | 1.1211                                                                                                             | 1.207.86              | 1          | -        | 8 0.80          | 50.00 2.00     | 120.0 160.0                                                           |
| 1.4-Dimethylnaphthale  | 10          | 0.8775 0.9638 1.0096 0.8750 0.8553 0.8375                  | 0.8553 0.8375 0.8057 0.8068                                                                                        | 0.8798.15             |            |          | w               | 50.00 2.00     | 80.00 120.0 160.0                                                     |
| Dimethylnaphthalenes   |             | 0.8775 0.9638 1.0096 0.8750 0.8553 0.8375                  | 0.8057                                                                                                             | 0.8798.15             | -          | 1.00     |                 | 50.00 2.00     | 20.00 80.00 120.0 160.0                                               |
| Diphenyl Ether         |             | 0.8549 0.8910 0.9541 0.8263 0.8427 0.8372                  | 3 0.8427 0.8372 0.8270 0.8375                                                                                      | 0.8597.92             |            |          | , <u> </u>      | 50.00 2.00     | 80.00 120.0 160.0                                                     |
| Coumarin               | 1 0 AVG     | 0.3625 0.3666 0.4111 0.3597<br>0.4547 0.4917 0.5066 0.4441 | 0.3666 0.4111 0.3597 0.3567 0.3525 0.3451 0.3556                                                                   | 0.3677.93             |            |          | יה<br>ככו       | 50.00 2.00     | 120.0 160.0                                                           |
| Acenanhthylene         | 1 0 Ava     | 1 7628 1 8226 1 9772 1 7292 1 7232 1 6996 1 6806           | 7628 1 8226 1 9772 1 7292 1 7232 1 6986 1 6886 1 6980                                                              | 1 76 8 22             | 100        | 3        | 000             | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 196.0                                   |
| Dimethylphthalate      |             | 1.3719 1.4662 1.5236 1.3473                                | .3719 1.4662 1.5236 1.3473 1.3500 1.3371 1.3096 1.3338                                                             | - 1.388.08            |            |          | 5.4 0.01        | 50.00 2.00     | 80.00 120.0 160.0                                                     |
| 2,6-Dinitrotoluene     |             | 0.3158 0.3255 0.3582 0.3128                                | 0.3158 0.3255 0.3582 0.3128 0.3106 0.3022 0.2897 0.2888                                                            | - 0.3138.14           | -          |          |                 | 50.00 2.00     | 80.00 120.0 160.0                                                     |
| Acenaphthene           | 1 0 Avg     | 1.1695 1.2367 1.3088 1.1475                                | .1695 1.2367 1.3088 1.1475 1.1371 1.1347 1.1123 1.1227                                                             | - 1.178.37            | 100        |          |                 | 50.00 2.00     | 80.00 120.0 160.0                                                     |
| 3-Nitroaniline         | 1 0 Avg     | 0.3559 0.3438 0.3870 0.3391                                | 0.3438 0.3870 0.3391 0.3478 0.3428 0.3378 0.3413                                                                   | 0.3498.29             | 1.00       | 1.00     | 4.6 0.01        | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 196.0                                   |
| Dibenzofuran           |             | 1.7018 1.7927 1.9112 1.6572                                |                                                                                                                    | 1.8876 1.72 8.53      | 1.00       |          | 0.80            | 50.00 2.00     | 80.00 120.0 160.0                                                     |
| 2,4-Dinitrotoluene     | 1 0 Avg     | 0.4406 0.3938 0.4422 0.4151                                | 0.4406 0.3938 0.4422 0.4151 0.4384 0.4383 0.4412 0.4519                                                            | - 0.433 8.50          | 1.00       |          |                 | 50.00 2.00     | 20.00 80.00 120.0 160.0                                               |
| 4-Nitrophenol          | 10          | 0.2411 0.2624 0.2861 0.2285                                | 0.2411 0.2624 0.2861 0.2285 0.2384 0.2412 0.2380 0.2443                                                            | - 0.2488.42           | 0.999      |          | 4               | 50.00 2.00     | 120.0 160.0                                                           |
| 2,3,4,6-Tetrachlorophe | 10          | 0.3748 0.3369 0.3924 0.3609                                | 0.3369 0.3924 0.3609 0.3853 0.3881 0.3778 0.3936 -                                                                 | 0.376 8.64            | 0.999      | •        | -               | 50.00 2.00     | 20.00 80.00 120.0 160.0                                               |
| Fluorene               |             | 1.3715 1.4779 1.5471 1.3447                                | 1.4779 1.5471 1.3447 1.3439 1.3359 1.3016 1.3220                                                                   | 1.38 8.86             | 1.00       |          | 6.2 0.90        | 50.00 2.00     | 20.00 80.00 120.0 160.0                                               |
| 4-Chiorophenyl-phenyl  |             | 0.6930 0.7395 0.7408 0.6547                                | 0.7395 0.7408 0.6547 0.6810 0.6799 0.6724 0.6937                                                                   | - 0.694 8.84          | 8 8        |          |                 | 50.00 2.00     | 20.00 80.00 120.0 160.0                                               |
| 4-Nitroaniline         | 1 - 0 AV0   | 0.3702 0.3647 0.4086 0.3604                                | 0.3647 0.4086 0.3604 0.3623 0.3657 0.3613 0.3731                                                                   | - 0.371.8.86          | O -        | 1 2 2 2  | 4.2 0.01        | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 196.0                                   |
| Atrazine               |             | 0.4534 0.4478 0.4829 0.4321                                | 0.4478 0.4829 0.4321 0.4555 0.4533 0.4522 0.4631                                                                   | 0.455 9.50            | _          |          |                 | 50.00 2.00     | 20.00 80.00 120.0 160.0                                               |
| 4.6-Dinitro-2-methylph | 1 0         |                                                            | 0.1193 0.1147 0.1369 0.1422 0.1411 0.1481 -                                                                        | - 0.133 8.89          | 0.998      | 1.00 9   |                 | 50.00          | 80.00 120.0 160.0                                                     |
| n-Nitrosodiphenylamin  | 10          | 0.6180 0.6659 0.6878 0.6123                                | 0.6659 0.6878 0.6123 0.5991 0.6021 0.5872 0.5993                                                                   | - 0.622 8.96          | 1.00       | 1.00 5   |                 | 50.00 2.00     | 20.00 80.00 120.0 160.0                                               |
| 2.4.6-Tribromophenol   |             | 0.1004 0.0912 0.1031 0.0919 0.1037 0.1108 0.1096           | 0.1037 0.1108 0.1096 0.1134                                                                                        | 0.1039.09             | 0.998      |          | 0.1             | 50.00 2.00     | 20.00 80.00 120.0 160.0                                               |
| A Bromoshopyl shopy    | -<br>-      | 0.6457 0.7052 0.7452 0.6294                                | 0.6437                                                                                                             | 0.632 9.00            | 1.990      | •        | 7 9             | 50.00 2.00     | 20.00 80.00 120.0 160.0                                               |
| Hexachlorobenzene      | 1 0 Ava     | 0.2295 0.2425 0.2459 0.2172 0.2312 0.2333 0.2318           | 0.2425 0.2459 0.2172 0.2312 0.2333 0.2318 0.2415                                                                   | - 0.234 9.41          | 0.999      | 0.999    | 9 0.10          | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 196.0                                   |
| N-Octadecane           |             | 0.3060 0.3136 0.3467 0.3015                                | 0.3136 0.3467 0.3015 0.2899 0.2815 0.2718 0.2804                                                                   | - 0.299 9.68          | 0.999      |          | 8.0 0.05        | 50.00 2.00     | 20.00 80.00 120.0 160.0                                               |
| Pentachlorophenol      | 1 0 Avg     | 0.1504 0.1433 0.1308                                       | 0.1433 0.1308 0.1580 0.1623 0.1631 0.1732                                                                          | - 0.154 9.61          | 0.998      |          |                 | 50.00          | 20.00 80.00 120.0 160.0                                               |
| Phenanthrene           | 1 0 Avg     | 1.0475 1.1471 1.1642 1.0201                                | 1.1471 1.1642 1.0201 1.0194 1.0102 0.9820 1.0135                                                                   | - 1.05 9.85           | 0.999      |          |                 | 50.00 2.00     | 20.00 80.00 120.0 160.0                                               |
| Anthracene             | 1 0 Avq     | 1.0764 1.1347 1.2153 1.0695                                | 1.1347 1.2153 1.0695 1.0503 1.0465 1.0035 1.0367 —                                                                 | 1.08 9.90             | 0.999      | 0.999 6  | 2 0.70          | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 196.0                                   |
| Carbazole              |             | 0.9966 1.0555 1.0961 0.9724                                | 1.0555 1.0961 0.9724 0.9582 0.9515 0.9227 0.9633 —                                                                 | 0                     | 0.999      | 0.999 5  | ω (             | 50.00 2.00     | 20.00 80.00 120.0 160.0 196.0                                         |
| Di-n-butylphthalate    |             | 1.2322 1.1993 1.3204 1.1943                                |                                                                                                                    | 1.2955 1.21 10.45     | 0.999      |          | 0               | 50.00 2.00     | 20.00 80.00 120.0 160.0                                               |
| Fluoranthene           | 1 0 Avq     | 1.2114 1.2126 1.3122 1.1648                                | .2114 1.2126 1.3122 1.1648 1.1847 1.1647 1.1331 1.1565                                                             | - 1.1911.19           | 3.00       |          | .6 0.60         | 50.00 2.00     | 20.00 80.00 120.0 160.0                                               |
| Renzidine              | 1 O AVG     | 0.7613 0.7364 0.8642 0.7164<br>0.7613 0.7364 0.8642 0.7164 | 1.2618 1.2976 1.3941 1.2020 1.2022 1.2044 1.1920 1.2208<br>0 7613 0 7364 0 8642 0 7165 0 7254 0 7076 0 6880 0 6888 | - 0 737 11 3 <i>4</i> |            | 1.00     | n o             | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 196.0                                   |
| Terphenyl-d14          |             | 0 6340 0 6079 0 6601 0 5799                                | 0.6340 0.6079 0.6601 0.5799 0.6280 0.6427 0.6528 0.6899                                                            | 0.637 11.64           | 0.998      | 100      | 2               | 25.00 1.00     | 10.00 40.00 60.00                                                     |
|                        |             |                                                            |                                                                                                                    |                       |            |          |                 |                |                                                                       |

a - failed the min rf criteria

Corr l = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Corr 2 = Correlation Coefficient for Quadratic Curve was used for compound.

Note:

Avg Rsd: 6.036

Page 2 of 3

Flags

| Method |  |
|--------|--|
| EPA    |  |
| 8270E  |  |
| _      |  |

| 9              | 7              | υ              | ω              | _              | Level #:           |
|----------------|----------------|----------------|----------------|----------------|--------------------|
| 7M109439.D     | 7M109435.D     | 7M109437.D     | 7M109433.D     | 7M109440.D     | Data File          |
| CAL BNA@0.5PPM | CAL BNA@160PPM | CAL BNA@80PPM  | CAL BNA@10PPM  | CAL BNA@50PPM  | e: Cal Identifier: |
| 09/17/20 12:57 | 09/17/20 11:22 | 09/17/20 12:09 | 09/17/20 10:32 | 09/17/20 13:20 | Analysis Date/Time |

| !<br>! |               |  |
|--------|---------------|--|
| •      | Initial Calib |  |

Fo  $\mathcal{V}$ 

| Calibration | 7 |
|-------------|---|
|             |   |

Instrument: GCMS\_7

| Method: EPA 8270E       | М             |                            | Initia                                                  | Initial Calibration | tion                   |                |          | Instrument: GCMS_7               |                       |
|-------------------------|---------------|----------------------------|---------------------------------------------------------|---------------------|------------------------|----------------|----------|----------------------------------|-----------------------|
| <b>21</b> Level #       | Data File:    | ile: Cal Identifier:       | Analysis Date/Time                                      | Level #:            | Data File              | Cal Identifier | ntifier: | Analysis Date/Time               |                       |
| 0                       | 7M109440.D    | CAL BNA@50PPM              | 09/17/20 13:20                                          | 2                   | 7M109432.D             | CAL BNA@2PPM   | ĎΜ       | 09/17/20 10:08                   |                       |
| ا<br>ع                  | 7M109433.D    | CAL BNA@10PPM              | 09/17/20 10:32                                          | 4                   | 7M109438.D             | CAL BNA@20PPM  | )PPM     | 09/17/20 12:33                   |                       |
| 5                       | 7M109437.D    | CAL BNA@80PPM              | 09/17/20 12:09                                          | 6                   | 7M109436.D             | CAL BNA@120PPM | 20PPM    | 09/17/20 11:46                   |                       |
| 23                      | 7M109435.D    | CAL BNA@160PPM             | 09/17/20 11:22                                          | œ                   | 7M109434.D             | CAL BNA@196PPM | 6PPM     | 09/17/20 10:55                   |                       |
| <b>0</b> 2              | 7M109439.D    | CAL BNA@0.5PPM             | 09/17/20 12:57                                          |                     |                        |                |          |                                  |                       |
|                         | Col Mr Eit: E | DE1 DE2 DE3 DE4            | DES DES DE7 DE8 D                                       | DEO Ava             | AvaBf BT Corr1 Corr3   | Cors %Bad      |          | Calibration Level Concentrations | 5<br>-<br>-<br>-<br>- |
|                         |               | .3503 0.3655 0.3774 0.3341 | 0.3503 0.3655 0.3774 0.3341 0.3460 0.3571 0.3595 0.3678 |                     | .357 11.57 0.999       |                |          | 10.00 20.00 80.00 120.0 160.0 1  |                       |
| 4,4'-DDD                | 1 0 Avg 0     | .5173 0.5040 0.5516 0.4863 | 0.5173 0.5040 0.5516 0.4863 0.5081 0.5152 0.5081 0.5278 | - 0                 | 0.515 11.97 0.999 1.00 |                |          | 120.0 160.0                      | .0                    |
| Butylbenzylphthalate    | 1 0 Avg 0     | .5670 0.5750 0.6106 0.5386 | 0.5670 0.5750 0.6106 0.5386 0.5454 0.5565 0.5463 0.5709 | •                   | .564 12.23 0.999       |                | 0.01     |                                  | 0                     |
| 4,4'-DDT                | 1 0 Avg 0     | .5993 0.5393 0.6429 0.5529 | 0.5993 0.5393 0.6429 0.5529 0.5709 0.5754 0.5760 0.5874 | •                   | .581 12.33 0.999       |                |          |                                  | 0                     |
| 3,3'-Dichlorobenzidine  | 1 0 Avg       | .4587 0.4820 0.4897 0.4247 | 0.4587 0.4820 0.4897 0.4247 0.4479 0.4540 0.4440 0.4567 |                     | 457 12.85 1.00         | 4.5            | !        |                                  | .0                    |
| Benzolalanthracene      | 1 0 Avg 1     | .1813 1.2500 1.2776 1.1055 | .1813 1.2500 1.2776 1.1055 1.1167 1.1531 1.1306 1.1707  | •                   | 1.17 12.88 0.999       | 5.3            | 0.80     | 10.00 20.00 80.0                 | 0                     |
| Chrysene                | 1 0 Avg 1     | .0967 1.1295 1.2176 1.0668 | .0967 1.1295 1.2176 1.0668 1.0498 1.0409 1.0250 1.0596  | 1                   | 1.09 12.92 0.999       | 5.8            |          |                                  | 0                     |
| bis(2-Ethylhexyl)phtha  | 1 0 Avg       | .7615 0.8450 0.8447 0.7274 | 0.7615 0.8450 0.8447 0.7274 0.7265 0.7171 0.7088 0.7210 | - 0                 | 757 12.92 1.00         | 7.5            |          | 10.00 20.00 80.0                 | .0                    |
| Di-n-octylphthalate     | 1 0 Avg 1     | .2794 1.3745 1.4455 1.2328 | .2794 1.3745 1.4455 1.2328 1.2345 1.2196 1.1919 1.2391  | 1                   | 1.28 13.68 0.999       | 6.9            |          | 10.00 20.00 80.0                 | .0                    |
| Benzo[b]fluoranthene    | 1 0 Avg       | .1394 1.2007 1.2147 1.1224 | 1.1394 1.2007 1.2147 1.1224 1.0944 1.0793 1.0414 1.1490 | <b> </b>            | 1.13 14.11 0.998       | 5.2            | :        | 10.00 20.00 80.0                 | 0                     |
| BenzolkMuoranthene      | 1 0 Avg 1     | .0417 1.1169 1.1984 0.9900 | 1.0417 1.1169 1.1984 0.9900 1.0351 1.0321 1.0449 1.0116 | ;                   | 1.06 14.14 0.999       | 6.3            |          | 10.00 20.00 80.0                 | .0                    |
| Benzolalpyrene          | 1 0 Avg 1     | .0102 1.0406 1.0815 0.9527 | .0102 1.0406 1.0815 0.9527 0.9757 0.9811 0.9730 1.0095  | 1                   | 1.00 14.48 0.999       | 4.2            |          | 10.00 20.00 80.00 120.0 160.0    | 0                     |
| Indeno[1,2,3-cd]pyren   | 1 0 Avg 1     | .1141 1.1817 1.2143 1.0361 | 1141 1.1817 1.2143 1.0361 1.0844 1.0993 1.0993 1.1488   | 1                   | 1.12 15.94 0.999       | 5.1            |          | 10.00 20.00 80.00 120.0 160.0    | 0                     |
| Dibenzofa.hlanthracen   | 1 0 Avg       | .9343 0.9522 1.0181 0.8771 | 0.9343 0.9522 1.0181 0.8771 0.9158 0.9263 0.9176 0.9561 | - 0                 | .937 15.96 0.999       | 4.4            |          | 10.00 20.00 80.00 120.0 160.0    | 0                     |
| Benzola, h, il perylene | 1 0 Avg 0     | .9171 1.0021 1.0080 0.8577 | 0.9171 1.0021 1.0080 0.8577 0.8974 0.9121 0.9112 0.9585 |                     | 0.933 16.33 0.998      | 0.999 5.6      | 0.50     | 10.00 20.00 80.00 120.0 160.0    | 0                     |

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

c - failed the minimum correlation coeff criteria(if applicable)

Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound. Note: Avg Rsd: 6.036

Form 6
Initial Calibration

Instrument: GCMS\_9

| 2 1                              | Data       | υ<br>Ε.Ε. | Calldentifier                                                            | Analysis Date/Time                                                                                                 | t evel #  | <b>-</b>                | oto Filo. | ר      | al Identi          | ָ<br>-      | Analy          | is Date/Time                  |                      |
|----------------------------------|------------|-----------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|-----------|--------|--------------------|-------------|----------------|-------------------------------|----------------------|
|                                  | 9M101321.D | į         | CAL BNA@50PPM                                                            | 09/17/20 13:22                                                                                                     | 2         | 9M101314                | 314.D     | CAL BN | BNA@2PPM           | <b>Š</b>    | 09/17/20 10:34 | 7/20 10:34                    |                      |
| <b>ω</b>                         | 9M101313.D |           | CAL BNA@10PPM                                                            | 09/17/20 10:10                                                                                                     | 4         | 9M101319.               | 0         | CAL BN | BNA@20PPM          | Š           | 09/17/20 12:35 | 12:35                         |                      |
|                                  | 9M101318.D |           | CAL BNA@80PPM                                                            | 09/17/20 12:12                                                                                                     | ൊന        | 9M101317.               | ס כ       | CAL BN | BNA@120PPM         | , P         | 09/17/20 11:47 | 11:47                         |                      |
| <b>92</b> :                      | 9M101320.D |           | CAL BNA@150FFM                                                           | 09/17/20 12:58                                                                                                     | α         | 9M101315.               | _         | CAL BN | BNA@196FFM         | 3           | 09/1//2011:00  | 11:00                         |                      |
|                                  |            | 1         | ]                                                                        |                                                                                                                    | 3         | i                       |           | - 1    | j                  | _           | <b>3</b>       | ition Level Concentra         | -                    |
| Discount 1                       |            |           | 2770 1 0022 0 0500                                                       | 0.0781 0.0877 0.0761 1.008                                                                                         | 1 2 2     | 1 06 2 74               |           | 1      | 3 2                |             |                | באון ראוט באוט                | ביים<br>היים<br>היים |
| Pyridine                         | 1 - 0 ) V  | 2 1975 1  | 1 9967 2 1554 2 1183                                                     | 1.3770 1.033 0.338 0.3761 0.3677 0.3761 1.0082                                                                     | 87        | 2 20 3 20               | 100       | 00     | 7 -                | n (         | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 | 196.0                |
| N-Nitrosodimethylamin            | <u> </u>   |           | 2536 1.4270 1.3062                                                       | 1.2536 1.4270 1.3062 1.4170 1.4614 1.4159 1.4494                                                                   | 1         | 1.393.14                | 8         |        | 5.7                | (n (        | 200            | 20.00 80.00 120.0             |                      |
| 2-Fluorophenol                   | _          |           | 1.8750 2.0379 2.0095                                                     | 1.8750 2.0379 2.0095 2.1819 2.2213 2.1411 2.1460                                                                   | 50        | 2.09 4.71               | Φ         |        | 5.4                | (n (        | 2.00           | 80.00 120.0                   |                      |
| Benzaldehyde                     | 1 0 Avg    | 2.0239 2  | 0447 2.1054 1.9406                                                       | 2.0239 2.0447 2.1054 1.9406 2.0339 2.0178 1.9449 1.9182                                                            | 82        | 2.00 5.53               |           | •      | 7                  | 0.01 5      | 2.00           | 80.00 120.0                   |                      |
| Aniline                          | 1 0 Avq    | 3.4677 3  | 3.5376 3.5659 3.3541                                                     | 3.5376 3.5659 3.3541 3.4792 3.5098 3.3609 3.3561 3.5095                                                            | 3.5095    | 3.46 5.62               |           |        | 2.4                | (n          | 50.00 2.00     | 20.00                         | 196.0 0.50           |
| Pentachloroethane                | -0         | 0.7232 (  | 0.7500 0.7570 0.7143 0.7267                                              |                                                                                                                    |           | 0.724 5.67              |           | 1.00   | 0                  |             | 50.00 2.00     | 20.00 80.00 120.0             | 196.0                |
| bis(2-Chloroethyl)ether          |            | 2.2340 2  | 2.2340 2.4920 2.4416 2.2289 2.2191                                       | 2.2191 2.2171 2.0969 2.0700 2.4684                                                                                 | 00 2.4684 | 2.27 5.68               |           |        | ဖ                  | 0.70 5      | 50.00 2.00     | 20.00 80.00 120.0             |                      |
| Phenol-d5                        | 1 0 Avq    | 2.5778 2  | 2.5778 2.4275 2.5598 2.4705 2.5997                                       | 2.5997 2.6482 2.5092 2.4547                                                                                        | 47        | 2.53 5.58               |           |        |                    |             | 50.00 2.00     | 20.00 80.00 120.0             |                      |
| 2-Chlorophenol                   | 1 0 Ava    | 2.5357    | 3.1902 3.3340 3.0269 3.1139 3.1993<br>2.5357 2.4465 2.8406 2.4276 2.5640 | 3.1962 3.3346 3.6269 3.1139 3.1993 3.2243 3.0391 2.9761<br>2.5357 2.4465 2.8406 2.4276 2.5640 2.5695 2.4526 2.3984 | 84        | 2.53 5.72               | 0.998     | 1 00   | ກ ∣-               | 0.80        | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 | 196.0                |
| N-Decane                         | 1 0 Avg    | 1.9398 2  | 2.1709 2.0925 1.9033                                                     | 1.9398 2.1709 2.0925 1.9033 1.9058 1.8405 1.7378 1.6629                                                            | 29        | 1.91 5.77               |           |        | œ                  |             | 50.00 2.00     | 20.00 80.00 120.0             |                      |
| 1.3-Dichlorobenzene              | 1 0 Avg    | 2.7937 2  | 2.9965 2.9323 2.7274                                                     | 2.7937 2.9965 2.9323 2.7274 2.7938 2.7512 2.6097 2.5624                                                            | 24        | 2.77 5.85               |           |        |                    | n (n        | 200            | 20.00 80.00 120.0             |                      |
| 1.2-Dichlorobenzene              | 1 0 Ava    | 1 4369 1  | 5773 1 5119 1 3274                                                       | 1 4369 1 5773 1 5119 1 3274 1 3672 1 3973 1 3512 1 3522                                                            | 3 8       | 1 42 6 04               | 38        | 3 8    | א<br>טי            | 'n          | 50.00 2.00     | 10 00 20 00 80 00 120 0 160 0 | 1960                 |
| Benzyl alcohol                   | 1 0 Avg    | 0.8432 (  | ).7567 0.8151 0.7594                                                     | 0.8432 0.7567 0.8151 0.7594 0.8246 0.8521 0.8211 0.8246                                                            |           | 0.8126.01               | - 1       | į      | 4.4                | (7)         | 2.00           | 20.00 80.00 120.0             |                      |
| bis(2-chloroisopropyl)e          | 1 0 Avg    | 1.2583 1  | 1.4421 1.4098 1.1805                                                     | 1.2583 1.4421 1.4098 1.1805 1.2115 1.2306 1.1772 1.1685                                                            |           | 1.266.12                |           |        |                    |             | 2.00           | 20.00 80.00 120.0             |                      |
| 2-Methylphenol                   |            | 1.1950 1  | 1.0908 1.2246 1.1022                                                     | 1.1950 1.0908 1.2246 1.1022 1.1564 1.2078 1.1433 1.1487                                                            | 87 1.1451 | 1.166.10                |           | 9      |                    |             | 2.00           | 20.00 80.00 120.0             |                      |
| Acetophenone<br>Hexachloroethane | 1 0 Avg    | 0.5300 (  | 1.9443 1.9766 1.7023<br>1.5570 0.5499 0.4859                             | 1.7553 1.9443 1.9766 1.7023 1.6551 1.6179 1.5065 1.4596<br>0.5300 0.5570 0.5499 0.4859 0.5248 0.5307 0.5167 0.5135 |           | 1.70 6.22<br>0.526 6.32 | 100       | 8 8    |                    | 0.01        | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 | 196.0                |
| N-Nitroso-di-n-propyla           | 1 0 Avg    | 0.7793 (  | ).7997 0.8365 0.7439                                                     | 0.7793 0.7997 0.8365 0.7439 0.7399 0.7348 0.6947 0.6761 0.6633                                                     |           | 0.741 6.22              | 0.997     | İ      | 7.8 0.             |             | 2.00           | 20.00 80.00 120.0             | 0 196.0 0.50         |
| 3&4-Methylphenol                 | 1 0 Avg    | 1.2145 1  | 1.1581 1.2742 1.1368                                                     | 1.2145 1.1581 1.2742 1.1368 1.1501 1.1296 1.0304 0.9890 1.1368                                                     | 1.1368    | 1.146.22                |           | 1.00   | 7.5                | <b>(</b> 2) |                | 10.00 20.00 80.00 120.0 160.0 | 0 196.0 0.50         |
| Nitrobenzene-d5                  | 1 0 Avg    | 0.1456 (  | ).1237 0.1352 0.1338                                                     | 0.1456 0.1237 0.1352 0.1338 0.1476 0.1564 0.1528 0.1555                                                            | 1         | 0.144 6.35              | w.        |        |                    |             | 1.8            | 10.00 40.00 60.00             | 98.00                |
| Nitrobenzene                     | 1 0 Avg    | 0.3175    | ).3102                                                                   | 0.3175                                                                                                             |           | 0.3146.37               | 3 8       | 3 8    | 3.2<br>0.0         | 0.20        | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 | 196.0                |
| 2-Nitrophenol                    | 1 0 Avg    | 0.1785 (  | ).1309 0.1962 0.1646                                                     | 0.1785 0.1309 0.1962 0.1646 0.1819 0.1911 0.1866 0.1871                                                            |           | 0.1776.61               | ۱         | 9      | - }                |             | 2.00           | 20.00 80.00 120.0             | 0 196.0              |
| 2,4-Dimethylphenol               | 1 0 Avg    | 0.3003 (  | ).2900 0.3699 0.2758                                                     | 0.3003 0.2900 0.3699 0.2758 0.2903 0.2954 0.2889 0.2897                                                            | 0.2410    | 0.294 6.64              |           | 1.00   |                    |             | 2.00           | 20.00 80.00 120.0             | 0 196.0 0.50         |
| Benzoic Acid                     |            | 0.1881 -  | 0.1099 0.1505                                                            | 0.1099 0.1505 0.2280 0.2481 0.2576 0.2622                                                                          | •         | 0.206 6.69              |           | w      |                    |             | 3              | 20.00 80.00 120.0             |                      |
| 01St2-Unioroetnoxy)me            |            | 0.3661    | 0.4105 0.3972 0.3445                                                     | 0.3681                                                                                                             |           | 0.3656.71               | Œ         |        |                    | )           | 9 6            | 20.00 80.00 120.0             | 196.0                |
| 1,2,4-Dichlorobenzen             | 1 0 Avg    | 0.3141    | ).3430 0.3434 0.2912                                                     | 0.3141 0.3430 0.3434 0.2912 0.3001 0.3076 0.2992 0.3010                                                            | 0.1049    | 0.3126.87               | 2   -<br> | 8 8    | .6¦_<br>-4¦0<br> ∪ | 0.20 a 3    | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 | 0 196.0              |
| Naphthalene                      | 1 0 Avg    | 1.0578 1  | 1.2184 1.1567 1.0103                                                     | 1.0578 1.2184 1.1567 1.0103 1.0211 1.0122 0.9750 0.9728 1.1347                                                     |           | 1.06 6.92               | Θ         |        |                    | 0.70        | 2.00           | 20.00 80.00 120.0             | 196.0                |
| 4-Chloroaniline                  | 1 0 Avq    | 0.4049 (  | ).3926 0.4205 0.3812                                                     | 0.4049 0.3926 0.4205 0.3812 0.3945 0.3946 0.3774 0.3674 0.3750                                                     | 0.3750    | 0.390 6.96              | w         |        |                    |             | 2.00           | 20.00 80.00 120.0             | 96                   |
| Canrolactam                      | 1 O Ava    | 0.1/52    | ).1904                                                                   | 0.1752 0.1904 0.1886 0.1656 0.1683 0.1721 0.1684 0.1703<br>0.1000 0.0688 0.0085 0.0084 0.1104 0.1175 0.1140 0.1236 |           | 0.1757.02               | 1.00      | 1.00   | 5.4                | 0.01        | 50.00 2.00     | 20.00                         | 8 8                  |
| 4-Chloro-3-methylphe             | 1 0 Ava    | 0.2761    | 2460 0 3340 0 2475                                                       | 0.2761 0.2460 0.3340 0.2475 0.2714 0.2814 0.2749 0.2751                                                            | !!        | 0.276 7.32              |           | Ì      | - :                |             | 2.00           | - 1                           |                      |
| 2-Methylnaphthalene              | 1 0 Avg    | 0.7090 (  | ).7642 0.7614 0.6676                                                     | 0.7090 0.7642 0.7614 0.6676 0.6781 0.6824 0.6585 0.6564                                                            |           | 0.6977.47               | w.        |        |                    |             | 2.00           | 20.00 80.00 120.0             | 96                   |
| 1-Methylnaphthalene              | 1 0 Avg    | 0.6696 (  | ).7576 0.7280 0.6332                                                     | 0.6696 0.7576 0.7280 0.6332 0.6489 0.6475 0.6227 0.6195                                                            |           | 0.666 7.55              |           |        |                    |             | 2.00           | 20.00 80.00 120.0             | 196                  |
| Methylnaphthalenes (1            |            | 0.6896 (  | ).7609 0.7436 0.6502                                                     | 0.6896 0.7609 0.7436 0.6502 0.6632 0.6649 0.6406 0.6382                                                            | -         | 0.6817.47               | 0.999     | 1.00   | _                  |             |                | 20.00 40.00 160.0 240.0 320.0 | 392                  |
| 1,1'-Biphenyl                    | -          | 0.8201    | 0.9130 0.8633 0.7644                                                     | 0.8201 0.9130 0.8633 0.7644 0.7805 0.7913 0.7558 0.7522                                                            |           | 0.8057.84               | ļ         | 100    | 7.1                |             | 2.00           | 20.00 80.00 120.0 1           |                      |
| 1.2.4.5- i etrachioropen         | OAVQ       | 0.6288    | 0.7091 0.6711 0.5899                                                     | 0.6288 0.7091 0.6711 0.5899 0.6236 0.6163 0.5946 0.5944                                                            | <b>!</b>  | 0.629 / .60             | 0.999     |        | σ.                 | 10.01       | 50.00 2.00     | 10.00 20.00 80.00 120.0 160.0 | 0 196.0              |
|                                  | 100        |           |                                                                          |                                                                                                                    |           |                         |           |        | i                  |             |                |                               | ,                    |

Avg Rsd: 8.313

Note:

a - failed the min rf criteria

| Corr 1 = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Correlation Coefficient for quad Eq. |
| Correlation Coefficient for Quadratic Curve was used for compound. |
| Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound. |

Form 6
Initial Calibration

Instrument: GCMS\_9

| <b>021</b>             | Data<br>9M101321.D | Data File: Cal Identifier<br>21.D CAL BNA@50PPM | 09/1                                     | A <u>nalysis Date</u> /Time<br>7/20 13:22               | *                  | Data File: 101314.D | CAL BNA  | Cal Identifier:<br>BNA@2PPM | Analysis D<br>09/17/20 10:34 | Analysis Date/Time<br>7/20 10:34                           |
|------------------------|--------------------|-------------------------------------------------|------------------------------------------|---------------------------------------------------------|--------------------|---------------------|----------|-----------------------------|------------------------------|------------------------------------------------------------|
| лω                     | 9M101313.D         |                                                 |                                          | 0 10:10<br>n 13:13                                      | 4 9M               | 9M101319.D          | CAL BNA  | L BNA@20PPM                 |                              | 12:35                                                      |
| 7                      | 9M101316.D         | D CAL BNA@160PPM                                |                                          | 0 11:24                                                 |                    | 9M101315.D          | CAL BNA  | CAL BNA@196PPM              |                              | 1:00                                                       |
| 9                      | 9M101320.D         |                                                 |                                          | 0 12:58                                                 |                    |                     |          | (                           |                              |                                                            |
| 1Compound Col          | ol Mr Fit:         | RF1 RF2 RF3                                     | RF4 RF5                                  | RF6 RF7 RF8 F                                           | RF9 AvgRf F        | RT Corr1            | Corr2 %F | %Rsd                        |                              | Calibration Level Concentrations  Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 |
| Hexachlorocyclopenta   | 1 0 Avq            | œ i                                             | 0.3067 0.3608                            | _ :                                                     | ဖ                  | _                   | 1.00 8   | .9 0.05                     | 50.00 2.00                   | 10.00 20.00                                                |
| 2,4,6-Trichlorophenol  | 1 0 Avg            | 0.3818 0.3248 0.45                              | 52 0.3448 0.3853 C                       | 0.3818 0.3248 0.4552 0.3448 0.3853 0.3923 0.3806 0.3812 | 0.3817.68          | •                   |          |                             | Ν                            | 10.00 20.00                                                |
| 2,4,5-Trichlorophenol  | 1 0 Avg            | 0.4023 0.3246 0.393                             | 34 0.3768 0.4135 0                       | 0.4023 0.3246 0.3934 0.3768 0.4135 0.4211 0.4052 0.3981 | 0.3927.71          | 0.999               | 0.999 7  | .7 0.20                     | 50.00 2.00                   | 10.00 20.00                                                |
| 2-Fluorobiphenyl       | 1 0 Avg            | 1.3707 1.4571 1.45                              | 28 1.2908 1.3521 1                       | 1.3707 1.4571 1.4528 1.2908 1.3521 1.3636 1.3329 1.3300 | 1.37 7.75          | 1.00                | 1.00 4   | 4.3                         | 25.00 1.00                   | 5.00 10.00 40.00                                           |
| 2-Chloronaphthalene    | 1 0 Avg            | 1.2079 1.2890 1.31;                             | 33 1.1381 1.1798 1                       | 1.2079 1.2890 1.3133 1.1381 1.1798 1.1686 1.1251 1.1160 | 1.197.87           | 0.999               |          | 6.2 0.80                    | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| 1,4-Dimethylnaphthale  | 1 0 Avg            | 0.9255 1.0309 1.029                             | 94 0.8805 0.8951 0                       | 0.9255 1.0309 1.0294 0.8805 0.8951 0.8660 0.8244 0.7969 | 0.906 8.15         | 0.997               |          |                             | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| Dimethylnaphthalenes   | 1 0 Avg            | 0.9255 1.0309 1.029                             | 94 0.8805 0.8951 0                       | 0.9255 1.0309 1.0294 0.8805 0.8951 0.8660 0.8244 0.7969 | 0.906 8.15         | 0.997               |          | 9.5                         | 50.00 2.00                   |                                                            |
| Diphenyl Ether         |                    | 0.8861 0.9916 0.95                              | 81 0.8489 0.8725 0                       | 0.8861 0.9916 0.9581 0.8489 0.8725 0.8651 0.8299 0.8203 | 0.8847.92          | 0.999               |          | 6.9                         | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| 2-Nitroaniline         |                    | 0.3455 0.2687 0.32                              | 18 0.3181 0.3488 0                       | 0.3455 0.2687 0.3218 0.3181 0.3488 0.3541 0.3419 0.3389 | 0.330 7.94         | 0.999               |          | 8.4 0.01                    | 50.00 2.00                   | 10.00 20.00                                                |
| Coumarin               | 1 0 Avg            | 0.4511 0.4731 0.479                             | 91 0.4300 0.4470 0                       | 0.4511 0.4731 0.4791 0.4300 0.4470 0.4410 0.4208 0.4099 | 0.4448.12          | 0.998               |          |                             | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| Acenaphthylene         | 1 0 Avg            | 1.8381 1.8503 1.90                              | 43 1.7123 1.8061 1                       | .8381 1.8503 1.9043 1.7123 1.8061 1.7964 1.7130 1.6895  | 1.798.22           | ļ                   |          | 3 0.90                      | 50.00 2.00                   | 10.00 20.00                                                |
| Dimethylphthalate      | 1 0 Avg            | 1.3525 1.4157 1.42                              | 80 1.2755 1.3394 1                       | 1.3525 1.4157 1.4280 1.2755 1.3394 1.3346 1.2880 1.2749 | 1.34 8.08          | 0.999               |          | .4 0.01                     | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| 2.6-Dinitrotoluene     | 1 0 Avg            | 0.3044 0.2449 0.3025                            | 25 0.2801 0.2964 0                       | 0.2801 0.2964 0.2966 0.2777 0.2668                      | 0.284 8.14         | 0.996               |          | 7.2 0.20                    | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| Acenaphthene           | 1 0 Avg            | 1.2402 1.4463 1.35                              | 77 1.1957 1.2207 1                       | .2402 1.4463 1.3577 1.1957 1.2207 1.1972 1.1275 1.1242  | 1.24 8.38          | 0.998               |          |                             | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| 3-Nitroaniline         | 1 0 Avg            | 0.2526                                          | 88 0.3132 0.3512 0                       | 0.3507 0.3385 0.3339                                    | 0.327 8.29         | 0.999               |          | ÷                           | 50.00 2.00                   |                                                            |
| 2.4-Dinitrophenol      | 1 0 Qua            | 0.1451 0.11                                     | 54 0.1019 0.1745 0                       |                                                         | 0                  | 0.995               | 01       | 23 0.20 a                   | 50.00                        | 10.00 20.00 80.00                                          |
| Dibenzofuran           | 1 0 Avq            | 1.7149 1.9669 1.85                              | 42 1.6174 1.6911 1                       |                                                         | 1.8084 1.73 8.54   | 0.999               |          |                             | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| 2.4-Dinitrotoluene     | 1 0 Ava            | 0.3988 0.2634 0.37                              | 15 0.3555 0.4106 0                       | 0.3988 0.2634 0.3715 0.3555 0.4106 0.4225 0.4123 0.4121 | 0.381 8.50         | 1.00                |          | 14 0.20                     | 50.00 2.00                   | 20.00                                                      |
| 4-Nitrophenol          | 1 0 Qua            | 0.2152 0.1023 0.24                              | 41 0.1898 0.2276 0<br>76 0.3337 0.3666 0 | 0.2152                                                  | 0.209 8.41         | 0.999               |          |                             | 50.00 2.00                   | 20.00                                                      |
| 2.3.4.6-Tetrachlorophe |                    | 0.3563 0.3052 0.34                              | 76 0.3237 0.3660 0                       | 0.3563 0.3052 0.3476 0.3237 0.3660 0.3748 0.3546 0.3612 | 0.349 8.64         | 0.999               | 9        |                             | 50.00 2.00                   | 20.00                                                      |
| Fluorene               | OAVO               | 1.3868 1.5023 1.50                              | 50 1.3185 1.3438 1                       | .3868 1.5023 1.5050 1.3185 1.3438 1.3197 1.2672 1.2622  | 1.35 8.85          | 0.999               |          |                             | 50.00 2.00                   |                                                            |
| 4-Chlorophenyl-phenyl  |                    | 0.6712 0.7592 0.72                              | 11 0.6296 0.6632 0                       | 0.6712 0.7592 0.7211 0.6296 0.6632 0.6608 0.6396 0.6304 | 0.672 8.85         | 0.999               |          | 6.8 0.40                    | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| Diethylphthalate       | 1 0 Avg            | 1.3019 1.3008 1.32                              | 20 1.1977 1.2888 1                       | .3019 1.3008 1.3220 1.1977 1.2888 1.3039 1.2566 1.2415  | 1.288.72           | 0.999               |          |                             | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| 4-Nitroaniline         |                    | 0.3607 0.2379 0.34                              | 13 0.3283 0.3708 0                       | 0.3607 0.2379 0.3413 0.3283 0.3708 0.3753 0.3607 0.3617 | 0.342 8.86         | 0.999               |          | 13 0.01                     | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| Attazine               |                    | 0.4163 0.3187 0.38                              | 25 0 2055 0 4223 0                       | 0.4163 0.3187 0.3805 0.3762 0.4223 0.4277 0.4183 0.4117 | 0.397 9.50         | 0.999               | ļ        | 1                           | 50.00 2.00                   |                                                            |
| 4.6-Uinitro-2-metnyiph | D AVO              | 0.1223 0.11.                                    | 39 0.0958 0.1330 C                       | 0.1139 0.0958 0.1330 0.1407 0.1391 0.1378               | 0.1268.89          | 0.999               | . "      | 7 0.01                      | 50.00                        |                                                            |
| 2 4 6-Tribromonhenol   |                    | 0.0266 0.0407 0.00                              | 02 0.6063 0.6239 C                       | 0.0286                                                  | 0.022 0.90         | 1 00                |          | 3.7 0.01                    | 50.00 2.00                   |                                                            |
| 1.2-Diphenylhydrazine  | 1 - 0 AVA          | 0.6311 0.6875 0.67                              | 13 0.6013 0.6269 C                       | 0.6311                                                  | 0.6419.01          | 0.999               | 1.00     | 4 4                         | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| 4-Bromophenyl-phenyl   |                    | 0.2038 0.2183 0.20                              | 79 0.1914 0.2055 0                       | 0.2038 0.2183 0.2079 0.1914 0.2055 0.2067 0.2060 0.2055 | 0.206 9.34         | .1<br>8             |          | 3.5 0.10                    | 50.00 2.00                   |                                                            |
| Hexachlorobenzene      | 1 0 Avg            | 0.2198 0.2662 0.23                              | 78 0.2107 0.2233 0                       | 0.2198 0.2662 0.2378 0.2107 0.2233 0.2263 0.2239 0.2213 | 0.229 9.41         |                     | ļ        | 7.4 0.10                    | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| N-Octadecane           | 1 0 Avg            | 0.3090 0.2392 0.309                             | 93 0.2832 0.3054 0                       | 0.3090 0.2392 0.3093 0.2832 0.3054 0.2996 0.2828 0.2698 | - 0.287 9.68       | 0.995               |          |                             | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| Pentachlorophenol      | 1 0 Avg            | 0.1414 0.14                                     | 66 0.1187 0.1506 C                       | 0.1466 0.1187 0.1506 0.1575 0.1544 0.1549               | 0.146 9.61         | 0.998               | ω        | 9.1 0.05                    | 50.00                        | 20.00                                                      |
| Phenanthrene           | 1 0 Avg            | 1.0499 1.2518 1.140                             | 64 1.0090 1.0378 1                       | 1.0499 1.2518 1.1464 1.0090 1.0378 1.0254 1.0012 0.9849 | 1.06 9.85          | 0.999               |          |                             | 50.00 2.00                   | 20.00                                                      |
| Anthracene             | 1 0 Avg            | 1.0753 1.1218 1.12                              | 76 1.0259 1.0713 1                       | 1.0753 1.1218 1.1276 1.0259 1.0713 1.0503 1.0307 0.9983 | 1.06 9.90          | 0.999               |          |                             | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| Carbazole              | 1 0 Avg            | 0.9801 0.9423 1.00                              | 58 0.9287 0.9786 C                       | 0.9801 0.9423 1.0058 0.9287 0.9786 0.9766 0.9442 0.9399 | 0.962 10.07        | - 7                 |          |                             | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| Di-n-butylphthalate    | 1 0 Qua            | 1.1066 0.7721 0.97                              | 31 0.9755 1.1298 1                       |                                                         | 0.5826 0.987 10.45 | 0.999               |          |                             | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| Fluoranthene           | 1 0 Avg            | 1.1752 1.0345 1.13                              | 43 1.0740 1.1771 1                       | .1752 1.0345 1.1343 1.0740 1.1771 1.1804 1.1547 1.1440  | 1.13 11.18         |                     | 1.00 4   |                             | 50.00 2.00                   |                                                            |
| Pyrene                 | 1 0 Avg            | 1.1991 1.1646 1.21;                             | 20 1.1032 1.1754 1                       | 1.1991 1.1646 1.2120 1.1032 1.1754 1.2103 1.1905 1.1796 | 1.18 11.45         | 11.45 1.00          | 1.00 3   | 3.0 0.60                    | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| Benzidine              | 1 0 Qua            | 0.6242 0.2647 0.59                              | 75 0.5110 0.6516 C                       | 0.6242 0.2647 0.5975 0.5110 0.6516 0.6623 0.6553 0.6510 | 0.577 11.34        | 1                   | 0.999    | 24                          | 50.00 2.00                   | 10.00 20.00 80.00                                          |
| Tombooki did           |                    | 0 E000 O E000 O E7/                             | )) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )   | 0 5839                                                  | 0.583.11.64        | 1 62 1 00           |          | ,                           |                              | 1,,                                                        |

Note:

Flags

Avg Rsd: 8.313

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

c - failed the minimum correlation coeff criteria(if applicable)

Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Method: EPA 8270E

### Form 6 Initial Calibration

Instrument: GCMS\_9

| <b>21</b> Level #      | Data File   | File: Cal Identifier:      | Analysis Date/Time                                            | Level #: | Data File            |                | Cal Identifier: | Analys         | Analvsis Date/Time                           |             |               |  |
|------------------------|-------------|----------------------------|---------------------------------------------------------------|----------|----------------------|----------------|-----------------|----------------|----------------------------------------------|-------------|---------------|--|
|                        | 9M101321.D  | CAL BNA@50PPM              | 09/17/20 13:22                                                | 2        |                      | CAL B          | BNA@2PPM        | 09/17/20 10:34 | 0:34                                         |             |               |  |
| ω                      | 9M101313.D  | CAL BNA@10PPM              | 09/17/20 10:10                                                | 4        | 9M101319.D           | CAL BNA@20PPM  | 20PPM           | 09/17/20 12:35 | 2:35                                         |             |               |  |
| 5                      | 9M101318.D  | CAL BNA@80PPM              | 09/17/20 12:12                                                | თ        | 9M101317.D           | CAL BNA@120PPM | 0120PPM         | 09/17/20 11:47 | 1:47                                         |             |               |  |
| 7                      | 9M101316.D  | CAL BNA@160PPM             | 09/17/20 11:24                                                | œ        | 9M101315.D           | CAL BNA@196PPM | )196PPM         | 09/17/20 11:00 | 1:00                                         |             |               |  |
| <b>0</b> 2             | 9M101320.D  | CAL BNA@0.5PPM             | 09/17/20 12:58                                                |          |                      |                |                 |                |                                              |             |               |  |
|                        | !           |                            |                                                               | 1        |                      |                | 3               |                | Calibration Level Concentrations             | ncentration | <b>ಹ</b>      |  |
| Compound               | Col Mr Fit: | RF1 RF2 RF3 RF4            | RF5 RF6 RF7 RF8 I                                             | RF9 AvgF | AvgRf RT Corr1 Corr2 | Corr2 %Rsd     | ă               | LVI1 LVI2      | LVI1 LVI2 LVI3 LVI4 LVI5 LVI6 LVI7 LVI8 LVI9 | Lvl6 Lv     | 17 Lvi8 Lvi9  |  |
| <b>₽</b> ,4'-DDE       | 1 0 Avg 0   | ).3164 0.3085 0.3251 0.287 | 0.3164 0.3085 0.3251 0.2870 0.3181 0.3368 0.3355 0.3357       | 0.       | 0.320 11.57 0.999    | 1.00 5.3       | •               | 50.00 2.00 1   | 10.00 20.00 80.00 120.0                      | 120.0 160.0 | 0.0 196.0     |  |
| 4.4'-DDD               | 1 0 Avg 0   | ).4676 0.3298 0.4118 0.403 | 0.4676 0.3298 0.4118 0.4039 0.4696 0.4943 0.4859 0.4842       | 0.       |                      | 0.999 13       | _               |                | 10.00 20.00 80.00 120.0                      | 120.0 160   | 160.0 196.0   |  |
| Butylbenzylphthalate   | 1 0 Qua 0   | 0.4710 0.2384 0.3600 0.384 | 0.4710 0.2384 0.3600 0.3840 0.4937 0.5153 0.5030 0.5012       | 0.       | 0.433 12.23 0.999    | 0.999 23       | 0.01            |                | 10.00 20.00 80.00                            | 120.0 160.0 | 0.0 196.0     |  |
| 4.4'-DDT               | 1 0 Avg 0   | ).5607 0.4100 0.6178 0.504 | 0.5607 0.4100 0.6178 0.5043 0.5646 0.5801 0.5774 0.5756       | 0.       | 549 12.33 1.00       | 1.00 12        |                 |                | 10.00 20.00 80.00 120.0                      | 120.0 160   | 160.0 196.0   |  |
| 3,3'-Dichlorobenzidine | 1 0 Qua 0   | .3898 0.2240 0.4113 0.335  | 0.3898 0.2240 0.4113 0.3352 0.4035 0.4225 0.4142 0.3995       | 0        | 375 12.85 0.999      | 0.999 18       | 0.01            | 50.00 2.00 1   | 10.00 20.00 80.00 120.0                      | 120.0 160   | 160.0 196.0   |  |
| Benzo[a]anthracene     | 1 0 Avg 1   | .1262 1.1259 1.1404 1.040  | 1.1262 1.1259 1.1404 1.0406 1.1448 1.1645 1.1679 1.1421       | 1        | 1.13 12.88 1.00      | 8              | 0.80            | 50.00 2.00 1   | 0.00 20.00 80.00                             | 120.0 160   | 160.0 196.0   |  |
| Chrysene               | 1 0 Avg 1   | .1020 1.2634 1.1943 1.044  | 1.1020 1.2634 1.1943 1.0445 1.0556 1.0822 1.0400 1.0496       |          | 1.10 12.92 1.00      | 1.00 7.4       | 0.70            | 50.00 2.00 1   | 0.00 20.00 80.00                             | 120.0 160   | 0 196.0       |  |
| bis(2-Ethylhexyl)phtha | 1 0 Qua     | 0.6559 0.3313 0.5540 0.566 | 0.6559 0.3313 0.5540 0.5664 0.6633 0.6739 0.6511 0.6267       | 0.       | 590 12.92 0.998      | 0.999          | 0.01            | 50.00 2.00 1   | 0.00 20.00 80.00                             | 120.0 160   | 0.196.0       |  |
| Di-n-octylphthalate    | 1 0 Qua 1   | .0321 0.3373 0.6180 0.805  | 1.0321 0.3373 0.6180 0.8050 1.0983 1.1633 1.1157 1.0860       | 0.       | 907 13.68 0.998      | 0.999          | 0.01            | 50.00 2.00 1   | 0.00 20.00 80.00                             | 120.0 160   | ) 160.0 196.0 |  |
| Benzo[b]fluoranthene   | 1 0 Avg 1   | .0627 0.8442 0.9841 0.933  | 1.0627 0.8442 0.9841 0.9332 1.0674 1.1317 1.1321 1.1712       |          | 1.04 14.10 0.999     | 8              | 0.70            | 50.00 2.00 1   | 0.00 20.00 80.00                             | 120.0 160   | 0 160.0 196.0 |  |
| Benzojklfluoranthene   | 1 0 Avg 1   | .1059 1.0441 1.1654 1.030  | 1.1059 1.0441 1.1654 1.0308 1.0850 1.0826 1.0345 0.9585       | !        | 1.06 14 13 0.994     | 0.999 5.8      | 0.70            | 50.00 2.00 1   | 0.00 20.00 80.00                             | 120.0 160   | 0 196.0       |  |
| Benzolalpyrene         | 1 0 Avg 0   | 1.9862 0.7020 0.9358 0.853 | 0.9862 0.7020 0.9358 0.8535 0.9952 1.0171 1.0027 0.9943       | 0.       | 936 14.47 1.00       | 1.00           | 0.70            | 50.00 2.00 1   | 0.00 20.00 80.00                             | 120.0 160   | 160.0 196.0   |  |
| Indeno[1,2,3-cd]pyren  | 1 0 Avg 1   | .1882 0.9198 1.0889 1.047  | 1.1882 0.9198 1.0889 1.0476 1.2176 1.2755 1.2625 1.2526       |          | 1.16 15.89 1.00      | 1.00 11        | 0.50            | 50.00 2.00 1   | 10.00 20.00 80.00 120.0 1                    | 120.0 160   | 0 196.0       |  |
| Dibenzola,hlanthracen  | 1 0 Avg     | .0042 0.7706 0.9347 0.892  | 1.0042 0.7706 0.9347 0.8922 1.0083 1.0517 1.0405 1.0286       | 0.       | 966 15.92 1.00       | 1.00           | 0.40            | 50.00 2.00 1   | 0.00 20.00 80.00                             | 120.0 160   | ) 160.0 196.0 |  |
| Benzola,h,ilperylene   | 1 0 Avg 0   | 9795 0.8174 0.9208 0.868   | 0 Avg 0.9795 0.8174 0.9208 0.8688 0.9875 1.0324 1.0163 1.0094 | 0.       | 0.954 16.29 1.00     | 1.00 8.1       | 1               | 50.00 2.00 1   | 10.00 20.00 80.00 120.0 160.0 196.0          | 120.0 160   | 0 196.0       |  |

Flags

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

C - failed the minimum correlation coeff criteria(if applicable) Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound. Note: Avg Rsd: 8.313

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 8:27:00 A Data File: 9M101545.D Method: EPA 8270E Instrument: GCMS 9

| TxtCompd:                   | Co#      | Multi<br>Num | Туре | RT   | Conc   | Conc<br>Exp | Lo l<br>Lim |             | Initial<br>RF | RF    | %Diff  | Flag  |
|-----------------------------|----------|--------------|------|------|--------|-------------|-------------|-------------|---------------|-------|--------|-------|
| 1,4-Dioxane-d8(INT)         | 1        | 0            | ı    | 2.71 | 40.00  | 40          | **          |             |               | 0.000 | 0.00   |       |
| 1,4-Dioxane                 | 1        | 0            |      | 2.74 | 47.74  | 50          | **          |             | 1.057         | 1.009 | 4.52   |       |
| Pyridine                    | 1        | 0            |      | 3.21 | 50.45  | 50          | **          |             | 2.196         | 2.216 | 0.90   |       |
| N-Nitrosodimethylamine      | 1        | 0            |      | 3.14 | 51.95  | 50          | **          |             | 1.391         | 1.445 | 3.91   |       |
| 2-Fluorophenol              | 1        | 0            | S    | 4.71 | 50.91  | 50          | **          |             | 2.092         | 2.130 | 1.81   |       |
| Benzaldehyde                | 1        | 0            |      | 5.52 | 49.15  | 50          | 20          | 0.01        | 2.004         | 1.970 | 1.70   |       |
| Aniline                     | 1        | 0            |      | 5.62 | 50.58  | 50          | **          |             | 3.460         | 3.500 | 1.17   |       |
| Pentachloroethane           | 1        | 0            |      | 5.67 | 49.29  | 50          | **          | 0.05        | 0.724         | 0.714 | 1.42   |       |
| bis(2-Chloroethyl)ether     | 1        | 0            |      | 5.68 | 51.97  | 50          | 20          | 0.7         | 2.274         | 2.364 | 3.94   |       |
| Phenol-d5                   | 1        | 0            | S    | 5.58 | 51.68  | 50          | **          |             | 2.531         | 2.616 | 3.37   |       |
| Phenol                      | 1        | 0            |      | 5.59 | 50.76  | 50          | 20          | 0.8         | 3.242         | 3.291 | 1.52   |       |
| 2-Chlorophenol              | 1        | 0            |      | 5.72 | 50.18  | 50          | 20          | 0.8         | 2.529         | 2.538 | 0.35   |       |
| N-Decane                    | 1        | 0            |      | 5.77 | 51.28  | 50          | **          | 0.05        | 1.907         | 1.956 | 2.56   |       |
| 1,3-Dichlorobenzene         | 1        | 0            |      | 5.85 | 50.04  | 50          | **          |             | 2.771         | 2.773 | 0.09   |       |
| 1,4-Dichlorobenzene-d4      | 1        | 0            | 1    | 5.90 | 40.00  | 40          | **          |             |               | 0.000 | 0.00   |       |
| 1,4-Dichlorobenzene         | 1        | 0            |      | 5.92 | 50.71  | 50          | 20          |             | 1.496         | 1.517 | 1.42   |       |
| 1,2-Dichlorobenzene         | 1        | 0            |      | 6.04 | 50.63  | 50          | **          |             | 1.415         | 1.433 | 1.27   |       |
| Benzyl alcohol              | 1        | 0            |      | 6.01 | 50.81  | 50          | **          |             | 0.812         | 0.825 | 1.62   |       |
| ois(2-chloroisopropyl)ether | 1        | 0            |      | 6.12 | 52.96  | 50          | 20          | 0.01        | 1.260         | 1.334 | 5.92   |       |
| 2-Methylphenol              | 1        | 0            |      | 6.10 | 52.60  | 50          | 20          | 0.7         | 1.157         | 1.217 | 5.21   |       |
| Acetophenone                | 1        | 0            |      | 6.22 | 51.72  | 50          | 20          |             | 1.702         | 1.761 | 3.44   |       |
| -lexachloroethane           | 1        | 0            |      | 6.32 | 51.22  | 50          | 20          |             | 0.526         | 0.539 | 2.44   |       |
| N-Nitroso-di-n-propylamine  | 1        | 0            |      | 6.22 | 53.55  | 50          | 20          |             | 0.741         | 0.793 | 7.09   |       |
| 3&4-Methylphenol            | 1        | 0            |      | 6.22 | 53.11  | 50          | 20          |             | 1.136         | 1.206 | 6.22   |       |
| Naphthalene-d8              | 1        | 0            | 1    | 6.91 | 40.00  | 40          | **          |             |               | 0.000 | 0.00   |       |
| Nitrobenzene-d5             | 1        | 0            | S    | 6.35 | 26.62  | 25          | **          |             | 0.144         | 0.153 | 6.48   |       |
| Nitrobenzene                | 1        | 0            |      | 6.37 | 51.60  | 50          | 20          | 0.2         | 0.314         | 0.324 | 3.20   |       |
| sophorone                   | 1        | 0            |      | 6.55 | 52.75  | 50          | 20          | 0.4         | 0.574         | 0.606 | 5.50   |       |
| 2-Nitrophenol               | 1        | 0            |      | 6.61 | 52.91  | 50          | 20          |             | 0.177         | 0.187 | 5.82   |       |
| 2,4-Dimethylphenol          | 1        | 0            |      | 6.64 | 51.46  | 50          | 20          |             | 0.294         | 0.302 | 2.92   |       |
| Benzoic Acid                | 1        | _ <u></u>    |      | 6.69 | 37.57  | 50          | **          |             | 0.206         | 0.143 | 24.87  | _     |
| pis(2-Chloroethoxy)methane  | 1        | Ō            |      | 6.71 | 51.46  | 50          | 20          | 0.3         | 0.365         | 0.375 | 2.91   |       |
| 2,4-Dichlorophenol          | 1        | 0            |      | 6.80 | 52.73  | 50          | 20          |             | 0.270         | 0.285 | 5.45   |       |
| 1,2,4-Trichlorobenzene      | 1        | 0            |      | 6.86 | 49.96  | 50          | **          | ٠.٥         | 0.312         | 0.312 | 0.07   |       |
| Naphthalene                 | 1        | Ō            |      | 6.92 | 50.52  | 50          | 20          | 0.7         | 1.062         | 1.073 | 1.04   |       |
| 4-Chloroaniline             | <u>·</u> | 0            |      | 6.95 | 51.16  | 50_         | 20          |             | 0.390         | 0.399 | 2.32   | ***** |
| Hexachlorobutadiene         | 1        | Ö            |      | 7.01 | 49.66  | 50          | 20          |             | 0.175         | 0.174 | 0.68   |       |
| Caprolactam                 | 1        | 0            |      | 7.22 | 54.01  | 50          | 20          |             | 0.105         | 0.113 | 8.02   |       |
| 1-Chloro-3-methylphenol     | 1        | 0            |      | 7.32 | 50.23  | 50          | 20          |             | 0.276         | 0.113 | 0.46   |       |
| 2-Methylnaphthalene         | 1        | 0            |      | 7.47 | 50.94  | 50          | **          |             | 0.697         | 0.710 | 1.88   |       |
| I-Methylnaphthalene         | 1        | 0            |      | 7.54 | 50.37  | 50          | **          |             | 0.666         | 0.671 | 0.74   |       |
| Methylnaphthalenes          | 1        | 0            |      | 7.54 | 101.44 | 50          | **          | ₩.₩         | 3.300         | 1.382 | 102.88 |       |
| 1,1'-Biphenyl               | 1        | 0            |      | 7.84 | 50.44  | 50          | 20          | 0.01        | 0.805         | 0.812 | 0.89   |       |
| Acenaphthene-d10            | 1        | 0            | 1    | 8.35 | 40.00  | 40          | **          | 0.01        | 3.000         | 0.000 | 0.00   |       |
| I,2,4,5-Tetrachlorobenzene  | 1        |              | •    | 7.60 | 50.09  | 50          | 20          | 0.01        | 0.629         | 0.630 | 0.00   |       |
| Hexachlorocyclopentadiene   | 1        | 0            |      | 7.59 | 47.77  | 50          | 20          |             | 0.339         | 0.324 | 4.45   |       |
| 2,4,6-Trichlorophenol       | 1        | 0            |      | 7.68 | 49.38  | 50          | 20          |             | 0.381         | 0.324 | 1.25   |       |
| 2,4,5-Trichlorophenol       | 1        | 0            |      | 7.71 | 50.46  | 50          | 20          |             | 0.392         | 0.376 | 0.92   |       |
| · ·                         | 1        | 0            | S    | 7.75 | 25.55  | 25          | **          | <b>U.</b> Z | 1.369         | 1.399 | 2.21   |       |
| 2-Fluorobiphenyl            | 1        | 0            | 3    |      |        |             |             | ۸.          |               |       |        |       |
| 2-Chloronaphthalene         |          |              |      | 7.87 | 51.16  | 50_         | 20          | U.8         | 1.192         | 1.220 | 2.32   |       |
| 1,4-Dimethylnaphthalene     | 1        | 0            |      | 8.15 | 50.91  | 50          |             |             | 0.906         | 0.923 | 1.82   |       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 8:27:00 A Data File: 9M101545.D Method: EPA 8270E Instrument: GCMS 9

| TxtCompd:                                       | Col#     |   | Туре | RT    | Conc           | Conc<br>Exp |          | RF    | Initial<br>RF | RF    | %Diff Flag   |
|-------------------------------------------------|----------|---|------|-------|----------------|-------------|----------|-------|---------------|-------|--------------|
| Diphenyl Ether                                  | 1        | 0 |      | 7.92  | 50.84          | 50          | **       |       | 0.884         | 0.899 | 1.69         |
| 2-Nitroaniline                                  | 1        | 0 |      | 7.94  | 54.42          | 50          | 20       | 0.01  | 0.330         | 0.359 | 8.85         |
| Coumarin                                        | 1        | 0 |      | 8.12  | 52.31          |             | **       |       | 0.444         |       |              |
| Acenaphthylene                                  | 1        | 0 |      | 8.22  | 51.89          | 50          | 20       | 0.9   | 1.789         | 1.856 | 3.77         |
| Dimethylphthalate                               | 1        | 0 |      | 8.08  | 51.28          | 50          | 20       |       | 1.339         | 1.373 | 2.56         |
| 2,6-Dinitrotoluene                              | 1        | 0 |      | 8.14  | 53.83          | 50          | 20       | 0.2   | 0.284         | 0.305 | 7.66         |
| Acenaphthene                                    | 1        | 0 |      | 8.38  | 50.84          | 50          | 20       | 0.9   | 1.239         | 1.260 | 1.69         |
| 3-Nitroanilin <del>e</del>                      | 1        | 0 |      | 8.29  | 54.15          | 50          | 20       | 0.01  | 0.327         | 0.354 | 8.29         |
| 2,4-Dinitrophenol                               | 1        | 0 |      | 8.38  | 43.96          | 50          | 20       | 0.2   | 0.157         | 0.134 | 12.08        |
| Dibenzofuran                                    | 1        | 0 |      | 8.53  | 50.59          | 50          | 20       | 0.8   | 1.727         | 1.747 | 1.17         |
| 2,4-Dinitrotoluene                              | 1        | 0 |      | 8.50  | 54.33          | 50          | 20       | 0.2   | 0.381         | 0.414 | 8.65         |
| 4-Nitrophenol                                   | 1        | 0 |      | 8.41  | 48.53          | 50          | 20       | 0.01  | 0.209         | 0.221 | 2.94         |
| 2,3,4,6-Tetrachlorophenol                       | 1        | 0 |      | 8.64  | 51.65          | 50          | 20       | 0.01  | 0.349         | 0.360 | 3.29         |
| Fluorene                                        | 1        | 0 |      | 8.86  | 50.71          | 50          | 20       | 0.9   | 1.363         | 1.382 | 1.41         |
| 4-Chlorophenyl-phenylether                      | 1        | 0 |      | 8.85  | 50.43          | 50          | 20       | 0.4   | 0.672         | 0.678 | 0.86         |
| Diethylphthalate                                | 1        | 0 |      | 8.72  | 51.72          | 50          | 20       | 0.01  | 1.277         | 1.321 | 3.44         |
| 1-Nitroaniline                                  | 1        | 0 |      | 8.86  | 55.29          | 50          | 20       | 0.01  | 0.342         | 0.378 | 10.58        |
| Atrazine                                        | 1        | 0 |      | 9.49  | 52.24          | 50          | 20       | 0.01  | 0.397         | 0.414 | 4.47         |
| Phenanthrene-d10                                | 1        | 0 | ı    | 9.82  | 40.00          | 40          | **       |       |               | 0.000 | 0.00         |
| 1,6-Dinitro-2-methylphenol                      | 1        | 0 |      | 8.89  | 47.37          | 50          | 20       | 0.01  | 0.126         | 0.120 | 5.25         |
| n-Nitrosodiphenylamine                          | 1        | 0 |      | 8.96  | 51.47          | 50          | 20       | 0.01  | 0.622         | 0.640 | 2.94         |
| 2,4,6-Tribromophenol                            | 1        | 0 | S    | 9.09  | 51.86          | 50          | **       |       | 0.092         | 0.096 | 3.72         |
| 2-Diphenylhydrazine                             | 1        | 0 |      | 9.00  | 51.21          | 50          | **       |       | 0.641         | 0.656 | 2.42         |
| I-Bromophenyl-phenylether                       | 1        | 0 |      | 9.34  | 50.54          | 50          | 20       | 0.1   | 0.206         | 0.208 | 1.09         |
| lexachlorobenzene                               | 1        | 0 |      | 9.41  | 48.46          | 50          | 20       | 0.1   | 0.229         | 0.222 | 3.08         |
| N-Octadecane                                    | 1        | 0 | **   | 9.68  | 55.34          | 50          | **       |       | 0.287         | 0.318 | 10.68        |
| Pentachlorophenol                               | 1        | 0 |      | 9.61  | 48.97          | 50          | 20       |       | 0.146         | 0.143 | 2.06         |
| Phenanthrene                                    | 1        | 0 |      | 9.85  | 49.90          | 50          | 20       | 0.7   | 1.063         | 1.061 | 0.20         |
| Anthracene                                      | 1        | 0 |      | 9.90  | 50.88          | 50          | 20       | 0.7   | 1.063         | 1.081 | 1.76         |
| Carbazole                                       | 1        | 0 |      | 10.07 | 52.47          | 50          | 20       |       | 0.962         | 1.010 | 4.93         |
| Di-n-butylphthalate                             | 1        | 0 |      | 10.45 | 49.45          | 50          | 20       |       | 0.987         | 1.130 | 1.11         |
| Fluoranthene                                    | 1        | 0 |      | 11.18 | 52.88          | 50          | 20       |       | 1.134         | 1.200 | 5.76         |
| Chrysene-d12                                    | 1        | 0 | 1    | 12.88 | 40.00          | 40          | **       |       |               | 0.000 | 0.00         |
| Pyrene                                          | 1        | ō | •    | 11.45 | 52.12          | 50          | 20       | 0.6   | 1.179         | 1.229 | 4.24         |
| Benzidine                                       | 1        | Ö |      | 11.33 | 45.72          | 50          | **       | 0.0   | 0.577         | 0.564 | 8.56         |
| Ferphenyl-d14                                   | i        | 0 | S    | 11.62 | 26.22          | 25          | **       |       | 0.582         | 0.611 | 4.89         |
| 1,4'-DDE                                        | 1        | Ö | ŭ    | 11.57 | 50.17          | 20          | **       |       | 0.320         | 0.011 | 41.00        |
| 1,4'-DDD                                        | 1        | Ö |      | 11.96 | 53.69          |             | **       |       | 0.443         |       |              |
| Butylbenzylphthalate                            | 1        | ō |      | 12.22 | 49.60          | 50          | 20       | 0.01  | 0.433         | 0.489 | 0.81         |
| 1,4'-DDT                                        | 1        | 0 |      | 12.32 | 52.53          |             | **       | 0.01  | 0.549         | 0.400 | 0.01         |
| 3,3'-Dichlorobenzidine                          | <u>-</u> | 0 |      | 12.84 | 48.20          | 50          | 20       | 0.01  | 0.375         | 0.399 | 3.59         |
| Benzo[a]anthracene                              | 1        | 0 |      | 12.87 | 52.03          | 50          | 20       |       | 1.132         | 1.177 | 4.06         |
| Chrysene                                        | 1        | 0 |      | 12.91 | 50.14          | 50          | 20       |       | 1.104         | 1.107 | 0.27         |
| pis(2-Ethylhexyl)phthalate                      | 1        | 0 |      | 12.91 | 49.86          | 50          | 20       |       | 0.590         | 0.677 | 0.28         |
| Perylene-d12                                    | 1        | 0 | 1    | 14.51 | 49.00          | 40          | 2U<br>** | Ų.U I | 0.000         | 0.000 | 0.28         |
| Di-n-octylphthalate                             | 1        | 0 | '    | 13.66 | 48.58          | 50          | 20       | 0.01  | 0.907         | 1.082 | 2.85         |
| Benzo[b]fluoranthene                            | 1        | 0 |      | 14.08 | 54.07          | 50<br>50    | 20       |       | 1.041         | 1.126 | 2.65<br>8.15 |
| Senzo[k]fluoranthene                            | 1        | 0 |      | 14.08 | 54.07<br>51.57 | 50<br>50    | 20       |       | 1.063         | 1.097 | 3.15         |
| Benzo[a]pyrene                                  | 1        | 0 |      | 14.12 | 51.57<br>54.51 | 50<br>50    | 20       |       | 0.936         | 1.097 | 9.02         |
|                                                 | 1        |   |      | 15.87 | 54.91<br>54.01 | 50<br>50    | 20       |       | 1.157         | 1.020 | 9.02<br>8.02 |
| ndeno[1,2,3-cd]pyrene<br>Dibenzo[a,h]anthracene | 1        | 0 |      | 15.89 | 53.77          | 50          | 20       |       | 0.966         | 1.039 | 7.54         |
|                                                 |          |   |      |       |                |             |          |       |               |       |              |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

1-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 8:27:00 A Data File: 9M101545.D Method: EPA 8270E Instrument: GCMS 9

| TxtCompd:                      | Col# | Multi<br>Num | Туре | RT   | Conc | Conc<br>Exp | Lo MII<br>Lim RF |       | RF_   | %Diff Flag |
|--------------------------------|------|--------------|------|------|------|-------------|------------------|-------|-------|------------|
| Toluene Diisocyanate           | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| Dimethylnaphthalenes (Total)   | 1    | 100          |      | 0.00 | 0.00 | 50          | **               | 0.906 | 0.000 | 100.00     |
| 1,4-Dioxane-d8                 | 1    | 100          |      | 0.00 | 0.00 | 40          | **               |       | 0.000 | 100.00     |
| Methylnaphthalenes (Total)     | 1    | 100          |      | 0.00 | 0.00 | 100         | **               | 0.681 | 0.000 | 100.00     |
| Methoxychlor                   | 1    | 100          |      | 0.00 | 0.00 | 10          | **               |       | 0.000 | 100.00     |
| Heptachlor                     | 1    | 100          |      | 0.00 | 0.00 | 10          | **               |       | 0.000 | 100.00     |
| 4-Methylphenol                 | 1    | 100          |      | 0.00 | 0.00 | 50          | **               | 0.6   | 0.000 | 100.00     |
| gamma-BHC                      | 1    | 100          |      | 0.00 | 0.00 | 10          | **               |       | 0.000 | 100.00     |
| Endrin                         | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| 1,4-Dioxane-d8-Surro           | 1    | 100          |      | 0.00 | 0.00 | 40          | **               |       | 0.000 | 100.00     |
| 2,2'-oxybis-(1-Chloropropane)  | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| Diaminotoluene Dihydrochloride | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| 2,4 Diaminotoluene             | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |       | 0.000 | 100.00     |
| Heptachlor epoxide             | 1    | 100          |      | 0.00 | 0.00 | 10          | **               |       | 0.000 | 100.00     |

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 2:57:00 P Data File: 7M109898.D Method: EPA 8270E Instrument: GCMS 7

| TxtCompd:                   | Col# | Multi<br>Num | Туре | RT   | Conc   | Conc<br>Exp | Lo f |       | Initial<br>RF | RF    | %Diff  | Flag |
|-----------------------------|------|--------------|------|------|--------|-------------|------|-------|---------------|-------|--------|------|
| ,4-Dioxane-d8(INT)          | 1    | 0            | 1    | 2.70 | 40.00  | 40          | **   |       |               | 0.000 | 0.00   |      |
| 1,4-Dioxane                 | 1    | 0            |      | 2.75 | 47.35  | 50          | **   |       | 1.035         | 0.980 | 5.30   |      |
| Pyridine                    | 1    | 0            |      | 3.23 | 50.92  | 50          | **   |       | 2.335         | 2.378 | 1.84   |      |
| N-Nitrosodimethylamine      | 1    | 0            |      | 3.16 | 56.84  | 50          | **   |       | 1.466         | 1.667 | 13.68  |      |
| 2-Fluorophenol              | 1    | 0            | S    | 4.73 | 51.07  | 50          | **   |       | 2.355         | 2.406 | 2.14   |      |
| 3enzaldehyde                | 1    | 0            |      | 5.52 | 51.88  | 50          | 20   | 0.01  | 2.298         | 2.385 | 3.76   |      |
| Aniline                     | 1    | 0            |      | 5.62 | 50.77  | 50          | **   |       | 3.788         | 3.846 | 1.54   |      |
| Pentachloroethane           | 1    | 0            |      | 5.66 | 49.88  | 50          | **   | 0.05  | 0.836         | 0.834 | 0.23   |      |
| ois(2-Chloroethyl)ether     | 1    | 0            |      | 5.67 | 54.14  | 50          | 20   | 0.7   | 2.509         | 2.654 | 8.28   |      |
| Phenol-d5                   | 1    | 0            | S    | 5.59 | 54.29  | 50          | **   |       | 2.830         | 3.073 | 8.59   |      |
| Phenol                      | 1    | 0            |      | 5.60 | 54.00  | 50          | 20   | 0.8   | 3.460         | 3.737 | 8.00   |      |
| 2-Chlorophenol              | 1    | 0            |      | 5.72 | 50.77  | 50          | 20   | 8.0   | 2.749         | 2.792 | 1.54   |      |
| N-Decane                    | 1    | 0            |      | 5.76 | 57.56  | 50          | **   | 0.05  | 1.917         | 2.207 | 15.11  |      |
| ,3-Dichlorobenzene          | 1    | 0            |      | 5.85 | 48.88  | 50          | **   |       | 2.994         | 2.927 | 2.25   |      |
| 1,4-Dichlorobenzene-d4      | 1    | 0            |      | 5.90 | 40.00  | 40          | **   |       |               | 0.000 | 0.00   |      |
| ,4-Dichlorobenzene          | 1    | 0            |      | 5.91 | 51.31  | 50          | 20   |       | 1.484         | 1.523 | 2.62   |      |
| 1,2-Dichlorobenzene         | 1    | 0            |      | 6.04 | 50.70  | 50          | **   |       | 1.410         | 1.429 | 1.40   |      |
| Benzyl alcohol              | 1    | 0            |      | 6.01 | 46.64  | 50          | **   |       | 0.837         | 0.781 | 6.72   |      |
| ois(2-chloroisopropyl)ether | 1    | 0            |      | 6.12 | 63.85  | 50          | 20   | 0.01  | 1.103         | 1.409 | 27.69  | C1   |
| 2-Methylphenol              | 1    | 0            |      | 6.10 | 55.80  | 50          | 20   | 0.7   | 1.172         | 1.308 | 11.61  |      |
| Acetophenone                | 1    | 0            |      | 6.22 | 55.06  | 50          | 20   | 0.01  | 1.786         | 1.967 | 10.12  |      |
| Hexachloroethane            | 1    | 0            |      | 6.31 | 51.37  | 50          | 20   | 0.3   | 0.571         | 0.587 | 2.73   |      |
| N-Nitroso-di-n-propylamine  | 1    | 0            |      | 6.22 | 58.08  | 50          | 20   | 0.5   | 0.843         | 0.979 | 16.16  |      |
| 3&4-Methylphenol            | 1    | 0            |      | 6.22 | 54.50  | 50          | 20   |       | 1.200         | 1.308 | 8.99   |      |
| Naphthalene-d8              | 1    | 0            | 1    | 6.90 | 40.00  | 40          | **   |       |               | 0.000 | 0.00   |      |
| Nitrobenzene-d5             | 1    | 0            | S    | 6.34 | 25.64  | 25          | **   |       | 0.159         | 0.163 | 2.54   |      |
| Nitrobenzene                | 1    | 0            |      | 6.36 | 53.32  | 50          | 20   | 0.2   | 0.343         | 0.365 | 6.64   |      |
| sophorone                   | 1    | 0            |      | 6.54 | 54.29  | 50          | 20   | 0.4   | 0.627         | 0.681 | 8.58   |      |
| 2-Nitrophenol               | 1    | 0            |      | 6.61 | 51.69  | 50          | 20   | 0.1   | 0.195         | 0.202 | 3.38   |      |
| 2,4-Dimethylphenol          | 1    | 0            |      | 6.63 | 49.52  | 50          | 20   | 0.2   | 0.320         | 0.317 | 0.95   |      |
| Benzoic Acid                | 1    | 0            |      | 6.69 | 28.00  | 50          | **   |       | 0.233         | 0.120 | 44.00  |      |
| ois(2-Chloroethoxy)methane  | 1    | 0            |      | 6.70 | 53.75  | 50          | 20   | 0.3   | 0.383         | 0.412 | 7.49   |      |
| 2,4-Dichlorophenol          | 1    | 0            |      | 6.79 | 48.30  | 50          | 20   |       | 0.306         | 0.295 | 3.40   |      |
| 1,2,4-Trichlorobenzene      | 1    | 0            |      | 6.85 | 47.17  | 50          | **   |       | 0.334         | 0.315 | 5.66   |      |
| Naphthalene                 | 1    | 0            |      | 6.92 | 50.19  | 50          | 20   | 0.7   | 1.040         | 1.044 | 0.39   |      |
| 1-Chloroaniline             | 1    | 0            |      | 6.95 | 49.95  | 50          | 20   |       | 0.418         | 0.418 | 0.11   |      |
| Hexachlorobutadiene         | 1    | 0            |      | 7.01 | 46.28  | 50          | 20   |       | 0.188         | 0.174 | 7.45   |      |
| Caprolactam                 | 1    | 0            |      | 7.22 | 53.13  | 50          | 20   |       | 0.118         | 0.126 | 6.25   |      |
| 1-Chloro-3-methylphenol     | 1    | 0            |      | 7.32 | 49.67  | 50          | 20   |       | 0.308         | 0.306 | 0.66   |      |
| 2-Methylnaphthalene         | 1    | 0            |      | 7.45 | 50.74  | 50          | **   |       | 0.702         | 0.712 | 1.48   |      |
| 1-Methylnaphthalene         | 1    | 0            |      | 7.53 | 50.89  | 50          | **   |       | 0.662         | 0.674 | 1.77   |      |
| Methylnaphthalenes          | 1    | 0            |      | 7.53 | 101.67 | 50          | **   |       | _             | 1.387 | 103.33 |      |
| I,1'-Biphenyl               | 1    | 0            |      | 7.83 | 50.24  | 50          | 20   | 0.01  | 0.825         | 0.829 | 0.47   |      |
| Acenaphthene-d10            | 1    | 0            | 1    | 8.35 | 40.00  | 40          | **   | . • . | <del>-</del>  | 0.000 | 0.00   |      |
| 1,2,4,5-Tetrachlorobenzene  | 1    | 0            | •    | 7.59 | 49.30  | 50          | 20   | 0.01  | 0.627         | 0.619 | 1.39   |      |
| Hexachlorocyclopentadiene   | 1    | 0            |      | 7.58 | 32.70  | 50          | 20   |       | 0.351         | 0.230 | 34.60  |      |
| 2,4,6-Trichlorophenol       | 1    | 0            |      | 7.68 | 48.79  | 50          | 20   |       | 0.417         | 0.407 | 2.42   |      |
| 2,4,5-Trichlorophenol       | 1    | 0            |      | 7.72 | 49.99  | 50          | 20   |       | 0.434         | 0.434 | 0.03   |      |
| 2-Fluorobiphenyl            | 1    | Ö            | s    | 7.75 | 24.80  | 25          | **   |       | 1.334         | 1.323 | 0.81   |      |
| 2-Chloronaphthalene         | 1    | 0            | •    | 7.86 | 50.95  | 50          | 20   | 0.8   | 1.201         | 1.223 | 1.91   |      |
| 1,4-Dimethylnaphthalene     | 1    | 0            |      | 8.14 | 52.31  | 50          | **   |       | 0.879         | 0.920 | 4.63   |      |
| Dimethylnaphthalenes        | 1    | 0            |      | 8.14 | 52.31  | 50          | 20   |       | 2.0.0         | 0.920 | 4.63   |      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 2:57:00 P Data File: 7M109898.D Method: EPA 8270E

98.D Instrument: GCMS 7

| TxtCompd:                 | Col#       | Multi<br>Num | Туре | RT    | Conc  | Conc<br>Exp | Lo 1<br>Lim |      | Initial<br>RF | RF    | %Diff Flag |
|---------------------------|------------|--------------|------|-------|-------|-------------|-------------|------|---------------|-------|------------|
| Diphenyl Ether            | 1          | 0            |      | 7.92  | 51.30 | 50          | **          |      | 0.859         | 0.881 | 2.60       |
| ?-Nitroaniline            | 1          | 0            |      | 7.93  | 57.17 | 50          | 20          | 0.01 | 0.367         | 0.419 | 14.35      |
| Coumarin                  | 1          | 0            |      | 8.12  | 53.29 |             | **          |      | 0.454         |       |            |
| cenaphthylene             | 1          | 0            |      | 8.22  | 51.69 | 50          | 20          | 0.9  | 1.762         | 1.821 | 3.37       |
| Dimethylphthalate         | 1          | 0            |      | 8.08  | 51.23 | 50          | 20          | 0.01 | 1.380         | 1.414 | 2.47       |
| ,6-Dinitrotoluene         | 1          | 0            |      | 8.14  | 53.43 | 50          | 20          | 0.2  | 0.313         | 0.334 | 6.86       |
| cenaphthene               | 1          | 0            |      | 8.37  | 51.78 | 50          | 20          | 0.9  | 1.171         | 1.213 | 3.56       |
| -Nitroaniline             | 1          | 0            |      | 8.29  | 53.18 | 50          | 20          | 0.01 | 0.349         | 0.372 | 6.36       |
| ,4-Dinitrophenol          | 1          | 0            |      | 8.39  | 50.83 | 50          | 20          | 0.2  | 0.184         | 0.187 | 1.65       |
| Dibenzofuran              | 1          | 0            |      | 8.53  | 50.63 | 50          | 20          | 0.8  | 1.723         | 1.745 | 1.27       |
| ,4-Dinitrotoluene         | 1          | 0            |      | 8.50  | 52.93 | 50          | 20          | 0.2  | 0.433         | 0.458 | 5.86       |
| -Nitrophenol              | 1          | 0            |      | 8.43  | 44.42 | 50          | 20          | 0.01 | 0.248         | 0.220 | 11.16      |
| ,3,4,6-Tetrachlorophenol  | 1          | 0            |      | 8.64  | 49.74 | 50          | 20          | 0.01 | 0.376         | 0.374 | 0.52       |
| luorene                   | 1          | 0            |      | 8.86  | 52.55 | 50          | 20          | 0.9  | 1.381         | 1.451 | 5.10       |
| -Chlorophenyl-phenylether | 1          | 0            |      | 8.84  | 50.22 | 50          | 20          | 0.4  | 0.694         | 0.697 | 0.43       |
| Piethylphthalate          | <u>`</u>   | 0            |      | 8.72  | 51.76 | 50          | 20          |      | 1.375         | 1.423 | 3.51       |
| -Nitroaniline             | 1          | Ö            |      | 8.87  | 54.33 | 50          | 20          |      | 0.371         | 0.403 | 8.66       |
| trazine                   | 1          | 0            |      | 9.50  | 49.65 | 50          | 20          |      | 0.455         | 0.452 | 0.70       |
| henanthrene-d10           | 1          | 0            | 1    | 9.83  | 40.00 | 40          | **          | 0.01 | 0. 100        | 0.000 | 0.00       |
| ,6-Dinitro-2-methylphenol | 1          | Ö            | •    | 8.90  | 52.83 | 50          | 20          | 0.01 | 0.133         | 0.141 | 5.66       |
| -Nitrosodiphenylamine     | - <u>:</u> | 0            |      | 8.96  | 51.79 | 50          | 20          |      | 0.622         | 0.644 | 3.58       |
| ,4,6-Tribromophenol       | 1          | 0            | s    | 9.10  | 48.77 | 50          | **          | 0.01 | 0.103         | 0.101 | 2.46       |
| ,2-Diphenylhydrazine      | 1          | 0            | Ū    | 9.00  | 55.89 | 50          | **          |      | 0.652         | 0.729 | 11.77      |
| -Bromophenyl-phenylether  | 1          | 0            |      | 9.34  | 49.37 | 50          | 20          | 0.1  | 0.032         | 0.729 | 1.26       |
| lexachlorobenzene         | 1          | 0            |      | 9.41  | 48.89 | 50          | 20          |      | 0.219         | 0.217 | 2.22       |
| l-Octadecane              | <u>'</u>   | 0            |      | 9.68  | 62.13 | 50          | **          |      | 0.299         | 0.229 | 24.27      |
|                           | •          |              |      |       |       |             |             |      |               |       |            |
| entachlorophenol          | 1          | 0            |      | 9.61  | 40.03 | 50          | 20          |      | 0.154         | 0.124 | 19.94      |
| henanthrene               | 1          | 0            |      | 9.85  | 51.01 | 50<br>50    | 20          |      | 1.051         | 1.072 | 2.01       |
| nthracene                 | 1          | 0            |      | 9.91  | 51.24 | 50          | 20          |      | 1.079         | 1.106 | 2.48       |
| arbazole                  | 1          | 0            |      | 10.08 | 52.38 | 50          | 20          |      | 0.990         | 1.037 | 4.77       |
| i-n-butylphthalate        | 1          | 0            |      | 10.45 | 52.47 | 50          | 20          |      | 1.212         | 1.272 | 4.95       |
| luoranthene               | 1          | 0            |      | 11.19 | 50.54 | 50          | 20          | 0.6  | 1.193         | 1.205 | 1.07       |
| Chrysene-d12              | 1          | 0            | ı    | 12.90 | 40.00 | 40          | **          |      |               | 0.000 | 0.00       |
| yrene                     | 1          | 0            |      | 11.46 | 52.49 | 50          | 20          | 0.6  | 1.247         | 1.309 | 4.98       |
| Benzidine                 | 1          | 0            |      | 11.34 | 37.81 | 50          |             |      | 0.737         | 0.558 | 24.38      |
| erphenyl-d14              | 1          | 0            | S    | 11.64 | 25.60 | 25          | **          |      | 0.637         | 0.652 | 2.38       |
| ,4'-DDE                   | 1          | 0            |      | 11.58 | 50.43 |             | **          |      | 0.357         |       |            |
| ,4'-DDD                   | 1          | 0            |      | 11.98 | 52.32 |             | **          |      | 0.515         |       |            |
| lutylbenzylphthalate      | 1          | 0            |      | 12.23 | 53.83 | 50          | 20          | 0.01 | 0.564         | 0.607 | 7.66       |
| ,4'-DDT                   | 1          | 0            |      | 12.33 | 54.21 |             | **          |      | 0.581         |       |            |
| ,3'-Dichlorobenzidine     | 1          | 0            |      | 12.86 | 50.72 | 50          | 20          | 0.01 | 0.457         | 0.464 | 1.45       |
| enzo[a]anthracene         | 1          | 0            |      | 12.89 | 51.12 | 50          | 20          | 0.8  | 1.173         | 1.200 | 2.25       |
| Chrysene                  | 1          | 0            |      | 12.93 | 52.82 | 50          | 20          | 0.7  | 1.086         | 1.147 | 5.65       |
| is(2-Ethylhexyl)phthalate | 1          | 0            |      | 12.92 | 55.06 | 50          | 20          |      | 0.757         | 0.833 | 10.13      |
| erylene-d12               | 1          | 0            | 1    | 14.55 | 40.00 | 40          | **          |      |               | 0.000 | 0.00       |
| Pi-n-octylphthalate       | 1          | 0            |      | 13.67 | 54.24 | 50          | 20          | 0.01 | 1.277         | 1.386 | 8.48       |
| enzo[b]fluoranthene       | 1          | 0            |      | 14.11 | 50.94 | 50          | 20          |      | 1.130         | 1.151 | 1.87       |
| enzo[k]fluoranthene       | 1          | 0            |      | 14.14 | 50.90 | 50          | 20          |      | 1.059         | 1.078 | 1.80       |
| enzo[a]pyrene             | 1          | 0            |      | 14.49 | 51.04 | 50          | 20          |      | 1.003         | 1.024 | 2.07       |
| ndeno[1,2,3-cd]pyrene     | 1          | 0            |      | 15.95 | 51.99 | 50          | 20          |      | 1.122         | 1.167 | 3.97       |
| Dibenzo[a,h]anthracene    | <u>-</u>   | 0            |      | 15.97 | 53.27 | 50          | 20          |      | 0.937         | 0.999 | 6.54       |
| Benzo[g,h,i]perylene      | 1          | Ö            |      | 16.35 | 52.29 | 50          | 20          |      | 0.933         | 0.976 | 4.58       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/6/2020 2:57:00 P Data File: 7M109898.D Method: EPA 8270E Instrument: GCMS 7

| TxtCompd:                      | Col# | Multi<br>Num | Туре            | RT   | Conc | Conc<br>Exp | Lo Mi<br>Lim R |       | RF    | %Diff Flag |
|--------------------------------|------|--------------|-----------------|------|------|-------------|----------------|-------|-------|------------|
| 2,4 Diaminotoluene             | 1    | 100          |                 | 0.00 | 0.00 | 50          | **             |       | 0.000 | 100.00     |
| 2,2'-oxybis-(1-Chloropropane)  | 1    | 100          |                 | 0.00 | 0.00 | 50          | **             |       | 0.000 | 100.00     |
| Toluene Diisocyanate           | 1    | 100          |                 | 0.00 | 0.00 | 50          | **             |       | 0.000 | 100.00     |
| Heptachlor                     | 1    | 100          |                 | 0.00 | 0.00 | 10          | **             |       | 0.000 | 100.00     |
| gamma-BHC                      | 1    | 100          |                 | 0.00 | 0.00 | 10          | **             |       | 0.000 | 100.00     |
| Endrin                         | 1    | 100          |                 | 0.00 | 0.00 | 50          | **             |       | 0.000 | 100.00     |
| Methylnaphthalenes (Total)     | 1    | 100          |                 | 0.00 | 0.00 | 100         | **             | 0.682 | 0.000 | 100.00     |
| Methoxychlor                   | 1    | 100          |                 | 0.00 | 0.00 | 10          | **             |       | 0.000 | 100.00     |
| 1,4-Dioxane-d8                 | 1    | 100          |                 | 0.00 | 0.00 | 40          | **             |       | 0.000 | 100.00     |
| Diaminotoluene Dihydrochloride | 1    | 100          |                 | 0.00 | 0.00 | 50          | **             |       | 0.000 | 100.00     |
| Heptachlor epoxide             | 1    | 100          | - · · · · · · · | 0.00 | 0.00 | 10          | **             |       | 0.000 | 100.00     |
| Dimethylnaphthalenes (Total)   | 1    | 100          |                 | 0.00 | 0.00 | 50          | **             | 0.879 | 0.000 | 100.00     |
| 4-Methylphenol                 | 1    | 100          |                 | 0.00 | 0.00 | 50          | **             | 0.6   | 0.000 | 100.00     |
| 1,4-Dioxane-d8-Surro           | 1    | 100          |                 | 0.00 | 0.00 | 40          | **             |       | 0.000 | 100.00     |

Internal Standard Areas FORM8

Evaluation Std Data File: 7M109440.D Analysis Date/Time: 09/17/20 13:20

Method: EPA 8270E

Lab File ID: CAL BNA@50PPM

| 31                        | =            |             | 23           |        |        | ದ              |      | <b>4</b>      |      | 5              |        | <u></u>        |        | 17             |       |
|---------------------------|--------------|-------------|--------------|--------|--------|----------------|------|---------------|------|----------------|--------|----------------|--------|----------------|-------|
| 12                        | Area         | 짂           | Area         | RT     | Area   | שי<br>סג       | 7    | Area          | 괵    | Area           | RT     | Area           | R      | Area           | Ŗ     |
| Eval File Area/RT         | 73342        | 2.70        | 143111       | 5.90   | 535871 | 1 6.90         |      | 299982        | 8.35 | 591079         | 9.83   | _              | 12.89  |                | 14.54 |
| Eval File Area Limit      | 36671-146684 | 6684        | 71556-286222 | 286222 | 2679   | 267936-1071742 | 25   | 149991-599964 | 9964 | 295540-1182158 | 182158 | 283432-1133726 | 133726 | 303332-1213326 | 13326 |
| Eval File Rt Limit        | 2.2-3.2      | 2           | 5.4-6.4      | 6.4    | - <br> | 6.4-7.4        |      | 7.85-8.85     | 5    | 9.33-10.33     | 0.33   | 12.39-13.39    | 3.39   | 14.04-15.04    | 5.04  |
| Data File Sample#         |              | !<br>!<br>: |              |        | !      | i<br>!         | İ    |               | İ    |                | :      |                | l<br>İ |                |       |
| 7M109432.D CAL BNA@2PPM   | 69531        | _           | 0 148428     | -      | 5.90   | 561422         | 6.90 | 316478        | 8.35 |                | _      | 573487         |        | 547194         | 14.53 |
| 7M109433.D CAL BNA@10PPM  | 6478         | 5 2.70      |              |        | 5.89   | 507069         | 6.90 | 279139        | 8.35 | 539654         | 9.82   | 514810         | 12.89  | 506378         | 14.53 |
| 7M109434.D CAL BNA@196PPN | A 6707       |             | 0 128427     |        |        | 488036         | 6.91 | 277961        | 8.35 |                |        | 511721         |        | 549912         | 14.54 |
| 7M109435.D CAL BNA@160PPN | A 6776       |             |              |        |        | 515749         | 6.91 | 291779        | 8.35 |                |        | 545173         |        | 587760         | 14.54 |
| 7M109436.D CAL BNA@120PPN | A 6995       | :           | ļ            | ļ      | i      | 527795         | 6.90 | 296088        | 8 36 |                | :      | 559462         | ļ      | 599997         | 14.54 |
| 7M109437.D CAL BNA@80PPM  | 7085         |             |              |        |        | 544080         | 6.91 | 297856        | 8.36 |                |        | 573376         |        | 606957         | 14.54 |
| 7M109438.D CAL BNA@20PPM  | 7223         | -           |              |        |        | 554057         | 6.90 | 303248        | 8.35 |                | _      | 574202         |        | 588787         | 14.54 |
| 7M109439.D CAL BNA@0.5PPN | 7647         | -           |              |        |        | 303591         | 6.91 | 332270        | 8.35 |                | •      | 623159         |        | 617986         | 14.56 |
| 7M109440.D CAL BNA@50PPM  | 7334         |             |              |        | 5.90 ( | 535871         | 6.90 | 299982        | 8.35 |                | _      | 566863         |        | 606663         | 14.54 |
| 7M109441.D ICV BNA@50PPM  | 67053        | 1           | 0 134202     |        | 1      | 503057         | 6.90 | 276686        | 8.35 | 543669         | -      | 533914         |        | 555170         | 14.54 |
|                           |              |             |              |        |        |                |      |               |      |                |        |                |        |                |       |

### Internal Standard Areas

13 = 13 =

1,4-Dioxane-d8(INT)
1,4-Dichlorobenzene-d4
Naphthalene-d8

5 II II

Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12

17 =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8360 Internal Standard concentration = 30 ug/L
524 Internal Standard concentration = 5 ug/L

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria.

Internal Standard Areas

FORM8

Evaluation Std Data File: 9M101321.D

Method: EPA 8270E

Analysis Date/Time: 09/17/20 13:22 Lab File ID: CAL BNA@50PPM

|                  | 9M101324.D     | 9M101323.D     | 9M101322.D          | 9M101321.D | 9M101320.D           | 9M101319.D          | 9M101318.D | 9M101317.D           | 9M101316.D           | 9M101315.D           | 9M101314.D         | 9M101313.D          | Data File  |                     | 01                    | 0 (                | 92     | 3  |
|------------------|----------------|----------------|---------------------|------------|----------------------|---------------------|------------|----------------------|----------------------|----------------------|--------------------|---------------------|------------|---------------------|-----------------------|--------------------|--------|----|
| 9M101326 D 88018 | 324.D SMB88018 | 323.D SMB88017 | 322.D ICV BNA@50PPM |            | 320.D CAL BNA@0.5PPM | 319.D CAL BNA@20PPM | Ş          | 317.D CAL BNA@120PPM | 316.D CAL BNA@160PPM | 315.D CAL BNA@196PPM | 314.D CAL BNA@2PPM | 313.D CAL BNA@10PPM | le Sample# | Eval File Rt Limit: | Eval File Area Limit: | Eval File Area/RT: |        |    |
| 51046            | 45386          | 49284          | 46870               | 52141      | 54868                | 50283               | 50413      | 53716                | 54281                | 54800                | 57993              | 51565               |            | 2.2-3.2             | 26070-104282          | 52141              | Area   | =  |
| 26               |                |                |                     |            | 2.70                 |                     |            | !                    |                      |                      | 2.7                | 2.7                 |            |                     | 1282                  | 2.70               | 召      |    |
|                  |                |                |                     |            | 0 105764             |                     |            |                      |                      |                      |                    |                     |            | 5.4-6.4             | 48526-194106          | 97053 5.           | Area F | 2  |
| 5.91             | 5.90           | 5.90           | 5.90                | 5.90       | 5.90                 | 5.90                | 5.90       | 5.90                 | 5.91                 | 5.91                 | 5.90               | 5.90                |            |                     | 8                     | 5.90               | ~~     |    |
| 348476           | 321859         | 357728         | 342712              | 369972     | 401840               | 373409              | 367645     | 388633               | 380119               | 370914               | 415864             | 357644              |            | 6.41-7.41           | 184986-739944         | 369972             | Area   | చ  |
| 6.93             | 6.91           | 6.91           | 6.91                |            | 6.91                 | _                   | 6.91       |                      | 6.91                 | 6.91                 | 6.91               | 6.91                |            | =                   | 9944                  | 6.91               | 곡      |    |
| •-               |                |                | !-                  |            | 1 207520             |                     |            | !                    |                      |                      | _                  | _                   |            | 7.85-8.85           | 96780-387120          | 193560 8.35        | Area   | 4  |
| 8.38<br>38       | 8.35           | 8.35           | 8.35                | 8.35       | 8.35                 | 8.35                | 8.35       | 8.35                 | 8.35                 | 8.35                 | 8.35               | 8.35                | <br> <br>  |                     | 0                     |                    | 7      |    |
| 346012           | 323960         | 361831         | 348639              | 374543     | 400507               | 372145              | 364874     | 396990               | 386668               | 385348               | 427849             | 356949              |            | 9.32-10.32          | 187272-749086         | 374543             | Area   | 15 |
| 9.8              | 9.82           | 9.82           | 9.82                | 9.82       | 9.82                 | 9.82                | 9.82       | 9.82                 | 9.82                 | 9.83                 | 9.82               | 9.82                |            | 32                  | 9086                  | 9.82               | 괵      |    |
|                  |                |                | ļ                   |            |                      |                     |            | ŀ                    |                      |                      |                    | 362365              | [          | 12.39-13.39         | 187988-751954         | 375977             | Area   | 6  |
| 12.91            | 12.88          | 12.89          | 12.89               | 12.89      | 12.89                | 12.89               | 12.89      | 12.90                | 12.90                | 12.90                | 12.89              | 12.89               | !          | 3.39                | 1954                  | 12.89              | 召      |    |
|                  |                |                |                     |            |                      |                     |            |                      |                      |                      |                    | 363176              |            | 14.03-15.03         | 193707-774828         | 387414             | Area   | 17 |
| 14.58            | 14.54          | 14.52          | 14.54               | 14.53      | 14.52                | 14.53               | 14.53      | 14.53                | 14.54                | 14.54                | 14.52              | 14.52               |            |                     | 4828                  | 14.53              | 곡      |    |

## Internal Standard Areas

3==

I,4-Dioxane-d8(INT)
I,4-Dichlorobenzene-d4
Naphthalene-d8

Acenaphthene-d10
Phenanthrene-d10
Chrysene-d12

I7 =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract)
624/8260 Internal Standard concentration = 30 ug/L
524 Internal Standard concentration = 5 ug/L

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria

Evaluation Std Data File: 9M101545.D Internal Standard Areas

FORM8

Method: EPA 8270E

Lab File ID: CAL BNA@50PPM

Analysis Date/Time: 10/06/20 08:27

| 31                         | =            |      | 12           |            | ವ             |      | 4             |       |           | <b>3</b> 5    |      |               | ത            |       | <b>17</b>     |       |   |
|----------------------------|--------------|------|--------------|------------|---------------|------|---------------|-------|-----------|---------------|------|---------------|--------------|-------|---------------|-------|---|
| 12                         | Area RT      |      | Area RT      | ·          | Area          | 곡    | Area          | 괵     | !         | Area          | 괵    | Area          |              | 끽     | Area          | 꼭     |   |
| Eval File Area/RT:         | 64846 2.71   | _    | 120477 5.90  |            | 462914 6.91   | 91   | 240589        | 8.35  |           | 65052         | 9.82 | 461393        | 12           | 12.88 | 480646 1      | 14.51 |   |
| Eval File Area Limit:      | 32423-129692 |      | 60238-240954 | . <u> </u> | 231457-925828 | 28   | 120294-481178 | 81178 | - 1       | 232526-930104 | 0104 | 230696-922786 | 922          | 786   | 240323-961292 | 292   |   |
| Eval File Rt Limit         | 2.21-3.21    | -    | 5.4-6.4      |            | 6.41-7.41     | <br> | 7.85-8.85     | 85    | 1         | 9.32-10.32    | 32   | 12.38         | 12.38-13.38  | 8     | 14.01-15.01   | 2     |   |
| Data File Sample#          |              |      |              |            |               |      |               |       |           |               |      |               | '            |       | :<br>:        |       |   |
| 9M101546.D OMB88168(MS)    | 49839        | 2.71 | 87981        | 5.90       | 333569        | 6.91 | 1 170902      |       | 8.35      | 325322        | 9.2  |               | 12           | 12.88 | 326100        | 14.52 |   |
| 9M101547.D OMB88168        |              | 2.71 | 95122        | 5.90       | 362991        | 6.91 | 1 189970      | Ŭ     | 8.34      | 366889        | 9.82 | 32 339498     | 8            | 12.88 | 342246        | 14.51 |   |
| 9M101548.D SMB88132(MS)    |              | 2.69 |              | 5.90       | 297200        | 6.91 |               |       | 8.35      | 292441        | 9.2  |               | <del></del>  | 12.88 | 288660        | 14.51 |   |
| 9M101549.D SMB88132        | 48355        | 2.68 | 86785        | 5.90       | 328473        | 6.91 | 1 168631      |       | 8.34      | 326648        | 9.2  | 304927        | 27           | 12.88 | 304884        | 14.51 |   |
| 9M101550.D AD19539-011     |              | 2.70 | į            | 5.90       | 485597        | 6.91 |               |       | 8.34      | 512963        | 9.2  | 1             | 3            | 12.88 | 505452        | 14.51 | 1 |
| 9M101551.D AD19595-009     |              | 2.69 |              | 5.90       | 405724        | 6.91 |               |       | 8.34      | 414463        | 9.2  |               | 3            | 12.88 | 408841        | 14.51 |   |
| 9M101552.D SMB88133        |              | 2.69 |              | 5.90       | 382461        | 6.91 |               |       | 8.34      | 389770        | 9.2  |               | <del>-</del> | 12.88 | 364759        | 14.51 |   |
| 9M101553.D SMB88133(MS)    |              | 2.69 |              | 5.90       | 384336        | 6.91 |               |       | 8.35      | 383763        | 9.2  |               | 35           | 12.88 | 379451        | 14.51 |   |
| 9M101554.D SMB88095(MS)    |              | 2.69 |              | 5.90       | 368059        | 6.91 | 1 191656      |       | 8.35      | 363406        | 9.2  |               | 17           | 12.88 | 357409        | 14.51 |   |
| 9M101555.D SMB88095        | !            | 2.69 | 87814        | 5.90       | 336070        | 6.91 | 174862        |       | 8.34      | 338431        | 9.   | l<br>i        | 6            | 12.88 | 299595        | 14.51 | Į |
| 9M101556.D AD19501-003(MS) | 52179        | 2.70 | 96966        | 5 90       | 367910        | 6.91 | 192298        |       | 8.35      | 365232        | 9.2  |               | 27           | 12.88 | 362100        | 14.51 |   |
| 9M101557.D AD19501-003(MSD | ) 45686      | 2.69 | 84569        | 5.90       | 321373        | 6.91 | 167660        | Ī     | 8.3<br>24 | 318901        | 9.82 |               | 22           | 12.88 | 313014        | 14.51 |   |
|                            |              |      |              |            |               |      |               |       |           |               |      |               |              |       |               |       |   |

### Internal Standard Areas

11 = 12 = 13 =

1,4-Dioxane-d8(INT)
1,4-Dichlorobenzene-d4
Naphthalene-d8

14 = 15 =

Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12

**I**7 =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration = 5ug/L

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria.

Retention Times:

Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

Eval File Area Limit

Eval File Area/RT:

94005 Area

2.70 곡

183010 Area

5.90

718228 6.90 359114-1436456

388948

8.35 곡

760702

9.83 괵

689073

12.90 곡

703473

14.55 괵

Area

Area

Area

5

194474-777896

380351-1521404

344536-1378146

351736-1406946

14.05-15.05

12.4-13.4

9.33-10.33

7.85-8.85

곱

Area

끽

Area

47002-188010 2.2-3.2

91505-366020

5.4-6.4

6.4-7.4

0223

Evaluation Std Data File: 7M109898.D Analysis Date/Time: 10/06/20 14:57 Internal Standard Areas

FORM8

Method: EPA 8270E

| Lab File ID: CAL BNA@50PPM |   |         |
|----------------------------|---|---------|
| File ID: CAL E             |   | اھ      |
| E                          | ĺ |         |
| BNA@50PPM                  |   | ID: CAI |
| @50PPM                     | - | BNA     |
| Ĭ                          | - | @50PF   |
| 1                          |   | š       |

| 2.71 202054 5.90 771652 | 2.72 186558 5.90 689756 6.90 | 2.70 201572 5.89 772949 | 2.70 184927 5.90 656254 6.90 | AD19517-002(5X) 95739 2.71 200667 5.89 756987 6.90 | AD19482-005(3X) 88055 2.70 172991 5.90 585503 6.90 | AD19582-001(3X) 85485 2.71 176667 5.90 672928 6.90 | 2.69 183732 5.90 699488 6.90 | 2.70 173873 5.89 668725 6.90 | 2.69 200885 5.89 769915 6.90 | 2.69 186620 5.89 705132 6.90 | 2.69 196004 5.89 746660 6.90 | 2.69 171699 5.89 641716 6.90 | 7M109910.D AD19562-002 93013 2.69 198969 5.90 765551 6.90 380815 | 2.69 179484 5.89 665487 6.90 | 2.69 149707 5.90 508898 6.91 | 2.69 151028 5.90 532285 6.91 | 2.69 183905 5.90 693603 6.90 | 2.68 167480 5.90 626910 6.90 | 82517 2.70 172473 5.89 650086 6.90 | 2.71 132842 5.90 489846 6.90 | 2.71 135682 5.90 504512 6.90 | 2.70 152722 5.89 564596 6.90 | 2.70 143883 5.89 560845 6.90 | 2.68 130338 5.90 499541 6.90 |
|-------------------------|------------------------------|-------------------------|------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| 28 8.34                 |                              |                         |                              |                                                    |                                                    |                                                    |                              |                              |                              | !                            |                              |                              | 15 8.34                                                          |                              | :                            |                              |                              |                              |                                    | i                            |                              | 29 8.34                      |                              | 33 8.35                      |
| 675041                  | 602068                       | 696469                  | 673960                       | 684098                                             | 603105                                             | 597833                                             | 632224                       | 601547                       | 742896                       | 664610                       | 741528                       | 629478                       | 717810                                                           | 620533                       | 548776                       | 570386                       | 643444                       | 588763                       | 604189                             | 456176                       | 457625                       | 479970                       | 570525                       | 504806                       |
| 9.83                    | 9.82                         | 9.83                    | 9.83                         | 9.83                                               | 9.84                                               | 9.82                                               | 9.82                         | 9.82                         | 9.82                         | 9.82                         | 9.83                         | 9.83                         | 9.83                                                             | 9.83                         | 9.83                         | 9.83                         | 9.82                         | 9.82                         | 9.83                               | 9.83                         | 9.83                         | 9.82                         | 9.82                         | 9.83                         |
| 552723                  | 499148                       | 545084                  | 573464                       | 563268                                             | 542161                                             | 489224                                             | 534689                       | 513702                       | 612338                       | 532877                       | 598713                       | 518455                       | 574873                                                           | 508677                       | 496028                       | 507738                       | 551971                       | 541619                       | 590381                             | 319636                       | 310347                       | 336510                       | 497748                       | 441795                       |
| 12.90                   | 12.90                        | 12.90                   | 12.90                        | 12.90                                              | 12.90                                              | 12.90                                              | 12.90                        | 12.90                        | 12.90                        | 12.89                        | 12.90                        | 12.90                        | 12.90                                                            | 12.89                        | 12.92                        | 12.92                        | 12.89                        | 12.89                        | 12.91                              | 12.93                        | 12.93                        | 12.93                        | 12.89                        | 12.90                        |
| 549175                  | 496695                       | 553081                  | 570404                       | 569454                                             | 516488                                             | 505912                                             | 539286                       | 511323                       | 596303                       | 510346                       | 586228                       | 497161                       | 557951                                                           | 506697                       | 487309                       | 503912                       | 521804                       | 535684                       | 626947                             | 206875                       | 202357                       | 236863                       | 470539                       | 417396                       |
| 14.55                   | 14.55                        | 14.54                   | 14.55                        | 14.55                                              | 14.54                                              | 14.54                                              | 14.55                        | 14.55                        | 14.54                        | 14.54                        | 14.54                        | 14.54                        | 14.54                                                            | 14.54                        | 14.57                        | 14.56                        | 14.54                        | 14.54                        | 14.58                              | 14.67                        | 14.67                        | 14.67                        | 14.54                        | 14.54                        |

## Internal Standard Areas

1,4-Dioxane-d8(INT)
1,4-Dichlorobenzene-d4
Naphthalene-d8

55#

Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12

17 =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration =5ug/L

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Flags:

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria.

**TCLP Base Neutral/Acid Extractable Data** 

### Form1

### ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19595-013(T) Client Id: HSI-WC-NH

Date Rec/Extracted: 10/02/20-10/07/20

Data File: 9M101580.D Analysis Date: 10/08/20 10:03

Column:DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E Matrix: Aqueous Initial Vol: 250ml Final Vol: 1ml

Dilution: 1
Solids: 0

Units: mg/L

| Cas #    | Compound              | RL     | Conc | Cas #    | Compound            | RL     | Conc | W. C. |
|----------|-----------------------|--------|------|----------|---------------------|--------|------|-------|
| 95-95-4  | 2,4,5-Trichlorophenol | 0.0080 | U    | 87-68-3  | Hexachlorobutadiene | 0.0080 | U    |       |
| 88-06-2  | 2,4,6-Trichlorophenol | 0.0080 | U    | 67-72-1  | Hexachloroethane    | 0.0080 | U    |       |
| 121-14-2 | 2,4-Dinitrotoluene    | 0.0080 | U    | 98-95-3  | Nitrobenzene        | 0.0080 | U    |       |
| 95-48-7  | 2-Methylphenol        | 0.0020 | U    | 87-86-5  | Pentachlorophenol   | 0.040  | U    |       |
| 106-44-5 | 3&4-Methylphenol      | 0.0020 | U    | 110-86-1 | Pyridine            | 0.0083 | U    |       |
| 118-74-1 | Hexachlorobenzene     | 0.0080 | U    |          |                     |        |      |       |

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

 $<sup>\</sup>ensuremath{\textit{B}}$  - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

SampleID : AD19595-013(T)
Data File: 9M101580.D
Acq On : 10/ 8/20 10:03 Operator : AH/JKR/JB Sam Mult : 1 Vial# : 5 Misc : A,BNA Qt Meth : 9M\_0917.M Qt On : 10/08/20 10:42 Qt Upd On: 09/29/20 13:20

Data Path : G:\GcMsData\2020\GCMS\_9\Data\10-08-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_9\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.   | QIon | Response | Conc Ur | nits Dev(Min) |
|-----------------------------|--------|------|----------|---------|---------------|
| Internal Standards          |        |      |          |         |               |
| 7) 1,4-Dioxane-d8(INT)      | 2.713  | 96   | 45971    | 40.00   | ng 0.01       |
| 21) 1,4-Dichlorobenzene-d4  | 5.895  | 152  | 83150    | 40.00   | ng 0.00       |
| 31) Naphthalene-d8          | 6.907  | 136  | 314933   | 40.00   | ng 0.00       |
| 50) Acenaphthene-d10        | 8.342  | 164  | 164226   | 40.00   | ng 0.00       |
| 77) Phenanthrene-d10        | 9.813  | 188  | 316305   | 40.00   | ng -0.01      |
| 91) Chrysene-d12            | 12.877 | 240  | 306957   |         | ng -0.01      |
| 103) Perylene-d12           | 14.507 | 264  | 310670   | 40.00   | ng -0.02      |
| System Monitoring Compounds |        |      |          |         |               |
| 11) 2-Fluorophenol          | 4.701  | 112  | 225992   | 93.98   | ng 0.00       |
| Spiked Amount 100.000       |        |      | Recove   | ry =    | 93.98%        |
| 16) Phenol-d5               | 5.572  | 99   | 269012   | 92.48   | ng 0.00       |
| Spiked Amount 100.000       |        |      | Recove   | ry =    | 92.48%        |
| 32) Nitrobenzene-d5         | 6.342  | 128  | 61277    | 54.09   | ng 0.00       |
| Spiked Amount 50.000        |        |      | Recove   | ry =    |               |
| 55) 2-Fluorobiphenyl        | 7.748  | 172  |          |         |               |
| Spiked Amount 50.000        |        |      |          | ry =    |               |
| 80) 2,4,6-Tribromophenol    | 9.089  | 330  | 82880    | 113.78  | ng 0.00       |
| Spiked Amount 100.000       |        |      |          |         | 113.78%       |
| 94) Terphenyl-d14           | 11.624 | 244  | 274320   |         | -             |
| Spiked Amount 50.000        |        |      | Recove   | ry =    | 122.80%       |

Qvalue Target Compounds

(#) = qualifier out of range (m) = manual integration (+) = signals summed



9M\_0917.M Wed Oct 14 15:49:55 2020 SYSTEM1

Page: 1

### Form1

### ORGANICS SEMIVOLATILE REPORT

Sample Number: AD19595-014(T)

Client Id: HSI-WC-H Data File: 9M101583.D

Analysis Date: 10/08/20 11:13 Date Rec/Extracted: 10/02/20-10/07/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E Matrix: Aqueous Initial Vol: 250ml Final Vol: 1ml

Dilution: 1

Solids: 0

Units: mg/L

| Cas #    | Compound              | RL_    | Conc   | Cas #    | Compound            | RL     | Conc |  |
|----------|-----------------------|--------|--------|----------|---------------------|--------|------|--|
| 95-95-4  | 2,4,5-Trichlorophenol | 0.0080 | U      | 87-68-3  | Hexachlorobutadiene | 0.0080 | U    |  |
| 88-06-2  | 2,4,6-Trichlorophenol | 0.0080 | U      | 67-72-1  | Hexachloroethane    | 0.0080 | U    |  |
| 121-14-2 | 2,4-Dinitrotoluene    | 0.0080 | U      | 98-95-3  | Nitrobenzene        | 0.0080 | U    |  |
| 95-48-7  | 2-Methylphenol        | 0.0020 | 0.0069 | 87-86-5  | Pentachlorophenol   | 0.040  | U    |  |
| 106-44-5 | 3&4-Methylphenol      | 0.0020 | 0.012  | 110-86-1 | Pyridine            | 0.0083 | U    |  |
| 118-74-1 | Hexachlorobenzene     | 0.0080 | U      |          |                     |        |      |  |

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

<sup>0.019</sup> R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

SampleID : AD19**595-014**(T) Data File: 9M101583.D

Operator : AH/JKR/JB Sam Mult : 1 Vial# : 7 Misc : A,BNA Qt Meth : 9M\_0917.M Qt On : 10/08/20 11:32 Acq On : 10/ 8/20 11:13 Qt Upd On: 09/29/20 13:20

Data Path : G:\GcMsData\2020\GCMS\_9\Data\10-08-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_9\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.   | QIon | Response | Conc U | nits Dev | (Min)  |
|-----------------------------|--------|------|----------|--------|----------|--------|
| Internal Standards          |        |      |          |        |          |        |
| 7) 1,4-Dioxane-d8(INT)      | 2.713  | 96   | 52105    | 40.00  | ng       | 0.01   |
| 21) 1,4-Dichlorobenzene-d4  | 5.895  | 152  | 89253    | 40.00  | ng       | 0.00   |
| 31) Naphthalene-d8          | 6.907  | 136  | 337358   | 40.00  | ng       | 0.00   |
| 50) Acenaphthene-d10        | 8.342  | 164  | 175709   | 40.00  | ng       | 0.00   |
| 77) Phenanthrene-d10        | 9.813  | 188  | 339284   | 40.00  | ng       | -0.01  |
| 91) Chrysene-d12            | 12.877 | 240  | 331755   | 40.00  | ng       | -0.01  |
| 103) Perylene-d12           | 14.507 | 264  | 333322   | 40.00  | ng       | -0.02  |
| System Monitoring Compounds |        |      |          |        |          |        |
| 11) 2-Fluorophenol          | 4.701  | 112  | 240746   | 88.33  | ng       | 0.00   |
| Spiked Amount 100.000       |        |      | Recove   | ry =   | 88.33%   |        |
| 16) Phenol-d5               | 5.572  | 99   | 290440   | 88.10  | ng       | 0.00   |
| Spiked Amount 100.000       |        |      | Recove   | ry =   | 88.10%   |        |
| 32) Nitrobenzene-d5         | 6.342  | 128  | 67949    | 55.99  | ng       | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 111.98%  |        |
| 55) 2-Fluorobiphenyl        | 7.748  | 172  | 320141   | 53.24  | ng       | 0.00   |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 106.48%  |        |
| 80) 2,4,6-Tribromophenol    | 9.089  | 330  | 91570    | 117.20 | ng       | 0.00   |
| Spiked Amount 100.000       |        |      |          |        | 117.20%  |        |
| 94) Terphenyl-d14           | 11.624 | 244  | 294900   | 61.07  | ng       | -0.01  |
| Spiked Amount 50.000        |        |      |          |        | 122.14%  |        |
| Target Compounds            |        |      |          |        |          | Qvalue |
| 26) 2-Methylphenol          | 6.095  | 108  | 4422     | 1.71   | 27 ng    | 95     |
| 30) 3&4-Methylphenol        | 6.213  | 108  | 7603m    | 3.000  | 06 ng    |        |
|                             |        |      |          |        |          | /      |

<sup>(#) =</sup> qualifier out of range (m) = manual integration (+) = signals summed



9M\_0917.M Wed Oct 14 15:49:59 2020 SYSTEM1

Page: 1

### Form1

### ORGANICS SEMIVOLATILE REPORT

Sample Number: WMB88180

Client Id:

Data File: 9M101575.D

Analysis Date: 10/07/20 15:57

Date Rec/Extracted: NA-10/07/20

Column:DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: mg/L

| Cas #            | Compound              | RL      | Conc | Cas #    | Compound            | RL_    | Conc |
|------------------|-----------------------|---------|------|----------|---------------------|--------|------|
| 95-95-4          | 2,4,5-Trichlorophenol | 0.0020  | U    | 87-68-3  | Hexachlorobutadiene | 0.0020 | U    |
| 88-06-2          | 2,4,6-Trichlorophenol | 0.0020  | U    | 67-72-1  | Hexachloroethane    | 0.0020 | U    |
| 121-14-2         | 2,4-Dinitrotoluene    | 0.0020  | U    | 98-95-3  | Nitrobenzene        | 0.0020 | U    |
| 95 <b>-</b> 48-7 | 2-Methylphenol        | 0.00050 | U    | 87-86-5  | Pentachlorophenol   | 0.010  | U    |
| 106-44-5         | 3&4-Methylphenol      | 0.00050 | U    | 110-86-1 | Pyridine            | 0.0021 | U    |
| 118-74-1         | Hexachlorobenzene     | 0.0020  | U    |          |                     |        |      |

instrument.

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Operator : AH/JKR/JB Sam Mult : 1 Vial# : 17 Misc : A,BNA Qt Meth : 9M\_0917.M Qt On : 10/08/20 07:23 Qt Upd On: 09/29/20 13:20 SampleID: WMB88180 Data File: 9M101575.D Misc Acq On : 10/ 7/20 15:57

Data Path : G:\GcMsData\2020\GCMS\_9\Data\10-07-20\
Qt Path : G:\GCMSDATA\2020\GCMS\_9\METHODQT\
Qt Resp Via : Initial Calibration

| Compound                    | R.T.   | QIon | Response | Conc Ur | nits Dev(Min) |
|-----------------------------|--------|------|----------|---------|---------------|
| Internal Standards          |        |      |          |         |               |
| 7) 1,4-Dioxane-d8(INT)      | 2.707  | 96   | 56480    | 40.00   | ng 0.00       |
| 21) 1,4-Dichlorobenzene-d4  | 5.901  | 152  | 103213   | 40.00   | ng 0.00       |
| 31) Naphthalene-d8          | 6.907  | 136  | 386307   | 40.00   | ng 0.00       |
| 50) Acenaphthene-d10        | 8.342  | 164  | 201535   | 40.00   | ng 0.00       |
| 77) Phenanthrene-d10        | 9.819  | 188  | 384934   | 40.00   | ng 0.00       |
| 91) Chrysene-d12            | 12.877 | 240  | 369425   | 40.00   | ng -0.01      |
| 103) Perylene-d12           | 14.512 | 264  | 373991   | 40.00   | ng -0.02      |
| System Monitoring Compounds |        |      |          |         |               |
| 11) 2-Fluorophenol          | 4.707  | 112  | 156014   | 52.81   | ng 0.00       |
| Spiked Amount 100.000       |        |      | Recove   | ry =    | 52.81%        |
| 16) Phenol-d5               | 5.572  | 99   | 139345   | 38.99   | ng 0.00       |
| Spiked Amount 100.000       |        |      | Recove   | ry =    | 38.99%        |
| 32) Nitrobenzene-d5         | 6.348  | 128  | 61693    | 44.40   | ng 0.00       |
| Spiked Amount 50.000        |        |      | Recove   | ry =    | 88.80%        |
| 55) 2-Fluorobiphenyl        | 7.748  | 172  | 300936   | 43.64   | ng 0.00       |
| Spiked Amount 50.000        |        |      | Recove   | ry =    | 87.28%        |
| 80) 2,4,6-Tribromophenol    | 9.089  | 330  | 84426    | 95.24   | ng 0.00       |
| Spiked Amount 100.000       |        |      | Recove   | ry =    | 95.24%        |
| 94) Terphenyl-d14           | 11.630 | 244  | 286422   | 53.27   | -             |
| Spiked Amount 50.000        |        |      | Recove   | ry =    | 106.54%       |

Target Compounds Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed



9M\_0917.M Wed Oct 14 15:49:48 2020 SYSTEM1

Page: 1

### Form1

### ORGANICS SEMIVOLATILE REPORT

Sample Number: EF-1-V-335534(10/06)

Client Id:

Data File: 9M101585.D

Analysis Date: 10/08/20 12:01 Date Rec/Extracted: NA-10/07/20

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270E

Matrix: Aqueous

Initial Vol:250ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: mg/L

|          |                       |        |      | J        |                     |        |      |  |
|----------|-----------------------|--------|------|----------|---------------------|--------|------|--|
| Cas #    | Compound              | RL     | Conc | Cas #    | Compound            | RL     | Conc |  |
| 95-95-4  | 2,4,5-Trichlorophenol | 0.0080 | U    | 87-68-3  | Hexachlorobutadiene | 0.0080 | U    |  |
| 88-06-2  | 2,4,6-Trichlorophenol | 0.0080 | U    | 67-72-1  | Hexachloroethane    | 0.0080 | U    |  |
| 121-14-2 | 2,4-Dinitrotoluene    | 0.0080 | U    | 98-95-3  | Nitrobenzene        | 0.0080 | U    |  |
| 95-48-7  | 2-Methylphenol        | 0.0020 | U    | 87-86-5  | Pentachlorophenol   | 0.040  | U    |  |
| 106-44-5 | 3&4-Methylphenol      | 0.0020 | U    | 110-86-1 | Pyridine            | 0.0083 | U    |  |
| 118-74-1 | Hexachlorobenzene     | 0.0080 | U    |          |                     |        |      |  |
|          |                       |        |      |          |                     |        |      |  |

instrument.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

SampleID : EF-1-V-335534(10/06 Operator : AH/JKR/JB Data File: 9M101585.D

Qt Meth : 9M\_0917.M Qt On : 10/08/20 12:24 Qt Upd On: 09/29/20 13:20 Sam Mult : 1 Vial# : 9 Misc : A,BNA Acq On : 10/ 8/20 12:01

Target Compounds

| Compound                    | R.T.   | QIon | Response | Conc U | nits Dev(Min) |
|-----------------------------|--------|------|----------|--------|---------------|
| Internal Standards          |        |      |          |        |               |
| 7) 1,4-Dioxane-d8(INT)      | 2.713  | 96   | 45682    | 40.00  | ng 0.01       |
| 21) 1,4-Dichlorobenzene-d4  |        |      |          | 40.00  | -             |
| 31) Naphthalene-d8          |        |      |          |        | ng 0.00       |
| 50) Acenaphthene-d10        |        |      |          |        | ng 0.00       |
| 77) Phenanthrene-d10        |        |      |          |        | ng -0.01      |
| 91) Chrysene-dl2            | 12.877 |      |          |        | ng -0.01      |
| 103) Perylene-d12           | 14.507 |      |          |        | ng -0.02      |
|                             |        |      |          |        | •             |
| System Monitoring Compounds |        |      |          |        |               |
| 11) 2-Fluorophenol          | 4.701  | 112  | 231120   | 96.72  | ng 0.00       |
| Spiked Amount 100.000       |        |      |          |        | 96.72%        |
| 16) Phenol-d5               | 5.572  | 99   | 278856   | 96.47  | ng 0.00       |
| Spiked Amount 100.000       |        |      | Recove   | ry =   | 96.47%        |
| 32) Nitrobenzene-d5         | 6.342  | 128  | 62251    | 54.83  | ng 0.00       |
| Spiked Amount 50.000        |        |      | Recove   | ry =   | 109.66%       |
| 55) 2-Fluorobiphenyl        | 7.748  | 172  |          |        | ng 0.00       |
| Spiked Amount 50.000        |        |      | Recove   |        | 107.50%       |
| 80) 2,4,6-Tribromophenol    | 9.089  | 330  |          |        | ng 0.00       |
| Spiked Amount 100.000       |        |      | Recove   |        |               |
| 94) Terphenyl-d14           | 11.624 | 244  |          |        | ng -0.01      |
| Spiked Amount 50.000        |        |      |          |        | 124.54%       |

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Qvalue



9M\_0917.M Wed Oct 14 15:49:52 2020 SYSTEM1

Page: 1

### FORM2

Surrogate Recovery

Method: EPA 8270E

| Dfile | Sample#                   | Matrix | Date/Time      | Surr<br>Dil | Dilute<br>Out<br>Flag | Column1<br>S1<br>Recov | Column1<br>S2<br>Recov | Column1<br>S3<br>Recov | Column1<br>S4<br>Recov | Column1<br>S5<br>Recov | Column1<br>S6<br>Recov |
|-------|---------------------------|--------|----------------|-------------|-----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| 9M101 | 575.D WMB88180            | A      | 10/07/20 15:57 | 1           |                       | 53                     | 39                     | 89                     | 87                     | 95                     | 107                    |
| 9M101 | 585.DEF-1-V-335534(10/06) | ) A    | 10/08/20 12:01 | 1           |                       | 97                     | 96                     | 110                    | 108                    | 113                    | 125                    |
| 9M101 | 580.DAD19595-013(T)       | Α      | 10/08/20 10:03 | 1           |                       | 94                     | 92                     | 108                    | 104                    | 114                    | 123                    |
| 9M101 | 583.DAD19595-014(T)       | Α      | 10/08/20 11:13 | 1           |                       | 88                     | 88                     | 112                    | 106                    | 117                    | 122                    |
| 5M114 | 533.D WMB88180(MS)        | Α      | 10/07/20 15:10 | 1           |                       | 59                     | 44                     | 100                    | 96                     | 114                    | 108                    |
| 9M101 | 572.DAD19542-001(T)       | Α      | 10/07/20 14:46 | 1           |                       | 86                     | 75                     | 111                    | 114                    | 122                    | 122                    |
| 9M101 | 593.DAD19542-001(T)(MS)   | Α      | 10/08/20 15:08 | 1           |                       | 50                     | 53                     | 61                     | 59                     | 66                     | 65                     |
| 9M101 | 594.DAD19542-001(T)(MSD   | ) A    | 10/08/20 15:32 | 1           |                       | 103                    | 99                     | 123                    | 112                    | 129                    | 125                    |

Flags: SD=Surrogate diluted out "=Surrogate out

Method: EPA 8270E

### **Aqueous Laboratory Limits**

| Compound                | Spike<br>Amt | Limits |  |  |
|-------------------------|--------------|--------|--|--|
| S1=2-Fluorophenol       | 100          | 29-113 |  |  |
| S2=Phenol-d5            | 100          | 27-115 |  |  |
| S3=Nitrobenzene-d5      | 50           | 51-139 |  |  |
| S4=2-Fluorobiphenyl     | 50           | 53-129 |  |  |
| S5=2.4.6-Tribromophenol | 100          | 54-149 |  |  |
| S6=Terphenyl-d14        | 50           | 55-146 |  |  |

### Form3 Recovery Data Laboratory Limits

QC Batch: WMB88180

Data File Sample ID: Analysis Date
Spike or Dup: 5M114533.D WMB88180(MS) 10/7/2020 3:10:00 PM
Non Spike(If applicable):

| Method: 8270E                       | Matrix: Aqueous |                    |                | Units: ug/L      | QC Type: MBS    |                |               |
|-------------------------------------|-----------------|--------------------|----------------|------------------|-----------------|----------------|---------------|
| Analyte:                            | Col             | Spike<br>Conc      | Sample<br>Conc | Expected<br>Conc | Recovery        | Lower<br>Limit | Uppe<br>Limit |
| 1,4-Dioxane                         | 1               | 50.7183            | 0              | 100              | 51              | 20             | 160           |
| <u>Pyridine</u>                     | <u>1</u>        | 28.0088            | <u>0</u>       | <u>100</u>       | <u>28</u>       | <u>5</u>       | <u>150</u>    |
| N-Nitrosodimethylamine              | 1               | 55.2949            | 0              | 100              | 55              | 50             | 150           |
| Benzaldehyde                        | 1               | 90.6775            | 0              | 100              | 91              | 20             | 220           |
| Aniline                             | 1               | 59.7208            | 0              | 100              | 60              | 20             | 150           |
| Pentachloroethane                   | 1               | 81.6117            | 0              | 100              | 82              | 50<br>50       | 130           |
| bis(2-Chloroethyl)ether<br>Phenol   | 1               | 80.8604            | 0<br>0         | 100<br>100       | 81<br>45        | 50<br>20       | 130<br>150    |
| 2-Chlorophenol                      | 1               | 44.5838<br>84.3276 | 0              | 100              | 84              | 70             | 130           |
| N-Decane                            | 1               | 77.676             | Ö              | 100              | 78              | 40             | 130           |
| 1,3-Dichlorobenzene                 | 1               | 70.3539            | Ö              | 100              | 70              | 50             | 130           |
| 1,4-Dichlorobenzene                 | 1               | 75.149             | ŏ              | 100              | 75              | 50             | 130           |
| 1,2-Dichlorobenzene                 | <u>i</u>        | 74.7732            | ŏ              | 100              | 75              | 50             | 130           |
| Benzyl alcohol                      | <u>i</u>        | 80.3411            | Ŏ              | 100              | 80              | 70             | 130           |
| bis(2-chloroisopropyl)ether         | 1               | 70.1627            | Ö              | 100              | 70              | 40             | 130           |
| 2-Methylphenol                      | 1               | 79.1611            | Q              | 100              | <u>79</u>       | 60             | 130           |
| Acetophenone                        | 1               | 92.9444            | õ              | 100              | 93              | 50             | 130           |
| Hexachloroethane                    | 1               | 78.1215            | <u>0</u>       | 100              | <u>78</u>       | <u>50</u>      | <u>130</u>    |
| N-Nitroso-di-n-propylamine          | <u>1</u>        | 80.4637            | 0              | 100              | 80              | 50             | 130           |
| 3&4-Methylphenol                    | <u>1</u>        | 74.2951            | Q              | 100              | <u>74</u>       | <u>50</u>      | 130           |
| <u>Nitrobenzene</u>                 | <u>1</u>        | <u>88.6713</u>     | <u>0</u>       | <u>100</u>       | <u>89</u>       | <u>70</u>      | <u>130</u>    |
| Isophorone                          | 1               | 87.8831            | 0              | 100              | 88              | 70             | 130           |
| 2-Nitrophenol                       | 1               | 102.4167           | 0              | 100              | 102             | 70             | 130           |
| 2,4-Dimethylphenol                  | 1               | 101.8918           | 0              | 100              | 102             | 40             | 130           |
| Benzoic Acid                        | 1               | 37.3655            | 0              | 100              | 37              | 20             | 130           |
| bis(2-Chloroethoxy)methane          | 1               | 86.9907            | 0              | 100              | 87              | 70<br>70       | 130           |
| 2,4-Dichlorophenol                  | 1               | 92.2827            | 0              | 100              | 92              | 70<br>50       | 130           |
| 1,2,4-Trichlorobenzene              | 1               | 82.4847            | 0<br>0         | 100<br>100       | 82<br>82        | 50<br>70       | 130<br>130    |
| Naphthalene<br>4-Chloroaniline      | 1               | 81.8442<br>84.3414 | Ö              | 100              | 84              | 70<br>50       | 150           |
| Hexachlorobutadiene                 | 1               | 82.6575            | Q              | 100<br>100       | 83              | 70             | 130           |
| Caprolactam                         | 1               | 40.6435            | 0              | 100<br>100       | <u>65</u><br>41 | 20             | 130           |
| 4-Chloro-3-methylphenol             | 1               | 100.3838           | Ö              | 100              | 100             | 70             | 130           |
| 2-Methylnaphthalene                 | i               | 83.9382            | ŏ              | 100              | 84              | 70             | 130           |
| 1-Methylnaphthalene                 | 1               | 102.5799           | Ö              | 100              | 103             | 70             | 130           |
| 1,1'-Biphenyl                       | 1               | 86.1382            | Ö              | 100              | 86              | 70             | 130           |
| 1,2,4,5-Tetrachlorobenzene          | 1               | 97.8255            | 0              | 100              | 98              | 70             | 130           |
| Hexachlorocyclopentadiene           | 1               | 90.0868            | 0              | 100              | 90              | 20             | 130           |
| 2,4,6-Trichlorophenol               | <u>1</u>        | <u>101.1103</u>    | <u>o</u>       | <u>100</u>       | <u>101</u>      | <u>70</u>      | <u>130</u>    |
| 2,4,5-Trichlorophenol               | <u>1</u>        | 109.0949           | <u>o</u>       | 100              | 109             | 70             | <u>130</u>    |
| 2-Chloronaphthalene                 | 1               | 85.5937            | 0              | 100              | 86              | 70             | 130           |
| 1,4-Dimethylnaphthalene             | 1               | 85.1541            | 0              | 100              | 85              | 70             | 130           |
| Diphenyl Ether                      | 1               | 103.1709           | 0              | 100              | 103             | 70             | 130           |
| 2-Nitroaniline                      | 1               | 105.3536           | 0              | 100              | 105             | 50             | 150           |
| Coumarin                            | 1               | 91.982             | 0              | 100              | 92              | 70             | 130           |
| Acenaphthylene                      | 1               | 89.3903            | 0              | 100              | 89              | 70             | 130           |
| Dimethylphthalate                   | 1               | 91.127             | 0              | 100              | 91              | 70<br>70       | 130           |
| 2,6-Dinitrotoluene                  | 1<br>1          | 91.9598            | 0              | 100<br>100       | 92<br>87        | 70<br>70       | 130<br>130    |
| Acenaphthene<br>3-Nitroaniline      | 1               | 87.3576<br>96.6186 | 0<br>0         | 100              | 97              | 70<br>50       | 150           |
| 3-Nitroaniline<br>2,4-Dinitrophenol | 1               | 113.1321           | 0              | 100              | 113             | 20             | 150           |
| Dibenzofuran                        | 1               | 94.4291            | 0              | 100              | 94              | 70             | 130           |
| 2,4-Dinitrotoluene                  | 1               | 99.6772            | <u>o</u>       | 100              | 100             | 40             | 130           |
| 4-Nitrophenol                       | 1               | 58.1785            | 0              | 100<br>100       | 58              | 20             | 150           |
| 2,3,4,6-Tetrachlorophenol           | 1               | 97.4111            | Ö              | 100              | 97              | 70             | 130           |
| Fluorene                            | i               | 87.8119            | Ö              | 100              | 88              | 70             | 130           |
| 4-Chlorophenyl-phenylether          | 1               | 93.2132            | ŏ              | 100              | 93              | 70             | 130           |
| Diethylphthalate                    | 1               | 93.019             | ŏ              | 100              | 93              | 50             | 130           |
| 4-Nitroaniline                      | 1               | 100.4404           | ŏ              | 100              | 100             | 50             | 150           |
| Atrazine                            | 1               | 105.2086           | Ö              | 100              | 105             | 50             | 130           |
| 4,6-Dinitro-2-methylphenol          | 1               | 112.1912           | 0              | 100              | 112             | 40             | 130           |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

#### Form3 Recovery Data Laboratory Limits QC Batch: WMB88180

| Method: 8270E              | Matrix   | Matrix: Aqueous |                |               | QC Typ     | e: MBS         |                |
|----------------------------|----------|-----------------|----------------|---------------|------------|----------------|----------------|
| Analyte:                   | Col      | Spike<br>Conc   | Sample<br>Conc | Expected Conc | Recovery   | Lower<br>Limit | Upper<br>Limit |
| n-Nitrosodiphenylamine     | 1        | 72.5527         | 0              | 100           | 73         | 50             | 130            |
| 1,2-Diphenylhydrazine      | 1        | 89.4073         | 0              | 100           | 89         | 70             | 130            |
| 4-Bromophenyl-phenylether  | 1        | 92.77           | 0              | 100           | 93         | 70             | 130            |
| <u>Hexachlorobenzene</u>   | <u>1</u> | <u>87.2636</u>  | <u>0</u>       | <u>100</u>    | <u>87</u>  | <u>70</u>      | <u>130</u>     |
| N-Octadecane               | 1        | 100.4266        | 0              | 100           | 100        | 70             | 130            |
| <u>Pentachlorophenol</u>   | <u>1</u> | <u>121.0651</u> | <u>0</u><br>0  | <u>100</u>    | <u>121</u> | <u>40</u>      | <u>130</u>     |
| Phenanthrene               | 1        | 89.7863         | 0              | 100           | 90         | 70             | 130            |
| Anthracene                 | 1        | 90.1423         | 0              | 100           | 90         | 70             | 130            |
| Carbazole                  | 1        | 91.0424         | 0              | 100           | 91         | 70             | 130            |
| Di-n-butylphthalate        | 1        | 101.3632        | 0              | 100           | 101        | 70             | 130            |
| Fluoranthene               | 1        | 94.8077         | 0              | 100           | 95         | 70             | 130            |
| Pyrene                     | 1        | 89.7163         | 0              | 100           | 90         | 70             | 130            |
| Benzidine                  | 1        | 6.0486          | 0              | 100           | 6          | 1              | 130            |
| Butylbenzylphthalate       | 1        | 93.4987         | 0              | 100           | 93         | 50             | 130            |
| 3,3'-Dichlorobenzidine     | 1        | 93.5232         | 0              | 100           | 94         | 1              | 150            |
| Benzo[a]anthracene         | 1        | 82.9756         | 0              | 100           | 83         | 70             | 130            |
| Chrysene                   | 1        | 89.5766         | 0              | 100           | 90         | 50             | 130            |
| bis(2-Ethylhexyl)phthalate | 1        | 104.127         | 0              | 100           | 104        | 70             | 130            |
| Di-n-octylphthalate        | 1        | 100.8394        | 0              | 100           | 101        | 70             | 130            |
| Benzo[b]fluoranthene       | 1        | 95.1959         | 0              | 100           | 95         | 70             | 130            |
| Benzo(k)fluoranthene       | 1        | 95.8473         | 0              | 100           | 96         | 70             | 130            |
| Benzo[a]pyrene             | 1        | 98.3069         | 0              | 100           | 98         | 70             | 130            |
| Indeno[1,2,3-cd]pyrene     | 1        | 96.2584         | 0              | 100           | 96         | 70             | 130            |
| Dibenzo[a,h]anthracene     | 1        | 94.7248         | 0              | 100           | 95         | 70             | 130            |
| Benzo[g,h,i]perylene       | 1        | 94.2092         | Ó              | 100           | 94         | 70             | 130            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

## Form3 Recovery Data Laboratory Limits

QC Batch: WMB88180

Data File

Sample ID:

Analysis Date

Spike or Dup: 9M101593.D Non Spike(If applicable): 9M101572.D

AD19542-001(T)(MS) AD19542-001(T) 10/8/2020 3:08:00 PM 10/7/2020 2:46:00 PM

Inst Blank(If applicable):

| Method: 8270E                              | Matrix: Aqueous |                          |                | Units: ug/L       | QC Typ            | e: MS           |                   |
|--------------------------------------------|-----------------|--------------------------|----------------|-------------------|-------------------|-----------------|-------------------|
| Analyte:                                   | Col             | Spike<br>Conc            | Sample<br>Conc | Expected<br>Conc  | Recovery          | Lower<br>Limit  | Upper<br>Limit    |
| 1,4-Dioxane                                | 1               | 40.0599                  | 0              | 100               | 40                | 20              | 160               |
| Pyridine Pyridine                          | <u>1</u>        | <u>40.3166</u>           | Ō              | <u>100</u>        | <u>40</u>         | <u>5</u>        | <u>150</u>        |
| N-Nitrosodimethylamine                     | 1               | 47.0167                  | 0              | 100               | 47 *              | 50              | 150               |
| Benzaldehyde                               | 1               | 40.8147                  | 0              | 100               | 41                | 20              | 220               |
| Aniline                                    | 1               | 43.6276                  | 0              | 100               | 44                | 20              | 150               |
| Pentachloroethane                          | 1               | 48.6722                  | 0              | 100               | 49*               | 50              | 130               |
| bis(2-Chloroethyl)ether                    | 1               | 48.7378                  | 0              | 100               | 49*               | 50              | 130               |
| Phenol                                     | 1               | 49.591                   | 0              | 100               | 50                | 20              | 150               |
| 2-Chlorophenol                             | 1               | 52.8884                  | 0              | 100               | 53*               | 70<br>40        | 130               |
| N-Decane                                   | 1               | 48.0932<br>44.255        | 0<br>0         | 100               | 48<br>44*         | 50              | 130<br>130        |
| 1,3-Dichlorobenzene                        | 1               |                          | 0              | 100               | 44 *<br>48 *      | 50<br>50        | 130               |
| 1,4-Dichlorobenzene                        | 1               | 47.5872<br>46.9582       | 0              | 100<br>100        | 40<br>47*         | 50<br>50        | 130               |
| 1,2-Dichlorobenzene                        | 1               | 55.3902                  | 0              | 100               | 55*               | 70              | 130               |
| Benzyl alcohol bis(2-chloroisopropyl)ether | 1               | 46.8869                  | Ö              | 100               | 47                | 40              | 130               |
| 2-Methylphenol                             | 1               | 59.6197                  | <u>o</u>       | 100               | <u>60</u>         | <u>60</u>       | 130               |
| Acetophenone                               | 1               | 59.6661                  | 0              | 100               | 60                | <u>50</u>       | 130               |
| Hexachloroethane                           | 1               | 47.2207                  | Q              | 100               | 47 *              | <u>50</u>       | 130               |
| N-Nitroso-di-n-propylamine                 | 1               | 68.6778                  | Ö              | 100               | 69                | <u>50</u><br>50 | 130               |
| 3&4-Methylphenol                           | 1               | 62.4502                  | <u>ŏ</u>       | 100               | 62                | <u>50</u>       | 130               |
| Nitrobenzene                               | <u>†</u>        | 54.0002                  | <u>o</u>       | 100               | <u>54</u> *       | <u>70</u>       | <u>130</u>        |
| Isophorone                                 | 1               | 54.0413                  | Õ              | 100               | 54*               | 70              | 130               |
| 2-Nitrophenol                              | 1               | 60.0215                  | Ö              | 100               | 60*               | 70              | 130               |
| 2,4-Dimethylphenol                         | 1               | 63.2277                  | 0              | 100               | 63                | 40              | 130               |
| Benzoic Acid                               | 1               | 64.7954                  | 0              | 100               | 65                | 20              | 130               |
| bis(2-Chloroethoxy)methane                 | 1               | 53.3669                  | 0              | 100               | 53*               | 70              | 130               |
| 2,4-Dichlorophenol                         | 1               | 60.144                   | 0              | 100               | 60*               | 70              | 130               |
| 1,2,4-Trichlorobenzene                     | 1               | 50.2285                  | 0              | 100               | 50                | 50              | 130               |
| Naphthalene                                | 1               | 51.6515                  | 0              | 100               | 52 *              | 70              | 130               |
| 4-Chloroaniline                            | 1               | 51.5077                  | 0              | 100               | 52                | 50              | 150               |
| <u>Hexachlorobutadiene</u>                 | <u>1</u>        | <u>48.2349</u>           | <u>o</u>       | <u>100</u>        | <u>48*</u>        | <u>70</u>       | <u>130</u>        |
| Caprolactam                                | 1               | 67.3915                  | 0              | 100               | 67                | 20              | 130               |
| 4-Chloro-3-methylphenol                    | 1               | 59.862                   | 0              | 100               | 60*               | 70              | 130               |
| 2-Methylnaphthalene                        | 1               | 52.2097                  | 0              | 100               | 52*               | 70              | 130               |
| 1-Methylnaphthalene                        | 1               | 64.2991                  | 0              | 100               | 64*               | 70              | 130               |
| 1,1'-Biphenyl                              | 1               | 54.5937                  | 0              | 100               | 55*               | 70              | 130               |
| 1,2,4,5-Tetrachlorobenzene                 | 1               | 57.0408                  | 0              | 100               | 57*               | 70              | 130               |
| Hexachlorocyclopentadiene                  | 1               | 47.7403                  | 0              | 100               | 48                | 20              | 130               |
| 2,4,6-Trichlorophenol                      | 1               | 63.7955<br>63.064        | <u>0</u>       | <u>100</u>        | 64*               | <u>70</u>       | <u>130</u>        |
| 2,4,5-Trichlorophenol                      | <u>1</u><br>1   | <b>62.061</b><br>53.6713 | <u>o</u><br>o  | <u>100</u><br>100 | <u>62*</u><br>54* | <u>70</u><br>70 | <u>130</u><br>130 |
| 2-Chloronaphthalene                        | •               | 54.4365                  | -              |                   | -                 | -               |                   |
| 1,4-Dimethylnaphthalene Diphenyl Ether     | 1               | 61.9605                  | 0<br>0         | 100<br>100        | 54 *<br>62 *      | 70<br>70        | 130<br>130        |
| 2-Nitroaniline                             | 1               | 60.3566                  | Ö              | 100               | 60                | 50              | 150               |
| Coumarin                                   | 1               | 57.3558                  | 0              | 100               | 57*               | 70              | 130               |
| Acenaphthylene                             | 1               | 55.9199                  | Ö              | 100               | 56*               | 70              | 130               |
| Dimethylphthalate                          | i               | 54.0949                  | ŏ              | 100               | 54 *              | 70              | 130               |
| 2,6-Dinitrotoluene                         | i               | 57.3433                  | Ö              | 100               | 57*               | 70              | 130               |
| Acenaphthene                               | ì               | 53.3725                  | ŏ              | 100               | 53*               | 70              | 130               |
| 3-Nitroaniline                             | 1               | 56.7538                  | ŏ              | 100               | 57                | 50              | 150               |
| 2,4-Dinitrophenol                          | 1               | 39.2638                  | Ö              | 100               | 39                | 20              | 150               |
| Dibenzofuran                               | 1               | 54.8047                  | Ō              | 100               | 55*               | 70              | 130               |
| 2,4-Dinitrotoluene                         | <u>1</u>        | 57.5724                  | <u>o</u>       | <u>100</u>        | <u>58</u>         | <u>40</u>       | 130               |
| 4-Nitrophenol                              | 1               | 50.6393                  | ō              | 100               | <del>51</del>     | 20              | 150               |
| 2,3,4,6-Tetrachlorophenol                  | 1               | 55.997                   | 0              | 100               | 56*               | 70              | 130               |
| Fluorene                                   | 1               | 53.7972                  | 0              | 100               | 54*               | 70              | 130               |
| 4-Chlorophenyl-phenylether                 | 1               | 55.1774                  | 0              | 100               | 55*               | 70              | 130               |
| Diethylphthalate                           | 1               | 54.7753                  | 0              | 100               | 55                | 50              | 130               |
| 4-Nitroaniline                             | 1               | 56.2178                  | 0              | 100               | 56                | 50              | 150               |
| Atrazine                                   | 1               | 60.6912                  | 0              | 100               | 61                | 50              | 130               |
| 4,6-Dinitro-2-methylphenol                 | 1               | 46.4706                  | 0              | 100               | 46                | 40              | 130               |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

### Form3 Recovery Data Laboratory Limits QC Batch: WMB88180

| Method: 8270E              | Matrix | : Aqueous      |                | Units: ug/L   | QC Typ      | e: MS          |                |
|----------------------------|--------|----------------|----------------|---------------|-------------|----------------|----------------|
| Analyte:                   | Col    | Spike<br>Conc  | Sample<br>Conc | Expected Conc | Recovery    | Lower<br>Limit | Upper<br>Limit |
| n-Nitrosodiphenylamine     | 1      | 46.0957        | 0              | 100           | 46*         | 50             | 130            |
| 1,2-Diphenylhydrazine      | 1      | 60.0997        | 0              | 100           | 60*         | 70             | 130            |
| 4-Bromophenyl-phenylether  | 1      | 56.2331        | 0              | 100           | 56*         | 70             | 130            |
| Hexachlorobenzene          | 1      | <u>51.6654</u> | <u>o</u><br>o  | <u>100</u>    | <u>52*</u>  | <u>70</u>      | <u>130</u>     |
| N-Octadecane               | 1      | 66.7088        | 0              | 100           | 67*         | 70             | 130            |
| <u>Pentachlorophenol</u>   | 1      | 67.6293        | <u>0</u>       | <u>100</u>    | <u>68</u>   | <u>40</u>      | <u>130</u>     |
| Phenanthrene               | 1      | 55.247         | ō              | 100           | 55*         | 70             | 130            |
| Anthracene                 | 1      | 54.5763        | 0              | 100           | 55*         | 70             | 130            |
| Carbazole                  | 1      | 57.1615        | 0              | 100           | 57*         | 70             | 130            |
| Di-n-butylphthalate        | 1      | 56.8396        | 0              | 100           | 57 <i>*</i> | 70             | 130            |
| Fluoranthene               | 1      | 58.2616        | 0              | 100           | 58*         | 70             | 130            |
| Pyrene                     | 1      | 55.5476        | 0              | 100           | 56*         | 70             | 130            |
| Benzidine                  | 1      | 0              | 0              | 100           | 0*          | 1              | 130            |
| Butylbenzylphthalate       | 1      | 58.7007        | 0              | 100           | 59          | 50             | 130            |
| 3,3'-Dichlorobenzidine     | 1      | 36.65          | 0              | 100           | 37          | 1              | 150            |
| Benzo[a]anthracene         | 1      | 51.817         | 0              | 100           | 52*         | 70             | 130            |
| Chrysene                   | 1      | 56.0349        | 0              | 100           | 56          | 50             | 130            |
| bis(2-Ethylhexyl)phthalate | 1      | 58.7619        | 0              | 100           | 59*         | 70             | 130            |
| Di-n-octylphthalate        | 1      | 58.9837        | 0              | 100           | 59*         | 70             | 130            |
| Benzo[b]fluoranthene       | 1      | 59.8415        | 0              | 100           | 60*         | 70             | 130            |
| Benzo[k]fluoranthene       | 1      | 58.6915        | 0              | 100           | 59*         | 70             | 130            |
| Benzo[a]pyrene             | 1      | 59.0703        | 0              | 100           | 59*         | 70             | 130            |
| Indeno[1,2,3-cd]pyrene     | 1      | 57.8827        | Ö              | 100           | 58*         | 70             | 130            |
| Dibenzo[a,h]anthracene     | 1      | 56.4275        | 0              | 100           | 56*         | 70             | 130            |
| Benzo[g,h,i]perylene       | 1      | 56.8822        | 0              | 100           | 57*         | 70             | 130            |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

### Form3 Recovery Data Laboratory Limits

QC Batch: WMB88180

Data File

Sample ID:

Analysis Date

Spike or Dup: 9M101594.D Non Spike(If applicable): 9M101572.D AD19542-001(T)(MSD) AD19542-001(T) 10/8/2020 3:32:00 PM 10/7/2020 2:46:00 PM

Inst Blank(If applicable):

| Method: 8270E                           | Matrix   | c: Aqueous           |                | Units: ug/L       | QC Typ            | e: MSD         |                |
|-----------------------------------------|----------|----------------------|----------------|-------------------|-------------------|----------------|----------------|
| Analyte:                                | Col      | Spike<br>Conc        | Sample<br>Conc | Expected<br>Conc  | Recovery          | Lower<br>Limit | Upper<br>Limit |
| 1,4-Dioxane                             | 1        | 84.4211              | 0              | 100               | 84                | 20             | 160            |
| Pyridine                                | <u>i</u> | 54.2633              | <u>o</u>       | 100               | <u>54</u>         | <u>5</u>       | 150            |
| N-Nitrosodimethylamine                  | 1        | 92.7669              | Ō              | 100               | 93                | 50             | 150            |
| Benzaldehyde                            | 1        | 68.395               | Ö              | 100               | 68                | 20             | 220            |
| Aniline                                 | 1        | 59.8324              | Ö              | 100               | 60                | 20             | 150            |
| Pentachloroethane                       | 1        | 99.1868              | Ö              | 100               | 99                | 50             | 130            |
| bis(2-Chloroethyl)ether                 | 1        | 101.9507             | Ö              | 100               | 102               | 50             | 130            |
| Phenol                                  | 1        | 91.5815              | 0              | 100               | 92                | 20             | 150            |
| 2-Chlorophenol                          | 1        | 102.1536             | 0              | 100               | 102               | 70             | 130            |
| N-Decane                                | 1        | 97.9844              | 0              | 100               | 98                | 40             | 130            |
| 1,3-Dichlorobenzene                     | 1        | 88.8697              | 0              | 100               | 89                | 50             | 130            |
| 1,4-Dichlorobenzene                     | 1        | 95.1285              | 0              | 100               | 95                | 50             | 130            |
| 1,2-Dichlorobenzene                     | 1        | 92.5355              | 0              | 100               | 93                | 50             | 130            |
| Benzyl alcohol                          | 1        | 106.6975             | 0              | 100               | 107               | 70             | 130            |
| bis(2-chloroisopropyl)ether             | 1        | 90.002               | 0              | 100               | 90                | 40             | 130            |
| 2-Methylphenol                          | 1        | 113.5941             | <u>0</u>       | 100               | 114               | 60             | 130            |
| Acetophenone                            | <u>1</u> | 105.8109             | ō              | 100               | 106               | 50             | 130            |
| <u>Hexachloroethane</u>                 | 1        | 96.6286              | Q              | <u>100</u>        | <u>97</u>         | <u>50</u>      | <u>130</u>     |
| N-Nitroso-di-n-propylamine              | 1        | 126.099              | Ō              | 100               | 126               | 50             | 130            |
| 3&4-Methylphenol                        | 1        | <u>113.0142</u>      | <u>o</u>       | <u>100</u>        | <u>113</u>        | <u>50</u>      | <u>130</u>     |
| Nitrobenzene                            | 1        | 105.5069             | Ō              | <u>100</u>        | <u>106</u>        | <u>70</u>      | <u>130</u>     |
| Isophorone                              | 1        | 104.3841             | Ö              | 100               | 104               | 70             | 130            |
| 2-Nitrophenol                           | 1        | 121.7109             | 0              | 100               | 122               | 70             | 130            |
| 2,4-Dimethylphenol                      | 1        | 122.275              | 0              | 100               | 122               | 40             | 130            |
| Benzoic Acid                            | 1        | 164.0628             | 0              | 100               | 164*              | 20             | 130            |
| bis(2-Chloroethoxy)methane              | 1        | 104.4722             | 0              | 100               | 104               | 70             | 130            |
| 2,4-Dichlorophenol                      | 1        | 116.8217             | 0              | 100               | 117               | 70             | 130            |
| 1,2,4-Trichlorobenzene                  | 1        | 98.9157              | 0              | 100               | 99                | 50             | 130            |
| Naphthalene                             | 1        | 98.1683              | 0              | 100               | 98                | 70             | 130            |
| 4-Chloroaniline                         | 1        | 80.8699              | 0              | 100               | 81                | 50             | 150            |
| <u>Hexachlorobutadiene</u>              | 1        | <u>95.2314</u>       | <u>o</u>       | <u>100</u>        | <u>95</u>         | <u>70</u>      | <u>130</u>     |
| Caprolactam                             | 1        | 69.211               | 0              | 100               | 69                | 20             | 130            |
| 4-Chloro-3-methylphenol                 | 1        | 115.4993             | 0              | 100               | 115               | 70             | 130            |
| 2-Methylnaphthalene                     | 1        | 99.4357              | 0              | 100               | 99                | 70             | 130            |
| 1-Methylnaphthalene                     | 1        | 119.915              | 0              | 100               | 120               | 70             | 130            |
| 1,1'-Biphenyl                           | 1        | 100.7702             | 0              | 100               | 101               | 70             | 130            |
| 1,2,4,5-Tetrachlorobenzene              | 1        | 106.851              | 0              | 100               | 107               | 70             | 130            |
| Hexachlorocyclopentadiene               | 1        | 99.0606              | 0              | 100               | 99                | 20             | 130            |
| 2,4,6-Trichlorophenol                   | 1        | 122.3804             | <u>o</u>       | <u>100</u>        | <u>122</u>        | <u>70</u>      | <u>130</u>     |
| 2,4,5-Trichlorophenol                   | 1        | <u>121.0749</u>      | <u>o</u>       | <u>100</u>        | <u>121</u>        | <u>70</u>      | <u>130</u>     |
| 2-Chloronaphthalene                     | 1        | 100.5502             | 0              | 100               | 101               | 70             | 130            |
| 1,4-Dimethylnaphthalene                 | 1        | 97.5628              | 0              | 100               | 98                | 70             | 130            |
| Diphenyl Ether                          | 1        | 113.1341             | 0              | 100               | 113               | 70<br>50       | 130            |
| 2-Nitroaniline                          | 1        | 112.6349             | 0              | 100               | 113               | 50<br>70       | 150            |
| Coumarin                                | 1        | 106.0215             | 0              | 100               | 106               | 70<br>70       | 130            |
| Acenaphthylene                          | 1        | 105.2555             | 0              | 100               | 105               | 70<br>70       | 130            |
| Dimethylphthalate                       | 1        | 100.9838             | 0              | 100               | 101               | 70<br>70       | 130            |
| 2,6-Dinitrotoluene                      | 1        | 106.2739             | 0              | 100               | 106               | 70<br>70       | 130            |
| Acenaphthene 3-Nitroaniline             | 1<br>1   | 99.0419              | 0              | 100<br>100        | 99<br>95          | 70<br>50       | 130            |
|                                         | 1        | 95.4313<br>123.6377  | 0              | 100               | 95<br>124         |                | 150<br>150     |
| 2,4-Dinitrophenol Dibenzofuran          | 1        | 123.6377<br>100.8097 | 0<br>0         | 100<br>100        | 101               | 20<br>70       | 150<br>130     |
|                                         |          |                      |                |                   |                   |                |                |
| 2,4-Dinitrotoluene                      | 1 1      | 111.9934<br>105.6267 | <u>o</u><br>o  | <u>100</u><br>100 | <u>112</u><br>106 | <u>40</u>      | 130<br>150     |
| 4-Nitrophenol 2,3,4,6-Tetrachlorophenol | 1        | 105.6267<br>112.9882 | 0              | 100               | 113               | 20<br>70       | 150<br>130     |
| Fluorene                                | 1        | 99.987               | 0              | 100               | 100               | 70<br>70       | 130            |
| 4-Chlorophenyl-phenylether              | 1        | 101.6515             | 0              | 100               | 100               | 70<br>70       | 130            |
| Diethylphthalate                        | 1        | 101.0515             | 0              | 100               | 102               | 50             | 130            |
| 4-Nitroaniline                          | 1        | 99.0265              | 0              | 100               | 99                | 50             | 150            |
| Atrazine                                | 1        | 111.6587             | Ö              | 100               | 112               | 50<br>50       | 130            |
| 4,6-Dinitro-2-methylphenol              | 1        |                      | ŏ              | 100               | 125               | 40             | 130            |
| * 1-11-4                                | <br>: !  |                      |                |                   |                   | <del></del>    | ., ., ., .,    |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits
Bold and underline - Indicates the compounds reported on form1

#### Form3 Recovery Data Laboratory Limits QC Batch: WMB88180

| Method: 8270E              | Matri    | k: Aqueous     |                | Units: ug/L      | QC Typ      | e: MSD         |                |
|----------------------------|----------|----------------|----------------|------------------|-------------|----------------|----------------|
| Analyte:                   | Col      | Spike<br>Conc  | Sample<br>Conc | Expected<br>Conc | Recovery    | Lower<br>Limit | Upper<br>Limit |
| n-Nitrosodiphenylamine     | 1        | 87.2311        | 0              | 100              | 87          | 50             | 130            |
| 1,2-Diphenylhydrazine      | 1        | 103.2302       | 0              | 100              | 103         | 70             | 130            |
| 4-Bromophenyl-phenylether  | 1        | 106.2295       | 0              | 100              | 106         | 70             | 130            |
| Hexachlorobenzene          | 1        | <u>98.1568</u> | <u>0</u><br>0  | <u>100</u>       | <u>98</u>   | <u>70</u>      | <u>130</u>     |
| N-Octadecane               | 1        | 121.9513       | 0              | 100              | 122         | 70             | 130            |
| <u>Pentachlorophenol</u>   | <u>1</u> | 145.4823       | <u>0</u>       | <u>100</u>       | <u>145*</u> | <u>40</u>      | <u>130</u>     |
| Phenanthrene               | 1        | 102.1167       | Ō              | 100              | 102         | 70             | 130            |
| Anthracene                 | 1        | 102.5662       | 0              | 100              | 103         | 70             | 130            |
| Carbazole                  | 1        | 104.8682       | 0              | 100              | 105         | 70             | 130            |
| Di-n-butylphthalate        | 1        | 109.1831       | 0              | 100              | 109         | 70             | 130            |
| Fluoranthene               | 1        | 109.1959       | 0              | 100              | 109         | 70             | 130            |
| Pyrene                     | 1        | 104.3555       | 0              | 100              | 104         | 70             | 130            |
| Benzidine                  | 1        | 0              | 0              | 100              | 0*          | 1              | 130            |
| Butylbenzylphthalate       | 1        | 112.7291       | 0              | 100              | 113         | 50             | 130            |
| 3,3'-Dichlorobenzidine     | 1        | 24.31          | 0              | 100              | 24          | 1              | 150            |
| Benzo(a)anthracene         | 1        | 100.2136       | 0              | 100              | 100         | 70             | 130            |
| Chrysene                   | 1        | 102.198        | 0              | 100              | 102         | 50             | 130            |
| bis(2-Ethylhexyl)phthalate | 1        | 114.1159       | 0              | 100              | 114         | 70             | 130            |
| Di-n-octylphthalate        | 1        | 118.6535       | 0              | 100              | 119         | 70             | 130            |
| Benzo[b]fluoranthene       | 1        | 115.1059       | 0              | 100              | 115         | 70             | 130            |
| Benzo[k]fluoranthene       | 1        | 108.926        | 0              | 100              | 109         | 70             | 130            |
| Benzo[a]pyrene             | 1        | 114.0388       | 0              | 100              | 114         | 70             | 130            |
| Indeno[1,2,3-cd]pyrene     | 1        | 113.6274       | 0              | 100              | 114         | 70             | 130            |
| Dibenzo[a,h]anthracene     | 1        | 109.0534       | 0              | 100              | 109         | 70             | 130            |
| Benzo[g,h,i]perylene       | 1        | 108.9508       | 0              | 100              | 109         | 70             | 130            |

<sup># -</sup> Indicates outside of standard limits but within method exceedance limits \* - Indicates outside of limits Bold and underline - Indicates the compounds reported on form1

## Form3 RPD Data Laboratory Limits

QC Batch: WMB88180
Sample ID:

Data File Spike or Dup: 9M101594.D

AD19542-001(T)(MSD) AD19542-001(T)(MS) Analysis Date 10/8/2020 3:32:00 PM 10/8/2020 3:08:00 PM

Duplicate(If applicable): 9M101593.D Inst Blank(If applicable):

Method: 8270E Matrix: Aqueous Units: ug/L QC Type: MSD

| Method: 6270E                           | Matrix. Aqueous 0 |                      | ug/L QC               | , Type. MSL         | ,               |
|-----------------------------------------|-------------------|----------------------|-----------------------|---------------------|-----------------|
| Analyte:                                | Column            | Dup/MSD/MBSD<br>Conc | Sample/MS/MBS<br>Conc | RPD                 | Limit           |
| 1,4-Dioxane                             | 1                 | 84.4211              | 40.0599               | 71*                 | 20              |
| Pyridine                                | <u>1</u>          | 54.2633              | 40.3166               | <u>29</u>           | <u>40</u>       |
| N-Nitrosodimethylamine                  | ī                 | 92.7669              | 47.0167               | <del>65</del> *     | 20              |
| Benzaldehyde                            | 1                 | 68.395               | 40.8147               | 51*                 | 20              |
| Aniline                                 | i                 | 59.8324              | 43.6276               | 31*                 | 20              |
| Pentachloroethane                       | 1                 | 99.1868              | 48.6722               | 68*                 | 20              |
| bis(2-Chloroethyl)ether                 | 1                 | 101.9507             | 48.7378               | 71*                 | 20              |
| Phenol                                  | 1                 | 91.5815              | 49.591                | 59*                 | 40              |
| 2-Chlorophenol                          | 1                 | 102.1536             | 52.8884               | 64*                 | 40              |
| N-Decane                                | 1                 | 97.9844              | 48.0932               | 68*                 | 20              |
| 1,3-Dichlorobenzene                     | 1                 | 88.8697              | 44.255                | 67*                 | 20              |
| 1,4-Dichlorobenzene                     | 1                 | 95.1285              | 47.5872               | 67*                 | 40              |
| 1.2-Dichlorobenzene                     | 1                 | 92.5355              | 46.9582               | 65*                 | 20              |
| Benzyl alcohol                          | i                 | 106.6975             | 55.3902               | 63*                 | 20              |
| bis(2-chloroisopropyl)ether             | i                 | 90.002               | 46.8869               | 63 *                | 20              |
| 2-Methylphenoi                          | 1                 | 113.5941             | 59.6197               | 62*                 | <u>40</u>       |
| Acetophenone                            | <del>i</del>      | 105.8109             | 59.6661               | <u>56</u> -         | 20              |
| Hexachloroethane                        | <u>1</u>          | 96.6286              | 47.2207               | <u>69*</u>          | <u>40</u>       |
| N-Nitroso-di-n-propylamine              | 1                 | 126.099              | 68.6778               | 59 *                | <del>40</del>   |
| 3&4-Methylphenol                        | 1                 | 113.0142             | 62.4502               | <u>58 *</u>         | 40              |
| Nitrobenzene                            | <u> 1</u>         | 105.5069             | 54.0002               | 65 *                | <u>40</u>       |
| Isophorone                              | 1                 | 104.3841             | 54.0413               | 64 *                | <del>20</del>   |
| 2-Nitrophenol                           | 1                 | 121.7109             | 60.0215               | 68*                 | 20              |
| 2,4-Dimethylphenol                      | i                 | 122.275              | 63.2277               | 64*                 | 40              |
| Benzoic Acid                            | 1                 | 164.0628             | 64.7954               | 87*                 | 20              |
| bis(2-Chloroethoxy)methane              | i                 | 104.4722             | 53.3669               | 65*                 | 20              |
| 2,4-Dichlorophenol                      | 1                 | 116.8217             | 60.144                | 64*                 | 20              |
| 1,2,4-Trichlorobenzene                  | 1                 | 98.9157              | 50.2285               | 65*                 | 40              |
| Naphthalene                             | 1                 | 98.1683              | 51.6515               | 62*                 | 40              |
| 4-Chloroaniline                         | i                 | 80.8699              | 51.5077               | 44*                 | 20              |
| Hexachlorobutadiene                     | 1                 | 95.2314              | 48.2349               | 66 *                | <u>40</u>       |
| Caprolactam                             | 1                 | 69.211               | 67.3915               | 2.7                 | 20              |
| 4-Chloro-3-methylphenol                 | 1                 | 115.4993             | 59.862                | 63*                 | 40              |
| 2-Methylnaphthalene                     | i                 | 99.4357              | 52.2097               | 62*                 | 20              |
| 1-Methylnaphthalene                     | 1                 | 119.915              | 64.2991               | 60*                 | 20              |
| 1,1'-Biphenyl                           | 1                 | 100.7702             | 54.5937               | 59*                 | 20              |
| 1,2,4,5-Tetrachlorobenzene              | i                 | 106.851              | 57.0408               | 61*                 | 20              |
| Hexachlorocyclopentadiene               | 1                 | 99.0606              | 47.7403               | 70 <i>*</i>         | 20              |
| 2,4,6-Trichlorophenol                   | 1                 | 122.3804             | 63.7955               | 63*                 | <u>40</u>       |
| 2,4,5-Trichlorophenol                   | 1 1               | 121.0749             | 62.061                |                     |                 |
| 2-Chloronaphthalene                     | 1                 | 100.5502             | 53.6713               | <u>64 *</u><br>61 * | <u>40</u><br>20 |
| 1,4-Dimethylnaphthalene                 | i                 | 97.5628              | 54.4365               | 57*                 | 20              |
| Diphenyl Ether                          | 1                 | 113.1341             | 61.9605               | 58*                 | 20              |
| 2-Nitroaniline                          | 1                 | 112.6349             | 60.3566               | 60*                 | 20              |
| Coumarin                                | 1                 | 106.0215             | 57.3558               | 60 *                | 20              |
| Acenaphthylene                          | 1                 | 105.2555             | 57.3556<br>55.9199    | 61*                 | 20              |
| Dimethylphthalate                       | 1                 | 100.9838             | 55.9199<br>54.0949    | 60*                 | 20              |
| 2,6-Dinitrotoluene                      | 1                 | 106.2739             | 54.0949<br>57.3433    | 60 <i>*</i>         | 20              |
| Acenaphthene                            | 1                 | 99.0419              | 57.3433<br>53.3725    | 60*                 | 40              |
| 3-Nitroaniline                          | 1                 | 95.4313              | 56.7538               | 51 *                | 20              |
| 2,4-Dinitrophenol                       | 1                 | 123.6377             | 39.2638               | 104*                | 20              |
| Dibenzofuran                            | 1                 | 100.8097             | 54.8047               | 104 "<br>59 *       | 20              |
| 2,4-Dinitrotoluene                      |                   | 111.9934             |                       |                     |                 |
|                                         | <u>1</u><br>1     |                      | <u>57.5724</u>        | <u>64 *</u><br>70 * | <u>40</u>       |
| 4-Nitrophenol 2,3,4,6-Tetrachlorophenol | 1                 | 105.6267             | 50.6393<br>55.997     | 70"<br>67*          | 40<br>30        |
| 2,3,4,6-1 etracniorophenoi<br>Fluorene  | 1                 | 112.9882<br>99.987   | 55.997<br>53.7972     | 60*                 | 20<br>40        |
| 4-Chlorophenyl-phenylether              | 1                 | 101.6515             | 55.1774               | 59*                 | 40<br>20        |
| Diethylphthalate                        | 1                 | 102.9864             | 55.1774<br>54.7753    | 61 *                | 20<br>20        |
| 4-Nitroaniline                          | 1                 | 99.0265              | 54.7753<br>56.2178    | 55*                 | 20<br>20        |
| Atrazine                                | 1                 | 111.6587             | 60.6912               | 59*                 | 20<br>20        |
| 4,6-Dinitro-2-methylphenol              | 1                 | 124.5252             | 46.4706               | 91 *                | 20              |
|                                         |                   |                      |                       |                     |                 |
| * - Indicates outside of limits         |                   | NA - Both concentra  | ations=0 no result of | can be calcu        | lated           |

<sup>\* -</sup> Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

#### Form3 RPD Data Laboratory Limits QC Batch: WMB88180

| ,                          |             | ILCIT. VVIVIBOO 100  |                     | 00 F 1:05    |           |
|----------------------------|-------------|----------------------|---------------------|--------------|-----------|
| Method: 8270E              | Matrix: Aqu | ieous Units:         | ug/L                | QC Type: MSD | 1         |
| Analyte:                   | Column      | Dup/MSD/MBSD<br>Conc | Sample/MS/M<br>Conc | BS<br>RPD    | Limit     |
| n-Nitrosodiphenylamine     | 1           | 87.2311              | 46.0957             | 62*          | 20        |
| 1,2-Diphenylhydrazine      | 1           | 103.2302             | 60.0997             | 53*          | 20        |
| 4-Bromophenyl-phenylether  | 1           | 106.2295             | 56.2331             | 62*          | 20        |
| <u>Hexachlorobenzene</u>   | 1           | <u>98.1568</u>       | <u>51.6654</u>      | <u>62 *</u>  | <u>40</u> |
| N-Octadecane               | 1           | 121.9513             | 66.7088             | 59*          | 20        |
| <u>Pentachlorophenol</u>   | <u>1</u>    | <u>145.4823</u>      | <u>67.6293</u>      | <u>73 *</u>  | <u>40</u> |
| Phenanthrene               | 1           | 102.1167             | 55.247              | 60*          | 20        |
| Anthracene                 | 1           | 102.5662             | 54.5763             | 61 *         | 20        |
| Carbazole                  | 1           | 104.8682             | 57.1615             | 59*          | 20        |
| Di-n-butylphthalate        | 1           | 109.1831             | 56.8396             | 63*          | 20        |
| Fluoranthene               | 1           | 109.1959             | 58.2616             | 61*          | 20        |
| Pyrene                     | 1           | 104.3555             | 55.5476             | 61*          | 40        |
| Benzidine                  | 1           | 0                    | 0                   | NA           | 20        |
| Butylbenzylphthalate       | 1           | 112.7291             | 58.7007             | 63*          | 40        |
| 3,3'-Dichlorobenzidine     | 1           | 24.31                | 36.65               | 40*          | 20        |
| Benzo[a]anthracene         | 1           | 100.2136             | 51.817              | 64 *         | 20        |
| Chrysene                   | 1           | 102.198              | 56.0349             | 58*          | 20        |
| bis(2-Ethylhexyl)phthalate | 1           | 114.1159             | 58.7619             | 64*          | 20        |
| Di-n-octylphthalate        | 1           | 118.6535             | 58.9837             | 67*          | 20        |
| Benzo[b]fluoranthene       | 1           | 115.1059             | 59.8415             | 63*          | 20        |
| Benzo[k]fluoranthene       | 1           | 108.926              | 58.6915             | 60*          | 20        |
| Benzo[a]pyrene             | 1           | 114.0388             | 59.0703             | 64*          | 20        |
| Indeno[1,2,3-cd]pyrene     | 1           | 113.6274             | 57.8827             | 65*          | 20        |
| Dibenzo[a,h]anthracene     | 1           | 109.0534             | 56.4275             | 64*          | 20        |
| Benzo[g,h,i]perylene       | 1           | 108.9508             | 56.8822             | 63*          | 20        |

#### FORM 4 Blank Summary

Blank Number: WMB88180 Blank Data File: 9M101575.D

Matrix: Aqueous

Blank Analysis Date: 10/07/20 15:57

Blank Extraction Date: 10/07/20

(If Applicable)

Method: EPA 8270E

| <br>Sample Number | Data File  | Analysis Date  |  |
|-------------------|------------|----------------|--|
| AD19595-013(T)    | 9M101580.D | 10/08/20 10:03 |  |
| AD19595-014(T)    | 9M101583.D | 10/08/20 11:13 |  |
| EF-1-V-335534(10/ | 9M101585.D | 10/08/20 12:01 |  |
| AD19542-001(T)(M  | 9M101594.D | 10/08/20 15:32 |  |
| AD19542-001(T)(M  | 9M101593.D | 10/08/20 15:08 |  |
| AD19542-001(T)    | 9M101572.D | 10/07/20 14:46 |  |
| WMB88180(MS)      | 5M114533.D | 10/07/20 15:10 |  |

#### Form 5

Data File: 9M101312.D Analysis Date: 09/17/20 09:43 Method: EPA 8270E Tune Name: CAL DFTPP Instrument: GCMS 9

| Tune Scan/Time Range: Average of 10.107 to 10.107 min | Tune Scan/Time I | Range: A | verage o | f 10.10 | 07 to | 10.107 | min |
|-------------------------------------------------------|------------------|----------|----------|---------|-------|--------|-----|
|-------------------------------------------------------|------------------|----------|----------|---------|-------|--------|-----|

| Tgt  | Rel  | Lo Hi Lim |     | Rel   | Raw    | Pass/ |
|------|------|-----------|-----|-------|--------|-------|
| Mass | Mass | Lim       |     | Abund | Abund  | Fail  |
| 51   | 198  | 30        | 60  | 34.3  | 42992  | PASS  |
| 68   | 69   | 0.00      | 2   | 0.0   | 0      | PASS  |
| 69   | 198  | 0.00      | 100 | 38.1  | 47736  | PASS  |
| 70   | 69   | 0.00      | 2   | 0.4   | 213    | PASS  |
| 127  | 198  | 40        | 60  | 50.6  | 63424  | PASS  |
| 197  | 198  | 0.00      | 1   | 0.0   | 0      | PASS  |
| 198  | 198  | 100       | 100 | 100.0 | 125368 | PASS  |
| 199  | 198  | 5         | 9   | 6.6   | 8281   | PASS  |
| 275  | 198  | 10        | 30  | 23.1  | 28904  | PASS  |
| 365  | 198  | 1         | 100 | 2.9   | 3594   | PASS  |
| 441  | 443  | 0.01      | 100 | 85.2  | 12575  | PASS  |
| 442  | 198  | 40        | 100 | 59.7  | 74840  | PASS  |
| 443  | 442  | 17        | 23  | 19.7  | 14757  | PASS  |

| Data File  | Sample Number | Analysis Date: |
|------------|---------------|----------------|
| 9M101313.D | CAL BNA@10PPM | 09/17/20 10:10 |
| 9M101314.D | CAL BNA@2PPM  | 09/17/20 10:34 |
| 9M101315.D | CAL BNA@196PP | 09/17/20 11:00 |
| 9M101316.D | CAL BNA@160PP | 09/17/20 11:24 |
| 9M101317.D | CAL BNA@120PP | 09/17/20 11:47 |
| 9M101318.D | CAL BNA@80PPM | 09/17/20 12:12 |
| 9M101319.D | CAL BNA@20PPM | 09/17/20 12:35 |
| 9M101320.D | CAL BNA@0.5PP | 09/17/20 12:58 |
| 9M101321.D | CAL BNA@50PPM | 09/17/20 13:22 |
| 9M101322.D | ICV BNA@50PPM | 09/17/20 13:47 |
| 9M101323.D | SMB88017      | 09/17/20 14:11 |
| 9M101324.D | SMB88018      | 09/17/20 14:34 |
| 9M101326.D | 88018         | 09/17/20 15:48 |
|            |               |                |

Data Path : G:\GcMsData\2020\GCMS\_9\Data\09-17-20\

Data File : 9M101312.D

Acq On : 17 Sep 2020 9:43

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_9\METHODQT\9M\_EVALN.M

Title : @GCMS\_9

Last Update : Tue Sep 15 10:50:50 2020



Spectrum Information: Average of 10.107 to 10.107 min.

|     | Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |   |
|-----|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|---|
| ١   | 51             | 198             | 30              | 60              | 34.3         | 42992      | PASS                | Ī |
| - 1 | 68             | 69              | 0.00            | 2               | 0.0          | i o        | PASS                |   |
| j   | 69             | 198             | 0.00            | 100             | 38.1         | 47736      | PASS                | İ |
| İ   | 70             | 69              | 0.00            | 2               | 0.4          | 213        | PASS                |   |
| ı   | 127            | 198             | 40              | 60              | 50.6         | 63424      | PASS                | İ |
| İ   | 197            | 198             | 0.00            | 1               | 0.0          | j o j      | PASS                |   |
| - 1 | 198            | 198             | 100             | 100             | 100.0        | 125368     | PASS                |   |
| - 1 | 199            | 198             | 5               | 9               | 6.6          | 8281       | PASS                | İ |
| İ   | 275            | 198             | 10              | 30              | 23.1         | 28904      | PASS                | İ |
| İ   | 365            | 198             | 1               | 100             | 2.9          | 3594       | PASS                |   |
| j   | 441            | 443             | 0.01            | 100             | 85.2         | 12575      | PASS                |   |
| Ì   | 442            | 198             | 40              | 100             | 59.7         | 74840      | PASS                | ! |
| j   | 443            | 442             | 17              | 23              | 19.7         | 14757      | PASS                | 1 |

#### Form 5

Tune Name: CAL DFTPP

**Data File: 5M114379.D** 

Instrument: GCMS 5 Analysis Date: 09/24/20 09:29
Method: EPA 8270E
Tune Scan/Time Range: Average of 9.980 to 9.980 min

| Tgt  | Rel  | Lo H | i Lim | Rel   | Raw    | Pass/ |
|------|------|------|-------|-------|--------|-------|
| Mass | Mass | Lim  |       | Abund | Abund  | Fail  |
| 51   | 198  | 30   | 60    | 34.3  | 61224  | PASS  |
| 68   | 69   | 0.00 | 2     | 0.0   | 0      | PASS  |
| 69   | 198  | 0.00 | 100   | 38.6  | 68816  | PASS  |
| 70   | 69   | 0.00 | 2     | 0.5   | 376    | PASS  |
| 127  | 198  | 40   | 60    | 47.5  | 84744  | PASS  |
| 197  | 198  | 0.00 | 1     | 0.0   | 0      | PASS  |
| 198  | 198  | 100  | 100   | 100.0 | 178240 | PASS  |
| 199  | 198  | 5    | 9     | 7.0   | 12522  | PASS  |
| 275  | 198  | 10   | 30    | 22.2  | 39512  | PASS  |
| 365  | 198  | 1    | 100   | 2.0   | 3558   | PASS  |
| 441  | 443  | 0.01 | 100   | 80.6  | 14442  | PASS  |
| 442  | 198  | 40   | 100   | 51.2  | 91184  | PASS  |
| 443  | 442  | 17   | 23    | 19.7  | 17920  | PASS  |

| Data File  | Sample Number | Analysis Date: |
|------------|---------------|----------------|
| 5M114380.D | CAL BNA@0.5PP | 09/24/20 09:52 |
| 5M114381.D | CAL BNA@2PPM  | 09/24/20 10:15 |
| 5M114382.D | CAL BNA@10PPM | 09/24/20 10:38 |
| 5M114383.D | CAL BNA@196PP | 09/24/20 11:01 |
| 5M114384.D | CAL BNA@160PP | 09/24/20 11:25 |
| 5M114385.D | CAL BNA@120PP | 09/24/20 11:48 |
| 5M114386.D | CAL BNA@80PPM | 09/24/20 12:11 |
| 5M114387.D | CAL BNA@20PPM | 09/24/20 12:34 |
| 5M114388.D | CAL BNA@50PPM | 09/24/20 12:58 |
| 5M114389.D | ICV BNA@50PPM | 09/24/20 13:21 |
| 5M114390.D | AD19216-015   | 09/24/20 13:58 |
| 5M114391.D | WMB88059      | 09/24/20 14:21 |

Data Path : G:\GcMsData\2020\GCMS\_5\Data\09-24-20\

Data File : 5M114379.D

Acq On : 24 Sep 2020 9:29

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_5\METHODQT\5M\_EVALNX.M

Title : @GCMS\_5

Last Update : Fri Sep 25 08:56:06 2020



Spectrum Information: Average of 9.980 to 9.980 min.

| Target<br>Mass | Rel. to | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|----------------|---------|-----------------|-----------------|--------------|------------|---------------------|
| 51             | 198     | l 30            | l 60            | 34.3         | 61224      | PASS                |
| 68             | 69      | 0.00            | 2               | 0.0          | i o        | PASS                |
| 69             | 198     | 0.00            | 100             | 38.6         | 68816      | PASS                |
| 70             | 69      | 0.00            | 2               | 0.5          | 376        | PASS                |
| 127            | 198     | 40              | 60              | 47.5         | 84744      | PASS                |
| 197            | 198     | 0.00            | 1               | 0.0          | j o        | PASS                |
| 198            | 198     | 100             | 100             | 100.0        | 178240     | PASS                |
| 199            | 198     | 5               | 9               | 7.0          | 12522      | PASS                |
| 275            | 198     | 10              | 30              | 22.2         | 39512      | PASS                |
| 365            | 198     | 1               | 100             | 2.0          | 3558       | PASS                |
| 441            | 443     | 0.01            | 100             | 80.6         | 14442      | PASS                |
| 442            | 198     | 40              | 100             | 51.2         | 91184      | PASS                |
| 443            | 442     | 17              | 23              | 19.7         | 17920      | PASS                |

#### Form 5

Tune Name: CAL DFTPP

Data File: 9M101558.D Instrument: GCMS 9 Analysis Date: 10/07/20 08:19
Method: EPA 8270E
Tune Scan/Time Range: Average of 10.095 to 10.113 min

| Tune Scan/Time Range: Average of 10.095 to 10.113 min |      |      |        |       |       |             |  |
|-------------------------------------------------------|------|------|--------|-------|-------|-------------|--|
| Tgt                                                   | Rel  | Lo H | li Lim | Rel   | Raw   | Pass/       |  |
| Mass                                                  | Mass | Lim  |        | Abund | Abund | <u>Fail</u> |  |
| 51                                                    | 198  | 30   | 60     | 31.5  | 22929 | PASS        |  |
| 68                                                    | 69   | 0.00 | 2      | 0.0   | 0     | PASS        |  |
| 69                                                    | 198  | 0.00 | 100    | 35.5  | 25889 | PASS        |  |
| 70                                                    | 69   | 0.00 | 2      | 0.2   | 52    | PASS        |  |
| 127                                                   | 198  | 40   | 60     | 48.9  | 35641 | PASS        |  |
| 197                                                   | 198  | 0.00 | 1      | 0.0   | 0     | PASS        |  |
| 198                                                   | 198  | 100  | 100    | 100.0 | 72864 | PASS        |  |
| 199                                                   | 198  | 5    | 9      | 6.8   | 4959  | PASS        |  |
| 275                                                   | 198  | 10   | 30     | 26.0  | 18925 | PASS        |  |
| 365                                                   | 198  | 1    | 100    | 3.1   | 2287  | PASS        |  |
| 441                                                   | 443  | 0.01 | 100    | 92.5  | 11291 | PASS        |  |
| 442                                                   | 198  | 40   | 100    | 88.1  | 64229 | PASS        |  |
| 443                                                   | 442  | 17   | 23     | 19.0  | 12200 | PASS        |  |

| Data File  | Sample Number  | Analysis Date: |
|------------|----------------|----------------|
| 9M101559.D | CAL BNA@50PPM  | 10/07/20 08:42 |
| 9M101560.D | WMB88174       | 10/07/20 09:06 |
| 9M101561.D | MBS-1          | 10/07/20 09:30 |
| 9M101562.D | MBS-2          | 10/07/20 09:53 |
| 9M101563.D | MBS-3          | 10/07/20 10:17 |
| 9M101564.D | MBS-4          | 10/07/20 10:40 |
| 9M101565.D | MBS-5          | 10/07/20 11:04 |
| 9M101566.D | SMB88134(MS)   | 10/07/20 12:04 |
| 9M101567.D | SMB88169(MS)   | 10/07/20 12:27 |
| 9M101568.D | SMB88134       | 10/07/20 12:51 |
| 9M101569.D | SMB88169       | 10/07/20 13:14 |
| 9M101570.D | AD19619-001    | 10/07/20 13:38 |
| 9M101571.D | AD19619-002    | 10/07/20 14:01 |
| 9M101572.D | AD19542-001(T) | 10/07/20 14:46 |
| 9M101573.D | AD19543-001(T) | 10/07/20 15:10 |
| 9M101574.D | AD19542-001(T) | 10/07/20 15:33 |
| 9M101575.D | WMB88180       | 10/07/20 15:57 |

Data Path : G:\GcMsData\2020\GCMS\_9\Data\10-07-20\

Data File : 9M101558.D

Acq On : 7 Oct 2020 8:19

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_9\METHODQT\9M\_EVALN.M

Title : @GCMS\_9

Last Update : Tue Sep 15 10:50:50 2020



Spectrum Information: Average of 10.095 to 10.113 min.

| Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |
|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
| 51             | 198             | 30              | 60              | 31.5         | 22929      | PASS                |
| 68             | 69              | 0.00            | 2               | 0.0          | 0          | PASS                |
| 69             | 198             | 0.00            | 100             | 35.5         | 25889      | PASS                |
| 70             | 69              | 0.00            | 2               | 0.2          | 52         | PASS                |
| 127            | 198             | 40              | 60              | 48.9         | 35641      | PASS                |
| 197            | 198             | 0.00            | 1               | 0.0          | 0          | PASS                |
| 198            | 198             | 100             | 100             | 100.0        | 72864      | PASS                |
| 199            | 198             | 5               | 9               | 6.8          | 4959       | PASS                |
| 275            | 198             | 10              | 30              | 26.0         | 18925      | PASS                |
| 365            | 198             | 1               | 100             | 3.1          | 2287       | PASS                |
| 441            | 443             | 0.01            | 100             | 92.5         | 11291      | PASS                |
| 442            | 198             | 40              | 100             | 88.1         | 64229      | PASS                |
| 443            | 442             | 17              | 23              | 19.0         | 12200      | PASS                |

#### Form 5

Tune Name: CAL DFTPP

Data File: 5M114528.D

| Tune l  | Name: CA           | L DFTPP  | <b>Data File:</b> 5M114528.D |             |                                                    |             |  |  |
|---------|--------------------|----------|------------------------------|-------------|----------------------------------------------------|-------------|--|--|
| Instru  | Instrument: GCMS 5 |          |                              |             | Analysis Date: 10/07/20 08:21<br>Method: EPA 8270E |             |  |  |
| Tune So | an/Time I          | Range: A | verage                       | of 9.970 to | o 9.991 min                                        |             |  |  |
| Tgt     | Rel                | Lo H     | i Lim                        | Rel         | Raw                                                | Pass/       |  |  |
| Mass    | Mass               | Lim      |                              | Abund       | Abund                                              | <u>Fail</u> |  |  |
| 51      | 198                | 30       | 60                           | 30.6        | 29214                                              | PASS        |  |  |
| 68      | 69                 | 0.00     | 2                            | 0.0         | 0                                                  | PASS        |  |  |
| 69      | 198                | 0.00     | 100                          | 35.5        | 33816                                              | PASS        |  |  |
| 70      | 69                 | 0.00     | 2                            | 0.6         | 216                                                | PASS        |  |  |
| 127     | 198                | 40       | 60                           | 43.9        | 41858                                              | PASS        |  |  |
| 197     | 198                | 0.00     | 1                            | 0.0         | 0                                                  | PASS        |  |  |
| 198     | 198                | 100      | 100                          | 100.0       | 95331                                              | PASS        |  |  |
| 199     | 198                | 5        | 9                            | 7.0         | 6714                                               | PASS        |  |  |
| 275     | 198                | 10       | 30                           | 24.5        | 23335                                              | PASS        |  |  |
| 365     | 198                | 1        | 100                          | 2.5         | 2368                                               | PASS        |  |  |
| 441     | 443                | 0.01     | 100                          | 79.8        | 10207                                              | PASS        |  |  |
| 442     | 198                | 40       | 100                          | 70.0        | 66738                                              | PASS        |  |  |
| 443     | 442                | 17       | 23                           | 19.2        | 12799                                              | PASS        |  |  |

| Data File  | Sample Number | Analysis Date: |  |  |
|------------|---------------|----------------|--|--|
| 5M114529.D | CAL BNA@50PPM | 10/07/20 08:45 |  |  |
| 5M114530.D | WMB88174      | 10/07/20 09:36 |  |  |
| 5M114531.D | MBS-1         | 10/07/20 12:09 |  |  |
| 5M114532.D | WMB88180      | 10/07/20 14:47 |  |  |
| 5M114533.D | WMB88180(MS)  | 10/07/20 15:10 |  |  |

Data Path : G:\GcMsData\2020\GCMS\_5\Data\10-07-20\

Data File : 5M114528.D

Acq On : 7 Oct 2020 8:21

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autoint1.e

Method : G:\GCMSDATA\2020\GCMS\_5\METHODQT\5M\_EVALNX.M

Title : @GCMS\_5

Last Update : Fri Sep 25 08:56:06 2020



Spectrum Information: Average of 9.970 to 9.991 min.

| Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result  <br>  Pass/Fail |
|----------------|-----------------|-----------------|-----------------|--------------|------------|-------------------------|
| 51             | 198             | 30              | 60              | 30.6         | 29214      | PASS                    |
| 68             | 69              | 0.00            | 2               | 0.0          | 0          | PASS                    |
| 69             | 198             | 0.00            | 100             | 35.5         | 33816      | PASS                    |
| 70             | 69              | 0.00            | 2               | 0.6          | 216        | PASS                    |
| 127            | 198             | 40              | 60              | 43.9         | 41858      | PASS                    |
| 197            | 198             | 0.00            | 1               | 0.0          | 0          | PASS                    |
| 198            | 198             | 100             | 100             | 100.0        | 95331      | PASS                    |
| 199            | 198             | 5               | 9               | 7.0          | 6714       | PASS                    |
| 275            | 198             | 10              | 30              | 24.5         | 23335      | PASS                    |
| 365            | 198             | 1               | 100             | 2.5          | 2368       | PASS                    |
| 441            | 443             | 0.01            | 100             | 79.8         | 10207      | PASS                    |
| 442            | 198             | 40              | 100             | 70.0         | 66738      | PASS                    |
| 443            | 442             | 17              | 23              | 19.2         | 12799      | PASS                    |

#### Form 5

Tune Name: CAL DFTPP Instrument: GCMS 9

Data File: 9M101576.D trument: GCMS 9

Analysis Date: 10/08/20 08:26

Method: EPA 8270E
e Scan/Time Range: Average of 10.095 to 10.107 min

| Lune Sc | an/11me i | <u> Kange: Ave</u> | <u>siage c</u> | <u>01 10.095</u> | 10 10.107 111 |       |
|---------|-----------|--------------------|----------------|------------------|---------------|-------|
| Tgt     | Rel       | Lo Hi              | Lim            | Rel              | Raw           | Pass/ |
| Mass    | Mass      | Lim                |                | Abund            | Abund         | Fail  |
|         | 400       |                    |                |                  | 04050         | DACC  |

| Mass    | Mass | Lim           |     | Abund | Abund      | Fail                   |
|---------|------|---------------|-----|-------|------------|------------------------|
| 51      | 198  | 30            | 60  | 32.6  | 21653      | PASS                   |
| 68      | 69   | 0.00          | 2   | 0.0   | 0          | PASS                   |
| 69      | 198  | 0.00          | 100 | 36.0  | 23907      | PASS                   |
| 70      | 69   | 0.00          | 2   | 0.5   | 121        | PASS                   |
| 127     | 198  | 40            | 60  | 48.6  | 32299      | PASS                   |
| 197     | 198  | 0.00          | 1   | 0.0   | 0          | PASS                   |
| 198     | 198  | 100           | 100 | 100.0 | 66480      | PASS                   |
| 199     | 198  | 5             | 9   | 6.8   | 4513       | PASS                   |
| 275     | 198  | 10            | 30  | 25.7  | 17100      | PASS                   |
| 365     | 198  | 1             | 100 | 3.1   | 2033       | PASS                   |
| 441     | 443  | 0.01          | 100 | 87.6  | 9658       | PASS                   |
| 442     | 198  | 40            | 100 | 84.7  | 56280      | PASS                   |
| 443     | 442  | 17            | 23  | 19.6  | 11029      | PASS                   |
| Data Fi | ile  | Sample Number |     | Analy | /sis Date: |                        |
| 9M1015  |      | CAL BNA@50PPM |     |       |            | /20 08:50<br>/20 00:16 |

| Sample Number     | Analysis Date:                                                                                                                                                                         |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAL BNA@50PPM     | 10/08/20 08:50                                                                                                                                                                         |
| AD19615-001       | 10/08/20 09:16                                                                                                                                                                         |
| AD19560-001(T)    | 10/08/20 09:39                                                                                                                                                                         |
| AD19595-013(T)    | 10/08/20 10:03                                                                                                                                                                         |
| 19615-001         | 10/08/20 10:26                                                                                                                                                                         |
| AD19615-001       | 10/08/20 10:50                                                                                                                                                                         |
| AD19595-014(T)    | 10/08/20 11:13                                                                                                                                                                         |
| EF-1-V-335534(10/ | 10/08/20 11:37                                                                                                                                                                         |
| EF-1-V-335534(10/ | 10/08/20 12:01                                                                                                                                                                         |
| AD19593-003       | 10/08/20 12:24                                                                                                                                                                         |
| AD19593-004       | 10/08/20 12:47                                                                                                                                                                         |
| SMB88170(MS)      | 10/08/20 13:11                                                                                                                                                                         |
|                   | 10/08/20 13:34                                                                                                                                                                         |
|                   | 10/08/20 13:58                                                                                                                                                                         |
|                   | 10/08/20 14:21                                                                                                                                                                         |
|                   | 10/08/20 14:45                                                                                                                                                                         |
|                   | 10/08/20 15:08                                                                                                                                                                         |
|                   | 10/08/20 15:32                                                                                                                                                                         |
|                   | 10/08/20 15:55                                                                                                                                                                         |
|                   | 10/08/20 16:19                                                                                                                                                                         |
|                   | 10/08/20 16:42                                                                                                                                                                         |
|                   | 10/08/20 17:05                                                                                                                                                                         |
|                   | 10/08/20 17:29                                                                                                                                                                         |
|                   | 10/08/20 17:52                                                                                                                                                                         |
|                   | 10/08/20 18:16                                                                                                                                                                         |
|                   | 10/08/20 18:39                                                                                                                                                                         |
| AD19644-003       | 10/08/20 19:02                                                                                                                                                                         |
|                   | CAL BNA@50PPM<br>AD19615-001<br>AD19560-001(T)<br>AD19595-013(T)<br>19615-001<br>AD19615-001<br>AD19595-014(T)<br>EF-1-V-335534(10/<br>EF-1-V-335534(10/<br>AD19593-003<br>AD19593-004 |

Data Path : G:\GcMsData\2020\GCMS\_9\Data\10-08-20\

Data File: 9M101576.D

Acq On : 8 Oct 2020 8:26

Operator : AH/JKR/JB Sample : CAL DFTPP Misc : A,BNA

ALS Vial : 1 Sample Multiplier: 1

Integration File: autointl.e

Method : G:\GCMSDATA\2020\GCMS\_9\METHODQT\9M\_EVALN.M

Title : @GCMS 9

Last Update : Tue Sep 15 10:50:50 2020



Spectrum Information: Average of 10.095 to 10.107 min.

| Target<br>Mass | Rel. to<br>Mass | Lower<br>Limit% | Upper<br>Limit% | Rel.<br>Abn% | Raw<br>Abn | Result<br>Pass/Fail |   |
|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|---|
| 51             | 198             | 30              | 60              | 32.6         | 21653      | PASS                | - |
| 68             | 69              | 0.00            | 2               | 0.0          | 0          | PASS                |   |
| 69             | 198             | 0.00            | 100             | 36.0         | 23907      | PASS                |   |
| 70             | 69              | 0.00            | 2               | 0.5          | 121        | PASS                | 1 |
| 127            | 198             | 40              | 60              | 48.6         | 32299      | PASS                | 1 |
| 197            | 198             | 0.00            | 1               | 0.0          | 0          | PASS                |   |
| 198            | 198             | 100             | 100             | 100.0        | 66480      | PASS                |   |
| 199            | 198             | 5               | 9               | 6.8          | 4513       | PASS                | 1 |
| 275            | 198             | 10              | 30              | 25.7         | 17100      | PASS                |   |
| 365            | 198             | 1               | 100             | 3.1          | 2033       | PASS                |   |
| 441            | 443             | 0.01            | 100             | 87.6         | 9658       | PASS                | 1 |
| 442            | 198             | 40              | 100             | 84.7         | 56280      | PASS                |   |
| 443            | 442             | 17              | 23              | 19.6         | 11029      | PASS                |   |

0257

## Initial Calibration Form 6

Instrument: GCMS\_9

| Level #                 | Data File:<br>9M101321.D | <u>Σ</u>                                                                                                                  | 09/1                                      | Analysis Date/Time<br>7/20 13:22                               | Level #:   | <u>Data</u><br>9M101314.D | File:       | <b>B</b> | Cal Identifier:<br>NA@2PPM | Analysis Da<br>09/17/20 10:34 | Analysis Date/Time<br>7/20 10:34 |
|-------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|------------|---------------------------|-------------|----------|----------------------------|-------------------------------|----------------------------------|
| <b>ഗ</b> (              | 9M101318.D               | CAL BNA@80PPM                                                                                                             | PM 09/17/20 12:12                         | 12:12                                                          | <b>თ</b> # | 9M101317.D                |             | L BNA@   | CAL BNA@120PPM             | 09/17/20 11:47                | 11:4                             |
| 7                       | 9M101316.D               | CAL BNA@160PPM                                                                                                            | _                                         | 11:24                                                          | <b>∞</b>   | 9M101315.D                |             | L BNA@   | BNA@196PPM                 | 09/17/20 11:00                | 11:0                             |
| 9                       | 9M101320.D               | CAL BNA@0.5PPM                                                                                                            | PM 09/17/20 12:58                         | 12:58                                                          |            |                           |             | !<br>!   |                            |                               |                                  |
| Compound                | Col Mr Fit:              | RF1 RF2 RF3                                                                                                               | RF4 RF5 R                                 | RF6 RF7 RF8 F                                                  | RF9 AvgRf  | 꼭                         | Corr1 Corr2 | 2 %Rs    | <u>а</u> (                 | Lv 1 Lv 2                     | Calibration<br>Lvl3 Lv           |
| <b>o</b>                | 0 Avg                    | 2 1.3770                                                                                                                  | 8 0.9781                                  | 0.9761 1.0082                                                  | 2          | 62.74                     | _           |          |                            | 50.00 2.00                    | 10.00                            |
| Pyridine                |                          | 1.9967                                                                                                                    |                                           | 2.2557 2.2887                                                  |            |                           |             | 4.7      |                            | 8                             | 10.00                            |
| N-Nitrosodimethylamin   | 1 0 Avg                  | 1.3973 1.2536 1.427                                                                                                       | 1.4270 1.3062 1.4170 1.4614               | 4614 1.4159 1.4494                                             | <br> -     | 1.39 3.14 1.              | 1.00 1.00   |          |                            | 50.00 2.00                    | 10.00                            |
| 2-Fluorophenol          | Avq                      | 2.1263 1.8750 2.0379 2.0095                                                                                               | 9 2.0095 2.1819 2.2213                    | 2213 2.1411 2.1460                                             | 2          |                           |             | Çī       |                            | 50.00 2.00                    | 10.00                            |
| Benzaldehyde            | 1 0 Avg                  | 2.0239 2.0447 2.1054 1.9406 2.0339 2.0178 1.9449 1.9182                                                                   | 4 1.9406 2.0339 2.0                       |                                                                | !          | 2.00 5.53 0.              | 0.999 1.00  | Ì        | 0.01                       | 50.00 2.00                    | 10.00 20.00                      |
| Aniline                 | 1 0 Avg                  | 3.4677 3.5376 3.565                                                                                                       | 9 3.3541 3.4792 3.5                       |                                                                | 3.5095 3   | 3.46 5.62 0.              | 0.999 1.00  |          |                            | 50.00 2.00                    | 10.00                            |
| Pentachloroethane       |                          | 0.7232 0.7500 0.7570 0.7143 0.7267 0.7277 0.7032 0.6926                                                                   | 0 0.7143 0.7267 0.7                       |                                                                |            |                           |             |          | 0.05                       | 50.00 2.00                    | 10.00                            |
| bis(2-Chloroethyl)ether |                          | 2.2340 2.4920 2.4416 2.2289 2.2191 2.2171 2.0969 2.0700                                                                   | 6 2.2289 2.2191 2.2                       |                                                                | 2.4684 2   |                           |             |          | 0.70                       | 50.00 2.00                    | 10.00                            |
| Phenol-d5               | A                        | 2.5778 2.4275 2.5598 2.4705 2.5997 2.6482 2.5092 2.4547                                                                   | 8 2.4705 2.5997 2.6                       |                                                                |            |                           |             | ω        |                            | 50.00 2.00                    | 10.00                            |
| Phenol                  | ļ                        | 3.1962 3.3548 3.828                                                                                                       | 3.8289 3.1139 3.1995 3.2243 3.0391 2.9781 | 2243 3.0391 2.9781                                             | ا<br>س     |                           |             | !        | 0.80                       | 50.00 2.00                    | 10.00 20.00                      |
| 2-Chlorophenol          | 1 0 Avg                  | 2.5357 2.4465 2.8406 2.4276 2.5640 2.5695 2.4526 2.3984                                                                   | 6 2.4276 2.5640 2.5                       | 5695 2.4526 2.3984                                             | 2          |                           |             |          | 0.80                       | 50.00 2.00                    | 10.00                            |
| N-Decane                | Avq                      | 1.9398 2.1709 2.0925 1.9033 1.9058 1.8405 1.7378 1.6629                                                                   | 5 1.9033 1.9058 1.8                       | 8405 1.7378 1.6629                                             | _          |                           |             |          | 0.05                       | 50.00 2.00                    | 10.00                            |
| 1.3-Dichlorobenzene     | A                        | 2.7937 2.9965 2.9323 2.7274 2.7938 2.7512 2.6097                                                                          | 3 2.7274 2.7938 2.7                       | 7512 2.6097 2.5624                                             |            |                           |             |          |                            |                               | 10.00 20.00                      |
| 1,4-Dichlorobenzene     | AVQ                      | 1.5017 1.6423 1.6377 1.4123 1.4405 1.4806 1.4301 1.4233                                                                   | 7 1.4123 1.4405 1.4                       | 4806 1.4301 1.4233                                             |            |                           | _           |          |                            |                               | 10.00 20.00                      |
| Beard alcohol           | A A                      | <u>1.4369 1.5773 1.5119 1.3274 1.3672 1.3973 1.3512 1.3522</u><br>0.8433 0.7567 0.8161 0.7504 0.8246 0.8531 0.8241 0.8246 | 9 1.32/4 1.36/2 1.                        | 39/3 1.3512 1.3522                                             |            |                           | i           |          | Ì                          |                               |                                  |
| bis(2-chloroisonronyl)e | 1 0 Avg                  | 0.6432 0.7367 0.6131 0.7394 0.8246 0.6321 0.6211 0.6246<br>1 2583 1 4421 1 4098 1 1805 1 2115 1 2306 1 1772 1 1685        | 8 1 1805 1 2115 1 2                       | 032   0.02   1 0.0240<br>2306   1 1772   1 1685                | <br> -     | 126612 0                  | 0.999 1.00  | 4 00     | 001                        | 50.00 2.00                    | 10.00 20.00                      |
| 2-Methylphenol          | 1 0 Avg                  | 1.1950 1.0908 1.2246 1.1022 1.1564 1.2078 1.1433 1.1487                                                                   | 6 1.1022 1.1564 1.2                       |                                                                | 1.1451 1   |                           |             |          | 0.70                       |                               | 10.00 20.00                      |
| Acetophenone            | A<br>Q                   | 1.7553 1.9443 1.9766 1.7023 1.6551 1.6179 1.5065 1.4596                                                                   | 6 1.7023 1.6551 1.6                       |                                                                |            |                           |             |          | 0.01                       |                               | 10.00 20.00                      |
| Hexachloroethane        | Avq                      | 0.5300 0.5570 0.5499 0.4859 0.5248 0.5307 0.5167 0.5135                                                                   | 9 0.4859 0.5248 0.5                       | 5307 0.5167 0.5135                                             | 0.         |                           | i           | 4.2      | 0.30                       | 50.00 2.00                    | 10.00 20.00 80.00                |
| N-Nitroso-di-n-propyla  |                          | 0.7793 0.7997 0.8365 0.7439 0.7399 0.7348 0.6947 0.6761                                                                   | 5 0.7439 0.7399 0.7                       |                                                                | 0.6633 0.  |                           | `           | İ        | 0.50                       | 50.00 2.00                    | 10.00 20.00                      |
| 3&4-Methylphenol        |                          | 1.2145 1.1581 1.2742 1.1368 1.1501 1.1296 1.0304 0.9890                                                                   | 2 1.1368 1.1501 1.1                       |                                                                | 1.1368 1   |                           |             |          |                            | 50.00 2.00                    |                                  |
| Nitrobenzene-d5         | 1 0 Avg                  | 0.1456 0.1237 0.1352 0.1338 0.1476 0.1564 0.1528 0.1555                                                                   | 2 0.1338 0.1476 0.1                       | 1564 0.1528 0.1555                                             | 0          | 0.1446.35 0.              | 0.999 1.00  |          |                            | 25.00 1.00                    | 5.00 10.00                       |
| Nitrobenzene            |                          | 0.3175 0.3102 0.3316 0.2954 0.3150 0.3186 0.3095 0.3132                                                                   | 6 0.2954 0.3150 0.3                       | 3186 0.3095 0.3132                                             | 0.         |                           |             |          | 0.20                       | 50.00 2.00                    | 10.00 20.00                      |
| Isophorone_             | 1                        | 0.5838 0.5696 0.5877 0.5498 0.5768 0.5830 0.5657 0.5753                                                                   | 7 0.5498 0.5768 0.5                       | 5830 0.5657 0.5753                                             | 0          | 0.                        | 1           |          | 0.40                       | 50.00 2.00                    | 10.00 20.00 80.00                |
| 2-Nitrophenol           |                          | 0.1785 0.1309 0.1962 0.1646 0.1819 0.1911 0.1866 0.1871                                                                   | 2 0.1646 0.1819 0.1                       |                                                                |            |                           | w.          |          | 0.10                       | 50.00 2.00                    | 10.00 20.00                      |
| 2,4-Dimethylphenol      |                          | 0.3003 0.2900 0.3699 0.2758 0.2903 0.2954 0.2889 0.2897                                                                   | 9 0.2758 0.2903 0.2                       |                                                                | 0.2410 0.3 | 0.294 6.64 1.             |             |          | 0.20                       | 50.00 2.00                    | 10.00 20.00                      |
| Benzoic Acid            |                          | 0.1881 0.109                                                                                                              | 9 0.1505 0.2280 0.2                       | 0.1099 0.1505 0.2280 0.2481 0.2576 0.2622                      | 0.         | _                         | ٠,          |          |                            |                               |                                  |
| bis(2-Chloroethoxy)me   | 1 0 Avg                  | 0.3681 0.4105 0.3972 0.3445 0.3533 0.3569 0.3443 0.3423                                                                   | 2 0.3445 0.3533 0.3                       |                                                                | 0.:        | 0.365 6.71 0.             |             |          | 0.30                       | 50.00 2.00                    | 10.00 20.00                      |
| 2,4-Dichlorophenol      | !                        | 0.2863 0.2447 0.333                                                                                                       | 8 0.2603 0.2794 0.2                       | 0.2863 0.2447 0.3338 0.2603 0.2794 0.2852 0.2773 0.2774 0.1849 |            |                           | 1           | 15       | 0.20 a                     |                               |                                  |
| 1.2,4-Trichlorobenzen   |                          | 0.3141 0.3430 0.3434 0.2912 0.3001 0.3076 0.2992 0.3010                                                                   | 4 0.2912 0.3001 0.3                       | 3076 0.2992 0.3010                                             |            | - 1                       |             | _        |                            |                               | 10.00 20.00                      |
| Naphthalene             |                          | 1.0578 1.2184 1.1567 1.0103 1.0211 1.0122 0.9750 0.9728                                                                   | 7 1.0103 1.0211 1.0                       |                                                                | 1.1347 1   |                           | •           |          | 0.70                       |                               |                                  |
| 4-Chloroaniline         |                          | 0.4049 0.3926 0.420                                                                                                       | 5 0.3812 0.3945 0.3                       | 0.4205 0.3812 0.3945 0.3946 0.3774 0.3674 0                    | _          |                           |             |          | 0.01                       |                               |                                  |
| Hexachlorobutadiene     |                          | 0.1752 0.1904 0.1886 0.1656 0.1683 0.1721 0.1684 0.1703                                                                   | 6 0.1656 0.1683 0.1                       |                                                                |            |                           |             | 5.4      | 0.01                       |                               |                                  |
| Caprolactam             |                          | 0.1090 0.0688 0.0985 0.0984 0.1104 0.1175 0.1140 0.1236                                                                   | 5 0.0984 0.1104 0.                        | 1175 0.1140 0.1236                                             | 0          |                           |             | _        | 0.01                       |                               |                                  |
| 4-Chloro-3-methylphe    | Ava                      | 0.2761 0.2460 0.3340 0.2475 0.2714 0.2814 0.2749 0.2751                                                                   | 0 0.2475 0.2714 0.2                       | 2814 0.2749 0.2751                                             | 0.         | Į.                        | 1.00 1.00   | į        | 0.20                       | 50.00 2.00                    |                                  |
| 2-Methylnaphthalene     | ΑVQ                      | 0.7090 0.7642 0.7614 0.6676 0.6781 0.6824 0.6585 0.6564                                                                   | 4 0.6676 0.6781 0.6                       | 6824 0.6585 0.6564                                             | 0.0        |                           |             | 6.3      | 0.40                       | 50.00 2.00                    |                                  |
| 1-Methylnaphthalene     |                          | 0.6696 0.7576 0.7280 0.6332 0.6489 0.6475 0.6227 0.6195                                                                   | 0 0.6332 0.6489 0.6                       | 6475 0.6227 0.6195                                             | 0.0        |                           | _           |          | 0.40                       | 50.00 2.00                    |                                  |
| Methylnaphthalenes (T   | 1 0 Avg                  | 0.6896 0.7609 0.7436 0.6502 0.6632 0.6649 0.6406 0.6382                                                                   | 6 0.6502 0.6632 0.6                       | 5649 0.6406 0.6382                                             | 0.0        |                           | 0.999 1.00  | 6.9      |                            | 100.0 4.00                    | 20.00 40.00                      |
| 1.1'-Biphenyl           | 1 0 Avq                  | 0.8201 0.9130 0.8633 0.7644 0.7805 0.7913 0.7558 0.7522                                                                   | 3 0.7644 0.7805 0.7                       | 7913 0.7558 0.7522 -                                           | 0.         | 1                         | 0.999 1.00  | 7.1      | 0.01                       | 50.00 2.00                    | 10.00 20.00                      |
| 1,2,4,5-Tetrachloroben  | 1 0 Avg                  | 0.6288 0.7091 0.6711 0.5899 0.6236 0.6163 0.5946 0.5944                                                                   | 1 0.5899 0.6236 0.6                       | 6163 0.5946 0.5944                                             | 9.         | 0.629 7.60 0.             | 999 1.00    | ) 6.7    | 0.01                       | 50.00 2.00                    | 10.00                            |
|                         |                          |                                                                                                                           |                                           |                                                                |            |                           |             |          |                            |                               |                                  |

Flags

Avg Rsd: 8.313

Note:

a - failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Correlation Coefficient for Quadratic Curve was used for compound.

Form 6 Initial Calibration

| Level #: Data 1 9M101321.D 3 9M101313.D 5 9M101316.D 7 9M101316.D 9 9M101320.D 9 9M101320.D 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophenol 1 0 Avq nlorophe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Form 6 Initial Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 6<br>bration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Instrument: GCMS_9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 9M101321.D 3 9M101313.D 5 9M101318.D 7 9M101318.D 7 9M101318.D 7 9M101316.D 9 9M101316.D 9 9M101320.D 2.4.6-Trichlorophenol 1 0 Ava 2.4.Dimethylnaphthalene 1 0 Ava 2.4-Dimethylnaphthalene 1 0 Ava 2.4-Dimethylnaphthalene 1 0 Ava 2.6-Dinitrotoluene 1 0 Ava 2.4-Dinitrotoluene 1 0 Ava 2.4-Dinitrotoluene 1 0 Ava 2.4-Dinitrophenol 1 0 Ava 2.4-Dinitrotoluene 1 0 Ava 2.4-Dinitrotoluene 1 0 Ava 2.4-Dinitrotoluene 1 0 Ava 2.4-Dinitrotoluene 1 0 Ava 2.4-Dinitrotoluene 1 0 Ava 2.4-Dinitrotoluene 1 0 Ava 2.4-Dinitrophenol 1 0 Ava 3.4-Dinitrophenol 1 0 Ava 4-Nitroaniline 1 0 Ava 4-Nitroaniline 1 0 Ava 3.4-Dinitro-2-methylph 1 0 Ava 4-Nitrosodiphenyl-phenyl 1 0 Ava 4-Nitrosodiphenyl-phenyl 1 0 Ava 4-Diphenylhydrazine 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Bromophenol 1 0 Ava 4-Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | # Data File:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cal Identifier:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysis Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sym101313.D 5 9M101318.D 7 9M101318.D 7 9M101316.D 7 9M101316.D 9 9M101320.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 130.D 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CAL BNA@50PPM 09/17/20 13:22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CAL BNA@2PPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 09/17/20 10:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ompound Col Mr Fit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9M101319.D C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CAL BNA@ZUPPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 09/17/20 12:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ompound Col Mr Fit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAL BNA@160PPM 09/17/20 11:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CAL BNA@196PPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 09/17/20 11:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Compound Col Mr Fitt Hexachlorocyclopenta 1 0 Ava 2.4.6-Trichlorophenol 1 0 Ava 2.4.5-Trichlorophenol 1 0 Ava 2.4.5-Trichlorophenol 1 0 Ava 2.4.5-Trichlorophenol 1 0 Ava 2.4.5-Trichlorophenol 1 0 Ava 2.4.6-Trichlorophenol 1 0 Ava 2.4.6-Trichlorophenol 1 0 Ava 2.4.6-Trichlorophenol 1 0 Ava 2.4.0-Initrophenol 1 0 Ava 2.4.1-Initrophenol 1 0 Ava 2.4.1-Initrophenol 1 0 Ava 2.4.1-Initrophenol 1 0 Ava 2.4.1-Initrophenol 1 0 Ava 2.4.1-Initrophenol 1 0 Ava 2.4.1-Initrophenol 1 0 Ava 2.4.1-Initrophenol 1 0 Ava 2.4.1-Initrophenol 1 0 Ava 2.4.1-Initrophenol 1 0 Ava 2.4.1-Initrophenol 1 0 Ava 2.4.1-Initrophenol 1 0 Ava 3.4.6-Teitrachlorophenol 1 0 Ava 4.4.1-Initrophenol 1 0 Ava 4.6-Dinitro-2-methylph 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 4.6-Tribromophenol 1 0 Ava 5.4.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophenol 1 0 Ava 6.6-Tribromophen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CAL BNA@0.5PPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AvgRf RT Corr1 Corr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rr2 %Rsd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Calibration Level Concentrations LvI1 LvI2 LvI3 LvI4 LvI5 LvI6 LvI7 LvI8 LvI9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Av | 0.3481 0.2828 0.3280 0.3067 0.3608 0.3644 0.3556 0.3631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.59 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.9 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.00 10.00 20.00 80.00 120.0 160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | À                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 7.7 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 00 10 00 20 00 80 00 120 0 160 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10 Ava 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 4.0<br>0 00<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 00 10 00 20 00 80 00 120 0 160 0 196<br>2 00 10 00 20 00 80 00 120 0 160 0 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 Avg 0.9255 1.0309 1.0294 0.8805 0.8951 0.8660 0.8244 0.7969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.906 8.15 0.997 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.997 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.00 10.00 20.00 80.00 120.0 160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ΑVQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.00 10.00 20.00 80.00 120.0 160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.444 8.12 0.998 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.3 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00 10.00 20.00 80.00 120.0 160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PVQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.4 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00 10.00 20.00 80.00 120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10 Ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.284 8.14 0.996 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.2 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00 10.00 20.00 80.00 120.0 160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 00 10 00 26 00 80 00 120 0 160 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1451 0.1154 0.1019 0.1745 0.1875 0.1863 0.1848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.0 0.90<br>10 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.00 20.00<br>10.00 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.0 0.90<br>10 0.01<br>5 23 0.20 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00 10.00 20.00 80.00 120.0 160.0 196.0 2.00 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 196.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 0 Ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 Qua 0.2152 0.1023 0.2441 0.1898 0.2276 0.2348 0.2293 0.2277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.999<br>0.995<br>0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.0 0.90<br>10 0.01<br>5 23 0.20 a<br>7.3 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.00 10.00 20.00 80.00 120.0 160.0<br>2.00 10.00 20.00 80.00 120.0 160.0<br>10.00 20.00 80.00 120.0 160.0<br>2.00 10.00 20.00 80.00 120.0 160.0<br>2.00 10.00 20.00 80.00 120.0 160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 0 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.999<br>0.995<br>0.999<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00     10.00     26.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Av |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.999<br>0.995<br>0.999<br>1.00<br>0.999<br>0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.00     10.00     26.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Ava 1 0 Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.999<br>0.995<br>0.999<br>0.999<br>0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00 10.00 26.00 80.00 120.0 160.0 196.0 2.00 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80 |
| 1 0 Avg 1 0 Avg 1 0 Avg 1 0 Avg 1 0 Avg 1 0 Avg 1 0 Avg 1 0 Avg 1 0 Avg 1 0 Avg 1 0 Avg 1 0 Avg 1 0 Avg 1 0 Avg 1 0 Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.995<br>0.995<br>0.999<br>1.00<br>0.999<br>0.999<br>0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90<br>6.8 0.40<br>3.2 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00 10.00 26.00 80.00 120.0 160.0 196.0 2.00 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 20.00 80.00 120.0 160.0 196.0 20.00 20.00 80.00 120.0 160.0 196.0 20.00 20.00 80.00 120.0 160.0 20.00 20.00 20.00 80.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20 |
| 1 0 0 A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4163 0.3187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.995<br>0.995<br>0.999<br>1.00<br>0.999<br>0.999<br>0.999<br>0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90<br>6.8 0.40<br>3.2 0.01<br>13 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.00     10.00     26.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0 <t< th=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| nenylamin 1 0 Avd hydrazine 1 0 Avd henol 1 0 Avd nyl-phenyl 1 0 Avd nzene 1 0 Avd e 1 0 Avd henol 1 0 Avd e 1 0 Avd henol 1 0 Avd e 1 0 Avd halate 1 0 Qua halate 1 0 Avd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | À                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.999<br>0.995<br>0.999<br>1.00<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90<br>6.8 0.40<br>3.2 0.01<br>13 0.01<br>9.3 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ydrazine 1 0 Avq yl-phenyl 1 0 Avq snzene 1 0 Avq e 1 0 Avq henol 1 0 Avq e 1 0 Avq 1 0 Avq e 1 0 Avq e 1 0 Avq nalate 1 0 Qua nalate 1 0 Avq 1 0 Avq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.999<br>0.995<br>1.00<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90<br>6.8 0.40<br>3.2 0.01<br>13 0.01<br>9.3 0.01<br>9.3 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 2 |
| yl-phenyl 1 0 Avg snzene 1 0 Avg e 1 0 Avg henol 1 0 Avg e 1 0 Avg e 1 0 Avg halate 1 0 Avg halate 1 0 Avg halate 1 0 Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.999<br>0.995<br>1.00<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90<br>6.8 0.40<br>3.2 0.01<br>13 0.01<br>13 0.01<br>13 0.01<br>14 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.00     10.00     20.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0       2.00     10.00     20.00     80.00     120.0     160.0     196.0 <tr< th=""></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| henol 1 0 Avq henol 1 0 Avq henol 1 0 Avq h 1 0 Avq 1 0 Avq 1 0 Avq halate 1 0 Qua halate 1 0 Avq 1 0 Avq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.999<br>0.995<br>1.00<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90<br>6.8 0.40<br>3.2 0.01<br>13 0.01<br>13 0.01<br>14 0.01<br>13 0.01<br>14 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 2 |
| henol 1 0 Avq e 1 0 Avq 1 0 Avq 1 0 Avq 1 0 Avq 1 0 Avq 1 0 Avq 1 0 Avq 1 0 Avq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ava<br>Ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.999<br>0.995<br>1.00<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90<br>6.8 0.40<br>3.2 0.01<br>13 0.01<br>13 0.01<br>13 0.01<br>14 0.20<br>3.2 0.01<br>13 0.01<br>14 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 20.00 80.00 20.00 80.00 20.00 80.00 20.00 80.00 20.00 80.00 20.00 8 |
| e 1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq<br>1 0 Avq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.999<br>0.999<br>1.00<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90<br>6.8 0.40<br>3.2 0.01<br>13 0.01<br>13 0.01<br>13 0.01<br>13 0.01<br>14 0.10<br>8.4 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 20.00 80.00 120.0 160.0 196.0 20.00 20.00 80.00 120.0 160.0 196.0 20.00 20.00 80.00 120.0 160.0 196.0 20.00 20.00 80.00 120.0 160.0 196.0 20.00 20.00 80.00 120.0 160.0 196.0 20.00 20.00 80.00 120.0 160.0 196.0 20.00 20.00 80.00 120.0 160.0 196.0 20.00 20.00 20.00 8 |
| 1 0 Avq halate 1 0 Qua 1 0 Avq 1 0 Avq 1 0 Avq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.999<br>0.995<br>1.00<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>1.00<br>0.999<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90<br>6.8 0.40<br>3.2 0.01<br>13 0.01<br>13 0.01<br>13 0.01<br>14 0.01<br>14 0.05<br>9.1 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 1 |
| halate 1 0 Qua<br>1 0 Avq<br>1 0 Avq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.999<br>0.999<br>1.00<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90<br>6.8 0.40<br>3.2 0.01<br>13 0.01<br>13 0.01<br>13 0.01<br>14 0.05<br>8.4 0.05<br>8.5 0.70<br>8.5 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 10.00 20.00 10.00 20.00 1 |
| 1 0 Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.999<br>0.999<br>1.00<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>1.00<br>0.999<br>1.00<br>0.999<br>1.00<br>0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90<br>6.8 0.40<br>3.2 0.01<br>13 0.01<br>13 0.01<br>13 0.01<br>14 0.10<br>8.4 0.10<br>8.4 0.05<br>8.5 0.70<br>4.3 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.00 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 120.0 160.0 196.0 20.00 10.00 120.0 160.0 196.0 20.00 120.0 160.0 196.0 20.00 1 |
| 1 0 Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O A Ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90<br>6.8 0.40<br>3.2 0.01<br>13 0.01<br>13 0.01<br>13 0.01<br>14 0.10<br>8.4 0.05<br>9.1 0.05<br>9.1 0.05<br>8.5 0.70<br>4.3 0.70<br>19 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 10.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 1 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Avg 0.0528 0.5407 0.0650 0.0650 0.5239 0.6160 0.0038 0.3906 Avg 0.0964 0.0626 0.0902 0.0859 0.1005 0.1016 0.1003 0.0991 Avg 0.6311 0.6875 0.6713 0.6013 0.6269 0.6180 0.6524 0.6365 Avg 0.2038 0.2183 0.2079 0.1914 0.2055 0.2067 0.2060 0.2055 Avg 0.2183 0.2263 0.2378 0.2107 0.2233 0.2253 0.2239 0.2213 Avg 0.3090 0.2392 0.3093 0.2832 0.3054 0.2996 0.2828 0.2698 Avg 0.1414 0.1466 0.1187 0.1506 0.1575 0.1544 0.1549 Avg 1.0499 1.2518 1.1464 1.0090 1.0378 1.0254 1.0012 0.9849 Avg 1.0753 1.1218 1.1276 1.0259 1.0713 1.0503 1.0307 0.9983 Avg 0.9801 0.9423 1.0058 0.9287 0.9786 0.9766 0.9442 0.9399 Qua 1.1066 0.7721 0.9731 0.9755 1.1298 1.1395 1.1174 1.0853 Avg 1.1752 1.0345 1.1343 1.0740 1.1771 1.1804 1.1547 1.1440                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90<br>6.8 0.40<br>3.2 0.01<br>13 0.01<br>13 0.01<br>13 0.01<br>14 0.10<br>8.4 0.05<br>9.1 0.05<br>8.5 0.70<br>4.3 0.70<br>2.8 0.01<br>19 0.01<br>4.7 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 1 |
| A S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Avg 0.0528 0.5407 0.5630 0.5065 0.5239 0.5160 0.5038 0.5906 Avg 0.0964 0.0626 0.0902 0.0859 0.1005 0.1016 0.1003 0.0991 Avg 0.0561 0.06875 0.6713 0.6013 0.6269 0.6180 0.6524 0.6365 Avg 0.2038 0.2183 0.2079 0.1914 0.2055 0.2067 0.2060 0.2055 Avg 0.2198 0.2662 0.2378 0.2107 0.2353 0.2263 0.2239 0.2213 Avg 0.3090 0.2392 0.3093 0.2832 0.3054 0.2966 0.2828 0.2698 Avg 0.1414 0.1466 0.1187 0.1506 0.1575 0.1544 0.1549 Avg 0.1414 0.1466 0.1187 0.1506 0.1575 0.1544 0.0120 0.9849 Avg 0.1414 0.1466 0.1187 0.0378 1.0254 1.0012 0.9849 Avg 0.10499 1.2518 1.1276 1.0259 1.0713 1.0503 1.0307 0.9983 Avg 0.9801 0.9423 1.0058 0.9287 0.9786 0.9442 0.9399 Qua 1.1066 0.7721 0.9731 0.9287 0.9786 0.9786 0.9442 0.9399 Qua 1.1066 0.7721 0.9731 0.9755 1.1798 1.1395 1.1174 1.0853 Avg 0.1991 1.1646 1.2120 1.1032 1.1754 1.2103 1.1905 1.1796 0.11991 1.1646 1.2120 1.1032 1.1754 1.2103 1.1905 1.1796 | 0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.999<br>0.990<br>0.990<br>0.990<br>0.990<br>0.990<br>0.990<br>0.990 | 9.0 0.90<br>10 0.01<br>23 0.20 a<br>7.3 0.80<br>14 0.20<br>22 0.01<br>6.6 0.01<br>7.0 0.90<br>6.8 0.40<br>3.2 0.01<br>13 0.01<br>13 0.01<br>13 0.01<br>14 0.00<br>3.7 0.01<br>14 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05<br>9.1 0.05 | 2.00 10.00 20.00 80.00 120.0 160.0 196.0 10.00 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 160.0 196.0 20.00 80.00 120.0 1 |

a - failed the min rf criteria

| Corr | = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Correlation Coefficient for Quadratic Curve was used for compound. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient for linear Eq. |
| Correlation Coefficient fo

Avg Rsd: 8.313

Page 2 of 3

Flags

# Form 6 Initial Calibration

Instrument: GCMS\_9

|                                   |                                                         | CHICAGO CONTRACTOR                                          |                                                         |                                                                                                                                                                                                                                                                                                      |
|-----------------------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data File: Cal Identifier:        | Analysis Date/Time                                      | Level #: Data File:                                         | e: Cal Identifier:                                      | Analysis Date/Time                                                                                                                                                                                                                                                                                   |
| 9M101321.D CAL BNA@50PPM          | 09/17/20 13:22                                          | 9M1013                                                      | CALB                                                    | 09/17/20 10:34                                                                                                                                                                                                                                                                                       |
| 9M101313.D CAL BNA@10PPM          | 09/17/20 10:10                                          | 4 9M101319.D                                                | CAL BNA@20PPM                                           | 09/17/20 12:35                                                                                                                                                                                                                                                                                       |
| 9M101318.D CAL BNA@80PPM          | 09/17/20 12:12                                          | 6 9M101317.D                                                | CAL BNA@120PPM                                          | 09/17/20 11:47                                                                                                                                                                                                                                                                                       |
| CAL                               | 09/17/20 11:24                                          | 8 9M101315.D                                                | CAL BNA@196PPM                                          | 09/17/20 11:00                                                                                                                                                                                                                                                                                       |
| 9M101320.D CAL BNA@0.5PPM         | 09/17/20 12:58                                          |                                                             |                                                         |                                                                                                                                                                                                                                                                                                      |
| Mr Fit: RF1 RF2 RF3 RF4           | RES RES REZ RES                                         | AvoRf RT                                                    | Corr1 Corr2 %Red                                        | Calibration Level Concentrations                                                                                                                                                                                                                                                                     |
| Avg 0.3164 0.3085 0.3251 0.2870   | 0.3355                                                  | ₹ }                                                         | 1.00 5.3                                                | 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                             |
|                                   | 0.4676 0.3298 0.4118 0.4039 0.4696 0.4943 0.4859 0.4842 | 0.443 11.97 0.999                                           | 0.999 13                                                | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                       |
| _                                 | 0.4710 0.2384 0.3600 0.3840 0.4937 0.5153 0.5030 0.5012 | 0.433 12.23 0.999                                           | 0.999 23 0.01                                           | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                       |
| Avg 0.5607 0.4100 0.6178 0.5043   | 0.5607 0.4100 0.6178 0.5043 0.5646 0.5801 0.5774 0.5756 | 0.549 12.33 1.00                                            | 1.00 12                                                 | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                       |
| Qua 0.3898 0.2240 0.4113 0.3352   | 0.3898 0.2240 0.4113 0.3352 0.4035 0.4225 0.4142 0.3995 | 0.37512.85 0.999                                            | 0.999 18 0.01                                           | 0.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                        |
| Avg 1.1262 1.1259 1.1404 1.0406   | 1.1262 1.1259 1.1404 1.0406 1.1448 1.1645 1.1679 1.1421 | 1.13 12.88 1.00                                             | 1.00 3.5 0.80                                           | 0.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                        |
| Avg 1.1020 1.2634 1.1943 1.0445   | 1.1020 1.2634 1.1943 1.0445 1.0556 1.0822 1.0400 1.0496 | 1.10 12.92 1.00                                             | 1.00 7.4 0.70                                           | 0.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                        |
| _                                 | 0.6559 0.3313 0.5540 0.5664 0.6633 0.6739 0.6511 0.6267 | 0.590 12.92 0.998                                           | 0.999 19 0.01                                           | 0.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                        |
| 0 Qua 1.0321 0.3373 0.6180 0.8050 | .0321 0.3373 0.6180 0.8050 1.0983 1.1633 1.1157 1.0860  | 0.907 13.68 0.998                                           | 0.999 33 0.01                                           | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                       |
| 0 Avg 1.0627 0.8442 0.9841 0.9332 | .0627 0.8442 0.9841 0.9332 1.0674 1.1317 1.1321 1.1712  | 1.04 14.10 0.999                                            | 1.00 11 0.70                                            | 0.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                        |
| Avg 1.1059 1.0441 1.1654 1.0308   | .1059 1.0441 1.1654 1.0308 1.0850 1.0826 1.0345 0.9585  | 1.06 14.13 0.994                                            | 0.999 5.8 0.70                                          | 50.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                       |
| Avg 0.9862 0.7020 0.9358 0.8535   | 0.9862 0.7020 0.9358 0.8535 0.9952 1.0171 1.0027 0.9943 | 0.936 14.47 1.00                                            | 1.00 12 0.70                                            | 0.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                        |
| Avg 1.1882 0.9198 1.0889 1.0476   | 1.2176 1.2755 1.2625 1.2526                             | 1.16 15.89 1.00                                             | 1.00 11 0.50                                            | 0.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                        |
| Avg 1.0042 0.7706 0.9347 0.8922   | 1.0083 1.0517 1.0405 1.0286                             | 0.966 15.92 1.00                                            | 1.00 9.9 0.40                                           | 0.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                        |
|                                   | 0.9875 1.0324 1.0163 1.0094                             | 0.954 16 29 1.00                                            | 1.00 8.1 0.50                                           | 0.00 2.00 10.00 20.00 80.00 120.0 160.0 196.0                                                                                                                                                                                                                                                        |
| 5 5                               |                                                         | Avg 1.1882 0.9198 1.0889 1.0476 1.2176 1.2755 1.2625 1.2526 | 1.1882 0.9198 1.0889 1.0476 1.2176 1.2755 1.2625 1.2526 | 1.1882 0.9198 1.0889 1.0476 1.2176 1.2755 1.2625 1.2526       1.16 15.89 1.00 1.00 11 0.50         1.0042 0.7706 0.9347 0.8922 1.0083 1.0517 1.0405 1.0286       0.966 15.92 1.00 1.00 9.9 0.40         0.9795 0.8174 0.9208 0.8688 0.9875 1.0324 1.0163 1.0094       0.954 16.29 1.00 1.00 8.1 0.50 |

Flags

a - failed the min rf criteria

Corr l = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

c - failed the minimum correlation coeff criteria(if applicable) Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound. Note:

Avg Rsd: 8.313

## Form 6 Initial Calibration

Instrument: GCMS\_5

| Method: EPA 8270E        |             |                                                                                                      | Initial                                                                                                                                   | Initial Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                      |                  | Instrumer                         | Instrument: GCMS_5 |          |
|--------------------------|-------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|------------------|-----------------------------------|--------------------|----------|
| :61                      | <b>!</b>    | !                                                                                                    |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | !             |                      |                  | !<br>!                            |                    |          |
| Level #.                 | 5M114388.D  | CAL BNA@50PPM                                                                                        | 09/24/20 12:58                                                                                                                            | 2 5M1143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5M114381.D CA | CAL BNA@2PPM         | 2/60             | 4/20 10:15                        |                    |          |
| ω                        | 5M114382.D  | CAL BNA@10PPM                                                                                        | 09/24/20 10:38                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87.D CA       | CAL BNA@20PPM        |                  | 12:34                             |                    |          |
| IJ                       | 5M114386.D  | CAL BNA@80PPM                                                                                        | 09/24/20 12:11                                                                                                                            | 6 5M1143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95.D CA       | CAL BNA@120PPM       |                  | 11:48                             |                    |          |
| 7                        | 5M114384.D  | CAL BNA@160PPM                                                                                       | 09/24/20 11:25                                                                                                                            | 8 5M114383.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.D CA       | CAL BNA@196PPM       | M 09/24/20 11:01 | 11:01                             |                    |          |
| 9                        | 5M114380.D  | CAL BNA@0.5PPM                                                                                       | 09/24/20 09:52                                                                                                                            | A CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA | İ             |                      |                  | Calibration I evel Concentrations | ncentrations       |          |
|                          | Col Mr Fit: | RF1 RF2 RF3 RF4                                                                                      | RF5 RF6 RF7 RF8 RF9                                                                                                                       | AvgRf RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Corr1 Corr2   | 2 %Rsd               | LvI1 LvI2        |                                   | Lvi8               | LVI9     |
| ☑1.4-Dioxane             | 1 0 Avq     | 1.0557 1.2687 1.1469 1.2105                                                                          | 6 1.0709 1.1191 1.0763 1.0913 1.1831                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.999 0.999   | 99 6.4               | 50.00 2.00       | 10.00 20.00 80.00                 | 120.0 160.0 196.0  | 0.50     |
| Pyridine                 | 1 0 Avg     | 2.6072 2.4707 2.7041 2.7789                                                                          | 2.6072 2.4707 2.7041 2.7789 2.6710 2.6039 2.6670 2.6855                                                                                   | 2.65 3.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                      | 50.00 2.00       | 10.00 20.00 80.00                 | 120.0 160.0 196.0  |          |
| N-Nitrosodimethylamin    | A           | 1.6765 1.6305 1.6018 1.7275                                                                          | 1.6305 1.6018 1.7275 1.6870 1.6796 1.7107 1.7081                                                                                          | 1.68 3.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                      | 50.00 2.00       | 10.00 20.00 80.00                 |                    |          |
| 2-Fluorophenol           | }<br>8      | 1.7282 1.6774 1.7359 1.7798                                                                          | 1.7282 1.6774 1.7359 1.7798 1.7558 1.7062 1.7600 1.7082                                                                                   | 1.734.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1.9                  | 50.00            |                                   |                    |          |
| Apilipo                  | 2           | 1.0020 1.044/ 1.914Z 1.9/4U                                                                          |                                                                                                                                           | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                      | İ                |                                   | 160.0 196.0        | <b>T</b> |
| Aniine                   | }<br>6      | 3.0103 3.0552 3.0035 3.1998                                                                          | 3.U1U3 3.U552 3.UU35 3.1998 3.U3U9 2.8775 2.9710 2.7912 4.UU54<br>0.6060 0.6543 0.6043 0.6086 0.6046 0.5874 0.5873 0.5770                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •             | : 1                  | 50.00            | 20.00 80.00                       | 160.0 196.0        | 0.50     |
| his/2-Chloroethyl)ether  |             | 0.6060 0.6542 0.6242 0.6266 0.6016<br>1 9784 2 1166 2 0857 2 1258 1 9836                             | 0.5050 0.5542 0.5242 0.5265 0.5016 0.5674 0.5672 0.5732<br>1 9784 2 1166 2 0857 2 1258 1 9836 1 8358 1 9087 1 8316 2 9367                 | 67 2.005.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 999 0 999   | 94.4 U.US            | 50.00 2.00       | 10.00 20.00 80.00                 | 120.0 160.0 196.0  | 0.50     |
| Phenol-d5                | A<br>A      | 2.1533 2.0830 2.2023 2.2792 2.1676 2.0035                                                            | 2.1015 1.9780                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 4.7                  | 50.00            |                                   | 160.0 196.0        | ,        |
| Phenol                   | ١           | 2.6811 2.7217 2.8108 2.8637                                                                          | 2.6811 2.7217 2.8108 2.8637 2.7049 2.5061 2.5969 2.4436                                                                                   | 2.67 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 1                    | 50.00            |                                   |                    | İ        |
| 2-Chlorophenol           | ₽           | 1.9711 1.9479 1.9888 2.0492                                                                          | 1.9711 1.9479 1.9888 2.0492 1.9937 1.8704 1.9207 1.8538                                                                                   | 1.95 5.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | ω<br>4 1             | 50.00            |                                   | 160.0              |          |
| 1.3-Dichlorobenzene      | - 0 AV      | 1.7974 1.9003 1.9770 1.9400 1.0042 1.0032 1.0022<br>2.2329 2.5456 2.4495 2.4491 2.2011 2.1051 2.1426 | 1.7974 1.9003 1.9770 1.9400 1.0042 1.032 1.0022 1.3630<br>2.2329 2.5456 2.4495 2.4491 2.2011 2.1051 2.1426 2.0352                         | 2.27 5.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.998 0.999   | 99 8.2               | 50.00 2.00       | 10.00 20.00 80.00                 | 120.0 160.0 196.0  |          |
| 1,4-Dichlorobenzene      | Αvq         | 1.5980 1.7939 1.7156 1.6696                                                                          |                                                                                                                                           | 1.62 5.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                      | 50.00 2.00       |                                   | 160.0              |          |
| 1.2-Dichlorobenzene      | AVQ         | 1.5073 1.6715 1.6672 1.5569                                                                          | 1.5073 1.6715 1.6672 1.5569 1.5367 1.4452 1.4227 1.4777                                                                                   | 1.54 5.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 1                    | 50.00 2.00       | 20.00 80.00                       | 160.0              |          |
| bis (2-chloroisonronyl)e |             | 0.8914                                                                                               | 0.8914                                                                                                                                    | 0.8795.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.999 0.999   |                      | 50.00            | 10.00 20.00 80.00                 | 120.0 160.0 196.0  |          |
| 2-Methylphenol           | A<br>A      | 1.2763 1.2525 1.2942 1.2959                                                                          | 1.2525 1.2942 1.2959 1.2723 1.2352 1.2367 1.2432 1.5862                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 8<br>5               | 50.00            |                                   | 160.0 196.0        | 0.50     |
| Acetophenone             | AVQ         | 1.9066 2.0079 2.0980 2.0187                                                                          | 2.0187 1.9185 1.7543 1.7547 1.7928                                                                                                        | 1.91 6.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 6.8                  | 50.00            |                                   | 120.0 160.0 196.0  |          |
| N Niroso di p provide    | a a         | <u>0.5850 0.5828 0.5961 0.6079</u><br>0.6340 0.8613 1.0688 0.6838                                    | 0.5850 0.5828 0.5961 0.6079 0.6117 0.5785 0.5854 0.5984                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 2.1                  | 50.00            |                                   | 160 0 196 0        | 5<br>5   |
| 3&4-Methylphenol         | 1 0 AV      | 1.2593 1.2785 1.3 <b>44</b> 5 1.3391                                                                 | 0.3340 0.8313 1.0006 0.3026 0.3333 0.8334 0.8013 0.8764 1.14 <b>2</b> 8<br>1 2593 1 2785 1 3445 1 3391 1 2517 1 1326 1 1418 1 1530 1 7902 | 0.5450.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.999 0.999   | 99 9.7 0.30<br>99 15 | 50 00 2 00       | 10.00 20.00 80.00                 | 120.0 160.0 196.0  | 0.50     |
| Nitrobenzene-d5          | Avg .       | 0.1590 0.1736 0.1483 0.1615                                                                          | 0.1590 0.1736 0.1483 0.1615 0.1620 0.1594 0.1620 0.1636                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                      | 25.00 1.00       |                                   | 80.00 98.00        |          |
| Nitrobenzene             |             | 0.4067 0.3751 0.3944 0.4112                                                                          | 0.4067 0.3751 0.3944 0.4112 0.4070 0.3886 0.4052 0.3937                                                                                   | 0.398 6.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 3.0                  | 50.00            |                                   | 160.0              |          |
| Isophorone               | AVa         | 0.7083 0.6329 0.7424 0.7143                                                                          | 0.7083 0.6329 0.7424 0.7143 0.7132 0.6795 0.7150 0.7055                                                                                   | 0.701 6.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _             | 4.6                  | 50.00            | - 1                               | - 1                | !        |
| 2-Nitrophenol            | À           | 0.1971 0.1387 0.1715 0.1923                                                                          | 0.1971 0.1387 0.1715 0.1923 0.2003 0.1985 0.2039 0.1983                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 3<br>2               | 50.00            |                                   | 160.0 196.0        | 5        |
| Benzoic Acid             | 1 0 Qua     | 0.3 <del>44</del> 6 0.3367 0.3463 0.3391<br>0.2612 0.1127 0.2217                                     | 0.3446                                                                                                                                    | 39 0.351 6.55<br>0.253 6.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.999 0.999   | 99 0.2 0.20<br>) 27  | 50.00 2.00       | 10.00 20.00 80.00                 | 120.0 160.0 196.0  | 0.00     |
| bis(2-Chloroethoxy)me    | AVQ         | 0.4392 0.4739 0.4683 0.4529                                                                          | 1                                                                                                                                         | 0.4366.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | _                    |                  |                                   | 120.0 160.0        |          |
| 2,4-Dichlorophenol       |             | 0.3276 0.2838 0.3274 0.3433                                                                          | 0.3276 0.2838 0.3274 0.3433 0.3309 0.3101 0.3199 0.3129 0.4004                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1             | 9.7                  | 50.00            | 80.00                             | 120.0 160.0 196.0  | 0.50     |
| 1.2.4-Trichlorobenzen    | ě           | 0.3597 0.4055 0.3849 0.3739                                                                          | 0.3597 0.4055 0.3849 0.3739 0.3546 0.3442 0.3534 0.3520                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 5.6                  | 50.00            | 20.00 80.00                       | 120.0 160.0 196.0  | 5        |
| 4-Chloroaniline          | 1 0 Ava     | 0.4496 0.4425 0.4592 0.4664                                                                          | 0.4496 0.4425 0.4592 0.4664 0.4394 0.4077 0.4125 0.4084 0.5722                                                                            | 22 0.4516.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.999 0.999   | 99 11 0.01           | 50.00 2.00       | 10.00 20.00 80.00                 | 120.0 160.0 196.0  | 0.50     |
| Hexachlorobutadiene      | Avq         | 0.2239 0.2383 0.2326 0.2283                                                                          | 0.2239 0.2383 0.2326 0.2283 0.2219 0.2087 0.2229 0.2185                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 4.0                  | 50.00            | 20.00 80.00                       | 120.0 160.0        |          |
| Caprolactam              | 1 0 Qua     | 0.1185 0.0628 0.0975 0.1157                                                                          | 0.1185 0.0628 0.0975 0.1157 0.1215 0.1295 0.1339 0.1315                                                                                   | 0.1147.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.999 0.999   | 21                   | 50.00            | 10.00 20.00 80.00                 | 120.0 160.0        | 1        |
| 4-Chloro-3-methylphe     | ΡVQ         | 0.3212 0.2851 0.3214 0.3269                                                                          | 0.3212 0.2851 0.3214 0.3269 0.3285 0.3130 0.3215 0.3231                                                                                   | 0.3187.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 4.4                  | 50.00            | 20.00 80.00                       | 120.0 160.0        |          |
| 2-Methylnaphthalene      | À           | 0.7547 0.8223 0.7964 0.7836                                                                          | 0.7547 0.8223 0.7964 0.7836 0.7440 0.7017 0.7094 0.7015                                                                                   | 0.7527.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •             | 0.0                  | 50.00            | 20.00 80.00                       | 160.0              |          |
| 1-Methylnaphthalene      | }           | 0.7112                                                                                               | 0.7726 0.7846 0.7468 0.6877 0.6639 0.6797 0.6759                                                                                          | 0.715 / .44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                      | 50.00            |                                   | 740.0 750.0        |          |
| 1.1°-Biphenyl            | 1 0 AVG     | 0.7337 0.7973 0.7631 0.7663<br>0.8849 0.9791 0.9581 0.9537                                           | 0.7337                                                                                                                                    | 0.7327.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00.1 666.0    | 67                   | 50.00 2.00       | 10.00 20.00 80.00                 | 120.0 160.0 196.0  |          |
| 1.2,4.5-Tetrachloroben   | ΑQ          | 0.6821 0.7964 0.7770 0.7350                                                                          | 0.6821 0.7964 0.7770 0.7350 0.7110 0.6421 0.6495 0.6839                                                                                   | 0.7107.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | ì                    |                  |                                   | 120.0 160.0        | ļ        |
|                          |             |                                                                                                      |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                      |                  |                                   |                    | i        |

a - failed the min rf criteria

Corr l = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

C - failed the minimum correlation coeff criteria(if applicable)

Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Note:

Avg Rsd: 7.961

Page 1 of 3

Instrument: GCMS\_5

| Method: FTA 02/0E                |             |                                                                                        | 3                                                                                                                    | nutial Calibration | 3              |             |                |                              | monding:                      | Handinghir GCMO_3 |      |
|----------------------------------|-------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------|----------------|-------------|----------------|------------------------------|-------------------------------|-------------------|------|
| 61                               |             |                                                                                        |                                                                                                                      | 1                  |                |             |                |                              |                               |                   |      |
| Level #                          | Data File   |                                                                                        | Analysis Date/Time                                                                                                   | Level #            | Data           | File        | Cal Identifier |                              | Analysis Date/Time            |                   |      |
| 0                                | 5M114388.D  | CAL BNA@50PPM                                                                          | 09/24/20 12:58                                                                                                       | N                  | 5M114381.D     |             | BNA@2PPM       |                              | 0 10:15                       |                   |      |
|                                  | 5M114382.D  | CAL BNA@10PPM                                                                          | 09/24/20 10:38                                                                                                       | 4 0                | 5M114387.D     |             | CAL BNA@20PPM  |                              | 09/24/20 12:34                |                   |      |
| 3 (                              | 5M114386.D  | CAL BNA@80PPM                                                                          | 09/24/20 12:11                                                                                                       | σ                  | 5M114385.D     |             | CAL BNA@120PPM |                              | 09/24/20 11:48                |                   |      |
|                                  | 5M114384.D  | CAL BNA@160PPM                                                                         | 09/24/20 11:25                                                                                                       | œ                  | 5M114383.D     | CAL         | BNA@196PPM     |                              | 09/24/20 11:01                |                   |      |
|                                  |             |                                                                                        |                                                                                                                      |                    |                |             |                |                              | Calibration Level Co          | ncentrations      |      |
| Compound                         | Col Mr Fit: | RF1 RF2 RF3 RF4                                                                        | RF5 RF6 RF7 RF8                                                                                                      | RF9 AvgRf          | Ŗ              | Corr1 Corr2 | %Rsd           | Lvi1 Lv                      | Lv12 Lv13 Lv14 Lv15 Lv16 Lv17 | Lvi8              | Lvi9 |
| Hexachiorocyclopenta             | 1 0 Avg     | 0.4073 0.3755 0.4097 0.417                                                             | 0.4097 0.4173 0.4431 0.3988 0.4066 0.4226 -                                                                          | 0.                 | 0.4107.49 0.   | 0.998 0.998 | 4.7 0.05       | 5 50.00 2.00                 | 10.00 20.00 80.00             | 120.0 160.0 196.0 |      |
| 2,4,6-Trichlorophenol            | 1 0 Ava     | ).4476                                                                                 | 0.4476 0.3696 0.4359 0.4868 0.4509 0.4287 0.4515 0.4464 -                                                            | 0.                 | 0.440 7.58 0.  | 0.999 0.999 |                | 0 50.00 2.00                 | 10.00 20.00 80.00             | 120.0 160.0 196.0 |      |
| 2.4.5-Trichlorophenol            | A<br>A      | 0.3797                                                                                 | 0.4777 0.4594 0.4889 0.4548 0.4562 0.4705 -                                                                          | 0.                 |                |             | 7.2 0.20       | 50.00                        | 10.00 20.00 80.00             | 160.0             |      |
| 2-Fluorobipnenyi                 | AVQ         | 1.43/6 1.6049 1.5/50 1.513                                                             | 1.5750 1.5132 1.4762 1.3876 1.4144 1.5090 -                                                                          | 1                  | _              |             |                | 25.00                        | 5.00 10.00 40.00              |                   |      |
| 2-Chloronaphthalene              | 1 0 Avq     | 2809 1.4049 1.4119 1.369                                                               | 1.2809 1.4049 1.4119 1.3696 1.3139 1.1838 1.2338 1.2666 -                                                            |                    | 1-             |             | 6.3 0.80       | 50.00                        | 10.00 20.00 80.00             | 1                 |      |
| 1,4-Dimethylnaphthale            | OAVQ        | 1.9360 1.0622 1.0872 1.024                                                             | 0.9360 1.0622 1.0872 1.0240 0.9330 0.8343 0.8643 0.8913 -                                                            | . 0                |                |             | 9.00           | 50.00 2.00                   | 10.00 20.00 80.00             | 160.0             |      |
| Dinkond Ethor                    |             | 19360 1.0622 1.0872 1.022                                                              | 0.9360 1.0622 1.0872 1.0240 0.9330 0.8343 0.8643 0.8913 -<br>0.0006 1.0614 1.0203 0.0683 0.0468 0.8666 0.8360 0.0120 |                    |                |             | 9 .0           | 50.00 2.00                   | 10.00 20.00 80.00             | 1000              |      |
| 2-Nitroaniline                   | 1 0 Ava 0   | . 4210 0.3219 0.4008 0.426                                                             | 0.4210 0.3219 0.4008 0.4267 0.4460 0.4213 0.4160 0.4457 -                                                            | 0 9                | 0.3337.02 0.   | 0.998 0.998 | 96 0.01        | 1 50.00 2.00<br>1 50.00 2.00 | 10.00 20.00 80.00             | 120.0 160.0 196.0 |      |
| Coumarin                         | ΑVQ         | ).4780 0.5101 0.5221 0.512                                                             | 0.4780 0.5101 0.5221 0.5122 0.4828 0.4266 0.4454 0.4532 -                                                            | 0.                 |                |             |                | 50.00                        | 10.00 20.00 80.00             | 160.0             |      |
| Acenaphthylene                   | 1 0 Avg 1   | .8343 1.9226 2.0619 1.986                                                              | 1.8343 1.9226 2.0619 1.9864 1.9285 1.7344 1.7791 1.8414 -                                                            |                    |                |             | 5.8 0.90       | 50.00                        | 10.00 20.00 80.00             | 160.0             | ,    |
| Dimethylphthalate                | 1 0 Avg 1   | 1.4531 1.5016 1.5708 1.5207 1.4844 1.3613<br>0 3230 0 2714 0 3307 0 3454 0 3252 0 2005 | 1.4531 1.5016 1.5708 1.5207 1.4844 1.3613 1.3908 1.4501 -<br>0 3230 0 2714 0 3387 0 3464 0 3262 0 2806 0 3008 0 3002 | · ·                | 1.477.98 0.    | 0.998 0.998 | 4.7 0.01       | 50.00                        | 10.00 20.00 80.00             | 120.0 160.0 196.0 |      |
| Acenaphthene                     | A<br>O      | .2178 1.4016 1.3334 1.292                                                              | 1.2178 1.4016 1.3334 1.2920 1.2513 1.1167 1.1576 1.1869 -                                                            | !<br>!             | -              |             |                |                              | 10.00 20.00 80.00             | 160.0             |      |
| 3-Nitroaniline                   | A           | 3586 0.2839 0.3440 0.366                                                               | 0.3586 0.2839 0.3440 0.3669 0.3738 0.3454 0.3491 0.3558 -                                                            | 0                  | _              |             |                | 50.00                        | 10.00 20.00 80.00             | 160.0             |      |
| 2,4-Dinitrophenol                | Qua         | 0.1736 0.0792 0.143                                                                    |                                                                                                                      | _                  |                |             |                | a 50.00                      | 10.00 20.00 80.00             | 160.0 196.0       |      |
| Dibenzoturan                     | Cua         | .8089 2.1036 1.9754 1.8882 1.8400 1.6678                                               |                                                                                                                      | 2.7684             |                |             |                | 50.00                        | 10.00 20.00 80.00             | 160.0 196.0       | 0.50 |
| 2.4-Dinitrotoluene 4-Nitronhenol | 1 0 Avg 0   | ).4260                                                                                 | 0.4260 0.2900 0.4049 0.4322 0.4695 0.4326 0.4494 0.4572<br>0.2776 0.1394 0.2408 0.2708 0.2842 0.2863 0.2923 0.3027   | 9 0                | 0.4208.39 0.   |             |                | 50.00                        | 10.00 20.00 80.00             | 120.0 160.0 196.0 |      |
| 2,3,4,6-Tetrachlorophe           | 1 0 Ava     | ).4166 0.3360 0.4257 0.421                                                             | 0.4166                                                                                                               | 0 9                |                | 0.998 0.999 | 7.8 0.01       |                              | 10.00 20.00 80.00             | 160.0             |      |
| Fluorene                         | 1 0 Avg     | .4043 1.5764 1.6121 1.545                                                              | 1.4043 1.5764 1.6121 1.5450 1.4561 1.3243 1.3424 1.4151 -                                                            |                    | - 1            |             | !              | 50.00                        | 10.00 20.00 80.00             | 160.0             |      |
| 4-Chlorophenyl-phenyl            | 1 0 Ava     | 0.7114 0.8148 0.8108 0.782                                                             | 0.7114 0.8148 0.8108 0.7825 0.7556 0.6913 0.6949 0.7303 -                                                            | 0.                 |                |             |                | 50.00                        | 10.00 20.00 80.00             | 160.0             |      |
| Diethylphthalate                 | . ¥         | .4058 1.3220 1.4594 1.461                                                              | 1.4058 1.3220 1.4594 1.4616 1.4894 1.3562 1.3700 1.4359 -                                                            | ·                  |                |             |                | 50.00                        | 10.00 20.00 80.00             | 160.0             |      |
| Atrazine                         | 1 DAVO D    | ).3689                                                                                 | 0.3689 0.2546 0.3448 0.3841 0.3898 0.3686 0.3755 0.3932 -<br>0.4516 0.3811 0.4451 0.4754 0.4806 0.4413 0.4588 0.4766 | )  <br>            | 0.360 8.74 0.  | 0.998 0.999 | 71 0.01        | 50.00 2.00                   | 10.00 20.00 80.00             | 120.0 160.0 196.0 |      |
| 4.6-Dinitro-2-methylph           | 1 0 Avg     | 0.1351 0.0903 0.118                                                                    | 0.0903 0.1189 0.1496 0.1477 0.1542 0.1560 -                                                                          | 0 0                | 1              |             | 18 0.01        | 50.00                        | 10.00 20.00 80.00             | - 1               | ļ    |
| n-Nitrosodiphenylamin            | 1 0 Avg     | ).6294 0.6547 0.6949 0.680                                                             | 0.6294 0.6547 0.6949 0.6809 0.6379 0.6156 0.6319 0.6288                                                              | 0.                 | -              |             |                |                              | 10.00 20.00 80.00             | 160.0             |      |
| 2,4,6-Tribromophenol             | 1 0 Avg     | 0.0973 0.0691 0.0888 0.100                                                             | 0.0973 0.0691 0.0888 0.1009 0.1008 0.0979 0.0992 0.1001 -                                                            | - 0.0              |                |             | 12             | 50.00 2.00                   | 10.00 20.00 80.00             | 160.0             |      |
| 1,2-Diphenylhydrazine            | 1 0 Avg     | ).7091 0.7037 0.7892 0.768<br>).7328 0.7488 0.7484 0.734                               | 0.7091 0.7037 0.7892 0.7684 0.7369 0.6907 0.7841 0.7882<br>0.2228 0.2488 0.2484 0.2346 0.2341 0.2167 0.2276 0.2263   | 0.0                | 0.746 8.88 0.  | 0.997 0.998 | n 51           | 50.00 2.00                   | 10.00 20.00 80.00             | 120.0 160.0 196.0 |      |
| Hexachlorobenzene                | 1 0 Avg     | .2312 0.2720 0.2615 0.248                                                              | 0.2312 0.2720 0.2615 0.2481 0.2303 0.2184 0.2341 0.2283 -                                                            | 0                  | - 1            |             | 7.6 0.10       | 50.00                        | 10.00 20.00 80.00             | 160.0             | 1    |
| N-Octadecane                     |             | ).3767 0.3585 0.4092 0.391                                                             | 0.3767 0.3585 0.4092 0.3916 0.3773 0.3347 0.3488 0.3411 -                                                            | 0.                 | -              |             |                | 50.00                        | 10.00 20.00 80.00             | 160.0             |      |
| Pentachlorophenoi                | 1 0 Avg 0   | 0.1538 0.1256 0.149                                                                    | 0.1256 0.1497 0.1644 0.1567 0.1659 0.1641 -                                                                          | 0.                 | 0.154 9.48 0.  | 0.999 0.999 |                |                              | 10.00 20.00 80.00             | 120.0 160.0 196.0 |      |
| Phenanthrene                     | Ava         | .0559 1.2609 1.1693 1.144                                                              | 1.0559 1.2609 1.1693 1.1443 1.0922 1.0032 1.0592 1.0408 -                                                            | 1                  |                |             |                | 50.00                        | 10.00 20.00 80.00             | 160.0             |      |
| Anthracene                       | Avq         | .1193 1.1270 1.1810 1.168                                                              | 1.1193 1.1270 1.1810 1.1684 1.1081 1.0370 1.0925 1.0911 -                                                            |                    | Ì              |             | !              | 50.00                        | 10.00 20.00 80.00             | i.                | !    |
| Di-n-hutvlohthalate              | 1 0 Avg 1   | 2085 0 8746 1 1135 1 186                                                               | 1.0096 1.0001 1.0942 1.0551 1.0140 0.9458 0.9817 0.9806<br>1 2085 0 8746 1 1135 1 1856 1 2447 1 1486 1 2182 1 2004 1 | 1 0006             | 1.019.94 0.1   | 0.999 0.999 | 4.6 0.01       | 50.00 2.00                   | 10.00 20.00 80.00             | 120.0 160.0 196.0 | 0.50 |
| Fluoranthene                     | Ava 1       | .2749 1.2140 1.3176 1.2918 1.2989 1.2075                                               | 1.2533 1.2290                                                                                                        |                    |                |             | 3.3 0.60       | 50.00                        | 10.00 20.00 80.00             | 160.0 196.0       | Č    |
| Pyrene                           |             | .2933 1.2598 1.3881 1.364                                                              | .2933 1.2598 1.3881 1.3642 1.2874 1.2285 1.2943 1.3232 -                                                             |                    |                |             |                | 50.00                        | 10.00 20.00 80.00             | 160.0             |      |
| Tembers 1414                     | Qua         | 7240 0.3478 0.5535 0.681                                                               | 0.7240 0.3478 0.5535 0.6812 0.7290 0.6944 0.6858 0.7124 -                                                            | 00                 |                | 0.999 0.999 | 20             |                              | 10.00 20.00 80.00             | 160.0             |      |
|                                  | 242         | 7,0010 0.0000 0.000                                                                    | 0.0310 0:0033 0:0400 0:0740 0:0407 0:0309 0:073 <b>4</b> 0:7004                                                      | ļ                  | 0.007 11.49 0. | 330 1.00    | <b>1</b>       | 23.00 1.00                   | 3.00 10.00 40.00              | 00.00 00.00 90.00 |      |

a - failed the min rf criteria

| Corr l = Correlation Coefficient for linear Eq. |
| Corr 2 = Correlation Coefficient for quad Eq. |
| Correlation Coefficient for quad Eq. |
| Correlation Coefficient for Quadratic Curve was used for compound. |
| Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound. |

Note:

Avg Rsd: 7.961

Page 2 of 3

a - failed the min rf criteria

| Netho |
|-------|
| ο.    |
| EPA   |
| 8270  |
| m     |

24,4'-DDE

4.4'-DDD

Butylbenzylphthalate

0 Ava

0.5383 0.2816 0.4289 0.5146 0.5588 0.5471 0.5672 0.5781 0.5367 0.4102 0.4964 0.5450 0.5468 0.5325 0.5408 0.5562

0.502 12.08 0.999 0.521 11.82 1.00 0.384 11.43 0.999

. 0

10.00 20.00 80.00

120.0

160.0

0.406 12.69 1.00 0.597 12.18 0.999

200 0.999 1.00 . 00

ಕ 3 20 0.3772 0.3651 0.3905 0.3907 0.3717 0.3827 0.3969 0.3989 ----

0 Qua 0 Qua O Ava O Ava

Dibenzo[a,h]anthracen

0 Ava 0 Ava

1.1080 1.0231 1.1643 1.1136 1.0814 1.0150 1.0744 1.0755 1.2711 1.1876 1.3601 1.3324 1.2835 1.2312 1.2820 1.2954 ----1.0697 0.9516 1.1080 1.0834 1.0531 1.0255 1.0559 1.0633 ----1.1837 1.1615 1.3235 1.2030 1.1354 1.0118 1.1045 1.0717 1.2133 1.0394 1.1971 1.1623 1.1692 1.0747 1.1378 1.2084 ----1.2076 0.5278 0.9020 1.1375 1.2561 1.2292 1.2795 1.2660 ----

Indenol 1.2.3-cd lpyren

Benzofalpyrene Benzo[k]fluoranthene Benzofblfluoranthene

0 Ava

0 Avq O Ava 0 Qua

Benzola, h. ilperylene

Di-n-octylphthalate

bis(2-Ethylhexyl)phthal

Chrysene

0 Ava 0 Avq

0 Ava

0.7384 0.4006 0.6322 0.7332 0.7569 0.7213 0.7429 0.7697 -----1.1870 1.2973 1.2854 1.2803 1.1823 1.1401 1.1454 1.1779 ----0.4431 0.2589 0.3714 0.4373 0.4461 0.4303 0.4274 0.4294 ----0.6285 0.4181 0.5736 0.6416 0.6288 0.6080 0.6407 0.6367

0.687 12.77 0.999

5.4 2.9

0.80

50.00 2.00

50.00 2.00 50.00 2.00 50.00 2.00 50.00 2.00 50.00 2.00 Lv11 Lv12

120.0

120.0 120.0

1.10 13.52 1.00 1.21 12.76 0.999 0.999 ).687 12.77 0.999 0.999 1.26 12.72 0.999 0.999

1.00

18 24

10.00 20.00 80.00

120.0 120.0

196.0

120.0 120.0

1.1513.93 0.998 0.998

0.70

0.997

1.05 14.28 1.00 1.15 13.96 0.997

1.00

4.5 82 5.5

50.00 2.00

1.08 15.66 0.999 1.28 15.64 0.999

0.999 0.999

50.00 2.00 50.00 2.00 50.00 2.00 50.00 2.00 50.00 2.00 50.00 2.00 50.00 2.00

> 10.00 20.00 80.00 10.00 20.00 80.00 10.00 20.00 80.00 10.00 20.00 80.00 10.00 20.00 80.00 10.00 20.00 80.00 10.00 20.00 80.00 10.00 20.00 80.00 10.00 20.00 80.00 10.00 20.00 80.00 10.00 20.00 80.00

120.0 120.0

196.0 196.0 196.0

120.0 120.0

160.0 160.0 160.0

160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0

196.0 196.0 196.0 196.0 196.0 196.0 196.0 196.0 196.0 Lvi8 Lvi9

10.00 20.00 80.00

120.0

160.0

196.0

1.07 16.01 0.999

1.2472 1.2341 1.2953 1.3169 1.2484 1.2038 1.2480 1.2867

Benzofalanthracene 3.3'-Dichlorobenzidine Compound

Col Mr Fit:

쭈

RF2

RF3

RF4

RF6

RF7

RF8

RF9

AvgRf

끅

Corr1 Corr2

Calibration Level Concentrations

<u>۲</u>

동

120.0 160.0

00230

0262

Level # ø 5M114386.D 5M114382.D 5M114380.D 5M114384.D 5M114388.D Data File: CAL BNA@0.5PPM CAL BNA@160PPN CAL BNA@80PPM CAL BNA@10PPM CAL BNA@50PPM Cal Identifier 09/24/20 09:52 09/24/20 11:25 09/24/20 12:11 09/24/20 10:38 09/24/20 12:58 Analysis Date/Time Level # 5M114385.D 5M114387.D 5M114383.D 5M114381.D Data File: CAL BNA@196PPN CAL BNA@120PPN CAL BNA@20PPM CAL BNA@2PPM Cal Identifier 09/24/20 11:01 09/24/20 11:48 09/24/20 12:34 09/24/20 10:15 Analysis Date/Time

Initial Calibration

Instrument: GCMS\_5

Form 6

ı - failed the min rf criteria

- failed the min rf criteria

Corr 1 = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound. Note: Avg Rsd: 7.96

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/7/2020 8:42:00 A Data File: 9M101559.D Method: EPA 8270E Instrument: GCMS 9

| TxtCompd:                   | Co#      | Multi<br>Num | Туре | RT   | Conc               | Conc<br>Exp | Lim      | MIN<br>RF | Initial<br>RF | RF    | %Diff Flag               |
|-----------------------------|----------|--------------|------|------|--------------------|-------------|----------|-----------|---------------|-------|--------------------------|
| I,4-Dioxane-d8(INT)         | 1        | 0            | 1    | 2.71 | 40.00              | 40          | **       |           |               | 0.000 | 0.00                     |
| 1,4-Dioxane                 | 1        | 0            |      | 2.74 | 47.65              | 50          | **       |           | 1.057         | 1.007 | 4.69                     |
| Pyridine                    | 1        | 0            |      | 3.20 | 50.19              | 50          | **       |           | 2.196         | 2.205 | 0.39                     |
| I-Nitrosodimethylamine      | 1        | 0            |      | 3.14 | 52.94              | 50          | **       |           | 1.391         | 1.473 | 5.88                     |
| 2-Fluorophenol              | 1        | 0            | _ S  | 4.71 | 52.37              | 50          | **       |           | 2.092         | 2.192 | 4.75                     |
| Benzaldehyde                | 1        | 0            |      | 5.52 | 49.15              | 50          | 20       | 0.01      | 2.004         | 1.970 | 1.70                     |
| Aniline                     | 1        | 0            |      | 5.62 | 51.32              | 50          | **       |           | 3.460         | 3.551 | 2.64                     |
| Pentachloroethane           | 1        | 0            |      | 5.67 | 49.97              | 50          | **       | 0.05      | 0.724         | 0.724 | 0.07                     |
| ois(2-Chloroethyl)ether     | 1        | 0            |      | 5.68 | 52.85              | 50          | 20       | 0.7       | 2.274         | 2.404 | 5.71                     |
| Phenol-d5                   | 1        | 0            | S    | 5.58 | 52.99              | 50          | **       |           | 2.531         | 2.682 | 5.97                     |
| Phenol                      | 1        | 0            |      | 5.59 | 51.39              | 50          | 20       | 0.8       | 3.242         | 3.332 | 2.79                     |
| 2-Chlorophenol              | 1        | 0            |      | 5.72 | 50.99              | 50          | 20       | 0.8       | 2.529         | 2.579 | 1.97                     |
| N-Decane                    | 1        | 0            |      | 5.77 | 51.67              | 50          | **       | 0.05      | 1.907         | 1.970 | 3.34                     |
| ,3-Dichlorobenzene          | 1        | 0            |      | 5.85 | 50.43              | 50          | **       |           | 2.771         | 2.795 | 0.86                     |
| ,4-Dichlorobenzene-d4       | 1        | 0            | 1    | 5.90 | 40.00              | 40          | **       |           |               | 0.000 | 0.00                     |
| ,4-Dichlorobenzene          | 1        | 0            |      | 5.92 | 51.27              | 50          | 20       |           | 1.496         | 1.534 | 2.54                     |
| ,2-Dichlorobenzene          | 1        | Ō            |      | 6.04 | 51.31              | 50          | **       |           | 1.415         | 1.452 | 2.61                     |
| Benzyl alcohol              | 1        | 0            |      | 6.01 | 51.79              | 50          | **       |           | 0.812         | 0.841 | 3.58                     |
| pis(2-chloroisopropyl)ether | 1        | 0            |      | 6.12 | 53.65              | 50          | 20       | 0.01      | 1.260         | 1.352 | 7.29                     |
| 2-Methylphenol              | 1        | ō            |      | 6.10 | 53.90              | 50          | 20       |           | 1.157         | 1.247 | 7.80                     |
| Acetophenone                | <u>`</u> | 0            |      | 6.22 | 52.50              | 50          | 20       |           | 1.702         | 1.787 | 4.99                     |
| lexachloroethane            | 1        | Ö            |      | 6.32 | 51.85              | 50          | 20       |           | 0.526         | 0.546 | 3.71                     |
| N-Nitroso-di-n-propylamine  | 1        | 0            |      | 6.22 | 54.06              | 50          | 20       |           | 0.741         | 0.801 | 8.13                     |
| &4-Methylphenol             | 1        | 0            |      | 6.22 | 53.87              | 50          | 20       | 0.0       | 1.136         | 1.223 | 7.73                     |
| Naphthalene-d8              | 1        | 0            | 1    | 6.91 | 40.00              | 40          | **       |           |               | 0.000 | 0.00                     |
| Nitrobenzene-d5             | <u>'</u> | 0            | '    | 6.35 | 27.10              | 25          | **       |           | 0.144         | 0.156 | 8.42                     |
| Nitrobenzene                | 1        | 0            | •    | 6.37 | 52.55              | 50          | 20       | 02        | 0.314         | 0.130 | 5.11                     |
| sophorone                   | 1        | 0            |      | 6.55 | 52.96              | 50          | 20       |           | 0.574         | 0.608 | 5.92                     |
| 2-Nitrophenol               | 1        | 0            |      | 6.61 | 52. <del>9</del> 0 | 50          | 20       |           | 0.177         | 0.000 | 5. <del>92</del><br>5.41 |
| 2,4-Dimethylphenol          | 1        | 0            |      | 6.64 | 51.93              | 50          | 20       |           | 0.177         | 0.305 | 3.87                     |
| Benzoic Acid                | 1        | 0            |      | 6.69 | 35.77              | 50          | 20       | 0.2       | 0.294         | 0.305 | 28.46                    |
| ois(2-Chloroethoxy)methane  | 1        | 0            |      | 6.71 | 52.76              | 50          | 20       | 0.3       | 0.265         | 0.136 | 5.51                     |
| •                           | 1        | 0            |      | 6.80 | 53.06              | 50<br>50    | 20       |           | 0.303         | 0.385 | 6.11                     |
| 2,4-Dichlorophenol          |          |              |      |      |                    |             | 20<br>** | 0.2       |               |       | 0.87                     |
| 1,2,4-Trichlorobenzene      | 1        | 0            |      | 6.86 | 50.44<br>50.49     | 50<br>50    |          | 0.7       | 0.312         | 0.315 |                          |
| Naphthalene                 |          | 0            |      | 6.92 | 50.49              | 50          | 20       |           | 1.062         | 1.073 | 0.98                     |
| 4-Chloroaniline             | 1        | 0            |      | 6.96 | 52.07              | 50<br>50    | 20       |           | 0.390         | 0.406 | 4.14<br>2.56             |
| Hexachlorobutadiene         | 1        | 0            |      | 7.01 | 48.72<br>54.26     | 50<br>50    | 20       |           | 0.175         | 0.170 | 2.56                     |
| Caprolactam                 | 1        | 0            |      | 7.22 | 54.26<br>54.07     | 50<br>50    | 20       |           | 0.105         | 0.114 | 8.52                     |
| I-Chloro-3-methylphenol     | 1        | 0            |      | 7.32 | 51.07              | 50<br>50    | 20       |           | 0.276         | 0.282 | 2.14                     |
| 2-Methylnaphthalene         | 1        | 0            |      | 7.47 | 51.36              | 50          | **       |           | 0.697         | 0.716 | 2.72                     |
| -Methylnaphthalene          | 1        | 0            |      | 7.54 | 51.19              | 50<br>50    | **       | 0.4       | 0.666         | 0.682 | 2.39                     |
| Methylnaphthalenes          | 1        | 0            |      | 7.54 | 102.70             | 50<br>50    |          | 0.04      | 0.00-         | 1.400 | 105.40                   |
| I,1'-Biphenyl               | 1        | 0            |      | 7.84 | 50.96              | 50          | 20       | 0.01      | 0.805         | 0.821 | 1.92                     |
| Acenaphthene-d10            | 1        | 0            | ı    | 8.35 | 40.00              | 40          |          |           |               | 0.000 | 0.00                     |
| ,2,4,5-Tetrachlorobenzene   | 1        | 0            |      | 7.60 | 50.06              | 50          | 20       |           | 0.629         | 0.629 | 0.13                     |
| lexachlorocyclopentadiene   | 1        | 0            |      | 7.59 | 47.45              | 50          | 20       |           | 0.339         | 0.321 | 5.11                     |
| 2,4,6-Trichlorophenol       | 1        | 0            |      | 7.68 | 50.34              | 50          | 20       |           | 0.381         | 0.383 | 0.69                     |
| 2,4,5-Trichlorophenol       | 1        | 0            |      | 7.71 | 50.97              | 50          | 20       | 0.2       | 0.392         | 0.399 | 1.93                     |
| 2-Fluorobiphenyl            | 1        | 0            | S    | 7.75 | 25.70              | 25          | **       |           | 1.369         | 1.407 | 2.80                     |
| 2-Chloronaphthalene         | 1        | 0            |      | 7.87 | 51.32              | 50          | 20       | 0.8       | 1.192         | 1.224 | 2.65                     |
| 1,4-Dimethylnaphthalene     | 1        | 0            |      | 8.15 | 51.32              | 50          | **       |           | 0.906         | 0.930 | 2.64                     |
| Dimethylnaphthalenes        | 1        | 0            |      | 8.15 | 51.32              | 50          | 20       |           |               | 0.930 | 2.64                     |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/7/2020 8:42:00 A Data File: 9M101559.D Method: EPA 8270E Instrument: GCMS 9

| TxtCompd:                  | Co#      | Multi<br>Num | Туре                                  | RT    | Conc           | Conc<br>Exp |    | RF   | Initial<br>RF | RF             | %Diff Fla    | g |
|----------------------------|----------|--------------|---------------------------------------|-------|----------------|-------------|----|------|---------------|----------------|--------------|---|
| Diphenyl Ether             | 1        | 0            |                                       | 7.92  | 50.97          | 50          | ** |      | 0.884         | 0.901          | 1.95         |   |
| 2-Nitroaniline             | 1        | 0            |                                       | 7.94  | 55.35          | 50          | 20 | 0.01 | 0.330         | 0.365          | 10.71        |   |
| Coumarin                   | 1        | 0            |                                       | 8.12  | 52.47          |             | ** |      | 0.444         |                |              |   |
| Acenaphthylene             | 1        | 0            |                                       | 8.22  | 52.06          | 50          | 20 |      | 1.789         | 1.863          | 4.13         |   |
| Dimethylphthalate          | 1        | 0            |                                       | 8.08  | 51.17          | 50          | 20 | 0.01 | 1.339         | 1.370          | 2.35         |   |
| 2,6-Dinitrotoluene         | 1        | 0            |                                       | 8.14  | 54.75          | 50          | 20 | 0.2  | 0.284         | 0.311          | 9.50         |   |
| Acenaphthene               | 1        | 0            |                                       | 8.38  | 51.26          | 50          | 20 | 0.9  | 1.239         | 1.270          | 2.53         |   |
| 3-Nitroaniline             | 1        | 0            |                                       | 8.29  | 55.29          | 50          | 20 | 0.01 | 0.327         | 0.362          | 10.57        |   |
| 2,4-Dinitrophenol          | 1        | 0            |                                       | 8.38  | 36.67          | 50          | 20 | 0.2  | 0.157         | 0.110          | 26.66 C1     |   |
| Dibenzofuran               | 1        | 0_           |                                       | 8.53  | 50.46          | 50          | 20 | 0.8  | 1.727         | 1.743          | 0.93         |   |
| 2,4-Dinitrotoluene         | 1        | 0            |                                       | 8.50  | 55.24          | 50          | 20 | 0.2  | 0.381         | 0.421          | 10.48        |   |
| 4-Nitrophenol              | 1        | 0            |                                       | 8.41  | 44.07          | 50          | 20 | 0.01 | 0.209         | 0.201          | 11.87        |   |
| 2,3,4,6-Tetrachlorophenol  | 1        | 0            |                                       | 8.64  | 52.48          | 50          | 20 | 0.01 | 0.349         | 0.366          | 4.96         |   |
| Fluorene                   | 1        | 0            |                                       | 8.86  | 51.47          | 50          | 20 | 0.9  | 1.363         | 1.403          | 2.95         |   |
| 4-Chlorophenyl-phenylether | 1        | 0            |                                       | 8.85  | 50.76          | 50          | 20 | 0.4  | 0.672         | 0.682          | 1.51         |   |
| Diethylphthalate           | 1        | 0            |                                       | 8.72  | 51.48          | 50          | 20 | 0.01 | 1.277         | 1.315          | 2.97         | • |
| 4-Nitroaniline             | 1        | 0            |                                       | 8.86  | 55.45          | 50          | 20 | 0.01 | 0.342         | 0.379          | 10.90        |   |
| Atrazine                   | 1        | 0            |                                       | 9.49  | 52.28          | 50          | 20 | 0.01 | 0.397         | 0.415          | 4.56         |   |
| Phenanthrene-d10           | 1        | 0            | 1                                     | 9.82  | 40.00          | 40          | ** |      |               | 0.000          | 0.00         |   |
| 4,6-Dinitro-2-methylphenol | 1        | 0            |                                       | 8.89  | 45.67          | 50          | 20 | 0.01 | 0.126         | 0.115          | 8.65         |   |
| n-Nitrosodiphenylamine     | 1        | 0            | - ** - *                              | 8.96  | 52.11          | 50          | 20 | 0.01 | 0.622         | 0.648          | 4.21         |   |
| 2,4,6-Tribromophenol       | 1        | 0            | s                                     | 9.09  | 53.16          | 50          | ** |      | 0.092         | 0.098          | 6.32         |   |
| 1.2-Diphenylhydrazine      | 1        | 0            |                                       | 9.00  | 51.84          | 50          | ** |      | 0.641         | 0.664          | 3.67         |   |
| 4-Bromophenyl-phenylether  | 1        | 0            |                                       | 9.34  | 50.96          | 50          | 20 | 0.1  | 0.206         | 0.210          | 1.92         |   |
| Hexachlorobenzene          | 1        | 0            |                                       | 9.41  | 49.13          | 50          | 20 | 0.1  | 0.229         | 0.225          | 1.75         |   |
| N-Octadecane               | 1        | 0            |                                       | 9.68  | 56.53          | 50          | ** | 0.05 | 0.287         | 0.325          | 13.06        |   |
| Pentachlorophenol          | 1        | 0            |                                       | 9.61  | 49.00          | 50          | 20 |      | 0.146         | 0.143          | 2.01         |   |
| Phenanthrene               | 1        | 0            |                                       | 9.85  | 50.39          | 50          | 20 |      | 1.063         | 1.072          | 0.78         |   |
| Anthracene                 | 1        | 0            |                                       | 9.90  | 51.99          | 50          | 20 |      | 1.063         | 1.105          | 3.99         |   |
| Carbazole                  | 1        | 0            |                                       | 10.07 | 52.74          | 50          | 20 |      | 0.962         | 1.015          | 5.47         |   |
| Di-n-butylphthalate        | <u>i</u> | 0            | · · · · · · · · · · · · · · · · · · · | 10.45 | 49.73          | 50          | 20 |      | 0.987         | 1.137          | 0.54         |   |
| Fluoranthene               | 1        | 0            |                                       | 11.18 | 52.87          | 50          | 20 |      | 1.134         | 1.199          | 5.73         |   |
| Chrysene-d12               | 1        | 0            | ı                                     | 12.88 | 40.00          | 40          | ** |      |               | 0.000          | 0.00         |   |
| Pyrene                     | 1        | 0            |                                       | 11.45 | 52.32          | 50          | 20 | 0.6  | 1.179         | 1.234          | 4.63         |   |
| Benzidine                  | 1        | 0            |                                       | 11.33 | 43.93          | 50          | ** | 0.0  | 0.577         | 0.541          | 12.14        |   |
| Terphenyl-d14              | 1        | 0            | S                                     | 11.63 | 26.31          | 25          | ** |      | 0.582         | 0.613          | 5.26         |   |
| 4,4'-DDE                   | 1        | ō            | •                                     | 11.57 | 51.29          |             | ** |      | 0.320         | 0.0.0          | 0.20         |   |
| 4,4'-DDD                   | 1        | 0            |                                       | 11.97 | 54.26          |             | ** |      | 0.443         |                |              |   |
| Butylbenzylphthalate       | 1        | 0            |                                       | 12.22 | 50.39          | 50          | 20 | 0.01 | 0.433         | 0.497          | 0.78         |   |
| 4,4'-DDT                   | 1        | 0            |                                       | 12.32 | 52.86          | 30          | ** | 0.01 | 0.549         | 0.431          | 0.70         |   |
| 3,3'-Dichlorobenzidine     | '-       | 0            |                                       | 12.84 | 48.47          | 50          | 20 | 0.01 | 0.375         | 0.401          | 3.06         |   |
| Benzo[a]anthracene         | 1        | 0            |                                       | 12.87 | 51.96          | 50          | 20 |      | 1.132         | 1.176          | 3.93         |   |
| Chrysene                   | 1        | 0            |                                       | 12.91 | 50.43          | 50          | 20 |      | 1.104         | 1.176          | 0.86         |   |
| bis(2-Ethylhexyl)phthalate | 1        | 0            |                                       | 12.91 | 50.43          | 50          |    | -    | 0.590         |                |              |   |
| Perylene-d12               | 1        | 0            | ı                                     | 14.52 | 40.00          | 40          | 20 | 0.01 | 0.030         | 0.685          | 0.84<br>0.00 |   |
| Di-n-octylphthalate        | '<br>1   | - 0          | <u>-</u>                              | 13.66 | 48.57          | 50          | 20 | 0.01 | 0.907         | 0.000<br>1.082 | 2.86         |   |
| Benzo[b]fluoranthene       | 1        | 0            |                                       | 14.08 | 46.57<br>52.98 |             |    |      |               |                |              |   |
|                            | 1        | 0            |                                       |       |                | 50<br>50    | 20 |      | 1.041         | 1.103          | 5.96<br>5.97 |   |
| Benzo[k]fluoranthene       | 1        |              |                                       | 14.12 | 52.98<br>54.27 | 50<br>50    | 20 |      | 1.063         | 1.127          | 5.97<br>9.53 |   |
| Benzo(a)pyrene             |          | 0            |                                       | 14.45 | 54.27<br>53.20 | 50<br>50    | 20 |      | 0.936         | 1.016          | 8.53         |   |
| Indeno[1,2,3-cd]pyrene     | 1        | 0            |                                       | 15.88 | 53.29          | 50          | 20 |      | 1.157         | 1.233          | 6.59         |   |
| Dibenzo[a,h]anthracene     | 1        | 0            |                                       | 15.89 | 53.24          | 50          | 20 |      | 0.966         | 1.029          | 6.48         |   |
| Benzo[g,h,i]perylene       | 1        | 0            |                                       | 16.27 | 52.77          | 50          | 20 | 0.5  | 0.954         | 1.007          | 5.55         |   |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/7/2020 8:42:00 A Data File: 9M101559.D Method: EPA 8270E

Instrument: GCMS 9

| TxtCompd:                      | Col# | Multi<br>Num | Туре  | RT   | Conc | Conc<br>Exp | Lo N<br>Lim | MIN<br>RF | Initial<br>RF | RF    | %Diff  | Flag |
|--------------------------------|------|--------------|-------|------|------|-------------|-------------|-----------|---------------|-------|--------|------|
| Endrin                         | 1    | 100          |       | 0.00 | 0.00 | 50          | **          |           |               | 0.000 | 100.00 |      |
| 2,4 Diaminotoluene             | 1    | 100          |       | 0.00 | 0.00 | 50          | **          |           |               | 0.000 | 100.00 |      |
| Toluene Diisocyanate           | 1    | 100          |       | 0.00 | 0.00 | 50          | **          |           |               | 0.000 | 100.00 |      |
| 2,2'-oxybis-(1-Chloropropane)  | 1    | 100          |       | 0.00 | 0.00 | 50          | **          |           |               | 0.000 | 100.00 |      |
| Methylnaphthalenes (Total)     | 1    | 100          |       | 0.00 | 0.00 | 100         | **          |           | 0.681         | 0.000 | 100.00 |      |
| Methoxychlor                   | 1    | 100          | • • • | 0.00 | 0.00 | 10          | **          |           |               | 0.000 | 100.00 |      |
| Heptachlor epoxide             | 1    | 100          |       | 0.00 | 0.00 | 10          | **          |           |               | 0.000 | 100.00 |      |
| gamma-BHC                      | 1    | 100          |       | 0.00 | 0.00 | 10          | **          |           |               | 0.000 | 100.00 |      |
| Dimethylnaphthalenes (Total)   | 1    | 100          |       | 0.00 | 0.00 | 50          | **          |           | 0.906         | 0.000 | 100.00 |      |
| Diaminotoluene Dihydrochloride | 1    | 100          |       | 0.00 | 0.00 | 50          | **          |           |               | 0.000 | 100.00 |      |
| 1,4-Dioxane-d8                 | 1    | 100          |       | 0.00 | 0.00 | 40          | **          |           | ··            | 0.000 | 100.00 |      |
| 1,4-Dioxane-d8-Surro           | 1    | 100          |       | 0.00 | 0.00 | 40          | **          |           |               | 0.000 | 100.00 |      |
| 4-Methylphenol                 | 1    | 100          |       | 0.00 | 0.00 | 50          | **          | 0.6       | 3             | 0.000 | 100.00 |      |
| Heptachlor                     | 1    | 100          |       | 0.00 | 0.00 | 10          | **          |           |               | 0.000 | 100.00 |      |

Page 3 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/7/2020 8:45:00 A Data File: 5M114529.D Method: EPA 8270E

Instrument: GCMS 5

| TxtCompd:                   | Col#          | Multi<br>Num | Туре | RT   | Conc  | Conc<br>Exp | Lo f<br>Lim | MIN<br>RF | Initial<br>RF | RF    | %Diff Flag | ) |
|-----------------------------|---------------|--------------|------|------|-------|-------------|-------------|-----------|---------------|-------|------------|---|
| 1,4-Dioxane-d8(INT)         | 1             | 0            | ı    | 2.60 | 40.00 | 40          | **          |           | _             | 0.000 | 0.00       |   |
| 1,4-Dioxane                 | 1             | 0            |      | 2.63 | 54.25 | 50          | **          |           | 1.136         | 1.232 | 8.50       |   |
| Pyridine                    | 1             | 0            |      | 3.08 | 47.04 | 50          | **          |           | 2.649         | 2.492 | 5.92       |   |
| N-Nitrosodimethylamine      | 1             | 0            |      | 3.01 | 51.77 | 50          | **          |           | 1.678         | 1.737 | 3.54       |   |
| 2-Fluorophenol              | 1             | 0            | s    | 4.60 | 51.45 | 50          | **          |           | 1.731         | 1.782 | 2.90       |   |
| Benzaldehyde                | 1             | 0            |      | 5.43 | 50.32 | 50          | 20          | 0.01      | 1.843         | 1.855 | 0.63       |   |
| Aniline                     | 1             | 0            |      | 5.52 | 47.58 | 50          | **          |           | 3.105         | 2.955 | 4.84       |   |
| Pentachloroethane           | 1             | 0            |      | 5.57 | 51.61 | 50          | **          | 0.05      | 0.608         | 0.627 | 3.22       |   |
| bis(2-Chloroethyl)ether     | 1             | 0            |      | 5.58 | 51.46 | 50          | 20          | 0.7       | 2.089         | 2.026 | 2.91       |   |
| Phenol-d5                   | 1             | 0            | s    | 5.49 | 51.78 | 50          | **          |           | 2.121         | 2.197 | 3.56       |   |
| Phenol                      | 1             | 0            |      | 5.50 | 51.27 | 50          | 20          | 0.8       | 2.666         | 2.734 | 2.54       |   |
| 2-Chlorophenol              | 1             | 0            |      | 5.63 | 51.13 | 50          | 20          | 0.8       | 1.949         | 1.993 | 2.25       |   |
| N-Decane                    | 1             | 0            |      | 5.67 | 50.73 | 50          | **          | 0.05      | 1.799         | 1.825 | 1.46       |   |
| 1,3-Dichlorobenzene         | 1             | 0            |      | 5.75 | 50.17 | 50          | **          |           | 2.270         | 2.278 | 0.33       |   |
| 1,4-Dichlorobenzene-d4      | 1             | 0            | 1    | 5.80 | 40.00 | 40          | **          |           |               | 0.000 | 0.00       |   |
| 1,4-Dichlorobenzene         | 1             | 0            |      | 5.82 | 48.94 | 50          | 20          |           | 1.622         | 1.588 | 2.11       |   |
| 1,2-Dichlorobenzene         | 1             | Ō            |      | 5.95 | 47.47 | 50          | **          |           | 1.536         | 1.458 | 5.07       |   |
| Benzyl alcohol              | 1             | Ō            |      | 5.92 | 49.32 | 50          | **          |           | 0.879         | 0.867 | 1.37       |   |
| bis(2-chloroisopropyl)ether | 1             | Ō            |      | 6.03 | 49.32 | 50          | 20          | 0.01      | 1.710         | 1.687 | 1.35       |   |
| 2-Methylphenol              | 1             | 0            |      | 6.01 | 48.03 | 50          | 20          |           | 1.299         | 1.248 | 3.94       |   |
| Acetophenone                | ·:            | 0            |      | 6.13 | 50.42 | 50          | 20          |           | 1.906         | 1.922 | 0.83       |   |
| Hexachloroethane            | 1             | 0            |      | 6.22 | 51.48 | 50          | 20          |           | 0.593         | 0.611 | 2.96       |   |
| N-Nitroso-di-n-propylamine  | 1             | 0            |      | 6.13 | 50.71 | 50          | 20          |           | 0.943         | 0.957 | 1.42       |   |
| 3&4-Methylphenol            | 1             | 0            |      | 6.13 | 47.02 | 50          | 20          | 0.0       | 1.299         | 1.222 | 5.96       |   |
| Naphthalene-d8              | 1             | ō            | 1    | 6.81 | 40.00 | 40          | **          |           | 1.200         | 0.000 | 0.00       |   |
| Nitrobenzene-d5             | 1             | 0            | s    | 6.26 | 26.85 | 25          | **          |           | 0.161         | 0.173 | 7.38       |   |
| Nitrobenzene                | 1             | 0            | •    | 6.27 | 54.16 | 50          | 20          | 0.2       | 0.398         | 0.431 | 8.31       |   |
| Isophorone                  | 1             | 0            |      | 6.46 | 52.69 | 50          | 20          |           | 0.701         | 0.739 | 5.38       |   |
| 2-Nitrophenol               | 1             | 0            |      | 6.52 | 55.06 | 50          | 20          |           | 0.188         | 0.207 | 10.12      |   |
| 2,4-Dimethylphenol          | 1             | 0            |      | 6.55 | 49.87 | 50          | 20          |           | 0.351         | 0.257 | 0.26       |   |
| Benzoic Acid                | <del>'-</del> | 0            |      | 6.61 | 49.67 | 50          | - 20        | 0.2       | 0.253         | 0.203 | 18.64      |   |
| bis(2-Chloroethoxy)methane  | 1             | 0            |      | 6.62 | 49.64 | 50          | 20          | 0.3       | 0.436         | 0.433 | 0.71       |   |
| 2,4-Dichlorophenol          | 1             | 0            |      | 6.70 | 49.28 | 50          | 20          |           | 0.329         | 0.433 | 1.44       |   |
| 1,2,4-Trichlorobenzene      | 1             | 0            |      | 6.77 | 50.07 | 50          | **          | 0.2       | 0.366         | 0.367 | 0.13       |   |
| Naphthalene                 | 1             | 0            |      | 6.83 | 50.96 | 50          | 20          | 0.7       | 1.195         | 1.111 | 1.91       |   |
| 4-Chloroaniline             | 1             | 0            |      | 6.87 | 47.10 | 50          | 20          |           | 0.451         | 0.425 | 5.79       |   |
| Hexachlorobutadiene         | 1             | 0            |      | 6.92 | 51.13 | 50          | 20          |           | 0.224         | 0.423 |            |   |
| Caprolactam                 |               |              |      | 7.14 | 48.12 |             | 20          |           | 0.224         |       | 2.26       |   |
| •                           | 1             | 0            |      |      |       | 50          |             |           |               | 0.118 | 3.76       |   |
| 4-Chloro-3-methylphenol     | 1             | 0            |      | 7.23 | 52.10 | 50<br>50    | 20          |           | 0.318         | 0.331 | 4.20       |   |
| 2-Methylnaphthalene         | 1             | 0            |      | 7.36 | 48.58 | 50          | **          |           | 0.752         | 0.730 | 2.84       |   |
| 1-Methylnaphthalene         | 1             | 0            |      | 7.44 | 48.75 | 50<br>50    | **          | 0.4       | 0.715         | 0.698 | 2.49       |   |
| Methylnaphthalenes          | 1             | 0            |      | 7.36 | 97.24 | 50<br>50    |             | 0.04      | 0.000         | 1.423 | 94.47      |   |
| 1,1'-Biphenyl               | 1             | 0            |      | 7.74 | 48.43 | 50          | 20          | 0.01      | 0.896         | 0.868 | 3.14       |   |
| Acenaphthene-d10            | 1             | 0            | ı    | 8.24 | 40.00 | 40          |             | 0.04      | 0.740         | 0.000 | 0.00       |   |
| 1,2,4,5-Tetrachlorobenzene  | 11            | 0            |      | 7.50 | 50.51 | 50          | 20          |           | 0.710         | 0.717 | 1.02       |   |
| Hexachlorocyclopentadiene   | 1             | 0            |      | 7.49 | 51.90 | 50<br>50    | 20          |           | 0.410         | 0.426 | 3.80       |   |
| 2,4,6-Trichlorophenol       | 1             | 0            |      | 7.58 | 52.05 | 50          | 20          |           | 0.440         | 0.458 | 4.10       |   |
| 2,4,5-Trichlorophenol       | 1             | 0            | _    | 7.61 | 52.44 | 50          | 20          | 0.2       | 0.456         | 0.478 | 4.88       |   |
| 2-Fluorobiphenyl            | 1             | 0            | S    | 7.65 | 25.35 | 25          | **          |           | 1.490         | 1.511 | 1.40       |   |
| 2-Chloronaphthalene         | 1             | 0            |      | 7.76 | 48.76 | 50          | 20          | 0.8       | 1.308         | 1.276 | 2.48       |   |
| 1,4-Dimethylnaphthalene     | 1             | 0            |      | 8.04 | 49.90 | 50          | **          |           | 0.954         | 0.952 | 0.20       |   |
| Dimethylnaphthalenes        | 1             | 0            |      | 8.04 | 49.90 | 50          | 20          |           |               | 0.952 | 0.20       |   |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/7/2020 8:45:00 A Data File: 5M114529.D Method: EPA 8270E Instrument: GCMS 5

| TxtCompd:                 | Co#          | Multi<br>Num | Туре          | RT    | Conc  | Conc<br>Exp | Lo N<br>Lim | MIN<br>RF | Initial<br>RF | RF    | %Diff Flag |
|---------------------------|--------------|--------------|---------------|-------|-------|-------------|-------------|-----------|---------------|-------|------------|
| Diphenyl Ether            | 1            | 0            |               | 7.82  | 50.68 | 50          | **          |           | 0.939         | 0.952 | 1.35       |
| 2-Nitroaniline            | 1            | 0            |               | 7.84  | 56.21 | 50          | 20          | 0.01      | 0.412         | 0.464 | 12.42      |
| Coumarin                  | 1            | 0            |               | 8.02  | 49.41 |             | **          |           | 0.479         |       |            |
| Acenaphthylene            | 1            | 0            |               | 8.12  | 49.67 | 50          | 20          | 0.9       | 1.886         | 1.874 | 0.66       |
| Dimethylphthalate         | 1            | 0            |               | 7.98  | 50.22 | 50          | 20_         | 0.01      | 1.467         | 1.473 | 0.45       |
| 2,6-Dinitrotoluene        | 1            | 0            |               | 8.04  | 52.82 | 50          | 20          | 0.2       | 0.313         | 0.331 | 5.63       |
| Acenaphthene              | 1            | 0            |               | 8.27  | 49.90 | 50          | 20          | 0.9       | 1.245         | 1.242 | 0.20       |
| 3-Nitroaniline            | 1            | 0            |               | 8.19  | 53.41 | 50          | 20          |           | 0.347         | 0.371 | 6.82       |
| 2,4-Dinitrophenol         | 1            | 0            |               | 8.28  | 58.32 | 50          | 20          | 0.2       | 0.173         | 0.204 | 16.64      |
| Dibenzofuran              | 1            | 0            |               | 8.42  | 50.86 | 50          | 20          | 0.8       | 1.943         | 1.801 | 1.71       |
| 2,4-Dinitrotoluene        | 1            | 0            |               | 8.39  | 55.29 | 50          | 20          | 0.2       | 0.420         | 0.465 | 10.59      |
| -Nitrophenol              | 1            | 0            |               | 8.31  | 55.16 | 50          | 20          | 0.01      | 0.262         | 0.302 | 10.33      |
| 2,3,4,6-Tetrachlorophenol | 1            | 0            |               | 8.53  | 51.52 | 50          | 20          | 0.01      | 0.410         | 0.422 | 3.04       |
| luorene                   | 1            | 0            |               | 8.74  | 49.96 | 50          | 20          | 0.9       | 1.460         | 1.458 | 0.08       |
| -Chlorophenyl-phenylether | 1            | 0            |               | 8.73  | 50.33 | 50          | 20          | 0.4       | 0.749         | 0.754 | 0.65       |
| Diethylphthalate          | 1            | 0            |               | 8.61  | 50.11 | 50          | 20          | 0.01      | 1.413         | 1.416 | 0.23       |
| -Nitroaniline             | 1            | 0            |               | 8.75  | 52.43 | 50          | 20          | 0.01      | 0.360         | 0.377 | 4.85       |
| Atrazine                  | 1            | 0            |               | 9.37  | 52.85 | 50          | 20          |           | 0.451         | 0.477 | 5.70       |
| henanthrene-d10           | 1            | 0            | - 1           | 9.69  | 40.00 | 40          | **          |           |               | 0.000 | 0.00       |
| ,6-Dinitro-2-methylphenol | 1            | 0            |               | 8.77  | 53.55 | 50          | 20          | 0.01      | 0.136         | 0.146 | 7.11       |
| -Nitrosodiphenylamine     | <u>-</u> - 1 | 0            | ··· · · · · · | 8.84  | 50.97 | 50          | 20          |           | 0.647         | 0.659 | 1.95       |
| ,4,6-Tribromophenol       | 1            | 0            | s             | 8.97  | 54.59 | 50          | **          | 0.0.      | 0.094         | 0.103 | 9.18       |
| ,2-Diphenylhydrazine      | 1            | 0            | •             | 8.88  | 50.56 | 50          | **          |           | 0.746         | 0.755 | 1.12       |
| -Bromophenyl-phenylether  | 1            | 0            |               | 9.22  | 51.03 | 50          | 20          | 0.1       | 0.232         | 0.237 | 2.07       |
| lexachlorobenzene         | 1            | 0            |               | 9.29  | 50.35 | 50          | 20          |           | 0.241         | 0.242 | 0.69       |
| I-Octadecane              | <u>_</u>     | 0            |               | 9.55  | 51.57 | 50          | **          |           | 0.367         | 0.379 | 3.15       |
| Pentachlorophenol         | 1            | 0            |               | 9.48  | 51.56 | 50          | 20          |           | 0.154         | 0.159 | 3.12       |
| Phenanthrene              | 1            | 0            |               | 9.72  | 49.89 | 50          | 20          |           | 1.103         | 1.101 | 0.21       |
| Anthracene                | 1            | 0            |               | 9.77  | 50.57 | 50          | 20          |           | 1.116         | 1.128 | 1.14       |
| Carbazole                 | 1            | 0            |               | 9.94  | 50.21 | 50          | 20          |           | 1.010         | 1.014 | 0.42       |
| Di-n-butylphthalate       | ' .          | 0            |               | 10.32 | 54.10 | 50          | 20          |           | 1.138         | 1.232 | 8.20       |
| Fluoranthene              | ' '          | 0            |               | 11.04 | 51.32 | 50          | 20          |           | 1.261         | 1.294 | 2.65       |
|                           | 1            |              |               |       | 40.00 | 40          | 20<br>**    | 0.0       | 1.201         |       | 0.00       |
| Chrysene-d12              | 1            | 0            | ı             | 12.74 |       |             |             | 0.0       | 1 205         | 0.000 |            |
| Pyrene                    | 1            | 0            |               | 11.31 | 50.39 | 50<br>50    | 20          | 0.6       | 1.305         | 1.315 | 0.77       |
| Benzidine                 | 1            | 0            |               | 11.20 | 39.29 | 50_         | **          |           | 0.641         | 0.543 | 21.42      |
| erphenyl-d14              | 1            | 0            | S             | 11.49 | 24.84 | 25          | **          |           | 0.657         | 0.652 | 0.63       |
| 1,4'-DDE                  | 1            | 0            |               | 11.43 | 50.23 |             | **          |           | 0.384         |       |            |
| 4,4'-DDD                  | 1            | 0            |               | 11.82 | 50.65 |             |             |           | 0.521         | 0.540 | 0.40       |
| Butylbenzylphthalate      | 1            | 0            |               | 12.08 | 51.09 | 50          | 20          | 0.01      | 0.502         | 0.548 | 2.18       |
| .4'-DDT                   | 1            | 0            |               | 12.18 | 54.41 |             |             |           | 0.597         |       |            |
| ,3'-Dichlorobenzidine     | 1            | 0            |               | 12.70 | 50.70 | 50          | 20          |           | 0.406         | 0.445 | 1.40       |
| Benzo[a]anthracene        | 1            | 0            |               | 12.73 | 48.82 | 50          | 20          |           | 1.260         | 1.230 | 2.35       |
| Chrysene                  | 1            | 0            |               | 12.77 | 47.32 | 50          | 20          |           | 1.212         | 1.147 | 5.36       |
| is(2-Ethylhexyl)phthalate | 1            | 0            |               | 12.77 | 53.43 | 50          | 20          | 0.01      | 0.687         | 0.734 | 6.86       |
| Perylene-d12              | 1            | 0            | 1             | 14.35 | 40.00 | 40          |             |           |               | 0.000 | 0.00       |
| )i-n-octylphthalate       | 1            | 0            |               | 13.52 | 51.00 | 50          | 20          |           | 1.101         | 1.246 | 2.00       |
| Benzo[b]fluoranthene      | 1            | 0            |               | 13.93 | 51.99 | 50          | 20          |           | 1.150         | 1.196 | 3.99       |
| Benzo[k]fluoranthene      | 1            | 0            |               | 13.97 | 48.54 | 50          | 20          |           | 1.149         | 1.116 | 2.91       |
| Benzo[a]pyrene            | 1            | 0            |               | 14.29 | 50.99 | 50          | 20          |           | 1.051         | 1.072 | 1.97       |
| ndeno[1,2,3-cd]pyrene     | 1            | 0            |               | 15.64 | 48.61 | 50          | 20          |           | 1.280         | 1.245 | 2.78       |
| Dibenzo[a,h]anthracene    | 1            | 0            |               | 15.67 | 49.14 | 50          | 20          | 0.4       | 1.082         | 1.063 | 1.72       |
| Benzo[g,h,i]perylene      | 1            | 0            |               | 16.02 | 49.25 | 50          | 20          | 0.5       | 1.068         | 1.052 | 1.50       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/7/2020 8:45:00 A Data File: 5M114529.D Method: EPA 8270E Instrument: GCMS 5

| TxtCompd:                      | Col# | Multi<br>Num | Туре | RT   | Conc | Conc<br>Exp | Lo M<br>Lim F | IIN Initial<br>RF RF | RF    | %Diff Flag |
|--------------------------------|------|--------------|------|------|------|-------------|---------------|----------------------|-------|------------|
| 1,4-Dioxane-d8                 | 1    | 100          |      | 0.00 | 0.00 | 40          | **            |                      | 0.000 | 100.00     |
| Toluene Diisocyanate           | 1    | 100          |      | 0.00 | 0.00 | 50          | **            |                      | 0.000 | 100.00     |
| 2,2'-oxybis-(1-Chloropropane)  | 1    | 100          |      | 0.00 | 0.00 | 50          | **            |                      | 0.000 | 100.00     |
| 1,4-Dioxane-d8-Surro           | 1    | 100          |      | 0.00 | 0.00 | 40          | **            |                      | 0.000 | 100.00     |
| 2,4 Diaminotoluene             | 1    | 100          |      | 0.00 | 0.00 | 50          | **            |                      | 0.000 | 100.00     |
| Methylnaphthalenes (Total)     | 1    | 100          |      | 0.00 | 0.00 | 100         | **            | 0.732                | 0.000 | 100.00     |
| Methoxychlor                   | 1    | 100          |      | 0.00 | 0.00 | 10          | **            |                      | 0.000 | 100.00     |
| Heptachlor epoxide             | 1    | 100          |      | 0.00 | 0.00 | 10          | **            |                      | 0.000 | 100.00     |
| Heptachlor                     | 1    | 100          |      | 0.00 | 0.00 | 10          | **            |                      | 0.000 | 100.00     |
| gamma-BHC                      | 1    | 100          |      | 0.00 | 0.00 | 10          | **            |                      | 0.000 | 100.00     |
| Dimethylnaphthalenes (Total)   | 1    | 100          |      | 0.00 | 0.00 | 50          | **            | 0.954                | 0.000 | 100.00     |
| Diaminotoluene Dihydrochloride | 1    | 100          |      | 0.00 | 0.00 | 50          | **            |                      | 0.000 | 100.00     |
| 4-Methylphenol                 | 1    | 100          |      | 0.00 | 0.00 | 50          | **            | 0.6                  | 0.000 | 100.00     |
| Endrin                         | 1    | 100          |      | 0.00 | 0.00 | 50          | **            |                      | 0.000 | 100.00     |

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/8/2020 8:50:00 A Data File: 9M101577.D Method: EPA 8270E

Instrument: GCMS 9

| TxtCompd:                   | Co#           | Num          | Туре     | RT   | Conc   | Ехр      | Lim | RF     | RF    | ŔF    | %Diff  | riag |
|-----------------------------|---------------|--------------|----------|------|--------|----------|-----|--------|-------|-------|--------|------|
| 1,4-Dioxane-d8(INT)         | 1             | 0            | 1        | 2.70 | 40.00  | 40       | **  |        |       | 0.000 | 0.00   |      |
| 1,4-Dioxane                 | 1             | 0            |          | 2.73 | 49.10  | 50       | **  | 1      | 1.057 | 1.038 | 1.81   |      |
| Pyridine                    | 1             | 0            |          | 3.20 | 50.33  | 50       | **  | - 2    | 2.196 | 2.210 | 0.65   |      |
| N-Nitrosodimethylamine      | 1             | 0            |          | 3.13 | 55.87  | 50       | **  | 1      | 1.391 | 1.554 | 11.74  |      |
| 2-Fluorophenol              | . 1           | 0            | S        | 4.70 | 53.59  | 50       | **  |        | 2.092 | 2.243 | 7.18   |      |
| Benzaldehyde                | 1             | 0            |          | 5.52 | 51.72  | 50       | 20  | 0.01 2 | 2.004 | 2.073 | 3.45   |      |
| Aniline                     | 1             | 0            |          | 5.61 | 52.71  | 50       | **  | ;      | 3.460 | 3.648 | 5.42   |      |
| Pentachloroethane           | 1             | 0            |          | 5.66 | 52.22  | 50       | **  | 0.05   | 0.724 | 0.757 | 4.44   | •    |
| ois(2-Chloroethyl)ether     | 1             | 0            |          | 5.67 | 53.62  | 50       | 20  | 0.7 2  | 2.274 | 2.439 | 7.24   |      |
| Phenol-d5                   | 1             | 0            | s        | 5.57 | 55.49  | 50       | **  | 2      | 2.531 | 2.809 | 10.98  |      |
| Phenol                      | 1             | 0            |          | 5.58 | 53.53  | 50       | 20  | 0.8 3  | 3.242 | 3.471 | 7.07   |      |
| 2-Chlorophenol              | 1             | 0            |          | 5.72 | 53.48  | 50       | 20  | 0.8 2  | 2.529 | 2.705 | 6.95   |      |
| N-Decane                    | 1             | 0            |          | 5.77 | 54.81  | 50       | **  | 0.05   | 1.907 | 2.090 | 9.62   |      |
| 1,3-Dichlorobenzene         | 1             | 0            |          | 5.85 | 52.28  | 50       | **  | - 2    | 2.771 | 2.898 | 4.57   |      |
| ,4-Dichlorobenzene-d4       | 1             | 0            | 1        | 5.90 | 40.00  | 40       | **  |        |       | 0.000 | 0.00   |      |
| .4-Dichlorobenzene          | 1             | 0            |          | 5.91 | 52.77  | 50       | 20  |        | 1.496 | 1.579 | 5.54   |      |
| 1,2-Dichlorobenzene         | 1             | ō            |          | 6.04 | 52.95  | 50       | **  |        | 1.415 | 1.499 | 5.89   |      |
| Benzyl alcohol              | 1             | 0            |          | 6.01 | 54.08  | 50       | **  |        | 0.812 | 0.878 | 8.15   |      |
| pis(2-chloroisopropyl)ether | 1             | 0            |          | 6.12 | 57.02  | 50       | 20  | 0.01 1 |       | 1.437 | 14.04  |      |
| 2-Methylphenol              | 1             | 0            |          | 6.10 | 56.42  | 50       | 20  | 0.7 1  |       | 1.306 | 12.84  |      |
| Acetophenone                | <u>'</u><br>1 | 0            |          | 6.22 | 54.88  | 50       | 20  | 0.01   |       | 1.869 | 9.77   |      |
| lexachloroethane            | 1             | 0            |          | 6.31 | 53.28  | 50       | 20  | 0.3 (  |       | 0.561 | 6.56   |      |
| I-Nitroso-di-n-propylamine  | 1             | 0            |          | 6.22 | 58.30  | 50       | 20  | 0.5 (  |       | 0.864 | 16.61  |      |
| 8&4-Methylphenol            | 1             | 0            |          | 6.22 | 57.58  | 50       | 20  |        | 1.136 | 1.308 | 15.17  |      |
| Naphthalene-d8              | 1             | 0            | 1        | 6.91 | 40.00  | 40       | **  |        | 1.130 | 0.000 | 0.00   |      |
| Nitrobenzene-d5             |               | 0            | <u>'</u> | 6.34 | 27.50  | 25       | **  |        | 0.144 | 0.000 | 10.00  |      |
| Nitrobenzene                | 1             | 0            | 3        | 6.36 | 55.23  | 50       |     | 0.2 (  |       |       |        |      |
|                             | 1             | 0            |          |      |        |          | 20  |        |       | 0.347 | 10.45  |      |
| sophorone                   | 1             |              |          | 6.55 | 56.21  | 50<br>50 | 20  | 0.4 (  |       | 0.645 | 12.42  |      |
| ?-Nitrophenol               | <u> </u>      | 0            |          | 6.61 | 55.66  | 50<br>50 | 20  | 0.1 (  |       | 0.197 | 11.32  |      |
| 2,4-Dimethylphenol          | 11            | 0            |          | 6.63 | 53.89  | 50       | 20  | 0.2 (  |       | 0.316 | 7.78   |      |
| Benzoic Acid                | 1             | 0            |          | 6.69 | 43.11  | 50       |     |        | 0.206 | 0.167 | 13.79  |      |
| ois(2-Chloroethoxy)methane  | 1             | 0            |          | 6.71 | 54.64  | 50       | 20  | 0.3 (  |       | 0.399 | 9.29   |      |
| 2,4-Dichlorophenol          | 1             | 0            |          | 6.79 | 55.06  | 50       | 20  | 0.2 (  |       | 0.297 | 10.12  |      |
| ,2,4-Trichlorobenzene       | 1             | 0            |          | 6.86 | 51.82  | 50       | **  |        | 0.312 | 0.324 | 3.63   |      |
| Naphthalene                 | 1             | <u>. 0</u> . |          | 6.92 | 52.80  | 50       | 20  | 0.7    |       | 1.122 | 5.60   |      |
| l-Chloroaniline             | 1             | 0            |          | 6.95 | 53.69  | 50       | 20  | 0.01 ( |       | 0.419 | 7.38   |      |
| lexachlorobutadiene         | 1             | 0            |          | 7.01 | 50.55  | 50       | 20  | 0.01   |       | 0.177 | 1.10   |      |
| Caprolactam                 | 1             | 0            |          | 7.22 | 56.93  | 50       | 20  | 0.01 ( |       | 0.120 | 13.87  |      |
| I-Chloro-3-methylphenol     | 1             | 0            |          | 7.32 | 54.06  | 50       | 20  | 0.2 (  |       | 0.298 | 8.12   |      |
| -Methylnaphthalene          | 1             | 0            |          | 7.46 | 53.62  | 50       | **  | 0.4    |       | 0.748 | 7.24   |      |
| -Methylnaphthalene          | 1             | 0            |          | 7.54 | 53.45  | 50       | **  | 0.4 (  | 0.666 | 0.712 | 6.89   |      |
| Methylnaphthalenes          | 1             | 0            |          | 7.46 | 107.23 | 50       | **  |        |       | 1.461 | 114.45 |      |
| ,1'-Biphenyl                | 1             | 0            |          | 7.84 | 52.97  | 50       | 20  | 0.01 ( | 0.805 | 0.853 | 5.94   |      |
| Acenaphthene-d10            | 1             | 0            | 1        | 8.34 | 40.00  | 40       | **  |        |       | 0.000 | 0.00   |      |
| ,2,4,5-Tetrachlorobenzene   | 1             | 0            |          | 7.60 | 50.34  | 50       | 20  | 0.01   | 0.629 | 0.633 | 0.68   |      |
| lexachlorocyclopentadiene   | 1             | 0            |          | 7.58 | 49.76  | 50       | 20  | 0.05   | 0.339 | 0.337 | 0.49   |      |
| 2,4,6-Trichlorophenol       | 1             | 0            |          | 7.68 | 55.67  | 50       | 20  | 0.2 (  | 0.381 | 0.424 | 11.34  |      |
| 2,4,5-Trichlorophenol       | 1             | 0            |          | 7.71 | 53.67  | 50       | 20  | 0.2 (  | 0.392 | 0.421 | 7.35   |      |
| ?-Fluorobiphenyl            | 1             | 0            | s        | 7.75 | 26.09  | 25       | **  |        | 1.369 | 1.428 | 4.35   |      |
| -Chloronaphthalene          | 1             | 0            |          | 7.86 | 52.43  | 50       | 20  | 0.8 1  |       | 1.250 | 4.86   |      |
| ,4-Dimethylnaphthalene      | 1             | 0            |          | 8.14 | 53.43  | 50       | **  |        | 0.906 | 0.968 | 6.87   |      |
| Dimethylnaphthalenes        | 1             | 0            |          | 8.14 | 53.43  | 50       | 20  |        | -     | 0.968 | 6.87   |      |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 1 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/8/2020 8:50:00 A Data File: 9M101577.D Method: EPA 8270E Instrument: GCMS 9

| TxtCompd:                  | Col#         | Multi<br>Num | Туре | RT             | Conc           | Conc<br>Exp |      | RF          | Initial<br>RF | RF    | %Diff Flag |
|----------------------------|--------------|--------------|------|----------------|----------------|-------------|------|-------------|---------------|-------|------------|
| Diphenyl Ether             | 1            | 0            |      | 7.92           | 51.77          | 50          | **   |             | 0.884         | 0.915 | 3.54       |
| 2-Nitroaniline             | 1            | 0            |      | 7.94           | 57.29          | 50          | 20   | 0.01        | 0.330         | 0.378 | 14.57      |
| Coumarin                   | 1            | 0            |      | 8.12           | 54.00          |             | **   |             | 0.444         |       |            |
| Acenaphthylene             | 1            | 0            |      | 8.22           | 53.31          | 50          | 20   | 0.9         | 1.789         | 1.907 | 6.63       |
| Dimethylphthalate          | 1_           | 0            |      | 8.08           | 52.50          | 50          | 20   | 0.01        | 1.339         | 1.406 | 5.00       |
| 2,6-Dinitrotoluene         | 1            | 0            |      | 8.14           | 55.74          | 50          | 20   | 0.2         | 0.284         | 0.316 | 11.47      |
| Acenaphthene               | 1            | 0            |      | 8.38           | 52.87          | 50          | 20   | 0.9         | 1.239         | 1.310 | 5.74       |
| 3-Nitroaniline             | 1            | 0            |      | 8.29           | 56.59          | 50          | 20   | 0.01        | 0.327         | 0.370 | 13.17      |
| 2,4-Dinitrophenol          | 1            | 0            |      | 8.38           | 58.68          | 50          | 20   | 0.2         | 0.157         | 0.183 | 17.35      |
| Dibenzofuran               | 1            | 0            |      | 8.53           | 52.24          | 50          | 20   | 0.8         | 1.727         | 1.804 | 4.48       |
| 2,4-Dinitrotoluene         | 1            | 0            |      | 8.50           | 57.13          | 50          | 20   | 0.2         | 0.381         | 0.435 | 14.27      |
| 1-Nitrophenol              | 1            | 0            |      | 8.41           | 52.13          | 50          | 20   | 0.01        | 0.209         | 0.238 | 4.25       |
| 2,3,4,6-Tetrachlorophenol  | 1            | 0            |      | 8.64           | 53.47          | 50          | 20   | 0.01        | 0.349         | 0.373 | 6.94       |
| Fluorene                   | 1            | 0            |      | 8.85           | 53.05          | 50          | 20   | 0.9         | 1.363         | 1.446 | 6.11       |
| 1-Chlorophenyl-phenylether | 1            | 0            |      | 8.84           | 52.39          | 50          | 20   | 0.4         | 0.672         | 0.704 | 4.77       |
| Diethylphthalate           | 1            | 0            |      | 8.72           | 52.66          | 50          | 20   | 0.01        | 1.277         | 1.345 | 5.31       |
| I-Nitroaniline             | 1            | 0            |      | 8.86           | 57.41          | 50          | 20   | 0.01        | 0.342         | 0.393 | 14.81      |
| Atrazine                   | 1            | 0            |      | 9.49           | 53.04          | 50          | 20   | 0.01        | 0.397         | 0.421 | 6.09       |
| Phenanthrene-d10           | 1            | 0            | 1    | 9.82           | 40.00          | 40          | **   |             |               | 0.000 | 0.00       |
| 1,6-Dinitro-2-methylphenol | 1            | 0            |      | 8.88           | 54.65          | 50          | 20   | 0.01        | 0.126         | 0.138 | 9.31       |
| -Nitrosodiphenylamine      | 1            | 0            |      | 8.95           | 53.68          | 50          | 20   |             | 0.622         | 0.667 | 7.36       |
| 2,4,6-Tribromophenol       | 1            | 0            | s    | 9.09           | 54.57          | 50          | **   |             | 0.092         | 0.101 | 9.14       |
| ,2-Diphenylhydrazine       | 1            | 0            |      | 9.00           | 54.07          | 50          | **   |             | 0.641         | 0.693 | 8.14       |
| l-Bromophenyl-phenylether  | 1            | 0            |      | 9.34           | 51.84          | 50          | 20   | 0.1         | 0.206         | 0.213 | 3.68       |
| lexachlorobenzene          | 1            | 0            |      | 9.41           | 50.36          | 50          | 20   |             | 0.229         | 0.230 | 0.72       |
| N-Octadecane               | 1            | 0            |      | 9.67           | 59.45          | 50          | **   |             | 0.287         | 0.342 | 18.90      |
| Pentachlorophenol          | 1            | Ö            |      | 9.60           | 52.06          | 50          | 20   |             | 0.146         | 0.152 | 4.13       |
| Phenanthrene               | 1            | 0            |      | 9.84           | 51.63          | 50          | 20   |             | 1.063         | 1.098 | 3.26       |
| Anthracene                 | 1            | ō            |      | 9.90           | 53.39          | 50          | 20   |             | 1.063         | 1.135 | 6.78       |
| Carbazole                  | 1            | Ö            |      | 10.07          | 54.23          | 50          | 20   |             | 0.962         | 1.043 | 8.45       |
| Di-n-butylphthalate        | 1            | 0            |      | 10.45          | 52.17          | 50          | 20   |             | 0.987         | 1.192 | 4.34       |
| Fluoranthene               | 1            | 0            |      | 11.18          | 53.88          | 50          | 20   |             | 1.134         | 1.222 | 7.77       |
| Chrysene-d12               | 1            | 0            | - 1  | 12.88          | 40.00          | 40          | **   | 0.0         | 1.104         | 0.000 | 0.00       |
| Pyrene                     | 1            | 0            | •    | 11.44          | 54.11          | 50          | 20   | 0.6         | 1.179         | 1.276 | 8.23       |
| Benzidine                  | 1            | 0            |      | 11.33          | 39.82          | 50          | **   | 0.0         | 0.577         | 0.489 | 20.37      |
| Terphenyl-d14              | <del>`</del> | 0            | s    | 11.62          | 27.07          | 25          | **   | <del></del> | 0.582         | 0.630 | 8.28       |
| I,4'-DDE                   | 1            | 0            | 3    | 11.56          | 53.82          | 25          | **   |             | 0.320         | 0.030 | 0.20       |
| I,4'-DDD                   | 1            | 0            |      | 11.96          | 57.75          |             | **   |             | 0.443         |       |            |
| Butylbenzylphthalate       | 1            | 0            |      | 12.21          | 57.75<br>52.16 | 50          | 20   | 0.01        | 0.443         | 0.514 | 4 22       |
| • • •                      |              |              |      |                |                | 50          | 20   | 0.01        |               | 0.514 | 4.33       |
| 3'-DDT                     | 1            | 0            |      | 12.32<br>12.84 | 55.47<br>50.35 | E0          | ** : | 0.04        | 0.549         | 0.446 | 0.74       |
| 3,3'-Dichlorobenzidine     | 1            | 0            |      |                | 50.35<br>54.50 | 50<br>50    | 20   |             | 0.375         | 0.416 | 0.71       |
| Benzo[a]anthracene         |              | 0            |      | 12.87          | 54.50<br>51.04 | 50          | 20   |             | 1.132         | 1.233 | 8.99       |
| Chrysene                   | 1            | 0            |      | 12.91          | 51.04          | 50<br>50    | 20   |             | 1.104         | 1.127 | 2.07       |
| pis(2-Ethylhexyl)phthalate | 1            | 0            |      | 12.91          | 52.88          | 50          | 20   | 0.01        | 0.590         | 0.717 | 5.76       |
| Perylene-d12               | 1            | 0            |      | 14.51          | 40.00          | 40          |      |             | 0.007         | 0.000 | 0.00       |
| Di-n-octylphthalate        | 1            | 0            |      | 13.66          | 52.03          | 50<br>50    | 20   |             | 0.907         | 1.158 | 4.07       |
| Benzo[b]fluoranthene       | 1            | 0            |      | 14.08          | 57.87          | 50          | 20   |             | 1.041         | 1.205 | 15.75      |
| Benzo[k]fluoranthene       | 1            | 0            |      | 14.11          | 51.64          | 50          | 20   |             | 1.063         | 1.098 | 3.28       |
| Benzo[a]pyrene             | 1            | 0            |      | 14.45          | 56.45          | 50          | 20   |             | 0.936         | 1.057 | 12.90      |
| ndeno[1,2,3-cd]pyrene      | 1            | 0            |      | 15.87          | 55.10          | 50          | 20   |             | 1.157         | 1.275 | 10.20      |
| Dibenzo[a,h]anthracene     | 1            | 0            |      | 15.89          | 54.93          | 50          | 20   |             | 0.966         | 1.062 | 9.86       |
| Benzo[g,h,i]perylene       | 1            | 0            |      | 16.26          | 54.27          | 50          | 20   | 0.5         | 0.954         | 1.036 | 8.55       |

S-Surrogate Compound N/O or N/Q - Not applicable for this run

I-Internal Standard Compound C1-Compound %Diff exceeds limits

\*\* - No limit specified in method

Page 2 of 3

Calibration Name: CAL BNA@50PPM Cont Calibration Date/Time 10/8/2020 8:50:00 A Data File: 9M101577.D Method: EPA 8270E Instrument: GCMS 9

| TxtCompd:                      | Col# | Multi<br>Num | Туре | RT   | Conc | Conc<br>Exp | Lo MIN<br>Lim RF | Initial<br>RF | RF    | %Diff Flag |
|--------------------------------|------|--------------|------|------|------|-------------|------------------|---------------|-------|------------|
| Toluene Diisocyanate           | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |               | 0.000 | 100.00     |
| 2,2'-oxybis-(1-Chloropropane)  | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |               | 0.000 | 100.00     |
| 2,4 Diaminotoluene             | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |               | 0.000 | 100.00     |
| 1,4-Dioxane-d8                 | 1    | 100          |      | 0.00 | 0.00 | 40          | **               |               | 0.000 | 100.00     |
| Methylnaphthalenes (Total)     | 1    | 100          |      | 0.00 | 0.00 | 100         | **               | 0.681         | 0.000 | 100.00     |
| 1,4-Dioxane-d8-Surro           | 1    | 100          |      | 0.00 | 0.00 | 40          | **               |               | 0.000 | 100.00     |
| 4-Methylphenol                 | 1    | 100          |      | 0.00 | 0.00 | 50          | ** 0.            | .6            | 0.000 | 100.00     |
| Heptachlor epoxide             | 1    | 100          |      | 0.00 | 0.00 | 10          | **               |               | 0.000 | 100.00     |
| Heptachlor                     | 1    | 100          |      | 0.00 | 0.00 | 10          | **               |               | 0.000 | 100.00     |
| gamma-BHC                      | 1    | 100          |      | 0.00 | 0.00 | 10          | **               |               | 0.000 | 100.00     |
| Endrin                         | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |               | 0.000 | 100.00     |
| Dimethylnaphthalenes (Total)   | 1    | 100          |      | 0.00 | 0.00 | 50          | **               | 0.906         | 0.000 | 100.00     |
| Diaminotoluene Dihydrochloride | 1    | 100          |      | 0.00 | 0.00 | 50          | **               |               | 0.000 | 100.00     |
| Methoxychlor                   | 1    | 100          |      | 0.00 | 0.00 | 10          | **               |               | 0.000 | 100.00     |

0272

Evaluation Std Data File: 9M101321.D Internal Standard Areas

FORM8

Analysis Date/Time: 09/17/20 13:22

Method: EPA 8270E

| )                         |              |       |        |              |      | Lab File I    | D: CAL B | Lab File ID: CAL BNA@50PPM |      |               |       |               |         |               |       |
|---------------------------|--------------|-------|--------|--------------|------|---------------|----------|----------------------------|------|---------------|-------|---------------|---------|---------------|-------|
| 36                        | <b>=</b>     |       |        | ا<br>ا       |      | ا<br>ت        |          | 4                          |      | 55            |       | ਼<br>ਨ        | İ       | 17            |       |
| 12                        | Area         | 召     | Area   | 고<br>고       |      | Area          | 깍        | Area                       | 꼭    | Area          | 끽     | Area          | 꼅       | Area          | RT    |
| Eval File Area/RT         | 52141        | 2.70  | 97053  | 3 5.90       |      | 369972        | 6.91     | 193560                     | 8.35 | 374543        | 9.82  | 375977        | 12.89   | 387414        | 14.53 |
| 1 Eval File Area Limit    | 26070-104282 | 04282 | 485    | 48526-194106 |      | 184986-739944 | 39944    | 96780-387120               | 7120 | 187272-749086 | 49086 | 187988-751954 | 751954  | 193707-774828 | 74828 |
| Eval File Rt Limit        | 2.2-3.2      | 3.2   |        | 5.4-6.4      |      | 6.41-7.41     | 41       | 7.85-8.85                  | 85   | 9.32-10.32    | 32    | 12.39-13.39   | 13.39   | 14.03-15.03   | 5.03  |
| Data File Sample#         |              |       |        |              |      |               |          |                            |      |               |       |               |         |               |       |
| 9M101313.D CAL BNA@10PPM  | PM 51565     |       | _      | 94603        | 5.90 | 357644        | 4 6.91   | 1 186206                   | 8.35 |               |       |               |         |               |       |
| 9M101314.D CAL BNA@2PPM   | M 57993      | ~     | 2.71 1 | 109516       | 5.90 | 415864        | 4 6.9    | 1 224715                   | 8.35 | 427849        | 9.82  | 428070        | 0 12.89 | 9 441726      | 14.52 |
| 9M101315.D CAL BNA@196PPM |              | _     |        | 98295        | 5.91 | 37091         | 4 6.9    | 1 198313                   | 8.35 |               |       |               |         |               |       |
| 9M101316.D CAL BNA@160PPM |              |       | _      | 99671        | 5.91 | 380119        | 9 6.91   | 1 201097                   | 8.35 |               |       |               |         |               |       |
| 9M101317.D CAL BNA@120PPM | -<br>        |       | -      | 100690       | 5.90 | 388633        | 3 6.91   |                            | İ    |               | ĺ     | į             |         |               | 1     |
| 9M101318.D CAL BNA@80PPM  |              |       |        | 96900        | 5.90 | 367645        | 5 6.91   | 1 189022                   |      |               |       |               |         |               |       |
| 9M101319.D CAL BNA@20PPM  | PM 50283     |       |        | 98086        | 5.90 | 373409        | 9 6.91   |                            | 8.35 |               |       |               |         |               |       |
| 9M101320.D CAL BNA@0.5PPM | _            |       |        | 05764        | 5.90 | 401840        | 0 6.91   | 1 207520                   | _    |               |       |               |         |               |       |
| 9M101321.D CAL BNA@50PPM  | _            |       |        | 97053        | 5.90 | 369972        | 2 6.91   | _                          | _    |               |       |               |         |               |       |
| 9M101322.D ICV BNA@50PPM  | -            | :     | 2.70   | 89922        | 5.90 | 342712        | 2 6.91   | 1 179589                   | İ    | i             |       | !             |         |               | İ     |
| 9M101323.D SMB88017       | 49284        |       |        | 94546        | 5.90 | 357728        |          | 1 185930                   | 8.35 |               |       |               |         |               |       |
| 9M101324.D SMB88018       | 453          |       | -      | 84733        | 5.90 | 321859        |          |                            | 8.35 |               |       |               |         |               |       |
|                           |              |       |        |              |      |               |          |                            |      |               |       |               |         |               |       |

9M101326.D 9M101324.D

88018 SMB88018

51046

2.68

92137 84733

5.91 5.90

348476 321859 357728

6.93 6.91 6.91

179935

8.38 8.35

346012

9.82 9.84

309160 345538

341541 301351 349749

14.58

12.91 12.88 12.89

| Interna  |
|----------|
| il Stand |
| lard An  |
| eas      |

12=

1,4-Dioxane-d8(INT)
1,4-Dichlorobenzene-d4
Naphthalene-d8

Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12

[7 =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration =5ug/L

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt

Flags:

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria

Evaluation Std Data File: 5M114388.D Internal Standard Areas

FORM8

Analysis Date/Time: 09/24/20 12:58

Method: EPA 8270E

Lab File ID: CAL BNA@50PPM

|                          | <b>=</b>     | _        | 2            | ಪ             |         | <br>  <b>4</b> |        | <b>55</b>     |       | 5             |       | 7             |       |
|--------------------------|--------------|----------|--------------|---------------|---------|----------------|--------|---------------|-------|---------------|-------|---------------|-------|
| ·                        | Area RT      | Area     | RT           | Area          | RT      | Area           | RI     | Area          | RT    | Area          | ŖŢ    | Area          | 직     |
| Eval File Area/RT:       | 77111 2.59   | 109580   | 5.80         | 396530        | 6.81    | 223894         | 8.24   | 444403        | 9.69  | 437240        | 12.74 | 464882        | 14.34 |
| Eval File Area Limit:    | 38556-154222 | 54790    | 54790-219160 | 198265-793060 | 93060   | 111947-447788  | 47788  | 222202-888806 | 88806 | 218620-874480 | 74480 | 232441-929764 | 29764 |
| Eval File Rt Limit       | 2.09-3.09    | 5.3      | 5.3-6.3      | 6.31-7.31     | .31     | 7.74-8.74      | 74     | 9.19-10.19    | ).19  | 12.24-13.24   | 3.24  | 13.84-14.84   | 4.84  |
| ata File Sample#         |              |          |              |               |         |                |        |               |       |               |       |               |       |
| И114380.D CAL BNA@0.5PPM |              | 2.59 115 | 115294 5.80  | ) 421917      | 17 6.81 | 1 234299       | 9 8.23 | 468369        |       | 454902        | 12.73 | 473871        | 14.34 |
| W114381.D CAL BNA@2PPM   | 78502        |          | 112971 5.80  | ) 411884      | -       | 1 230136       | 6 8.23 | 455563        | 9.69  | 467091        | 12.73 | 483663        | 14.34 |
| W114382.D CAL BNA@10PPM  |              |          |              | 366300        | _       | 1 199573       | 3 8.23 | 397529        |       | 401249        | 12.73 | 407319        | 14.34 |
| M114383.D CAL BNA@196PPN |              | 2.60 98  |              |               |         |                |        | 405267        |       | 378471        | 12.74 | 419679        | 14.35 |
| W114384.D CAL BNA@160PPN | 73452        | İ        | 811 5.81     |               |         |                |        | 41403         |       | 397491        | 12.74 | 433594        | 14.35 |
| W114385.D CAL BNA@120PPN |              |          | 144033 5.81  | 1 532895      | 95 6.82 | 2 302489       | 9 8.24 | 597252        |       | 573262        | 12.74 | 618013        | 14.35 |
| W114386.D CAL BNA@80PPM  |              | 2.59 104 |              | _             |         |                | 4 8.24 | 433839        |       | 429660        | 12.74 | 458660        | 14.34 |
| W114387.D CAL BNA@20PPM  |              |          |              |               |         |                | 1 8.23 | 43823         |       | 432497        | 12.73 | 452170        | 14.34 |
| W114388.D CAL BNA@50PPM  |              | 2.59 109 |              |               | _       |                | 4 8.24 | 444400        | 9.69  | 437240        | 12.74 | 464882        | 14.34 |
| W114389.D ICV BNA@50PPM  |              | 2.59 101 | 101348 5.80  | 384770        |         | 1 209903       | 3 8.23 | 42841;        |       | 418978        | 12.74 | 425556        | 14.34 |
|                          |              |          |              |               |         |                |        |               |       |               | ,     |               |       |

5M 5M 5M 5M 5M 5M 5M 5M 5M 5M 5M 5M

| Standard Areas | ternal |
|----------------|--------|
|                | 18     |

11 = 12 = 13 =

1,4-Dioxane-d8(INT)
1,4-Dichlorobenzene-d4
Naphthalene-d8

5 = 3

Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12

17 =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration = 5ug/L

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria.

Retention Times:

Limit = within  $\pm$  0.5 min of internal standard retention time from the daily cal or mid pt.

0274

Evaluation Std Data File: 9M101559.D Analysis Date/Time: 10/07/20 08:42 Internal Standard Areas

**FORM8** 

Method: EPA 8270E

Lab File ID: CAL BNA@50PPM

| G          | 1                     |              | i      | :   |              | İ      |               | -       | !      | !             | 1            |               |       |               |       |               |          |
|------------|-----------------------|--------------|--------|-----|--------------|--------|---------------|---------|--------|---------------|--------------|---------------|-------|---------------|-------|---------------|----------|
| 3          |                       | =            |        |     | 2            |        | 3             |         |        | 4             |              | 5             |       | 6             |       | 17            |          |
| 12         |                       | Area         | 끅      |     | Area         | 끅      | Area          | RT      | Area   | 70            | 7            | Area          | 직     | Area          | RT    | Area          | 꼰        |
| 00         | Eval File Area/RT:    | 65703        | 2.71   | 12: | 122580       | 5.90   | 471230        | 6.91    | 247053 | 8.35          | [            | 474840        | 9.82  | _ į           | 12.88 | 494669 14.52  | 7        |
| <b>y</b> 1 | Eval File Area Limit: | 32852-131406 | 1406   |     | 61290-245160 | 5160   | 235615-942460 | 942460  | 1235   | 123526-494106 | 8            | 237420-949680 | 19680 | 235276-941102 | 41102 | 247334-989338 | Ö :      |
| Ţ          | Eval File Rt Limit:   | 2.21-3.21    | 21     |     | 5.4-6        | 4      | 6.41-7.41     | 7.41    | 7.     | 7.85-8.85     |              | 9.32-10.32    | 32    | 12.38-1       | 3.38  | 14.02-15.02   | <u> </u> |
| Data File  | Sample#               |              |        |     |              |        |               |         |        |               |              |               |       |               |       |               | :        |
| 9M101560.D |                       | 5185         |        | 71  | 9668         |        | 90 370602     | 02 6.91 | _      | 192855        | 8.34         | 370268        | 9.82  |               |       | 349234        |          |
| 9M10156    | 31.D MBS-1            | 5178         |        | 71  | 9619         |        |               |         | _      | 39216         | 8.34         | 363651        | 9.82  |               |       | 342740        |          |
| 9M101562.D | 32.D MBS-2            | 5319         |        | 71  | 9762         |        |               |         | _      | 195068        | 8.34         | 373084        | 9.82  |               |       | 346091        |          |
| 9M10156    | 33.D MBS-3            | 5310         |        | 71  | 9846         |        |               |         |        | 4860          | 8.34         | 377045        | 9.82  |               |       | 347021        |          |
| 9M10156    | 4.D MBS-4             | 5404         |        | 71  | 10120        | 1      | <br>          |         |        | )0623         | 8.3 <b>4</b> | 384211        | 9.82  |               |       | 358442        | i        |
| 9M10156    | 9M101565.D MBS-5      | 51015        | 5 2.71 | 71  | 94085        | 5 5.90 | 90 360366     | 66 6.91 |        | 36561         | 8.34         | 358466        | 9.82  | 336777        | 12.88 | 331128        | 14.51    |
|            |                       | 1            |        |     | , , ,        |        |               | ,       |        |               | ,            | ,,,           |       |               |       |               |          |

9M101572.D 9M101571.D

9M101575.D WMB88180

9M101574.D 9M101573.D

AD19542-001(T) AD19543-001(T) AD19542-001(T) AD19619-002

> 48664 52325 51414 52886 52547 51901 54087 51398 51015

> 2.72 2.72 2.69 2.68 2.69 2.68 2.69 2.69 2.71

> > 5.90 5.90 5.90 5.90 5.90 5.90 5.90

334069 347340 347754 359932 350864 346171 364240 337020

6.91 6.91

8.35 8.35 8.34 8.34 4 8.34 8.34 8.35

329967

339405 345726 361565 351501 347197 364757 333254

9.82 9.82 9.82 9.82 9.82 9.82

335691 327874 333089 346817 327059

12.88 12.88 12.88 12.88 12.88 12.88 12.88 12.88 12.88

328527 221862 340931 340088 321918 324590 362402 329147 331128

14.51 14.52 14.51 14.51 14.52 14.51 14.52 14.52 14.51

134459

6.91 6.91 6.91

6.91

349468

201535 151166 172752 167188 182132 188992 179853 179222 190757 175852 186561

384934

341639

9.82

326895 369425

51596

103213 92007 88895 92784 92526 95142 93840 91733 96412 89630

9M101570.D AD19619-001

9M101569.D 9M101568.D 9M101567.D 9M101566.D 9M101565.D

SMB88134 SMB88169

SMB88169(MS) SMB88134(MS) MBS-5

6.91 6.91 6.92

363421 331552

328023

| į |                                        |                                                 |                                                                    | -   |
|---|----------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|-----|
| ĺ |                                        |                                                 |                                                                    | į   |
|   | I3 =                                   | 12 =                                            | =                                                                  |     |
| į | Naj                                    | 1,4                                             | 1,4                                                                | İ   |
| į | hthale                                 | Dichle                                          | Dioxa                                                              |     |
|   | ne-d8                                  | 1,4-Dichlorobenzer                              | ,4-Dioxane-d8(IN                                                   |     |
|   |                                        | æne-d4                                          | E                                                                  | į   |
|   |                                        |                                                 |                                                                    |     |
| į | 16                                     | 75                                              | <u> </u>                                                           |     |
|   | 11                                     |                                                 | ī                                                                  | -   |
|   | Chrysene-di                            | Phenanthrene-d10                                | Acen                                                               | İ   |
|   | sene-di                                | antbren                                         | aphthe                                                             |     |
| 1 | 2                                      | e-dHO                                           | ne-d10                                                             | -   |
|   |                                        |                                                 |                                                                    | - [ |
| - |                                        |                                                 | _                                                                  | - ! |
| - |                                        |                                                 | 7 =                                                                |     |
|   |                                        |                                                 | Peryl                                                              | 1   |
| 1 |                                        |                                                 | ene-dl                                                             | - 1 |
| : |                                        |                                                 | 2                                                                  |     |
|   |                                        |                                                 |                                                                    |     |
| ! |                                        |                                                 |                                                                    | !   |
| 1 |                                        |                                                 |                                                                    |     |
| i | 524 ln                                 | 624/82                                          | 625/82                                                             |     |
|   | ternal                                 | 8<br>Int                                        | 70 Int                                                             |     |
| i | Standa                                 | emal S                                          | ernal S                                                            |     |
| i | ard co                                 | itanda                                          | itanda                                                             |     |
| ! | Internal Standard concentration =5ug/L | 편 601                                           | 100 pg                                                             | -   |
| i | ation =                                | centra                                          | centra                                                             | i   |
|   | :Sug/L                                 | tion =                                          | tion =                                                             | - [ |
| i |                                        | 4/8260 Internal Standard concentration = 30ug/L | 40 mg                                                              | -   |
|   |                                        |                                                 | 7 (in 1                                                            | -   |
|   |                                        |                                                 | /8270 Internal Standard concentration = 40 mg/L (in final extract) |     |
| - |                                        |                                                 | tract)                                                             | į   |
|   |                                        |                                                 |                                                                    |     |

Flags:

Internal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt

Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Retention Times:

R - Indicates the compound failed the internal standard retention time criteria. A - Indicates the compound failed the internal standard area criteria

Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

Internal Standard Areas

FORM8

Evaluation Std Data File: 5M114529.D Analysis Date/Time: 10/07/20 08:45

Method: EPA 8270E

| 5M1                     | 5M1                 | 5M1              | 5M1                 | Data              | (                   | 91                    | 00                 | 12          | 31       | 0                          |
|-------------------------|---------------------|------------------|---------------------|-------------------|---------------------|-----------------------|--------------------|-------------|----------|----------------------------|
| 5M114533.D WMB88180(MS) | 5M114532.D WMB88180 | 5M114531.D MBS-1 | 5M114530.D WMB88174 | Data File Sample# | Eval File Rt Limit: | Eval File Area Limit: | Eval File Area/RT: |             |          |                            |
| 67415                   | 78303               | 75328            | 69032               |                   | 2.1-3.1             | 47942-191770          | 95885              | Area        | =        |                            |
|                         |                     | 2.59             |                     | :<br>             |                     | 1770                  | 2.60               | Ŗ           |          | 1                          |
|                         |                     |                  |                     |                   | 5.                  | 69236                 | 138471             | Area        |          |                            |
|                         |                     | 109612           |                     | <br> <br>         | 5.3-6.3             | 69236-276942          | 5.80               | P           | 2        |                            |
| 5.80                    | 5.80                | 5.80             | 5.80                |                   | 1                   | 1                     |                    | · •!        |          | !                          |
| 335968                  | 413356              | 394553           | 389448              |                   | 6.31-7.31           | 247596-990382         | 495191             | Area        | ឆ        | Lab File II                |
| 6.81                    | 6.81                | 6.81             | 6.81                | İ                 | 9                   | 0382                  | 6.81               | 긱           |          | D: CAL E                   |
|                         |                     | 31 222858        |                     |                   | 7.74-8.74           | 137098-548394         | 274197 8.24        | Area        | 4        | Lab File ID: CAL BNA@50PPM |
|                         |                     |                  |                     |                   | 3.74                | 48394                 | 8.24               | 콥           |          |                            |
| 24                      | 24                  | 8.24             | 8.23                | ·                 | ;<br>;              | 27                    | 540                | <b>&gt;</b> |          | :                          |
| 379498                  | 459200              | 457405           | 445079              |                   | 9.19-1              | 0206-1                | 413                | Area        | 5        |                            |
|                         |                     | 5 9.69           |                     | !<br> <br>        | 0.19                | 270206-1080826        | 9.69               | 괵           |          | :                          |
|                         |                     |                  | 9 439380            |                   | 12.24-13.24         | 269190-1076758        | 538379 12.74       | Area        | <u>5</u> |                            |
|                         |                     | 12.74            |                     | !                 | 13.24               | 076758                | 12.74              | RT          |          | !<br>:                     |
| •                       | -                   | 4 448451         |                     |                   | _                   | 22                    | 561461             | Area        | 17       |                            |
| 14.34                   | 14.34               | 14.34            | 14.34               | l<br>İ            | 3.85-14.85          | 22922                 | 14.35              | RT          |          |                            |

| temal    |
|----------|
| Standard |
| Areas    |

13 = 11 =

1,4-Dioxane-d8(INT)
1,4-Dichlorobenzene-d4
Naphthalene-d8

14 = 15 = 16 =

Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12

17 =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration = 5ug/L

Lower Limit = - 50% of internal standard area from daily cal or mid pt. Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Retention Times:

Flags:

R - Indicates the compound failed the internal standard retention time criteria. A - Indicates the compound failed the internal standard area criteria

Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

Internal Standard Areas FORM8

Evaluation Std Data File: 9M101577.D Analysis Date/Time: 10/08/20 08:50

Method: EPA 8270E

Lab File ID: CAL BNA@50PPM

| Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K. Alea K | Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K. Area K |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area K. Area K. Area K. 109379 5.90 423895 6.91 226309 8.34 54690-218758 211948-847790 113154-452618 5.4-6.4 6.41-7.41 7.84-8.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 437035<br>218518-1<br>9.32-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 423895 6.91 226309 8.34<br>211948-847790 113154-452618<br>6.41-7.41 7.84-8.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 437035<br>218518-1<br>9.32-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 790 113154-452618<br>7.84-8.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 437035<br>218518-1<br>9.32-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 437035<br>218518-1<br>9.32-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Area Ki Area Ki Area Ki<br>437035 9.82 431604 12.88 449373 14.51<br>218518-874070 215802-863208 224686-898746<br>9.32-10.32 12.38-13.38 14.01-15.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| 9M101603.D AD19644-003 | 9M101602.D AD19644-001 | 9M101601.D AD19640-001 | 9M101600.D AD19645-001 | 9M101599.D AD19645-002(MSD) | 9M101598.D AD19645-002(MS) | 9M101597.D AD19645-002 | 9M101596.D AD19593-003(3X) | 9M101595.D WMB88184 | 9M101594.D AD19542-001(T)(MSD | 9M101593.D AD19542-001(T)(MS) | 9M101592.D AD19593-006 | 9M101591.D SMB88171 | 9M101590.D SMB88170 | 9M101589.D SMB88171(MS) | 9M101588.D SMB88170(MS) | 9M101587.D AD19593-004 | 9M101586.D AD19593-003 | 9M101585.D EF-1-V-335534(10/06) | 9M101584.D EF-1-V-335534(10/02) | 9M101583.D AD19595-014(T) | 9M101581.D 19615-001 | 9M101580.D AD19595-013(T) | 9M101579.D AD19560-001(T) | Data File Sample# |
|------------------------|------------------------|------------------------|------------------------|-----------------------------|----------------------------|------------------------|----------------------------|---------------------|-------------------------------|-------------------------------|------------------------|---------------------|---------------------|-------------------------|-------------------------|------------------------|------------------------|---------------------------------|---------------------------------|---------------------------|----------------------|---------------------------|---------------------------|-------------------|
| 58636                  | 55158                  | 53349                  | 52640                  | 51649                       | 53391                      | 54381                  | 54123                      | 51112               | 48808                         | 49531                         | 52675                  | 52751               | 51525               | 52835                   | 51993                   | 45751                  | 46494                  | 45682                           | 46272                           | 52105                     | 71421                | 45971                     | 50917                     |                   |
| 2.68                   | 2.68                   | 2.68                   | 2.68                   | 2.69                        | 2.68                       | 2.67                   | 2.70                       | 2.70                | 2.71                          | 2.70                          | 2.70                   | 2.68                | 2.67                | 2.67                    | 2.67                    | 2.70                   | 2.70                   | 2.71                            | 2.71                            | 2.71                      | 2.70                 | 2.71                      | 2.71                      |                   |
| 108208                 | 103482                 | 98292                  | 98255                  | 94627                       | 96164                      | 100604                 | 99380                      | 93957               | 87459                         | 89656                         | 97382                  | 94459               | 92080               | 95194                   | 92584                   | 83642                  | 85379                  | 83570                           | 85028                           | 89253                     | 130789               | 83150                     | 92894                     |                   |
| 5.90                   | 5.90                   | 5.90                   | 5.90                   | 5.90                        | 5.90                       | 5.90                   | 5.90                       | 5.90                | 5.90                          | 5.90                          | 5.90                   | 5.90                | 5.90                | 5.90                    | 5.90                    | 5.90                   | 5.90                   | 5.90                            | 5.90                            | 5.90                      | 5.90                 | 5.90                      | 5.90                      |                   |
| 410309                 | 387813                 | 370953                 | 370151                 | 357321                      | 368308                     | 385871                 | 373803                     | 359756              | 328088                        | 341262                        | 367347                 | 357950              | 347775              | 361634                  | 346650                  | 313762                 | 321721                 | 315648                          | 317760                          | 337358                    | 494112               | 314933                    | 352558                    |                   |
| 6.91                   | 6.90                   | 6.90                   | 6.91                   | 6.91                        | 6.91                       | 6.90                   | 6.91                       | 6.91                | 6.91                          | 6.91                          | 6.91                   | 6.90                | 6.90                | 6.91                    | 6.91                    | 6.91                   | 6.91                   | 6.91                            | 6.91                            | 6.91                      | 6.91                 | 6.91                      | 6.91                      |                   |
| 214611                 | 203921                 | 195715                 | 198121                 | 189788                      | 193096                     | 199057                 | 200448                     | 188764              | 173972                        | 178431                        | 193974                 | 187479              | 181441              | 191667                  | 181765                  | 164566                 | 168837                 | 162157                          | 164093                          | 175709                    | 129380               | 164226                    | 184443                    |                   |
| 8.34                   | 8.34                   | 8.34                   | 8.34                   | 8.34                        | 8.34                       | 8.34                   | 8.34                       | 8.34                | 8.34                          | 8.34                          | 8.34                   | 8.34                | 8.34                | 8.34                    | 8.34                    | 8.3 <b>4</b>           | 8.3 <b>4</b>           | 8.3 <b>4</b>                    | 8.34                            | 8.34                      | 8.3 <b>4</b>         | 8.34                      | 8.3 <b>4</b>              |                   |
| 412933                 | 388147                 | 373328                 | 373146                 | 366122                      | 371638                     | 387529                 | 383310                     | 363587              | 331075                        | 340590                        | 370883                 | 361171              | 352739              | 362772                  | 348173                  | 315257                 | 325977                 | 313887                          | 317592                          | 339284                    | 485054               | 316305                    | 353418                    |                   |
| 9.81                   | 9.81                   | 9.81                   | 9.81                   | 9.81                        | 9.81                       | 9.81                   | 9.81                       | 9.81                | 9.82                          | 9.82                          | 9.81                   | 9.81                | 9.81                | 9.81                    | 9.82                    | 9.81                   | 9.81                   | 9.81                            | 9.81                            | 9.81                      | 9.81                 | 9.81                      | 9.81                      |                   |
| 402525                 | 378431                 | 363883                 | 367337                 | 360075                      | 367410                     | 372276                 | 372456                     | 349655              | 324509                        | 338126                        | 360288                 | 344716              | 333674              | 362095                  | 346746                  | 302752                 | 317769                 | 299345                          | 305530                          | 331755                    | 452019               | 306957                    | 338281                    |                   |
| 12.88                  | 12.88                  | 12.88                  | 12.88                  | 12.88                       | 12.88                      | 12.88                  | 12.88                      | 12.88               | 12.88                         | 12.88                         | 12.87                  | 12.88               | 12.88               | 12.88                   | 12.88                   | 12.87                  | 12.87                  | 12.88                           | 12.88                           | 12.88                     | 12.88                | 12.88                     | 12.88                     |                   |
| 408188                 | 380386                 | 366149                 | 370564                 | 361347                      | 366115                     | 369063                 | 372818                     | 355450              | 336253                        | 345960                        | 366154                 | 336181              | 326805              | 362875                  | 344394                  | 305409                 | 320054                 | 299570                          | _ 307111                        | 333322                    | 25779                | 310670                    | 345233                    |                   |
| 14.51                  | 14.51                  | 14.51                  | 14.51                  | 14.51                       | 14.51                      | 14.51                  | 14.51                      | 14.51               | 14.51                         | 14.51                         | 14.51                  | 14.51               | 14.51               | 14.51                   | 14.51                   | 14.51                  | 14.51                  | 14.51                           | 14.51                           | 14.51                     | 14.51                | 14.51                     | 14.51                     |                   |

# Internal Standard Areas

II = 12 = 13 =

1,4-Dioxane-d8(INT) 1,4-Dichlorobenzene-d4 Naphthalene-d8

5 = 14 = 6 = 1

Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12

17 =

Perylene-d12

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration = 5ug/L

Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Flags:

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria.

**PCB Data** 

**ORGANICS PCB REPORT** 

Sample Number: AD19595-013

Client Id: HSI-WC-NH Data File: 3G124631.D Analysis Date: 10/07/20 14:04

Date Rec/Extracted: 10/02/20-10/06/20

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8082A

Matrix: Soil Initial Vol: 20g

Final Vol: 10ml Dilution: 1

Solids: 86

Units: ma/Ka

|            |              |       | • • • • • • • • • • • • • • • • • • • • | ··· છ · · · છ |                 |       |      |
|------------|--------------|-------|-----------------------------------------|---------------|-----------------|-------|------|
| Cas#       | Compound     | RL    | Conc                                    | Cas #         | Compound        | RL,   | Conc |
| 12674-11-2 | Aroclor-1016 | 0.029 | U                                       | 11097-69-1    | Aroclor-1254    | 0.029 | U    |
| 11104-28-2 | Aroclor-1221 | 0.029 | U                                       | 11096-82-5    | Aroclor-1260    | 0.029 | U    |
| 11141-16-5 | Aroclor-1232 | 0.029 | U                                       | 37324-23-5    | Aroclor-1262    | 0.029 | U    |
| 53469-21-9 | Aroclor-1242 | 0.029 | U                                       | 11100-14-4    | Aroclor-1268    | 0.029 | U    |
| 12672-29-6 | Aroclor-1248 | 0.029 | U                                       | 1336-36-3     | Aroclor (Total) | 0.029 | U    |

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Data Path : G:\Gcdata\2020\GC\_3\Data\10-07-20\

Data File : 3G124631.D

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 7 Oct 2020 14:04

Operator : MS/MLC/ON Sample : AD19595-013

Misc : S, PCB ALS Vial : 15 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Oct 07 14:22:25 2020

Quant Method: G:\GCDATA\2020\GC\_3\METHODQT\3G\_C1001.M

Quant Title : @GC\_3,ug,608,8082 QLast Update : Thu Oct 01 15:12:16 2020

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj.

Signal #1 Phase : db-1701P Signal #2 Phase: db-17 Signal #1 Info : .32 Signal #2 Info : .32

| Compound                                                 | RT#1            | RT#2            | Resp#1             | Resp#2             | pg#1               | pg#2                |
|----------------------------------------------------------|-----------------|-----------------|--------------------|--------------------|--------------------|---------------------|
| Target Compounds<br>1)TCMX-Surrogate<br>45)DCB-Surrogate | 3.937<br>10.288 | 3.972<br>10.924 | 2567894<br>2801176 | 2490269<br>2268913 | 139.620<br>118.322 | 138.650m<br>133.849 |

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.



Data Path : G:\Gcdata\2020\GC\_3\Data\10-07-20\

Data File : 3G124631.D

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 7 Oct 2020 14:04

: MS/MLC/ON Operator Sample : AD19595-013

: S, PCB Misc

Sample Multiplier: 1 ALS Vial : 15

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Oct 07 14:22:25 2020

Quant Method: G:\GCDATA\2020\GC 3\METHODQT\3G C1001.M

Quant Title : @GC\_3, ug, 608, 8082

QLast Update : Thu Oct 01 15:12:16 2020

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1ul

Signal #1 Phase : db-1701P Signal #2 Phase: db-17 Signal #1 Info : .32 Signal #2 Info : .32



#### ORGANICS PCB REPORT

Sample Number: AD19595-014

Client Id: HSI-WC-H

Data File: 3G124632.D

Analysis Date: 10/07/20 14:18 Date Rec/Extracted: 10/02/20-10/06/20

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8082A

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 83

Units: mg/Kg

| Cas#       | Compound     | RL    | Conc | Cas #      | Compound        | RL    | Conc |
|------------|--------------|-------|------|------------|-----------------|-------|------|
| 12674-11-2 | Aroclor-1016 | 0.030 | U    | 11097-69-1 | Aroclor-1254    | 0.030 | U    |
| 11104-28-2 | Aroclor-1221 | 0.030 | U    | 11096-82-5 | Aroclor-1260    | 0.030 | U    |
| 11141-16-5 | Aroclor-1232 | 0.030 | U    | 37324-23-5 | Aroclor-1262    | 0.030 | U    |
| 53469-21-9 | Aroclor-1242 | 0.030 | U    | 11100-14-4 | Aroclor-1268    | 0.030 | U    |
| 12672-29-6 | Aroclor-1248 | 0.030 | U    | 1336-36-3  | Aroclor (Total) | 0.030 | U    |

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Data Path : G:\Gcdata\2020\GC 3\Data\10-07-20\

Data File : 3G124632.D

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 7 Oct 2020 14:18

Operator : MS/MLC/ON Sample : AD19595-014

Misc : S,PCB

ALS Vial : 16 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Oct 08 10:03:25 2020

Quant Method : G:\GCDATA\2020\GC\_3\METHODQT\3G\_C1001.M

Quant Title : @GC\_3,ug,608,8082 QLast Update : Thu Oct 01 15:12:16 2020 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1ul

Signal #1 Phase: db-1701P Signal #2 Phase: db-17 Signal #1 Info : .32 Signal #2 Info : .32

| Compou                                         | ınd  | RT#1  | RT#2            | Resp#1            | Resp#2           | pg#1             | pg#2               |
|------------------------------------------------|------|-------|-----------------|-------------------|------------------|------------------|--------------------|
| Target Comp<br>1)TCMX-Surrog<br>45)DCB-Surroga | gate | 3.938 | 3.973<br>10.924 | 735551<br>1009103 | 713027<br>884507 | 39.993<br>42.625 | 39.699m<br>52.179m |
|                                                |      |       |                 |                   |                  |                  |                    |

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.



Data Path : G:\Gcdata\2020\GC\_3\Data\10-07-20\

Data File : 3G124632.D

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

: 7 Oct 2020 14:18 Acq On

Operator : MS/MLC/ON : AD19595-014 Sample

: S, PCB Misc

ALS Vial : 16 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Oct 08 10:03:25 2020

Quant Method : G:\GCDATA\2020\GC\_3\METHODQT\3G\_C1001.M

Quant Title : @GC\_3,ug,608,8082 QLast Update : Thu Oct 01 15:12:16 2020

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1ul

Signal #1 Phase : db-1701P Signal #2 Phase: db-17 Signal #2 Info : .32 Signal #1 Info : .32



#### **ORGANICS PCB REPORT**

Sample Number: SMB88173

Client Id:

Data File: 3G124629.D

Analysis Date: 10/07/20 13:34

Date Rec/Extracted: NA-10/06/20

Column: DB-17/1701P 30M 0.32mm ID 0.25um film

Method: EPA 8082A

Matrix: Soil

Initial Vol: 20g

Final Vol: 10ml

Dilution: 1

Solids: 100

Units: mg/Kg

| Cas #      | Compound     | RL    | Conc | Cas #      | Compound     | RL.   | Conc |
|------------|--------------|-------|------|------------|--------------|-------|------|
| 12674-11-2 | Aroclor-1016 | 0.025 | U    | 11097-69-1 | Aroclor-1254 | 0.025 | U    |
| 11104-28-2 | Aroclor-1221 | 0.025 | U    | 11096-82-5 | Aroclor-1260 | 0.025 | U    |
| 11141-16-5 | Aroclor-1232 | 0.025 | U    | 37324-23-5 | Arocior-1262 | 0.025 | U    |
| 53469-21-9 | Aroclor-1242 | 0.025 | U    | 11100-14-4 | Aroclor-1268 | 0.025 | U    |
| 12672-29-6 | Aroclor-1248 | 0.025 | U    |            |              |       |      |

R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Data Path : G:\Gcdata\2020\GC\_3\Data\10-07-20\

Data File : 3G124629.D

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 7 Oct 2020 13:34 Operator : MS/MLC/ON Sample : SMB88173
Misc : S,PCB
ALS Vial : 13 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Oct 07 13:53:28 2020

Quant Method : G:\GCDATA\2020\GC\_3\METHODQT\3G\_C1001.M

Quant Title : @GC\_3,ug,608,8082

QLast Update : Thu Oct 01 15:12:16 2020

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj.

Signal #1 Phase : db-1701P Signal #2 Phase: db-17 Signal #1 Info : .32 Signal #2 Info : .32

| Compound                                           | RT#1   | RT#2            | Resp#1             | Resp#2             | pg#1             | pg#2             |
|----------------------------------------------------|--------|-----------------|--------------------|--------------------|------------------|------------------|
| Target Compounds 1)TCMX-Surrogate 45)DCB-Surrogate | 3.936  | 3.971<br>10.924 | 1308927<br>1565066 | 1120340<br>1232455 | 71.168<br>66.108 | 62.377<br>72.706 |
| 45/DCB-Sullogace                                   | 10.269 | 10.924          | 1303000            | 1232455            |                  | 72.700           |

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 25% (m)=manual int.



Data Path : G:\Gcdata\2020\GC\_3\Data\10-07-20\

Data File : 3G124629.D

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

: 7 Oct 2020 13:34 Acq On

: MS/MLC/ON Operator : SMB88173 Sample Misc : S, PCB

ALS Vial : 13 Sample Multiplier: 1

Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e

Quant Time: Oct 07 13:53:28 2020

Quant Method: G:\GCDATA\2020\GC 3\METHODQT\3G C1001.M

Quant Title : @GC\_3,ug,608,8082 QLast Update : Thu Oct 01 15:12:16 2020

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1ul

Response\_

Signal #1 Phase : db-1701P Signal #2 Phase: db-17 Signal #1 Info : .32 Signal #2 Info : .32



TIC: 3G124629.D

### FORM2

Surrogate Recovery

Method: EPA 8082A

| Dfile   | Sample#               | Matrix | Date/Time      | Surr<br>Dil | Dilute<br>Out<br>Flag | Column1<br>S1<br>Recov | Column2<br>S2<br>Recov | Column1<br>S3<br>Recov | Column2<br>S4<br>Recov | Column0<br>S5<br>Recov | Column0<br>S6<br>Recoy |
|---------|-----------------------|--------|----------------|-------------|-----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| 3G12462 | 9.D SMB88173          | S      | 10/07/20 13:34 | 1           |                       | 71                     | 62                     | 66                     | 73                     |                        |                        |
| 3G12463 | 1.D AD19595-013       | S      | 10/07/20 14:04 | 1           |                       | 140                    | 139                    | 118                    | 134                    |                        |                        |
| 3G12463 | 2.D AD19595-014       | S      | 10/07/20 14:18 | 1           |                       | 40                     | 40                     | 43                     | 52                     |                        |                        |
| 2G14941 | 2.D AD19563-024(MS:AD | 19 S   | 10/07/20 10:45 | 1           |                       | 64                     | 68                     | 76                     | 63                     |                        |                        |
| 2G14941 | 3.DAD19563-026(MSD:AI | D1 S   | 10/07/20 11:00 | 1           |                       | 93                     | 101                    | 103                    | 86                     |                        |                        |
| 2G14941 | 4.DAD19563-022        | S      | 10/07/20 11:15 | 1           |                       | 96                     | 101                    | 102                    | 87                     |                        |                        |
| 3G12463 | 0.D SMB88173(MS)      | S      | 10/07/20 13:49 | 1           |                       | 93                     | 83                     | 77                     | 87                     |                        |                        |

Flags: SD=Surrogate diluted out

\*=Surrogate out

Method: EPA 8082A

### **Soil Laboratory Limits**

|                   | Spike |        |
|-------------------|-------|--------|
| Compound          | Amt   | Limits |
| S1=TCMX-Surrogate | 100   | 37-141 |
| S2=TCMX-Surrogate | 100   | 37-141 |
| S3=DCB-Surrogate  | 100   | 34-146 |
| S4=DCB-Surrogate  | 100   | 34-146 |

# Form3 Recovery Data Laboratory Limits

QC Batch: SMB88173

Data File

Sample ID:

Analysis Date

Spike or Dup: 3G124630.D

SMB88173(MS)

10/7/2020 1:49:00 PM

Non Spike(If applicable):

Inst Blank(If applicable):

Method: 8082 Matrix: Soil

Units: mg/Kg

QC Type: MBS

| Analyte:            | Col | Spike<br>Conc | Sample<br>Conc | Expected<br>Conc | Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------|-----|---------------|----------------|------------------|----------|----------------|----------------|
| Aroclor-1016 -Total | 1   | 899.002       | 0              | 1000             | 90       | 30             | 163            |
| Aroclor-1260 -Total | 1   | 991.258       | 0              | 1000             | 99       | 25             | 166            |

## Form3 ' Recovery Data Laboratory Limits

QC Batch: SMB88173

Data File

Sample ID:

**Analysis Date** 

Spike or Dup: 2G149412.D

AD19563-024(MS:AD19563-022

10/7/2020 10:45:00 AM

Non Spike(If applicable): 2G149414.D

AD19563-022

10/7/2020 11:15:00 AM

Inst Blank(If applicable):

Method: 8082

Matrix: Soil

Units: mg/Kg

QC Type: MS

| Analyte:            | Col | Spike<br>Conc | Sample<br>Conc | Expected<br>Conc | Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------|-----|---------------|----------------|------------------|----------|----------------|----------------|
| Aroclor-1016 -Total | 1   | 631.208       | 0              | 1000             | 63       | 30             | 163            |
| Aroclor-1260 -Total | 1   | 708.534       | 0              | 1000             | 71       | 25             | 166            |

Data File

Sample ID:

Analysis Date

Spike or Dup: 2G149413.D

AD19563-026(MSD:AD19563-0

10/7/2020 11:00:00 AM

Non Spike(If applicable): 2G149414.D

AD19563-022

10/7/2020 11:15:00 AM

Inst Blank(If applicable):

Method: 8082

Matrix: Soil

Units: mg/Kg

QC Type: MSD

| Analyte:            | Col | Spike<br>Conc | Sample<br>Conc | Expected Conc | Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------|-----|---------------|----------------|---------------|----------|----------------|----------------|
| Aroclor-1016 -Total | 1   | 951.494       | 0              | 1000          | 95       | 30             | 163            |
| Aroclor-1260 -Total | 1   | 1005.81       | 0              | 1000          | 101      | 25             | 166            |

### Form3 **RPD Data Laboratory Limits**

QC Batch: SMB88173

Data File

Sample ID:

**Analysis Date** 

Spike or Dup: 2G149413.D Duplicate(If applicable): 2G149412.D

AD19563-026(MSD:AD19563-0 10/7/2020 11:00:00 AM AD19563-024(MS:AD19563-022 10/7/2020 10:45:00 AM

Inst Blank(If applicable):

Method: 8082

Matrix: Soil

Units: mg/Kg

QC Type: MSD

| Analyte:            | Column | Conc    | Conc    | RPD | Limit |
|---------------------|--------|---------|---------|-----|-------|
| Aroclor-1016 -Total | 1      | 951.494 | 631.208 | 40  | 40    |
| Aroclor-1260 -Total | 1      | 1005.81 | 708.534 | 35  | 37    |

### FORM 4 Blank Summary

Blank Number: SMB88173 Blank Data File: 3G124629.D

Matrix: Soil

Blank Analysis Date: 10/07/20 13:34

Blank Extraction Date: 10/06/20

(If Applicable)

Method: EPA 8082A

| Sample Number   | Data File  | Analysis Date  |  |
|-----------------|------------|----------------|--|
| AD19595-013     | 3G124631.D | 10/07/20 14:04 |  |
| AD19595-014     | 3G124632.D | 10/07/20 14:18 |  |
| SMB88173(MS)    | 3G124630.D | 10/07/20 13:49 |  |
| AD19563-022     | 2G149414.D | 10/07/20 11:15 |  |
| AD19563-026(MSD | 2G149413.D | 10/07/20 11:00 |  |
| AD19563-024(MS: | 2G149412.D | 10/07/20 10:45 |  |

Form 5

Method: EPA 8082A Instrument: GC\_3

| Data File  | Sample#                    | Analysis<br>Date/Time   | Matrix      | Reference<br>File | Column<br>1 RT | Column<br>1 % Drift | Column<br>2 RT  | Column<br>2 % Drift |
|------------|----------------------------|-------------------------|-------------|-------------------|----------------|---------------------|-----------------|---------------------|
| 3G124535 E | 2154                       | 10/01/20 11:35          | Soil        |                   |                |                     |                 |                     |
| 3G124536.D |                            | 10/01/20 11:50          | Soil        |                   |                |                     |                 |                     |
| 3G124537.E | CAL 1242@500PPB            | 10/01/20 12:05          | Soil        | 3G12454           | 10.2885        | 0.0156              | 10.9199         | 0.0009              |
| 3G124538.D | CAL 1248@500PPB            | 10/01/20 12:20          | Soil        | 3G12454           | 10.2877        | 0.0078              | 10.9202         | 0.0037              |
|            | CAL 2154@500PPB            | 10/01/20 12:35          | Soil        | 3G12454           | 10.2889        | 0.0194              | 10.9193         | 0.0046              |
| 3G124540.E | CAL 1262@500PPB            | 10/01/20 12:50          | Soil        | 3G12454           | 10.2885        | 0.0156              | 10.9201         | 0.0028              |
| 3G124541.E | CAL 1660@500PPB            | 10/01/20 13:05          | Soil        | 3G12454           | 10.2880        | 0.0107              | 10.9206         | 0.0073              |
| 3G124542.D | CAL 1660@200PPB            | 10/01/20 13:20          | Soil        | 3G12454           | 10.2871        | 0.0019              | 10.9210         | 0.011               |
| 3G124543.D | CAL 1660@50PPB             | 10/01/20 13:34          | Soil        | 3G12454           | 10.2869        | 0                   | 10.9198         | 0                   |
| 3G124544 D | CAL 1660@1000PPB _         | 10/01/20 13:49          | Soil        | 3G12454           | <u>10 2868</u> | 0.001               | 10.9204         | 0.0055              |
| 3G124545.D | CAL 1660@2000PPB           | 10/01/20 14:04          | Soil        | 3G12454           | 10.2876        | 0.0068              | 10.9204         | 0.0055              |
| 3G124546.D | CAL 1660@4000PPB           | 10/01/20 14:19          | Soil        | 3G12454           | 10.2878        | 0.0088              | 10.9204         | 0.0055              |
| 3G124547.E | OCAL 3268@500PPB           | 10/01/20 14:34          | Soil        | 3G12454           | 10.2886        | 0.0165              | 10.9217         | 0.0174              |
| 3G124548.D | ) ICV                      | 10/01/20 14:52          | Soil        | 3G12454           | 10.2927        | 0.0564              | 10.9231         | 0.0302              |
| 3G124549.E | PEST WS                    | 10/01/ <u>20 15</u> :07 | Soil        | 3G12454           | 0 0000         | 200 *               | 0.0000          | 200*                |
|            | ) AD19429-012(50X)         | 10/01/20 15:26          | Soil        | 3G12454           | 0.0000         | 200 *               | 0.0000          | 200*                |
| 3G124551.E | ) AD19429-009(50X)         | 10/01/20 15:41          | Soil        | 3G12454           | 0.0000         | 200*                | 0.0000          | 200*                |
| 3G124552.D | ) AD19429-002(10X)         | 10/01/20 15:56          | Soil        | 3G12454           | 10.2886        | 0.0165              | 10.9211         | 0.0119              |
| 3G124553.D | ) AD19429-003(10X)         | 10/01/20 16:10          | Soil        | 3G12454           | 10.2886        | 0.0165              | 10.9212         | 0.0128              |
| 3G124554.D | AD19429-004(10X)           | 10/01/20 16:25          | Soil        | 3G12454           | 10.2883        | 0.0136              | 10.9202         | 0.0037              |
| 3G124555.D | ) AD19429-005(10X)         | 10/01/20 16:40          | Soil        | 3G12454           | 10.2899        | 0.0292              | 10.9224         | 0.0238              |
| 3G124556.D | ) AD19429-007(10X)         | 10/01/20 16:55          | Soil        | 3G12454           | 10.2900        | 0.0301              | 10.9224         | 0.0238              |
| 3G124557.D | CAL 1660@2000PPB           | 10/01/20 17:17          | Soil        | 3G12454           | 10.2989        | 0.1166              | 10.9278         | 0.0732              |
| 3G124558.C | ) AD1429-011(10X)          | 10/01/20 17:49          | Soil        | 3G12455           | 10.3013        | 0.0233              | 10.9276         | 0.0018              |
| 3G124559.  | ) AD19429-011(20X)         | 10/01/20 18:19          | <u>Soil</u> | 3G12455           | 10.3008        | 0.01 <u>85</u>      | 10.9272         | 0.0055              |
| 3G124560.D | OCAL 1660@2000PPB          | 10/01/20 18:34          | Soil        | 3G12455           | 10.2923        | 0.0641              | 10.9249         | 0.0265              |
| 3G124561.D | SMB88119                   | 10/01/20 18:53          | Soil        | 3G12456           | 10.2974        | 0.0495              | 10.9265         | 0.0146              |
| 3G124562.E | ) SMB88119(MS)             | 10/01/20 19:08          | Soil        | 3G12456           | 10.2912        | 0.0107              | 10.9238         | 0.0101              |
| 3G124563.D | ) AD19504-002(MS)          | 10/01/20 19:22          | Soil        | 3G12456           | 10.2897        | 0.0253              | 10.9226         | 0.0211              |
| 3G124564.C | ) AD19504- <u>002(MSD)</u> | 10/01/20 19:37          | Soil        | 3G12456           | 10.2899        | 0.0233              | 10.9233         | 0.0146              |
| 3G124565.E | AD19504-002                | 10/01/20 19:52          | Soil        | 3G12456           | 10.2906        | 0.0165              | 10.9233         | 0.0146              |
|            | AD19504-004                | 10/01/20 20:08          | Soil        | 3G12456           | 10.2903        | 0.0194              | 10.9227         | 0.0201              |
|            | AD19504-006                | 10/01/20 20:22          | Soil        | 3G12456           | 10.2903        | 0.0194              | 10.9231         | 0.0165              |
|            | AD19505-002                | 10/01/20 20:37          | Soil        | 3G12456           | 10.2893        | 0.0292              | 10.9239         | 0.0092              |
|            | AD19505-004                | 10/01/20 20:52          | Soil        | <u>3G</u> 12456   | 10.2912        | 0.0107              | 10.9249         |                     |
|            | AD19505-006                | 10/01/20 21:07          | Soil        | 3G12456           | 10.2913        | 0.0097              | 10.9247         | 0.0018              |
|            | AD19506-002                | 10/01/20 21:22          | Soil        | 3G12456           | 10.2928        | 0.0049              | 10.9253         | 0.0037              |
|            | AD19506-004                | 10/01/20 21:37          | Soil        | 3G12456           | 10.2914        | 0.0087              | 10.9241         | 0.0073              |
|            | AD19506-006                | 10/01/20 21:52          | Soil        | 3G12456           | 10.2914        | 0.0087              | 10.9238         | 0.0101              |
|            | AD19507-002                | 10/01/20 22:07          | Soil        | 3G12456           | 10.2915        | 0.0078              | 10.92 <u>31</u> | 0.0165              |
|            | AD19507-004                | 10/01/20 22:22          | Soil        | 3G12456           | 10.2923        | 0                   | 10.9255         | 0.0055              |
|            | AD19507-006                | 10/01/20 22:38          | Soil        | 3G12456           | 10.2919        | 0.0039              | 10.9240         | 0.0082              |
|            | AD19495-001                | 10/01/20 22:52          | Soil        | 3G12456           | 10.2907        | 0.0155              | 10.9246         | 0.0027              |
|            | AD19510-002                | 10/01/20 23:08          | Soil        | 3G12456           | 10.2922        | 0.001               | 10.9250         | 0.0009              |
|            | ) AD19396-003(10X)         | 10/01/20 23:23          | Soil        | 3G12456           | 10.2930        | <u>0.0068</u>       | 10.923 <u>8</u> | 0.0101              |
| 3G124580.D | CAL 1660@1000PPB           | 10/01/20 23:38          | Soil        | 3G12456           | 10.2918        | 0.0049              | 10.9235         | 0.0128              |

Method: EPA 8082A Instrument: GC\_2

| Data File Sample#           | Analysis<br>Date/Time           | Matrix | Reference<br>File | Column<br>1 RT | Column 1 % Drift | Column<br>2 RT | Column<br>2 % Drift |
|-----------------------------|---------------------------------|--------|-------------------|----------------|------------------|----------------|---------------------|
| 2G149297 D 2154             | 10/01/20 17:17                  | Soil   |                   |                |                  |                |                     |
| 2G149298.D CAL 3268@500PPB  | 10/01/20 17:17                  | Soil   | 2G14930           | 10.1377        | 0.0217           | 10.7087        | 0                   |
| 2G149299.D CAL 1242@500PPB  | 10/01/20 17:32                  | Soil   | 2G14930           | 10.1388        | 0.0109           | 10.7094        | 0.0065              |
| 2G149300.D CAL 1248@500PPB  | 10/01/20 18:02                  | Soil   | 2G14930           | 10.1385        | 0.0138           | 10.7087        | 0.0000              |
| 2G149301.D CAL 2154@500PPB  | 10/01/20 18:17                  | Soil   | 2G14930           | 10.1390        | 0.0089           | 10.7105        | 0.0168              |
| 2G149302 D CAL 1262@500PPB  | 10/01/20 18:35                  | Soil   | 2G14930           | 10.1420        | 0.0207           | 10.7111        | 0.0224              |
| 2G149303.D CAL 1660@500PPB  | 10/01/20 18:50                  | Soil   | 2G14930           | 10.1390        | 0.0089           | 10.7091        | 0.0037              |
| 2G149304 D CAL 1660@200PPB  | 10/01/20 19:05                  | Soil   | 2G14930           | 10.1388        | 0.0109           | 10.7091        | 0.0037              |
| 2G149305.D CAL 1660@50PPB   | 10/01/20 19:20                  | Soil   | 2G14930           | 10.1399        | 0                | 10.7087        | 0                   |
| 2G149306.D CAL 1660@1000PPB | 10/01/20 19:36                  | Soil   | 2G14930           | 10.1365        | 0.0335           | 10.7079        | 0.0075              |
| 2G149307 D CAL 1660@2000PPB | 10/01/20 19:51                  | Soil   | 2G14930           | 10.1380        | 0.0187           | 10.7094        | 0.0065              |
| 2G149308.D CAL 1660@4000PPB | 10/01/20 20:06                  | Soil   | 2G14930           | 10.1369        | 0.0296           | 10.7090        | 0.0028              |
| 2G149309.D ICV              | 10/01/20 20:21                  | Soil   | 2G14930           | 10.1370        | 0.0286           | 10.7081        | 0.0056              |
| 2G149310.D PEST WS          | 10/01/20 20:36                  | Soil   | 2G14930           | 0.0000         | 200 *            | 0.0000         | 200*                |
| 2G149311.D SMB88121         | 10/01/20 20:51                  | Soil   | 2G14930           | 10.1388        | 0.0109           | 10.7094        | 0.0065              |
| 2G149312.D SMB88121(MS)     | 10/01/20 21:06                  | Soil   | 2G14930           | 10.1390        | 0.0089           | 10.7097        | 0.0093              |
| 2G149313.D AD19501-001(MS)  | 10/01/20 21:21                  | Soil   | 2G14930           | 10.1376        | 0.0227           | 10.7081        | 0.0056              |
| 2G149314.D AD19501-001(MSD) | 10/01/20 21:36                  | Soil   | 2G14930           | 10.1373        | 0.0257           | 10.7078        | 0.0084              |
| 2G149315.D AD19501-001      | 10/01/20 21:52                  | Soil   | 2G14930           | 10.1380        | 0.0187           | 10.7092        | 0.0047              |
| 2G149316.D AD19501-003      | 10/01/20 22:07                  | Soil   | 2G14930           | 10.1381        | 0.0178           | 10.7087        | 0                   |
| 2G149317 D AD19510-004      | 10/01/20 22:22                  | Soil   | 2G14930           | 10.1393        | 0.0059           | 10.7101        | 0.0131              |
| 2G149318 D AD19510-006      | 10/01/20 22:37                  | Soil   | 2G14930           | 10.1384        | 0.0148           | 10.7096        | 0.0084              |
| 2G149319 D AD19511-002      | 10/01/20 22:52                  | Soil   | 2G14930           | 10.1394        | 0.0049           | 10.7119        | 0.0299              |
| 2G149320 D AD19511-004      | 10/01/20 23:08                  | Soil   | 2G14930           | 10.1413        | 0.0138           | 10.7119        | 0.0299              |
| 2G149321 D AD19511-006      | 1 <u>0</u> /01/2 <u>0</u> 23:23 | Soil   | 2G14930           | 10.1384        | 0.0148           | 10.7106        | 0. <u>017</u> 7     |
| 2G149322 D AD19512-002      | 10/01/20 23:39                  | Soil   | 2G14930           | 10.1405        | 0.0059           | 10.7113        | 0.0243              |
| 2G149323 D AD19512-004      | 10/01/20 23:54                  | Soil   | 2G14930           | 10.1412        | 0.0128           | 10.7116        | 0.0271              |
| 2G149324 D AD19512-006      | 10/02/20 00:11                  | Soil   | 2G14930           | 10.1429        | 0.0296           | 10.7127        | 0.0373              |
| 2G149325.D AD19508-002      | 10/02/20 00:26                  | Soil   | 2G14930           | 10.1411        | 0.0118           | 10.7118        | 0.0289              |
| 2G149326 D AD19508-004      | 10/02/20 00:42                  | Soil   | 2G14930           | 10.1426        | 0.0266           | 10.7127        | 0.0373              |
| 2G149327.D AD19508-006      | 10/02/20 00:58                  | Soil   | 2G14930           | 10.1433        | 0.0335           | 10.7145        | 0.0541              |
| 2G149328.D AD19509-002      | 10/02/20 01:14                  | Soil   | 2G14930           | 10.1419        | 0.0197           | 10.7125        | 0.0355              |
| 2G149329.D AD19509-004      | 10/02/20 01:30                  | Soil   | 2G14930           | 10.1426        | 0.0266           | 10.7128        | 0.0383              |
| 2G149330.D AD19509-006      | 10/02/20 01:46                  | Soil   | 2G14930           | 10.1425        | 0.0256           | 10 7122        | 0.0327              |
| 2G149331 D 1000PPB          | 10/02/20 02:02                  | Soil   | 2G14930           | 10.1436        | 0.0365           | 10.7134        | 0.0439              |
| 2G149332.D CAL 1660@2000PPB | 10/02/20 02:17                  | Soil   | 2G14930           | 10.1410        | 0.0108           | 10.7121        | 0.0317              |

Method: EPA 8082A Instrument: GC\_3

| Data File  | Sample#          | Analysis<br>Date/Time  | Matrix         | Reference<br>File | Column<br>1 RT | Column<br>1 % Drift | Column<br>2 RT | Column<br>2 % Drift |
|------------|------------------|------------------------|----------------|-------------------|----------------|---------------------|----------------|---------------------|
| 3G124615.D | 1000PPB          | 10/07/20 09:16         | Soil           |                   |                |                     |                |                     |
| 3G124616.D | CAL 1660@500PPB  | 10/07/20 09:35         | Soil           | 3G12461           | 10.2934        | 0                   | 10.9261        | 0                   |
| 3G124617.D | WMB88176         | 10/07/20 10:26         | Aaueous        | 3G12461           | 10.2987        | 0.0515              | 10.9271        | 0.0092              |
| 3G124618.D | WMB88176(MS)     | 10/07/20 10:41         | Aaueous        | 3G12461           | 10.2905        | 0.0282              | 10.9241        | 0.0183              |
| 3G124619.D | AD19580-003(R)   | 10/07/20 10:55         | <u>Aaueous</u> | 3G12461           | 10.2877        | 0.0554              | 10.9224        | 0 0339              |
| 3G124620.D | AD19538-001(MS)  | 10/07/20 11:10         | Aqueous        | 3G12461           | 10.2881        | 0.0515              | 10.9233        | 0.0256              |
| 3G124621.D | AD19538-001(MSD) | 10/07/20 11:35         | Aqueous        | 3G12461           | 10.2974        | 0.0389              | 10.9273        | 0.011               |
| 3G124622.D | AD19538-001      | 10/07/20 11:50         | Aqueous        | 3G12461           | 10.2893        | 0.0398              | 10.9232        | 0.0265              |
| 3G124623.D | AD19538-002      | 10/07/20 12:05         | Aqueous        | 3G12461           | 10.2890        | 0.0428              | 10.9252        | 0.0082              |
| 3G124624 D | AD19538-003      | 10/07/20 12:20         | Aqueous        | 3G12461           | 10.2868        | 0.0641              | 10.9228        | 0.0302              |
| 3G124625.D | AD19538-004      | 10/07/20 12:34         | Aqueous        | 3G12461           | 10.2885        | 0.0476              | 10.9237        | 0.022               |
| 3G124626.D | AD19538-005      | 10/07/20 12:49         | Aqueous        | 3G12461           | 10.2878        | 0.0544              | 10.9234        | 0.0247              |
| 3G124627.D | AD19538-006      | 10/07/20 13:04         | Aqueous        | 3G12461           | 10.2891        | 0.0418              | 10.9241        | 0.0183              |
| 3G124628 D | AD19538-007      | 10/07/20 13:19         | Aqueous        | 3G12461           | 10.2888        | 0.0447              | 10.9245        | 0.0146              |
| 3G124629.D | SMB88173         | 10/07/2 <u>0 13:34</u> | Soil           | <u>3G12461</u>    | 10.2895        | 0.0379              | 10.9245        | 0.0146              |
| 3G124630.D | SMB88173(MS)     | 10/07/20 13:49         | Soil           | 3G12461           | 10.2879        | 0.0534              | 10.9241        | 0.0183              |
| 3G124631.D | AD19595-013      | 10/07/20 14:04         | Soil           | 3G12461           | 10.2883        | 0.0496              | 10.9240        | 0.0192              |
| 3G124632.D | AD19595-014      | 10/07/20 14:18         | Soil           | 3G12461           | 10.2889        | 0.0437              | 10.9240        | 0.0192              |
| 3G124633.D | CAL 1660@500PPB  | 10/07/20 15:23         | Soil           | 3G12461           | 10.3021        | 0.0845              | 10.9282        | 0.0192              |
| 3G124634.D | 1000PPB          | 10/07/20 15:38         | Soil           | 3G12463           | 10.2916        | 0.102               | 10.9252        | 0.0274              |

Method: EPA 8082A Instrument: GC\_2

|                                | Analysis               |        | Reference | Column           | Column    | Column          | Column    |
|--------------------------------|------------------------|--------|-----------|------------------|-----------|-----------------|-----------|
| Data File Sample#              | Date/Time              | Matrix | File      | 1 RT             | 1 % Drift | 2 RT            | 2 % Drift |
| 2G149410.D 1000PPB             | 10/07/20 09:33         | Soil   |           |                  |           |                 |           |
| 2G149411.D CAL 1660@1000PPB    | 10/07/20 10:21         | Soil   | 2G14941   | 10.1443          | 0         | 10.7099         | 0         |
| 2G149412.D AD19563-024(MS:AD19 | 10/07/20 10:45         | Soil   | 2G14941   | 10.1430          | 0.0128    | 10.7092         | 0.0065    |
| 2G149413.D AD19563-026(MSD:AD1 | 10/07/20 11:00         | Soil   | 2G14941   | 10.1379          | 0.0631    | 10.7081         | 0.0168    |
| 2G149414 D AD19563-022         | 1 <u>0/07/20</u> 11:15 | Soil   | 2G14941   | 10.1364          | 0.0779    | 10.7074         | 0.0233    |
| 2G149415.D AD19563-002         | 10/07/20 11:31         | Soil   | 2G14941   | 10.1364          | 0.0779    | 10.7073         | 0.0243    |
| 2G149416.D AD19563-004         | 10/07/20 11:46         | Soil   | 2G14941   | 10.1369          | 0.073     | 10.7075         | 0.0224    |
| 2G149417.D AD19563-006         | 10/07/20 12:01         | Soil   | 2G14941   | 10.1374          | 0.068     | 10.7083         | 0.0149    |
| 2G149418.D AD19563-008         | 10/07/20 12:16         | Soil   | 2G14941   | 10.1368          | 0.074     | 10.7076         | 0.0215    |
| 2G149419 D AD19563-010         | 10/07/20 12:31         | Soil   | 2G14941   | 10.1377          | 0.0651    | 1 <u>0.7090</u> | 0.0084    |
| 2G149420.D AD19563-012         | 10/07/20 12:46         | Soil   | 2G14941   | 10.1382          | 0.0602    | 10.7091         | 0.0075    |
| 2G149421.D AD19563-014         | 10/07/20 13:01         | Soil   | 2G14941   | 10.1370          | 0.072     | 10.7084         | 0.014     |
| 2G149422.D AD19563-016         | 10/07/20 13:16         | Soil   | 2G14941   | 10.1368          | 0.074     | 10.7079         | 0.0187    |
| 2G149423.D AD19563-018         | 10/07/20 13:31         | Soil   | 2G14941   | 10.1390          | 0.0523    | 10.7100         | 0.0009    |
| 2G149424 D AD19563-020         | 10/07/20 13:46         | Soil   | 2G14941   | 1 <u>0.</u> 1385 | 0.0572    | 10.7095         | 0.0037    |
| 2G149425.D AD19563-028         | 10/07/20 14:01         | Soil   | 2G14941   | 10.1371          | 0.071     | 10.7092         | 0.0065    |
| 2G149426.D AD19563-030         | 10/07/20 14:16         | Soil   | 2G14941   | 10.1376          | 0.0661    | 10.7084         | 0.014     |
| 2G149427 D AD19563-032         | 10/07/20 14:31         | Soil   | 2G14941   | 10.1386          | 0.0562    | 10.7095         | 0.0037    |
| 2G149428.D AD19563-034         | 10/07/20 14:46         | Soil   | 2G14941   | 10.1395          | 0.0473    | 10.7105         | 0.0056    |
| 2G149429 D AD19563-036         | 10/07/20 15:01         | Soil   | 2G14941   | 10.1380          | 0.0621    | 10.7096         | 0.0028    |
| 2G149430.D AD19563-038         | 10/07/20 15:17         | Soil   | 2G14941   | 10.1379          | 0.0631    | 10.7088         | 0.0103    |
| 2G149431.D AD19596-001         | 10/07/20 15:32         | Soil   | 2G14941   | 10.1381          | 0.0611    | 10.7114         | 0.014     |
| 2G149432.D CAL 1660@1000PPB    | 10/07/20 15:47         | Soil   | 2G14941   | 10.1383          | 0.0592    | 10.7080         | 0.0177    |
| 2G149433.D 1000PPB             | 10/07/20 16:04         | Soil   | 2G14943   | 10.1405          | 0.0217    | 10.7103         | 0.0215    |

CAL 1660@50PPB CAL 1660@500PPB CAL 1660@2000PPB 10/01/20 13:05 10/01/20 14:04 10/01/20 13:34 Analysis Date/Time

0296

3G124541.D 3G124543.D

Data File:

Method: EPA 8082A Level #:

0100230

Initial Calibration Level # Form 6 3G124546 D 3G124544.D 3G124542.D Data File: CAL 1660@1000PPB CAL 1660@4000PPB Cal Identifier: CAL 1660@200PPB 10/01/20 13:49 10/01/20 14:19 10/01/20 13:20

Analysis Date/Time Instrument: GC\_3

|      |      | 4000.                                                                     | 2000.           | 1000    | 500.0    | 50.00 200.0 500.0 1000. 2000. 4000 | 50.00 | 12               | 1.00  | 0.0454 4.46 0.997 1.00 | 4 4.46     |          | 1   | Ĭ   | 0490 0.0494 0.0429 0.0413 0.0378 | 9 0.041        | 4 0.042 | 0 0.049 | 8 0.049          | 0.051  | 1 1 Avg 0.0518 0.0490 0.0494 0.0429 0.0413 0.0378 | clor-1016    |
|------|------|---------------------------------------------------------------------------|-----------------|---------|----------|------------------------------------|-------|------------------|-------|------------------------|------------|----------|-----|-----|----------------------------------|----------------|---------|---------|------------------|--------|---------------------------------------------------|--------------|
|      |      | 400.0                                                                     | 200.0           | 100.0   | 50.00 1  | 20.00                              | 5.00  | 8.2              | 1.00  | 1.84 3.93 0.999 1.00   | 4 3.93     |          | i   | Ĭ   | 9 1.6363                         | 5 1.724        | 6 1.801 | 2 1.897 | и 1.916          | 2.058  | 1 0 Avg                                           | MX-Surrogate |
| Lvi8 | Lvi7 | Calibration Level Concentrations  Lvi1 Lvi2 Lvi3 Lvi4 Lvi5 Lvi6 Lvi7 Lvi8 | oncentr<br>Lvl5 | Level C | Lvi3     | Lviz Calit                         | LvI1  | %Rsd             | Corr2 | Corr1                  | 꼭          | ×        | RF8 | RF7 | RF6                              | RF5            | RF4     | RF3     | RF2              | 쭈.     | Col Mr Fit: RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8       | mpound       |
| 1    |      |                                                                           | İ               | !       | į.       | !<br>:!<br>:[                      |       |                  | !     |                        | ļ<br> <br> | ļ<br>Į   | i   | İ   | 12:50                            | 0/01/20        | B . 1   | 500PP   | _ 1262@          | CA     | 3G124540.D CAL 1262@500PPB 10/01/20 12:50         | 11           |
|      |      |                                                                           |                 |         | :35<br>5 | 10/01/20 12:35                     |       | CAL 2154@500PPB  |       | 3G124539.D             | 3G1        | <b>1</b> |     |     | 12:20                            | 10/01/20 12:20 |         | 500PPI  | CAL 1248@500PPB  | S      | 3G124538.D                                        | 9            |
|      |      |                                                                           |                 |         | 8        | 10/01/20 12:05                     | 10/0  | CAL 1242@500PPB  |       | 3G124537.D             | 3G1        | œ        |     |     | 14:34                            | 10/01/20 14:34 |         | 500PP   | CAL 3268@500PPB  | S      | 3G124547.D                                        | 7            |
|      |      |                                                                           |                 |         | :19      | 10/01/20 14:1                      |       | CAL 1660@4000PPB | _     | 3G124546.D             | 3G1        | 6        |     |     | 14:04                            | 10/01/20 14:04 | -       | 2000PF  | CAL 1660@2000PPE | S<br>A | 3G124545.D                                        | 5            |

| <b>2</b> .     | 3G124538.D  | CAL 1248@500PPB 10/01/20                  | 0/01/20 12:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 3G124539.D    |                | CAL 2134@300PPB | 10/01/20 12:35                                                      |          |
|----------------|-------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-----------------|---------------------------------------------------------------------|----------|
| Compound       | Col Mr Fit: | RF1 RF2 RF3 RF4 RF5 RF6                   | 5 RF7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RF8 AvgRf RT C   | Corr1 Corr2 %  | %Rsd            | Calibration Level Concentrations Lvl1 Lvl2 Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 | Lvi8     |
| TCMX-Surrogate | 1 0 Avg     | 2.0584 1.9162 1.8976 1.8015 1.724         | 1.7249 1.6363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34 3.93          | 0.999 1.00     | 8.2             | 5.00 20.00 50.00 100.0 200.0 400.0                                  |          |
| Aroclor-1016   | 1 1 Avg     | 0.0490 0.0494 0.0429                      | 0.0413 0.0378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                | 12              | 2000.                                                               |          |
| Aroclor-1016   | 1 2 Avg     | 0.1115 0.1037 0.0965 0.0855 0.0758 0.0676 | 58 0.0676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0902 4.83 0    | 0.995 0.999    | 19              | 200.0 500.0 1000. 2000.                                             |          |
| Aroclor-1016   | 1 3 Avg     | 0.2293 0.2043 0.1895 0.1619 0.1509 0.1354 | 09 0.1354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                | 20              | 200.0 500.0 1000. 2000.                                             |          |
| Aroclor-1016   | 1 4 Avg     | 0.0738 0.0654 0.0622 0.0571 0.05          | 0.0521 0.0480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 0.997 1.00     | 16              | ľ                                                                   | 1        |
| Aroclor-1016   | 1 5 Avg     | 0.1406 0.1302                             | 72 0.0965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 0.996 1.00     | 19              | 200.0 500.0 1000. 2000.                                             |          |
| Aroclor-1260   | 1 1 LinF    | 0.1554 0.1283 0.1154 0.1030 0.0922 0.0837 | 22 0.0837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                | 0.996 1.00     | 23              | 200.0 500.0 1000. 2000.                                             |          |
| Aroclor-1260   | 1 2 LinF    | 0.1858 0.1543 0.1410 0.1264 0.1136 0.1046 | 36 0.1046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 0.997 1.00     | 22              | 500.0 1000.                                                         |          |
| Aroclor-1260   | 1 3 Avg     | 0.0868 0.0776 0.0763 0.0712 0.0674 0.0657 | 74 0.0657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                | 10              | 200.0 500.0 1000. 2000.                                             |          |
| Aroclor-1260   | 1 4 Avg     | 0.1156 0.0965 0.0919 0.0809 0.0745 0.0695 | 45 0.0695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 0.0882 8.23 O  | 0.998 1.00     | 19              | 50.00 200.0 500.0 1000. 2000. 4000.                                 | 1        |
| Aroclor-1260   | 1 5 Avg     | 0.1691 0.1558 0.1532 0.1414 0.134         | 0.1345 0.1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 1.00 1.00      | 9.7             | 1000. 2000.                                                         |          |
| Aroclor-1221   | 1 1 Avg     |                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 0.0248 4.25    | ا - <u>ن</u> ل | Lv=10           | 500.0                                                               |          |
| Aroclor-1221   | 1 2 Avg     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.0158 4.40    | י .<br>רי - ו  | LvI=10          | 500.0                                                               |          |
| Aroclor-1221   | 1 3 Avg     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0693 4.46      | ו -יו רי       | Lv=10           | 500.0                                                               |          |
| Aroclor-1232   | 1 1 Avg     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0470 4.46      |                | Lv=7            | 500.0                                                               |          |
| Aroclor-1232   | 1 2 Avg     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0450 4.83      | _<br>-         | LvI=7           | 500.0                                                               |          |
| Aroclor-1232   | 1 3 Avg     |                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0835 5.30      | _<br>_         | Lvi=7           | 500.0                                                               |          |
| Aroclor-1232   | 1 4 Avg     |                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 0.0395 5.44    | _<br>_         | LvI=7           | 500.0                                                               |          |
| Aroclor-1232   | 1 5 Avg     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.0400 5.92    | _<br>          | LvI=7           | 500.0                                                               |          |
| Aroclor-1242   | 1 1 Avg     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0385 4.46      |                | Lv=8            | 500.0                                                               |          |
| Aroclor-1242   | 1 2 Avg     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.0728 4.83    | ۔<br>۔         | LvI=8           | 500.0                                                               |          |
| Aroclor-1242   | 1 3 Avg     |                                           | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 0.147 5.30     | 7              | LvI=8           | 500.0                                                               |          |
| Aroclor-1242   | 1 4 Avg     |                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 0.0984 5.67    |                | Lvi=8           | 500.0                                                               |          |
| Aroclor-1242   | 1 5 Avg     |                                           | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0664 5.92      | _<br>_         | Lvi=8           | 500.0                                                               | 5        |
| Aroclor-1248   | 1 1 Avg     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.0355 4.83 -: |                | Lv⊫9            | 500.0                                                               | ;<br>  ' |
| Aroclor-1248   | 1 2 Avg     | 1 1 1                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0957 5.30      | _<br>_         | Lvi=9           | 500.0                                                               |          |
| Aroclor-1248   | 1 3 Avg     |                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.157 5.65       | _<br>_         | Lv =9           | 500.0                                                               |          |
| Aroclor-1248   | 1 4 Avg     | 1 1 1 1                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.103 5.92       | _<br>-         | Lvi≃9           | 500.0                                                               |          |
| Aroclor-1248   | 1 5 Avg     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.105 6.62 -:    | ۔<br>-         | Lv =9           | 500.0                                                               |          |
| Aroclor-1254   | 1 1 Avg     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.0457 6.82    | <u>.</u> ۲     | Lv1=10          | 500.0                                                               | !        |
| Aroclor-1254   | 1 2 Avg     |                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 0.1427.03      | 1 -1 Lv        | Lv1=10          | 500.0                                                               |          |
| Aroclor-1254   | 1 3 Avg     |                                           | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0830 7.19      | ו .יו ע        | Lv1=10          | 500.0                                                               |          |
| Aroclor-1254   | 1 4 Avg     |                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.126 7.31       | ا<br>ا با لا   | Lv ≃10          | 500.0                                                               |          |
| Aroclor-1254   | 1 5 Avg     |                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 0.06147.71     | -1 Lv          | Lv1=10          | 500.0                                                               |          |
| Aroclor-1262   | 1 1 Avg     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1687.87        | <u> </u>       | <u> </u> _v =11 | 500.0                                                               |          |
| Aroclor-1262   | 1 2 Avg     |                                           | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 0.101 8.88     | ا -1 لv        | Lv =11          | 500.0                                                               |          |
|                |             |                                           | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                  |                |                 |                                                                     | :        |

### Flags

criteria(if applicable) c - failed the initial calibration

### Note:

Col = Column Number

Fit = Indicates whehter Avo RF. Linear, or Quadratic Curve was used for commound Mr = MultiPeak Analyte ()=single neak analyte. >()=multi neak analyte (i.e. nch/chlordane etc.)

Avg Rsd Col 1: 16.24

Avg Rsd Col 2: 18.98

Corr 1 = Correlation Coefficient for linear Fa.forr 2 = Correlation Coefficient for anad Ea.

^Lvl: These compounds use a single pt calibration as specified by the method. The file used to update this calibration point is listed in the header under level # Initial Calibration Criteria: either %RSD <=20 or Corr >= 995 Columns: Signal #1 dh-1701 : Signal #2 dh-608

All Resnonse Factors = Resnonse Factors / 10000

|         |                                                                |                  |                                         | 8                   | Col 2: 18.98   | Avg Rsd Col 2:  | i 1: 16.24       | Avg Rsd Col 1: | Ąv               |              |     |                    |                |          |                             |                                           |               |             | , control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont | 7          |
|---------|----------------------------------------------------------------|------------------|-----------------------------------------|---------------------|----------------|-----------------|------------------|----------------|------------------|--------------|-----|--------------------|----------------|----------|-----------------------------|-------------------------------------------|---------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|         |                                                                |                  | i                                       |                     |                |                 |                  |                | İ                |              |     |                    | İ              |          | İ                           |                                           |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |
|         |                                                                |                  |                                         |                     | 500.0          | 5               | Lv =9            | <u>_</u>       | 5.70 -1          | 0.0698 5.70  | 1   | I                  | 1              |          | 1                           | •                                         | 1             | 2 3 Avg     | Aroclor-1248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                | -                | *************************************** |                     | 500.0          | 5               | LvI=9            | <u>.</u>       | 5.37 -1          | 0.0874 5.37  |     |                    | 1              |          |                             |                                           | 1             | 2 2 Avg     | Aroclor-1248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | Ģ.              | Lvj=9            | <u>.</u>       | 4.99 -1          | 0.0355 4.99  | ł   | 1                  |                |          | 1                           |                                           | 1             | 2 1 Avg     | Aroclor-1248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | Œ.              | Lvi=8            | <u>.</u>       | 6.07 -1          | 0.0521 6.07  | 1   | -                  |                |          | 1                           | 1                                         | 1             | 2 5 Avg     | Aroclor-1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | Ģ.              | Lv]=8            | <u>.</u>       | 5.70 -1          | 0.0606 5.70  | 1   | 1                  | 1              | 1        | 1                           | !                                         | 1             | 2 4 Avg     | Aroclor-1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | Œ               | Lvi=8            | <u>.</u>       | 5.37 -1          | 0.137 5.37   | 1   | 1                  | •              |          | 1                           | !                                         | 1             | 2 3 Avg     | Aroclor-1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         | 1                                                              | •                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                     | 500.0          | <u>r</u>        | LvI=8            | <u>-</u>       | 4.99 -1          | 0.0737 4.99  |     |                    |                | 1        |                             |                                           |               | 2 2 Avg     | Aroclor-1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | 5               | Lvi=8            | 7              | 4.56 -1          | 0.0366 4.56  | 1   | 1                  | 1              | 1        | !                           | !                                         | 1             | 2 1 Avg     | Aroclor-1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | 5               | Lvl=7            | <u>.</u>       | 6.29 -1          | 0.0189 6.29  | 1   | i                  | !              |          | 1                           |                                           | 1             | 2 5 Avg     | Aroclor-1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | ı <u>U</u>      | LvI=7            | <u>-</u>       | 6.22 -1          | 0.0256 6.22  | 1   | i                  | 1              | i        | :                           | i                                         | 1             | 2 4 Avq     | Aroclor-1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | . <u>u</u>      | LVI=7            | د.             | 5.37 -1          | 0.07725.37   | 1   | 1                  | 1              |          | 1                           | !                                         | 1             | 2 3 AVO     | Aroclor-1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . ≥        |
|         |                                                                |                  |                                         |                     | 0000           |                 | [V=/             | د .            | 1.99             | 0.04294.99   |     |                    | ļ              |          |                             |                                           |               | 2 2 AVQ     | Arocior-1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          |                 | [V]=/            |                | 4.56 -1          | 0.0381 4.56  | 1   | 1                  | 1              | 1        | 1                           |                                           | 1             | 2 - Avq     | Arocior-1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . ≥        |
|         |                                                                |                  |                                         |                     | 500.0          |                 | Lv=10            | . 4            | 4.56 -1          | 0.0502 4.56  | I   | 1                  |                |          | 1                           | !                                         | 1             | 2 3 Ava     | Aroclor-1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | ı <u>c</u>      | Lv=10            | <u> </u>       | 4.50 -1          | 0.0156 4.50  | 1   | l                  |                |          | 1                           | !                                         | 1             | 2 2 Avg     | Aroclor-1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | · Œ             | Lvi=10           | <u>.</u>       | 4.34 -1          | 0.0275 4.34  | 1   | 1                  | 1              |          | 1                           | !                                         | 1             | 2 1 Ava     | Aroclor-1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         | 4000                                                           | 2000             | 0 1000                                  | 0 500.0             | 50.00 200.0    | 5               |                  | 00 1.00        | _                | 0.0848 9.17  |     | 735                | 0.0743 0.0735  | 0781 0.0 | .0820 0.                    | 0 1105 0 0900 0 0820 0 0781               | 0.1105        | 2 5 Avg     | Aroclor-1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>}</u> , |
|         |                                                                | •                |                                         |                     |                | ı <u>u</u>      | 9 19             | 9              | -                | 0.103 8.46   | 1   | 833                | )862 0.0       | 0920 0.0 | 0.1072 0.0920 0.0862 0.0833 | 0.1161 0                                  | 0.1329 0.1161 | 2 4 Avg     | Aroclor-1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                | •                |                                         |                     |                | · Ot            |                  |                |                  | 0.0565 8.10  | 1   | 467                | 0.0494 0.0467  | 0525 0.0 | 0.0582 0.0525               | 0.0672 0                                  | 0.0650 0.0672 | 2 3 Avg     | Aroclor-1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                | ٠                |                                         |                     |                | <u> </u>        |                  |                |                  | 0.121 7.47   | 1   | 928                | )995 0.0       | 1069 0.0 | 0.1233 0.1069 0.0995 0.0928 | 0.1337 0                                  | 0.1692 0.1337 | 2 2 LinF    | Aroclor-1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         | •                                                              | ٠                |                                         |                     |                | <u> </u>        | v                |                | _                | 0.1127.39    | l   | 825                | 0.0888 0.0825  | 0985 0.0 | 0.1130 0.0985               |                                           | 0.1606 0.1267 | 2 1 LinF    | Aroclor-1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         | •                                                              |                  |                                         | i                   | 1              | 5               |                  | 1              | 1                | 0.0570 6.07  | 1   | 425                | )463 0.0       | 0521 0.0 | .0588 0.                    | 0.0771 0.0649 0.0588 0.0521 0.0463 0.0425 | 0.0771        | 2 5 LinF    | Aroclor-1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> ≥</u>  |
|         | •                                                              | •                |                                         |                     |                | ŭ.              |                  |                | _                | 0.0768 5.70  | I   | 574                | 0.0625 0.0574  | 0702 0.0 | 0.0793 0.0702               | 0.0881 0                                  | 0.1029 0.0881 | 2 4 LinF    | Aroclor-1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         | 4000                                                           | ). 2000.         | 0 1000                                  | 0 500.0             | 50.00 200.0    | 5               | 19               | 97 1.00        | 5.37 0.997       | 0.173 5.37   |     | 346                | 457 0.1        | 1608 0.  | 0.1797 0.1608 0.1457 0.1346 |                                           | 0.2235 0.1928 | 2 3 Avg     | Aroclor-1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         | 4000.                                                          | ). 2000.         |                                         | 0 500.0             |                | 5               | 9 22             | 0.995 0.999    |                  | 0.0916 4.99  | -   | 670 —              | )745 0.0       | 0848 0.0 | .0959 0.                    | 0.1169 0.1104 0.0959 0.0848 0.0745 0.0670 | 0.1169        | 2 2 LinF    | Aroclor-1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         | 4000                                                           | ). 2000.         | 0 1000                                  | 0 500.0             | 50.00 200.0    | 5               | 9 17             | 0.998 0.999    |                  | 0.0427 4.56  | 1   | 336                | 0.0360 0.0336  |          | 0.0451 0.0402               |                                           | 0.0505 0.0506 | 2 1 Ava     | Aroclor-1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         | 0 400.0                                                        | 0 200.0          | 0 100.0                                 | 0 50.00             | 5.00 20.00     | 5               | 5.1              | 0 1.00         |                  | 1.80 3.96    |     | 964                | 1.7249 1.6964  |          | 1.8493 1.7481               | 1.8118 1                                  | 1.9457 1.8118 | 2 0 Avg     | CMX-Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ħ          |
|         | 0 400.0                                                        | 0 200.0          | 0 100.0                                 | 0 50.00             | 5.00 20.00     | <b>5</b> 1      | 18               | 99 1.00        | 2.37 10.29 0.999 | 2.37         | 1   | 345                | 2.0279 1.9345  |          | 2.4298 2.1704               | 2.5725 2                                  | 3.0692        | 1 0 Avg     | DCB-Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ō          |
|         |                                                                |                  |                                         |                     | 500.0          | 5               | Lvl=7            | 7              | 10.07 -1         | 0.670 10.07  |     | 1                  |                |          | :                           | !                                         | -             | 1 5 Avg     | Aroclor-1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | 5               | Lv =7            | <u>.</u>       | 9.23 -1          | 0.0654 9.23  | ١   | 1                  | 1              |          | 1                           | 1                                         | !             | 1 4 Avg     | Aroclor-1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | 5               | Lvi=7            | <u>.</u>       | 9.12 -1          | 0.240 9.12   |     | 1                  |                |          | 1                           | !                                         | !             | 1 3 Avg     | Aroclor-1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
| -       |                                                                |                  |                                         |                     | 500.0          | 5               | Lv1=7            | <u>.</u>       | 8.55 -1          | 0.0327 8.55  | 1   | !                  | 1              |          |                             |                                           | 1             | 1 2 Avg     | Aroclor-1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | 5               | Lvi=7            | <u>.</u>       | 8.22 -1          | 0.0288 8.22  | į   | •                  |                | ·<br>    | 1                           | !                                         | !             | 1 1 Avg     | Aroclor-1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | 5               | Lv=11            | <u>.</u>       | 10.07 -1         | 0.0329 10.07 |     | 1                  | ·<br>          | •        | 1                           | !                                         | !             | 1 5 Avg     | Aroclor-1262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | 5               | Lv=11            | <u>.</u>       | 9.70 -1          | 0.0916 9.70  | I   | ł                  |                | •        | 1                           | !                                         | 1             | 1 4 Avg     | Aroclor-1262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥          |
|         |                                                                |                  |                                         |                     | 500.0          | 5               | Lv =11           | <u>.</u>       | 8.94 -1          | 0.1918.94    |     |                    |                | !        | !                           | !                                         | 1             | 1 3 Avg     | Aroclor-1262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥.         |
| 17 Lv18 | Calibration Level Concentrations Lvl2 Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 | 1 Conce          | Sn Leve                                 | alibratic<br>2 Lvl3 | Lvi1 Lvi2      |                 | ? %Rsd           | r1 Corr2       | RT Corr1         | AvgRf        | RF8 | 6 RF7              | RF5 RF6        | RF4 R    | RF3                         | RF2                                       | 꾸 1           | Col Mr Fit: | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ်င်        |
|         | :                                                              |                  |                                         |                     |                | •               |                  |                |                  |              |     | 0                  | 10/01/20 12:50 | 10/01    | )PPB                        | 1262@500PPB                               | CAL 1         | 3G124540.D  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ، لا       |
|         |                                                                |                  |                                         | 12:35               | 10/01/20 12:35 | )500PPB         | CAL 2154@500PPB  | 39.D           | 3G124539.D       | 10           |     | 0                  | 10/01/20 12:20 | 10/01    | )PPB                        | CAL 1248@500PPB                           | CAL 1:        | 3G124538.D  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Z</b> 3 |
|         |                                                                |                  |                                         | 12:05               | 10/01/20 12:05 | )500PPB         | CAL 1242@500PPB  | 37.D           | 3G124537.D       | <b>∞</b>     |     | 4                  | 10/01/20 14:34 | 10/01    | )PPB                        | CAL 3268@500PPB                           | CAL 3         | 3G124547.D  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JU         |
|         |                                                                |                  |                                         | 14:19               | 10/01/20 14:19 | )4000PPB        | CAL 1660@4000PPB | 6.D            | 3G124546.D       | 6            |     | 4                  | 10/01/20 14:04 | 10/01    | оррв                        | CAL 1660@2000PPB                          | CAL 1         | 3G124545.D  | Съ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •          |
|         |                                                                |                  |                                         | 13:49               | 10/01/20 13:49 | )1000PPB        | CAL 1660@1000PPB | <b>1</b>       | 3G124544.D       | 4            |     | O1                 | 10/01/20 13:05 | 10/01    | )PPB                        | CAL 1660@500PPB                           | CAL 1         | 3G124541.D  | ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ی          |
|         |                                                                |                  |                                         | 13:20               | 10/01/20 13:20 | )200PPB         | CAL 1            | <b>1</b> 2.D   | 3G124542.D       | 2            |     | 4                  | 10/01/20 13:34 | 10/01    | B                           | CAL 1660@50PPB                            | CAL 1         | 3G124543.D  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z          |
|         |                                                                |                  | te/Time                                 | Analysis Date/Time  | Anal           | Cal Identifier: | !                | Data File:     |                  | Level #      |     | Analysis Date/Time | nalysis I      | Þ        | tifier:                     | Cal Identifier:                           | ē             | Data File:  | Level #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J          |
|         | GC_3                                                           | Instrument: GC_3 | Inst                                    |                     |                |                 |                  |                | 9                | al Calibrati |     |                    |                |          |                             |                                           |               |             | Method: EPA 8082A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •          |
|         |                                                                |                  |                                         |                     |                |                 |                  |                |                  | Form 6       |     |                    |                |          |                             |                                           |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |

0100230 0297

### Flags

criteria(if applicable) c - failed the initial calibration

### Note:

Col = Column Number

Mr = MultiPeak Analyte 0=sinole neak analyte. >0=multi neak analyte (i.e. nch/chlordane etc.) Fit = Indicates whether Avp RF. Linear, or Ouadratic Curve was used for comnound. Corr I = Correlation Coefficient for linear Fo. Corr 2 = Correlation Coefficient for quad Fo.

^Lvl: These compounds use a single pt calibration as specified by the method. The file used to update this calibration point is listed in the header under level #

Initial Calibration Criteria: either %RSD <=20 or Corr >= .995 Columns: Signal #1 db-1701 : Signal #2 db-608 All Resnonse Factors = Resnonse Factors / 10000

|                                           |                |              |              |              |              |              |              |                                         |              |              |              |              |              |              |              |              | 0 :          | ,                                                         | 9 2             | 23              | 3 6             | )                | 0                | 2               | 9:                 | 8                  |
|-------------------------------------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------------------------------------------------|-----------------|-----------------|-----------------|------------------|------------------|-----------------|--------------------|--------------------|
| DCB-Surrogate                             | Aroclor-1268   | Aroclor-1268 | Aroclor-1268 | Aroclor-1268 | Aroclor-1268 | Aroclor-1262 | Aroclor-1262 | Aroclor-1262                            | Aroclor-1262 | Aroclor-1262 | Aroclor-1254 | Aroclor-1254 | Aroclor-1254 | Aroclor-1254 | Aroclor-1254 | Aroclor-1248 | Aroclor-1248 | Compound                                                  |                 | 9               | 7               | Un               | <b>-</b>         | _               |                    | Method: EPA 8082A  |
|                                           |                |              |              |              |              |              |              |                                         |              |              |              |              |              |              |              |              |              |                                                           |                 | •               |                 |                  | -                |                 | Level #:           | 8082A              |
| 2 0 LinF                                  | 2 5 Avg        | 2 4 Avg      | 2 3 Avg      | 2 2 Avg      | 2 1 Avg      | 2 5 Avq      | 2 4 Avg      | 2 3 Avq                                 | 2 2 Avg      | 2 1 Avg      | 2 5 Avg      | 2 4 Avg      | 2 3 Avg      | 2 2 Avg      | 2 1 Avg      | 2 5 Avg      | 2 4 Avg      | Cot Mr Fit:                                               | 3G124540.D      | 3G124538.D      | 3G124547.D      | 3G124545.D       | 3G124541.D       | 3G124543.D      | Data File          |                    |
| 2.824                                     | 1              | 1            | 1            | į            |              | i            | 1            | 1                                       | 1            | 1            |              |              | i            | 1            | i            |              | -            | 굒1                                                        | CA              | CAL             | S               | S                | S                | Š               | ī                  |                    |
| 3 2.190                                   | i              | 1            |              | =            |              | i            | 1            | 1                                       | 1            | i            | -            | -            | 1            | 1            | 1            | 1            | 1            | RF2                                                       | _ 1262@         | - 1248@         | - 3268@         | - 1660@          | - 1660@          | CAL 1660@50PPB  | Call               |                    |
| 1 1.977                                   | 1              | 1            |              | •            | 1            | 1            | 1            | 1                                       | 1            | :            |              |              | -            | -            | :            | 1            | 1            | RF3                                                       | CAL 1262@500PPB | 1248@500PPB     | CAL 3268@500PPB | CAL 1660@2000PPB | CAL 1660@500PPB  | 50PPB           | Cal Identifier:    |                    |
| 1 1.82                                    | i              | į            | 1            | :            | 1            | i            | I            | -                                       | 1            | i            | ł            |              |              | 1            | i            | 1            | I            | RF4                                                       |                 | •               |                 | œ                | ••               |                 |                    |                    |
| 2.8243 2.1901 1.9774 1.8232 1.6959 1.6810 | i              | i            | l            | 1            |              | 1            | 1            | 1                                       | 1            | 1            | i            | 1            |              | 1            | -            |              | 1            | RF5                                                       | 10/01/20 12:50  | 10/01/20 12:20  | 10/01/20 14:34  | 10/01/20 14:04   | 10/01/20 13:05   | 10/01/20 13:34  | Ana                |                    |
| 59 1.681                                  | I              | 1            | 1            | 1            | 1            | 1            | 1            | 1                                       | 1            | 1            | 1            |              | 1            | 1            | I            | 1            | 1            | RF6                                                       | 12:50           | 12:20           | 14:34           | 14:04            | 13:05            | 13:34           | Analysis Date/Time |                    |
| 0                                         | i              | i            |              | i            | 1            | 1            | I            | 1                                       | 1            | 1            | 1            |              | 1            | 1            | į            | 1            | 1            | RF7                                                       |                 |                 |                 |                  |                  |                 | te/Time            |                    |
| 1                                         | l              | ١            | 1            | I            | 1            | 1            | 1            | 1                                       | •            | 1            | 1            | l            | 1            | 1            | 1            | 1            | i            | RF8                                                       |                 |                 |                 |                  |                  |                 |                    | In:                |
|                                           |                | _            |              |              | _            |              | _            |                                         | _            |              | _            | _            |              | _            |              | _            | _            | İ                                                         |                 |                 |                 |                  |                  |                 | Le                 | ial Ca             |
| 2.03 10.92 1.00                           | 0.522 10.35 -1 | 0.0512 9.68  | 0.179 9.52   | 0.0292 8.60  | 0.0166 8.56  | 0.0286 10.35 | 0.0940 9.78  | 0.0831 9.17                             | 0.0822 9.06  | 0.1017.89    | 0.0436 8.52  | 0.0492 7.82  | 0.09117.31   | 0.0345 6.92  | 0.1096.57    | 0.0789 6.35  | 0.0687 6.22  | AvgRf RT                                                  |                 | ō               | 00              | <b>о</b>         | 4                | 2               | Level #:           | nitial Calibration |
| 0.92                                      | 0.35           | .68          | .52          | .66          | 56           | 0.35         | .78          | .17                                     | 8            | .89          | 52           | 82           | <u>ω</u>     | 92           | .57          | 35           | 22           |                                                           |                 | 3G12            | 3G12            | 3G124546.D       | 3G124544.D       | 3G12            |                    | ž                  |
| 1.00                                      | ÷              | <u>-</u>     | -            | ÷            | <u>-</u>     | ÷            | <u>-</u>     | -                                       | <u>-</u>     | <u>.</u>     | <u>-</u>     | ÷            | <u> </u>     | ÷            | ÷            | <u>-</u>     | ·            | Corri                                                     |                 | 1539.E          | 1537.E          | 1546.C           | 1544.C           | 1542.C          | Data File          |                    |
| 1.00                                      | <u>-</u>       | <u> </u>     | _            | <u>.</u>     | <u>-</u>     | <u>.</u>     | <u>-</u>     | <u>-</u>                                | <u>-</u>     | <u>-</u>     | <u>.</u>     | <u>-</u>     | -            | <u>.</u>     | <u>.</u>     | <u>.</u>     | <u>-</u>     | 1 Corr2                                                   |                 |                 |                 |                  |                  |                 |                    |                    |
|                                           | _              | _            | _            | _            | _            | ۲            | Lv =1:       | Lv=1                                    |              | Lv=11        | ₹            | ₹            | Į.           | ₹            | ₹            | _            | _            |                                                           |                 | CAL 2           | CAL 1           | CAL 1            | CAL 1            | CAL 1           | •                  |                    |
| 21                                        | Lvi=7          | LvI=7        | /=7          | Lvl=7        | LvI=7        | Lv1=11       | =11          | ======================================= | <u>"</u>     | <u>"</u>     | Lv1=10       | Lv=10        | Lv=10        | Lv=10        | Lvl=10       | Lv =9        | Lv =9        | %Rsd                                                      |                 | CAL 2154@500PPB | CAL 1242@500PPB | CAL 1660@4000PPB | CAL 1660@1000PPB | CAL 1660@200PPB | Callo              |                    |
|                                           |                |              |              |              |              |              |              |                                         |              |              |              |              | i            |              |              |              |              |                                                           |                 | 500P            | 500P            | 4000             | 1000             | 200P            | Cal Identifier:    |                    |
| (B                                        | <b>(B</b>      | (h           | (1)          | (P           | /n           | (h           | (B           | (n                                      | (B           | (h           | (h           | <b>(</b> %   | (n           | (P           | (n           | (P           | (B           | !<br>                                                     | 1               | В               | В               | Bdd              | Bgg              | 8               |                    |                    |
| 5.00                                      | 500.0          | 500.0        | 00.0         | 500.0        | 00.0         | 0.0          | 500.0        | 00.0                                    | 00.0         | 00.0         | 0.0          | 500.0        | 00.0         | 500.0        | 00.0         | 500.0        | 500.0        | Ξ                                                         |                 | 10/0            | 10/             | 10/0             | 10/              | 10/             |                    |                    |
| 20.00                                     |                |              |              |              |              |              |              |                                         |              |              |              |              |              |              |              |              |              | ಸ್ಥ                                                       |                 | 10/01/20 12:35  | 10/01/20 12:05  | 10/01/20 14:19   | 10/01/20 13:49   | 10/01/20 13:20  | Analysis Date/Time |                    |
| 50.0                                      |                |              |              |              |              |              |              |                                         |              |              |              |              | 1            |              |              |              |              | librati<br>LvI                                            |                 | 12:35           | 12:05           | 14:19            | 13:49            | 13:20           | sis Da             |                    |
| ŏ<br>10                                   |                |              |              |              |              |              |              |                                         |              |              |              |              |              |              |              |              |              | 39<br>                                                    |                 |                 |                 |                  |                  |                 | te/Tin             | =                  |
| 0.0 2                                     |                |              | !            |              |              |              |              |                                         |              |              |              |              |              |              |              |              |              | <u>\$6</u><br>Co                                          |                 |                 |                 |                  |                  |                 | æ                  | Strum              |
| 20.00 50.00 100.0 200.0 400.0             |                |              | [            |              |              |              |              |                                         |              |              |              |              |              |              |              |              |              | Calibration Level Concentrations Lvi2 Lvi3 Lvi4 Lvi5 Lvi6 | i               |                 |                 |                  |                  |                 |                    | Instrument: GC_3   |
| 400.0                                     |                |              |              |              |              |              |              | İ                                       |              |              |              |              |              |              |              |              |              | ations<br>Lvl6                                            |                 |                 |                 |                  |                  |                 |                    | C                  |
|                                           |                |              |              |              |              |              |              |                                         |              |              |              |              |              |              |              |              |              | Lv17                                                      | i               |                 |                 |                  |                  |                 |                    |                    |
|                                           |                |              |              |              |              |              |              |                                         |              |              |              |              |              |              |              |              |              | Lv18                                                      |                 |                 |                 |                  |                  |                 |                    |                    |

Form 6
Initial Calibration
Level #

Flags

criteria(if applicable) c - failed the initial calibration

| Col = Column Number | Mr = MultiPeak Analyte (i.e. pch/chlordane etc...) | Mr = MultiPeak Analyte (i.e. pch/chlordane etc...)

Fit = Indicates whehter Avp RF. Linear, or Quadratic Curve was used for commound. Corr I = Correlation Coefficient for linear Eq. Corr 2 = Correlation Coefficient for quad Eq.

^Lvl: These compounds use a single pt calibration as specified by the method. The file used to update this calibration point is listed in the header under level #

Avg Rsd Col 1: 16.24 Avg Rsd Col 2: 18.98

All Resnanse Factors = Resnanse Factors / 10000 Initial Calibration Criteria: either %RSD <=20 or Corr >= .995 Columns: Signal #1 dh-1701 : Signal #2 dh-608

| [ | ļ                    | Ş      | A            | Αīο           | Aroc         | Aroc         | Aroc         | Aroc         | Aroc         | Aro          | Aro          | Aro          | Aro          | Aro          | Aroc         | Aroc         | Aroc         | Aroc         | Aroc         | Aroc         | Aroc         | Aroc         | Aroc         | Aroc         | Aroc         | Aroc         | Aro          | Aroc                                      | Aroc                                      | Aro                                | Aro                                       | Aroc                        | Aro                                       | Ą                                         | A S                                       | A S                                       | A                    | T<br>C               | Con                                                       | ، ی            | د ع             | ی ر             | ı                | ۳                | Z               |                    |                  |
|---|----------------------|--------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------------------------------------|-------------------------------------------|------------------------------------|-------------------------------------------|-----------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------|----------------------|-----------------------------------------------------------|----------------|-----------------|-----------------|------------------|------------------|-----------------|--------------------|------------------|
|   | İ                    | , ,    | Aroclor-1262 | Aroclor-1262  | Aroclor-1254 | Aroclor-1254 | Aroclor-1254 | Aroclor-1254 | Aroclor-1254 | Aroclor-1248 | Aroclor-1248 | Aroclor-1248 | Aroclor-1248 | Aroclor-1248 | Aroclor-1242 | Aroclor-1242 | Aroclor-1242 | Aroclor-1242 | Aroclor-1242 | Aroclor-1232 | Aroclor-1232 | Aroclor-1232 | Aroclor-1232 | Aroclor-1232 | Aroclor-1221 | Aroclor-1221 | Aroclor-1221 | Aroclor-1260                              | Aroclor-1260                              | Aroclor-1260                       | Aroclor-1260                              | Aroclor-1260                | Aroclor-1016                              | Aroclor-1016                              | Aroclor-1016                              | Aroclor-1016                              | Aroclor-1016         | TCMX-Surrogate       | Compound                                                  | 1              |                 |                 |                  |                  |                 | Method: EPA 6V6ZA  | Н                |
|   | İ                    |        |              |               |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |                                           |                                           |                                    |                                           |                             |                                           |                                           |                                           |                                           |                      |                      |                                                           | : <b>=</b>     | 9               | 7               | СI               | ω                | 1               | TA 0000            | 9083             |
|   | -                    | _      | :<br>!       | _             | _            | _            | _            | _            |              |              | _            | _            | _            | _            | _            | _            | _            | _            | !<br>!       | _            | _            | _            | _            |              | _            | _            | _            | _                                         | _                                         | _                                  | _                                         | _                           | <br> <br>                                 | _                                         | _                                         | _                                         |                      | ا<br>ا               | င္ပ                                                       | 2G149          | 2G149           | 2G149           | 2G149            | 2G149            | 2G149           | 3                  | >                |
|   |                      |        | 2 2          | -<br>1<br>Ava | 5 Ava        | 4 Avo        | 3 Ava        | 2 Ava        | 1 Ava        | 5 Ava        | 4 Ava        | 3 Avq        | 2 Ava        | 1 Ava        | 5 Ava        | 4 Avg        | 3 Ava        | 2 Ava        | 1 Ava        | 5 Ava        | 4 Avg        | 3 Ava        | 2 Ava        | 1 Ava        | 3 Ava        | 2 Ava        | 1 Ava        | 5 Avq                                     | 4 Ava                                     | 3 Ava                              | 2 LinF                                    | 1 LinF                      | 5 Ava                                     | 4 Avo                                     | 3 Ava                                     | 2 LinF                                    | 1 Ava                | O Avo                | Col Mr Fit:                                               | 2G149302.D     | 2G149300.D      | 2G149298.D      | 2G149307.D       | 2G149303.D       | 2G149305.D      | Data File:         |                  |
|   | !                    |        |              |               | 1            | 1            | İ            | 1            |              | į            | I            | -            | 1            | 1            | l            | I            | 1            | -            | 1            | •            | ١            | 1            | 1            | 1            | I            | 1            | i            | 0.0517                                    | i                                         |                                    |                                           |                             | 0.0556                                    |                                           |                                           |                                           |                      | 0 6496               | 쭈1                                                        | Ç<br>A         | CAL             | Ç<br>₽          | Ç<br>E           | C <sub>A</sub>   | [               | Ď.                 |                  |
|   |                      |        |              |               | 1            | 1            |              | 1            |              | 1            | 1            | l            | 1            | !            | i            | 1            |              | 1            | 1            | 1            |              | i            | 1            | 1            | -            |              | 1            | 0.0466                                    | 0.0324                                    | 0.0244                             | 0.0500                                    | 0.0431                      | 0.0496                                    | 0.0215                                    | 0.0671                                    | 0.0353                                    |                      |                      | RF2                                                       | 1262@          | 1248@           | 3268@;          | 1660@;           | 1660@;           | 1660@50PPB      | 2                  |                  |
|   |                      |        |              |               | 1            | 1            |              | 1            | 1            | 1            | İ            | I            | 1            | 1            | 1            | 1            | 1            | 1            | 1            | I            |              | 1            | 1            | 1            | 1            | 1            | 1            | 0.0517 0.0466 0.0442 0.0417 0.0397 0.0384 | 0.0363 0.0324 0.0291 0.0271 0.0250 0.0237 | 0.0244 0.0226 0.0211 0.0200 0.0195 | 0.0658 0.0500 0.0429 0.0380 0.0342 0.0315 | 0.0518 0.0431 0.0374 0.0332 | 0.0556 0.0496 0.0453 0.0401 0.0368 0.0332 | 0.0230 0.0215 0.0205 0.0191 0.0180 0.0167 | 0.0770 0.0671 0.0616 0.0544 0.0501 0.0458 | 0.0403 0.0353 0.0318 0.0282 0.0250 0.0223 | 0.0178 0.0168 0.0157 | 0.5939 0.5919 0.5676 | RF3                                                       | 1262@500PPB    | 1248@500PPB     | 3268@500PPB     | 1660@2000PPB     | 1660@500PPB      | 50PPB           | Cal Identifier     |                  |
|   |                      |        | 1            |               | 1            | 1            |              | 1            |              | i            | İ            | i            | 1            |              | 1            | i            | 1            | I            | 1            | 1            | 1            | i            | 1            | 1            | 1            | 1            | 1            | 0.0417                                    | 0.0271                                    | 0.0211                             | 0.0380                                    | 0.0332                      | 0.0401                                    | 0.0191                                    | 0.0544                                    | 0.0282                                    | 0.0157               | 0.5676               | RF4                                                       | 10             | 10              |                 |                  | 10               | 10              |                    |                  |
|   |                      |        |              | i             |              | İ            | 1            | 1            | 1            | i            | i            | i            | ł            | 1            | İ            | 1            | 1            | i            |              | 1            | 1            | 1            | İ            |              | I            | 1            | 1            | 0.0397                                    | 0.0250                                    | 0.0200                             | 0.0342                                    | 0.0297                      | 0.0368                                    | 0.0180                                    | 0.0501                                    | 0.0250                                    |                      | 0.5689               | RF5                                                       | 10/01/20 18:35 | 10/01/20 18:02  | 10/01/20 17:32  | 10/01/20 19:51   | 10/01/20 18:50   | 10/01/20 19:20  | Analy              |                  |
|   | :                    |        |              | l             | 1            | 1            |              |              |              | 1            | İ            | 1            | i            | 1            | 1            | 1            | 1            | 1            | 1            | I            | 1            | 1            | 1            | 1            |              | 1            | 1            | 0.0384                                    | 0.0237                                    | 0.0195                             | 0.0315                                    | 0.0270                      | 0.0332                                    | 0.0167                                    | 0.0458                                    | 0.0223                                    | 0.0131               | 0.5563               | RF6                                                       | 8.35           | 8:02            | 17:32           | 9:51             | 8:50             | 19:20           | Analysis Date/Time |                  |
|   | •                    |        | 1            | -             | -            | 1            | 1            | 1            | -            | į            | !            | i            | 1            | 1            | !            | 1            |              | 1            | 1            | İ            |              | 1            | İ            | 1            | 1            | 1            | 1            | 1                                         | 1                                         | 1                                  | !                                         | 1                           | 1                                         | į                                         | 1                                         |                                           | i                    | 1                    | RF7                                                       |                |                 |                 |                  |                  |                 | Time               |                  |
|   | :                    |        | 1            |               | I            | 1            |              | 1            | 1            | İ            | I            | ļ            | i            | -            | 1            | 1            | -            | 1            | ; <b> </b>   | i            | -            | i            | İ            | 1            | 1            | 1            | 1            | •                                         | •                                         | 1                                  |                                           | 1                           | 1                                         | !                                         | 1                                         |                                           | I                    | 1                    | RF8                                                       | i              |                 |                 |                  |                  |                 | Initial            | F                |
|   | 1                    | 0      | 20           | 0.046         | 0.018        | 0.041        | 0.027        | 0.044        | 0.014        | 0.034        | 0.029        | 0.055        | 0.032        | 0.013        | 0.023        | 0.035        | 0.050        | 0.025        | 0.014        | 0.013        | 0.011        | 0.026        | 0.013        | 0.016        | 0.024        | 0.00661 4.29 | 0.00911 4.15 | 0.043                                     | 0.029                                     | 0.022                              | 0.043                                     | 0.037                       | 0.043                                     | 0.019                                     | 0.059                                     | 0.030                                     | 0.016                | 0.58                 | AvgRf                                                     |                | 10              | œ               | თ                | 4                | 2               | Calibration        | orm 6            |
|   |                      | 0.10   | 0 0300 8 76  | 0.0467 7.75   | 0.0187 7.57  | 0.0413 7.19  | 0.0270 7.07  | 0.0447 6.90  | 0.0146 6.70  | 0.0344 6.50  | 0.0294 5.90  | 0.0552 5.54  | 0.0328 5.19  | 0.0132 4.72  | 0.0234 5.79  | 0.0351 5.55  | 0.0504 5.19  | 0.0259 4.72  | 0.0146 4.35  | 0.0135 5.79  | 0.0117 5.33  | 0.0268 5.19  | 0.0132 4.72  | 0.0163 4.35  | 0.0244 4.35  | 1 4.29       | 1 4.15       | 0.0438 8.83                               | 0.0290 8.11                               | 0.0224 7.52                        | 0.0438 7.32                               | 0.0371 7.07                 | 0.0435 5.55                               | 0.0198 5.44                               | 0.0594 5.19                               | 0 0305 4 72                               | 0.0164 4.35          | 0.588 3.85           | 끅                                                         | į<br>!         | 2G1             | 261             | 2G1              | 261              | 261             | tion               | . 01             |
| ļ | Ava Rso              | -      | <u>.</u>     | <u>-</u>      | <u>.</u>     | <u>.</u>     | <u>.</u>     | <u>.</u>     | -            | <u>.</u>     | 7            | <u>.</u>     | <u>-</u>     | -            | <u>.</u>     | <u>.</u>     | <u>-</u>     | <u>-</u>     | <u>:</u>     | <u>.</u>     | <u>.</u>     | <u>.</u>     | <u>.</u>     | -            | <u>.</u>     | <u>-</u>     | 7            | 1.00                                      | 0.999                                     |                                    |                                           |                             | - 1                                       |                                           | 0.997                                     | 0.995                                     | 0.997                | 200                  | Corr1 (                                                   |                | 2G149301.D      | 2G149299.D      | 2G149308.D       | 2G149306.D       |                 | Data               |                  |
|   | d Col 1: 17.47       |        | <u> </u>     | <u> </u>      | <u>.</u>     | <u> </u>     | <u> </u>     | <u>.</u>     | -            | <u>.</u>     | <u> </u>     | <u> </u>     | <u>.</u>     | -1           | <u> </u>     | <u>.</u>     | <u> </u>     | <u>-</u>     | 1            | <u>.</u>     | <u>.</u>     | <u>-</u>     | <u>-</u>     | -            | <u> </u>     | <u>-</u>     | 7            | 1.00                                      | 1.<br>8                                   | 1.00                               | 1.00                                      | 1.00                        | 8                                         | 8                                         | 8                                         | 0.999                                     | 1.00                 | 8                    | Corr2                                                     |                | C <sub>A</sub>  | င္              | S<br>S           | င္ပ              |                 | T<br>D             |                  |
|   | 17 47                | [41-11 | \ <u> </u>   | Lv=11         | Lv =10       | Lv1=10       | Lv=10        | Lvi=10       | Lv1=10       | Lvl=9        | Lvl=9        | Lvl=9        | Lvl=9        | LvI=9        | Lv =8        | Lvl=8        | Lv =8        | LvI=8        | Lv=8         | Lvl=7        | LvI=7        | Lv⊫7         | LvI=7        | LvI=7        | Lv1=10       | Lv1=10       | Lvi=10       | <b>=</b>                                  | 16                                        | 13                                 | 29                                        | 25                          | 19                                        | 12                                        | 19                                        | 22 7                                      | 16 <sup>:</sup>      | 57                   | %Rsd                                                      |                | L 2154          | L 12426         | L 1660(          | L 1660           | 1660            | <u> </u>           |                  |
|   | AVQ :                |        |              |               |              |              |              |              |              |              |              |              |              | İ            |              |              |              |              |              |              |              |              |              | ·<br>!       |              |              |              |                                           |                                           |                                    |                                           |                             |                                           |                                           |                                           |                                           |                      | !                    |                                                           | 1              | CAL 2154@500PPB | CAL 1242@500PPB | CAL 1660@4000PPB | CAL 1660@1000PPB | CAL 1660@200PPB | Cal Identifier:    |                  |
|   | Ava Rsd Col 2: 18.13 | 6      | 500 0        | 500.0         | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 50.00                                     | 50.00                                     | 50.00                              | 50.00                                     | 50.00                       | 50.00                                     | 50.00                                     | 50.00                                     | 50.00                                     | 50.00                | 5.00                 | <u>V</u> 1                                                | !              |                 |                 |                  |                  |                 | •                  |                  |
|   | 12: 18.1             | •      | <b>&gt;</b>  | 0             | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |                                           |                                           |                                    |                                           |                             | i                                         |                                           |                                           |                                           | _                    | 20.00                |                                                           |                | 10/01/20 18:17  | 10/01/20 17:47  | 10/01/20 20:06   | 10/01/20 19:36   | 10/01/20 19:05  | Anal               |                  |
|   | <b>ω</b> ⊹           |        |              |               |              |              |              |              |              |              |              |              |              | i            |              |              |              |              | !<br>        |              |              |              |              |              |              |              |              |                                           |                                           |                                    |                                           |                             |                                           |                                           |                                           |                                           |                      | 50.00                | alibratio                                                 |                | 18:17           | 17:47           | 20:06            | 19:36            | )1/20 19:05     | veje Dat           |                  |
|   | •                    |        |              |               |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              | 1000.                                     |                                           |                                    |                                           |                             |                                           |                                           |                                           |                                           |                      | 100.0                | Calibration Level Concentrations Lvi2 Lvi3 Lvi4 Lvi5 Lvi6 |                |                 |                 |                  |                  |                 | o/Time             | İnstr            |
|   | -                    |        |              |               |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              | İ            |              |              |              | 2000.                                     | 2000.                                     | 2000.                              | 2000.                                     | 2000.                       | 2000.                                     | 2000.                                     | 2000.                                     | 2000                                      |                      | 200.0                | Concen<br>Lvl5                                            |                |                 |                 |                  |                  | !               |                    | Instrument: GC 2 |
|   |                      |        |              |               |              |              |              |              |              |              |              |              |              |              |              |              |              |              | ĺ            |              |              |              |              |              |              |              |              | 4000.                                     | <b>4</b> 000.                             | 4000.                              | 4000.                                     | 4000.                       | 4000                                      | <b>4</b> 000.                             | 4000.                                     | 4000                                      | 4000                 | 400.0                | trations<br>Lvl6                                          |                |                 |                 |                  |                  |                 | 1                  | 9<br>5<br>9      |
|   |                      |        |              |               |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |                                           |                                           |                                    |                                           |                             |                                           |                                           |                                           |                                           |                      |                      | LvI7                                                      | ļ<br>į         |                 |                 |                  |                  |                 |                    |                  |
| ٤ | !                    |        | 1            |               |              |              |              |              |              |              |              |              |              | !            |              |              |              |              | !            |              |              |              |              |              |              |              |              |                                           |                                           |                                    |                                           |                             |                                           |                                           |                                           |                                           |                      |                      | LV 8                                                      |                |                 |                 |                  |                  |                 |                    |                  |

0100230 0299

### Flags

criteria(if applicable) c - failed the initial calibration

Col = Column Number

Mr = MultiPeak Analyte 0=single neak analyte..>0=multi neak analyte (i.e. nch/chlordane etc..)

Fit = Indicates whehter Avg RF. Linear, or Quadratic Curve was used for comnound.

Corr I = Correlation Coefficient for linear Fa.

All Response Factors = Response Factors / 10000
Initial Calibration Criteria: either %RSD <=20 or Corr >= .995
Columns: Signal #1 dh-1701 : Signal #2 dh-608

Corr 2 = Correlation Coefficient for an end Eq.

^Lvl: These compounds use a single pt calibration as specified by the method. The file used to update this calibration point is listed in the header under level #

| CAL 1560@2000PPB 10011/20 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Method: EPA 8082A Level #: 3 3 3                                                | 1230<br>11 9 7 5                                                 | Compound                       | Aroclor-1262 | Aroclor-1262 | Aroclor-1262 | Aroclor-1268 | Aroclor-1268 | Aroclor-1268 | Aroclor-1268 | Aroclor-1268 | DCB-Surrogate                           | CMX-Surrogate          | Aroclor-1016            | Aroclor-1016                       | Aroclor-1016                       | Aroclor-1016            | Aroclor-1260                | Aroclor-1260                       | Aroclor-1260                       | Aroclor-1260                       | Aroclor-1221      | Aroclor-1221 | Aroclor-1221 | Aroclor-1232 | Aroclor-1232 | Aroclor-1232 | Aroclor-1232 | Alocioi-1232 | Aroclor-1242<br>Aroclor-1242 | Aroclor-1242 | Aroclor-1242 | Aroclor-1242 | Aroclor-1248 | Aroclor-1248 | Aroclor-1248 | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------------------------------|------------------------|-------------------------|------------------------------------|------------------------------------|-------------------------|-----------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 26149308 D CAL 1680@400PPB 100120 20:06 8 2614929B D CAL 1246@50PPB 100120 17:47 10 26149301 D CAL 1246@50PPB 100120 17:47 10 26149301 D CAL 2154@50PPB 100120 17:47 10 26149301 D CAL 2154@50PPB 100120 17:47 10 26149301 D CAL 2154@50PPB 100120 17:47 10 2628 9 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Data File: Cal Identifier: 2G149305.D CAL 1660@50PPB 2G149303.D CAL 1660@500PPB | CAL 1660@2000PPB CAL 3268@500PPB CAL 1248@500PPB CAL 1262@500PPB | t: RF1 RF2 RF3 RF4 RF5         | 1 3 Avg      | 1 4 Avg      | 1 5 Avg      | 1 1 Avg      | 1 2 Avg      |              | 1 4 Avg      | 1 5 Avg      | LinF 1.0296 0.8261 0.7450 0.6847 0.6277 | AVG 0.5833             | 0.0497                  | 0.0942 0.0818 0.0758 0.0682 0.0619 | 0.0430 0.0353 0.0325 0.0293 0.0263 | 0.0296 0.0255           | 0.0594 0.0491 0.0444 0.0399 | 0.0614 0.0511 0.0476 0.0433 0.0397 | 0.0342 0.0282 0.0212 0.0203 0.0191 | 0.0436 0.0364 0.0338 0.0322 0.0314 | 1                 | 2 2 Avg      | 2 3 Avg      | 2 1 Avg      | 2 2 AVQ      | 2 3 Avg      | 2 4 Avg      | 2 AVU        | 2 2 Avo                      | 2 3 Avo      | 2 4 Avg      | 2 5 Avg      | 2 1 Avg      | 2 2 Avg      |              | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
| B 10/01/20 20:06 10/01/20 17:47 10/01/20 18:17  Calibration Level Concentrations 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500 | Form 6 Initial Calibration Data File: 2 2G149306.D 4 2G149306.D                 | 6 2G149308.D<br>8 2G149299.D<br>10 2G149301.D                    | S RF7 RF8 AvgRf RT Corr1 Corr2 | 58.83 -1 -1  | <u>.</u>     | 7            | <u>.</u>     | <u>-</u>     | <u>-</u>     | <u>.</u>     | 7            | 0.751 10.14 0.999 1.00                  | 0.653 3.83 1.00 1.00 3 | 0.0371 4.85 0.995 0.999 | 0.0732 5.23 0.997 1.00             | 0.0317 5.56 0.996                  | 0.0228 5.93 0.997 1.00  | 0.0436 7.25 0.997 1.00      | 0.0467 7.33 0.998 1.00             | 0.0235 7.96 0.999 1.00             | 0.0346 9.02 1.00 1.00              | 0.0120 4.21 -1 -1 | <u>.</u>     | <u>.</u>     | <u> </u>     | -1 -1        | <u>.</u>     |              |              | 4 4                          | <b>-</b>     | <u>.</u>     | <u>.</u>     | <u>-</u>     | -            | <u>-</u>     | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
| N77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                               | •                                                                | •                              | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 20.00 50.00 100.0 200.0                 | 2000 5000 1000 2000    | 200.0 500.0 1000. 2000. | 200.0 500.0 1000. 2000.            | 200.0 500.0 1000. 2000.            | 200.0 500.0 1000. 2000. | 200.0 500.0 1000. 2000.     | 200.0 500.0 1000. 2000.            | 200.0 500.0 1000 2000              | 200.0 500.0 1000. 2000.            |                   | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 5000         | 500 0                        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |

### Flags

criteria(if applicable) c - failed the initial calibration

Col = Column Number

Mr = MultiPeak Analyte 0=single neak analyte..>0=multi neak analyte (i.e. nch/chlordane etc..)

Fit = Indicates whether Avg RF. Linear, or Onadratic Curve was used for comnound.

Corr I = Correlation Coefficient for finear Fo.

Corr 2 = Correlation Coefficient for fund Fo.

Avg Rsd Col 1: 17.47

Avg Rsd Col 2: 18.13

^Lvl: These compounds use a single pt calibration as specified by the method. The file used to update this calibration point is listed in the header under level # All Resnanse Factors = Resnanse Factors / 10000 Initial Calibration Criteria: either %RSD <=20 or Corr >= .995 Columns: Signal #1 dh-1701 : Signal #2 dh-608

| Mehot EPA 80822A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DCB-Surrogate | Aroclor-1268 | Aroclor-1268 | Aroclor-1268 | Aroclor-1268 | Aroclor-1268 | Aroclor-1262                            | Aroclor-1262 | Aroclor-1262 | Aroclor-1262                            | Aroclor-1262                            | Aroclor-1254 | Aroclor-1254 | Aroclor-1254 | Aroclor-1254 | Aroclor-1254 | Aroclor-1248      | Aroclor-1248 | 1 Compound       |            | 23         | 3 6            | )          | 0          | 3          | 0         | 1 Method    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|--------------|--------------|--------------|--------------|-----------------------------------------|--------------|--------------|-----------------------------------------|-----------------------------------------|--------------|--------------|--------------|--------------|--------------|-------------------|--------------|------------------|------------|------------|----------------|------------|------------|------------|-----------|-------------|
| Data File:         Cal Identifier:         Analysis Date/Time         Initial Calibration (Level#**         Cal Identifier:         Analysis Date/Time         Cal Identifier:         Analysis Date/Time         Cal Identifier:         Analysis Date/Time         Cal Identifier:         Analysis Date/Time         Analysis Date/Time         Cal Identifier:         Analysis Date/Time         Analysis Date/Time         Cal Identifier:         Analysis Date/Time         Analysis Date/Time         Cal Identifier:         Analysis Date/Time         Analysis Date/Time         Cal Identifier:         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Cal Identifier:         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         Analysis Date/Time         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oqate         | 268          | 268          | 268          | 268          | 268          | 262                                     | 262          | 262          | 262                                     | 262                                     | 254          | 254          | 254          | 254          | 254          | 248               | 248          | ā                | 1          | 9          | 7              | (Jr        | ω          |            | Level #:  | 1: EPA 8082 |
| Cal Identifier: Analysis Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 0 Avg       | 2 5 Avq      | 2 4 Avq      | 2 3 Avg      | 2 2 Avg      | 2 1 Avg      | 2 5 Avq                                 | 2 4 Avg      | 2 3 Avg      | 2 2 Ava                                 | 2 1 Avg                                 | 2 5 Avg      | 2 4 Avg      | 2 3 Avq      | 2 2 Avg      | 2 1 Ava      | 2 5 Avq           | 2 4 Avg      | Col Mr Fit:      | 2G149302.D | 2G149300.D | 2G149298.D     | 2G149307.D | 2G149303.D | 2G149305.D | Data Fi   | Ď           |
| Initial (Calibration Data File: Cal Identifier: Analysis Data/Filme Level # 26149304 D CAL 1660@200PPB 10/01/20 19:05  4 26149306 D CAL 1660@200PPB 10/01/20 19:05  4 26149308 D CAL 1660@4000PPB 10/01/20 19:36  6 26149308 D CAL 1660@4000PPB 10/01/20 19:36  8 26149299 D CAL 1242@500PPB 10/01/20 17:47  10 26149301 D CAL 2154@500PPB 10/01/20 18:17  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration L | 1.1437        | . 1          | 1            | 1            | I            | -            | 1                                       | I            | 1            |                                         |                                         | -            | 1            | 1            |              | ł            | 1                 | 1            | 꾸                | CAL        | CAL        | C <sub>A</sub> | CAL        | CAL        | Ç<br>A     | O.        |             |
| Initial (Calibration Data File: Cal Identifier: Analysis Data/Filme Level # 26149304 D CAL 1660@200PPB 10/01/20 19:05  4 26149306 D CAL 1660@200PPB 10/01/20 19:05  4 26149308 D CAL 1660@4000PPB 10/01/20 19:36  6 26149308 D CAL 1660@4000PPB 10/01/20 19:36  8 26149299 D CAL 1242@500PPB 10/01/20 17:47  10 26149301 D CAL 2154@500PPB 10/01/20 18:17  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration L | 0.921         | ١            | 1            | 1            |              | 1            | -                                       | 1            | 1            |                                         | 1                                       | !            |              | 1            | 1            | 1            | 1                 | •            | RF2              | 1262@      | 1248@      | 3268@          | 1660@      | 1660@      | 1660@      | Call      |             |
| Initial (Calibration Data File: Cal Identifier: Analysis Data/Filme Level # 26149304 D CAL 1660@200PPB 10/01/20 19:05  4 26149306 D CAL 1660@200PPB 10/01/20 19:05  4 26149308 D CAL 1660@4000PPB 10/01/20 19:36  6 26149308 D CAL 1660@4000PPB 10/01/20 19:36  8 26149299 D CAL 1242@500PPB 10/01/20 17:47  10 26149301 D CAL 2154@500PPB 10/01/20 18:17  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration L | 6 0.836       |              | -            |              |              | 1            | 1                                       | 1            | 1            | 1                                       | 1                                       | 1            | 1            | 1            | 1            |              | 1                 | 1            | RF3              | 500PP      | 500PPI     | 500PPI         | 2000PF     | 500PPI     | 50PPB      | dentifier |             |
| Initial (Calibration Data File: Cal Identifier: Analysis Data/Filme Level # 26149304 D CAL 1660@200PPB 10/01/20 19:05  4 26149306 D CAL 1660@200PPB 10/01/20 19:05  4 26149308 D CAL 1660@4000PPB 10/01/20 19:36  6 26149308 D CAL 1660@4000PPB 10/01/20 19:36  8 26149299 D CAL 1242@500PPB 10/01/20 17:47  10 26149301 D CAL 2154@500PPB 10/01/20 18:17  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration L | 50.777        |              | 1            |              |              |              | I                                       | 1            |              | 1                                       | 1                                       | i            |              | 1            | 1            | i            | 1                 | 1            | RF4              | ١.         |            |                | _          |            | _          | • •       |             |
| Initial (Calibration Data File: Cal Identifier: Analysis Data/Filme Level # 26149304 D CAL 1660@200PPB 10/01/20 19:05  4 26149306 D CAL 1660@200PPB 10/01/20 19:05  4 26149308 D CAL 1660@4000PPB 10/01/20 19:36  6 26149308 D CAL 1660@4000PPB 10/01/20 19:36  8 26149299 D CAL 1242@500PPB 10/01/20 17:47  10 26149301 D CAL 2154@500PPB 10/01/20 18:17  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration L | 71 0.73       |              | 1            |              | I            | 1            | i                                       | 1            | 1            | 1                                       | 1                                       | 1            |              | 1            | 1            | I            | 1                 | I            | i                | 10/01/20   | 10/01/20   | 10/01/20       | 10/01/20   | 10/01/20   | 10/01/20   | Ana       |             |
| Initial (Calibration Data File: Cal Identifier: Analysis Data/Filme Level # 26149304 D CAL 1660@200PPB 10/01/20 19:05  4 26149306 D CAL 1660@200PPB 10/01/20 19:05  4 26149308 D CAL 1660@4000PPB 10/01/20 19:36  6 26149308 D CAL 1660@4000PPB 10/01/20 19:36  8 26149299 D CAL 1242@500PPB 10/01/20 17:47  10 26149301 D CAL 2154@500PPB 10/01/20 18:17  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Level Concentrations Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration Lvi7  Calibration L | 57 0.71       |              | 1            | -            | ļ            | 1            | 1                                       | 1            | 1            | 1                                       | 1                                       | i            | 1            | 1            | 1            | I            | 1                 | I            | RF6              | 18:35      | 18:02      | 17:32          | 19:51      | 18:50      | 19:20      | ılysis Da |             |
| Initial Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95            | 1            |              |              |              | 1            | I                                       | 1            | 1            | 1                                       | I                                       | l            | 1            | 1            | 1            | 1            | i                 | 1            |                  |            |            |                |            |            |            | ate/Time  |             |
| al Calibration     Data File: Level #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1             | 1            | 1            | -            | 1            | 1            | 1                                       | 1            |              | 1                                       | 1                                       | I            | 1            | 1            | 1            | 1            | 1                 | 1            | RF8              | :          |            |                |            |            |            |           | Init        |
| Data File: Cal Identifier: Analysis Date/Time 149304.D CAL 1660@200PPB 10/01/20 19:05 149306.D CAL 1660@4000PPB 10/01/20 19:36 149308.D CAL 1660@4000PPB 10/01/20 20:06 149301.D CAL 2154@500PPB 10/01/20 17:47 149301.D CAL 2154@500PPB 10/01/20 18:17  Corr1 Corr2 %Rsd Lvii Lvii Lvii Lvii Lvii Lvii 10 8 -1 -1 Lvii 10 500.0 8 -1 -1 Lvii 10 500.0 9 -1 -1 Lvii 10 500.0 9 -1 -1 Lvii 11 500.0 2 -1 -1 Lvii 11 500.0 2 -1 -1 Lvii 11 500.0 2 -1 -1 Lvii 11 500.0 6 -1 -1 Lvii 1 500.0 6 -1 -1 Lvii 1 500.0 7 -1 Lvii 1 500.0 7 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 16 -1 -1 Lvii 1 500.0 17 -1 Lvii 1 500.0 18 -1 -1 Lvii 1 500.0 19 -1 -1 Lvii 1 500.0 2 -1 -1 Lvii 1 500.0 2 -1 -1 Lvii 1 500.0 2 -1 -1 Lvii 1 500.0 3 -1 -1 Lvii 1 500.0 4 -1 -1 Lvii 1 500.0 5 -1 -1 Lvii 1 500.0 5 -1 -1 Lvii 1 500.0 6 -1 -1 Lvii 1 500.0 7 -1 Lvii 1 500.0 7 -1 Lvii 1 500.0 8 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _             | _            | 0            | 0            | 0            | 0.0          | 0                                       | 0            | 0            | 0                                       | 0                                       | 0            | 0            | 0            | .0           | 0            | 0                 | 0.           |                  |            | <b>1</b>   | <b>∞</b>       | 6          | 4          | 2          | Leve      | ial Cal     |
| Data File: Cal Identifier: Analysis Date/Time 149304.D CAL 1660@200PPB 10/01/20 19:05 149306.D CAL 1660@4000PPB 10/01/20 19:36 149308.D CAL 1660@4000PPB 10/01/20 20:06 149301.D CAL 2154@500PPB 10/01/20 17:47 149301.D CAL 2154@500PPB 10/01/20 18:17  Corr1 Corr2 %Rsd Lvii Lvii Lvii Lvii Lvii Lvii 10 8 -1 -1 Lvii 10 500.0 8 -1 -1 Lvii 10 500.0 9 -1 -1 Lvii 10 500.0 9 -1 -1 Lvii 11 500.0 2 -1 -1 Lvii 11 500.0 2 -1 -1 Lvii 11 500.0 2 -1 -1 Lvii 11 500.0 6 -1 -1 Lvii 1 500.0 6 -1 -1 Lvii 1 500.0 7 -1 Lvii 1 500.0 7 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 16 -1 -1 Lvii 1 500.0 17 -1 Lvii 1 500.0 18 -1 -1 Lvii 1 500.0 19 -1 -1 Lvii 1 500.0 2 -1 -1 Lvii 1 500.0 2 -1 -1 Lvii 1 500.0 2 -1 -1 Lvii 1 500.0 3 -1 -1 Lvii 1 500.0 4 -1 -1 Lvii 1 500.0 5 -1 -1 Lvii 1 500.0 5 -1 -1 Lvii 1 500.0 6 -1 -1 Lvii 1 500.0 7 -1 Lvii 1 500.0 7 -1 Lvii 1 500.0 8 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0 9 -1 -1 Lvii 1 500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ).855 10      | 0.226 10     | 01949.       | 07369        | 01028.       | 06158.       | 011910                                  | 0403 9.      | 0373 9.      | 0357 8.                                 | 04157.                                  | 01728.       | 01967.       | 0383 7.      | 01436.       | 04526.       | 0355 6.           | 02836.       | 4                |            | N          | N              | N          | N          | N          | #         | ibration    |
| tate File: Call Identifier: Analysis Date/Time  LD CAL 1660@200PPB 10/01/20 19:05  LD CAL 1660@4000PPB 10/01/20 20:06  LD CAL 1242@500PPB 10/01/20 17:47  LD CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  Calibration Level Concentrations  LVI1 LVI2 LVI3 LVI4 LVI5 LVI6 LVI7  LVI=10 500.0  LVI=10 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=11 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0  LVI=1 500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.71 1.0      | 0.16 -1      | 52 -1        | 36<br>-1     | 46 -1        | 42 -1        | ).16 -1                                 | 62 -1        | ಣ<br>-1      | 92 -1                                   | 75 -1                                   | 38 -1        | 69 -1        | 17 -1        | 78 -1        | 43 -1        | 21 -1             | 08 -1        |                  |            | G1493      | G1492          | G1493      | G1493      | G1493      | !         | _           |
| Cal Identifier: Analysis Date/Time CAL 1660@200PPB 10/01/20 19:05 CAL 1660@200PPB 10/01/20 19:36 CAL 1660@4000PPB 10/01/20 20:06 CAL 1242@500PPB 10/01/20 17:47 CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@500PPB 10/01/20 18:17  CAL 2154@600PPB 10/01/20 18:17  CAL 2154@600PPB 10/01/20 18:17  CAL 2154@600PPB 10/01/20 18:17  CAL 2154@600PPB 10/01/20 18:17 | Ϊ.            |              | <u> </u>     | <u> </u>     | <u> </u>     | 7            | <u>.</u>                                | 7            | <u>-</u>     | ᅩ                                       | ᅩ                                       | ᅩ            | <u>.</u>     | <u>-</u>     | <u>_</u>     | <u>.</u>     | <u>.</u>          | 7            | _                |            | 91.D       | 99.D           | )8.D       | )6.D       | 5          | ata File  |             |
| Analysis Date/Time 10/01/20 19:05 B 10/01/20 19:36 B 10/01/20 17:47 10/01/20 18:17  Calibration Level Concentrations Lvi1 Lvi2 Lvi3 Lvi4 Lvi5 Lvi6 Lvi7  500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ŏ             |              | _            |              | _            | <u> </u>     | <u>د</u>                                | _            | <u>₹</u>     | ۲                                       | Z                                       | ۲            | _            | LV           | _            | _            | <u></u>           | _            |                  | į          | CAL 2      | CAL 1          | CAL 1      | CAL 1      | CAL 1      |           |             |
| Analysis Date/Time 10/01/20 19:05 B 10/01/20 19:36 B 10/01/20 17:47 10/01/20 18:17  Calibration Level Concentrations Lvi1 Lvi2 Lvi3 Lvi4 Lvi5 Lvi6 Lvi7  500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19            | VI=7         | vI=7         | v=7          | VI=7         | v =7         | ======================================= | =11          | =11          | ======================================= | ======================================= | =10          | <b>=10</b>   | =10          | =10          | <b>≖10</b>   | v <del> =</del> 9 | v =9         | Rsd              | į          | 2154@5     | 242@5          | 660@4      | 660@1      | 660@2      | Cal Ide   |             |
| Analysis Date/Time 10/01/20 19:05 10/01/20 19:05 10/01/20 20:06 10/01/20 17:47 10/01/20 18:17  Calibration Level Concentrations Lvi1 Lvi2 Lvi3 Lvi4 Lvi5 Lvi6 Lvi7 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |              |              |              |              |              |                                         |              |              |                                         |                                         |              |              |              |              |              |                   |              | ļ<br>            | !          | 00PPB      | 00PPB          | 000PPE     | 000PPE     | 00PPB      | ntifier   |             |
| ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Ti | 5.00          | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0                                   | 500.0        | 500.0        | 500.0                                   | 500.0                                   | 500.0        | 500.0        | 500.0        | 500.0        | 500.0        | 500.0             | 500.0        | LVI              |            | 10/        | 10/            | _          | _          | 10/        | !         |             |
| ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Time  ate/Ti | 20.00         | )            |              |              |              |              |                                         |              |              |                                         |                                         |              |              |              |              |              |                   |              | Lvi2             |            | 01/20 1    | 01/20 1        | 01/20 2    | 01/20 1    | 01/20 1    | Analys    |             |
| LV17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.00         |              |              |              |              |              |                                         |              |              |                                         |                                         |              |              |              |              |              |                   |              | bration<br>Lvl3  | 1          | 8:17       | 7:47           | 0:06       | 9:36       | 9:05       | is Date   |             |
| LV17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.0         |              |              |              |              |              |                                         |              |              |                                         |                                         |              |              |              |              |              |                   |              | Level (          |            |            |                |            |            |            | Time      | Instru      |
| LV17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200.0         | )<br>)<br>)  |              |              |              |              |                                         |              | İ            |                                         |                                         |              |              |              |              |              |                   |              | Lvl5             |            |            |                |            |            |            |           | ment: (     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400.0         | ;<br>;<br>;  |              |              |              |              |                                         |              |              |                                         |                                         |              |              |              |              |              |                   |              | trations<br>Lvl6 |            |            |                |            |            |            |           | 20-2        |
| 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |              |              |              |              |              |                                         |              | :            |                                         |                                         |              |              | :            |              |              |                   |              | LvI7             |            |            |                |            |            |            |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |              |              |              |              |                                         |              |              |                                         |                                         |              |              |              |              |              |                   |              | L/18             | ļ<br>;     |            |                |            |            |            |           |             |

Method: EPA 8082A Level #

Initial Calibration Form 6

Instrument: GC\_2

Flags

criteria(if applicable) c - failed the initial calibration

### Note:

Col = Column Number

Fit = Indicates whehter Avg RF. Linear or Quadratic Curve was used for comnound.

Corr I = Correlation Coefficient for linear Fo. Mr = MultiPeak Analyte 0=single neak analyte. >0=multi neak analyte (i.e. nch/chlordane etc..)

Corr 2 = Correlation Coefficient for anad Ea.

^Lvl: These compounds use a single pt calibration as specified by the method. The file used to update this calibration point is listed in the header under level #

Avg Rsd Col 1: 17.47 Avg Rsd Col 2: 18.13

All Resnonse Factors = Resnonse Factors / 10000
Initial Calibration Criteria: either %RSD <=20 or Corr >= .995
Columns: Signal #1 db-1701 : Signal #2 db-608

Form7
Continuing Calibration

Method: EPA 8082A

| Continuing Car     | ioration                                            |                                                                       | , ,                                                             | ,                                                              |                                                                | p              |
|--------------------|-----------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------|
|                    | Data File:<br>Method:<br>ation Name:<br>n Date/Time | 2G149411.D<br>8082<br>  CAL 1660@1000PP<br>  10/07/20 10:21<br>  Conc | 2G149432.D<br>8082<br>CAL 1660@1000PP<br>10/07/20 15:47<br>Conc | 3G124616.D<br>8082<br>CAL 1660@500PP<br>10/07/20 09:35<br>Conc | 3G124633.D<br>8082<br>CAL 1660@500PP<br>10/07/20 15:23<br>Conc | Conc           |
| Compound           | Limit Col Mr                                        | Conc Exp %Diff                                                        | Conc Exp %Diff                                                  | Conc Exp %Diff                                                 | Conc Exp %Diff                                                 | Conc Exp %Diff |
| TCMX-Surrogate     | 20 1 0                                              | 98.67 100 1.3                                                         | 96.73 100 3.3                                                   | 53.71 50 7.4                                                   | 53.55 50 7.1                                                   |                |
| Aroclor-1016       | 20 1 1                                              | 921.7 1000 7.8                                                        | 876.4 1000 12.4                                                 | 591.3 500 18.3                                                 | 568.2 500 13.6                                                 |                |
| Aroclor-1016       | 20 1 2                                              | 1199 1000 19.9                                                        | 1140 1000 14.0                                                  | 551.3 500 10.3                                                 | 546.7 500 9.3                                                  |                |
| Aroclor-1016       | 20 1 3                                              | 891.9 1000 10.8                                                       | 865.5 1000 13.5                                                 | 542.4 500 8.5                                                  | 537 500 7.4                                                    |                |
| Aroclor-1016       | 20 1 4                                              | 925.1 1000 7.5                                                        | 872 1000 12.8                                                   | 545.1 500 9.0                                                  | 533.1 500 6.6                                                  | !<br>'.        |
| Aroclor-1016       | 20 1 5                                              | 891.1 1000 10.9                                                       | 828.7 1000 17.1                                                 | 543.6 500 8.7                                                  | 526.3 500 5.3                                                  | !              |
| Aroclor-1260       | 20 1 1                                              | 1145 1000 14.5                                                        | 1053 1000 5.3                                                   | 677.7 500 35.5*                                                | 678.1 500 35.6*                                                |                |
| Aroclor-1260       | 20 1 2                                              | 1115 1000 11.5                                                        | 1042 1000 4.2                                                   | 662.9 500 32.6*                                                | 636.9 500 27.4*                                                |                |
| Aroclor-1260       | 20 1 3                                              | 893.6 1000 10.6                                                       | 883.4 1000 11.7                                                 | 529.4 500 5.9                                                  | 583.6 500 16.7                                                 | 1              |
| Aroclor-1260       | 20 1 4                                              | 877.0 1000 12.3                                                       | 852.6 1000 14.7                                                 | 520.1 500 4.0                                                  | 505.3 500 1.1                                                  | i              |
| Aroclor-1260       | 20 1 5                                              | 881.9 1000 11.8                                                       | 958.5 1000 4.1                                                  | 476.2 500 4.8                                                  | 443.9 500 11.2                                                 |                |
| DCB-Surrogate      | 20 1 0                                              | 104.8 100 4.8                                                         | 101.1 100 1.1                                                   | 43.05 50 13.9                                                  | 40.91 50 18.2                                                  |                |
| Average Difference | 20 1 0                                              | 10.3                                                                  | 9.5                                                             | 13.2                                                           | 13.3                                                           |                |
| TCMX-Surrogate     | 20 2 0                                              | 102.4 100 2.4                                                         | 102 100 2.0                                                     | 41.23 50 17.5                                                  | 43.66 50 12.7                                                  | !              |
| Aroclor-1016       | 20 2 1                                              | 861.6 1000 13.8                                                       | 923.1 1000 7.7                                                  | 407.7 500 18.5                                                 | 474.3 500 5.1                                                  | 1              |
| Aroclor-1016       | 20 2 2                                              | 1207 1000 20.7*                                                       | 1187 1000 18.7                                                  | 537.1 500 7.4                                                  | 586.9 500 17.4                                                 | 1              |
| Aroclor-1016       | 20 2 3                                              | 808.3 1000 19.2                                                       | 899 1000 10.1                                                   | 394 500 21.2*                                                  | 440.8 500 11.8                                                 | i              |
| Aroclor-1016       | 20 2 4                                              | 1082 1000 8.2                                                         | 1143 1000 14.3                                                  | 525.3 500 5.1                                                  | 569.5 500 13.9                                                 | l              |
| Aroclor-1016       | 20 2 5                                              | 865.9 1000 13.4                                                       | 882.8 1000 11.7                                                 | 533.5 500 6.7                                                  | 549.8 500 10.0                                                 | 1              |
| Aroclor-1260       | 20 2 1                                              | 1078 1000 7.8                                                         | 1099 1000 9.9                                                   | 526.4 500 5.3                                                  | 544.3 500 8.9                                                  |                |
| Aroclor-1260       | 20 2 2                                              | 866.7 1000 13.3                                                       | 862.8 1000 13.7                                                 | 494 500 1.2                                                    | 527.0 500 5.4                                                  |                |
| Aroclor-1260       | 20 2 3                                              | 1179 1000 17.9                                                        | 961.8 1000 3.8                                                  | 390.5 500 21.9*                                                | 448.8 500 10.2                                                 |                |
| Aroclor-1260       | 20 2 4                                              | 835.5 1000 16.4                                                       | 866.2 1000 13.4                                                 | 402.3 500 19.5                                                 | 438.2 500 12.4                                                 |                |
| Aroclor-1260       | 20 2 5                                              | 822.3 1000 17.8                                                       | 838.2 1000 16.2                                                 | 412.3 500 17.5                                                 | 422.1 500 15.6                                                 | <u> </u>       |
| DCB-Surrogate      | 20 2 0                                              | 84.89 100 15.1                                                        | 117.3 100 17.3                                                  | 43.52 50 13.0                                                  | 45.31 50 9.4                                                   |                |
| Average Difference | 20 2 0                                              | 13.8                                                                  | 11.6                                                            | 12.9                                                           | 11.1                                                           |                |

Form7
RtWindow Summary

Method: EPA 8082A

|                                 | Data File:<br>ion Name: | CAL 16               | 49305.D<br>60@50PPB<br>0.7:20:00 PM      | CAL 166             | 4543.D<br>60@50PPB<br>1:34:00 PM   | CAL 166      | 49411.D<br>0@1000PPB<br>10:21:00 AM    | CAL 166       | 4616.D<br>0@500PPB<br>9:35:00 AM      |                                         |       |
|---------------------------------|-------------------------|----------------------|------------------------------------------|---------------------|------------------------------------|--------------|----------------------------------------|---------------|---------------------------------------|-----------------------------------------|-------|
| Compound                        | Col Mr                  | Cal RT               | Limit                                    | Cal RT              | Limit                              | Cal RT       | Limit                                  | Cal RT        | Limit                                 | Cal RT                                  | Limit |
| TCMX-Surrogate                  | 1 0                     | 3.85                 | (3.79 - 3.91)                            | 3.93                | (3.87 - 3.99)                      | 3.85         | (3.79 - 3.91)                          | 3.94          | (3.88 - 4.00)                         |                                         |       |
| Aroclor-1016<br>Aroclor-1016    | 1 1 1 1 2               | 4.35<br>4.72         | (4.31 - 4.39)<br>(4.68 - 4.76)           | 4.46<br>4.83        | (4.42 - 4.50)<br>(4.79 - 4.87)     | 4.36<br>4.72 | (4.32 - 4.40)<br>(4.68 - 4.76)         | 4.47<br>4.84  | (4.43 - 4.51)<br>(4.80 - 4.88)        | <u> </u>                                | į     |
| Aroclor-1016<br>Aroclor-1016    | 1 3<br>1 4              | 5.19<br>5.43         | (5.15 - 5.23)<br>(5.39 - 5.47)           | 5.30<br>5.55        | (5.26 - 5.34)<br>(5.51 - 5.59)     | 5.19<br>5.44 | (5.15 - 5.23)<br>(5.40 - 5.48)         | 5.31<br>5.56  | (5.27 - 5.35)<br>(5.52 - 5.60)        | İ                                       | 1     |
| Aroclor-1016<br>Aroclor-1260    | 1 _ 5_                  | <u>5.55</u><br>7.07  | (5.51 - 5.59)<br>(7.03 - 7.11)           | <u>5.67</u><br>7.19 | (5.63 - 5.71)<br>(7.15 - 7.23)     | 5.56<br>7.07 | (5. <u>52 - 5.60)</u><br>(7.03 - 7.11) | 5.67<br>7.20  | (5.63 - 5.71)<br>(7.16 - 7.24)        |                                         |       |
| Aroclor-1260                    | 1 2                     | 7.32                 | (7.28 - 7.36)                            | 7.44                | (7.40 - 7.48)                      | 7.32         | (7.28 - 7.36)                          | 7.44          | (7.40 - 7.48)<br>(7.61 - 7.69)        |                                         | !     |
| Aroclor-1260<br>Aroclor-1260    | 1 3                     | 7.52<br>8.11         | (7.48 - 7.56)<br>(8.07 - 8.15)           | 7.64<br>8.23        | (7.60 - 7.68)<br>(8.19 - 8.27)     | 7.52<br>8.11 | (7.48 - 7.56)<br>(8.07 - 8.15)         | 7.65<br>8.24  | (8.20 - 8.28)                         |                                         | į     |
| Aroclor-1260<br>Aroclor-1221    | 1 5                     | 8.83<br>4.15         | (8.79 - 8.87)<br>(4.11 - 4.19)           | 8.96<br>4.25        | (8.92 - 9.00)<br>(4.21 - 4.29)     | 8.83         | (8.79 - 8.87)                          | 8.97          | (8.93 - 9.01)                         |                                         |       |
| Aroclor-1221<br>Aroclor-1221    | 1 2<br>1 3              | 4.29<br>4.35         | (4.25 - 4.33)<br>(4.31 - 4.39)           | 4.40<br>4.46        | (4.36 - 4.44)<br>(4.42 - 4.50)     |              |                                        |               |                                       | !                                       | !     |
| Aroclor-1232<br>Aroclor-1232    | 1 1                     | 4.35<br>4.72         | (4.31 - 4.39)<br>(4.68 - 4.76)           | 4.46<br>4.83        | (4.42 - 4.50)<br>(4.79 - 4.87)     |              | ì                                      |               | }                                     |                                         | i     |
| Aroclor-1232                    | 1 3                     | 5.19                 | (5.15 - 5.23)                            | 5.30                | (5.26 - 5.34)                      | ĺ            | -                                      |               | •                                     | <br>                                    | i     |
| Aroclor-1232<br>Aroclor-1232    | 1 5                     | 5.33<br>5.79         | (5.29 - 5.37)<br>(5.75 - 5.83)           | 5.44<br>5.92        | (5.40 - 5.48)<br>(5.88 - 5.96)     |              |                                        |               | · · · · · · · · · · · · · · · · · · · | † · · · · · · · · · · · · · · · · · · · |       |
| Aroclor-1242<br>Aroclor-1242    | 1 1<br>1 2              | 4.35<br>4.72         | (4.31 - 4.39)<br>(4.68 - 4.76)           | 4.46<br>4.83        | (4.42 - 4.50)<br>(4.79 - 4.87)     |              | 3.1                                    |               |                                       | !                                       |       |
| Aroclor-1242<br>Aroclor-1242    | 1 3                     | 5.19<br>5.55         | (5.15 - 5.23)<br>(5.51 - 5.59)           | 5.30<br>5.67        | (5.26 - 5.34)<br>(5.63 - 5.71)     | <u> </u><br> | <br>!                                  |               | <b>;</b>                              | !<br>                                   | •     |
| Aroclor-1242<br>Aroclor-1248    | 1 5                     | 5.79<br>4.72         | (5.75 - 5.83)<br>(4.68 - 4.76)           | 5.92<br>4.83        | (5.88 - 5.96)<br>(4.79 - 4.87)     | ;<br>        |                                        |               |                                       | <u> </u>                                |       |
| Aroclor-1248                    | 1 2                     | 5.19                 | (5.15 - 5.23)                            | 5.30                | (5.26 - 5.34)                      | i<br>i       | 1                                      |               | ,                                     |                                         |       |
| Aroclor-1248<br>Aroclor-1248    | 1 3                     | 5.54<br>5.90         | (5.50 - 5.58)<br>(5.86 - 5.94)           | 5.65<br>5.92        | (5.61 - 5.69)<br>(5.88 - 5.96)     |              |                                        |               |                                       | !                                       |       |
| Aroclor-1248<br>Aroclor-1254    | 1 5<br>1 1_             | 6.50<br>6.70         | (6.46 - 6.54)<br>(6.66 - 6.74)           | 6.62<br>_6.82       | (6.58 - 6.66)<br>(6.78 - 6.86)     |              |                                        |               |                                       |                                         | :     |
| Aroclor-1254<br>Aroclor-1254    | 1 2<br>1 3              | 6.91<br>7.07         | (6.87 - 6.95)<br>(7.03 - 7.11)           | 7.03<br>7.19        | (6.99 - 7.07)<br>(7.15 - 7.23)     | <br>         |                                        |               | 4                                     |                                         | 4     |
| Aroclor-1254                    | 1 4                     | 7.19<br>7.57         | (7.15 - 7.23)                            | 7.31<br>7.71        | (7.27 - 7.35)<br>(7.67 - 7.75)     | İ            |                                        |               | i                                     |                                         |       |
| Aroclor-1254<br>Aroclor-1262    | 1 1                     | 7.75                 | (7.53 - 7.61) [<br>(7.71 - 7.79) ]       | 7.87                | (7.83 - 7.91)                      | <u>.</u>     |                                        |               | !                                     |                                         |       |
| Aroclor-1262<br>Aroclor-1262    | 1 3                     | 8.7 <u>6</u><br>8.83 | (8.72 - 8.80) (8.79 - 8.87)              | 8.88<br>8.94        | (8.84 - 8.92)<br>(8.90 - 8.98)     | <u>.</u>     |                                        |               |                                       |                                         |       |
| Aroclor-1262<br>Aroclor-1262    | 1 4                     | 9.55<br>9.92         | (9.51 - 9.59)<br>(9.88 - 9.96)           | 9.70<br>10.07       | (9.66 - 9.74)<br>(10.03 - 10.11)   |              |                                        |               | !                                     | ĺ                                       |       |
| Aroclor-1268<br>Aroclor-1268    | 1 1                     | 8.11<br>8.43         | (8.07 - 8.15)<br>(8.39 - 8.47)           | 8.22<br>8.55        | (8.18 - 8.26)<br>(8.51 - 8.59)     |              |                                        |               | !                                     | •                                       |       |
| Aroclor-1268                    | .1 3                    | 9.01                 | (8.97 - 9.05)                            | 9.12                | (9.089.16) _                       |              |                                        |               |                                       | ļ                                       |       |
| Aroclor-1268<br>Aroclor-1268    | 1 5                     | 9.11<br>9.91         | (9.07 - 9.15)<br>(9.87 - 9.95)           | 9.23<br>10.07       | (9.19 - 9.27)<br>(10.03 - 10.11)   |              |                                        | 40.00         | :<br>                                 |                                         |       |
| DCB-Surrogate<br>TCMX-Surrogate | 1 0                     | 10.14<br>3.83        | (10.08 - 10.20)<br>(3.77 - 3.89)         | 10.29<br>3.96       | (10.23 - 10.35)<br>(3.90 - 4.02)   | 3.83         | (10.08 - 10.20) (3.77 - 3.89)          | 10.29<br>3.97 | (10.23 - 10.35)<br>(3.91 - 4.03)      | :<br>                                   |       |
| Aroclor-1016<br>Aroclor-1016    | 2 1 2 2                 | 4.43<br>4.85         | (4 39 - 4 47)<br>(4 81 - 4 89)           | 4.56<br>4.99        | (4.52 - 4.60)<br>(4.95 - 5.03)     | 4.43<br>4.85 | (4.39 - 4.47)<br>(4.81 - 4.89)         | 4.57<br>4.99  | (4.53 - 4.61)<br>(4.95 - 5.03)        | ·<br>•                                  |       |
| Aroclor-1016<br>Aroclor-1016    | 2 3 2                   | 5.23<br>5.56         | (5.19 - 5.27)<br>(5.52 - 5.60)           | 5.37<br>5.70        | (5.33 - 5.41)<br>(5.66 - 5.74)     | 5.23<br>5.56 | (5.19 - 5.27)<br>(5.52 - 5.60)         | 5.37<br>5.70  | (5.33 - 5.41)<br>(5 66 - 5.74)        | 1                                       |       |
| Aroclor-1016<br>Aroclor-1260    | 2 5                     | 5.93<br>7.24         | (5.89 - 5.97)<br>(7.20 - 7.28)           | 6.07                | (6.03 - 6.11)<br>(7.35 - 7.43)     |              | (5.89 - 5.97)<br>(7.21 - 7.29)         | 6.08<br>7.39  | (6.04 - 6.12)<br>(7.35 - 7.43)        | •                                       | !     |
| Aroclor-1260                    | 2 2                     | 7.33                 | (7.29 - 7.37)                            | 7.47                | (7.43 - 7.51)                      | 7.33         | (7.29 - 7.37)                          | 7.47          | (7 43 - 7.51)                         | 1                                       |       |
| Aroclor-1260<br>Aroclor-1260    | 2 3                     | 7.96<br>8.32         | (7.92 - 8.00)<br>(8.28 - 8.36)           | 8.46                | (8.42 - 8.50)                      | 8.32         | (7.92 - 8.00)<br>(8.28 - 8.36)         | 8.10<br>8.47  | (8.06 - 8.14)<br>(8.43 - 8.51)        | ∳·· ·- · · · · · · · ·-                 |       |
| Aroclor-1260<br>Aroclor-1221    | 2 5                     | 9.02<br>4.21         | (8.98 - 9.06)<br>(4.17 - 4.25)           |                     | (9.13 - 9.21)<br>(4.30 - 4.38)     | 9.02         | (8.98 - 9.06)                          | 9.17<br>      | (9.13 - 9.21)                         | :                                       |       |
| Aroclor-1221<br>Aroclor-1221    | 2 2<br>2 3              | 4.36<br>4.43         | (4.32 - 4.40)<br>(4.39 - 4.47)           | 4.50<br>4.56        | (4.46 - 4.54)<br>(4.52 - 4.60)     | - 77000      | į                                      | i             | 1                                     | 1                                       |       |
| Aroclor-1232<br>Aroclor-1232    | 2 2                     | _4.43<br>4.85        | (4.39 - 4.47)<br>(4.81 - 4.89)           |                     | (4.52 - 4.60)<br>(4.95 - 5.03)     |              |                                        |               |                                       | t                                       |       |
| Aroclor-1232                    | 2 3                     | 5 23                 | (5.19 - 5.27)                            | 5.37                | (5.33 - 5.41)                      |              |                                        | İ             |                                       | Ī                                       |       |
| Aroclor-1232<br>Aroclor-1232    | 2 4 2 5                 | 5.56<br>6.07         | (5.52 - 5.60)<br>(6.03 - 6.11)           | 6.29                | (6.18 - 6.26)<br>(6.25 - 6.33)     |              | ;;<br>1.                               |               |                                       | i<br>:                                  |       |
| Aroclor-1242<br>Aroclor-1242    | 2 1                     | 4.43<br>4.85         | (4.39 - 4.47)<br>(4.81 - 4.89)           | 4.56<br>4.99        | (4.52 - 4.60)<br>(4.95 - 5.03)     |              |                                        |               |                                       | ļ                                       |       |
| Aroclor-1242<br>Aroclor-1242    | 2 3 2 4                 | 5.23<br>5.56         | (5.19 - 5.27)<br>(5.52 - 5.60)           | 5.37<br>5.70        | (5.33 - 5.41)<br>(5.66 - 5.74)     | İ            | į                                      |               | i                                     |                                         |       |
| Aroclor-1242<br>Aroclor-1248    | 2 5                     | 5.93<br>4.85         | (5.89 - 5.97)<br>(4.81 - 4.89)           | 6.07<br>4.99        | (6.03 - 6.11)<br>(4.95 - 5.03)     |              |                                        |               | i                                     |                                         |       |
| Aroclor-1248                    | 2 1 2 2                 | 5.23                 | (5.19 - 5.27)                            |                     | (5.33 - 5.41)<br>(5.66 - 5.74)     | !            |                                        |               | ļ                                     |                                         |       |
| Aroclor-1248<br>Aroclor-1248    | 2 3                     | 5.56<br>6.07         | (5.52 - 5.60)<br>(6.03 - 6.11)           | 6.22                | (6.18 - 6.26)                      | <del> </del> |                                        |               |                                       | <del></del>                             | ,     |
| Aroclor-1248<br>Aroclor-1254    | 2 5 2 1                 | 6.21<br>6.43         | (6.17 - 6.25)  <br>(6.39 - 6.47)         | 6.57                | (6.31 - 6.39)<br>(6.53 - 6.61)     | !            |                                        |               | :                                     |                                         |       |
| Aroclor-1254<br>Aroclor-1254    | 22                      | 6.78<br>7.17         | (6.74 - 6.82)<br>(7.13 - 7.21)           | 6.92<br>7.31        | (6.88 - 6.96)<br>(7.27 - 7.35)     | !            | <u>.</u> !!                            | :             |                                       |                                         |       |
| Aroclor-1254<br>Aroclor-1254    | 2 3<br>2 4<br>2 5       | 7.69<br>8.38         | (7.65 - 7.73)<br>(8.34 - 8.42)           | 7.82<br>8.52        | (7.78 - 7.86)<br>(8.48 - 8.56)     | į ·-· ···    | · · · · · · · · · · · · · · · · · · ·  |               | ·· ··· i                              | · · · · · · · · · · · · · · · · · · ·   |       |
| Aroclor-1262<br>Aroclor-1262    | 2 1 2                   | 7.75<br>8.92         | (7.71 - 7.79)<br>(8.88 - 8.96)           |                     | (7.85 - 7.93)<br>(9.02 - 9.10)     |              | i                                      |               | :                                     | :                                       |       |
| Aroclor-1262                    | 2 3                     | 9.02                 | (8.98 - 9.06)                            | 9.17                | (9.13 - 9.21)                      |              | <u>.</u>                               |               |                                       | ļ                                       |       |
| Aroclor-1262<br>Aroclor-1262    | 2 4 2 5                 |                      | (9.58 - 9.66)<br>(1 <u>0.12 - 10.20)</u> |                     | (9.74 - 9.82)<br>(10.31 - 10.39)   | <u> </u>     |                                        |               |                                       | i<br><del>i</del>                       |       |
| Aroclor-1268<br>Aroclor-1268    | 2 1 2                   | 8.42<br>8.46         | (8.38 - 8.46)<br>(8.42 - 8.50)           | 8.56<br>8.60        | (8.52 - 8.60)<br>(8.56 - 8.64)     |              |                                        |               | :                                     | !                                       |       |
| Aroclor-1268<br>Aroclor-1268    | 2 3<br>2 4              | 9.36<br>9.52         | (9.32 - 9.40)<br>(9.48 - 9.56)           | 9.52<br>9.68        | (9.48 - 9.56)<br>(9.64 - 9.72)     |              |                                        | !             |                                       | !<br>[                                  |       |
| Aroclor-1268<br>DCB-Surrogate   | 2 5                     | 10.16<br>10.71       | (10.12 - 10.20)<br>(10.65 - 10.77)       | 10.35<br>10.92      | (10.31 - 10.39)<br>(10.86 - 10.98) |              | (10.65 - 10.77)                        | 10 93         | (10.87 - 10.99)                       | i                                       |       |
| AAR-AUTOMATE                    | <del></del>             |                      |                                          |                     |                                    |              |                                        |               |                                       |                                         |       |

**DRO Data** 

#### ORGANICS PETROLEUM HYDROCARBON REPORT

Sample Number: AD19595-013

Method: EPA 8015D

Client Id: HSI-WC-NH

Matrix: Soil Initial Vol: 5q

Data File: 7G53147.D Analysis Date: 10/06/20 11:24

Final Vol: 1ml

Date Rec/Extracted: 10/02/20-10/05/20

Dilution: 1

Column:DB-5MS 30M 0.250mm ID 0.25um film

Solids: 86

Units: mg/Kg

|                               |    | Omis. n | ng/i\g |          |    |      |
|-------------------------------|----|---------|--------|----------|----|------|
| Cas # Compound                | RL | Conc    | Cas #  | Compound | RL | Conc |
| nhchnd2 Diesel Range Organics | 70 | - 11    |        |          |    |      |

Worksheet #: 569144

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Data Path : G:\Gcdata\2020\GC\_7\Data\10-06-20\

Data File : 7G53147.D Signal(s) : FID2B.CH

Acq On : 6 Oct 2020 11:24 Operator : ABM/AH/RR

Sample : AD19595-013

Misc : S,TPH ALS Vial : 7 Sa Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Oct 06 11:43:45 2020

Quant Method : G:\GCDATA\2020\GC 7\METHODQT\7G T0915.M

Quant Title : @GC\_7,mg,8015 QLast Update : Wed Sep 16 08:10:12 2020 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

|                | Compound                | R.T.   | Response | Conc U  | nits   |
|----------------|-------------------------|--------|----------|---------|--------|
| <del>-</del> - |                         |        |          |         |        |
| Target         | Compounds               |        |          |         |        |
| 1)mt           | C8                      | 0.000  | 0        | N.D.    | đ      |
| 2)mte          | C9                      | 0.000  | 0        | N.D.    | đ      |
| 3)mdte         | C10                     | 0.000  | 0        | N.D.    | đ      |
| 4)mdte         | C12                     | 0.000  | 0        | N.D.    | đ      |
| 5)mdte         | C14                     | 0.000  | 0        | N.D.    | đ      |
| 6)dte          | C16                     | 0.000  | 0        | N.D.    | đ      |
| 7)dte          | C17                     | 0.000  | 0        | N.D.    | đ      |
| 8)dte          | Pristane                | 0.000  | 0        | N.D.    | đ      |
| 9)dte          | C18                     | 0.000  | 0        | N.D.    | d<br>d |
| 10)dte         | Phytane                 | 0.000  | 0        | N.D.    | đ      |
| 11)dte         | C20                     | 0.000  | 0        | N.D.    | d      |
| 12)dte         | C22                     | 0.000  | 0        | N.D.    | d<br>d |
| 13)dte         | C24                     | 0.000  | 0        | N.D.    | d      |
| 14)dte         | C26                     | 0.000  | 0        | N.D.    | đ      |
| 15)dte         | C28                     | 0.000  | 0        | N.D.    | d<br>d |
| 16)te          | C30                     | 0.000  | 0        | N.D.    | đ      |
| 17)te          | C32                     | 0.000  | 0        | N.D.    | đ      |
| 18)te          | C34                     | 0.000  | 0        | N.D.    | d      |
| 19)te          | C36                     | 0.000  | 0        | N.D.    | đ      |
| 20)t           | C40                     | 0.000  | 0        | N.D.    | d      |
| 21)            | Chlorobenzene           | 2.552  | 31036    | 7.886   | m      |
| 22)            | O-Terphenyl             | 8.321  | 100857   | 13.646  | m      |
| 23)d           | Diesel Range Organics(T | 8.321f | 698085   | 109.070 | m      |
| 24)t           | Total Petroleum Hydroca | 0.000  | 0        | N.D.    | d      |
| 25)e           | Ext. Petroleum Hydrocar | 0.000  | 0        | N.D.    | đ      |
| 26)m           | Mineral Spirits(TOTAL)  | 0.000  | 0        | N.D.    | d      |
| 27)m           | Stoddard Solvent(TOTAL) | 0.000  | 0        | N.D.    | d<br>  |

(f)=RT Delta > 1/2 Window

(m) = manual int.

Data Path : G:\Gcdata\2020\GC\_7\Data\10-06-20\

Data File : 7G53147.D Signal(s) : FID2B.CH

: 6 Oct 2020 11:24 Acq On

Operator : ABM/AH/RR : AD19595-013 Sample

Misc : S, TPH

ALS Vial Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Oct 06 11:43:45 2020

Quant Method : G:\GCDATA\2020\GC\_7\METHODQT\7G\_T0915.M

Quant Title : @GC\_7,mg,8015 QLast Update : Wed Sep 16 08:10:12 2020 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal Phase : Signal Info :



#### ORGANICS PETROLEUM HYDROCARBON REPORT

Sample Number: AD19595-014

Method: EPA 8015D

Client Id: HSI-WC-H

Matrix: Soil

Data File: 7G53148.D

Initial Vol: 5g

Analysis Date: 10/06/20 11:50

Final Vol: 1ml

Date Rec/Extracted: 10/02/20-10/05/20

Dilution: 1

Column:DB-5MS 30M 0.250mm ID 0.25um film

Solids: 83

Units: mg/Kg

| Cas # Compound                | Di       | Conc  | Cas # Compound | Pl Conc |
|-------------------------------|----------|-------|----------------|---------|
| Cas # Compound                | <u> </u> | COLIC | Cas # Compound | RL Conc |
| phchpd2 Diesel Range Organics | 72       | U     |                |         |

Worksheet #: 569144

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Data Path : G:\Gcdata\2020\GC\_7\Data\10-06-20\

Data File : 7G53148.D Signal(s) : FID2B.CH

Acq On : 6 Oct 2020 11:50 Operator : ABM/AH/RR

Sample : AD19595-014

MISC : S, TPH ALS Vial : 8 Sa Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Oct 06 12:17:40 2020

Quant Method : G:\GCDATA\2020\GC\_7\METHODQT\7G\_T0915.M

Quant Title : @GC\_7,mg,8015 QLast Update : Wed Sep 16 08:10:12 2020 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

|        | Compound                 | R.T.   | Response | Conc Un | its                         |
|--------|--------------------------|--------|----------|---------|-----------------------------|
|        |                          |        |          |         |                             |
| Target | Compounds                |        |          |         |                             |
| 1)mt   | C8                       | 0.000  | 0        | N.D.    | đ                           |
| 2)mte  | C9                       | 0.000  | 0        | N.D.    | đ                           |
| 3)mdte | C10                      | 0.000  | 0        | N.D.    | d d d d d d d d d d d d d d |
| 4)mdte | C12                      | 0.000  | 0        | N.D.    | đ                           |
| 5)mdte | C14                      | 0.000  | 0        | N.D.    | đ                           |
| 6)dte  | C16                      | 0.000  | 0        | N.D.    | đ                           |
| 7)dte  | C17                      | 0.000  | 0        | N.D.    | đ                           |
| 8)dte  | Pristane                 | 0.000  | 0        | N.D.    | đ                           |
| 9)dte  | C18                      | 0.000  | 0        | N.D.    | đ                           |
| 10)dte | Phytane                  | 0.000  | 0        | N.D.    | đ                           |
| 11)dte | C20                      | 0.000  | 0        | N.D.    | đ                           |
| 12)dte | C22                      | 0.000  | 0        | N.D.    | đ                           |
| 13)dte | C24                      | 0.000  | 0        | N.D.    | đ                           |
| 14)dte | C26                      | 0.000  | 0        | N.D.    | đ                           |
| 15)dte | C28                      | 0.000  | 0        | N.D.    | đ                           |
| 16)te  | C30                      | 0.000  | 0        | N.D.    | đ                           |
| 17)te  | C32                      | 0.000  | 0        | N.D.    | đ                           |
| 18)te  | C34                      | 0.000  | 0        | N.D.    | đ                           |
| 19)te  | C36                      | 0.000  | 0        | N.D.    | đ                           |
| 20)t   | C40                      | 0.000  | 0        | N.D.    | đ                           |
| 21)    | Chlorobenzene            | 2.552  | 91458    | 23.240  | m                           |
| 22)    | O-Terphenyl              | 8.322  | 101233   |         | m                           |
| 23)d   | Diesel Range Organics(T  | 8.572f | 2629713  | 410.872 | m                           |
| 24)t   | Total Petroleum Hydroca  | 0.000  | 0        | N.D.    | đ                           |
| 25)e   | Ext. Petroleum Hydrocar  | 0.000  | 0        | N.D.    | đ                           |
| 26)m   | Mineral Spirits(TOTAL)   | 0.000  | 0        | N.D.    | đ                           |
| 27)m   | Stoddard Solvent (TOTAL) | 0.000  | 0        | N.D.    | đ                           |
|        |                          |        |          |         |                             |

(f) = RT Delta > 1/2 Window

(m) = manual int.

Data Path : G:\Gcdata\2020\GC\_7\Data\10-06-20\

Data File: 7G53148.D Signal(s) : FID2B.CH

Acq On 6 Oct 2020 11:50

Operator : ABM/AH/RR Sample : AD19595-014

: S, TPH Misc

Sample Multiplier: 1 ALS Vial : 8

Integration File: autoint1.e Quant Time: Oct 06 12:17:40 2020

Quant Method: G:\GCDATA\2020\GC\_7\METHODQT\7G\_T0915.M

Quant Title : @GC\_7,mg,8015 QLast Update : Wed Sep 16 08:10:12 2020

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal Phase : Signal Info



#### ORGANICS PETROLEUM HYDROCARBON REPORT

Sample Number: SMB88159

Method: EPA 8015D

Client Id:

Matrix: Soil

Data File: 7G53143.D

Initial Vol:5g

Analysis Date: 10/06/20 09:40

Final Vol: 1ml

Date Rec/Extracted: NA-10/05/20

Dilution: 1

Column:DB-5MS 30M 0.250mm ID 0.25um film

Solids: 100

Units: mg/Kg

| Cas #   | Compound              | RL | Conc | Cas# | Compound | RL Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|---------|-----------------------|----|------|------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| phchpd2 | Diesel Range Organics | 60 | U    |      |          | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |  |

Worksheet #: 569144

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Data Path : G:\Gcdata\2020\GC\_7\Data\10-06-20\

Data File : 7G53143.D Signal(s) : FID2B.CH

Acq On : 6 Oct 2020 9:40 Operator : ABM/AH/RR

Sample : SMB88159

Misc : S,TPH
ALS Vial : 3 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Oct 06 10:04:01 2020

Quant Method : G:\GCDATA\2020\GC\_7\METHODQT\7G\_T0915.M

Quant Title : @GC\_7,mg,8015 QLast Update : Wed Sep 16 08:10:12 2020 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

|        | Compound                | R.T.   | Response | Conc U  | nits        |
|--------|-------------------------|--------|----------|---------|-------------|
|        |                         |        |          |         |             |
| Target | Compounds               |        |          |         |             |
| 1)mt   | C8                      | 0.000  | 0        | N.D.    | đ           |
| 2)mte  | C9                      | 0.000  | 0        | N.D.    | đ           |
| 3)mdte | C10                     | 0.000  | 0        | N.D.    | đ           |
| 4)mdte | C12                     | 0.000  | 0        | N.D.    | d           |
| 5)mdte | C14                     | 0.000  | 0        | N.D.    | d           |
| 6)dte  | C16                     | 0.000  | 0        | N.D.    | d<br>d<br>d |
| 7)dte  | C17                     | 0.000  | 0        | N.D.    | đ           |
| 8)dte  | Pristane                | 0.000  | 0        | N.D.    | d           |
| 9)dte  | C18                     | 0.000  | 0        | N.D.    | đ           |
| 10)dte | Phytane                 | 0.000  | 0        | N.D.    | d<br>d<br>d |
| 11)dte | C20                     | 0.000  | 0        | N.D.    | đ           |
| 12)dte | C22                     | 0.000  | 0        | N.D.    | d<br>d      |
| 13)dte | C24                     | 0.000  | 0        | N.D.    | đ           |
| 14)dte | C26                     | 0.000  | 0        | N.D.    | d           |
| 15)dte | C28                     | 0.000  | 0        | N.D.    | đ           |
| 16)te  | C30                     | 0.000  | 0        | N.D.    | d<br>d<br>d |
| 17)te  | C32                     | 0.000  | 0        | N.D.    | đ           |
| 18)te  | C34                     | 0.000  | 0        | N.D.    | đ           |
| 19)te  | C36                     | 0.000  | 0        | N.D.    | đ           |
| 20)t   | C40                     | 0.000  | 0        | N.D.    | đ           |
| 21)    | Chlorobenzene           | 2.552  | 31134    | 7.911   | m           |
| 22)    | O-Terphenyl             | 8.321  | 95380    | 12.905  | m           |
| 23)d   | Diesel Range Organics(T | 8.321f | 1128928  | 176.386 | m           |
| 24)t   | Total Petroleum Hydroca | 8.321f | 1687575  | 262.586 | m           |
| 25)e   | Ext. Petroleum Hydrocar | 0.000  | 0        | N.D.    | đ           |
| 26)m   | Mineral Spirits(TOTAL)  | 0.000  | 0        | N.D.    | đ           |
| 27)m   | Stoddard Solvent(TOTAL) |        | 0        | N.D.    | đ           |

(f)=RT Delta > 1/2 Window

(m) = manual int.

Data Path : G:\Gcdata\2020\GC 7\Data\10-06-20\

Data File : 7G53143.D Signal(s) : FID2B.CH

6 Oct 2020 Acq On 9:40

: ABM/AH/RR Operator Sample : SMB88159 Misc : S, TPH

ALS Vial : 3 Sample Multiplier: 1

Integration File: autointl.e Quant Time: Oct 06 10:04:01 2020

Quant Method : G:\GCDATA\2020\GC\_7\METHODQT\7G\_T0915.M

Quant Title : @GC\_7,mg,8015 QLast Update : Wed Sep 16 08:10:12 2020 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info



Data Path : G:\Gcdata\2020\GC\_7\Data\10-06-20\

Data File : 7G53142.D Signal(s) : FID2B.CH

Acq On : 6 Oct 2020 9:14 Operator : ABM/AH/RR

Sample : INST BLK

Misc : S,TPH
ALS Vial : 2 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Oct 06 09:57:18 2020

Quant Method : G:\GCDATA\2020\GC\_7\METHODQT\7G\_T0915.M

Quant Title : @GC\_7,mg,8015 QLast Update : Wed Sep 16 08:10:12 2020 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

|        | Compound                | R.T.  | Response | Conc Un | its         |
|--------|-------------------------|-------|----------|---------|-------------|
|        |                         |       |          |         |             |
| Target | Compounds               |       |          |         |             |
| 1)mt   | C8                      | 0.000 | 0        | N.D.    | đ           |
| 2)mte  | C9                      | 0.000 | 0        | N.D.    | đ           |
| 3)mdte | C10                     | 0.000 | 0        | N.D.    | đ           |
| 4)mdte | C12                     | 0.000 | 0        | N.D.    | đ           |
| 5)mdte | C14                     | 0.000 | 0        | N.D.    | d<br>d<br>d |
| 6)dte  | C16                     | 0.000 | 0        | N.D.    | đ           |
| 7)dte  | C17                     | 0.000 | 0        | N.D.    | đ           |
| 8)dte  | Pristane                | 0.000 | 0        | N.D.    | d<br>d      |
| 9)dte  | C18                     | 0.000 | 0        | N.D.    | d           |
| 10)dte | Phytane                 | 0.000 | 0        | N.D.    | d<br>d      |
| 11)dte | C20                     | 0.000 | 0        | N.D.    | đ           |
| 12)dte | C22                     | 0.000 | 0        | N.D.    | đ           |
| 13)dte | C24                     | 0.000 | 0        | N.D.    | d<br>d      |
| 14)dte | C26                     | 0.000 | 0        | N.D.    | đ           |
| 15)dte | C28                     | 0.000 | 0        | N.D.    | đ           |
| 16)te  | C30                     | 0.000 | 0        | N.D.    | d<br>d      |
| 17)te  | C32                     | 0.000 | 0        | N.D.    | đ           |
| 18)te  | C34                     | 0.000 | 0        | N.D.    | đ           |
| 19)te  | C36                     | 0.000 | 0        | N.D.    | đ           |
| 20)t   | C40                     | 0.000 | 0        | N.D.    | d<br>d      |
| 21)    | Chlorobenzene           | 0.000 | 0        | N.D.    | đ           |
| 22)    | O-Terphenyl             | 0.000 | 0        | N.D.    | đ           |
| 23)d   | Diesel Range Organics(T | 3.352 | 974862   | 152.315 | m           |
| 24)t   | Total Petroleum Hydroca |       | 1395870  | 217.197 | m           |
| 25)e   | Ext. Petroleum Hydrocar |       | 0        | N.D.    | đ           |
| 26)m   | Mineral Spirits(TOTAL)  | 0.000 | 0        | N.D.    | đ           |
| 27)m   | Stoddard Solvent(TOTAL) | 0.000 | 0        | N.D.    | đ           |

(f) = RT Delta > 1/2 Window

(m) = manual int.

Data Path : G:\Gcdata\2020\GC\_7\Data\10-06-20\

Data File: 7G53142.D Signal(s) : FID2B.CH

Acq On 6 Oct 2020 9:14 :

Operator : ABM/AH/RR Sample : INST BLK Misc : S, TPH

ALS Vial : 2 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Oct 06 09:57:18 2020

Quant Method : G:\GCDATA\2020\GC\_7\METHODQT\7G\_T0915.M

Quant Title : @GC\_7,mg,8015 QLast Update : Wed Sep 16 08:10:12 2020 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal Phase : Signal Info :



## FORM2

Surrogate Recovery

Method: EPA 8015D

| <u>Dfile</u> | Sample#                 | Matrix | Date/Time      | Surr<br>Dil | Dilute<br>Out<br>Flag | Column1<br>S1<br>Recov | Column1<br>S2<br>Recov | Column0<br>S3<br>Recov | Column0<br>S4<br>Recov | Column0<br>S5<br>Recov | Column0<br>S6<br>Recov |
|--------------|-------------------------|--------|----------------|-------------|-----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| 7G53         | 143.D SMB88159          | s      | 10/06/20 09:40 | 1           |                       | 40                     | 65                     |                        |                        |                        |                        |
| 7G53         | 147.DAD19595-013        | S      | 10/06/20 11:24 | 1           |                       | 39                     | 68                     |                        |                        |                        |                        |
| 7G53         | 148.DAD19595-014        | S      | 10/06/20 11:50 | 1           |                       | 116                    | 68                     |                        |                        |                        |                        |
| 7G53         | 144.D SMB88159(MS)      | S      | 10/06/20 10:06 | 1           |                       | 40                     | 85                     |                        |                        |                        |                        |
| 7G53         | 157.DAD19542-001(10X)   | S      | 10/06/20 16:13 | 10          | SD                    | 0*                     | 0*                     |                        |                        |                        |                        |
| 7G53         | 158.DAD19542-001(10X)(M | S) S   | 10/06/20 16:43 | 10          | SD                    | 0*                     | 0*                     |                        |                        |                        |                        |
| 7G53         | 159.DAD19542-001(10X)(M | s s    | 10/06/20 17:13 | 10          | SD                    | 0*                     | 0*                     |                        |                        |                        |                        |

Flags: SD=Surrogate diluted out

\*=Surrogate out

Method: EPA 8015D

### **Soil Laboratory Limits**

|                  | Spike |        |
|------------------|-------|--------|
| Compound         | Amt   | Limits |
| S1=Chlorobenzene | 20    | 20-117 |
| S2=O-Terphenyl   | 20    | 30-146 |

# Form3 Recovery Data Laboratory Limits

QC Batch: SMB88159

| Analyte:              | Col | Spike<br>Conc | Sample<br>Conc | Expected<br>Conc | Recovery  | Lower<br>Limit | Upper<br>Limit |
|-----------------------|-----|---------------|----------------|------------------|-----------|----------------|----------------|
| Diesel Range Organics | 1   | 1833.26       | <u>0</u>       | <u>3000</u>      | <u>61</u> | 40             | <u>130</u>     |

<sup>\* -</sup> Indicates outside of limits # - Indicates outside of standard limits but within method exceedance limits Bold and underline - Indicates the compounds reported on form1

## Form3 Recovery Data Laboratory Limits QC Batch: SMB88159

| Data Fil                          | Data File |               |                |                  | Analysis D           | ate            |                |  |
|-----------------------------------|-----------|---------------|----------------|------------------|----------------------|----------------|----------------|--|
| Spike or Dup: 7G5315              | 8.D       | AD195         | 542-001(10X)   | )(MS)            | 10/6/2020 4:43:00 PM |                |                |  |
| Non Spike(If applicable): 7G5315  | 7.D       | AD195         | 542-001(10X)   | )                | 10/6/2020 4:13:00 PM |                |                |  |
| Inst Blank(If applicable): 7G5315 | 4.D       | INST BLK      |                |                  | 10/6/2020            | 2:41:00 I      | PM             |  |
| Method: 8015                      |           | Matrix: Soil  |                |                  | QC Type: MS          |                |                |  |
| Analyte:                          | Col       | Spike<br>Conc | Sample<br>Conc | Expected<br>Conc | Recovery             | Lower<br>Limit | Upper<br>Limit |  |
| Diesel Range Organics             | 1         | 20438.2       | <u>24679.3</u> | <u>3000</u>      | <u>-140 *</u>        | <u>40</u>      | 130            |  |
| Data Fil                          | e         | Sampl         | e ID:          |                  | Analysis D           | ate            | <u>-</u>       |  |
| Spike or Dup: 7G5315              | 9.D       | AD195         | 42-001(10X)    | (MSD)            | 10/6/2020 5:13:00 PM |                |                |  |
| Non Spike(If applicable): 7G5315  | 7.D       | AD195         | 42-001(10X)    | )                | 10/6/2020            | 4:13:00 F      | PM             |  |
| Inst Blank(If applicable): 7G5315 | 4.D       | INST          | 3LK_           |                  | 10/6/2020            | 2:41:00 F      | PM             |  |
| Method: 8015                      |           | Matrix: Soil  |                |                  | QC Type: MSD         |                |                |  |
| Analyte:                          | Col       | Spike<br>Conc | Sample<br>Conc | Expected<br>Conc | Recovery             | Lower<br>Limit | Upper<br>Limit |  |
| Diesel Range Organics             | 1         | 24683.8       | 24679.3        | 3000             | 0.15*                | 40             | 130            |  |

## Form3 RPD Data Laboratory Limits

QC Batch: SMB88159

Data File Sample ID: Analysis Date 10/6/2020 5:13:00 PM Spike or Dup: 7G53159.D AD19542-001(10X)(MSD) Duplicate(If applicable): 7G53158.D AD19542-001(10X)(MS) 10/6/2020.4:43:00 PM Inst Blank(If applicable): 7G53154.D **INST BLK** 10/6/2020 2:41:00 PM Method: 8015 Matrix: Soil QC Type: MSD Dup/MSD/MBSD Sample/MS/MBS

 Analyte:
 Column
 Conc
 Conc
 RPD
 Limit

 Diesel Range Organics
 1
 24683.8
 20438.2
 19
 40

#### FORM 4 Blank Summary

Blank Number: SMB88159 Blank Analysis Date: 10/06/20 09:40 Blank Data File: 7G53143.D Blank Extraction Date: 10/05/20

Matrix: Soil (If Applicable)

Method: EPA 8015D

| Sample Number    | Data File | Analysis Date  |  |
|------------------|-----------|----------------|--|
| AD19595-013      | 7G53147.D | 10/06/20 11:24 |  |
| AD19595-014      | 7G53148.D | 10/06/20 11:50 |  |
| AD19542-001(10X) | 7G53157.D | 10/06/20 16:13 |  |
| AD19542-001(10X) | 7G53159.D | 10/06/20 17:13 |  |
| AD19542-001(10X) | 7G53158.D | 10/06/20 16:43 |  |
| SMB88159(MS)     | 7G53144.D | 10/06/20 10:06 |  |

Method: EPA 8015D Instrument: GC\_7

Column: DB-5MS 30M 0.250mm ID 0.25um film

| Data File         | Sample#        | Analysis<br>Date/Time | Matrix      | Reference<br>File | Column<br>1 RT | Column<br>1 % Drift | Column<br>2 RT | Column<br>2 % Drift |
|-------------------|----------------|-----------------------|-------------|-------------------|----------------|---------------------|----------------|---------------------|
| 7G52904 D         | INST BLK       | 09/10/20 08:13        | Soil        |                   |                |                     |                |                     |
| 7G52905.D         | TPH@20PPM      | 09/10/20 09:41        | Soil        |                   |                |                     |                |                     |
| 7G52906.D         | CAL TPH@20PPM  | 09/10/20 10:19        | Soil        | 7G52911.          | 8.2914         | 0.1038              |                |                     |
| 7G52907.D         | CAL TPH@500PPM | 09/10/20 10:48        | Soil        | 7G52911.          | 8.3377         | 0.6606              |                |                     |
| 7G52908_D         | CAL TPH@100PPM | 09/10/20 11:18        | Soil        | 7G5291 <u>1</u>   | 8.3024         | 0.2364              |                |                     |
| 7G52909.D         | CAL TPH@40PPM  | 09/10/20 11:48        | Soil        | 7G52911.          | 8.2912         | 0.1014              |                |                     |
| 7G52910.D         | CAL TPH@10PPM  | 09/10/20 12:18        | Soil        | 7G52911.          | 8.2840         | 0.0145              |                |                     |
| 7G52911.D         | CAL TPH@5PPM   | 09/10/20 12:48        | Soil        | 7G52911.          | 8.2828         | 0                   |                |                     |
| 7G52912.D         | CAL TPH@20PPM  | 09/10/20 13:29        | Soil        | 7G52911.          | 8.2923         | 0.1146              |                |                     |
| 7G52 <u>913.D</u> | ICV TPH@20PPM  | 09/10/20 13:59        | <u>Soil</u> | 7G52911.          | 8.2884         | 0.0676              |                |                     |

Method: EPA 8015D Instrument: GC\_7

Column: DB-5M\$ 30M 0.250mm ID 0.25um film

| Data File | Sample#        | Analysis<br>Date/Time | Matrix | Reference<br>File | Column<br>1 RT | Column<br>1 % Drift | Column<br>2 RT | Column<br>2 % Drift |
|-----------|----------------|-----------------------|--------|-------------------|----------------|---------------------|----------------|---------------------|
| 7G52957 D | INST BLK       | 09/15/20 08:33        | Soil   |                   |                |                     |                |                     |
| 7G52966.D | CAL TPH@20PPM  | 09/15/20 14:21        | Soil   | 7G52971.          | 8.2816         | 0.0967              |                |                     |
| 7G52967.D | CAL TPH@500PPM | 09/15/20 14:46        | Soil   | 7G52971.          | 8.3236         | 0.6025              |                |                     |
| 7G52968.D | CAL TPH@100PPM | 09/15/20 15:12        | Soil   | 7G52971.          | 8.2829         | 0.1123              |                |                     |
| 7G52969.D | CAL TPH@40PPM  | 09/15/20 15:38        | Soil   | 7G52971           | 8.2685         | 0.0617              |                |                     |
| 7G52970.D | CAL TPH@10PPM  | 09/15/20 16:04        | Soil   | 7G52971           | 8.2729         | 0.0085              |                |                     |
| 7G52971.D | CAL TPH@5PPM   | 09/15/20 16:30        | Soil   | 7G52971.          | 8.2736         | 0                   |                |                     |
| 7G52972.D | CAL TPH@20PPM  | 09/15/20 16:56        | Soil   | 7G52971           | 8.2745         | 0.0109              |                |                     |
| 7G52973.D | ICV TPH@20PPM  | 09/15/20 17:22        | Soil   | 7G52971           | 8.2659         | 0.0931              |                |                     |

Method: EPA 8015D Instrument: GC\_7

Column: DB-5M\$ 30M 0.250mm ID 0.25um film

| Data File | Sample#       | Analysis<br>Date/Time           | Matrix | Reference<br>File | Column<br>1 RT | Column<br>1 % Drift | Column<br>2 RT | Column<br>2 % Drift |
|-----------|---------------|---------------------------------|--------|-------------------|----------------|---------------------|----------------|---------------------|
| 7G53140.D | INST BLK      | 10/06/20 08:21                  | Soil   |                   |                |                     |                |                     |
| 7G53141.D | CAL TPH@20PPM | 10/06/20 08:48                  | Soil   | 7G53141.          | 8.3241         | 0                   |                |                     |
| 7G53142.D | INST BLK      | 10/06/20 09:14                  | Soil   | 7G53141           | 0.0000         | 200                 |                |                     |
| 7G53143.D | SMB88159      | 10/06/20 09:40                  | Soil   | 7G53141.          | 8.3209         | 0.0384              |                |                     |
| 7G53144.D | SMB88159(MS)  | 1 <u>0/0</u> 6/ <u>20</u> 10:06 | Soil   | 7G53141           | 8.3242         | 0.0012              |                |                     |
| 7G53145.D | AD19498-002   | 10/06/20 10:32                  | Soil   | 7G53141.          | 8.3366         | 0.1501              |                |                     |
| 7G53146.D | AD19575-002   | 10/06/20 10:58                  | Soil   | 7G53141.          | 8.3220         | 0.0252              |                |                     |
| 7G53147.D | AD19595-013   | 10/06/20 11:24                  | Soil   | 7G53141.          | 8.3210         | 0.0372              |                |                     |
| 7G53148.D | AD19595-014   | 10/06/20 11:50                  | Soil   | 7G53141.          | 8.3216         | 0.03                |                |                     |
| 7G53149.D | AD19603-001   | 10/06/20 12:16                  | Soil   | 7G53141.          | 8.3232         | 0.0108              |                |                     |
| 7G53150.D | AD19560-001   | 10/06/20 12:41                  | Soil   | 7G53141.          | 8.3222         | 0.0228              |                |                     |
| 7G53151.D | CAL TPH@20PPM | 10/06/20 13:07                  | Soil   | 7G53141.          | 8.3234         | 0.0084              |                |                     |

Method: EPA 8015D Instrument: GC\_7

Column: DB-5MS 30M 0.250mm ID 0.25um film

| D 4 E"             | 0                    | Analysis       | 8.6-4-5 | Reference        | Column          | Column    | Column | Column    |
|--------------------|----------------------|----------------|---------|------------------|-----------------|-----------|--------|-----------|
| Data File          | Sample#              | Date/Time      | Matrix  | File             | 1 RT            | 1 % Drift | 2 RT   | 2 % Drift |
| 7G53152.D          | INST BLK             | 10/06/20 13:41 | Soil    |                  |                 |           |        |           |
| 7G53153.D          | CAL TPH@20PPM        | 10/06/20 14:11 | Soil    | 7G53153.         | 8.3171          | 0         |        |           |
| 7G53154.D          | INST BLK             | 10/06/20 14:41 | Soil    | 7G53153.         | 0.0000          | 200       |        |           |
| 7G53155.D          | SMB88159             | 10/06/20 15:11 | Soil    | 7G53153.         | 8.3140          | 0.0373    |        |           |
| 7G53156.D          | AD19542-001          | 10/06/20 15:41 | Soil    | 7G53153.         | 8.3172          | 0.0012    |        |           |
| 7G53157.D          | AD19542-001(10X)     | 10/06/20 16:13 | Soil    | 7G53153.         | 0.0000          | 200       |        |           |
| 7G53158.D          | AD19542-001(10X)(MS) | 10/06/20 16:43 | Soil    | 7G53153.         | 0.0000          | 200       |        |           |
| 7G53159.D          | AD19542-001(10X)(MSD | 10/06/20 17:13 | Soil    | 7G53153.         | 0.0000          | 200       |        |           |
| 7G53160.D          | TEST                 | 10/06/20 18:42 | Soil    | 7G53153.         | 0.0000          | 200       |        |           |
| 7G5 <u>31</u> 61.D | CAL TPH@20PPM        | 10/06/20 19:12 | Soil    | 7G5 <u>31</u> 53 | 8.3 <u>15</u> 6 | 0.018     |        |           |
| 7G53162.D          | CAL TPH@20PPM        | 10/06/20 19:42 | Soil    | 7G53153          | 8.3157          | 0.0168    |        |           |

| y              | U              | J              | _                  | <b>-</b>                   |
|----------------|----------------|----------------|--------------------|----------------------------|
| (Ji            | ω              | _              | Level #:           | Method: EPA 8015[          |
| 7G52908.D      | 7G52906.D      | 7G52911.D      | Data Fi            | J                          |
| CAL TPH@100PPM | CAL TPH@20PPM  | CAL TPH@5PPM   | e: Cal Identifier: |                            |
| 09/10/20 11:18 | 09/10/20 10:19 | 09/10/20 12:48 | Analysis Date/Time |                            |
|                |                |                |                    | Initi:                     |
| თ              | 4              | 2              | Level #:           | Form 6 Initial Calibration |
| 7G52907.D      | 7G52909.D      | 7G52910.D      | Data File:         | on .                       |
| CAL            | CAL            | CAL            | ,,,,               |                            |
| CAL TPH@500PPM | CAL TPH@40PPM  | ΓPH@10PPM      | Cal Identifier:    |                            |
| 09/10/20 10:48 | 09/10/20 11:48 | 09/10/20 12:18 | Analysis Date/Time | Instrument: GC_7           |
|                |                |                |                    | 7                          |

| Ext. Petro<br>Mineral S<br>Stoddard                                                                                                 | Total Pet                                 | Diesel Ra                   | O-Terphenvl                        | Chlorobenzene                      | C44                         | C40                                | C36                                | C34                         | C32                                | C30                         | C28                         | C26                         | C24                                | C22                         | C20                                | Phytane                            | C18                         | Pristane                    | C17                         | C16             | C14           | C12           | C10           | ය               |             | 1.0 (Compound                                             | 92 | 31 | 9              | 0              | 3              | 25 Metho                      |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|------------------------------------|------------------------------------|-----------------------------|------------------------------------|------------------------------------|-----------------------------|------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------|-----------------------------|------------------------------------|------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------|---------------|---------------|---------------|-----------------|-------------|-----------------------------------------------------------|----|----|----------------|----------------|----------------|-------------------------------|
| Ext. Petroleum Hvdrocarbo<br>Mineral Spirits(TOTAL)<br>Stoddard Solvent(TOTAL)                                                      | Total Petroleum Hydrocarb                 | Diesel Range Organics(TO    | 'nν                                | nzene                              |                             |                                    |                                    |                             |                                    |                             |                             |                             |                                    |                             |                                    |                                    |                             |                             |                             |                 |               |               |               |                 |             | <b>d</b>                                                  |    |    |                | ω              | 1              | Method: EPA 8015D<br>Level #: |
| 1 0 Ava<br>1 0 Ava<br>(L) 1 0 Ava                                                                                                   | -                                         | TO 1 0 Ava                  | 1 0 Avg                            | 1 0 Avg                            | 1 0 Avg                     | 1 0 Avq                            | 1 0 Avg                            | 1 0 Avg                     | 1 0 Avg                            | 1 0 Avg                     | 1 0 Avq                     | 1 0 Avg                     | 1 0 Avg                            | 1 0 Avg                     | 1 0 Avg                            | 1 0 Avg                            | 1 0 Ava                     | 1 0 Qua                     | 1 0 Qua                     | 1 0 Avg         | 1 0 Avg       | 1 0 Avg       | 1 0 Avg       | 1 0 Avg         | 1 0 Avg     | Col Mr Fit:                                               |    |    | 7G52908.D      | 7G52906.D      | 7G52911.D      | Data                          |
|                                                                                                                                     |                                           | q 0.5362                    | q 0.7027                           | a 0.3549                           | q 0.5048                    | q 0.5789                           | a 0.6517                           | a 0.6376                    | q 0.6855                           | q 0.6447                    | q 0.6407                    |                             | a 0.6138                           |                             | a 0.5513                           |                                    | a 0.5096                    | ла 0.4119                   | ла 0.6289                   | q 0.4847        | 1             | q 0.3829      | q 0.5028      | q 0.4942        | q 0.4464    | ₽<br>RF1                                                  |    |    | Ç <sub></sub>  | CAL            | Ω <sub>E</sub> | Data File:                    |
| )2 0.6693<br>)9 0.5397<br>)9 0.5397                                                                                                 | 0.6583                                    | 2 0.6477                    |                                    |                                    | 18 0.5515                   | -                                  |                                    | 6 0.7475                    |                                    | 17 0.7549                   | 7 0.7518                    | 3 0.7327                    | 8 0.7290                           | 9 0.6913                    | 3 0.6742                           |                                    | 6 0.6477                    | 9 0.7020                    | 39 0.5536                   | 17 0.6063       | 2 0.5561      | 9 0.5369      | 8 0.5621      | 12 0.5494       | 4 0.4939    | RF2                                                       |    |    |                |                | =              | Callo                         |
| 0.5602 0.6693 0.6296 0.6365 0.6766 0.7035<br>0.4449 0.5397 0.5161 0.5363 0.5707 0.6185<br>0.4449 0.5397 0.5161 0.5363 0.5707 0.6185 | 0.5531 0.6583 0.6222 0.6282 0.6641 0.6883 | 0.6154                      | 0.7893 0.7248 0.7275 0.7631 0.8026 | 0.4051 0.3754 0.3881 0.4024 0.4355 | 0.5825                      | 0.7324 0.6832 0.6747 0.6808 0.6756 | 0.7741 0.7178 0.7001 0.7414 0.7530 | 0.6881                      | 0.8020 0.7270 0.7111 0.7620 0.7835 | 0.6966                      | 0.6937                      | 0.6854                      | 0.7290 0.6812 0.6900 0.7262 0.7497 | 0.6520                      | 0.6742 0.6381 0.6553 0.6896 0.7202 | 0.6759 0.6001 0.5965 0.6170 0.5412 |                             | 0.6298                      |                             | 3 0.5884 0.6069 | 0.5587 0.5852 | 0.5274 0.5566 | 0.5240 0.5395 | 1 0.5036 0.5182 | 0.4666      | RF3                                                       |    |    | трн@100ррм     | 0PPM           | PPM            | Cal Identifier:               |
| 0.5363 C<br>0.5363 C<br>0.5363 C                                                                                                    | 0.6282 0                                  | 0.6154 0.6273 0.6668 0.6952 | 0.7275 0                           | 0.3881 0                           | 0.5825 0.5802 0.5864 0.5599 | 0.6747 0                           | 0.7001 0                           | 0.6881 0.6706 0.7224 0.7425 | 0.7111 0                           | 0.6966 0.7016 0.7418 0.7610 | 0.6937 0.7012 0.7368 0.7555 | 0.6854 0.6935 0.7277 0.7501 | 0.6900 0                           | 0.6520 0.6655 0.7018 0.7271 | 0.6553 0                           | 0.5965 0                           | 0.6233 0.6407 0.6825 0.8158 | 0.6298 0.5934 0.5801 0.3078 | 0.5981 0.6307 0.7502 1.0339 | 0.6069 (        | 0.5852        | 0.5566 (      | 0.5395 (      | 0.5182 (        | 0.4819 (    | RF4                                                       |    |    | 09/1           | 09/1           | 09/1           |                               |
| .6766 0.<br>.5707 0.<br>.5707 0.                                                                                                    | 6641 0                                    | .6668 0.                    | .7631 0.                           | .4024 0.                           | .5864 0.                    | 6808 0                             | .7414 0.                           | .7224 0.                    | .7620 0.                           | 7418 0                      | 7368 0.                     | .7277 0.                    | .7262 0.                           | .7018 0.                    | .6896 0.                           | 6170 0.                            | .6825 0.                    | .5801 0.                    | .7502 1.                    | 0.6466 0.6853   | 0.6340 0.6803 | 0.6034 0.6511 | 0.5729 0.6191 | 0.5421 0.5861   | 0.5012 0.   | RF5 R                                                     |    |    | 09/10/20 11:18 | 09/10/20 10:19 | 09/10/20 12:48 | Analysis Date/l               |
| 7035<br>6185<br>6185                                                                                                                | 6883                                      | 6952                        | 8026                               | 4355                               | 5599                        | 6756 —                             | 7530                               | 7425                        | 7835                               | 7610                        | 7555                        | 7501                        | 7497                               | 7271                        | 7202                               | 5412                               | 8158                        | 3078                        | 0339                        | 6853            | 6803          | 6511          | 6191          | 5861            | 0.5558      | RF6 RF7                                                   |    |    | 8              | 19             |                | Date/Time                     |
|                                                                                                                                     |                                           | i                           | i                                  | i                                  | i                           | 1                                  | i                                  | İ                           | I                                  | 1                           |                             | i                           | 1                                  | į                           | 1                                  |                                    | i                           | i                           | İ                           | 1               |               | i             | i             | i               | 1           | RF8                                                       |    |    |                |                |                | _                             |
| 0.5<br>0.5                                                                                                                          | 0.6                                       | 0.6                         | 0.7                                | 0.3                                | 0.5                         | 0.6                                | 0.7                                | 0.7                         | 0.7                                | 0.7                         | 0.7                         | 0.7                         | 0.6                                | 0.6                         | 0.6                                | 0.6                                | 0.6                         | 0.5                         | 0.6                         | 0.6             | 0.5           | 0.5           | 0.5           | 0.5             | 0.4         | AvgRf                                                     |    |    | თ              | 4              | 2              | Initial Calibration           |
| 0.646 2.85<br>0.538 2.21<br>0.538 2.21                                                                                              | 0.636 2.21                                | 0.631 3.52                  | 0.7528.28                          | 0.394 2.53                         | 0.561 19.02                 | 0.671 15.85                        | 0.723 14.05                        | 0.701 13.42                 | 0.745 12.78                        | 0.717 12.14                 | 0.713 11.48                 | 0.703 10.81                 | 0.698 10.13                        | 0.669 9.41                  | 0.655 8.66                         | 0.612 7.87                         | 0.6537.84                   | 0.5387.41                   | 0.6997.41                   | 0.603 6.94      | 0.569 5.93    | 0.543 4.80    | 0.553 3.52    | 0.5322.84       | 0.491 2.20  | 꼰                                                         |    |    | 7G5            | 7G52909        | ا              | ration                        |
| 1.00                                                                                                                                | 100                                       | 1.00                        | 1.00                               | 1.00                               | 1.00                        | 1.00                               | 1.00                               | 1.00                        | 1.00                               | 1.00                        | 1.8                         | 1.00                        | 1.00                               | 8                           |                                    | 7                                  | 9                           |                             | 0.997 1                     | 0.999 1         | 1.00          | 1.00          | 0.999 1       | 1.00            | 1.00        | Corr1 C                                                   |    |    | 7G52907.D      |                | 7G52910.D      | Data F                        |
| 888                                                                                                                                 | .00                                       | 8                           | 8                                  | 8                                  | 8                           | 8                                  | 8                                  | 8                           | 8                                  | 0                           | 8                           | 8                           | 8                                  | 8                           | 8                                  | 8                                  | 8                           | .00                         | 8                           | 8               | 8             | 8             | 8             | 8               | 8           | Corr2 %                                                   |    |    | CAL            | CAL            | CAL            | <del>ह</del> ें<br>(ह         |
| 7.7<br>11                                                                                                                           | 7.4                                       | 8.7                         | 5.3                                | 7.0                                | 5.5                         | 7.5                                | 6.0                                | 6.2                         | 6.0                                | 6.2                         | 6.1                         | 6.4                         | 7.0                                | 7.9                         | 8.9                                | 7.5                                | 15                          | 27                          | 25                          | 1               | 17            | 17            | 7.4           | 6.4             | 7.6         | %Rsd                                                      |    |    | CAL TPH@500PPM | CAL TPH@40PPM  | TPH@10PPM      | Cal Identifier:               |
| 90.00<br>25.00<br>25.00                                                                                                             | 105.0                                     | 65.00                       | 5.00                               | 5.00                               | 5.00                        | 5.00                               | 5.00                               | 5.00                        | 5.00                               | 5.00                        | 5.00                        | 5.00                        | 5.00                               | 5.00                        | 5.00                               | 5.00                               | 5.00                        | 5.00                        | 5.00                        | 5.00            | 5.00          | 5.00          | 5.00          | 5.00            | 5.00        | Lw1                                                       |    |    |                | 09             | <u>8</u>       |                               |
| 180.0<br>50.00<br>50.00                                                                                                             |                                           | 130.0                       | 10.00                              | 10.00                              | 10.00                       | 10.00                              |                                    | 10.00                       | 10.00                              | 10.00                       |                             |                             |                                    | 10.00                       | 10.00                              | 10.00                              | 10.00                       | 10.00                       | 10.00                       | 10.00           | 10.00         | 10.00         | 10.00         | 10.00           | 10.00       | Calit<br>Lvl2                                             |    |    | 09/10/20 10:48 | 09/10/20 11:48 | 09/10/20 12:18 | Analysi                       |
| 360.0 73<br>100.0 20<br>100.0 20                                                                                                    |                                           |                             | 20.00 40                           | 20.00 40                           |                             |                                    |                                    | 20.00 40                    | 20.00 40                           |                             |                             |                             |                                    | 20.00 40                    |                                    | 20.00 40                           | 20.00 40                    | 20.00 40                    | 20.00 40                    | 20.00 40        | 20.00 40      | 20.00 40      | 20.00 40      | 20.00 40        | 20.00 40    | Calibration Level Concentrations Lvl2 Lvl3 Lvl4 Lvl5 Lvl6 |    |    | :48            | :48            | 18             | Instı<br>Analysis Date/Time   |
| 720.0 1800.<br>200.0 500.0<br>200.0 500.0                                                                                           | 840.0 2100                                | 520.0 1300.                 | 40.00 100.0                        | 40.00 100.0                        | 40.00 100.0                 | 40.00 100.0                        | 40.00 100.0                        | 40.00 100.0                 | 40.00 100.0                        | 40.00 100.0                 | :                           |                             |                                    | 40.00 100                   |                                    | 40.00 100                          | 40.00 100.0                 | 40.00 100.0                 | 40.00 100                   |                 | į             | 40.00 100.0   | 40.00 100.0   | 40.00 100       | 40.00 100   | vel Con                                                   |    |    |                |                |                | nstrumei<br>me                |
| 00. 9000.<br>0.0 2500.<br>0.0 2500.                                                                                                 |                                           | 00. 6500.                   | 0.0 500.0                          | 0.0 500.0                          |                             | 0.0 500.0                          |                                    | 0.0 500.0                   |                                    |                             | 100.0 500.0                 |                             |                                    | 100.0 500.0                 |                                    | 100.0 500.0                        | 0.0 500.0                   |                             | 100.0 500.0                 | 100.0 500.0     | 100.0 500.0   | 0.0 500.0     | 0.0 500.0     | 100.0 500.0     | 100.0 500.0 | centration<br>/15 LvII                                    |    |    |                |                |                | instrument: GC_7              |
| ,,,,                                                                                                                                | ĕ                                         |                             | 0                                  | 0                                  | 0                           | 0                                  | 0                                  | 0                           | 0                                  | 0                           | 0                           | 0                           | 0                                  | 0                           | 0                                  | 0                                  | 0                           | 0                           | 0                           | 0               | 0             | 0             | 0             | 0               | 0           | ns<br>6 Lv17                                              |    |    |                |                |                |                               |
|                                                                                                                                     |                                           |                             |                                    |                                    |                             |                                    |                                    |                             |                                    |                             |                             |                             |                                    |                             |                                    |                                    |                             |                             |                             |                 | !             |               |               |                 |             | Lvi8                                                      |    |    |                |                |                |                               |

## Flags

criteria(if applicable) c - failed the initial calibration

## Note:

Col = Column Number

Mr = MultiPeak Analyte 0=single neak analyte..>0=multi neak analyte (i.e. ncb/chlordane etc..)

Fit = Indicates whether Avg RF. Linear, or Onadratic Curve was used for commound.

Corr I = Correlation Coefficient for linear Fo.

Corr 2 = Correlation Coefficient for onad Fo.

^Lvl: These compounds use a single pt calibration as specified by the method. The file used to update this calibration point is listed in the header under level #

All Resnonse Factors = Resnonse Factors / 10000 Initial Calibration Criteria: either %RSD <=20 or Corr >= .995 Columns: Signal #1 db-1701 : Signal #2 db-608

Avg Rsd Col 1: 9.89

Avg Rsd Col 2: -1.00

|                | U              | 3              | D Method: EPA 8015D                    |
|----------------|----------------|----------------|----------------------------------------|
| ĊΊ             | ω              |                | EPA 8015D                              |
| 7G52968.D      | 7G52966.D      | 7G52971.D      | Data File:                             |
| CAL TPH@100PPM | CAL TPH@20PPM  | CAL TPH@5PPM   | Cal Identifier:                        |
| 09/15/20 15:12 | 09/15/20 14:21 | 09/15/20 16:30 | Analysis Date/Time                     |
| 6              | 4              | 2              | Form 6 Initial Calibration Level #     |
| 7G52967.D      | 7G52969.D      | 7G52970.D      | on Data File:                          |
| CAL TPH@500PPM | CAL TPH@40PPM  |                | Cal Identifier                         |
| 09/15/20 14:46 | 09/15/20 15:38 | 09/15/20 16:04 | Instrument: GC_I<br>Analysis Date/Time |
|                |                |                | GC_7                                   |

| Method: El                |               |                               | 7                                  | _   | nitial Calibration | -       |         |                |           | Inst                                | nstrument: GC_7  | GC_7                        |      |     |
|---------------------------|---------------|-------------------------------|------------------------------------|-----|--------------------|---------|---------|----------------|-----------|-------------------------------------|------------------|-----------------------------|------|-----|
| Z Level *                 | Dala F        | 2                             | Analysis Dale/ Infle               |     | Level #            | 1 2     | ā       | Cal Identilier |           | Alialysis Dale/Time                 |                  |                             |      |     |
| <b>9</b> 3                | 7652966.0     | CAL TELESCERM                 | 09/15/20 10:30                     |     | 7052970            |         | 2 2     | CAL TRH@10PPM  | 8 8       | 15/20 10:04                         |                  |                             |      |     |
|                           | 7G52968 D     | CAI TPH@100PPM                | 09/15/20 15:12                     |     |                    | 967 D   | O €     | CAL TPH@500PPM | ည်<br>ရှိ | 09/15/20 14:46                      |                  |                             |      |     |
| 230                       |               | •                             |                                    |     |                    |         |         | ,              |           |                                     |                  |                             |      |     |
| Compound                  | Col Mr Fit:   | RF1 RF2 RF3                   | RF4 RF5 RF6 RF7                    | RF8 | AvgRf RT           | Corr1 C | Corr2   | %Rsd           | <u>=</u>  | Calibration Level<br>Lvl2 Lvl3 Lvl4 | Concer<br>1 Lvi5 | Concentrations<br>Lvl5 Lvl6 | Lvi7 | L/8 |
| 88                        | 1 0 Ava       | g 0.4494 0.4803 0.4900 0.4916 | 0.4916 0.5051 0.5407               | 1   | 0.493 2.19         | 8       | .0      | 6.1            | 5.00      | 10.00 20.00 40.00                   | 0 100.0          | 500.0                       |      |     |
| 69                        | 1 0 Avg       | a 0.5090 0.5207 0.5368 0.5358 | 0.5358 0.5538 0.5854               | 1   | 0.540 2.83         | 1.00    | 1.00    | 5.0            | 5.00      | 10.00 20.00 40.00                   | 0 100.0          | 500.0                       |      |     |
| C10                       | 1 0 Avg       | a 0.5096 0.5389 0.5510 0.5616 | 0.5616 0.5829 0.6171               | i   | 0.560 3.50         | 0.999   | 1.00    | 6.6            | 5.00      |                                     | 0 100.0          | 500.0                       |      |     |
| C12                       | 1 0 Avg       | g 0.4687 0.5334 0.5663 0.5915 | 0.5915 0.6151 0.6444               | 1   | 0.570 4.78         | 1.00    | 1.00    | <b>=</b>       | 5.00      | 10.00 20.00 40.00                   | 0 100.0          | 500.0                       |      |     |
| C14                       | 1 0 Ava       | d 0.5137 0.5788 0.5993 0.6296 | 0.6296 0.6502 0.6750               |     | 0.608 5.92         | 1.00    | 1.00    | 9.5            | 5.00      | 10.00 20.00 40.00                   | 0 100.0          | 500.0                       |      |     |
| C16                       | 1 0 Avg       | a 0.5389 0.6069 0.6157 0.6421 | 0.6421 0.6545 0.6741               | 1   | 0.622 6.93         | 1.00    | 1.00    | 7.7            | 5.00      | 10.00 20.00 40.00                   | 0 100.0          | 500.0                       |      |     |
| C17                       | 1 0 Ava       | a 0.6308 0.5491 0.6828 0.7552 | 0.7552 0.8127 0.7283               | 1   | 0.6937.40          | 0.999   | 1.00    | 14             | 5.00      | 10.00 20.00 40.00                   | 0 100.0          | 500.0                       |      |     |
| Pristane                  | 1 0 Qua       | 0.5511                        | 0.6046 0.5159 0.5640               | i   | 0.604 7.40         | 0.999   | 9       | 15             | 5.00      |                                     |                  | 500.0                       |      |     |
| C18                       | 1 0 Avg       | 0.5052 0.6023                 | 0.6200 0.6549 0.6687 0.7938        | 1   | 0.641 7.83         | 0.999   | 1.00    | 15             | 5.00      |                                     |                  |                             |      |     |
| Phytane                   | 1 0 Ava       | 0.6882 0.6734                 | 0.6240                             |     | 0.635 7.86         | 1.8     | 100     |                | 5.00      | 20.00                               | ٠.               | 1                           |      |     |
| C20                       | 1 0 Avg       | 0.5999 0.6519                 | 0.6754                             | i   | 0.656 8.65         | 8       | 1.00    | 5.1            | 5.00      | 20.00                               |                  |                             |      |     |
| C22                       | 1 0 Ava       | 0.6075 0.6702                 | 0.6878                             | 1   | 0.671 9.40         | 1.00    | 1.00    | 5.3            | 5.00      | 20.00                               |                  |                             |      |     |
| C24                       | 1 0 Ava       | a 0.6451 0.6826 0.6761 0.7019 | 0.7019 0.7037 0.7287               | 1   | 0.690 10.10        | 8       | 1.00    | 4.1            | 5.00      | 20.00                               |                  | 500.0                       |      |     |
| C26                       | 1 0 Ava       | g 0.6428 0.6762 0.6663 0.6886 | 0.6886 0.6912 0.7175               | i   | 0.680 10.76        | 8       | 1.<br>8 | 3.7            | 5.00      | 20.00                               |                  | 500.0                       |      |     |
| C28                       | 1 0 Avg       | 0.6344 0.6794                 | 0.6823 0.7002 0.7078 0.7334        |     | 0.690 11.41        | 28      | 1.8     | 4.8            | 5.00      | 10.00 20.00 40.00                   | 0 100.0          | 500.0                       | :    | !   |
| C30                       | 1 0 Avg       | a 0.6589 0.6972 0.6963 0.7226 | 0.7226 0.7235 0.7514               |     | 0.708 12.03        | 1.00    | 1.00    | 4.5            | 5.00      | 10.00 20.00 40.0                    |                  | 500.0                       |      |     |
| C32                       | 1 0 Avg       | o 0.7171 0.7243 0.7018 0.7517 | 0.7517 0.7267 0.7557               | i   | 0.730 12.65        | 1.00    | 1.00    | 2.8            | 5.00      | 10.00 20.00 40.00                   |                  | 500.0                       |      |     |
| C34                       | 1 0 Avg       | 0.6548                        | 0.6735 0.6866 0.7101 0.7106 0.7411 | i   | 0.696 13.25        | 8       | 1.00    | 4.4            | 5.00      | 10.00 20.00 40.00                   |                  |                             |      |     |
| C36                       | 1 0 Avg       | 0.6300 0.6821                 | 0.6861 0.7171 0.7167 0.7418        | 1   | 0.696 13.86        | 8       | 1.00    | 5.6            | 5.00      | 10.00 20.00 40.00                   | 0 100.0          | 500.0                       |      |     |
| C40                       | 1 0 Ava       | 0.6648 0.6211                 | 0.6361 0.7088 0.6894 0.6999        | 1   | 0.670 15.64        | 1.00    | 1.00    | 5.3            | 5.00      | 10.00 20.00 40.00                   | 0 100.0          | 500.0                       | İ    |     |
| Chlorobenzene             | 1 0 Ava       | 0.3647 0.3854                 | 0.3896 0.3921 0.4052 0.4240        | 1   | 0.394 2.51         | 1.00    | 1.00    | 5.1            | 5.00      | 10.00 20.00 40.00                   | 0 100.0          | 500.0                       |      |     |
| O-Terphenyl               | 1 0 Ava       | a 0.7075 0.7356 0.7233 0.7455 | 0.7455 0.7481 0.7742               | 1   | 0.7398.27          | 8       | 1.00    | 3.1            | 5.00      | 20.00                               | 0 100.0          | 500.0                       |      |     |
| Diesel Range Organics(TO  | cs(TO 1 0 Ava | 0.5797 0.6320                 | 0.6315 0.6556 0.6608 0.6804        | I   | 0.640 3.51         | 1.00    | 1.00    | 5.4            | 65.00     | 260.0                               | 0 1300.          | 6500.                       |      |     |
| Total Petroleum Hvdrocarb | ocarb 1 0 Avo | 0.5910                        | 0.6308 0.6321 0.6580 0.6608 0.6830 | I   | 0.643 2.20         | 0       | 1.00    | 5.0            | 100.0     |                                     |                  | 10000                       |      |     |
| Ext. Petroleum Hvdrocarbo | carbo 1 0 Avo | 0.5948 0.6397                 | 0.6398 0.6644 0.6679 0.6900        |     | 0.649 2.84         | 1.8     | 1.00    | 5.1            | 90.00     | 1                                   |                  |                             |      |     |
| Mineral Spirits(TOTAL)    | L) 1 0 Ava    | 0.4901 0.5304                 | 0.5487 0.5620 0.5814 0.6125        | i   | 0.554 2.24         | 1.00    | 1.00    | 7.6            | 25.00     | 50.00 100.0 200.0                   | 0 500.0          |                             |      |     |
|                           | 12            | - 0 1001 O E301 O E407 I      | 2 ECOO O EO1 A O C10E              |     |                    |         |         | ,              | יו<br>ר   | 2000                                |                  | ט<br>ס                      |      |     |

# Flags

criteria(if applicable) c - failed the initial calibration

## Note:

Stoddard Solvent(TOTAL) 1 0 Ava 0.4901 0.5304 0.5487 0.5620 0.5814 0.6125 ----

0.554 2.24

1.00

1.00

7.6

25.00 50.00 100.0 200.0 500.0 2500

Col = Column Number

Mr = MultiPeak Analyte 0=single neak analyte. >0=multi neak analyte (i.e. nch/chlordane etc..)

Fit = Indicates whehter Avg RF. Linear, or Ouadratic Curve was used for comnound.

Corr I = Correlation Coefficient for linear Eq.

Corr 2 = Correlation Coefficient for quad Eq.

Avg Rsd Col 1: 6.82

Avg Rsd Col 2: -1.00

^Lvl: These compounds use a single pt calibration as specified by the method. The file used to update this calibration point is listed in the header under level #

All Resnonse Factors = Resnonse Factors / 10000 Initial Calibration Criteria: either %RSD <=20 or Corr >= .995 Columns: Signal #1 db-1701 : Signal #2 db-608

Form7
Continuing Calibration

Method: EPA 8015D

|              | Data F<br>Meth<br>Calibration Na<br>Calibration Date/T | od:<br>me: |    | 7G531-<br>8015<br>CAL T<br>10/06/2 | PH@20 |       | 7G5315<br>8015<br>CAL TI<br>10/06/2 | PH@20 |       | 7G531:<br>8015<br>CAL T<br>10/06/2 | PH@20 |       | 7G5316<br>8015<br>CAL T<br>10/06/2 | PH@20 |       |     | Conc  |                                         |
|--------------|--------------------------------------------------------|------------|----|------------------------------------|-------|-------|-------------------------------------|-------|-------|------------------------------------|-------|-------|------------------------------------|-------|-------|-----|-------|-----------------------------------------|
| Compound     | Limit                                                  | Col        | Mr | Conc                               | Exp   | %Diff | Conc                                |       | %Diff | Conc                               |       | %Diff | Conc                               |       | %Diff | 1.4 | Exp % | 6Diff                                   |
| C8           | 20                                                     | 1          | 0  | 14.83                              | 20    | 25.9* | 16.37                               | 20    | 18.2  | 15.93                              | 20    | 20.4  | 15.49                              | 20    | 22.6* |     |       |                                         |
| C9           | 20                                                     | 1          | 0  | 15.24                              | 20    | 23.8* | 17.25                               | 20    | 13.8  | 16.31                              | 20    | 18.5  | 15.76                              | 20    | 21.2* | li  |       |                                         |
| C10          | 20                                                     | 1          | 0  | 15.46                              | 20    | 22.7* | 18.07                               | 20    | 9.7   | 16.72                              | 20    | 16.4  | 16.01                              | 20    | 20.0  |     |       |                                         |
| C12          | 20                                                     | 1          | 0  | 17.17                              | 20    | 14.2  | 19.91                               | 20    | 0.5   | 18.42                              | 20    | 7.9   | 17.58                              | 20    | 12.1  |     |       |                                         |
| C14          | 20                                                     | 1          | 0  | 18.66                              | 20    | 6.7   | 20.83                               | 20    | 4.2   | 19.52                              | 20    | 2.4   | 18.64                              | 20    | 6.8   |     |       |                                         |
| C16          | 20                                                     | 1          | 0  | 19.4                               | 20    | 3.0   | 21.24                               | 20    | 6.2   | 20.12                              | 20    | 0.6   | 19.34                              | 20    | 3.3   |     |       |                                         |
| C17          | 20                                                     | 1          | 0  | 18.11                              | 20    | 9.4   | 20.54                               | 20    | 2.7   | 18.57                              | 20    | 7.2   | 18.62                              | 20    | 6.9   |     |       | *************************************** |
| Pristane     | 20                                                     | 1          | 0  | 22.42                              | 20    | 12.1  | 22.73                               | 20    | 13.7  | 19.36                              | 20    | 3.2   | 20.45                              | 20    | 2.3   |     |       |                                         |
| C18          | 20                                                     | 1          | 0  | 19.65                              | 20    | 1.8   | 21.21                               | 20    | 6.0   | 19.73                              | 20    | 1.4   | 19.14                              | 20    | 4.3   | i   |       |                                         |
| Phytane      | 20                                                     | 1          | 0  | 19.47                              | 20    | 2.7   | 20.47                               | 20    | 2.3   | 19.24                              | 20    | 3.8   | 19.63                              | 20    | 1.9   |     |       |                                         |
| C20          | 20                                                     | 1          | 0  | 19.79                              | 20    | 1.0   | 21.12                               | 20    | 5.6   | 19.3                               | 20    | 3.5   | 19.73                              | 20    | 1.4   | 4   |       |                                         |
| C22          | 20                                                     | 1          | 0  | 20                                 | 20    | 0.0   | 21.3                                | 20    | 6.5   | 19.15                              | 20    | 4.3   | 19.74                              | 20    | 1.3   |     |       |                                         |
| C24          | 20                                                     | 1          | 0  | 20.06                              | 20    | 0.3   | 21.3                                | 20    | 6.5   | 18.99                              | 20    | 5.1   | 19.75                              | 20    | 1.3   |     |       |                                         |
| C26          | 20                                                     | 1          | 0  | 20.1                               | 20    | 0.5   | 21.37                               | 20    | 6.9   | 18.95                              | 20    | 5.2   | 19.72                              | 20    | 1.4   | :   |       |                                         |
| C28          | 20                                                     | 1          | 0  | 20.21                              | 20    | 1.0   | 21.73                               | 20    | 8.6   | 18.81                              | 20    | 6.0   | 19.64                              | 20    | 1.8   |     |       |                                         |
| C30          | 20                                                     | 1          | 0  | 20.14                              | 20    | 0.7   | 21.7                                | 20    | 8.5   | 18.79                              | 20    | 6.0   | 19.63                              | 20    | 1.9   |     |       |                                         |
| C32          | 20                                                     | 1          | 0  | 19.88                              | 20    | 0.6   | 21.15                               | 20    | 5.7   | 18.76                              | 20    | 6.2   | 19.77                              | 20    | 1.1   | li  |       |                                         |
| C34          | 20                                                     | 1          | 0  | 19.86                              | 20    | 0.7   | 21.3                                | 20    | 6.5   | 18.9                               | 20    | 5.5   | 20.05                              | 20    | 0.2   |     |       |                                         |
| C36          | 20                                                     | 1          | 0  | 20.08                              | 20    | 0.4   | 20.81                               | 20    | 4.0   | 19.24                              | 20    | 3.8   | 20.11                              | 20    | 0.6   |     |       |                                         |
| C40          | 20                                                     | 1          | 0  | 18.76                              | 20    | 6.2   | 18.23                               | 20    | 8.9   | 18.92                              | 20    | 5.4   | 19.61                              | 20    | 1.9   |     |       |                                         |
| Chlorobenze  | ene 20                                                 | 1          | 0  | 15.37                              | 20    | 23.2* | 17.64                               | 20    | 11.8  | 16.86                              | 20    | 15.7  | 16.18                              | 20    | 19.1  | : 1 |       |                                         |
| O-Terpheny   | 1 20                                                   | 1          | 0  | 19.21                              | 20    | 4.0   | 21.07                               | 20    | 5.3   | 18.72                              | 20    | 6.4   | 18.87                              | 20    | 5.6   |     |       |                                         |
| Average Diff | ference 20                                             | 1          | 0  |                                    |       | 7.3   | ļi                                  |       | 7.4   |                                    |       | 7.5   |                                    |       | 6.7   |     |       |                                         |

**GRO Data** 

## Form1 ORGANICS REPORT

Sample Number: AD19595-013

Client Id: HSI-WC-NH

Data File: 13M19502.D

Analysis Date: 10/08/20 12:43 Date Rec/Extracted: 10/02/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8015D

Matrix: Methanol

Initial Vol: 4.95g:10ml

Final Vol: NA

Dilution: 101

Solids: 86

Units: mg/Kg

Cas # Compound
phog Gasoline Range Organics

RL 29 Conc

Cas # Compound

RL

Conc

Worksheet #: 569776

Total Target Concentration

0

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

Quantitation Report (QT Reviewed) 0100230 0330

Data Path : G:\GcMsData\2020\GC 13\Data\10-08-20\

Data File : 13M19502.D Signal(s) : FID1A.CH

Acq On : 8 Oct 2020 12:43 Operator : RL

Sample : AD19595-013 Misc : M,MEXT!5

ALS Vial : 16 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Oct 13 22:33:16 2020

Quant Method: G:\GcMsData\2020\GC 13\MethodQt\13M G0826.M

Quant Title : @GC 13, ug, 8015

QLast Update : Thu Aug 27 11:30:35 2020 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

R.T. Response Conc Units Compound System Monitoring Compounds 1)S 1,4-Dichlorobenzene-d4 9.493 10138 35.526 m Target Compounds 

(f) = RT Delta > 1/2 Window

(m) = manual int.

Data Path : G:\GcMsData\2020\GC\_13\Data\10-0@-20\

Data File : 13M19502.D Signal(s) : FID1A.CH

Acq On : 8 Oct 2020 12:43

Operator : RL

Sample : AD19595-013 Misc : M, MEXT!5

ALS Vial : 16 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: Oct 13 22:33:16 2020

Quant Method :  $G:\GcMsData\2020\GC_13\MethodQt\13M_G0826.M$ 

Quant Title : @GC 13,ug,8015

QLast Update : Thu Aug 27 11:30:35 2020 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :



#### Form1 ORGANICS REPORT

Sample Number: AD19595-014

Client Id: HSI-WC-H

Data File: 13M19503.D

Analysis Date: 10/08/20 13:00

Date Rec/Extracted: 10/02/20-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8015D

Matrix: Methanol

Initial Vol: 5.05g:10ml

Final Vol: NA

Dilution: 99.0

Solids: 83

Units: mg/Kg

Cas # Compound

RL

Conc

Compound Cas#

RL

Conc

phcg Gasoline Range Organics

30

94

Worksheet #: 569776

Total Target Concentration

94 R - Retention Time Out ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Quantitation Report (QT Reviewed)

0100230 0333

Data Path : G:\GcMsData\2020\GC\_13\Data\10-08-20\

Data File : 13M19503.D Signal(s) : FID1A.CH

Acq On : 8 Oct 2020 13:00 Operator : RL

Sample : AD19595-014 Misc : M,MEXT!5

ALS Vial : 17 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Oct 13 22:33:57 2020

Quant Method: G:\GcMsData\2020\GC 13\MethodQt\13M G0826.M

Quant Title : @GC\_13,ug,8015

QLast Update : Thu Aug 27 11:30:35 2020 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

R.T. Response Conc Units Compound System Monitoring Compounds 1)S 1,4-Dichlorobenzene-d4 9.490 9923 34.770 m Target Compounds 4)g Gasoline Range Organics 7.748 275825 786.082 ug/L m

(f) = RT Delta > 1/2 Window

(m) = manual int.

Data Path : G:\GcMsData\2020\GC\_13\Data\10-08-20\

Data File : 13M19503.D Signal(s) : FID1A.CH

Acq On : 8 Oct 2020 13:00

Operator : RL

Sample : AD19595-014 Misc : M,MEXT!5

ALS Vial : 17 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: Oct 13 22:33:57 2020

 $\label{eq:Quant_Method} \mbox{Quant Method} : \mbox{G:\GCMsData}\mbox{2020\GC\_13\Method}\mbox{Qt}\mbox{13M\_G0826.M}$ 

Quant Title : @GC 13,ug,8015

QLast Update : Thu Aug 27 11:30:35 2020 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :



## Form1 ORGANICS REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 13M19493.D

Analysis Date: 10/08/20 10:14

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Dilution: 100

Initial Vol: 5g:10ml

Final Vol: NA

Method: EPA 8015D

Matrix: Methanol

Solids: 100

Units: mg/Kg

Cas # Compound

RL 25 Conc

Cas # Compound

RL

Conc

phcg Gasoline Range Organics 25

Worksheet #: 569776

Total Target Concentration

0 R - Retention Time Out ColumnID: (^) Indicates results from 2nd column

 $\it U$  - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

J - Indicates an estimated value when a compound is detected at less than the

Quantitation Report (QT Reviewed) 0100230 0336

Data Path : G:\GcMsData\2020\GC 13\Data\10-08-20\

Data File : 13M19493.D Signal(s) : FID1A.CH

Acq On : 8 Oct 2020 10:14 Operator : RL

Sample : DAILY BLANK Misc : M, MEOH

ALS Vial : 7 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Oct 13 22:35:17 2020

Quant Method : G:\GcMsData\2020\GC 13\MethodQt\13M G0826.M

Quant Title : @GC 13,ug,8015

QLast Update: Thu Aug 27 11:30:35 2020

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

> Compound R.T. Response Conc Units

System Monitoring Compounds

1)S 1,4-Dichlorobenzene-d4 9.484 6491 22.745 m

Target Compounds

(f)=RT Delta > 1/2 Window (m)=manual int. Data Path :  $G:\GcMsData\2020\GC_13\Data\10-08-20\$ 

Data File : 13M19493.D Signal(s) : FID1A.CH

Acq On : 8 Oct 2020 10:14

Operator : RL

Sample : DAILY BLANK Misc : M, MEOH

ALS Vial : 7 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: Oct 13 22:35:17 2020

Quant Method : G:\GcMsData\2020\GC\_13\MethodQt\13M\_G0826.M

Quant Title : @GC\_13,ug,8015

QLast Update : Thu Aug 27 11:30:35 2020

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :



## FORM2

Surrogate Recovery

Method: EPA 8015D

| <u>Dfile</u> | Sample#           | Matrix | Date/Time      | Surr<br>Dil | Dilute<br>Out<br>Flag | Column1<br>S1<br>Recov | Column0<br>S2<br>Recov | Column0<br>S3<br>Recov | Column0<br>S4<br>Recov | Column0<br>S5<br>Recov | Column0<br>S6<br>Recov |
|--------------|-------------------|--------|----------------|-------------|-----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| 13M19493     | D DAILY BLANK     | М      | 10/08/20 10:14 | 1           |                       | 76                     |                        |                        |                        |                        |                        |
| 13M19502     | DAD19595-013      | М      | 10/08/20 12:43 | 1           |                       | 118                    |                        |                        |                        |                        |                        |
| 13M19503     | DAD19595-014      | М      | 10/08/20 13:00 | 1           |                       | 116                    |                        |                        |                        |                        |                        |
| 13M19494     | .DMBS89465        | М      | 10/08/20 10:30 | 1           |                       | 96                     |                        |                        |                        |                        |                        |
| 13M19495     | DAD19560-001(MS)  | М      | 10/08/20 10:47 | 1           |                       | 105                    |                        |                        |                        |                        |                        |
| 13M19496     | DAD19560-001(MSD) | М      | 10/08/20 11:04 | 1           |                       | 123                    |                        |                        |                        |                        |                        |
| 13M19499     | DAD19560-001      | М      | 10/08/20 11:53 | 1           |                       | 94                     |                        |                        |                        |                        |                        |

Flags: SD=Surrogate diluted out

\*=Surrogate out

Method: EPA 8015D

#### **Soil Limits**

|                           | Spike |        |
|---------------------------|-------|--------|
| Compound                  | Amt   | Limits |
| S1=1,4-Dichlorobenzene-d4 | 30    | 50-150 |

## Form3 **Recovery Data**

QC Batch: MBS89465

Data File

Sample ID:

Analysis Date

Spike or Dup: 13M19494.D

MBS89465

10/8/2020 10:30:00 AM

Non Spike(If applicable): Inst Blank(If applicable):

Method: 8015

Matrix: Methanol

QC Type: MBS

| Analyte:                | Col | Spike<br>Conc | Sample<br>Conc | Expected<br>Conc | Recovery | Lower<br>Limit | Upper<br>Limit |
|-------------------------|-----|---------------|----------------|------------------|----------|----------------|----------------|
| Gasoline Range Organics | 1   | 1686.38       | 0              | 2000             | 84       | 11             | 181            |

# Form3 Recovery Data

QC Batch: MBS89465

Data File

Sample ID:

e ID: Analysis Date

Spike or Dup: 13M19495.D

Non Spike(If applicable): 13M19499.D

AD19560-001(MS)

AD19560-001

10/8/2020 10:47:00 AM 10/8/2020 11:53:00 AM

Inst Blank(If applicable):

Method: 8015 Matrix: Methanol QC Type: MS

**Expected** Spike Sample Lower Upper Analyte: Col Conc Conc Recovery Limit Conc Limit Gasoline Range Organics 1904.36 2000 0 95 11 181

Data File

Sample ID:

Analysis Date

Spike or Dup: 13M19496.D Non Spike(If applicable): 13M19499.D

AD19560-001(MSD) AD19560-001 10/8/2020 11:04:00 AM 10/8/2020 11:53:00 AM

Inst Blank(If applicable):

Method: 8015 Matrix: Methanol

QC Type: MSD

|                         |     | Spike   | Sample | Expected | _        | Lower | Upper |
|-------------------------|-----|---------|--------|----------|----------|-------|-------|
| Analyte:                | Col | Conc    | Conc   | Conc     | Recovery | Limit | Limit |
| Gasoline Range Organics | 1   | 2086.12 | 0      | 2000     | 104      | 11    | 181   |

#### Form3 RPD DATA

QC Batch: MBS89465

Data File Sa

Sample ID: AD19560-001(MSD) Analysis Date

Spike or Dup: 13M19496.D Duplicate(If applicable): 13M19495.D

AD19560-001(MS)

10/8/2020 11:04:00 AM 10/8/2020 10:47:00 AM

Inst Blank(If applicable):

Method: 8015

Matrix: Methanol

QC Type: MSD

|                               |        | Dup/MSD/MBSD  | Sample/MS/MBS | 3          |       |
|-------------------------------|--------|---------------|---------------|------------|-------|
| Analyte:                      | Column | Conc          | Conc          | RPD        | Limit |
| Gasoline Range Organics       | 1      | 2086.12       | 1904.36       | 9.1        | 40    |
| * Indicates autoids of limits |        | NIA Dath same |               | and and ha |       |

Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

#### FORM 4 Blank Summary

Blank Number: DAILY BLANK Blank Data File: 13M19493.D Matrix: Methanol Blank Analysis Date: 10/08/20 10:14 Blank Extraction Date: NA (If Applicable)

Method: EPA 8015D

| Sample Number   | Data File  | Analysis Date  |  |
|-----------------|------------|----------------|--|
| AD19595-013     | 13M19502.D | 10/08/20 12:43 |  |
| AD19595-014     | 13M19503.D | 10/08/20 13:00 |  |
| AD19560-001     | 13M19499.D | 10/08/20 11:53 |  |
| AD19560-001(MSD | 13M19496.D | 10/08/20 11:04 |  |
| AD19560-001(MS) | 13M19495.D | 10/08/20 10:47 |  |
| MBS89465        | 13M19494.D | 10/08/20 10:30 |  |

Method: EPA 8015D Instrument: GC\_13

Column: DB-624 25M 0.200mm ID 1.12um film

| Data File  | Sample#        | Analysis<br>Date/Time | Matrix   | Reference<br>File | Column<br>1 RT | Column<br>1 % Drift | Column<br>2 RT | Column<br>2 % Drift |
|------------|----------------|-----------------------|----------|-------------------|----------------|---------------------|----------------|---------------------|
| 13M19210 D |                | 08/26/20 12:48        | Aqueous  | 13M1924           | 0.0000         | 200                 |                |                     |
| 13M19214 D |                | 08/26/20 13:55        | Aqueous  | 13M1924           | 9.4938         | 0.5545              |                |                     |
| 13M19215 D |                | 08/26/20 14:15        | Aqueous  | 13M1924           | 9.5004         | 0.624               |                |                     |
|            | CAL @ 250 PPB  | 08/26/20 14:32        | Aqueous  | 13M1922           | 9.4931         | 0.49                |                |                     |
| 13M19218.D | CAL @ 500 PPB  | 08/26/20 15:06        | Aqueous  | 13M1922           | 9.4967         | 0.5279              |                |                     |
| 13M19220.D | CAL @ 750 PPB  | 08/26/20 15:40        | Aqueous  | 13M1922           | 9.4779         | 0.3297              |                |                     |
| 13M19222.D | CAL @ 1000 PPB | 08/26/20 16:13        | Aqueous  | 13M1922           | 9.4815         | 0.3677              |                |                     |
| 13M19224.D | CAL @ 1500 PPB | 08/26/20 16:47        | Aqueous  | 13M1922           | 9.4641         | 0.184               |                |                     |
| 13M19226.D | CAL @ 2000 PPB | 08/26/20 17:20        | Aqueous  | 13M1922           | 9.4565         | 0.1037              |                |                     |
| 13M19228.D | CAL @ 4000 PPB | 08/26/20 17:53        | Aqueous  | 13M1922           | 9.4467         | O                   |                |                     |
| 13M19231.D | ICV            | 08/26/20 18:42        | Aqueous  | 13M1922           | 9.4516         | 0.0519              |                |                     |
| 13M19233.D | DAILY BLANK    | 08/26/20 19:15        | Methanol | 13M1922           | 9.4454         | 0.0138              |                |                     |
| 13M19234.D | DAILY BLANK    | 08/26/20 19:32        | Aqueous  | 13M1922           | 9.4473         | 0.0063              |                |                     |
| 13M19235.D | MBS87424       | 08/26/20 19:49        | Aqueous  | 13M1922           | 9.4463         | 0.0042              |                |                     |
| 13M19236.D | MBS87425       | 08/26/20 20:05        | Aqueous  | 13M1922           | 9.4484         | 0.018               |                |                     |
| 13M19237.D | MBS87426       | 08/26/20 20:21        | Aqueous  | 13M1922           | 9.4481         | 0.0148              |                |                     |
| 13M19238.D | MBS87427       | 08/26/20 20:38        | Aqueous  | 13M1922           | 9.4483         | 0.0169              |                |                     |
| 13M19240.D | MBS87428       | 08/26/20 21:11        | Methanol | 13M1922           | 9.4396         | 0.0752              |                |                     |
| 13M19241.D | MBS87429       | 08/26/20 21:28        | Methanol | 13M1922           | 9.4421         | 0.0487              |                |                     |
| 13M19242 D | MBS87430       | 08/26/20 21:44        | Methanol | 13M1922           | 9.4403         | 0.0678              |                |                     |
| 13M19243.D | MBS87431       | 08/26/20 22:01        | Methanol | 13M1922           | 9.4417         | 0.0529              |                |                     |
| 13M19244 D | CAL @ 2000 PPB | 08/26/20 22:17        | Aqueous  | 13M1922           | 9.4413         | 0.0572              |                |                     |

Method: EPA 8015D Instrument: GC\_13

Column: DB-624 25M 0.200mm ID 1.12um film

| Data File  | Sample#          | Analysis<br>Date/Time | Matrix   | Reference<br>File | Column<br>1 RT | Column<br>1 % Drift | Column<br>2 RT | Column<br>2 % Drift |
|------------|------------------|-----------------------|----------|-------------------|----------------|---------------------|----------------|---------------------|
| 13M19487.D |                  | 10/08/20 08:34        | Aqueous  | 13M1950           | 9.4970         | 0.1686              |                |                     |
| 13M19488.E | _                | 10/08/20 08:51        | Aqueous  | 13M1950           | 9.4825         | 0.0158              |                |                     |
| 13M19489.E |                  | 10/08/20 09:08        | Aqueous  | 13M1950           | 0.0000         | 200                 |                |                     |
|            | CAL @ 2000 PPB   | 10/08/20 09:24        | Aqueous  | 13M1949           | 9.4827         | 0                   |                |                     |
|            | BLK              |                       | Aqueous  | 13M1949           | 9.4829         | 0.0021              |                |                     |
| 13M19492 C |                  | 10/08/20 09:57        | Aqueous  | 13M1949           | 9.4812         | 0.0158              |                |                     |
|            | DAILY BLANK      | 10/08/20 10:14        | Methanol | 13M1949           | 9.4842         | 0.0158              |                |                     |
|            | MBS89465         | 10/08/20 10:30        | Methanol | 13M1949           | 9.4863         | 0.038               |                |                     |
| 13M19495 D | AD19560-001(MS)  | 10/08/20 10:47        | Methanol | 13M1949           | 9.4898         | 0.0748              |                |                     |
| 13M19496.D | AD19560-001(MSD) | 10/08/20 11:04        | Methanol | 13M1949           | 9.4923         | 0.1012              |                |                     |
| 13M19497 C |                  | 10/08/20 11:20        | Aqueous  | 13M1949           | 9.4926         | 0.1043              |                |                     |
| 13M19498.D | BLK              | 10/08/20 11:37        | Aqueous  | 13M1949           | 9.4879         | 0.0548              |                |                     |
| 13M19499.D | AD19560-001      | 10/08/20 11:53        | Methanol | 13M1949           | 9.4921         | 0.0991              |                |                     |
| 13M19500.E | BLK              | 10/08/20 12:10        | Aqueous  | 13M1949           | 9.4863         | 0.038               |                |                     |
| 13M19501.C | BLK              | 10/08/20 12:27        | Aqueous  | 13M1949           | 9.4925         | 0.1033              |                |                     |
| 13M19502.D | AD19595-013      | 10/08/20 12:43        | Methanol | 13M1949           | 9.4932         | 0.1107              |                |                     |
| 13M19503.D | AD19595-014      | 10/08/20 13:00        | Methanol | 13M1949           | 9.4903         | 0.0801              |                |                     |
| 13M19504.E | BLK              | 10/08/20 13:16        | Aqueous  | 13M1949           | 9.4946         | 0.1254              |                |                     |
| 13M19505.E | BLK              | 10/08/20 13:33        | Aqueous  | 13M1949           | 9.4776         | 0.0538              |                |                     |
| 13M19506.D | BLK              | 10/08/20 13:49        | Aqueous  | 13M1949           | 9.4775         | 0.0549              |                |                     |
| 13M19507.D | CAL @ 2000 PPB   | 10/08/20 14:06        | Aqueous  | 13M1949           | 9.4810         | 0.0179              |                |                     |
| 13M19508.E | BLK              | 10/08/20 14:22        | Aqueous  | 13M1950           | 9.4727         | 0.0876              |                |                     |

| 1,4-Dichlorobenzene-d4 2-Methylpentane 1,2,4-Trimethylbenzene Gasoline Range Organics                                                                                                               | Compound                                               | 7              | (Ji            | ω              | _              | Level #:           | Method: EPA 8015D          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------|----------------|----------------|----------------|--------------------|----------------------------|
| 1 0 Ava<br>1 0 Ava<br>1 0 Ava<br>1 0 Ava                                                                                                                                                            | Col Mr Fit: RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8            | 13M19216       | 13M19220       | 13M19224       | 13M19228       | Data File:         |                            |
| 0.0322<br>0.0003<br>0.0005<br>0.0419                                                                                                                                                                | 무 :                                                    | 6              | ŏ              | .4             | .8             |                    |                            |
| 0.0311<br>0.0003<br>0.0004<br>0.0332                                                                                                                                                                | RF2 RF3 RF                                             | CAL @          | CAL @          | CAL®           | CAL®           | Calld              |                            |
| 0.026                                                                                                                                                                                               | RF3                                                    | CAL @ 250 PPB  | CAL @ 750 PPB  | CAL @ 1500 PPB | CAL @ 4000 PPB | Cal Identifier:    |                            |
| 5 0.028<br>3 0.000<br>4 0.000<br>1 0.036                                                                                                                                                            | RF4                                                    | PB             | B              | PPB            | PPB            | !                  |                            |
| 9 0.025<br>4 0.000<br>5 0.000<br>1 0.027                                                                                                                                                            | RF5                                                    | 08             | 8              | 8              | 8              | Analy              |                            |
| 9 0.028<br>3 0.000<br>4 0.000<br>3 0.033                                                                                                                                                            | RF6                                                    | 08/26/20 14:32 | 08/26/20 15:40 | 08/26/20 16:47 | 08/26/20 17:53 | Analysis Date/Time |                            |
| 0.0322 0.0311 0.0265 0.0289 0.0259 0.0280 0.0268 0.0003 0.0003 0.0003 0.0004 0.0003 0.0005 0.0003 0.0005 0.0004 0.0004 0.0005 0.0004 0.0005 0.0007 0.0419 0.0332 0.0281 0.0361 0.0273 0.0330 0.0456 | RF7                                                    | 4:32           | 5:40           | 6:47           | 7:53           | e/Time             |                            |
| 6738                                                                                                                                                                                                | RF8                                                    |                |                |                |                | i                  | F<br>Initia                |
| 0.02<br>0.0003<br>0.0005<br>0.03                                                                                                                                                                    | AvgRf RT Corr1                                         |                | თ              | 4              | 2              | Level #            | Form 6 Initial Calibration |
| 0.0285 9.45<br>0.000370 5.46<br>0.000520 9.27<br>0.0351 8.50                                                                                                                                        | 꼭                                                      |                |                |                |                | <del></del>        | 6 ration                   |
| -1<br>0.990<br>0.987<br>0.976                                                                                                                                                                       | Com1                                                   |                | 13M            | 13M            | 13M            | Data               |                            |
| -1<br>0.993<br>0.998<br>0.997                                                                                                                                                                       |                                                        |                | M19218.        | <b>J19222</b>  | <b>/119226</b> | a File             |                            |
| 18<br>18<br>19                                                                                                                                                                                      | %Rsd                                                   |                |                |                | CAL @ 2000 PPB | 1                  |                            |
| 30.00<br>4000<br>4000                                                                                                                                                                               | LvI1                                                   |                | Ď              | PPB            | PPB            |                    |                            |
| 30.00<br>2000<br>2000<br>2000                                                                                                                                                                       | LND CO                                                 |                | 8              | 8              | 8              | Analy              |                            |
| 30.00<br>1500<br>1500<br>1500                                                                                                                                                                       | alibration<br>Lvi3                                     |                | /26/20 1       | /26/20         | 08/26/20 17:20 | Analysis Date/Time |                            |
| 30.00 30.00 30.00 30.00 30.00 30.00 30.00<br>4000. 2000. 1500. 1000. 750.0 500.0 250.0<br>4000. 2000. 1500. 1000. 750.0 500.0 250.0<br>4000. 2000. 1500. 1000. 750.0 500.0 250.0                    | Calibration Level Concentrations Lvl3 Lvl4 Lvl5 Lvl6 L |                | 15:06          | 16:13          | 17:20          | e/Time             | Instr                      |
| 30.00<br>750.0<br>750.0<br>750.0                                                                                                                                                                    | Concen<br>Lvl5                                         |                |                |                |                |                    | Instrument: GC_13          |
| 30.00<br>500.0<br>500.0                                                                                                                                                                             | trations                                               |                |                |                |                |                    | GC_13                      |
| 30.00<br>250.0<br>250.0<br>250.0                                                                                                                                                                    | ,<br>W17 L                                             |                |                |                |                |                    |                            |
|                                                                                                                                                                                                     | VI8                                                    |                |                |                |                |                    |                            |

# Flags

criteria(if applicable) c - failed the initial calibration

# Note:

Col = Column Number

Mr = MultiPeak Analyte 0=single neak analyte..>0=multi neak analyte (i.e. nch/chlordane etc..)

Fit = Indicates whehter Avg RF. Linear, or Quadratic Curve was used for compound.

Corr I = Correlation Coefficient for linear Fa.

 $\exists \text{orr } 2 = \text{Correlation Coefficient for anad Ea.}$ 

Avg Rsd Col 1: 31.93 Avg Rsd Col 2: -1

All Resnanse Factors = Resnanse Factors / 10000 Initial Calibration Criteria: either %RSD <=20 or Corr >= .995 Columns: Signal #1 db-1701 : Signal #2 db-608

0100230 0346

Form7
Continuing Calibration

Method: EPA 8015D

| Data File:<br>Method:<br>Calibration Name:<br>Calibration Date/Time |             | 13M19490.D     | 13M19507.D     |                |                |                |
|---------------------------------------------------------------------|-------------|----------------|----------------|----------------|----------------|----------------|
|                                                                     |             | 8015           | 8015           |                |                |                |
|                                                                     |             | CAL @ 2000 PPB | CAL @ 2000 PPB |                | ļ              |                |
|                                                                     |             | 10/08/20 09:24 | 10/08/20 14:06 |                | 4              | ;              |
|                                                                     |             | Conc           | Conc           | Conc           | Conc           | Conc           |
| Compound                                                            | LimitCol Mr | Conc Exp %Diff | Conc Exp %Diff | Conc Exp %Diff | Conc Exp %Diff | Conc Exp %Diff |
| Gasoline Range Orga                                                 | 20 1 0      | 2065 2000 3.2  | 2004 2000 0.2  |                |                |                |

**Metal Data** 

Sample ID: AD19595-004 Client Id: HSI-SB-08(3.5-4) % Solid: 87

Lab Name: Veritech

Nras No:

Client Id: HSI-SB Matrix: SOIL Units: MG/KG Date Rec: 10/3/2020 Lab Code: Contract: Sdg No: Case No:

85368 308A4MDL

85368 308A4MDL

85368 308A3MDL

29

29

36

Р

PEICPRAD4A

PEICPRAD4A

PEICP3A

Level: LOW

| Cas No.   | Analyte   | MDL   | RL    | Conc  | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | М  | Instr   |
|-----------|-----------|-------|-------|-------|----------|-------------------|-----------------|------------------|---------------|----------|------------|----|---------|
| 7429-90-5 | Aluminum  | 19    | 230   | 4000  | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 36         | Р  | PEICP3A |
| 7440-39-3 | Barium    | 0.78  | 11    | 20    | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 36         | Р  | PEICP3A |
| 7440-70-2 | Calcium   | 120   | 1100  | ND    | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 36         | Р  | PEICP3A |
| 7440-47-3 | Chromium  | 0.77  | 5.7   | 19    | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 36         | Р  | PEICP3A |
| 7440-48-4 | Cobalt    | 0.82  | 2.9   | ND    | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 36         | Р  | PEICP3A |
| 7440-50-8 | Copper    | 0.71  | 5.7   | 10    | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 36         | P  | PEICP3A |
| 7439-89-6 | Iron      | 15    | 230   | 8200  | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 36         | Р  | PEICP3A |
| 7439-92-1 | Lead      | 0.71  | 5.7   | 7.1   | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 36         | Р  | PEICP3A |
| 7439-95-4 | Magnesium | 22    | 570   | 390JB | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 36         | Р  | PEICP3A |
| 7439-96-5 | Manganese | 0.74  | 11    | 16    | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 36         | Р  | PEICP3A |
| 7439-97-6 | Mercury   | 0.015 | 0.096 | ND    | 1        | 0.15              | 25              | 10/05/20         | 85368         | 6308SMDL | 30         | CV | HGCV3A  |
| 7440-02-0 | Nickel    | 1.3   | 5.7   | 3.3J  | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 36         | Р  | PEICP3A |

0.5

0.5

0.5

50

50

50

10/05/20

10/05/20

10/05/20

| Comments: |  |
|-----------|--|
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

110

140

1.7

570

290

11

150J

ND

7.7J

P - ICP-AES

CV -ColdVapor

7440-09-7 Potassium

Sodium

Zinc

7440-23-5

7440-66-6

Sample ID: AD19595-004

% Solid: 87

Lab Name: Veritech

Nras No:

Client Id: HSI-SB-08(3.5-4)

Matrix: SOIL

Date Rec: 10/3/2020

Units: MG/KG

Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL   | Conc    | Dil Fact | Initial<br>Wt/Vol |     | Analysis<br>Date |       | File:    | Seq<br>Num | М  | Instr       |
|-----------|-----------|-------|------|---------|----------|-------------------|-----|------------------|-------|----------|------------|----|-------------|
| 7440-36-0 | Antimony  | 0.026 | 0.92 | ND      | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 44         | MS | MS3_7700SWA |
| 7440-38-2 | Arsenic   | 0.020 | 0.23 | 3.7     | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 44         | MS | MS3_7700SWA |
| 7440-41-7 | Beryllium | 0.018 | 0.23 | 0.18J   | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 44         | MS | MS3_7700SWA |
| 7440-43-9 | Cadmium   | 0.016 | 0.46 | 0.21J   | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 44         | MS | MS3_7700SWA |
| 7782-49-2 | Selenium  | 0.073 | 2.3  | 2.6     | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 44         | MS | MS3_7700SWA |
| 7440-22-4 | Silver    | 0.030 | 0.23 | 0.045JB | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 44         | MS | MS3_7700SWA |
| 7440-28-0 | Thallium  | 0.020 | 0.46 | 0.021J  | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 44         | MS | MS3_7700SWA |
| 7440-62-2 | Vanadium  | 0.012 | 0.23 | 20B     | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 44         | MS | MS3_7700SWA |

| Comments: |  |
|-----------|--|
|           |  |
|           |  |

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P-ICP-AES CV -ColdVapor

Sample ID: AD19595-009 Client Id: HSI-SB-10(5.5-6)

% Solid: 89

Lab Name: Veritech

Nras No: Sdg No:

Matrix: SOIL

Units: MG/KG Date Rec: 10/3/2020 Lab Code: Contract:

Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL    | Conc | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | М  | Instr     |
|-----------|-----------|-------|-------|------|----------|-------------------|-----------------|------------------|---------------|----------|------------|----|-----------|
| 7429-90-5 | Aluminum  | 19    | 220   | 5900 | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 37         | Р  | PEICP3A   |
| 7440-39-3 | Barium    | 0.76  | 11    | 28   | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 37         | Р  | PEICP3A   |
| 7440-70-2 | Calcium   | 110   | 1100  | 120J | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 37         | Р  | PEICP3A   |
| 7440-47-3 | Chromium  | 0.75  | 5.6   | 21   | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 37         | Р  | PEICP3A   |
| 7440-48-4 | Cobalt    | 0.80  | 2.8   | 2.1J | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 37         | Р  | PEICP3A   |
| 7440-50-8 | Copper    | 0.69  | 5.6   | 8.1  | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 37         | Р  | PEICP3A   |
| 7439-89-6 | Iron      | 15    | 220   | 6900 | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 37         | Р  | PEICP3A   |
| 7439-92-1 | Lead      | 0.69  | 5.6   | 4.4J | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 37         | Р  | PEICP3/   |
| 7439-95-4 | Magnesium | 22    | 560   | 940B | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 37         | Р  | PEICP3/   |
| 7439-96-5 | Manganese | 0.72  | 11    | 36   | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 37         | Р  | PEICP3/   |
| 7439-97-6 | Mercury   | 0.014 | 0.094 | ND   | 1        | 0.15              | 25              | 10/05/20         | 85368         | 6308SMDL | 31         | cv | HGCV3A    |
| 7440-02-0 | Nickel    | 1.2   | 5.6   | 7.6  | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 37         | Р  | PEICP3/   |
| 7440-09-7 | Potassium | 110   | 560   | 280J | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A4MDL | 30         | P  | PEICPRAD4 |
| 7440-23-5 | Sodium    | 140   | 280   | ND   | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A4MDL | 30         | P  | PEICPRAD4 |
| 7440-66-6 | Zinc      | 1.7   | 11    | 12   | 1        | 0.5               | 50              | 10/05/20         | 85368         | 308A3MDL | 37         | Р  | PEICP3/   |

| Comments: |      |
|-----------|------|
|           |      |
|           | <br> |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AD19595-009

% Solid: 89

Lab Name: Veritech

Nras No:

Client Id: HSI-SB-10(5.5-6)

Matrix: SOIL

Date Rec: 10/3/2020

Units: MG/KG

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

| Cas No.   | Analyte   | MDL   | RL   | Conc    | Dil Fact | Initial<br>Wt/Vol |     | Analysis<br>Date |       | File:    | Seq<br>Num | М  | Instr       |
|-----------|-----------|-------|------|---------|----------|-------------------|-----|------------------|-------|----------|------------|----|-------------|
| 7440-36-0 | Antimony  | 0.025 | 0.90 | ND      | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 45         | MS | MS3_7700SWA |
| 7440-38-2 | Arsenic   | 0.020 | 0.22 | 1.5     | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 45         | MS | MS3_7700SWA |
| 7440-41-7 | Beryllium | 0.018 | 0.22 | 0.22J   | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 45         | MS | MS3_7700SWA |
| 7440-43-9 | Cadmium   | 0.016 | 0.45 | 0.020J  | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 45         | MS | MS3_7700SWA |
| 7782-49-2 | Selenium  | 0.071 | 2.2  | 1.3J    | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 45         | MS | MS3_7700SWA |
| 7440-22-4 | Silver    | 0.029 | 0.22 | 0.042JB | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 45         | MS | MS3_7700SWA |
| 7440-28-0 | Thallium  | 0.020 | 0.45 | 0.021J  | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 45         | MS | MS3_7700SWA |
| 7440-62-2 | Vanadium  | 0.012 | 0.22 | 20B     | 1        | 0.5               | 100 | 10/05/20         | 85369 | 0520AMDL | 45         | MS | MS3_7700SWA |

| Comments: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 85368 (100)

% Solid: 0

Lab Name: Veritech

Client Id: MB 85368 (100)

O) Units: MG/KG

Lab Code:

Matrix: SOIL Level: LOW

| Instr      | м | Seq<br>Num |           | Prep<br>Batch | Analysis Date | Final<br>Wt/Vol | Initial<br>Wt/Vol | Dil Fact | Conc | RL     | MDL       | Analyte    | Cas No.   |
|------------|---|------------|-----------|---------------|---------------|-----------------|-------------------|----------|------|--------|-----------|------------|-----------|
| PEICP3A    | Р | 14         | 6308A3MDL | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | 200    | 8.4       | Aluminum   | 7429-90-5 |
| PEICP3A    | Р | 14         | 6308A3MDL | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | 10     | 0.34      | Barium     | 7440-39-3 |
| PEICP3A    | Р | 14         | 6308A3MDL | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | 1000   | <b>50</b> | Calcium    | 7440-70-2 |
| PEICP3A    | Р | 14         | 6308A3MDL | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | 5.0    | 0.33      | Chromium   | 7440-47-3 |
| PEICP3A    | Р | 14         | 6308A3MDL | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | 2.5    | 0.36      | Cobalt     | 7440-48-4 |
| PEICP3A    | Р | 14         | 6308A3MDL | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | 5.0    | 0.31      | Copper     | 7440-50-8 |
| PEICP3A    | Р | 14         | 6308A3MDL | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | 200    | 6.6       | Iron       | 7439-89-6 |
| PEICP3A    | Р | 14         | 6308A3MDL | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | 5.0    | 0.31      | Lead       | 7439-92-1 |
| PEICP3A    | Р | 14         | 6308A3MDL | 85368         | 10/05/20      | 50              | 0.5               | 1        | 20J  | 500    | 9.8       | Magnesium  | 7439-95-4 |
| PEICP3A    | Р | 14         | 6308A3MDL | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | 10     | 0.32      | Manganese  | 7439-96-5 |
| PEICP3A    | Р | 14         | S26308A3  | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | -10000 | 1.2       | lolybdenum | 7439-98-7 |
| PEICP3A    | Р | 14         | 6308A3MDL | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | 5.0    | 0.55      | Nickel     | 7440-02-0 |
| PEICPRAD4A | Р | 14         | S26308A4  | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | -10000 | 250       | Potassium  | 7440-09-7 |
| PEICPRAD4A | Р | 14         | S26308A4  | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | -10000 | 120       | Sodium     | 7440-23-5 |
| PEICP3A    | Р | 14         | 6308A3MDL | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | 10     | 0.48      | Vanadium   | 7440-62-2 |
| PEICP3A    | Р | 14         | 6308A3MDL | 85368         | 10/05/20      | 50              | 0.5               | 1        | ND   | 10     | 0.75      | Zinc       | 7440-66-6 |

| Comments: |  |
|-----------|--|
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 85368 (167)

% Solid: 0

Lab Name: Veritech

Client Id: MB 85368 (167)

Matrix: SOIL Level: LOW

Units: MG/KG

Lab Code:

|   | Cas No.   | Analyte | MDL   | RL    | Conc | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol |          | Prep<br>Batch | File:     | Seq<br>Num |    | Instr  |
|---|-----------|---------|-------|-------|------|----------|-------------------|-----------------|----------|---------------|-----------|------------|----|--------|
| ſ | 7439-97-6 | Mercury | 0.013 | 0.083 | ND   | 1        | 0.15              | 25              | 10/05/20 | 85368         | 26308SMDL | 11         | C۷ | HGCV3A |

| Comments: |  |
|-----------|--|
|           |  |
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: MB 85369

% Solid: 0

Lab Name: Veritech

Client Id: MB 85369

Units: MG/KG

Lab Code:

Matrix: SOIL Level: LOW

| Cas No.   | Analyte    | MDL    | RL   | Conc    | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis Date | Prep<br>Batch |           | Seq<br>Num | М  | Instr       |
|-----------|------------|--------|------|---------|----------|-------------------|-----------------|---------------|---------------|-----------|------------|----|-------------|
| 7429-90-5 | Aluminum   | 0.79   | 100  | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7440-36-0 | Antimony   | 0.011  | 0.80 | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7440-38-2 | Arsenic    | 0.0087 | 0.20 | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7440-39-3 | Barium     | 0.028  | 1.0  | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7440-41-7 | Beryllium  | 0.0078 | 0.20 | ND      | . 1      | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7440-43-9 | Cadmium    | 0.0071 | 0.40 | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7440-70-2 | Calcium    | 9.5    | 100  | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7440-47-3 | Chromium   | 0.043  | 0.40 | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7440-48-4 | Cobalt     | 0.0054 | 0.40 | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7440-50-8 | Copper     | 0.097  | 2.0  | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7439-89-6 | Iron       | 2.1    | 100  | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | мѕ | MS3_7700SWA |
| 7439-92-1 | Lead       | 0.019  | 0.40 | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7439-95-4 | Magnesium  | 1.2    | 100  | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7439-96-5 | Manganese  | 0.12   | 1.2  | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7439-98-7 | lolybdenum | 0.027  | 0.20 | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7440-02-0 | Nickel     | 0.026  | 0.60 | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7440-09-7 | Potassium  | 2.9    | 100  | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7782-49-2 | Selenium   | 0.032  | 2.0  | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7440-22-4 | Silver     | 0.013  | 0.20 | 0.027J  | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7440-23-5 | Sodium     | 8.9    | 100  | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | мѕ | MS3_7700SWA |
| 7440-28-0 | Thallium   | 0.0088 | 0.40 | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | MS | MS3_7700SWA |
| 7440-62-2 | Vanadium   | 0.0054 | 0.20 | 0.0080J | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | мѕ | MS3_7700SWA |
| 7440-66-6 | Zinc       | 0.73   | 4.0  | ND      | 1        | 0.5               | 100             | 10/05/20      | 85369         | 00520AMDL | 18         | мѕ | MS3_7700SWA |

| Comments: | <br> |      |
|-----------|------|------|
|           | <br> | <br> |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P-ICP-AES

CV -ColdVapor

#### FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/05/20

Data File: S26308A3MDL Prep Batch: 85368

Analytical Method:6010B(ICP)/7470A,7471A(Hg),6020

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0100230

Lab Name: Veritech

Lab Code: Contract:

> Nras No: Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

| Analyte   | ICV/CCV<br>Amt | ICV V-<br>333673-<br>5 | Rec | CCV V-<br>333673-<br>12 | Rec | CCV V-<br>333673-<br>23 | Rec | CCV V-<br>333673-<br>32 | Rec | CCV V-<br>333673-<br>39 | Rec | CCV V-<br>333673-<br>50 | Rec | CCV V-<br>333673-<br>61 | Rec | Rec |
|-----------|----------------|------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|-----|
| Aluminum  | 10/5           | 5.10595                | 102 | 5.19249                 | 104 | 5.01421                 | 100 | 5.03458                 | 101 | 5.05752                 | 101 | 4.99727                 | 100 | 4.98203                 | 100 |     |
| Barium    | 1/.5           | 0.49925                | 100 | 0.49508                 | 99  | 0.49438                 | 99  | 0.49528                 | 99  | 0.49464                 | 99  | 0.48975                 | 98  | 0.48690                 | 97  |     |
| Calcium   | 100/50         | 49.80450               | 100 | 49.99550                | 100 | 50.42450                | 101 | 50.70490                | 101 | 50.51610                | 101 | 49.89950                | 100 | 50.97660                | 102 |     |
| Chromium  | 1/.5           | 0.52344                | 105 | 0.52171                 | 104 | 0.52135                 | 104 | 0.52234                 | 104 | 0.52213                 | 104 | 0.51936                 | 104 | 0.51781                 | 104 |     |
| Cobalt    | 1/.5           | 0.49650                | 99  | 0.51119                 | 102 | 0.51684                 | 103 | 0.49342                 | 99  | 0.49209                 | 98  | 0.51427                 | 103 | 0.51356                 | 103 |     |
| Copper    | 1/.5           | 0.52356                | 105 | 0.51619                 | 103 | 0.51592                 | 103 | 0.51579                 | 103 | 0.51752                 | 104 | 0.51238                 | 102 | 0.51050                 | 102 |     |
| Iron      | 10/5           | 5.07233                | 101 | 5.10998                 | 102 | 5.07568                 | 102 | 5.14792                 | 103 | 5.17689                 | 104 | 5.12744                 | 103 | 5.12676                 | 103 |     |
| Lead      | 1/.5           | 0.51636                | 103 | 0.50809                 | 102 | 0.51066                 | 102 | 0.50948                 | 102 | 0.51363                 | 103 | 0.50673                 | 101 | 0.50626                 | 101 |     |
| Magnesium | 100/50         | 49.20540               | 98  | 49.28760                | 99  | 49.67180                | 99  | 50.01220                | 100 | 49.77070                | 100 | 49.29020                | 99  | 49.73550                | 99  |     |
| Manganese | 1/.5           | 0.51397                | 103 | 0.51230                 | 102 | 0.51220                 | 102 | 0.51410                 | 103 | 0.51490                 | 103 | 0.51050                 | 102 | 0.50851                 | 102 |     |
| Nickel    | 1/.5           | 0.50696                | 101 | 0.50373                 | 101 | 0.50295                 | 101 | 0.50200                 | 100 | 0.50279                 | 101 | 0.52947                 | 106 | 0.49718                 | 99  |     |
| Zinc      | 1/.5           | 0.52260                | 105 | 0.51950                 | 104 | 0.51922                 | 104 | 0.52831                 | 106 | 0.52427                 | 105 | 0.52109                 | 104 | 0.51836                 | 104 |     |

a-indicates analyte failed the ICV limits for 6010B, 6020 Notes:

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B (Except Hg 7470A,7471A),6020

d-indicates analyte failed the CCV limits Hg 7470A/7471A

Qc Limits: ICV - 200.7:95-105

CCV- 200.7/200.8/6010B/245.1 : 90-110 (Except Hg 7470A/ 7471A=80-120)

ICV -6010B/6020/200.8: 90-110

CLP ICP ICV/CCV: 90-110

CLP Hg ICV/CCV: 80-120

# FORM 2 LLQCS/LRS Summary)

Date Analyzed: 10/05/20

Data File: S26308A3MDL

Prep Batch: 85368

Analytical Method: 6010D, 6020B, 7470A, 7471B

Instrument: PEICP3A

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

LLQCS/LRS SOURCE: SPEX

| Analyte    | LLQCS<br>Spike<br>Amount | LLICV V-<br>333671 | Recovery     | Low<br>Limit | High<br>Limit | LRS<br>Spike<br>Amount | LRS V-<br>335934 | Recovery   | Low<br>Limit | High<br>Limit |
|------------|--------------------------|--------------------|--------------|--------------|---------------|------------------------|------------------|------------|--------------|---------------|
| Magnesium  | 5.0                      | 5.40105            | 108          | 80           | 120           | 500                    | 470.721          | 94         | 90           | 110           |
| Silver     | 0.015                    | 0.0163708          | 109          | 80           | 120           | 1                      | 1.28626          | 129 a      | 90           | 110           |
| Aluminum   | 2.0                      | 2.03978            | 102          | 80           | 120           | 500                    | 508.870          | 102        | 90           | 110           |
| Arsenic    | 0.04                     | 0.0420821          | 105          | 80           | 120           | . 10                   | 10.5417          | 105        | 90           | 110           |
| Boron      | 0.2                      | 0.185096           | 93           | 80           | 120           | 5                      | 5.97337          | 119 a      | 90           | 110           |
| Barium     | 0.1                      | 0.103970           | 104          | 80           | 120           | 10                     | 10.1371          | 101        | 90           | 110           |
| Beryllium  | 0.012                    | 0.0119108          | 99           | 80           | 120           | 5                      | 4.99287          | 100        | 90           | 110           |
| Calcium    | 10                       | 10.3840            | 104          | 80           | 120           | 500                    | 461.559          | 92         | 90           | 110           |
| Cadmium    | 0.012                    | 0.0156171          | 130 <b>a</b> | 80           | 120           | 5                      | 5.16562          | 103        | 90           | 110           |
| Cobalt     | 0.025                    | 0.0234428          | 94           | 80           | 120           | 5                      | 4.77422          | 95         | 90           | 110           |
| Chromium   | 0.05                     | 0.0534814          | 107          | 80           | 120           | 10                     | 10.0049          | 100        | 90           | 110           |
| Copper     | 0.05                     | 0.0500642          | 100          | 80           | 120           | 10                     | 10.5509          | 106        | 90           | 110           |
| Silicon    | 0.1                      | 0.170683           | 171 a        | 80           | 120           | 25                     | 26.0942          | 104        | 90           | 110           |
| Potassium  | NA                       | -52.0754           |              | 80           | 120           | 200                    | -2220.60         | - a        | 90           | 110           |
| Zinc       | 0.1                      | 0.101503           | 102          | 80           | 120           | 10                     | 9.80065          | 1100<br>98 | 90           | 110           |
| Manganese  | 0.1                      | 0.101863           | 102          | 80           | 120           | , 10                   | 9.97862          | 100        | 90           | 110           |
| Molybdenum | 0.025                    | 0.0246002          | 98           | 80           | 120           | 10                     | 9.66340          | 97         | 90           | 110           |
| Sodium     | NA                       | 2.86149            |              | 80           | 120           | 1000                   | 1194.44          | 119 a      | 90           | 110           |
| Nickel     | 0.05                     | 0.0550238          | 110          | 80           | 120           | 10                     | 9.50895          | 95         | 90           | 110           |
| Lead       | 0.05                     | 0.0520545          | 104          | 80           | 120           | 10                     | 9.87283          | 99         | 90           | 110           |
| Antimony   | 0.04                     | 0.0406460          | 102          | 80           | 120           | 5                      | 5.51777          | 110        | 90           | 110           |
| Selenium   | 0.05                     | 0.0466278          | 93           | 80           | 120           | 5                      | 5.12607          | 103        | 90           | 110           |
| Tin        | 0.2                      | 0.206468           | 103          | 80           | 120           | 10                     | 10.6200          | 106        | 90           | 110           |
| Titanium   | 0.1                      | 0.0996679          | 100          | 80           | 120           | 10                     | 10.2208          | 102        | 90           | 110           |
| Thallium   | 0.05                     | 0.0504698          | 101          | 80           | 120           | 5                      | 4.97839          | 100        | 90           | 110           |
| Vanadium   | 0.1                      | 0.0968915          | 97           | 80           | 120           | 10                     | 10.0380          | 100        | 90           | 110           |
| Iron       | 2.0                      | 2.04210            | 102          | 80           | 120           | 400                    | :<br>385.168     | 96         | 90           | ; 110 ·       |

Notes:

a-indicates analyte is outsite the limits.

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

### FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/05/20

Data File: S26308A4MDL

Prep Batch: 85368

Analytical Method:6010B(ICP)/7470A,7471A(Hg),6020

Instrument: PEICPRAD4A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0100230

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

| Analyte   | ICV/CCV<br>Amt | ICV V-<br>335864-<br>5 | Rec | CCV V-<br>335864-<br>12 | Rec | CCV V-<br>335864-<br>23 | Rec | CCV V-<br>335864-<br>32 | Rec | Rec | Rec | : | Rec | Rec |
|-----------|----------------|------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|-----|-----|---|-----|-----|
| Potassium | 100/50         | 49.68480               | 99  | 50.24050                | 100 | 51.24270                | 102 | 50.55360                | 101 |     |     |   |     |     |
| Sodium    | 100/50         | 49.95960               | 100 | 51.63410                | 103 | 52.14320                | 104 | 51.70550                | 103 |     |     |   |     |     |

a-indicates analyte failed the ICV limits for 6010B, 6020 Notes:

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B (Except Hg 7470A,7471A),6020

d-indicates analyte failed the CCV limits Hg 7470A/7471A

ICV - 200.7: 95-105 Qc Limits:

CCV- 200.7/200.8/6010B/245.1 : 90-110 (Except Hg 7470A/ 7471A=80-120)

ICV -6010B/6020/200.8: 90-110

CLP ICP ICV/CCV: 90-110

CLP Hg ICV/CCV: 80-120

# FORM 2 LLQCS/LRS Summary)

Date Analyzed: 10/05/20

Data File: \$26308A4MDL

Prep Batch: 85368

Analytical Method: 6010D, 6020B, 7470A, 7471B

Instrument: PEICPRAD4A

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

LLQCS/LRS SOURCE: SPEX

| Analyt     | LLQCS<br>Spike<br>Amount | LLICV V-<br>333671 | Recovery    | Low<br>Limit | High<br>Limi |   | LRS<br>Spike<br>Amount | LRS V-<br>333662 | Recovery | Low<br>Limit | High<br>Limit |                   |
|------------|--------------------------|--------------------|-------------|--------------|--------------|---|------------------------|------------------|----------|--------------|---------------|-------------------|
| Molybdenur | n 0.025                  | 0.0196851          | 79 <b>a</b> | 80           | 120          |   | : 10                   | 9.86218          | 99       | 90           | 110           |                   |
| Boro       | n 0.2                    | 0.224043           | 112         | 80           | 120          | : | 5                      | 4.62407          | 92       | 90           | 110           | 1                 |
| Bariur     | n 0.1                    | 0.0943456          | 94          | 80           | 120          | : | 10                     | 9.50223          | 95       | 90           | 110           | :                 |
| Calciur    | n 10.00                  | 9.91851            | 99          | 80           | 120          |   | 500                    | 487.009          | 97       | 90           | 110           |                   |
| Сорре      | or 0.05                  | 0.0432261          | 86          | 80           | 120          |   | 10                     | 9.65857          | 97       | 90           | 110           | :<br>!            |
| Iro        | n 2.00                   | 1.93052            | 97          | 80           | 120          |   | 400                    | 380.201          | 95       | 90           | 110           | !                 |
| Potassiur  | n 5.00                   | 5.24393            | 105         | 80           | . 120        |   | 200                    | 209.847          | 105      | 90           | 110           |                   |
| Aluminur   | n 2.00                   | 1.92003            | 96          | 80           | 120          |   | 500                    | 506.907          | 101      | 90           | 110           |                   |
| Manganes   | e 0.10                   | 0.0963975          | 96          | 80           | 120          |   | 10                     | 9.30508          | 93       | 90           | 110           | i                 |
| Zin        | c 0.1                    | 0.0984939          | 98          | 80           | 120          | * | 10                     | 10.1223          | : 101    | 90           | 110           | :                 |
| Sodiur     | n 2.50                   | 2.80379            | 112         | 80           | 120          |   | 1000                   | 931.174          | 93       | 90           | 110           |                   |
| Nicke      | 0.05                     | 0.0429636          | 86          | 80           | 120          | 1 | 10                     | 10.1752          | 102      | 90           | 110           |                   |
| Seleniur   | n 0.05                   | 0.0564259          | 113         | 80           | 120          |   | 5                      | 5.11979          | 102      | 90           | 110           |                   |
| Silico     | n 0.1                    | 0.184283           | 184 a       | 80           | 120          |   | 25                     | 24.9267          | 100      | 90           | 110           |                   |
| Ti         | 0.2                      | 0.208269           | 104         | 80           | 120          | : | 10                     | 11.0564          | 111 a    | 90           | 110           | <del>(</del><br>: |
| Titaniur   | n 0.1                    | 0.0973944          | 97          | 80           | 120          |   | 10                     | 9.50535          | 95       | 90           | 110           | -<br>-            |
| Vanadiur   | n 0.1                    | 0.0916920          | 92          | 80           | 120          | 1 | 10                     | 8.93250          | 89 a     | 90           | 110           |                   |
| Magnesiur  | n 5.00                   | 4.97790            | 100         | 80           | 120          | : | 500                    | 514.551          | 103      | 90           | 110           |                   |

a-indicates analyte is outsite the limits. Notes:

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

### FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/05/20

Data File: H26308SMDL

Prep Batch: 85368

Analytical Method:6010B(ICP)/7470A,7471A(Hg),6020

Instrument: HGCV3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0100230

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

|         |                | ICV (2)-9 | •   | CCV-21   |     | CCV-33   |     | • |     |   |     | <br> | <br> | · |     |
|---------|----------------|-----------|-----|----------|-----|----------|-----|---|-----|---|-----|------|------|---|-----|
| Analyte | ICV/CCV<br>Amt |           | Rec |          | Rec |          | Rec |   | Rec |   | Rec | Rec  | Rec  |   | Rec |
| Mercury | 20/10          | 20.58000  | 103 | 10.36000 | 104 | 10.35000 | 104 |   | [   | , |     |      |      |   | ,   |

a-indicates analyte failed the ICV limits for 6010B, 6020 Notes:

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B (Except Hg 7470A,7471A),6020

d-indicates analyte failed the CCV limits Hg 7470A/7471A

Qc Limits:

ICV - 200.7: 95-105

CCV- 200.7/200.8/6010B/245.1 : 90-110 (Except Hg 7470A/ 7471A=80-120)

ICV -6010B/6020/200.8: 90-110

CLP ICP ICV/CCV: 90-110 CLP Hg ICV/CCV: 80-120

# FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/05/20

Data File: S100520AMDL Prep Batch: 85369

Analytical Method:6010B(ICP)/7470A,7471A(Hg),6020

Instrument: MS3\_7700SWA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0100230

Lab Name: Veritech

Lab Code: Contract:

Nras No: Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

| Analyte   | ICV/CCV<br>Amt | ICV V-<br>336038-<br>8 | Rec | CCV V-<br>336042-<br>16 | Rec | CCV V-<br>336042-<br>28 | Rec | CCV V-<br>336042-<br>40 | Rec | CCV V-<br>336042-<br>48 | Rec | Rec | Rec | Rec |
|-----------|----------------|------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|-----|-----|-----|
| Antimony  | 50/30          | 48.32000               | 97  | 49.03200                | 98  | 48.97300                | 98  | 47.28100                | 95  | 46.30200                | 93  |     |     |     |
| Arsenic   | 50/30          | 51.34800               | 103 | 49.21800                | 98  | 49.16200                | 98  | 48.77900                | 98  | 49.20500                | 98  |     |     |     |
| Beryllium | 50/30          | 48.81000               | 98  | 49.13700                | 98  | 49.62600                | 99  | 48.40200                | 97  | 48.08500                | 96  |     |     | ĺ   |
| Cadmium   | 50/30          | 50.02300               | 100 | 48.82400                | 98  | 48.85000                | 98  | 47.54000                | 95  | 46.39900                | 93  |     |     |     |
| Selenium  | 50/30          | 49.78600               | 100 | 249.44000               | 100 | 245.19500               | 98  | 243.73500               | 97  | 242.89100               | 97  |     |     |     |
| Silver    | 10/6           | 9.78100                | 98  | 48.19400                | 96  | 48.44600                | 97  | 47.10600                | 94  | 46.07600                | 92  |     |     |     |
| Thallium  | 50/30          | 49.53600               | 99  | 50.99800                | 102 | 50.67100                | 101 | 49.84000                | 100 | 49.66200                | 99  |     |     | İ   |
| Vanadium  | 50/30          | 50.25800               | 101 | 49.32200                | 99  | 48.95100                | 98  | 49.16800                | 98  | 48.86200                | 98  |     |     |     |

Notes: a-indicates analyte failed the ICV limits for 6010B, 6020

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B (Except Hg 7470A,7471A),6020

d-indicates analyte failed the CCV limits Hg 7470A/7471A

**Qc Limits:** ICV - 200.7 : 95-105

CCV- 200.7/200.8/6010B/245.1: 90-110 (Except Hg 7470A/ 7471A=80-120)

ICV -6010B/6020/200.8:90-110

CLP ICP ICV/CCV: 90-110

CLP Hg ICV/CCV: 80-120

# FORM 2 LLQCS/LRS Summary)

Date Analyzed: 10/05/20

Data File: S100520AMDL

Prep Batch: 85369

Analytical Method: 6010D, 6020B, 7470A, 7471B

Instrument: MS3\_7700SWA

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No:

Sdg No: Case No:

LLQCS/LRS SOURCE: SPEX

| Analyte    | LLQCS<br>Spike<br>Amount | LLICV V-<br>336043 | Recovery | Low<br>Limit | High<br>Limit | LRS<br>Spike<br>Amount | LRS V-<br>336041 | Recovery | Low<br>Limit | High<br>Limit |
|------------|--------------------------|--------------------|----------|--------------|---------------|------------------------|------------------|----------|--------------|---------------|
| Magnesium  | 500                      | 499.585            | 100      | 80           | 120           | 50000                  | 52398.693        | 105      | 90           | 110           |
| Aluminum   | 500                      | 501.357            | 100      | 80           | 120           | 15000                  | 15817.919        | 105      | 90           | 110           |
| Chromium   | 2                        | 1.933              | 97       | 80           | 120           | 500                    | 527.289          | 105      | 90           | 110           |
| Copper     | 10                       | 10.069             | 101      | 80           | 120           | 500                    | 511.174          | 102      | 90           | 110           |
| Iron       | 500                      | 516.761            | 103      | 80           | 120           | 50000                  | 52072.570        | 104      | 90           | 110           |
| Arsenic    | 1                        | 0.996              | 100      | 80           | 120           | 500                    | 515.782          | 103      | 90           | 110           |
| Barium     | 5                        | 4.820              | 96       | 80           | 120           | 500                    | 513.211          | 103      | 90           | 110           |
| Beryllium  | 1                        | 0.954              | 95       | 80           | 120           | 500                    | 462.784          | 93       | 90           | 110           |
| Calcium    | 500                      | 510.476            | 102      | 80           | 120           | 50000                  | 54821.293        | 110      | 90           | 110           |
| Cadmium    | 2                        | 1.936              | 97       | 80           | 120           | 500                    | 507.985          | 102      | 90           | 110           |
| Silver     | 1                        | 0.935              | 94       | 80           | 120           | 500                    | 1591.980         | 318 a    | 90           | 110           |
| Potassium  | 500                      | 500.113            | 100      | 80           | 120           | 50000                  | 52989.063        | 106      | 90           | 110           |
| Zinc       | 20                       | 19.989             | 100      | 80           | 120           | 500                    | 493.038          | 99       | 90           | 110           |
| Manganese  | 6                        | 5.924              | 99       | 80           | 120           | 500                    | 535.770          | 107      | 90           | 110           |
| Molybdenum | 1                        | 1.040              | 104      | 80           | 120           | 500                    | 521.235          | 104      | 90           | 110           |
| Sodium     | 500                      | 477.831            | 96       | 80           | 120           | 50000                  | 52729.615        | 105      | 90           | 110           |
| Nickel     | 3                        | 3.011              | 100      | 80           | 120           | 500                    | 515.438          | 103      | 90           | 110           |
| Lead       | 2                        | 1.855              | 93       | 80           | 120           | 500                    | 477.906          | 96       | 90           | 110           |
| Antimony   | 4                        | 3.729              | 93       | 80           | 120           | 500                    | 498.781          | 100      | 90           | 110           |
| Selenium   | 10                       | 9.674              | 97       | 80           | 120           | 2500                   | 2535.332         | 101      | 90           | 110           |
| Thallium   | 2                        | 1.855              | 93       | 80           | 120           | 500                    | 482.984          | 97       | 90           | 110           |
| Vanadium   | 1                        | 0.939              | 94       | 80           | 120           | 500                    | 534.723          | 107      | 90           | 110           |
| Cobalt     | 2                        | 2.009              | 100      | 80           | 120           | 500                    | 519.119          | 104      | 90           | 110           |

Notes: a-indicates analyte is outsite the limits.

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

### FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 10/05/20

Data File: S26308A3MDL

Lab Name: Veritech

Prep Batch: 85368

Lab Code:

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Contract:

Instrument: PEICP3A

Nras No:

Units: All units in ppm except Hg and icp-ms in ppb

Sdg No:

Project Number: 0100230

Case No:

| Analyte   | ICB V-333667-<br>6 | CCB V-333667-<br>13 | CCB V-333667-<br>24 | CCB V-333667-<br>33 | CCB V-333667-<br>40 | CCB V-333667-<br>51 | CCB V-333667-<br>62 | MB 85368<br>(100)-14 |
|-----------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|
| Aluminum  | .0835 U            | .167 U              | .167 U              | .167 U              | .167 U              | .167U               | .167U               | 8.4 U                |
| Barlum    | 00489 a            | .00676 U            | .00676 U            | .00676 U            | .00676 U            | .00676U             | .00676U             | .34 U                |
| Calcium   | .505 U             | 1.01 U              | 1.01 U              | 1.01 U              | 1.01 U              | 1.01U               | 1.01U               | 51 U                 |
| Chromium  | 00399 a            | .0067 U             | .0067 U             | .0067 U             | .0067 U             | .0067U              | .0067U              | .34 U                |
| Cobalt    | .00356 U           | .00713 U            | .00713 U            | .00713 U            | .00713 U            | .00713U             | .00713U             | .36 U                |
| Copper    | .00308 U           | .00616 U            | .00616 U            | .00616 U            | .00616 U            | .00616U             | .00616U             | .31 U                |
| Iron      | .066 U             | .132 U              | .132 U              | .132 U              | .132 U              | .132U               | .132U               | 6.6 U                |
| Lead      | .00308 U           | .00616 U            | 00827 a             | 00675 a             | 00921 a             | 00992a              | 00711a              | .31 U                |
| Magnesium | .225 a             | .225 a              | .205 a              | .23 a               | .232 a              | .225a               | .227a               | 20 a                 |
| Manganese | 00353 a            | .00642 U            | .00642 U            | .00642 U            | .00642 U            | .00642U             | .00642U             | .32 U                |
| Nickel    | .0055 U            | .011U               | .011 U              | .011 U              | .011 U              | .011U               | .011U               | .55 U                |
| Zinc      | .00755 U           | .0151 U             | .0151 U             | .0151 U             | .0151 U             | .0151U              | .0151U              | .76U                 |

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

# FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 10/05/20

Data File: S26308A4MDL

Lab Name: Veritech

Prep Batch: 85368

Lab Code:

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Contract:

Nras No:

Instrument: PEICPRAD4A

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0100230

Case No:

| Analyte   | ICB V-333667-<br>6 | CCB V-333667- | CCB V-333667-<br>24 | CCB V-333667-<br>33 | MB 85368<br>(100)-14 |   |
|-----------|--------------------|---------------|---------------------|---------------------|----------------------|---|
| Potassium | .493 U             | .987 U        | .987 U              | .987 U              | 49 U                 |   |
| Sodium    | .628 U             | 1.26 U        | 1.26 U              | 1.26 U              | 63 U                 | ĺ |

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

### FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 10/05/20

Data File: H26308SMDL

Prep Batch: 85368

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Instrument: HGCV3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0100230

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

| Analyte | ICB-10 | CCB-22 | CCB-34 | MB 85368<br>(167)-11 |   |  |   |  |  |
|---------|--------|--------|--------|----------------------|---|--|---|--|--|
| Mercury | 093 a  | 089 a  | 089 a  | 13 U                 | i |  | i |  |  |

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

# FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 10/05/20

Data File: S100520AMDL

Prep Batch: 85369

Reporting Limits Used: SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Instrument: MS3\_7700SWA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0100230

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

| nalyte    | ICB V-336039-<br>10 | CCB V-336039-<br>17 | CCB V-336039-<br>29 | CCB V-336039-<br>41 | CCB V-336039-<br>49 | MB 85369-18 |
|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------|
| Antimony  | 1a                  | .112 U              | .112 U              | .112 U              | 114 a               | 11U         |
| Arsenic   | .0437 U             | .0874 U             | .0874 U             | .0874 U             | .0874 U             | 8.7U        |
| Beryllium | .0391 U             | .0783 U             | .0783 U             | .0783 U             | .0783 U             | 7.8U        |
| Cadmium   | .0353 U             | .0706 U             | .0706 U             | .0706 U             | .0706 U             | 7.1U        |
| Selenium  | .159 U              | .318 U              | .318 U              | .318 U              | .318 U              | 32U         |
| Silver    | .0652 U             | .13U                | .159 a              | .15 a               | .156 a              | 27a         |
| Thallium  | .0441 U             | .0882 U             | .0882 U             | .0882 U             | .0882 U             | 8.8U        |
| Vanadium  | .0271 U             | .0542 U             | .0542 U             | .0542 U             | .0542 U             | 8a          |

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

#### FORM 4 (ICSA/ICSAB Summary)

Date Analyzed: 10/05/20

Lab Name: Veritech

Data File: S26308A3MDL

Lab Code:

Prep Batch: 85368

Contract:

Reporting Limits Used:SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Nras No:

Instrument: PEICP3A

Sdg No:

Case No:

Units: All units in ppm except Hg and icp-ms in ppb Project Number: 0100230

ICSA/ICSAB: SOURCE: VHG LABS

|            | Spk<br>Amt | ICSA V-<br>333668-11 |        | _   | _   |     | _   | _   | _   |  |
|------------|------------|----------------------|--------|-----|-----|-----|-----|-----|-----|--|
| Analyte    | ~····      |                      | Rec    | Rec | Rec | Rec | Rec | Rec | Rec |  |
| Aluminum   | 500        | 576.097              | 115    |     |     |     | ļ   |     |     |  |
| Barium     | 0          | U                    |        | ĺ   | İ   |     |     |     |     |  |
| Calcium    | 500        | 522.737              | 105    |     |     |     |     |     | ŀ   |  |
| Chromium   | 0          | 0107203b             | ļ      |     |     |     | İ   |     | Ì   |  |
| Cobalt     | 0          | U                    | }      | İ   |     |     |     |     |     |  |
| Copper     | 0          | 0318594a             | i      |     | ļ   | İ   | İ   |     | i   |  |
| ron        | 200        | 209.924              | 105    |     | ĺ   |     |     |     |     |  |
| .ead       | 0          | .0499659a            | l<br>i |     |     |     | :   |     |     |  |
| /lagnesium | 500        | 531.547              | 106    |     |     |     |     |     |     |  |
| Manganese  | 0          | .0076229b            |        |     |     |     |     |     |     |  |
| lickel     | 0          | U                    |        |     |     |     |     |     |     |  |
| Zinc       | 0          | U                    |        |     |     |     |     |     |     |  |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 \* Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

u-indicates the absolute value of the concentration was below the reporting limit

### FORM 4 (ICSA/ICSAB Summary)

Date Analyzed: 10/05/20

Lab Name: Veritech

Data File: S26308A4MDL

Lab Code:

Prep Batch: 85368

Contract:

Reporting Limits Used:SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Nras No:

Instrument: PEICPRAD4A

Sdg No:

Case No:

Units: All units in ppm except Hg and icp-ms in ppb Project Number: 0100230

ICSA/ICSAB: SOURCE: VHG LABS

| Analyte   | Spk<br>Amt | ICSA V-<br>333668-11 |     | Rec | Rec | Rec | Rec | Rec | Rec | Rec |
|-----------|------------|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Aluminum  | 500        | 522.414              | 104 |     |     | ì   |     |     |     |     |
| Calcium   | 500        | 524.706              | 105 |     |     |     | ļ   |     |     |     |
| Iron      | 200        | 189.742              | 95  |     |     | i   | ĺ   |     |     |     |
| Magnesium | 500        | 518.193              | 104 |     |     |     |     |     |     |     |
| Potassium | 0          | U                    | !   |     |     |     |     |     |     |     |
| Sodium    | 0          | U                    |     |     | ĺ   |     |     |     |     |     |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 \* Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

u-indicates the absolute value of the concentration was below the reporting limit

### FORM 4 (ICSA/ICSAB Summary)

Date Analyzed: 10/05/20

Lab Name: Veritech

Data File: S100520AMDL

Lab Code:

Prep Batch: 85369

Contract:

Reporting Limits Used:SOIL,6010B(ICP)/7470A,7471A(Hg),6020

Nras No:

Sdg No:

Instrument: MS3\_7700SWA

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 0100230

ICSA/ICSAB: SOURCE: VHG LABS

| Analyte   | Spk<br>Amt | ICSA V-<br>336040-11 | Rec | Rec | Rec | Rec | Rec | Rec | Rec | Rec |
|-----------|------------|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Aluminum  | 50000      | 50298.74             | 101 |     |     |     |     |     |     |     |
| Antimony  | 0          | .231a                |     |     |     |     |     |     |     | İ   |
| Arsenic   | 0          | .249a                |     |     |     |     |     |     |     |     |
| Beryllium | 0          | U                    | ļ   |     |     |     |     |     |     |     |
| Cadmium   | 0          | 1.298a               | İ   | 1   |     | i   |     |     |     | j   |
| Calcium   | 150000     | 156675.1             | 104 |     |     |     |     |     |     |     |
| Iron      | 125000     | 125559.4             | 100 |     |     |     |     |     | İ   |     |
| Magnesium | 50000      | 50061.34             | 100 |     |     |     |     |     |     |     |
| Selenium  | 0          | U                    | -   | İ   |     |     |     |     | Í   |     |
| Silver    | o          | .144b                | l   |     |     |     |     |     |     |     |
| Thallium  | 0          | U                    |     |     |     |     |     |     | -   |     |
| Vanadium  | 0          | .074b                |     |     | -   | İ   |     |     | l   | ì   |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 \* Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

u-indicates the absolute value of the concentration was below the reporting limit

PREP BATCH: 85368

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| Analytical iv                                                                      | nethod(s).60 h                                                                | 3/200.77                        | 1410A/141 IA/24                                                                                     | 45. 1                                        |                                                                                                     |                                              |                                                                                  | ICP units in ppr                                                               | n, icpins an                               | a ng iii                          | ppu  |                                        |                                               |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|------|----------------------------------------|-----------------------------------------------|
| TxtQcType                                                                          | : LCSMR                                                                       | Ma                              | trix: SOIL                                                                                          |                                              | Sampl                                                                                               | eID: LC                                      | S MR 85368                                                                       |                                                                                |                                            |                                   | _    |                                        |                                               |
| Analyte                                                                            | Batchid                                                                       | DF                              | Data File                                                                                           | Seq#:                                        |                                                                                                     |                                              | Spk Conc:                                                                        | - · ·                                                                          | Spk Added                                  | Recov                             | Qual | Lo Lim                                 | Hi Lim                                        |
| Aluminum                                                                           | 85368                                                                         | 1                               | S26308A3                                                                                            | 16                                           |                                                                                                     | -                                            | 90.8841                                                                          | · · ·                                                                          | 110                                        | 83                                |      | 55                                     | 152                                           |
| Barium                                                                             | 85368                                                                         | 1                               | S26308A3                                                                                            | 16                                           |                                                                                                     |                                              | 7.6647                                                                           |                                                                                | 8.92                                       | 86                                |      | 65                                     | 110                                           |
| Calcium                                                                            | 85368                                                                         | 1                               | S26308A3                                                                                            | 16                                           |                                                                                                     |                                              | 182.3180                                                                         |                                                                                | 207.00                                     | 88                                |      | 69                                     | 110                                           |
| Chromium                                                                           | 85368                                                                         | 1                               | S26308A3                                                                                            | 16                                           |                                                                                                     |                                              | 1.9169                                                                           |                                                                                | 2.27                                       | 84                                |      | 61                                     | 114                                           |
| Cobalt                                                                             | 85368                                                                         | 1                               | S26308A3                                                                                            | 16                                           |                                                                                                     |                                              | 2.3308                                                                           |                                                                                | 2.87                                       | 81                                |      | 64                                     | 110                                           |
| Copper                                                                             | 85368                                                                         | 1                               | S26308A3                                                                                            | 16                                           |                                                                                                     |                                              | 1.8178                                                                           |                                                                                | 2.09                                       | 87                                |      | 66                                     | 110                                           |
| Iron                                                                               | 85368                                                                         | 1                               | S26308A3                                                                                            | 16                                           |                                                                                                     |                                              | 145.5280                                                                         |                                                                                | 192.00                                     | 76                                |      | 34                                     | 138                                           |
| Lead                                                                               | 85368                                                                         | 1                               | S26308A3                                                                                            | 16                                           |                                                                                                     |                                              | 1.3744                                                                           |                                                                                | 1.63                                       | 84                                |      | 62                                     | 110                                           |
| Magnesium                                                                          | 85368                                                                         | 1                               | S26308A3                                                                                            | 16                                           |                                                                                                     |                                              | 61.4373                                                                          |                                                                                | 74.60                                      | 82                                |      | 26                                     | 114                                           |
| Manganese                                                                          | 85368                                                                         | 1                               | S26308A3                                                                                            | 16                                           |                                                                                                     |                                              | 5.1575                                                                           |                                                                                | 6.03                                       | 86                                |      | 68                                     | 110                                           |
| Mercury                                                                            | 85368                                                                         | 4                               | H26308SM                                                                                            | 15                                           |                                                                                                     |                                              | 6.7310                                                                           |                                                                                | 41.64                                      | 65                                |      | 39                                     | 110                                           |
| Nickel                                                                             | 85368                                                                         | 1                               | S26308A3                                                                                            | 16                                           |                                                                                                     |                                              | 0.4740                                                                           |                                                                                | .553                                       | 86                                |      | 61                                     | 114                                           |
| Potassium                                                                          | 85368                                                                         | 1                               | S26308A4                                                                                            | 16                                           |                                                                                                     |                                              | 17.5202                                                                          |                                                                                | 22.60                                      | 78                                |      | 61                                     | 140                                           |
| Sodium                                                                             | 85368                                                                         | 1                               | S26308A4                                                                                            | 16                                           |                                                                                                     |                                              | 7.0692                                                                           |                                                                                | 8.67                                       | 82                                |      | 57                                     | 125                                           |
| Zinc                                                                               | 85368                                                                         | 1                               | S26308A3                                                                                            | 16                                           |                                                                                                     |                                              | 5.8858                                                                           |                                                                                | 7.13                                       | 83                                |      | 60                                     | 112                                           |
|                                                                                    |                                                                               |                                 |                                                                                                     |                                              |                                                                                                     |                                              |                                                                                  |                                                                                |                                            | -                                 |      |                                        |                                               |
| TxtQcType                                                                          | : LCS                                                                         | Ма                              | trix: SOIL                                                                                          | ,                                            | Sampl                                                                                               | eID: LC                                      | S 85368                                                                          |                                                                                |                                            |                                   |      |                                        |                                               |
| Analyte                                                                            | BatchId                                                                       | DF                              | Data File                                                                                           | Seq#:                                        |                                                                                                     |                                              | Spk Conc:                                                                        |                                                                                | Spk Added                                  |                                   |      | Lo Lim                                 | Hi Lim                                        |
| Aluminum                                                                           | 85368                                                                         | 1                               | S26308A3                                                                                            | 15                                           |                                                                                                     |                                              | 90.8748                                                                          |                                                                                | 110                                        | 83                                |      | 55                                     | 152                                           |
| Barium                                                                             | 85368                                                                         | 1                               | S26308A3                                                                                            | 15                                           |                                                                                                     |                                              | 6.9128                                                                           |                                                                                | 8.92                                       | 77                                |      | 65                                     | 110                                           |
| Calcium                                                                            | 85368                                                                         | 1                               | S26308A3                                                                                            | 15                                           |                                                                                                     |                                              | 181.7200                                                                         |                                                                                | 207.00                                     | 88                                |      | 69                                     | 110                                           |
| Chromium                                                                           | 85368                                                                         | 1                               | S26308A3                                                                                            | 15                                           |                                                                                                     |                                              | 1.9278                                                                           |                                                                                | 2.27                                       | 85                                |      | 61                                     | 114                                           |
| Cobalt                                                                             | 85368                                                                         | 1                               | S26308A3                                                                                            | 15                                           |                                                                                                     |                                              | 2.3410                                                                           |                                                                                | 2.87                                       | 82                                |      | 64                                     | 110                                           |
| Copper                                                                             | 85368                                                                         | 1                               | S26308A3                                                                                            | 15                                           |                                                                                                     |                                              | 1.8227                                                                           |                                                                                | 2.09                                       | 87                                |      | 66                                     | 110                                           |
| Iron                                                                               | 85368                                                                         | 1                               | S26308A3                                                                                            | 15                                           |                                                                                                     |                                              | 145.0060                                                                         |                                                                                | 192.00                                     | 76                                |      | 34                                     | 138                                           |
| Lead                                                                               | 85368                                                                         | 1                               | S26308A3                                                                                            | 15                                           |                                                                                                     |                                              | 1.3770                                                                           |                                                                                | 1.63                                       | 84                                |      | 62                                     | 110                                           |
| Magnesium                                                                          | 85368                                                                         | 1                               | S26308A3                                                                                            | 15                                           |                                                                                                     |                                              | 61.6209                                                                          |                                                                                | 74.60                                      | 83                                |      | 26                                     | 114                                           |
| Manganese                                                                          | 85368                                                                         | 1                               | S26308A3                                                                                            | 15                                           |                                                                                                     |                                              | 5.1676                                                                           |                                                                                | 6.03                                       | 86                                |      | 68                                     | 110                                           |
| Mercury                                                                            | 85368                                                                         | 4                               | H26308SM                                                                                            | 14                                           |                                                                                                     |                                              | 6.6710                                                                           |                                                                                | 41.64                                      | 64                                |      | 39                                     | 110                                           |
| Nickel                                                                             | 85368                                                                         | 1                               | S26308A3                                                                                            | 15                                           |                                                                                                     |                                              | 0.4895                                                                           |                                                                                | .553                                       | 89                                |      | 61                                     | 114                                           |
| Potassium                                                                          | 85368                                                                         | 1                               | S26308A4                                                                                            | 15                                           | ·                                                                                                   |                                              | 17.5468                                                                          |                                                                                | 22.60                                      | 78                                |      | 61                                     | 140                                           |
| Sodium                                                                             | 85368                                                                         | 1                               | S26308A4                                                                                            | 15                                           |                                                                                                     |                                              | 7.0388                                                                           |                                                                                | 8.67                                       | 81                                |      | 57                                     | 125                                           |
| Zinc                                                                               | 85368                                                                         | 1                               | S26308A3                                                                                            | 15                                           |                                                                                                     |                                              | 5.8754                                                                           |                                                                                | 7.13                                       | 82                                |      | 60                                     | 112                                           |
| TxtQcType                                                                          | e: MSD                                                                        | Ма                              | trix: SOIL                                                                                          | -                                            | Sampl                                                                                               | eID: AD                                      | 19581-003                                                                        |                                                                                |                                            | _                                 |      |                                        |                                               |
| Analyte                                                                            | BatchId                                                                       | DF                              | Data File                                                                                           | Sea#:                                        | NS Data Fil                                                                                         | Sea#                                         | Spk Conc:                                                                        | NS Conc:                                                                       | Spk Added                                  | Recov                             | Qual | Lo Lim                                 | Hi Lim                                        |
| Aluminum                                                                           | 85368                                                                         | 1                               | S26308A3                                                                                            | 20                                           | S26308A3                                                                                            |                                              | 33.7213                                                                          | 28.6732                                                                        | 5.0                                        | 101                               |      | 75                                     | 125                                           |
| Barium                                                                             | 85368                                                                         | 1                               | S26308A3                                                                                            | 20                                           | S26308A3                                                                                            |                                              | 0.8816                                                                           | 0.4564                                                                         | 0.5                                        | 85                                |      | 75                                     | 125                                           |
| Calcium                                                                            | 85368                                                                         | 1                               | S26308A3                                                                                            | 20                                           | S26308A3                                                                                            |                                              | 58.2570                                                                          | 11.4995                                                                        | 50                                         | 94                                |      | 75                                     | 125                                           |
| Chromium                                                                           | 85368                                                                         | 1                               | S26308A3                                                                                            | 20                                           | S26308A3                                                                                            |                                              | 0.5739                                                                           | 0.0616                                                                         | 0.5                                        | 102                               |      | 75                                     | 125                                           |
| Cobalt                                                                             |                                                                               | •                               | 02000/10                                                                                            |                                              |                                                                                                     |                                              | 0.5733                                                                           | 0.0327                                                                         | 0.5                                        | 98                                |      | 75                                     | 125                                           |
|                                                                                    |                                                                               | 1                               | S26308A3                                                                                            | 20                                           | SZDJUNAJ                                                                                            |                                              |                                                                                  | 7177 <b>6</b> 1                                                                | J.J                                        | ~~                                |      | . •                                    |                                               |
|                                                                                    | 85368                                                                         | 1                               | S26308A3<br>S26308A3                                                                                | 20<br>20                                     | S26308A3<br>S26308A3                                                                                |                                              |                                                                                  |                                                                                | 0.5                                        | 89                                |      | 75                                     | 125                                           |
| Copper                                                                             | 85368<br>85368                                                                | 1                               | S26308A3                                                                                            | 20                                           | S26308A3                                                                                            | 17                                           | 0.5700                                                                           | 0.1227                                                                         | 0.5<br>5.0                                 | 89<br>15                          |      | 75<br>75                               | 125<br>125                                    |
| Copper<br>Iron                                                                     | 85368<br>85368<br>85368                                                       | 1<br>1                          | S26308A3<br>S26308A3                                                                                | 20<br>20                                     | S26308A3<br>S26308A3                                                                                | 17<br>17                                     | 0.5700<br>83.7637                                                                | 0.1227<br>83.0147                                                              | 5.0                                        | 15                                | b    | 75                                     | 125                                           |
| Copper<br>Iron<br>Lead                                                             | 85368<br>85368<br>85368<br>85368                                              | 1<br>1<br>1                     | S26308A3<br>S26308A3<br>S26308A3                                                                    | 20<br>20<br>20                               | S26308A3<br>S26308A3<br>S26308A3                                                                    | 17<br>17<br>17                               | 0.5700<br>83.7637<br>0.5574                                                      | 0.1227<br>83.0147<br>0.0741                                                    | 5.0<br>0.5                                 | 15<br>97                          | b    | 75<br>75                               | 125<br>125                                    |
| Copper<br>Iron<br>Lead<br>Magnesium                                                | 85368<br>85368<br>85368<br>85368                                              | 1<br>1<br>1                     | \$26308A3<br>\$26308A3<br>\$26308A3<br>\$26308A3                                                    | 20<br>20<br>20<br>20                         | S26308A3<br>S26308A3<br>S26308A3<br>S26308A3                                                        | 17<br>17<br>17<br>17                         | 0.5700<br>83.7637<br>0.5574<br>59.2965                                           | 0.1227<br>83.0147<br>0.0741<br>12.1653                                         | 5.0<br>0.5<br>50                           | 15<br>97<br>94                    | b    | 75<br>75<br>75                         | 125<br>125<br>125                             |
| Copper<br>Iron<br>Lead<br>Magnesium<br>Manganese                                   | 85368<br>85368<br>85368<br>85368<br>85368<br>85368                            | 1<br>1<br>1<br>1                | \$26308A3<br>\$26308A3<br>\$26308A3<br>\$26308A3<br>\$26308A3                                       | 20<br>20<br>20<br>20<br>20<br>20             | S26308A3<br>S26308A3<br>S26308A3<br>S26308A3<br>S26308A3                                            | 17<br>17<br>17<br>17<br>17                   | 0.5700<br>83.7637<br>0.5574<br>59.2965<br>3.1822                                 | 0.1227<br>83.0147<br>0.0741<br>12.1653<br>2.6884                               | 5.0<br>0.5<br>50<br>0.5                    | 15<br>97<br>94<br>99              | b    | 75<br>75<br>75<br>75                   | 125<br>125<br>125<br>125                      |
| Copper<br>Iron<br>Lead<br>Magnesium<br>Manganese<br>Mercury                        | 85368<br>85368<br>85368<br>85368<br>85368<br>85368<br>85368                   | 1<br>1<br>1<br>1<br>1           | \$26308A3<br>\$26308A3<br>\$26308A3<br>\$26308A3<br>\$26308A3<br>H26308SM                           | 20<br>20<br>20<br>20<br>20<br>20<br>19       | S26308A3<br>S26308A3<br>S26308A3<br>S26308A3<br>S26308A3<br>H26308SM                                | 17<br>17<br>17<br>17<br>17<br>16             | 0.5700<br>83.7637<br>0.5574<br>59.2965<br>3.1822<br>10.5400                      | 0.1227<br>83.0147<br>0.0741<br>12.1653<br>2.6884<br>0.2960                     | 5.0<br>0.5<br>50<br>0.5<br>10              | 15<br>97<br>94<br>99<br>102       | b    | 75<br>75<br>75<br>75<br>75             | 125<br>125<br>125<br>125<br>125               |
| Copper ron _ead Magnesium Manganese Mercury Nickel                                 | 85368<br>85368<br>85368<br>85368<br>85368<br>85368<br>85368<br>85368          | 1<br>1<br>1<br>1<br>1<br>1<br>1 | S26308A3<br>S26308A3<br>S26308A3<br>S26308A3<br>S26308A3<br>H26308SM<br>S26308A3                    | 20<br>20<br>20<br>20<br>20<br>20<br>19<br>20 | \$26308A3<br>\$26308A3<br>\$26308A3<br>\$26308A3<br>\$26308A3<br>H26308SM<br>\$26308A3              | 17<br>17<br>17<br>17<br>17<br>16<br>17       | 0.5700<br>83.7637<br>0.5574<br>59.2965<br>3.1822<br>10.5400<br>0.5665            | 0.1227<br>83.0147<br>0.0741<br>12.1653<br>2.6884<br>0.2960<br>0.0755           | 5.0<br>0.5<br>50<br>0.5<br>10<br>0.5       | 15<br>97<br>94<br>99<br>102<br>98 | b    | 75<br>75<br>75<br>75<br>75<br>75<br>75 | 125<br>125<br>125<br>125<br>125<br>125        |
| Copper<br>Iron<br>Lead<br>Magnesium<br>Manganese<br>Mercury<br>Nickel<br>Potassium | 85368<br>85368<br>85368<br>85368<br>85368<br>85368<br>85368<br>85368<br>85368 | 1<br>1<br>1<br>1<br>1<br>1<br>1 | \$26308A3<br>\$26308A3<br>\$26308A3<br>\$26308A3<br>\$26308A3<br>H26308SM<br>\$26308A3<br>\$26308A4 | 20<br>20<br>20<br>20<br>20<br>19<br>20       | \$26308A3<br>\$26308A3<br>\$26308A3<br>\$26308A3<br>\$26308A3<br>H26308SM<br>\$26308A3<br>\$26308A4 | 17<br>17<br>17<br>17<br>17<br>16<br>17       | 0.5700<br>83.7637<br>0.5574<br>59.2965<br>3.1822<br>10.5400<br>0.5665<br>51.6774 | 0.1227<br>83.0147<br>0.0741<br>12.1653<br>2.6884<br>0.2960<br>0.0755<br>4.6787 | 5.0<br>0.5<br>50<br>0.5<br>10<br>0.5<br>50 | 15<br>97<br>94<br>99<br>102<br>98 | b    | 75<br>75<br>75<br>75<br>75<br>75<br>75 | 125<br>125<br>125<br>125<br>125<br>125<br>125 |
| Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Sodium Zinc          | 85368<br>85368<br>85368<br>85368<br>85368<br>85368<br>85368<br>85368          | 1<br>1<br>1<br>1<br>1<br>1<br>1 | S26308A3<br>S26308A3<br>S26308A3<br>S26308A3<br>S26308A3<br>H26308SM<br>S26308A3                    | 20<br>20<br>20<br>20<br>20<br>20<br>19<br>20 | \$26308A3<br>\$26308A3<br>\$26308A3<br>\$26308A3<br>\$26308A3<br>H26308SM<br>\$26308A3              | 17<br>17<br>17<br>17<br>17<br>16<br>17<br>17 | 0.5700<br>83.7637<br>0.5574<br>59.2965<br>3.1822<br>10.5400<br>0.5665            | 0.1227<br>83.0147<br>0.0741<br>12.1653<br>2.6884<br>0.2960<br>0.0755           | 5.0<br>0.5<br>50<br>0.5<br>10<br>0.5       | 15<br>97<br>94<br>99<br>102<br>98 | b    | 75<br>75<br>75<br>75<br>75<br>75<br>75 | 125<br>125<br>125<br>125<br>125<br>125<br>125 |

PREP BATCH: 85368

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| TxtQcType: | MS      | Ма | trix: SOIL |       | Sample      | eID: AD | 19581-003 |              |           |       |      |        |        |
|------------|---------|----|------------|-------|-------------|---------|-----------|--------------|-----------|-------|------|--------|--------|
| Analyte    | BatchId | DF | Data File  | Seq#: | NS Data Fil | Seq#    | Spk Conc: | NS Conc:     | Spk Added | Recov | Qual | Lo Lim | Hi Lim |
| Aluminum   | 85368   | 1  | S26308A3   | 19    | S26308A3    | 17      | 30.2062   | 28.6732      | 5.0       | 31    | b    | 75     | 125    |
| Barium     | 85368   | 1  | S26308A3   | 19    | S26308A3    | 17      | 0.9373    | 0.4564       | 0.5       | 96    |      | 75     | 125    |
| Calcium    | 85368   | 1  | S26308A3   | 19    | S26308A3    | 17      | 56.7409   | 11.4995      | 50        | 90    |      | 75     | 125    |
| Chromium   | 85368   | 1  | S26308A3   | 19    | S26308A3    | 17      | 0.5366    | 0.0616       | 0.5       | 95    |      | 75     | 125    |
| Cobalt     | 85368   | 1  | S26308A3   | 19    | S26308A3    | 17      | 0.5280    | 0.0327       | 0.5       | 99    |      | 75     | 125    |
| Copper     | 85368   | 1  | S26308A3   | 19    | S26308A3    | 17      | 0.5630    | 0.1227       | 0.5       | 88    |      | 75     | 125    |
| Iron       | 85368   | 1  | S26308A3   | 19    | S26308A3    | 17      | 76.7038   | 83.0147      | 5.0       | -130  | b    | 75     | 125    |
| Lead       | 85368   | 1  | S26308A3   | 19    | S26308A3    | 17      | 0.5722    | 0.0741       | 0.5       | 100   |      | 75     | 125    |
| Magnesium  | 85368   | 1  | S26308A3   | 19    | S26308A3    | 17      | 55.5469   | 12.1653      | 50        | 87    |      | 75     | 125    |
| Manganese  | 85368   | 1  | S26308A3   | 19    | S26308A3    | 17      | 3.6469    | 2.6884       | 0.5       | 192   | b    | 75     | 125    |
| Mercury    | 85368   | 1  | H26308SM   | 18    | H26308SM    | 16      | 10.4700   | 0.2960       | 10        | 102   |      | 75     | 125    |
| Nickel     | 85368   | 1  | S26308A3   | 19    | S26308A3    | 17      | 0.5348    | 0.0755       | 0.5       | 92    |      | 75     | 125    |
| Potassium  | 85368   | 1  | S26308A4   | 19    | S26308A4    | 17      | 51.6579   | 4.6787       | 50        | 94    |      | 75     | 125    |
| Sodium     | 85368   | 1  | S26308A4   | 19    | S26308A4    | 17      | 48.4144   | 1.255852743U | 50        | 97    |      | 75     | 125    |
| Zinc       | 85368   | 1  | S26308A3   | 19    | S26308A3    | 17      | 0.6230    | 0.1791       | 0.5       | 89    |      | 75     | 125    |

PREP BATCH: 85368

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| TxtQcType: PS | Ma | trix: SOIL |       | Sample      | eID: AD | 19581-003 |              |           |       |             |        |
|---------------|----|------------|-------|-------------|---------|-----------|--------------|-----------|-------|-------------|--------|
| Analyte       | DF | Data File  | Seq#: | NS Data Fil | Seq#    | Spk Conc: | NS Conc:     | Spk Added | Recov | Qual Lo Lim | Hi Lim |
| Aluminum      | 1  | S26308A3   | 21    | S26308A3    | 17      | 32.7314   | 28.6732      | 5.0       | 81    | 75          | 125    |
| Barium        | 1  | S26308A3   | 21    | S26308A3    | 17      | 0.9122    | 0.4564       | 0.50      | 91    | 75          | 125    |
| Calcium       | 1  | S26308A3   | 21    | S26308A3    | 17      | 55.4773   | 11.4995      | 50        | 88    | 75          | 125    |
| Chromium      | 1  | S26308A3   | 21    | S26308A3    | 17      | 0.5332    | 0.0616       | 0.50      | 94    | 75          | 125    |
| Cobalt        | 1  | S26308A3   | 21    | S26308A3    | 17      | 0.5192    | 0.0327       | 0.50      | 97    | 75          | 125    |
| Copper        | 1  | S26308A3   | 21    | S26308A3    | 17      | 0.5983    | 0.1227       | 0.50      | 95    | 75          | 125    |
| Iron          | 1  | S26308A3   | 21    | S26308A3    | 17      | 82.3740   | 83.0147      | 5.0       | -13   | b 75        | 125    |
| Lead          | 1  | S26308A3   | 21    | S26308A3    | 17      | 0.5392    | 0.0741       | 0.50      | 93    | 75          | 125    |
| Magnesium     | 1  | S26308A3   | 21    | S26308A3    | 17      | 55.1177   | 12.1653      | 50        | 86    | 75          | 125    |
| Manganese     | 1  | S26308A3   | 21    | S26308A3    | 17      | 2.9349    | 2.6884       | 0.50      | 49    | b 75        | 125    |
| Nickel        | 1  | S26308A3   | 21    | S26308A3    | 17      | 0.5340    | 0.0755       | 0.50      | 92    | 75          | 125    |
| Potassium     | 1  | S26308A4   | 21    | S26308A4    | 17      | 50.1234   | 4.6787       | 50        | 91    | 75          | 125    |
| Sodium        | 1  | S26308A4   | 21    | S26308A4    | 17      | 46.6136   | 1.255852743U | 50        | 93    | 75          | 125    |
| Zinc          | 1  | S26308A3   | 21    | S26308A3    | 17      | 0.6358    | 0.1791       | 0.50      | 91    | 75          | 125    |

PREP BATCH: 85369

Instrument Type: ICPMS
Analytical Method(s):6020/200.8

| TxtQcType:                                                 | LCSMR                            | Mat         | trix: SOIL                                       |                      | Sample                              | eID: LC        | S MR 85369                       |                            |                   |                |                 |                   |
|------------------------------------------------------------|----------------------------------|-------------|--------------------------------------------------|----------------------|-------------------------------------|----------------|----------------------------------|----------------------------|-------------------|----------------|-----------------|-------------------|
| Analyte                                                    | BatchId                          | DF          | Data File                                        | Seq#:                |                                     |                | Spk Conc:                        |                            | Spk Added         | Recov          | Qual Lo Lim     | Hi Lin            |
| Antimony                                                   | 85369                            | 1           | S100520A                                         | 20                   |                                     |                | 49.4770                          |                            | 117               | 42             | 10              | 110               |
| Arsenic                                                    | 85369                            | 1           | S100520A                                         | 20                   |                                     |                | 44.3110                          |                            | 49.4              | 90             | 61              | 113               |
| Beryllium                                                  | 85369                            | 1           | S100520A                                         | 20                   |                                     |                | 148.5350                         |                            | 187               | 79             | 66              | 110               |
| Cadmium                                                    | 85369                            | 1           | S100520A                                         | 20                   |                                     |                | 174.4600                         |                            | 197               | 89             | 64              | 110               |
| Selenium                                                   | 85369                            | 1           | S100520A                                         | 20                   |                                     |                | 325.3400                         | •                          | 364               | 89             | 60              | 112               |
| Silver                                                     | 85369                            | 1           | S100520A                                         | 20                   |                                     |                | 86.5530                          |                            | 94.0              | 92             | 61              | 111               |
| Thallium                                                   | 85369                            | 1           | S100520A                                         | 20                   |                                     |                | 189.2950                         |                            | 229               | 83             | 61              | 110               |
| Vanadium                                                   | 85369                            | 1           | S100520A                                         | 20                   |                                     |                | 266.8060                         |                            | 300               | 89             | 66              | 110               |
| TxtQcType:                                                 | LCS                              | Ma          | trix: SOIL                                       |                      | Sample                              | eID: LC        | S 85369                          |                            |                   |                |                 |                   |
| Analyte                                                    | Batchld                          | DF          | Data File                                        | Seq#:                |                                     |                | Spk Conc:                        |                            | Spk Added         | Recov          | Qual Lo Lim     | Hi Lin            |
| Antimony                                                   | 85369                            | 1           | S100520A                                         | 19                   |                                     | _              | 49.3810                          |                            | 117               | 42             | 10              | 110               |
| Arsenic                                                    | 85369                            | 1           | S100520A                                         | 19                   |                                     |                | 44.2170                          |                            | 49.4              | 90             | 61              | 113               |
| Beryllium                                                  | 85369                            | 1           | S100520A                                         | 19                   |                                     |                | 152.3550                         |                            | 187               | 81             | 66              | 110               |
| Cadmium                                                    | 85369                            | 1           | S100520A                                         | 19                   |                                     |                | 176.5930                         |                            | 197               | 90             | 64              | 110               |
| Selenium                                                   | 85369                            | 1           | S100520A                                         | 19                   |                                     |                | 323.2110                         |                            | 364               | 89             | 60              | 112               |
| Silver                                                     | 85369                            | 1           | S100520A                                         | 19                   |                                     |                | 87.4660                          |                            | 94.0              | 93             | 61              | 111               |
| Thallium                                                   | 85369                            | 1           | S100520A                                         | 19                   |                                     |                | 190.6530                         |                            | 229               | 83             | 61              | 110               |
| /anadium_                                                  | 85369                            | 1           | S100520A                                         | 19                   |                                     |                | 266.3560                         |                            | 300               | 89             | 66              | 110               |
| TxtQcType:                                                 | MSD                              | Mat         | trix: SOIL                                       |                      | Sample                              | eID: AD        | 19581-003                        |                            | <u> </u>          |                |                 |                   |
| Analyte                                                    | Batchld                          | DF          | Data File                                        | Seq#:                | NS Data Fil                         | Seq#           | Spk Conc:                        | NS Conc:                   | Spk Added         | Recov          | Qual Lo Lim     | Hi Lin            |
| Antimony                                                   | 85369                            | 1           | S100520A                                         | 25                   | S100520A                            | 21             | 156.7290                         | 0.4300                     | 250               | 63             | a 75            | 125               |
| Arsenic                                                    | 85369                            | 1           | S100520A                                         | 25                   | S100520A                            | 21             | 227.9810                         | 3.7270                     | 250               | 90             | 75              | 125               |
| Beryllium                                                  | 85369                            | 1           | S100520A                                         | 25                   | S100520A                            | 21             | 194.1230                         | 0.9020                     | 250               | 77             | 75              | 125               |
| Cadmium                                                    | 85369                            | 1           | S100520A                                         | 25                   | S100520A                            | 21             | 212.2410                         | 0.1240                     | 250               | 85             | 75              | 125               |
| Selenium                                                   | 85369                            | 1           | S100520A                                         | 25                   | S100520A                            | 21             | 208.6960                         | 3.0900                     | 250               | 82             | 75              | 125               |
| Silver                                                     | 85369                            | 1           | S100520A                                         | 25                   | S100520A                            | 21             | 41.6090                          | 0.1990                     | 50                | 83             | 75              | 125               |
| Thallium                                                   | 85369                            | 1           | S100520A                                         | 25                   | S100520A                            | 21             | 202.7410                         | 0.3630                     | 250               | 81             | 75              | 125               |
| /anadium                                                   | 85369                            | _1          | \$100520A                                        | 25                   | S100520A                            | 21             | 260.7980                         | 26.6180                    | 250               | 94             | 75              | 125               |
| TxtQcType:                                                 | MS                               | Mat         | trix: SOIL                                       |                      | Sample                              | elD: AD        | 19581-003                        |                            |                   |                | - · · · · · · · |                   |
| i Alaci ype.                                               | BatchId                          | DF          | Data File                                        | Seq#:                | NS Data Fil                         | Seq#           | Spk Conc:                        | NS Conc:                   | Spk Added         | Recov          | Qual Lo Lim     | Hi Lir            |
| •                                                          | Balcillo                         |             | S100520A                                         | 24                   | S100520A                            | 21             | 156.7680                         | 0.4300                     | 250               | 63             | a 75            | 125               |
| Analyte                                                    | 85369                            | 1           | 0 100320A                                        |                      |                                     | 04             | 226.5170                         | 3.7270                     | 250               | 89             | 75              | 125               |
| Analyte<br>Antimony                                        |                                  | 1           | S100520A                                         | 24                   | S100520A                            | 21             | 220.5170                         |                            |                   |                | . •             | 120               |
| Analyte<br>Antimony<br>Arsenic                             | 85369                            |             |                                                  |                      | S100520A<br>S100520A                | 21             | 203.6500                         | 0.9020                     | 250               | 81             | 75              | 125               |
| Analyte<br>Antimony<br>Arsenic<br>Beryllium                | 85369<br>85369                   | 1           | S100520A                                         | 24                   |                                     |                | 203.6500                         |                            |                   |                |                 |                   |
| Analyte Antimony Arsenic Beryllium Cadmium                 | 85369<br>85369<br>85369          | 1           | S100520A<br>S100520A                             | 24<br>24             | S100520A                            | 21             | 203.6500<br>219.8270             | 0.9020                     | 250               | 81             | 75              | 125               |
| Analyte Antimony Arsenic Beryllium Cadmium Selenium        | 85369<br>85369<br>85369<br>85369 | 1<br>1<br>1 | \$100520A<br>\$100520A<br>\$100520A              | 24<br>24<br>24       | S100520A<br>S100520A                | 21<br>21       | 203.6500<br>219.8270<br>210.1810 | 0.9020<br>0.1240           | 250<br>250        | 81<br>88       | 75<br>75        | 125<br>125        |
| Analyte Antimony Arsenic Beryllium Cadmium Selenium Silver | 85369<br>85369<br>85369<br>85369 | 1<br>1<br>1 | \$100520A<br>\$100520A<br>\$100520A<br>\$100520A | 24<br>24<br>24<br>24 | \$100520A<br>\$100520A<br>\$100520A | 21<br>21<br>21 | 203.6500<br>219.8270<br>210.1810 | 0.9020<br>0.1240<br>3.0900 | 250<br>250<br>250 | 81<br>88<br>83 | 75<br>75<br>75  | 125<br>125<br>125 |

PREP BATCH: 85369

Instrument Type: ICPMS

Analytical Method(s):6020/200.8

| TxtQcType: PS | Ma | trix: SOIL |       | Sample      | eID: AD | 19581-003 | •        |           |       |             |        |
|---------------|----|------------|-------|-------------|---------|-----------|----------|-----------|-------|-------------|--------|
| Analyte       | DF | Data File  | Seq#: | NS Data Fil | Seq#    | Spk Conc: | NS Conc: | Spk Added | Recov | Qual Lo Lim | Hi Lim |
| Antimony      | 1  | S100520A   | 26    | S100520A    | 21      | 47.8730   | 0.4300   | 50        | 95    | 75          | 125    |
| Arsenic       | 1  | S100520A   | 26    | S100520A    | 21      | 52.6890   | 3.7270   | 50        | 98    | 75          | 125    |
| Beryllium     | 1  | S100520A   | 26    | S100520A    | 21      | 43.6890   | 0.9020   | 50        | 86    | 75          | 125    |
| Cadmium       | 1  | S100520A   | 26    | S100520A    | 21      | 48.2860   | 0.1240   | 50        | 96    | 75          | 125    |
| Selenium      | 1  | S100520A   | 26    | S100520A    | 21      | 239.2590  | 3.0900   | 250       | 94    | 75          | 125    |
| Silver        | 1  | S100520A   | 26    | S100520A    | 21      | 47.8170   | 0.1990   | 50        | 95    | 75          | 125    |
| Thallium      | 1  | S100520A   | 26    | S100520A    | 21      | 48.2150   | 0.3630   | 50        | 96    | 75          | 125    |
| Vanadium      | 1  | S100520A   | 26    | S100520A    | 21      | 76.8490   | 26.6180  | 50        | 100   | 75          | 125    |

#### FORM6/FORM9

# RPD/%Difference Data

PREP BATCH: 85368

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| TxtQcType: L      | CSMR    | Matrix: SOIL    | San       | pleID: LCS  | MR 85368     |              |      |       |
|-------------------|---------|-----------------|-----------|-------------|--------------|--------------|------|-------|
| Analyte           | Batchld | Data File Seq#: | NS File   | Seq#        | Result 1     | Result 2     | RPD  | Limit |
| Aluminum          | 85368   | S26308A3 16     | S26308A3  | 15          | 90.8841      | 90.8748      | .01  | 20    |
| Barium            | 85368   | S26308A3 16     | S26308A3  | 15          | 7.6647       | 6.9128       | 10   | 20    |
| Calcium           | 85368   | S26308A3 16     | S26308A3  | 15          | 182.3180     | 181.7200     | .33  | 20    |
| Chromium          | 85368   | S26308A3 16     | S26308A3  | 15          | 1.9169       | 1.9278       | .56  | 20    |
| Cobalt            | 85368   | S26308A3 16     | S26308A3  | 15          | 2.3308       | 2.3410       | .43  | 20    |
| Copper            | 85368   | S26308A3 16     | S26308A3  | 15          | 1.8178       | 1.8227       | .27  | 20    |
| Iron              | 85368   | S26308A3 16     | S26308A3  | 15          | 145.5280     | 145.0060     | .36  | 20    |
| Lead              | 85368   | S26308A3 16     | S26308A3  | 15          | 1.3744       | 1.3770       | .19  | 20    |
| Magnesium         | 85368   | S26308A3 16     | S26308A3  | 15          | 61.4373      | 61.6209      | .3   | 20    |
| Manganese         | 85368   | S26308A3 16     | S26308A3  | 15          | 5.1575       | 5.1676       | .2   | 20    |
| Mercury           | 85368   | H26308SM 15     | H26308SM  | 14          | 6.7310       | 6.6710       | .9   | 20    |
| Nickel            | 85368   | S26308A3 16     | S26308A3  | 15          | 0.4740       | 0.4895       | 3.2  | 20    |
| Potassium         | 85368   | S26308A4 16     | S26308A4  | 15          | 17.5202      | 17.5468      | .15  | 20    |
| Sodium            | 85368   | S26308A4 16     | S26308A4  | 15          | 7.0692       | 7.0388       | .43  | 20    |
| Zinc              | 85368   | S26308A3 16     | S26308A3  | 15          | 5.8858       | 5.8754       | .18  | 20    |
|                   |         |                 |           |             |              |              |      |       |
| TxtQcType: M      | 1R<br>  | Matrix: SOIL    | San       | npleID: AD1 | 9581-003     |              |      |       |
| Analyte           | BatchId | Data File Seq#: | NS File   | Seq#        | Result 1     | Result 2     | RPD  | Limit |
| Aluminum          | 85368   | S26308A3 18     | S26308A3  | 17          | 24.3914      | 28.6732      | 16   | 20    |
| Barium            | 85368   | S26308A3 18     | S26308A3  | 17          | 0.3862       | 0.4564       | 17   | 20    |
| Calcium           | 85368   | S26308A3 18     | S26308A3  | 17          | 11.3463      | 11.4995      | 1.3  | 20    |
| Chromium          | 85368   | S26308A3 18     | S26308A3  | 17          | 0.0564       | 0.0616       | 8.9  | 20    |
| Cobalt            | 85368   | S26308A3 18     | S26308A3  | 17          | 0.0320       | 0.0327       | 2.1  | 20    |
| Copper            | 85368   | S26308A3 18     | S26308A3  | 17          | 0.0732       | 0.1227       | 51 a | 20    |
| ron               | 85368   | S26308A3 18     | S26308A3  | 17          | 76.5966      | 83.0147      | 8    | 20    |
| Lead              | 85368   | S26308A3 18     | S26308A3  | 17          | 0.0781       | 0.0741       | 5.3  | 20    |
| Magnesium         | 85368   | S26308A3 18     | S26308A3  | 17          | 10.8467      | 12.1653      | 11   | 20    |
| Manganese         | 85368   | S26308A3 18     | S26308A3  | 17          | 2.4724       | 2.6884       | 8.4  | 20    |
| Mercury           | 85368   | H26308SM 17     | H26308SM  | 16          | 0.5050       | 0.2960       | 52 a | 20    |
| Nickel            | 85368   | S26308A3 18     | S26308A3  | 17          | 0.0736       | 0.0755       | 2.6  | 20    |
| Potassium         | 85368   | S26308A4 18     | S26308A4  | 17          | 4.2383       | 4.6787       | 9.9  | 20    |
| Sodium            | 85368   | S26308A4 18     | S26308A4  | 17          | 1.255852743U | 1.255852743U |      | 20    |
| Zinc              | 85368   | S26308A3 18     | S26308A3  | 17          | 0.1500       | 0.1791       | 18   | 20    |
| TxtQcType: M      | ISD     | Matrix: SOIL    | San       | pleID: AD1  | 9581-003     |              |      |       |
| Analvte           | BatchId | Data File Seg#: | MS File   | Sea#        | Result 1     | Result 2     | RPD  | Limit |
| Aluminum          | 85368   | S26308A3 20     | S26308A3  | 19          | 33.7213      | 30.2062      | 11   | 20    |
| Barium            | 85368   | S26308A3 20     | S26308A3  | 19          | 0.8816       | 0.9373       | 6.1  | 20    |
| Calcium           | 85368   | S26308A3 20     | S26308A3  | 19          | 58.2570      | 56.7409      | 2.6  | 20    |
| Chromium          | 85368   | S26308A3 20     | S26308A3  | 19          | 0.5739       | 0.5366       | 6.7  | 20    |
| Cobalt            | 85368   | S26308A3 20     | S26308A3  | 19          | 0.5212       | 0.5280       | 1.3  | 20    |
| Copper            | 85368   | S26308A3 20     | S26308A3  | 19          | 0.5700       | 0.5630       | 1.2  | 20    |
| ron               | 85368   | S26308A3 20     | S26308A3  | 19          | 83.7637      | 76.7038      | 8.8  | 20    |
| -ead              | 85368   | S26308A3 20     | S26308A3  | 19          | 0.5574       | 0.5722       | 2.6  | 20    |
| .eau<br>Magnesium | 85368   | S26308A3 20     | S26308A3  | 19          | 59.2965      | 55.5469      | 6.5  | 20    |
| -                 |         |                 | S26308A3  |             |              | 3.6469       |      |       |
| Manganese         | 85368   | S26308A3 20     |           | 19<br>19    | 3.1822       |              | 14   | 20    |
| Mercury           | 85368   | H26308SM 19     | H26308SM  | 18<br>10    | 10.5400      | 10.4700      | .67  | 20    |
| Nickel            | 85368   | S26308A3 20     | \$26308A3 | 19          | 0.5665       | 0.5348       | 5.7  |       |
| Potassium         | 85368   | S26308A4 20     | S26308A4  | 19          | 51.6774      | 51.6579      | .038 | 20    |
| Sodium            | 85368   | S26308A4 20     | S26308A4  | 19          | 48.4577      | 48.4144      | .089 | 20    |
| Zinc              | 85368   | S26308A3 20     | S26308A3  | 19          | 0.6524       | 0.6230       | 4.6  | 20    |

#### FORM6/FORM9 RPD/%Difference Data

PREP BATCH: 85368

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

| TxtQcType: S | SD      | Matrix: S | OIL   | Sam      | pleID: AD195 | 81-003   |          |       |   |       |
|--------------|---------|-----------|-------|----------|--------------|----------|----------|-------|---|-------|
| Analyte      | Batchld | Data File | Seq#: | NS File  | Seq# DF      | Result 1 | Result 2 | %Diff |   | Limit |
| Aluminum     | 85368   | S26308A3  | 22    | S26308A3 | 17 5         | 5.9845   | 28.6732  | 4.4   |   | 10    |
| Barium       | 85368   | S26308A3  | 22    | S26308A3 | 17 5         | 0.0953   | 0.4564   | 4.4   |   | 10    |
| Calcium      | 85368   | S26308A3  | 22    | S26308A3 | 17 5         | 2.4909   | 11.4995  | 8.3   |   | 10    |
| Chromium     | 85368   | S26308A3  | 22    | S26308A3 | 17 5         | 0.0092   | 0.0616   | 25    | а | 10    |
| Cobalt       | 85368   | S26308A3  | 22    | S26308A3 | 17 5         | 0.0047   | 0.0327   | 28    | С | 10    |
| Copper       | 85368   | S26308A3  | 22    | S26308A3 | 17 5         | 0.0239   | 0.1227   | 2.8   |   | 10    |
| Iron         | 85368   | S26308A3  | 22    | S26308A3 | 17 5         | 17.6341  | 83.0147  | 6.2   |   | 10    |
| Lead         | 85368   | S26308A3  | 22    | S26308A3 | 17 5         | 0.0107   | 0.0741   | 28    | С | 10    |
| Magnesium    | 85368   | S26308A3  | 22    | S26308A3 | 17 5         | 2.7640   | 12.1653  | 14    | С | 10    |
| Manganese    | 85368   | S26308A3  | 22    | S26308A3 | 17 5         | 0.5668   | 2.6884   | 5.4   |   | 10    |
| Nickel       | 85368   | S26308A3  | 22    | S26308A3 | 17 5         | 0.0149   | 0.0755   | 1.1   |   | 10    |
| Potassium    | 85368   | S26308A4  | 22    | S26308A4 | 17 5         | 1.1925   | 4.6787   | 27    | С | 10    |
| Sodium       | 85368   | S26308A4  | 22    | S26308A4 | 17 5         | -0.1730  | 0.3911   |       |   | 10    |
| Zinc         | 85368   | S26308A3  | 22    | S26308A3 | 17 5         | 0.0330   | 0.1791   | 7.9   |   | 10    |

#### FORM6/FORM9

#### RPD/%Difference Data

PREP BATCH: 85369

Instrument Type: ICPMS
Analytical Method(s):6020/200.8

| TxtQcType: | LCSMR                   | Matrix: SOIL                                 | Sam                              | pleID:LCS M          | IR 85369                   |                             |               |                |
|------------|-------------------------|----------------------------------------------|----------------------------------|----------------------|----------------------------|-----------------------------|---------------|----------------|
| Analyte    | Batchid                 | Data File Seq#:                              | NS File                          | Seq#                 | Result 1                   | Result 2                    | RPD           | Limi           |
| Antimony   | 85369                   | S100520A 20                                  | S100520A                         | 19                   | 49.4770                    | 49.3810                     | .19           | 20             |
| Arsenic    | 85369                   | S100520A 20                                  | S100520A                         | 19                   | 44.3110                    | 44.2170                     | .21           | 20             |
| Beryllium  | 85369                   | S100520A 20                                  | S100520A                         | 19                   | 148.5350                   | 152.3550                    | 2.5           | 20             |
| Cadmium    | 85369                   | S100520A 20                                  | S100520A                         | 19                   | 174.4600                   | 176.5930                    | 1.2           | 20             |
| Selenium   | 85369                   | S100520A 20                                  | S100520A                         | 19                   | 325.3400                   | 323.2110                    | .66           | 20             |
| Silver     | 85369                   | S100520A 20                                  | S100520A                         | 19                   | 86.5530                    | 87.4660                     | 1             | 20             |
| Thallium   | 85369                   | S100520A 20                                  | S100520A                         | 19                   | 189.2950                   | 190.6530                    | .71           | 20             |
| Vanadium   | 85369                   | S100520A 20                                  | S100520A                         | 19                   | 266.8060                   | 266.3560                    | .17           | 20             |
| TxtQcType: | MR                      | Matrix: \$OIL                                | Sam                              | pleID: AD195         | 81-003                     |                             |               |                |
| Analyte    | BatchId                 | Data File Seq#:                              | NS File                          | Seq#                 | Result 1                   | Result 2                    | RPD           | Limit          |
| Antimony   | 85369                   | S100520A 22                                  | S100520A                         | 21                   | 0.3400                     | 0.4300                      | 23 b          | 20             |
| Arsenic    | 85369                   | S100520A 22                                  | S100520A                         | 21                   | 6.5030                     | 3.7270                      | 54 a          | 20             |
| Beryllium  | 85369                   | S100520A 22                                  | S100520A                         | 21                   | 1.0290                     | 0.9020                      | 13            | 20             |
| Cadmium    | 85369                   | S100520A 22                                  | S100520A                         | 21                   | 0.2460                     | 0.1240                      | 66 b          | 20             |
| Selenium   | 85369                   | S100520A 22                                  | S100520A                         | 21                   | 3.7690                     | 3.0900                      | 20            | 20             |
| Silver     | 85369                   | S100520A 22                                  | S100520A                         | 21                   | 0.3020                     | 0.1990                      | 41 b          | 20             |
| Thallium   | 85369                   | S100520A 22                                  | S100520A                         | 21                   | 0.1360                     | 0.3630                      | 91 b          | 20             |
| Vanadium   | 85369                   | S100520A 22                                  | S100520A                         | 21                   | 32.3300                    | 26.6180                     | 19            | 20             |
| TxtQcType: | MSD                     | Matrix: SOIL                                 | Sam                              | pleID: AD195         | 81-003                     |                             |               |                |
| Analyte    | Batchid                 | Data File Seq#:                              | MS File                          | Seq#                 | Result 1                   | Result 2                    | RPD           | Limi           |
| Antimony   | 85369                   | S100520A 25                                  | S100520A                         | 24                   | 156.7290                   | 156.7680                    | .025          | 20             |
| Arsenic    | 85369                   | S100520A 25                                  | S100520A                         | 24                   | 227.9810                   | 226.5170                    | .64           | 20             |
| Beryllium  | 85369                   | S100520A 25                                  | S100520A                         | 24                   | 194.1230                   | 203.6500                    | 4.8           | 20             |
| Cadmium    | 85369                   | S100520A 25                                  | S100520A                         | 24                   | 212.2410                   | 219.8270                    | 3.5           | 20             |
| Selenium   | 85369                   | S100520A 25                                  | S100520A                         | 24                   | 208.6960                   | 210.1810                    | .71           | 20             |
| Silver     | 85369                   | S100520A 25                                  | S100520A                         | 24                   | 41.6090                    | 43.1000                     | 3.5           | 20             |
| Thallium   | 85369                   | S100520A 25                                  | S100520A                         | 24                   | 202.7410                   | 209.8590                    | 3.5           | 20             |
| Vanadium   | 85369                   | S100520A 25                                  | S100520A                         | 24                   | 260.7980                   | 260.1790                    | .24           | 20             |
| TxtQcType: | SD                      | Matrix: SOIL                                 | Sam                              | pleID: AD195         | 81-003                     |                             |               |                |
| Analyte    | BatchId                 | Data File Seq#:                              | NS File                          | Seq# DF              | Result 1                   | Result 2                    | %Diff         | Limi           |
| Antimony   | 85369                   | S100520A 23                                  | S100520A                         | 21 5                 | -0.0800                    | 0.4300                      |               | 20             |
| Arsenic    | 85369                   | S100520A 23                                  | S100520A                         | 21 5                 | 0.7960                     | 3.7270                      | 6.8           | 20             |
| Beryllium  | 85369                   | S100520A 23                                  | S100520A                         | 21 5                 | 0.2110                     | 0.9020                      | 17 c          | 20             |
| Cadmium    | 85369                   | S100520A 23                                  | S100520A                         | 21 5                 | 0.0260                     | 0.1240                      |               | 20             |
|            | 85369                   | S100520A 23                                  | \$100520A                        | 21 5                 | 0.5300                     | 3.0900                      | 14 c          | 20             |
| Selenium   |                         |                                              |                                  |                      |                            |                             | _             |                |
| Silver     | 85369                   | S100520A 23                                  | S100520A                         | 21 5                 | 0.0430                     | 0.1990                      | 8             | 20             |
|            | 85369<br>85369<br>85369 | \$100520A 23<br>\$100520A 23<br>\$100520A 23 | S100520A<br>S100520A<br>S100520A | 21 5<br>21 5<br>21 5 | 0.0430<br>0.0050<br>5.3680 | 0.1990<br>0.3630<br>26.6180 | 8<br><br>0.83 | 20<br>20<br>20 |

| Uan | m4a.u. | Clarke |
|-----|--------|--------|
| пат | pton-  | Сиагке |

# ( ICP SAMPLE PREPARATION LOG

| ANALYTIC   | CAL METHOD: 3                         | 010A 3005A 3050B 200.7/200. | 8 OTHER |
|------------|---------------------------------------|-----------------------------|---------|
| Batch No.: | 26308.                                | Analyst:                    | ANS     |
| QC Number: | 85368                                 | Prep Date:                  | 10/5/20 |
| Matrix:    | Sail 601                              | Reviewed By:                | ot.     |
|            | · · · · · · · · · · · · · · · · · · · |                             |         |

| LAB ID#                                                 | IC      | P           |         | -MS<br>lary dil)                      | Т   | CLP  | COMMENTS                                                       |
|---------------------------------------------------------|---------|-------------|---------|---------------------------------------|-----|------|----------------------------------------------------------------|
|                                                         | Initial | Final       | Aliquot | Final                                 | Eff | TCLP |                                                                |
| Method blank                                            | Sonl    | 50nl        |         | <del> </del>                          |     |      |                                                                |
| LCS                                                     | 0.59    | 1           |         |                                       |     |      |                                                                |
| LCSD                                                    | 10      |             |         |                                       |     |      |                                                                |
| 1. AD 1958 - 00 3 1. Analytical puplicate               |         |             |         |                                       |     |      | Samples are combined prior to analysis to provide extra sample |
|                                                         |         |             |         |                                       |     |      | volume for analysis                                            |
|                                                         |         | <del></del> |         |                                       |     |      | Balance used: 032                                              |
|                                                         |         |             |         |                                       |     |      | Pipettes used: 149,155                                         |
| MSD V - 003<br>2. 19560-001                             |         |             |         |                                       |     |      | Tipettes asea. (*(),1 33                                       |
| 3. 1958 - 001                                           |         |             |         |                                       |     |      | Hot Block used: 4                                              |
| 4. 1-007                                                |         |             |         |                                       |     |      |                                                                |
| 500B                                                    |         |             |         |                                       |     |      |                                                                |
| 16.  V - 011                                            |         |             |         |                                       |     |      |                                                                |
| 7. 19582-001<br>8. 19587-007                            |         |             |         |                                       |     |      |                                                                |
| 8. 19587-007                                            |         |             |         |                                       |     |      |                                                                |
| 9.19575-002                                             |         |             |         |                                       |     |      |                                                                |
| 10.19595-004<br>11. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |         |             |         |                                       |     |      |                                                                |
| 11. 1 -009                                              |         |             |         |                                       |     |      |                                                                |
| 12. 19 596-001                                          |         |             |         |                                       |     |      |                                                                |
| 13.                                                     |         |             |         |                                       |     |      |                                                                |
| 14.                                                     |         |             |         |                                       |     |      |                                                                |
| 15.                                                     |         |             |         |                                       |     |      |                                                                |
| 16.                                                     |         | <u>-</u>    | <u></u> |                                       |     |      | _                                                              |
| 17.                                                     |         |             |         |                                       |     |      |                                                                |
| 18.                                                     |         |             |         | ·· ·· · · · · · · · · · · · · · · · · |     |      |                                                                |
| 19.                                                     |         |             |         |                                       |     |      |                                                                |
| 20.                                                     |         |             |         |                                       |     |      |                                                                |
|                                                         |         |             |         |                                       |     |      |                                                                |

| Hot Plate     | Temperati | ire: <u>94.1                                    </u> | (9 | 0-95°C) S                     | Start Tin | 1e: 8:00am | End Time             | : 14:30 | Dan      |
|---------------|-----------|------------------------------------------------------|----|-------------------------------|-----------|------------|----------------------|---------|----------|
|               | Volume    | Lot#                                                 | 1  | Acid                          | Vol       | Lot#       | Acid                 | Vol     | Lot#     |
|               | mL        |                                                      |    |                               | mL        |            |                      | mL      |          |
| LCS, LCSD     | 0.59      | V-13005                                              |    | HNO <sub>3</sub>              | 2.5       | V-13457    | 1:1 HNO <sub>3</sub> | 5.0     | V-336092 |
| LLLCS, LLLCSD |           | V-                                                   |    | HCI                           | 5.0       | V-(3392    | 1:1 HCl              |         | V-       |
| MS, MSD       | 0.25ml    | V-13177,13178                                        |    | H <sub>2</sub> O <sub>2</sub> | 1.5       | V-13067    |                      |         |          |
| LLMS, LLMSD   |           | v- 335926                                            |    |                               |           |            |                      |         |          |

Received By Date 10/5/29

Received By Date 10/05/2020

| Hamo | tom-C | Yarka |
|------|-------|-------|
| numu | uun-c | werke |

#### ( ICP SAMPLE PREPARATION LOG

| Batch No.: 2630         |           |                                        | Analy                                            |                  | AN                                               |                                                    |                                                      |
|-------------------------|-----------|----------------------------------------|--------------------------------------------------|------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------------|
| QC Number: 8536         |           |                                        | Prep                                             |                  |                                                  | 120                                                |                                                      |
| Matrix: Soil            | 6020      |                                        | Revie                                            | wed By:          |                                                  | <u> </u>                                           | <del> </del>                                         |
| LAB ID#                 | ĪC        | CP .                                   |                                                  | -MS<br>dary dil) | Т                                                | CLP                                                | COMMENTS                                             |
|                         | Initial   | Final                                  | Aliquot                                          | Final            | Eff                                              | TCLP                                               | <del></del>                                          |
| Method blank            | Sonl      | 502                                    | 25.2                                             | 50ml             | LII                                              |                                                    |                                                      |
| LCS                     | 0.12      | 1                                      | 100                                              | 1                |                                                  |                                                    |                                                      |
| LCSD                    | 0.19      |                                        |                                                  |                  |                                                  |                                                    |                                                      |
| 1. AD 19581-003         | 0.59      |                                        | <del>                                     </del> |                  |                                                  |                                                    | Samples are combined prior to                        |
| 1. Analytical Duplicate | <u> </u>  |                                        | 1 1                                              |                  |                                                  |                                                    | analysis to provide extra sample volume for analysis |
| MR /3                   |           |                                        | 1-1-1                                            |                  |                                                  |                                                    | volutile for allarysis                               |
| MS -003                 |           |                                        | 1-1-1                                            |                  |                                                  |                                                    | Balance used: 032                                    |
| MSD 1 -003              |           |                                        | +                                                |                  |                                                  |                                                    | Pipettes used: /49/55                                |
| 2. 19560-001            |           |                                        |                                                  | 1 1              |                                                  |                                                    |                                                      |
| 3. 19.571-001           |           |                                        | 1-1-1                                            |                  |                                                  |                                                    | Hot Block used: 5                                    |
| 4. 1 -002               |           |                                        |                                                  |                  |                                                  |                                                    |                                                      |
| 5. 1 _003               |           |                                        |                                                  |                  |                                                  |                                                    |                                                      |
| 6. 19581-001            |           |                                        |                                                  |                  |                                                  | · · · · · · · · · · · · · · · · · · ·              |                                                      |
| 7. 1-007                |           |                                        |                                                  |                  |                                                  |                                                    |                                                      |
| 8. ~ 00B                |           |                                        |                                                  |                  |                                                  |                                                    | • • • • • • • • • • • • • • • • • • •                |
| 9. 1 -011               |           |                                        |                                                  |                  |                                                  |                                                    |                                                      |
| 10. 19582-001           |           |                                        |                                                  |                  |                                                  |                                                    |                                                      |
| 11. 19587-007           |           |                                        |                                                  |                  |                                                  |                                                    |                                                      |
| 12. 19575-02            |           |                                        |                                                  |                  |                                                  | <del>- · · · · · · · · · · · · · · · · · · ·</del> |                                                      |
| 13. 19595-004           |           |                                        |                                                  |                  |                                                  |                                                    |                                                      |
| 14. 1 -009              |           |                                        |                                                  |                  |                                                  |                                                    |                                                      |
| 15.19.596-001           | 1         | 7                                      | J                                                |                  |                                                  |                                                    |                                                      |
| 16.                     |           |                                        |                                                  |                  |                                                  | <u>-</u>                                           |                                                      |
| 17.                     |           |                                        |                                                  |                  |                                                  | _                                                  |                                                      |
| 18.                     |           |                                        |                                                  |                  |                                                  |                                                    |                                                      |
| 19.                     |           |                                        |                                                  |                  |                                                  |                                                    | ·                                                    |
| 20.                     |           |                                        |                                                  |                  |                                                  |                                                    |                                                      |
|                         |           |                                        |                                                  |                  |                                                  |                                                    |                                                      |
|                         |           |                                        |                                                  |                  |                                                  |                                                    |                                                      |
| Hot Plate Temperature:  | 13.1      | C (90-9                                | 5°C) Start                                       | Time: 8.0        | oan                                              | End Ti                                             | me: 11:00an                                          |
| Volume                  | Lot#      |                                        |                                                  | ol Lo            | t#                                               | Acid                                               | Vol Lot#                                             |
| mL   CSD   0./9   V- /  | 3005      | —————————————————————————————————————— | $\frac{1}{100}$ $\frac{1}{2}$                    | L V-134          | (5.2                                             | 1:1 HNO:                                           | mL<br>5.0 V-336092                                   |
| LLLCSD V- V             | 300 5     |                                        | ICI                                              | V-(37<br>V-      | <del>"                                    </del> | 1:1 HNO:                                           | 3.0 V-5)6092<br>V-                                   |
|                         | 3177:1317 |                                        | 1 <sub>2</sub> O <sub>2</sub>                    |                  | 267                                              | 1.1101                                             | <b>V</b>                                             |
|                         |           |                                        |                                                  |                  |                                                  |                                                    |                                                      |

#### **HG SAMPLE PREPARATION LOG**

Hampton-Clarke/Veritech

| ANALYTICAL METHOD:  Batch No.:* 2630               | 245.1 7470A           | 74710 OTHER_                                     |                                       | 4.40                                             |
|----------------------------------------------------|-----------------------|--------------------------------------------------|---------------------------------------|--------------------------------------------------|
| Batch No.:* 26 30                                  | 8                     |                                                  |                                       | Analysi: ANIS Prep Date: 10/5/20 Review By: DL   |
| QC Number: 85368                                   |                       |                                                  |                                       | Prep Date: 10/5/20                               |
| Matrix: Soil                                       |                       |                                                  |                                       | Review By: DC                                    |
|                                                    |                       |                                                  |                                       |                                                  |
| LAB ID#                                            | ME                    | RCURY                                            |                                       |                                                  |
|                                                    | INITIAL               | FINAL                                            | COMMENTS                              | STANDARDS                                        |
| lethod blank                                       | 25nl                  | 25ml                                             |                                       | CAL CURVE BLK Oppb V- 3 36084                    |
| cs                                                 | 0-159                 |                                                  |                                       |                                                  |
| CSD                                                |                       |                                                  |                                       | STD 0.2 ppb V- 33608S                            |
| 4019581-003                                        |                       |                                                  |                                       | STD 0.5 ppb V- 3 36086                           |
| R   -003                                           |                       |                                                  |                                       | STD 1.0 ppb V- 336087                            |
| \$ -003                                            |                       |                                                  |                                       | STD 2.0 ppb V- 3 360 8 8                         |
| so V-003                                           |                       |                                                  |                                       | STD 5.0 ppb V- 3 360 89                          |
| 19560-001                                          |                       |                                                  |                                       | STD 10.0 ppb V- 3 36 090                         |
| 19581-001                                          |                       |                                                  |                                       | STD 25.0 ppb V- 3 3609 /                         |
| 1 - 007                                            |                       |                                                  | ,                                     | ICV 10.0 ppb V- 336082                           |
| -008                                               |                       | 1 1                                              |                                       | CCV 20.0 ppb V- 3 36083                          |
| V -011                                             |                       |                                                  |                                       | 7 70000                                          |
| 19582-001                                          | ·                     | <del>   </del>                                   | <del></del>                           |                                                  |
|                                                    | <del></del>           | <del>                                     </del> | <del></del>                           | Balance used: @32                                |
| 19587-007                                          |                       | <del>                                     </del> |                                       | Pipettes used: 143, 151, 155                     |
| 19.575-002                                         |                       |                                                  |                                       | 17,171,133                                       |
| 19595-004                                          |                       | <del>                                     </del> |                                       | Hot Block used: 6                                |
| 19595-009                                          | <del></del> -         |                                                  | <del></del> -                         | 1101 21000 4300. 6                               |
| 19596-001                                          | <u> </u>              | \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \          |                                       |                                                  |
|                                                    |                       | <u> </u>                                         |                                       |                                                  |
|                                                    |                       | <u> </u>                                         |                                       |                                                  |
|                                                    |                       |                                                  |                                       |                                                  |
|                                                    |                       |                                                  |                                       |                                                  |
|                                                    |                       |                                                  | · · · · · · · · · · · · · · · · · · · |                                                  |
|                                                    |                       |                                                  |                                       | ·                                                |
|                                                    |                       |                                                  |                                       |                                                  |
|                                                    | · · · · · ·           |                                                  |                                       |                                                  |
|                                                    |                       |                                                  |                                       |                                                  |
|                                                    |                       |                                                  |                                       |                                                  |
| Lot Numbers                                        | Volume (mL)           | Acid                                             | Volume (mL)                           | Lot# **Block Temp.; *C                           |
| o <sub>4</sub> : v- 3 35298<br>o <sub>4</sub> : v- | 3-75                  | HIVO3                                            |                                       | V- Time In Block: 9.30 an                        |
|                                                    |                       | HCI                                              |                                       | V-                                               |
| OH: V- 334567                                      | 1-5                   | H2SO4                                            |                                       | Time Out of Block: 5; 0 8                        |
| Volume & Lot #                                     |                       | Aqua Regia                                       | 1-25                                  | v- 3 36081 **Temperature                         |
| v. 13                                              | 300_5 613/0.25 m      | Start time                                       | : 9:00 End Time                       | : 9-30an 245.1/7470A: 90-                        |
| v- 336                                             | 300-5 613/0.25 m      |                                                  |                                       | 95C<br>7471B : 92-98C                            |
| shdards/Control Batch B- 2                         | 3790                  |                                                  |                                       | Relinquished By: AVS                             |
|                                                    | digested with this ha | tch using the same reager                        | nts and at the same ti                | me as the above samples. The preparation of each |

Data File: W:\METALS.FRM\ICPDATA\New\PEICP3A\S26308A3MDL.txt

Instrument: PEICP3A Analysis Date: 10/05/20

Rept

| Sample Id       | DF                                                                                                                                                                                                                               | Qc<br>Type | Time  | Run<br>#        | Test<br>Group                            | Limit<br>Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qc<br>Matrix   | Anal<br>Metho     | Prep<br>dBatch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comments:                | Stds:                       |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-----------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|
| CALBLK V-333667 | general general de la companya anya de la companya de la companya de la companya de la companya de la co | CAL        | 13:35 | ur-c-fear-s-iss | en en en en en en en en en en en en en e | March & Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert Albert A | MET THROUGHEST | - 487—CMINE 24889 | (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1990年 (A) 1 |                          | V-333667(ICB/CCB)           |
| CALST2 V-333671 | i                                                                                                                                                                                                                                | CAL        | 13:39 | 2               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333671(LLICV/LLCCV soil   |
| CALST3 V-333666 | i                                                                                                                                                                                                                                | CAL        | 13:43 | 3               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333666(ICS3 - Middle Std) |
| CALST4 V-333665 | ĺ                                                                                                                                                                                                                                | CAL        | 13:47 | 4               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333665(ICS4 High std)     |
| ICV V-333673    | ı                                                                                                                                                                                                                                | ICV        | 13:51 | 5               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333673(CCV)               |
| ICB V-333667    | 1                                                                                                                                                                                                                                | ICB        | 13:55 | 6               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333667(ICB/CCB)           |
| LRS V-335934    | i                                                                                                                                                                                                                                | LRS        | 13:59 | 7               | MET-TAL6010S                             | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | V-335934(LRS)               |
| ICS3 V-333666   | I                                                                                                                                                                                                                                | ICS        | 14:03 | 8               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333666(ICS3 - Middle Std) |
| RINSE           | 1                                                                                                                                                                                                                                | NA         | 14:07 | 9               | MET-TAL6010S                             | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| LLICV V-333671  | 1                                                                                                                                                                                                                                | LLICV      | 14:11 | 10              | MET-TAL6010S                             | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | V-333671(LLICV/LLCCV soil   |
| ICSA V-333668   | 1                                                                                                                                                                                                                                | ICSA       | 14:15 | 11              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333668(ICSA)              |
| CCV V-333673    | 1                                                                                                                                                                                                                                | CCV        | 14:20 | 12              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333673(CCV)               |
| CCB V-333667    | 1                                                                                                                                                                                                                                | CCB        | 14:24 | 13              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333667(TCB/CCB)           |
| MB 85368 (100)  | ı                                                                                                                                                                                                                                | MB         | 14:28 | 14              | MET-TAL6010S                             | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| LCS 85368       | 1                                                                                                                                                                                                                                | LCS        | 14:32 | 15              | MET-TAL6010S                             | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| LCS MR 85368    | 1                                                                                                                                                                                                                                | LCS        | 14:37 | 16              | MET-TAL6010S                             | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19581-003     | 1                                                                                                                                                                                                                                | SMP        | 14:42 | 17              | MET-PP6010S                              | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19581-003     | 1                                                                                                                                                                                                                                | MR         | 14:45 | 18              | MET-PP6010S                              | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19581-003     | 1                                                                                                                                                                                                                                | MS         | 14:49 | 19              | MET-PP6010S                              | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19581-003     | 1                                                                                                                                                                                                                                | MSD        | 14:53 | 20              | MET-PP6010S                              | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19581-003     | 1                                                                                                                                                                                                                                | PS         | 14:57 | 21              | MET-PP6010S                              | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19581-003     | 5                                                                                                                                                                                                                                | SD         | 15:02 | 22              | MET-PP6010S                              | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| CCV V-333673    | 1                                                                                                                                                                                                                                | CCV        | 15:05 | 23              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333673(CCV)               |
| CCB V-333667    | 1                                                                                                                                                                                                                                | CCB        | 15:09 | 24              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333667(ICB/CCB)           |
| AD19560-001     | <u> </u>                                                                                                                                                                                                                         | SMP        | 15:13 | 25              | MET-TAL6010S                             | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | ()                          |
| AD19581-001     | i                                                                                                                                                                                                                                | SMP        | 15:18 | 26              | MET-PP6010S                              | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19581-007     | 1                                                                                                                                                                                                                                | SMP        | 15:23 | 27              | MET-PP6010S                              | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19581-008     | ŧ                                                                                                                                                                                                                                | \$MP       | 15:27 | 28              | SRSMETALS-S                              | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19581-011     | 1.                                                                                                                                                                                                                               | SMP        | 15:31 | 29              | MET-PP6010S                              | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19582-001     | ŀ                                                                                                                                                                                                                                | SMP        | 15:36 | 30              | MET-TAL6010S                             | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zn NOT reported (Zn> LR) | 0                           |
| AD19582-001     | 2                                                                                                                                                                                                                                | SMP        | 15:41 | 31              | MET-TAL6010S                             | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zn reported              | 0                           |
| CCV V-333673    | 1                                                                                                                                                                                                                                | CCV        | 15:45 | 32              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333673(CCV)               |
| CCB V-333667    | l                                                                                                                                                                                                                                | ССВ        | 15:49 | 33              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333667(ICB/CCB)           |
| AD19587-007     | l                                                                                                                                                                                                                                | SMP        | 15:53 | 34              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Co NOT reported (Ti> LR) | 0                           |
| AD19575-002     | 1                                                                                                                                                                                                                                | SMP        | 15:58 | 35              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19595-004     | 1                                                                                                                                                                                                                                | SMP        | 16:02 | 36              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | son            | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19595-009     | !                                                                                                                                                                                                                                | SMP        | 16:06 | 37              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19596-001     | l                                                                                                                                                                                                                                | SMP        | 16:10 | 38              | MET-TAL6010S                             | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOLL           | SW846             | 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| CCV V-333673    | 1                                                                                                                                                                                                                                | CCV        | 16:15 | 39              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del>              | V-333673(CCV)               |
| CCB V-333667    | 1                                                                                                                                                                                                                                | CCB        | 16:19 | 40              | <del>-</del>                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333667(ICB/CCB)           |
| LCS 85365       |                                                                                                                                                                                                                                  | LCS        | 16:23 | 41              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Al, V, Cu reported       | ()                          |
| LCS MR 85365    | l                                                                                                                                                                                                                                | LCS        | 16:28 | 42              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Al, V, Cu reported       | 0                           |
| AD19563-002     | i .                                                                                                                                                                                                                              | SMP        | 16:33 | 43              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19563-004     | l                                                                                                                                                                                                                                | SMP        | 16:37 | 44              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19563-006     | <u>-</u>                                                                                                                                                                                                                         | SMP        | 16:42 | 45              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del></del>              | 0                           |
| AD19563-008     | 1                                                                                                                                                                                                                                | SMP        | 16:46 | 46              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19563-010     | 1                                                                                                                                                                                                                                | SMP        | 16:51 | 47              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19563-012     | 1                                                                                                                                                                                                                                | SMP        | 16:55 | 48              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                             |
| AD19563-014     | 1                                                                                                                                                                                                                                | SMP        | 16:59 | 49              | MET-TAL6010S                             | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| CCV V-333673    | l .                                                                                                                                                                                                                              | CCV        | 17:03 | 50              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333673(CCV)               |
| CCB V-333667    | l                                                                                                                                                                                                                                | CCB        | 17:08 | 51              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | V-333667(ICB/CCB)           |
| AD19563-016     | I                                                                                                                                                                                                                                | SMP        | 17:11 | 52              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·····                    |                             |
| AD19563-018     | !                                                                                                                                                                                                                                | SMP        | 17:16 | 53              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19563-020     | 1                                                                                                                                                                                                                                | SMP        | 17:20 | 54              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19563-028     | 1                                                                                                                                                                                                                                | SMP        | 17:23 | 55              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19563-030     | ì                                                                                                                                                                                                                                | SMP        | 17:28 | 56              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19563-032     | !                                                                                                                                                                                                                                | SMP        | 17:32 | 57              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19563-034     | l                                                                                                                                                                                                                                | SMP        | 17:36 | 58              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19563-036     | 1                                                                                                                                                                                                                                | SMP        | 17:41 | 59              | MET-TAL6010S                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |
| AD19563-038     | ı                                                                                                                                                                                                                                | SMP        | 17:45 | 60              | MET-TAL6010S                             | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL           | SW846             | 85365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0                           |

| Co | mn | 1 <del>0</del> n | its/l | Re | V | ė | W | е | db | y |
|----|----|------------------|-------|----|---|---|---|---|----|---|

oluřemi 192.168.1.105 10/14/2020 6:42:53 PM

RUN IS OK 26303/85368: All elements reported, except Na, K 26305/85365: Al reported, unless otherwise reported

-10/18/100

Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor:\_

Standard/Batch/SnCl2 Lot #:

Page 2 of 2

Run Log

Data File: W:\METALS.FRM\ICPDATA\New\PEICP3A\S26308A3MDL.txt

Analysis Date: 10/05/20

Instrument: PEICP3A

| Sample Id    | DF | Qc<br>Type | Time  | Run<br># |  |  |   | Comments: | Stds:             |
|--------------|----|------------|-------|----------|--|--|---|-----------|-------------------|
| CCV V-333673 | 1  | CCV        | 17:49 | 61       |  |  |   |           | V-333673(CCV)     |
| CCB V-333667 | 1  | CCB        | 17:53 | 62       |  |  | , |           | V-333667(ICB/CCB) |

| Comments/Reviewedby:                                 | nger |      | - veget t |       |        |
|------------------------------------------------------|------|------|-----------|-------|--------|
| olufemi<br>192,168,1,105,10/14/2020 6:42:53 PM       |      | <br> | ••••••    | ••••• | •••••• |
| RUN IS OK<br>26308/85368: All elements reported, ex- |      |      | •••••     |       |        |
| 26305/85365. Al reported, unless others              |      |      |           |       |        |

a\_\_\_\_ 10/18/20

Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor:\_\_\_\_\_

Standard/Batch/SnCI2 Lot #:

Run Log
Data File: W:\METALS.FRM\ICPDATA\New\PEICPRAD4A\S26308A4MDL.txt

Analysis Date: 10/05/20

c\_\_\_\_10 118/20

Instrument: PEICPRAD4A

| Sample Id       | DF                  | Qc<br>Type | Time  |              | Test<br>Group                                        | Rept<br>Limit<br>Matrix | Qc<br>Matrix         | Anai<br>Method                                     | Prep<br>Batch                  | Comments: | Stds:                       |
|-----------------|---------------------|------------|-------|--------------|------------------------------------------------------|-------------------------|----------------------|----------------------------------------------------|--------------------------------|-----------|-----------------------------|
| CALBLK V-333667 | nar isandaria.<br>1 | CAL        | 16:03 | ostangga ser | · CONTRACTOR AND AND AND AND AND AND AND AND AND AND | - COMMO POSTER ASTON    | 9 82800 STATE SHARES | . A 1 - 18 (19 (19 (19 (19 (19 (19 (19 (19 (19 (19 | <b>Ze work zich eine</b> weren |           | V-333667(ICB/CCB)           |
| CALST2 V-333671 | 1                   | CAL        | 16:07 | 2            |                                                      |                         |                      |                                                    |                                |           | V-333671(LLICV/LLCCV soil)  |
| CALST3 V-335982 | i                   | CAL        | 16:11 | 3            |                                                      |                         |                      |                                                    |                                |           | V-335982(ICS3 - Middle Std) |
| CALST4 V-335863 | 1                   | CAL        | 16:15 | 4            |                                                      |                         |                      |                                                    |                                |           | V-335863(ICS4 High std)     |
| ICV V-335864    | 1                   | ICV        | 16:20 | 5            |                                                      |                         |                      |                                                    |                                |           | V-335864(CCV)               |
| ICB V-333667    | 1                   | ICB        | 16:24 | 6            |                                                      |                         |                      |                                                    |                                |           | V-333667(ICB/CCB)           |
| LRS V-333662    | ì                   | LRS        | 16:28 | 7            |                                                      | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | V-333662(LRS)               |
| ICS3 V-335982   | i                   | ICS        | 16:33 | 8            |                                                      | JOIL                    | COLD                 | 0                                                  | 00000                          |           | V-335982(ICS3 - Middle Std) |
| RINSE           | 1                   | NA         | 16:37 | 9            |                                                      | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| LLICV V-333671  | I                   | LLICV      | 16:41 | 10           |                                                      | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | V-333671(LLICV/LLCCV soil)  |
| ICSA V-333668   | i                   | ICSA       | 16:46 | 11           |                                                      | *                       |                      |                                                    |                                |           | V-333668(ICSA)              |
| CCV V-335864    | ı                   | CCV        | 16:50 | 12           |                                                      |                         |                      |                                                    |                                |           | V-335864(CCV)               |
| CCB V-333667    | l                   | ССВ        | 16:54 | 13           |                                                      |                         |                      |                                                    |                                |           | V-333667(ICB/CCB)           |
| MB 85368 (100)  | 1                   | MB         | 16:58 | 14           |                                                      | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| LCS 85368       | 1                   | LCS        | 17:03 | 15           |                                                      | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| LCS MR 85368    | 1                   | LCS        | 17:06 | 16           |                                                      | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| AD19581-003     | 1                   | SMP        | 17:10 | 17           | MET-PP6010S                                          | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| AD19581-003     | l                   | MR         | 17:14 | 18           | MET-PP6010S                                          | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| AD19581-003     | l                   | MS         | 17:18 | 19           | MET-PP6010S                                          | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| AD19581-003     | 1                   | MSD        | 17:23 | 20           | MET-PP6010S                                          | SOIL                    | SOIL                 | \$W846                                             | 85368                          |           | 0                           |
| AD19581-003     |                     | PS         | 17:27 | 21           | MET-PP6010S                                          | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| AD19581-003     | 5                   | SD         | 17:32 | 22           | MET-PP6010S                                          | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| CCV V-335864    | 1                   | CCV        | 17:36 | 23           |                                                      |                         |                      |                                                    |                                |           | V-335864(CCV)               |
| CCB V-333667    | 1                   | CCB        | 17:40 | 24           |                                                      |                         |                      |                                                    |                                |           | V-333667(ICB/CCB)           |
| AD19560-001     |                     | SMP        | 17:45 | 25           | MET-TAL6010S                                         | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| AD19582-001     | 1                   | SMP        | 17:48 | 26           | MET-TAL6010S                                         | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| AD19587-007     | 1                   | SMP        | 17:52 | 27           | MET-TAL6010S                                         | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| AD19575-002     | 1                   | SMP        | 17:55 | 28           | MET-TAL6010S                                         | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| AD19595-004     | <u> </u>            | SMP        | 18:00 | 29           | MET-TAL6010S                                         | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| AD19595-009     | 1                   | SMP        | 18:04 | 30           | MET-TAL6010S                                         | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| AD19596-001     | 1                   | SMP        | 18:08 | 31           | MET-TAL6010S                                         | SOIL                    | SOIL                 | SW846                                              | 85368                          |           | 0                           |
| CCV V-335864    | 1                   | CCV        | 18:13 | 32           |                                                      |                         |                      |                                                    |                                |           | V-335864(CCV)               |
| CCB V-333667    |                     | ССВ        | 18:17 | 33           |                                                      |                         |                      |                                                    |                                |           | V-333667(ICB/CCB)           |

| Comments/Reviewedby:  olußemi 192.168 1 105 10/15/2020 12 04 48 PM | Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor: |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RUN IS OK                                                          | Standard/Batch/SnCl2 Lot #:                                                                                                                                                   |

Run Log
Data File: W:\METALS.FRM\ICPDATA\New\HGCV3A\H26308SMDL.txt

Analysis Date: 10/05/20

Instrument: HGCV3A

| Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample Id         | DF       | Qc<br>Type | Time  | Run<br># | Test<br>Group                           | Rept<br>Limit<br>Matrix                      | Qc<br>Matrix                             | Anal<br>Method                      | Prep<br>Batch                             | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stds: |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|------------|-------|----------|-----------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| SPPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calibration Blank | l        | CAL        | 15:29 | l        | S. Distriction of the Switzen of Walter | er ein nun und die werden Werte der Aufliche | #00000 1 (000 1 (000 0 0 0 0 0 0 0 0 0 0 | and the contract of the contraction | C. 17 00000000000000000000000000000000000 | 1 and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |       |
| PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .2 PPB            | t        | CAL        | 15:30 | 2        |                                         |                                              |                                          |                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5 PPB            | 1        | CAL        | 15:32 | 3        |                                         |                                              |                                          |                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 PPB             | 1        | CAL        | 15:33 | 4        |                                         |                                              |                                          |                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 PPB             | 1        | CAL        | 15:34 | 5        |                                         |                                              |                                          |                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ()    |
| CAL   15:39   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 PPB             | 1        | CAL        | 15:36 | 6        |                                         |                                              |                                          |                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| CCV   COV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV   CCV    | 10 PPB            | 1        | CAL        | 15:37 | 7        |                                         |                                              |                                          |                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25 PPB            | 1        | CAL        | 15:39 | 8        |                                         |                                              |                                          |                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| MB   15:43   11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ICV (2)           | 1        | IC V       | 15:40 | 9        |                                         |                                              |                                          |                                     |                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     |
| CCS 85368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ICB               | l        | ICB        | 15:42 | 10       |                                         |                                              |                                          |                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.   C.C.      | MB 85368 (167)    | 1        | MB         | 15:43 | 11       |                                         | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| CCS 4D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LCS 85368         | t        | NA         | 15:45 | 12       |                                         | SOIL                                         | SOIL                                     | SW846                               | 85368                                     | conc. Is greater than calibration limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ()    |
| CCS 4D MR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LCS MR 85368      | 1        | NA         | 15:46 | 13       |                                         | SOIL                                         | SOIL                                     | SW846                               | 85368                                     | conc. Is greater than calibration limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0     |
| AD19581-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LCS 4D            | 4        | LCS        | 15:48 | 14       |                                         | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| AD19581-003   I MR   15:52   17   HG-SOIL   SOIL   SOIL   SW846   85368   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LCS 4D MIR        | 4        | LCS        | 15:50 | 15       |                                         | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| AD19581-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AD19581-003       | 1        | SMP        | 15:51 | 16       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| AD19581-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AD19581-003       | 11       | MR         | 15:52 | 17       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ()    |
| AD   15.57   20   HG-SOIL   SOIL   SW846   85368   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AD19581-003       | ŧ        | MS         | 15:54 | 18       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| CCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AD19581-003       | 1        | MSD        | 15:55 | 19       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| CCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AD19560-001       | ı        | SMP        | 15:57 | 20       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| AD19581-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CCV               |          | CCV        | 15:58 | 21       |                                         |                                              |                                          |                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| AD19581-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ССВ               | ì        | CCB        | 16:00 | 22       |                                         |                                              |                                          |                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| AD19581-008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AD19581-001       | l        | SMP        | 16:01 | 23       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| AD19581-011 I SMP 16:06 26 HG-SOIL SOIL SOIL SW846 85368 0 AD19582-001 I SMP 16:07 27 HG-SOIL SOIL SOIL SW846 85368 0 AD19587-007 I SMP 16:08 28 HG-SOIL SOIL SOIL SW846 85368 0 AD19575-002 I SMP 16:10 29 HG-SOIL SOIL SOIL SW846 85368 0 AD19575-004 I SMP 16:11 30 HG-SOIL SOIL SOIL SW846 85368 0 AD19595-004 I SMP 16:12 31 HG-SOIL SOIL SOIL SW846 85368 0 AD19595-009 I SMP 16:12 31 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:15 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AD19581-007       | 1        | SMP        | 16:03 | 24       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| AD19582-001 I SMP 16:07 27 HG-SOIL SOIL SW846 85368 0 AD19587-007 I SMP 16:08 28 HG-SOIL SOIL SOIL SW846 85368 0 AD19575-002 I SMP 16:10 29 HG-SOIL SOIL SOIL SW846 85368 0 AD19575-004 I SMP 16:11 30 HG-SOIL SOIL SOIL SW846 85368 0 AD19595-009 I SMP 16:12 31 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 8536 | AD19581-008       | 1        | SMP        | 16:04 | 25       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| AD19587-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AD19581-011       | 1        | SMP        | 16:06 | 26       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| AD19575-002   I SMP   16:10   29   HG-SOIL   SOIL   SOIL   SW846   85368   O     SD19595-004   I SMP   16:11   30   HG-SOIL   SOIL   SOIL   SW846   85368   O   SD19595-009   I SMP   16:12   31   HG-SOIL   SOIL   SOIL   SW846   85368   O   SD19596-001   I SMP   16:14   32   HG-SOIL   SOIL   SOIL   SW846   85368   O   SD19596-001   CCV   I CCV   16:15   33   O   SOIL   SW846   85368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368   O   SW846   SS368    | AD19582-001       | 1        | SMP        | 16:07 | 27       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| AD19595-004 I SMP 16:11 30 HG-SOIL SOIL SOIL SW846 85368 O AD19595-009 I SMP 16:12 31 HG-SOIL SOIL SOIL SW846 85368 O AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 O CCV I CCV 16:15 33 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AD19587-007       | 1        | SMP        | 16:08 | 28       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| AD19595-009 I SMP 16:12 31 HG-SOIL SOIL SW846 85368 0 AD19596-001 I SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0 CCV I CCV 16:15 33 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AD19575-002       | <u> </u> | SMP        | 16:10 | 29       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| AD19596-001 1 SMP 16:14 32 HG-SOIL SOIL SOIL SW846 85368 0  CCV 1 CCV 16:15 33 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AD19595-004       | 1        | SMP        | 16:11 | 30       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| CCV 1 CCV 16:15 33 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AD19595-009       | ī        | SMP        | 16:12 | 31       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AD19596-001       | 1        | SMP        | 16:14 | 32       | HG-SOIL                                 | SOIL                                         | SOIL                                     | SW846                               | 85368                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |
| CCB 1 CCB 16:17 34 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCV               | 1        | CCV        | 16:15 | 33       |                                         |                                              |                                          |                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ССВ               | l        | CCB        | 16:17 | 34       |                                         |                                              |                                          |                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |

| Comments/Reviewedby: | Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor: |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RUN IS OK            | Standard/Batch/SnCl2 Lot #:                                                                                                                                                   |

Data File: W:\METALS.FRM\ICPDATA\New\MS3\_7700SWA\S100520AMDL.txt

Analysis Date: 10/05/20

Instrument: MS3\_7700SWA

| Sample Id        | DF                                           | Qc<br>Type        | Ti    | Run<br>#      | Test<br>Group         | Rept<br>Limit<br>Matrix | Qc<br>Matrix                      | Anal<br>Method  | Prep        | Comments:                                       | Stds:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|----------------------------------------------|-------------------|-------|---------------|-----------------------|-------------------------|-----------------------------------|-----------------|-------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Id        | 75.                                          | Site States where | Time  | schille, rech | and the second second | rest (MARK matter       | Committee of the Committee of the | ESTABLISH STATE | TRANSPORTER | kangri demaki sebagai registre dan disebuah dan | Section of publications are substituted to the control of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sect |
| RINSE            |                                              | NA                | 11:00 | 1             |                       | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CalBlk V-336032  | 1                                            | ISBLK             | 11:05 | 2             |                       | SOIL                    | SOIL                              |                 |             |                                                 | V-336032(Cal Bik WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CalStd1 V-336033 |                                              | CAL               | 11:09 | 3             |                       |                         |                                   |                 |             |                                                 | V-336033(Cal Std-1 WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CalStd2 V-336034 | 1                                            | CAL               | 11:14 | 4             |                       |                         |                                   |                 |             |                                                 | V-336034(Cal Sid-2 WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CalStd3 V-336035 | <del>!</del>                                 | CAL               | 11:18 | 5             |                       |                         |                                   |                 |             | ·                                               | V-336035(Cal Std-3 WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CalStd4 V-336036 | 1                                            | CAL               | 11:23 | 6             |                       |                         |                                   |                 |             |                                                 | V-336036(Cal Std-4 WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CalStd5 V-336037 | •                                            | CAL               | 11:27 | 7             |                       |                         |                                   |                 |             |                                                 | V-336037(Cal Std-5 WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ICV V-336038     | 1                                            | ICV               | 11:32 | 8             |                       | 2011                    |                                   | 0111047         | 000/0       |                                                 | V-336038(ICV WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LLICV V-336043   | 1                                            | LLICV             | 11:36 | 9             |                       | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | V-336043(LL-ICV/CCV SOIL<br>WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ICB V-336039     | ı                                            | ICB               | 11:41 | 10            |                       |                         |                                   |                 |             |                                                 | V-336039(ICB/CCB WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ICSA V-336040    | l                                            | ICSA              | 11:45 | 11            |                       |                         |                                   |                 |             |                                                 | V-336040(ICSA WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RINSE            | 1                                            | NA                | 11:50 | 12            |                       | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LRS V-336041     | 1                                            | LRS               | 11:54 | 13            |                       | SOIL                    | SOIL                              | SW846           | 85369       | Ag fail.                                        | V-336041(LRS WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RINSE            | ı                                            | NA                | 11:59 | 14            |                       | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RINSE            | 1                                            | NA                | 12:03 | 15            |                       | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CCV V-336042     | ı                                            | CCV               | 12:08 | 16            |                       |                         |                                   |                 |             |                                                 | V-336042(CCV WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CCB V-336039     | 1                                            | CCB               | 12:12 | 17            |                       |                         |                                   |                 |             |                                                 | V-336039(ICB/CCB WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MB 85369         | 1                                            | MB                | 12:17 | 18            |                       | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LCS 85369        | 1                                            | LCS               | 12:21 | 19            |                       | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LCS MR 85369     | l                                            | LCS               | 12:25 | 20            |                       | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AD19581-003      | 1                                            | SMP               | 12:30 | 21            | MET-PP6020S           | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AD19581-003      | l                                            | MR                | 12:34 | 22            | MET-PP6020S           | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AD19581-003      | 5                                            | SD                | 12:39 | 23            | MET-PP6020S           | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AD19581-003      | I                                            | MS                | 12:43 | 24            | MET-PP6020S           | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AD19581-003      | 1                                            | MSD               | 12:47 | 25            | MET-PP6020S           | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 1                                            | PS                | 12:52 | 26            | MET-PP6020S           | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RINSE            | 1                                            | NA                | 12:56 | 27            |                       | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CCV V-336042     | ı                                            | CCV               | 13:01 | 28            |                       |                         |                                   |                 |             |                                                 | V-336042(CCV WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CCB V-336039     | <u> </u>                                     | CCB               | 13:05 | 29            |                       |                         |                                   |                 |             |                                                 | V-336039(ICB/CCB WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AD19560-001      | 1                                            | NA                | 13:10 | 30            | MET-TAL6020S          | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 1                                            | NA                | 13:14 | 31            | MET-2-6020            | SOIL                    | SOIL                              |                 | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AD19571-002      | ı                                            | NA                | 13:19 | 32            | MET-2-6020            | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AD19571-003      | <u>!</u>                                     | NA                | 13:23 | 33            | MET-2-6020            | SOIL                    | SOIL                              | SW846           | 85369       | <del></del>                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 1                                            | NA                | 13:27 | 34            | MET-PP6020S           | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11517501 551     | ı                                            | NA                | 13:32 | 35            | MET-PP6020S           | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AD19581-008      | ı                                            | NA                | 13:36 | 36            | MET-5-6020            | SOIL                    | SOIL                              | -               | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AD19581-011      | 1                                            | NA                | 13:41 | 37            | MET-PP6020S           | SOIL                    | SOIL                              |                 | 85369       | <del></del>                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 1                                            | NA                | 13:45 | 38            | MET-TAL6020S          | SOIL                    | SOIL                              |                 | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RINSE            | ı                                            | NA                | 13:49 | 39            |                       | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 1                                            | CCV               | 13:54 | 40            |                       |                         |                                   |                 |             |                                                 | V-336042(CCV WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CCB V-336039     | <u> </u>                                     | CCB               | 13:58 | 41            |                       |                         |                                   |                 |             |                                                 | V-336039(ICB/CCB WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | I                                            | NA                | 14:03 | 42            | MET-TAL6020S          |                         | SOIL                              |                 | 85369       |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | ı                                            | NA                | 14:07 | 43            | MET-TAL6020S          |                         | SOIL                              |                 | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                                              | SMP               | 14:12 | 44            | MET-TAL6020S          |                         | SOIL                              |                 | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AD19595-009      |                                              | SMP               | 14:16 | 45            | MET-TAL6020S          |                         | SOIL                              |                 | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | ı                                            | NA                | 14:21 | 46            | MET-TAL6020S          |                         | SOIL                              |                 | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                                              | NA                | 14:25 | 47            |                       | SOIL                    | SOIL                              | SW846           | 85369       |                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CCV V-336042     |                                              | CCV               | 14:29 | 48            |                       |                         |                                   |                 | ,           |                                                 | V-336042(CCV WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CCB V-336039     | <u>.                                    </u> | ССВ               | 14:34 | 49            |                       |                         |                                   |                 |             |                                                 | V-336039(ICB/CCB WARNING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Commer | nts/ | Ravi | ewed | hv: |
|--------|------|------|------|-----|

pcousineau 192.168.1.87 10/15/2020 10:12:45 AM

Run ok. Report Ag, As, Be, Cd, Sb, Se, Tl, V to MDL for 19595-004, 009. LRS fail for Ag. Ag LR =100ppb. PC.

Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor: 10 0 1

Standard/Batch/SnCl2 Lot #:

TuneID: 1

Batch/FileID: S100520AMSample ID: CalBlk V-336032 Sample Date 10/05/20 Sample Time: 11:05

IS ID: Area Area Limit

Ho-1 1902737.12 1331915.984 - 2473558.256
In-1 1296426.13 907498.291 - 1685353.969
Sc-1 985898.02 690128.614 - 1281667.426
Tb-1 1969423.46 1378596.422 - 2560250.498

| _         |                                       | _   | Ho-1                  | In-1     | Sc-1     | Tb-1                  | A a  | A    | A-0.0 | A === |
|-----------|---------------------------------------|-----|-----------------------|----------|----------|-----------------------|------|------|-------|-------|
| сТуре     | txtSamld:                             | Pos | Area                  | Area     | Area     | Area                  | Area | Area | Area  | Area  |
| SBLK      | CalBlk V-336032                       |     | 1902737.              | 1296426. | 985898.0 | 1969423.              |      |      |       |       |
| MP        | RINSE                                 | 1   | 1899671.              | 1292094. | 989967.7 | 1970974.              |      |      |       |       |
| AL        | CalStd1 V-33603                       |     | 1935317.              | 1328857. | 997627.3 | 1990566.              |      |      |       |       |
| AL        | CalStd2 V-33603                       |     | 1922015.              | 1338152. | 1005119. | 2002051.              |      |      |       |       |
| AL        | CalStd3 V-33603                       |     | 1958450.              | 1320523. | 1015681. | 2011363.              |      |      |       |       |
| AL        | CalStd4 V-33603                       |     | 1920971.              | 1309190. | 1011119. | 1998032.              |      |      |       |       |
| AL        | CalStd5 V-33603                       |     | 1927638.              | 1290031. | 992664.9 | 2003316.              |      |      |       |       |
| CV .      | ICV V-336038                          | 8   | 1930051.              | 1292771. | 975199.1 | 1992752.              |      |      |       |       |
| LICV      | LLICV V-336043                        |     | 1927506.              | 1293370. | 973774.3 | 1986915.              |      |      |       |       |
| В         | ICB V-336039                          | 10  | 1913 <del>66</del> 0. | 1291734. | 972590.2 | 1970482.              |      |      |       |       |
| CSA       | ICSA V-336040                         | 11  | 1967689.              | 1249683. | 996188.5 | 2044022.              |      |      |       |       |
| MP        | RINSE                                 | 12  | 2062587.              | 1473972. | 1039594. | 2124069.              |      |      |       |       |
| RS        | LRS V-336041                          | 13  | 1959991.              | 1282534. | 999474.9 | 2023035.              |      |      |       |       |
| MP        | RINSE                                 | 14  | 2031387.              | 1441418. | 1031771. | 2098821.              |      |      |       |       |
| MP        | RINSE                                 | 15  | 2011461.              | 1452665. | 1028037. | 2089216.              |      |      |       |       |
| CV        | CCV V-336042                          | 16  | 1985450.              | 1329814. | 991895.8 | 2045657.              |      |      |       |       |
| СВ        | CCB V-336039                          | 17  | 1949857.              | 1334999. | 967194.4 | 2016541.              |      |      |       |       |
| В         | MB 85369                              | 18  | 1984532.              | 1338146. | 979811.3 | 2021975.              |      |      |       |       |
| cs        | LCS 85369                             | 19  | 2028130.              | 1310733. | 1085199. | 2087562.              |      |      |       |       |
| R         | LCS MR 85369                          | 20  | 2020595.              | 1304964. | 1047608. | 2088938.              |      |      |       |       |
| <b>VP</b> | AD19581-003                           | 21  | 2099917.              | 1356031. | 1263990. | 2173502.              |      |      |       |       |
| R         | AD19581-003                           | 22  | 2047417.              | 1301758. | 1261837. | 212 <del>94</del> 21. |      |      |       |       |
| )         | AD19581-003                           | 23  | 1950713.              | 1271647. | 985934.0 | 2022170.              |      |      |       |       |
| S         | AD19581-003                           | 24  | 2021964.              | 1303296. | 1298994. | 2115221.              |      |      |       |       |
| SD        | AD19581-003                           | 25  | 2064106.              | 1323335. | 1283102. | * 2122903.            |      |      |       |       |
| S         | AD19581-003                           | 26  | 2062269.              | 1306015. | 1274755. | 2138176.              |      |      |       |       |
| MP        | RINSE                                 | 27  | 1899875.              | 1271604. | 943952.7 | 1968380.              |      |      |       |       |
| CV        | CCV V-336042                          | 28  | 1874910.              | 1242540. | 934895.6 | 1937560.              |      |      |       |       |
| СВ        | CCB V-336039                          | 29  | 1866676.              | 1247596. | 924964.6 | 1937479.              |      |      |       |       |
| MP        | AD19560-001                           | 30  | 2072452.              | 1271465. | 1225997. | 2126003.              |      |      |       |       |
| MP        | AD19571-001                           | 31  | 2070414.              | 1318899. | 1260724. | 2135308.              |      |      |       |       |
| MP        | AD19571-002                           | 32  | 2032174.              | 1287328. | 1290705. | * 2080791.            |      |      |       |       |
| MP        | AD19571-003                           | 33  | 2071967.              | 1302860. | 1364008. | 2146254.              |      |      |       |       |
| MP        | AD19581-001                           | 34  | 2106575.              | 1312429. | 1534209. | 2170665.              |      |      |       |       |
| MP        | AD19581-007                           | 35  | 2100692.              | 1386938. | 1336503. | 2186925.              |      |      |       |       |
| MP        | AD19581-008                           | 36  | 2103643.              | 1458575. | 1365989. |                       |      |      |       |       |
| MP        | AD19581-011                           | 37  | 2107923.              | 1426849. | 1464722. | * 2186373.            |      |      |       |       |
| MP        | AD19582-001                           | 38  | 2143268.              | 1481022. | 1525279. | 2217944.              |      |      |       |       |
| MP        | RINSE                                 | 39  | 2010779.              | 1418868. | 1007359. | 2079329.              |      |      |       |       |
| CV        | CCV V-336042                          | 40  | 1972707.              | 1339637. | 996479.6 | 2025131.              |      |      |       |       |
| СВ        | CCB V-336039                          | 41  | 2002505.              | 1403663. | 1025716. | 2062973.              |      |      |       |       |
| MP        | AD19587-007                           | 42  | 2176816.              | 1425106. | 1426964. |                       |      |      |       |       |
| MP        | AD19575-002                           | 43  | 2100695.              | 1454722. | 1634060  |                       |      |      |       |       |
| MP        | AD19595-004                           | 44  | 2402266.              | 1418690. | 1632172. |                       |      |      |       |       |
| MP        | AD19595-009                           | 45  | 2201807.              | 1386985. |          | 2272452.              |      |      |       |       |
| MP        | AD19596-001                           | 46  | 2125004.              | 1439311. | 1370760. |                       |      |      |       |       |
| MP        | RINSE                                 | 47  | 2005813.              | 1400114. | 1020700. | 2085587.              |      |      |       |       |
|           | · ··· · · · · · · · · · · · · · · · · |     |                       |          |          |                       |      |      |       |       |

<sup>\*</sup> Indicates Internal Standard Area outside of limits

TuneID: 1

CCB CCB V-336039 49

1945430.

1310471.

975509.0

1984584.

<sup>\*</sup> Indicates Internal Standard Area outside of limits

TuneID: 2

Batch/FileID: S100520AMSample ID: CalBlk V-336032 Sample Date 10/05/20 Sample Time: 11:05

 IS ID:
 Area
 Area Limit

 Ho-2
 883259.25
 618281.475
 - 1148237.025

 In-2
 286457.80
 200520.46
 - 372395.14

 Sc-2
 49290.53
 34503.371
 - 64077.689

 Tb-2
 891716.80
 624201.76
 - 1159231.84

|       |                 |     | Ho-2     | In-2      | Sc-2     | Tb-2       |      |      |      |      |
|-------|-----------------|-----|----------|-----------|----------|------------|------|------|------|------|
| сТуре | txtSamld:       | Pos | Area     | Area      | Area     | Area       | Area | Area | Area | Area |
| BLK   | CalBlk V-336032 | 2   | 883259.2 | 286457.8  | 49290.53 | 891716.8   |      |      |      |      |
| MP    | RINSE           | 1   | 869952.0 | 282905.2  | 48614.31 | 880067.4   |      |      |      |      |
| AL    | CalStd1 V-33603 | 3   | 892280.7 | 289473.0  | 49603.71 | 896747.7   |      |      |      |      |
| AL    | CalStd2 V-33603 | 4   | 902801.1 | 292687.6  | 50645.34 | 914287.8   |      |      |      |      |
| AL    | CalStd3 V-33603 | 5   | 905977.3 | 291718.4  | 50096.03 | 912127.3   |      |      |      |      |
| AL    | CalStd4 V-33603 | 6   | 902914.2 | 286411.9  | 49719.68 | 909513.5   |      |      |      |      |
| AL    | CalStd5 V-33603 | 7   | 904727.9 | 284071.9  | 49496.80 | 904185.8   |      |      |      |      |
| V     | ICV V-336038    | 8   | 895704.7 | 281925.7  | 48705.75 | 901009.5   |      |      |      |      |
| LICV  | LLICV V-336043  | 9   | 896790.8 | 285358.4  | 48809.37 | 907562.4   |      |      |      |      |
| В     | ICB V-336039    | 10  | 885549.1 | 284119.3  | 49339.57 | 893433.8   |      |      |      |      |
| SA    | ICSA V-336040   | 11  | 903473.8 | 276527.9  | 51290.63 | 906000.9   |      |      |      |      |
| MP    | RINSE           | 12  | 934526.6 | 301719.7  | 52555.19 | 944698.6   |      |      |      |      |
| RS    | LRS V-336041    | 13  | 898450.9 | 279210.1  | 51617.04 | 907677.6   |      |      |      |      |
| MP    | RINSE           | 14  | 924396.8 | 301838.4  | 51975.61 | 937463.2   |      |      |      |      |
| MP    | RINSE           | 15  | 906907.2 | 291312.0  | 50241.95 | 916541.6   |      |      |      |      |
| CV    | CCV V-336042    | 16  | 905224.8 | 286357.1  | 50111.72 | 911112.8   |      |      |      |      |
| СВ    | CCB V-336039    | 17  | 895629.0 | 286147.1  | 48740.48 | 904337.0   |      |      |      |      |
| В     | MB 85369        | 18  | 884805.7 | 279714.5  | 47774.50 | 893273.8   |      |      |      |      |
| cs    | LCS 85369       | 19  | 885124.6 | 272287.5  | 49877.80 | 895898.3   |      |      |      |      |
| R     | LCS MR 85369    | 20  | 880865.2 | 268132.7  | 49011.95 | 887261.0   |      |      |      |      |
| MP    | AD19581-003     | 21  | 920157.3 | 268754.5  | 57259.54 | 928363.0   |      |      |      |      |
| R     | AD19581-003     | 22  | 921294.3 | 272900.3  | 58536.81 | 932166.0   |      |      |      |      |
| D     | AD19581-003     | 23  | 886151.9 | 274738.5  | 48442.74 | 890936.5   |      |      |      |      |
| S     | AD19581-003     | 24  | 913050.9 | 272871.8  | 58141.24 | 919448.3   |      |      |      |      |
| SD    | AD19581-003     | 25  | 908680.4 | 271110.2  | 58337.16 | 915827.2   |      |      |      |      |
| S     | AD19581-003     | 26  | 922636.6 | 270663.2  | 58554.63 | 929642.2   |      |      |      |      |
| MP    | RINSE           | 27  | 866333.1 | 274055.5  | 47051.73 | 871314.1   |      |      |      |      |
| CV    | CCV V-336042    | 28  | 865165.5 | 272248.1  | 46621.76 | 876717.0   |      |      |      |      |
| СВ    | CCB V-336039    | 29  | 856058.4 | 273531.4  | 46739.69 | 864675.7   |      |      |      |      |
| MP    | AD19560-001     | 30  | 902529.0 | 261071.7  | 54823.62 | 907902.1   |      |      |      |      |
| MP    | AD19571-001     | 31  | 920150.1 | 274756.4  | 58162.17 | 924926.4   |      |      |      |      |
| MP    | AD19571-002     | 32  | 919868.1 | 269607.1  | 61037.72 | 914715.1   |      |      |      |      |
| MP    | AD19571-003     | 33  | 930646.6 | 270801.1  | 63105.58 | 926996.8   |      |      |      |      |
| MP    | AD19581-001     | 34  | 935125.2 | 273006.3  | 72768.92 | * 943022.8 |      |      |      |      |
| MP    | AD19581-007     | 35  | 932707.4 | 276436.3  | 61529.46 | 948421.8   |      |      |      |      |
| MP    | AD19581-008     | 36  | 932350.0 | 285075.7  | 62356.60 | 940782.7   |      |      |      |      |
| MP    | AD19581-011     | 37  | 938801.7 | 277629.6  | 66896.55 | * 952204.2 |      |      |      |      |
| MP    | AD19582-001     | 38  | 945153.3 | 289272.7  | 68719.76 |            |      |      |      |      |
| MP    | RINSE           | 39  | 906762.3 | 290731.2  | 49695.15 | 908325.0   |      |      |      |      |
| CV    | CCV V-336042    | 40  | 892874.8 | 283779.9  | 48928.53 | 900952.0   |      |      |      |      |
| CB    | CCB V-336039    | 41  | 914869.1 | 295198.0  | 50645.36 | 916615.6   |      |      |      |      |
| MP    | AD19587-007     | 42  | 963985.0 | 279189.6  |          | 960607.9   |      |      |      |      |
| VIP   | AD19575-002     | 43  | 945731.6 | 288067.4  |          | 952005.0   |      |      |      |      |
| MP    | AD19595-004     | 44  | 1092801. | 283863.0  |          | 1071426.   |      |      |      |      |
| MP    | AD19595-009     | 45  | 984414.0 | 282647.6  |          | 986062.5   |      |      |      |      |
| MP    | AD19596-001     | 46  | 941856.7 | 280872.9  | 63148.21 | 949425.3   |      |      |      |      |
| MP    | RINSE           | 47  | 913380.4 | 295473.0  | 49772.97 | 917380.7   |      |      |      |      |
| 747   |                 | ~ , | 5.5555.4 | 200-1.0.0 |          |            |      |      |      |      |

<sup>\*</sup> Indicates Internal Standard Area outside of limits

TuneID: 2

CCB CCB V-336039 49

891388.1

283705.3

48311.44

897019.5

<sup>\*</sup> Indicates Internal Standard Area outside of limits

**TCLP Metal Data** 

### Form1 Inorganic Analysis Data Sheet

Sample ID: AD19595-013

% Solid: 0

Lab Name: Hampton-Clarke

Nras No:

Client Id: HSI-WC-NH Matrix:

TCLP

Units: MG/L Date Rec: 10/3/2020 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

| Cas No.   | Analyte  | RL <sub>:</sub> | Conc | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | M, | Instr   |
|-----------|----------|-----------------|------|----------|-------------------|-----------------|------------------|---------------|----------|------------|----|---------|
| 7440-38-2 | Arsenic  | 0.10            | ND   | 1        | 50                | 50              | 10/07/20         | 85367         | T26307A4 | 29         | Р  | PEICP4A |
| 7440-39-3 | Barium   | 0.25            | ND:  | 1        | 50                | 50              | 10/07/20         | 85367         | T26307A4 | 29         | Р  | PEICP4A |
| 7440-43-9 | Cadmium  | 0.050           | ND   | 1        | 50                | 50              | 10/07/20         | 85367         | T26307A4 | 29         | Р  | PEICP4A |
| 7440-47-3 | Chromium | 0.10            | ND   | 1        | 50                | 50              | 10/07/20         | 85367         | T26307B4 | 29         | Р  | PEICP4A |
| 7439-92-1 | Lead     | 0.050           | 0.10 | 1        | 50                | 50              | 10/07/20         | 85367         | T26307A4 | 29         | P  | PEICP4A |
| 7439-97-6 | Mercury  | 0.00050         | ND   | 1        | 25.               | 25              | 10/08/20         | 85367         | H26307T  | 20         | CV | HGCV3A  |
| 7440-02-0 | Nickel   | 0.10            | ND   | 1        | 50                | 50              | 10/07/20         | 85367         | T26307A4 | 29         | P  | PEICP4A |
| 7782-49-2 | Selenium | 0.10            | ND   | 1        | 50                | 50              | 10/07/20         | 85367         | T26307A4 | 29         | P  | PEICP4A |
| 7440-22-4 | Silver   | 0.050           | ND   | 1        | 50                | 50              | 10/07/20         | 85367         | T26307A4 | 29         | P. | PEICP4A |

| Comments: |      |      |                 |  |
|-----------|------|------|-----------------|--|
|           | <br> | <br> | <br><del></del> |  |
|           |      |      |                 |  |
|           |      |      |                 |  |
|           |      |      |                 |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

MS - ICP-MS

### Form1 Inorganic Analysis Data Sheet

Sample ID: AD19595-014

% Solid: 0

Lab Name: Hampton-Clarke

Nras No:

Client Id: Matrix:

HSI-WC-H TCLP

Units: MG/L Date Rec: 10/3/2020 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

| Cas No.   | Analyte  | RL      | Conc            | Dil Fact | Initial<br>Wt/Vol | Final<br>Wt/Vol | Analysis<br>Date | Prep<br>Batch | File:    | Seq<br>Num | М  | Instr   |
|-----------|----------|---------|-----------------|----------|-------------------|-----------------|------------------|---------------|----------|------------|----|---------|
| 7440-38-2 | Arsenic  | 0.10    | ND              | 1        | 50                | 50              | 10/07/20         | 85367         | T26307A4 | 30         | P  | PEICP4A |
| 7440-39-3 | Barium   | 0.25    | ND              | 1        | 50                | 50              | 10/07/20         | 85367         | T26307A4 | 30         | P  | PEICP4A |
| 7440-43-9 | Cadmium  | 0.050   | ND:             | 1:       | 50                | 50              | 10/07/20         | 85367         | T26307A4 | 30         | P  | PEICP4A |
| 7440-47-3 | Chromium | 0.10    | ND              | 1        | 50                | 50              | 10/07/20         | 85367         | T26307B4 | 30         | P  | PEICP4A |
| 7439-92-1 | Lead     | 0.050   | 0.21            | 1        | 50                | 50              | 10/07/20         | 85367         | T26307A4 | 30         | P. | PEICP4A |
| 7439-97-6 | Mercury  | 0.00050 | ND              | 1        | 25                | 25              | 10/08/20         | 85367         | H26307T  | 23         | CV | HGCV3A  |
| 7440-02-0 | Nickel   | 0.10    | ND              | 1        | 50                | 50              | 10/07/20         | 85367         | T26307A4 | 30         | P  | PEICP4A |
| 7782-49-2 | Selenium | 0.10    | ND <sup>1</sup> | 1        | 50                | 50              | 10/07/20         | 85367         | T26307A4 | 30         | Р  | PEICP4A |
| 7440-22-4 | Silver   | 0.050   | ND              | 1        | 50                | 50              | 10/07/20         | 85367         | T26307A4 | 30         | P  | PEICP4A |

| Comments: |  |
|-----------|--|
|           |  |

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

MS - ICP-MS

### Form1 Inorganic Analysis Data Sheet

Sample ID: MB 85367 (1)

% Solid: 0

Lab Name: Hampton-Clarke

Client Id: MB 85367 (1)

Units: MG/L

Lab Code:

Matrix: TCLP Level: LOW

| Inst    | М  | Seq<br>Num | File:    | Prep<br>Batch      | Analysis Date | Final<br>Wt/Vol | Initial<br>Wt/Vol | Dil Fact   | Conc | RL      | Analyte   | Cas No.   |
|---------|----|------------|----------|--------------------|---------------|-----------------|-------------------|------------|------|---------|-----------|-----------|
| PEICP4A | Р  | 14         | T26307A4 | 85367              | 10/07/20      | 50              | 50                | 1          | ND   | 0.050   | Arsenic   | 7440-38-2 |
| PEICP4A | Р  | 14 :       | T26307A4 | 85367              | 10/07/20      | 50              | 50:               | 1          | ND   | 0.12    | Barium    | 7440-39-3 |
| PEICP4A | P  | 14 :       | T26307B4 | 85367              | 10/07/20      | 50              | 50                | 1          | ND:  | 0.0060  | Beryllium | 7440-41-7 |
| PEICP4A | P  | 14         | T26307A4 | 85367              | 10/07/20      | 50              | 50                | 1          | ND   | 0.025   | Cadmium   | 7440-43-9 |
| PEICP4A | P  | 14         | T26307B4 | 85367              | 10/07/20      | 50              | 50                | 1          | ND   | 0.050   | Chromium  | 7440-47-3 |
| PEICP4A | P  | 14         | T26307A4 | 85367 <sub>:</sub> | 10/07/20      | 50              | 50                | 1          | ND   | 0.050   | Copper    | 7440-50-8 |
| PEICP4A | P  | 14         | T26307A4 | 85367              | 10/07/20      | 50              | 50                | 1          | ND   | 0.025   | Lead      | 7439-92-1 |
| HGCV3A  | CV | 11         | H26307T  | 85367              | 10/08/20      | 25              | 25                | <b>1</b> j | ND   | 0.00050 | Mercury   | 7439-97-6 |
| PEICP4A | P  | 14         | T26307A4 | 85367              | 10/07/20      | 50              | 50                | 1          | ND   | 0.050   | Nickel    | 7440-02-0 |
| PEICP4A | P  | 14         | T26307A4 | 85367              | 10/07/20      | 50              | 50                | 1          | ND:  | 0.050   | Selenium  | 7782-49-2 |
| PEICP4A | Р  | 14         | T26307A4 | 85367              | 10/07/20      | 50              | 50                | 1          | ND   | 0.025   | Silver    | 7440-22-4 |
| PEICP4A | P  | 14         | T26307A4 | 85367              | 10/07/20      | 50              | 50                | 1          | ND   | 0.050   | Zinc      | 7440-66-6 |

| Comments: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

MS - ICP-MS

# FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/07/20

Data File: T26307A4

Prep Batch: 85367

Analytical Method: 6010D, 6020B, 7470A, 7471B

Instrument: PEICP4A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0100230

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: SCP Science

|          | ICV/CC\ | ICV V-<br>33623 |     | CCV V-<br>336236-1 | 2   | CCV V-<br>336236-<br>24 |     | CCV V-<br>336236-<br>32 |     | CCV V-<br>336236-<br>43 |     | CCV V-<br>336236-<br>50 |     |   |     |        |     |  |
|----------|---------|-----------------|-----|--------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|-----|---|-----|--------|-----|--|
| Analyte  | Amt     |                 | Rec |                    | Rec | 27                      | Rec | 52                      | Rec | 73                      | Rec | 30                      | Rec |   | Rec |        | Rec |  |
| Arsenic  | .5/.5   | 0 49394         | 99  | 0.48121            | 96  | i0.49196                | 98  | 0.47851                 | 96  | 0.49829                 | 100 | 0 48444                 | 97  |   |     | 1 .    |     |  |
| Barium   | .5/.5   | 0.50694         | 101 | 0.50851            | 102 | 0.50600                 | 101 | 0.50419                 | 101 | 0.49929                 | 100 | 0.51987                 | 104 |   |     |        |     |  |
| Cadmium  | .5/.5   | 0.51103         | 102 | 0.50970            | 102 | 0.50216                 | 100 | 0.50146                 | 100 | 0.49852                 | 100 | 0.50891                 | 102 |   | i   | i<br>i | !   |  |
| Copper   | 5/.5    | 0.53067         | 106 | 0 53308            | 107 | 0.52657                 | 105 | 0.53243                 | 106 | 0.52759                 | 106 | 0.54348                 | 109 |   | •   |        |     |  |
| Lead     | .5/.5   | 0.53386         | 107 | 0.52534            | 105 | 0.52379                 | 105 | 0.52295                 | 105 | 0.53252                 | 107 | 0.54301                 | 109 |   |     | ŧ      |     |  |
| Nickel   | .5/.5   | 0.53382         | 107 | 0 52978            | 106 | 0.52350                 | 105 | 0.51660                 | 103 | 0.51325                 | 103 | 0.52174                 | 104 |   | 1   |        |     |  |
| Selenium | .5/.5   | 0.52466         | 105 | 0.52171            | 104 | 0.53362                 | 107 | 0.54036                 | 108 | 0.54288                 | 109 | 0.53368                 | 107 |   |     |        |     |  |
| Silver   | 0.1/0.1 | 0.10438         | 104 | 0.10452            | 105 | 0.10286                 | 103 | 0.10331                 | 103 | 0.10454                 | 105 | 0.10693                 | 107 | - | 1   |        | į   |  |
| Zinc     | .5/.5   | 0.53433         | 107 | 0.53197            | 106 | 0.53043                 | 106 | 0.52369                 | 105 | 0.52450                 | 105 | 0.53512                 | 107 | i |     |        |     |  |

Notes: a-indicates analyte failed the ICV limits for 6010D, 6020B

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010C,6020B, Hg 7470A,7471B

d-indicates analyte failed the CCV limits Hg 7470A/7471B

Qc Limits: ICV - 200.7 (95-105)

6010D/6020B/200.8 (90-110)

CCV- 200.7/200.8/6010D/245.1, Hg 7470A/ 7471B (90-110)

# FORM 2 LLQCS/LRS Summary)

Date Analyzed: 10/07/20

Data File: T26307A4

Prep Batch: 85367

Analytical Method: 6010D, 6020B, 7470A, 7471B

Instrument: PEICP4A

Units: All units in ppm except Hg and icp-ms in ppb

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

LLQCS/LRS SOURCE: SPEX

| Analyte    | LLQCS<br>Spike<br>Amount | LLICV V-<br>333672 | Recovery | Low<br>Limit | High<br>Limit | LRS<br>Spike<br>Amount | LRS V-<br>335291 | Recovery | Low<br>Limit | High<br>Limit |  |
|------------|--------------------------|--------------------|----------|--------------|---------------|------------------------|------------------|----------|--------------|---------------|--|
| Magnesium  | 5.0                      | 4.47233            | 89       | 80           | 120           | 500                    | 491.128          | 98       | 90           | 110           |  |
| Silver     | 0.05                     | 0.0497710          | 100      | 80           | 120           | 1                      | 0.974831         | 97       | 90           | 110           |  |
| Aluminum   | 1.0                      | 1.01775            | 102      | 80           | 120           | 500                    | 513.052          | 103      | 90           | 110           |  |
| Arsenic    | 0.1                      | 0.0849063          | 65       | 80           | 120           | 10                     | 9.72760          | 97       | 90           | 110           |  |
| Boron      | 0.2                      | 0.219650           | 110      | 80           | 120           | 5                      | 4.68746          | 94       | 90           | 110           |  |
| Barium     | 0.25                     | 0.260374           | 104      | 80           | 120           | 10                     | 9.82616          | 98       | 90           | 110           |  |
| Beryllium  | 0.012                    | 0.0056594          | 47 a     | 80           | 120           | 5                      | 4.65217          | 93       | 90           | 110           |  |
| Calcium    | 5.0                      | 4.20547            | 84       | 80           | 120           | 500                    | 468.588          | 94       | 90           | 110           |  |
| Cadmium    | 0.05                     | 0.0487083          | 97       | 80           | 120           | 5                      | 4.87009          | 97       | 90           | 110           |  |
| Cobalt     | 0.1                      | 0.0969040          | 97       | 80           | 120           | 5                      | 4.27608          | 86 a     | 90           | 110           |  |
| Chromium   | 0.1                      | 0.0934880          | 93       | 80           | 120           | 10                     | 9.32143          | 93       | 90           | 110           |  |
| Copper     | 0.1                      | 0.102418           | 102      | 80           | 120           | 10                     | 10.7793          | 108      | 90           | 110           |  |
| Silicon    | 0.1                      | 0.119127           | 119      | 80           | 120           | 25                     | 25.0428          | 100      | 90           | 110           |  |
| Iron       | 1.0                      | 0.981032           | 98       | 80           | 120           | 200                    | 194.482          | 97       | 90           | 110           |  |
| Zinc       | 0.1                      | 0.0960553          | 96       | 80           | 120           | 10                     | 8.69899          | 87 a     | 90           | 110           |  |
| Manganese  | 0.1                      | 0.103894           | 104      | 80           | 120           | 10                     | 8.88581          | 89 a     | 90           | 110           |  |
| Molybdenum | 0.1                      | 0.0946193          | 95       | 80           | 120           | 10                     | 8.93166          | 89 a     | 90           | 110           |  |
| Sodium     | NA                       | 22.9569            |          | 80           | 120           | 1000                   | 1364.78          | 136 a    | 90           | 110           |  |
| Nickel     | 0.1                      | 0.0974934          | 97       | 80           | 120           | 10                     | 8.56923          | 86 a     | 90           | 110           |  |
| Lead       | 0.05                     | 0.0464737          | 93       | 80           | 120           | 10                     | 9.39877          | 94       | 90           | 110           |  |
| Antimony   | 0.07                     | 0.0674778          | 96       | 80           | 120           | 5                      | 5.29142          | 106      | 90           | 110           |  |
| Selenium   | 0.1                      | 0.0914668          | 91       | 80           | 120           | 5                      | 5.12248          | 102      | 90           | 110           |  |
| Tin        | 0.1                      | 0.101924           | 102      | 80           | 120           | 10                     | 9.99586          | 100      | 90           | 110           |  |
| Titanium   | 0.1                      | 0.0983451          | 98       | 80           | 120           | 10                     | 9.11194          | 91       | 90           | 110           |  |
| Thallium   | 0.1                      | 0.0949268          | 95       | 80           | 120           | 5                      | 4.36734          | 87 a     | 90           | 110           |  |
| Vanadium   | 0.1                      | 0.0958925          | 96       | 80           | 120           | 10                     | 9.17714          | 92       | 90           | 110           |  |
| Potassium  | NA                       | -8.05255           |          | 80           | 120           | 200                    | -1847.92         | -920 a   | 90           | 110           |  |

Notes:

a-indicates analyte is outsite the limits.

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

# FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/07/20

Data File: T26307B4

Prep Batch: 85367

Analytical Method:6010D, 6020B, 7470A, 7471B

Instrument: PEICP4A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0100230

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: SCP Science

| A = 1.4=  | ICV/CCV 3  | CV V-<br>36236-5 | CCV V-<br>336236-12 | CCV V-<br>336236-<br>24 | CCV V-<br>336236-<br>32 | <b>D</b> | CCV V-<br>336236-<br>39 | Des | Do- | Date |     |
|-----------|------------|------------------|---------------------|-------------------------|-------------------------|----------|-------------------------|-----|-----|------|-----|
| Analyte   | Amt        | Rec              | Rec                 | Re                      |                         | Rec      |                         | Rec | Rec | Rec  | Rec |
| Beryllium | .5/.5 0.5  | 0459 101         | 0.51522 103         | 0.50133 10              | 0 0 49737               | 99       | 0.48693                 | 97  | 1 . |      |     |
| Chromium  | .5/.5 [0.5 | 3068 106         | 0.54366 109         | 0.52660 10              | - 1                     | 105      | 0.51494                 | 103 | 1   |      |     |

Notes: a-indicates analyte failed the ICV limits for 6010D, 6020B

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010C,6020B, Hg 7470A,7471B

d-indicates analyte failed the CCV limits Hg 7470A/7471B

**Qc Limits:** ICV - 200.7 (95-105) 6010D/6020B/200.8 (90-110)

CCV- 200.7/200.8/6010D/245.1, Hg 7470A/ 7471B (90-110)

## FORM 2 LLQCS/LRS Summary)

Date Analyzed: 10/07/20 Lab Name: Hampton-Clarke

Data File: T26307B4
Lab Code:
Prep Batch: 85367
Contract:
Analytical Method: 6010D, 6020B, 7470A, 7471B
Instrument: PEICP4A
Units: All units in ppm except Hg and icp-ms in ppb
Lab Code:
Contract:
Nras No:
Sdg No:
Case No:

LLQCS/LRS SOURCE: SPEX

| Analyte    | Spike | LLICV V-<br>333672 | Recovery | Low<br>Limit | High<br>Limit | LR:<br>Spil<br>Amo | ke | LRS V-<br>335291 | Recovery | Low<br>Limit | High<br>Limit |  |
|------------|-------|--------------------|----------|--------------|---------------|--------------------|----|------------------|----------|--------------|---------------|--|
| Magnesium  | 5.0   | 5.23269            | 105      | 80           | 120           | 50                 | 0  | 483.428          | 97       | 90           | 110           |  |
| Silver     | 0.05  | 0.0513416          | 103      | 80           | 120           | 1                  |    | 0.950021         | 95       | 90           | 110           |  |
| Aluminum   | 1.0   | 1.08207            | 108      | 80           | 120           | 50                 | 0  | 522.921          | 105      | 90           | 110           |  |
| Arsenic    | 0.1   | 0.103101           | 103      | 80           | 120           | 10                 | )  | 9.70855          | 97       | 90           | 110           |  |
| Boron      | 0.2   | 0.223217           | 112      | 80           | 120           | 5                  | i  | 4.79964          | 96       | 90           | 110           |  |
| Barium     | 0.25  | 0.269275           | 108      | 80           | 120           | 10                 | )  | 9.67514          | 97       | 90           | 110           |  |
| Beryllium  | 0.012 | 0.0138899          | 116      | 80           | 120           | 5                  | ;  | 4.58682          | 92       | 90           | 110           |  |
| Calcium    | 5.0   | 5.15180            | 103      | 80           | 120           | 50                 | 0  | 463.458          | 93       | 90           | 110           |  |
| Cadmium    | 0.05  | 0.0539009          | 108      | 80           | 120           | 5                  | i  | 4.74775          | 95       | 90           | 110           |  |
| Cobalt     | 0.1   | 0.102949           | 103      | 80           | 120           | 5                  | ;  | 4.67626          | 94       | 90           | 110           |  |
| Chromium   | 0.1   | 0.101631           | 102      | 80           | 120           | 10                 | )  | 8.80746          | 88 a     | 90           | 110           |  |
| Copper     | 0.1   | 0.107780           | 108      | 80           | 120           | 10                 | )  | 10.6141          | 106      | 90           | 110           |  |
| Silicon    | 0.1   | 0.122466           | 122 a    | 80           | 120           | 25                 | 5  | 25.8648          | 103      | 90           | 110           |  |
| Iron       | 1.0   | 0.928340           | 93       | 80           | 120           | 20                 | ю  | 188.599          | 94       | 90           | 110           |  |
| Zinc       | 0.1   | 0.104320           | 104      | 80           | 120           | 10                 | )  | 8.47585          | 85 a     | 90           | 110           |  |
| Manganese  | 0.1   | 0.109866           | 110      | 80           | 120           | 10                 | )  | 9.16557          | 92       | 90           | 110           |  |
| Molybdenum | 0.1   | 0.101517           | 102      | 80           | 120           | 10                 | )  | 8.73613          | 87 a     | 90           | 110           |  |
| Sodium     | NA    | 23.1042            |          | 80           | 120           | 100                | 00 | 1311.37          | 131 a    | 90           | 110           |  |
| Nickel     | 0.1   | 0.102585           | 103      | 80           | 120           | 10                 | )  | 8.29996          | 83 a     | 90           | 110           |  |
| Lead       | 0.05  | 0.0482782          | 97       | 80           | 120           | 10                 | )  | 9.22347          | 92       | 90           | 110 -         |  |
| Antimony   | 0.07  | 0.0761319          | 109      | 80           | 120           | 5                  | i  | 5.19908          | 104      | 90           | 110           |  |
| Selenium   | 0.1   | 0.111244           | 111      | 80           | 120           | 5                  | i  | 5.03493          | 101      | 90           | 110           |  |
| Tin        | 0.1   | 0.103019           | 103      | 80           | 120           | 10                 | )  | 9.56392          | 96       | 90           | 110           |  |
| Titanium   | 0.1   | 0.102916           | 103      | 80           | 120           | 10                 | )  | 9.44527          | 94       | 90           | 110           |  |
| Thallium   | 0.1   | 0.0989551          | 99       | 80           | 120           | 5                  | ;  | 4.35147          | 87 a     | 90           | 110           |  |
| Vanadium   | 0.1   | 0.101993           | 102      | 80           | 120           | 10                 | )  | 8.89621          | 89 a     | 90           | 110           |  |
| Potassium  | NA    | -6.97020           |          | 80           | 120           | 20                 | 0  | -1789.62         | -890 a   | 90           | 110           |  |

Notes: a-indicates analyte is outsite the limits.

If linear range sample (LRS) exceeds criteria, high standard becomes upper limit criteria

# FORM 2 (ICV/CCV Summary)

Date Analyzed: 10/08/20

Data File: H26307T

Prep Batch: 85367 Analytical Method:6010D, 6020B, 7470A, 7471B

Instrument: HGCV3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0100230

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

ICV/CCV SOURCE: SCP Science

Notes: a-indicates analyte failed the ICV limits for 6010D, 6020B

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010C,6020B, Hg 7470A,7471B

d-indicates analyte failed the CCV limits Hg 7470A/7471B

**Qc Limits:** ICV - 200.7 (95-105) 6010D/6020B/200.8 (90-110)

CCV- 200.7/200.8/6010D/245.1, Hg 7470A/ 7471B (90-110)

# FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 10/07/20

Data File: T26307A4 Prep Batch: 85367

Reporting Limits Used: 6010D, 6020B, 7470A, 7471B

Instrument: PEICP4A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0100230

Lab Name: Hampton-Clarke

Lab Code:

Contract: Nras No:

Sdg No:

Case No:

| Analyte  | ICB V-333667-6     | CCBV | -333 <del>66</del> 7-<br>13 | CCB | V-333667-<br>25 | CCB V-333667-<br>33 | CC | B V-333667-<br>44 | CCB V-333667-<br>51 | MB 85367 (1)-<br>14 | EF-V-335534-<br>22 |
|----------|--------------------|------|-----------------------------|-----|-----------------|---------------------|----|-------------------|---------------------|---------------------|--------------------|
| Arsenic  | .05 U              |      | .1 Ü                        | 1   | .1 U            | .10                 |    | 1 U               | .10                 | .05U                | 11                 |
| Barium   | .125 U             | :    | .25 U                       |     | .25 U           | .25 U               | ÷  | .25 U             | .25U                | .13U                | .25 L              |
| Cadmium  | .025 U             | :    | .05€                        | 1   | .05 U           | .05U                | į  | .05 U             | .05U                | .025U               | .05 U              |
| Copper   | .05 U              | 1    | .10                         | i   | .10             | .10                 | į  | .1 U              | .10                 | .05U                | .10                |
| Lead     | .025 U             |      | .05∪                        |     | .05 U           | .05 U               |    | .05 U             | .05U                | .025U               | 051                |
| Nickel   | .05 ∪              | :    | .10                         |     | .10             | .10                 | į  | .1 U              | .10                 | .05U                | .10                |
| Selenium | .05 U              |      | .10                         |     | .1 U            | .10                 |    | .1 U              | .10                 | .05U                | .11                |
| Silver   | .025 U             |      | .05U                        |     | .05 U           | .05U                |    | .05 U             | .05U                | 025U                | 051                |
| Zinc     | .05 U              |      | .1 U                        |     | .10             | .10                 |    | .1 U              | .10                 | .05U                | .11                |
| Analyte  | EF-V-336139-<br>23 |      |                             |     |                 |                     |    |                   |                     |                     |                    |
| Arsenic  | 1U                 |      |                             |     |                 | • · · ·             |    |                   |                     |                     | 1                  |
| Barium   | .25 U              |      |                             |     |                 |                     |    |                   |                     | !                   |                    |
| Cadmium  | .05 U              | į    |                             | 1   |                 |                     |    |                   |                     |                     |                    |
| Copper   | .1U                |      |                             | ·   |                 |                     |    |                   |                     |                     |                    |
| Lead     | .05 U              |      |                             | į   |                 |                     |    |                   |                     |                     |                    |
| Nickel   | .10                |      |                             |     |                 |                     |    |                   |                     |                     |                    |
| Selenium | .1U                |      |                             |     |                 |                     |    |                   |                     |                     |                    |
| Silver   | .05 U              |      |                             |     |                 |                     |    |                   | i                   | :                   | 1                  |
| Zinc     | .10                |      |                             |     |                 |                     |    |                   |                     |                     |                    |

Notes: a -for methods 7470A, 7471B indicates absolute value of result found above the reporting limits in ICB/CCB/MB. for methods 6010D, 6020B indicates absolute value of result found above the reporting limit in CCB or above 1/2 the reporting limit in ICB/MB.

## FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 10/07/20

Data File: T26307B4

Prep Batch: 85367 Reporting Limits Used: 6010D, 6020B, 7470A, 7471B

Instrument: PEICP4A

Units: All units in ppm except Hg and icp-ms in ppb Project Number: 0100230

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

| Analyte   | ICB V-333667-6 | CCB V-333667-<br>13 | CCB V-333667-<br>25 | CCB V-333667-<br>33 | CCB V-333667-<br>40 | MB 85367 (1)-<br>14 | EF-V-335534-<br>22 | EF-V-336139-<br>23 |
|-----------|----------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|--------------------|
| Beryllium | 006 U          | .012 U              | .012U               | 012 U               | .012 U              | .006U               | .012 <b>U</b>      | 012 U              |
| Chromium  | .05 U          |                     | :                   | .1 <b>U</b>         | .1 U                | .05U                | .10                | .10                |

Notes: a -for methods 7470A, 7471B indicates absolute value of result found above the reporting limits in ICB/CCB/MB. for methods 6010D, 6020B indicates absolute value of result found above the reporting limit in CCB or above 1/2 the reporting limit in ICB/MB.

# FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 10/08/20

Data File: H26307T

Prep Batch: 85367

Reporting Limits Used: 6010D, 6020B, 7470A, 7471B

Instrument: HGCV3A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0100230

Lab Name: Hampton-Clarke

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

|         | ICB-10   | CCB-22 | CCB-33 | MB 85367 (1)- | EF V-335534- | EF V-336139- |      |  |
|---------|----------|--------|--------|---------------|--------------|--------------|------|--|
| Analyte |          |        |        | 11            | 30           | 31           | <br> |  |
| Mercury | <br>.5 U | .5 U   | .5U    | .50           | .5 ∪         | .5∪          | <br> |  |

Notes: a -for methods 7470A, 7471B indicates absolute value of result found above the reporting limits in ICB/CCB/MB.

for methods 6010D, 6020B indicates absolute value of result found above the reporting limit in CCB or above 1/2 the reporting limit in ICB/MB.

## FORM 4 (ICSA/ICSAB Summary)

Date Analyzed: 10/07/20

Data File: T26307A4 Prep Batch: 85367

Reporting Limits Used: 6010D, 6020B, 7470A, 7471B

Instrument: PEICP4A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 0100230

Lab Name: Hampton-Clarke

Lab Code: Contract:

Nras No:

Sdg No:

Case No: ICSA/ICSAB: SOURCE: SCP Science

| Analyte   | Spk<br>Amt | ICSA V-<br>336303-11 | Rec              | Rec | Rec    | Rec | Rec | Rec | Rec | Rec |
|-----------|------------|----------------------|------------------|-----|--------|-----|-----|-----|-----|-----|
| Aluminum  | 500        | 543.026              | 109 <sup>1</sup> |     | :      |     | 1   |     | ļ   |     |
| Arsenic   | 0          | U                    |                  |     | :      | •   |     |     |     |     |
| Barium    | 0          | U                    |                  |     |        |     |     |     |     |     |
| Cadmium   | 0          | Ų                    |                  |     |        | 4   |     |     |     |     |
| Calcium   | 500        | 501.664              | 100              |     |        |     |     |     |     |     |
| Copper    | 0          | υ                    | ;                |     |        |     | 1   |     |     |     |
| Iron      | 200        | 204.65               | 102              |     |        |     |     |     |     |     |
| Lead      | 0          | U                    |                  |     |        |     |     |     |     |     |
| Magnesium | 500        | 530.257              | 106              |     |        |     |     |     |     |     |
| Nickel    | 0          | U                    |                  |     | i<br>i | į   |     |     | :   |     |
| Selenium  | 0          | U                    |                  |     | •      |     | ,   | 1   |     |     |
| Silver    | 0          | U                    |                  |     |        |     |     |     |     |     |
| Zinc      | 0          | U                    |                  |     |        | 4 . |     |     | ··· |     |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 \* Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

u-indicates the absolute value of the concentration was below the reporting limit

200.7, 6020B < 2 \* Reporting Limit Qc Limits:

6010D < Reporting Limit

## FORM 4 (ICSA/ICSAB Summary)

Date Analyzed: 10/07/20

Lab Name: Hampton-Clarke

Data File: T26307B4 Prep Batch: 85367

Lab Code: Contract:

Reporting Limits Used: 6010D, 6020B, 7470A, 7471B

Nras No:

Sdg No:

Instrument: PEICP4A

Case No:

Units: All units in ppm except Hg and icp-ms in ppb Project Number: 0100230

ICSA/ICSAB: SOURCE: SCP Science

| Analyte   | Spk<br>Amt | ICSA V-<br>336303-11 | Rec | Rec | Rec  | Rec | Rec | Rec | Rec  | Rec |
|-----------|------------|----------------------|-----|-----|------|-----|-----|-----|------|-----|
| Aluminum  | 500        | 538.70€              | 108 |     | 1.00 |     |     |     | 1200 |     |
|           | 300        | 330.700              | 100 |     | i    | *   |     | }   |      |     |
| Beryllium | 0          | U                    |     |     |      |     |     |     |      |     |
| Calcium   | 500        | 478.335              | 96  |     | i    | 1   | i   |     |      |     |
| Chromium  | 0          | U                    |     |     |      |     |     | •   |      |     |
| Iron      | 200        | 179.524              | 90  |     |      |     |     |     |      |     |
| Magnesium | 500        | 504.694              | 101 |     |      |     |     |     |      |     |

Notes: a-indicates absolute value of the concentration > 2 \* Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 \* Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

u-indicates the absolute value of the concentration was below the reporting limit

Qc Limits:

200.7, 6020B < 2 \* Reporting Limit

6010D < Reporting Limit

### FORM5/FORM7 SPIKE RECOVERY DATA

PREP BATCH: 85367

Instrument Type: ICP/HG

Analytical Method(s):6010D/200.7/7470A/7471B/245.1

ICP units in ppm, ICPMS and Hg in ppb

| Analytical Me | etnoa(s):60 i | 00/200./ | ///4/UA//4/TE | 9/245.T |             |         |            | ice units in | ppm, ICPINS an | ia rigin | ppo                                   |        |
|---------------|---------------|----------|---------------|---------|-------------|---------|------------|--------------|----------------|----------|---------------------------------------|--------|
| TxtQcType:    | LCSMR         | Ма       | trix: TCLP    |         | Sampl       | eID: LC | SW MR 8536 | 7            |                |          |                                       |        |
| Analyte       | Batchld       | DF       | Data File     | Seq#:   |             |         | Spk Conc:  |              | Spk Added      | Recov    | Qual Lo Lim                           | Hi Lim |
| Arsenic       | 85367         | 1        | T26307A4      | 16      |             |         | 0.5023     |              | 0.50           | 100      | 80                                    | 120    |
| Barium        | 85367         | 1        | T26307A4      | 16      |             |         | 0.5268     |              | 0.50           | 105      | 80                                    | 120    |
| Cadmium       | 85367         | 1        | T26307A4      | 16      |             |         | 0.5192     |              | 0.50           | 104      | 80                                    | 120    |
| Chromium      | 85367         | 1        | T26307B4      | 16      |             |         | 0.5433     |              | 0.50           | 109      | 80                                    | 120    |
| Lead          | 85367         | 1        | T26307A4      | 16      |             |         | 0.5341     |              | 0.50           | 107      | 80                                    | 120    |
| Mercury       | 85367         | 1        | H26307T       | 13      |             |         | 10.8500    |              | 10             | 108      | 80                                    | 120    |
| Nickel        | 85367         | 1        | T26307A4      | 16      |             |         | 0.5346     |              | 0.50           | 107      | 80                                    | 120    |
| Selenium      | 85367         | 1        | T26307A4      | 16      |             |         | 0.5440     |              | 0.50           | 109      | 80                                    | 120    |
| Silver        | 85367         | 1        | T26307A4      | 16      |             |         | 0.1057     |              | 0.100          | 106      | 80                                    | 120    |
| TxtQcType:    | LCS           | Ma       | trix: TCLP    |         | Sample      | eID: LC | SW 85367   |              | :              |          | · · · · · · · · · · · · · · · · · · · |        |
| Analyte       | BatchId       | DF       | Data File     | Seq#:   |             |         | Spk Conc:  |              | Spk Added      | Recov    | Qual Lo Lim                           | Hi Lim |
| Arsenic       | 85367         | 1        | T26307A4      | 15      |             |         | 0.5176     |              | 0.50           | 104      | 80                                    | 120    |
| 3arium        | 85367         | 1        | T26307A4      | 15      |             |         | 0.5311     |              | 0.50           | 106      | 80                                    | 120    |
| Cadmium       | 85367         | 1        | T26307A4      | 15      |             |         | 0.5229     |              | 0.50           | 105      | 80                                    | 120    |
| Chromium      | 85367         | 1        | T26307B4      | 15      |             |         | 0.5446     |              | 0.50           | 109      | 80                                    | 120    |
| Lead          | 85367         | 1        | T26307A4      | 15      |             |         | 0.5415     |              | 0.50           | 108      | 80                                    | 120    |
| Mercury       | 85367         | 1        | H26307T       | 12      |             |         | 10.9100    |              | 10             | 109      | 80                                    | 120    |
| Nickel        | 85367         | 1        | T26307A4      | 15      |             |         | 0.5395     |              | 0.50           | 108      | 80                                    | 120    |
| Selenium      | 85367         | 1        | T26307A4      | 15      |             |         | 0.5562     |              | 0.50           | 111      | 80                                    | 120    |
| Silver        | 85367         | 1        | T26307A4      | 15      |             |         | 0.1064     |              | 0.100          | 106      | 80                                    | 120    |
| TxtQcType:    | MS            | Ma       | trix: TCLP    |         | Sample      | eID: AD | 19560-001  |              |                |          |                                       |        |
| Analyte       | BatchId       | DF       | Data File     | Seq#:   | NS Data Fil | Seq#    | Spk Conc:  | NS Conc      | Spk Added      | Recov    | Qual Lo Lim                           | Hi Lim |
| Arsenic       | 85367         | 1        | T26307A4      | 19      | T26307A4    |         | 0.5259     | 0.1U         | 0.50           | 105      | 50                                    |        |
| Barium        | 85367         | 1        | T26307A4      | 19      | T26307A4    | 17      | 0.8250     | 0.3334       | 0.50           | 98       | 50                                    |        |
| Cadmium       | 85367         | 1        | T26307A4      | 19      | T26307A4    | 17      | 0.5416     | 0.05U        | 0.50           | 108      | 50                                    |        |
| Chromium      | 85367         | 1        | T26307B4      | 19      | T26307B4    | 17      | 0.5072     | 0.1U         | 0.50           | 101      | 50                                    |        |
| _ead          | 85367         | 1        | T26307A4      | 19      | T26307A4    |         | 0.4989     | 0.05U        | 0.50           | 100      | 50                                    |        |
| Mercury       | 85367         | 1        | H26307T       | 16      | H26307T     |         | 11.0500    | 0.50U        | 10             | 110      | 50                                    |        |
| Nickel        | 85367         | 1        | T26307A4      | 19      | T26307A4    | 17      | 0.5141     | 0.1U         | 0.50           | 103      | 50                                    |        |
| Selenium      | 85367         | 2        | T26307A4      | 47      | T26307A4    | 45      | 0.3028     | 0.1U         | 0.50           | 121      | 50                                    |        |
| Silver        | 85367         | 1        | T26307A4      | 19      | T26307A4    | 17      | 0.1301     | 0.05U        | 0.100          | 130      | 50                                    |        |

### FORM5/FORM7 SPIKE RECOVERY DATA

PREP BATCH: 85367

Instrument Type: ICP/HG

Analytical Method(s):6010D/200.7/7470A/7471B/245.1

ICP units in ppm, ICPMS and Hg in ppb

| TxtQcType: PS | Ma | trix: TCLP |       | Sample      | eID: AD | 19560-001 |          |           |       |             |        |
|---------------|----|------------|-------|-------------|---------|-----------|----------|-----------|-------|-------------|--------|
| Analyte       | DF | Data File  | Seq#: | NS Data Fil | Seq#    | Spk Conc: | NS Conc: | Spk Added | Recov | Qual Lo Lim | Hi Lim |
| Arsenic       | 1  | T26307A4   | 20    | T26307A4    | 17      | 0.5149    | 0.1U     | 0.5       | 103   | 75          | 125    |
| Barium        | 1  | T26307A4   | 20    | T26307A4    | 17      | 0.7944    | 0.3334   | 0.5       | 92    | 75          | 125    |
| Cadmium       | 1  | T26307A4   | 20    | T26307A4    | 17      | 0.5172    | 0.05U    | 0.5       | 103   | 75          | 125    |
| Chromium      | 1  | T26307B4   | 20    | T26307B4    | 17      | 0.4845    | 0.1U     | 0.5       | 97    | 75          | 125    |
| Lead          | 1  | T26307A4   | 20    | T26307A4    | 17      | 0.4780    | 0.05U    | 0.5       | 96    | 75          | 125    |
| Nickel        | 1  | T26307A4   | 20    | T26307A4    | 17      | 0.4939    | 0.1U     | 0.5       | 99    | 75          | 125    |
| Selenium      | 2  | T26307A4   | 48    | T26307A4    | 45      | 0.5880    | 0.1U     | 0.5       | 118   | 75          | 125    |
| Silver        | 1  | T26307A4   | 20    | T26307A4    | 17      | 0.1074    | 0.05U    | 0.1       | 107   | 75          | 125    |

### FORM6/FORM9

#### RPD/%Difference Data PREP BATCH: 85367

Instrument Type: ICP/HG

Analytical Method(s):6010D/200.7/7470A/7471B/245.1

ICP units in ppm, ICPMS and Hg in ppb

| Analytical Met | 1100(8).00 10L | 7/200.7/14/0A | 7747 16/24 | J. I     |               | J'       | CP units in ppm, i | CPINIS and In | 3 III bbo |
|----------------|----------------|---------------|------------|----------|---------------|----------|--------------------|---------------|-----------|
| TxtQcType: I   | CSMR           | Matrix:       | TCLP       | San      | npleID: LCSW  | MR 85367 |                    |               |           |
| Analyte        | BatchId        | Data File     | Seq#:      | NS File  | Seq#          | Result 1 | Result 2           | RPD           | Limi      |
| Arsenic        | 85367          | T26307A4      | 16         | T26307A4 | 15            | 0.5023   | 0.5176             | 3             | 20        |
| Barium         | 85367          | T26307A4      | 16         | T26307A4 | 15            | 0.5268   | 0.5311             | .8            | 20        |
| Cadmium        | 85367          | T26307A4      | 16         | T26307A4 | 15            | 0.5192   | 0.5229             | .73           | 20        |
| Chromium       | 85367          | T26307B4      | 16         | T26307B4 | 15            | 0.5433   | 0.5446             | .23           | 20        |
| Lead           | 85367          | T26307A4      | 16         | T26307A4 | 15            | 0.5341   | 0.5415             | 1.4           | 20        |
| Mercury        | 85367          | H26307T       | 13         | H26307T  | 12            | 10.8500  | 10.9100            | .55           | 20        |
| Nickel         | 85367          | T26307A4      | 16         | T26307A4 | 15            | 0.5346   | 0.5395             | .91           | 20        |
| Selenium       | 85367          | T26307A4      | 16         | T26307A4 | 15            | 0.5440   | 0.5562             | 2.2           | 20        |
| Silver         | 85367          | T26307A4      | 16         | T26307A4 | 15            | 0.1057   | 0.1064             | .67           | 20        |
| TxtQcType: I   | MR             | Matrix:       | TCLP       | San      | npleID: AD195 | 560-001  |                    |               |           |
| Analyte        | Batchld        | Data File     | Seq#:      | NS File  | Seq#          | Result 1 | Result 2           | RPD           | Limi      |
| Arsenic        | 85367          | T26307A4      | 18         | T26307A4 | 17            | 0.1U     | 0.1U               |               | 20        |
| Barium         | 85367          | T26307A4      | 18         | T26307A4 | 17            | 0.3305   | 0.3334             | 0.86          | 20        |
| Cadmium        | 85367          | T26307A4      | 18         | T26307A4 | 17            | 0.05U    | 0.05U              |               | 20        |
| Chromium       | 85367          | T26307B4      | 18         | T26307B4 | 17            | 0.1U     | 0.1U               |               | 20        |
| Lead           | 85367          | T26307A4      | 18         | T26307A4 | 17            | 0.05U    | 0.05U              |               | 20        |
| Мегсигу        | 85367          | H26307T       | 15         | H26307T  | 14            | 0.50U    | 0.50U              |               | 20        |
| Nickel         | 85367          | T26307A4      | 18         | T26307A4 | 17            | 0.1U     | 0.1U               |               | 20        |
| Selenium       | 85367          | T26307A4      | 46         | T26307A4 | 45            | 0.1U     | 0.1U               |               | 20        |
| Silver         | 85367          | T26307A4      | 18         | T26307A4 | 17            | 0.05U    | 0.05U              | ***           | 20        |
| TxtQcType: \$  | SD             | Matrix:       | TCLP       | San      | npleID: AD195 | 60-001   |                    |               |           |
| Analyte        | Batchid        | Data File     | Seq#:      | NS File  | Seq# DF       | Result 1 | Result 2           | %Diff         | Limi      |
| Arsenic        | 85367          | T26307A4      | 21         | T26307A4 | 17 5          | -0.0010  | -0.0196            |               | 10        |
| Barium         | 85367          | T26307A4      | 21         | T26307A4 | 17 5          | 0.0498   | 0.3334             | 25 a          | 10        |
| Cadmium        | 85367          | T26307A4      | 21         | T26307A4 | 17 5          | -0.0005  | 0.0009             |               | 10        |
| Chromium       | 85367          | T26307B4      | 21         | T26307B4 | 17 5          | 0.0004   | 0.0012             |               | 10        |
| Lead           | 85367          | T26307A4      | 21         | T26307A4 | 17 5          | -0.0034  | -0.0117            |               | 10        |
| Nickel         | 85367          | T26307A4      | 21         | T26307A4 | 17 5          | -0.0046  | 0.0096             |               | 10        |
| Selenium       | 85367          | T26307A4      | 49         | T26307A4 | 45 5          | -0.0144  | 0.0213             |               | 10        |
| Silver         | 85367          | T26307A4      | 21         | T26307A4 | 17 5          | 0.0026   | 0.0155             | 15 c          |           |

Hampton-Clarke

#### **ICP SAMPLE PREPARATION LOG**

|          | ANALY<br>Batch No                       | TICAL           | MET      | HOD:                                             | 3010A            | 3005                                             | A 305                                             | 0B 2          | 200.7/2          | 8.00                                             | OT                  | HER       |          |               |                                       |   |
|----------|-----------------------------------------|-----------------|----------|--------------------------------------------------|------------------|--------------------------------------------------|---------------------------------------------------|---------------|------------------|--------------------------------------------------|---------------------|-----------|----------|---------------|---------------------------------------|---|
|          | Batch No                                | <u> </u>        | 6:       | 50 F                                             |                  |                                                  | A                                                 | naiys         | <b>:</b> :       |                                                  | W.                  | <u>S'</u> |          |               |                                       |   |
|          | QC Numl                                 |                 |          | 67                                               |                  |                                                  |                                                   | rep D         |                  |                                                  | 3/1                 | 7/2       | 20       |               |                                       |   |
|          | Matrix:                                 |                 | CLI      | ρ                                                |                  |                                                  | R                                                 | eview         | ed By:           |                                                  | <i>/</i> / <u>\</u> |           |          |               |                                       |   |
|          |                                         |                 |          |                                                  |                  |                                                  |                                                   |               |                  |                                                  |                     |           |          | <del>,</del>  |                                       |   |
|          | L                                       | AB ID#          |          |                                                  | ICP              |                                                  |                                                   | ICP-I         |                  | "                                                | T                   | CLP       |          | COMMI         | ENTS                                  |   |
|          |                                         |                 |          | Initia                                           | 1 17             | inal                                             |                                                   |               | ry dil)<br>Final |                                                  | ff                  | т/        | CLP      |               |                                       | _ |
| ŀ        | Method b                                | lonk            |          |                                                  |                  |                                                  | Aliq                                              | uot           | rmai             | <del>- </del>                                    | 111                 | 10        | LP       | -             |                                       | _ |
| ŀ        | LCS                                     | Ташк            |          | Sont                                             | <u> </u>         | oml_                                             | <del> </del>                                      |               |                  | $\dashv$                                         |                     |           |          | <u> </u>      |                                       |   |
| ŀ        | LCSD                                    |                 |          | <del>                                     </del> |                  | +                                                |                                                   |               |                  |                                                  |                     |           |          |               |                                       | - |
| ŀ        |                                         | 560-c           | -1       | <del>                                     </del> |                  | +                                                | <del></del>                                       |               |                  | V-33                                             | 5534                | 1001      | 60-001   | Samples are   | combined prior to                     | _ |
| ŀ        | 1. Analytica                            |                 | <u> </u> | <del>                                     </del> |                  | +                                                | <del>                                     </del>  |               |                  | 1,55                                             | 1334                | 1336      | 1        | analysis to p | provide extra samp                    |   |
| }        | MR                                      |                 | _1       | <del>                                     </del> |                  | +                                                | <del> </del>                                      |               |                  |                                                  |                     |           | +-       | volume for    | analysis                              |   |
| ŀ        | MS                                      | 1 -0            | 1        | - 1/                                             | -                | $t^-$                                            |                                                   | -             |                  |                                                  |                     |           | 1.       | Ralance       | used:N/A                              |   |
| ŀ        | MSD -                                   | V -00           | 21       |                                                  |                  | <u>~</u>                                         |                                                   |               | *                | 1 -                                              |                     |           | <u> </u> |               | used: 149, 15.                        | _ |
| ł        |                                         | 82-00           | . 4      | 502                                              | 0 3              | in l                                             | <del>                                      </del> |               |                  | V 73                                             | 74                  | 1956      | 0.001    | Tipettes      | uscu. 149, 13.                        | 2 |
| 1        | 3. 1951                                 | 87-00           | <u> </u> | 002                                              | <del>*   -</del> | my.                                              | <del> </del>                                      |               |                  | V-JJ                                             | 1                   | 1236      | 1        | Hot Bloc      | k used: 9                             |   |
| ŀ        |                                         | 75-00           |          | <del>                                     </del> |                  | +-                                               |                                                   | $\dashv$      |                  |                                                  | 1-                  |           | +        | Hot bloc      | a useu. 9                             | _ |
| }        |                                         |                 |          | <del>  </del>                                    |                  | +                                                |                                                   | -             | · · · ·          | ╅                                                |                     |           | $\vdash$ |               |                                       |   |
| +        |                                         | 95-01<br>V -014 |          | <del>  </del>                                    |                  | +                                                |                                                   | $\neg +$      | <u></u>          | +                                                |                     | . 4       |          |               |                                       |   |
| ŀ        |                                         | 96-00           | 1        |                                                  |                  | +-                                               | -                                                 |               |                  | <del>                                     </del> |                     |           |          |               | <del></del>                           | _ |
| 1        |                                         | 05-00           |          | <del>    </del> ,                                |                  | +-                                               |                                                   |               |                  |                                                  | 36139               |           |          |               | <del></del>                           |   |
| ŀ        | 9.                                      |                 |          | 1000                                             | 2   .            | <del> </del>                                     |                                                   | -+            |                  | 142.3                                            | 36/37               |           |          |               |                                       | _ |
|          |                                         | 1-00.<br>21-001 | <i>)</i> | 50m                                              | 0                | <del>                                     </del> | <u> </u>                                          |               |                  | +                                                |                     |           |          |               |                                       | _ |
| <u></u>  | 11.                                     |                 |          | 307                                              | <del>*</del>     | -                                                |                                                   | $\overline{}$ | · · · ·          | +-                                               | -                   |           | <u> </u> |               |                                       |   |
| <u></u>  | 12.                                     | -00-            |          |                                                  |                  |                                                  |                                                   | -             |                  | + 1                                              | ,                   |           |          | -             | <del></del>                           |   |
| ŀ        | 13. Ef, V.                              | 1 -00 <u>.</u>  | 24 10/1  |                                                  |                  |                                                  |                                                   |               |                  | ╅                                                |                     | <u></u>   |          |               |                                       | _ |
| ŀ        | 14. CF, V                               | 32613           | aw       | 1                                                | <del>  J</del>   | ,                                                |                                                   | _             |                  | +                                                |                     |           |          |               |                                       |   |
|          | 15.                                     | 2,3610          | 7 -      |                                                  |                  | -                                                | <del> </del>                                      |               |                  |                                                  |                     |           |          |               |                                       | _ |
| ŀ        | 16.                                     |                 |          |                                                  |                  |                                                  |                                                   | -             |                  |                                                  | $\neg \neg$         |           |          |               |                                       | _ |
| ŀ        | 17.                                     | -               |          |                                                  |                  |                                                  |                                                   | $\neg +$      |                  |                                                  |                     |           |          |               | P                                     | _ |
| <u> </u> |                                         |                 |          |                                                  | <del>-  </del>   | _                                                |                                                   |               |                  |                                                  |                     |           |          |               | · · · · · · · · · · · · · · · · · · · | _ |
|          |                                         |                 |          |                                                  | <del></del>      |                                                  | <b></b>                                           |               |                  |                                                  |                     |           |          |               |                                       |   |
| Ì        |                                         |                 |          | <u> </u>                                         | _                | -                                                |                                                   |               |                  |                                                  |                     |           |          |               |                                       | _ |
| f        | 18.   19.   20.                         |                 | _        |                                                  |                  |                                                  |                                                   |               |                  |                                                  |                     |           |          |               |                                       |   |
| T I      |                                         |                 |          |                                                  |                  |                                                  |                                                   |               |                  |                                                  |                     |           |          |               |                                       |   |
|          | Hot Plate                               | Temperat        | ure: .   | 94.7                                             | C                | 90-9                                             | 5° C) S                                           | Start T       | ime: !!          | :00a                                             | m                   | Eı        | nd Tin   | ne: 2:00      | Pm                                    | _ |
|          |                                         | Volume          |          | Lot#                                             |                  | • —                                              | <u> </u>                                          |               |                  |                                                  |                     |           |          |               |                                       | ] |
|          | Volume   Lot #   Acid   Vol   Lot#   mL | <del> </del> -  | -        |                                                  |                  |                                                  |                                                   |               |                  |                                                  |                     |           |          |               |                                       |   |
|          |                                         |                 | ┨        |                                                  |                  |                                                  |                                                   |               |                  |                                                  |                     |           |          |               |                                       |   |
|          |                                         | V-3310027       | ┨        |                                                  |                  |                                                  |                                                   |               |                  |                                                  |                     |           |          |               |                                       |   |
|          |                                         | J J. A.         |          | <del>۱۱۲۴ ۲۱۱۲ کا</del>                          | 35026            |                                                  |                                                   | †             | +                |                                                  | $\dashv$            |           |          |               |                                       | 1 |
|          |                                         | ed By           |          |                                                  |                  | _ Dat                                            | e (0/                                             | 7/2           | 0                | -                                                |                     |           |          |               | <u> </u>                              |   |
|          | Received E                              |                 | (        | M                                                |                  | _ Dat                                            | e_ <i>[0]</i>                                     | 1977          | 4020             |                                                  | ,                   |           |          |               |                                       |   |
| •        | T:\QC\FORM                              | IS/LOGBOOF      | C FORM   | METAL                                            | S\ICP samp       | le prep l                                        | og 2018                                           | DOD.DO        | oc               |                                                  |                     |           |          |               |                                       |   |

#### HG SAMPLE PREPARATION LOG

|                                    | ` <b>¬</b>                  | 7471B OTHER_                          |                     | Amelian A         | £ C                       |
|------------------------------------|-----------------------------|---------------------------------------|---------------------|-------------------|---------------------------|
| Batch No.:* 2630                   |                             |                                       |                     | Analyst:          | <u>/</u>                  |
| QC Number: 85367                   |                             |                                       |                     | Prep Date: 10     | 17/20<br>BL               |
| Matrix: TCLP                       |                             |                                       |                     | Review By:        | BL                        |
| LAB ID#                            | MI                          | ERCURY                                |                     |                   |                           |
|                                    | INITIAL                     | FINAL                                 | COMMENTS            | STANDARDS         |                           |
| Method blank                       | 25 ml                       | 25ml                                  |                     | CAL CURVE BLK 0p  | pb v. 336260              |
| ıcs                                |                             |                                       |                     |                   |                           |
| CSD                                |                             |                                       |                     | STD 0.2 ppb V-    | 336261                    |
| AD 19560-001                       |                             |                                       |                     | STD 0.5 ppb V-    | 336262                    |
| MR -001                            |                             |                                       |                     | STD 1.0 ppb V-    | 336263                    |
| us V -001                          | 1                           |                                       |                     | STD 2.0 ppb V-    | 336264                    |
| MSD                                |                             | _                                     |                     | STD 5.0 ppb V-    | 336265                    |
| 19582-001                          | 25al                        | 25 nl                                 |                     | STD 10.0 ppb V-   | 3 3 6 2 6 6               |
| 19587-007                          |                             |                                       |                     | STD 25.0 ppb V-   | 336267                    |
| 19575-002                          |                             |                                       | <u> </u>            | ICV 10.0 ppb V-   | 3 36258                   |
| 19595-013                          |                             |                                       |                     | CCV 20.0 ppb V-   | 3 36 2 5 <i>9</i>         |
| V -014                             |                             |                                       |                     |                   |                           |
| 19596-001                          |                             |                                       |                     |                   |                           |
| 19605-002                          | V                           |                                       |                     | Balance used:     | 3                         |
| 1-003                              | 5nl                         |                                       |                     | Pipettes used: 15 | 1,143                     |
| ° 19601-001                        | 25ml                        |                                       |                     |                   |                           |
| 1 1 - 002                          |                             |                                       |                     | Hot Block used: 6 | >                         |
| $^{2}$ $\sqrt{-003}$               |                             |                                       |                     |                   |                           |
| 3 EF. V- 335534 6/6                |                             |                                       |                     |                   |                           |
| 46F. V- 336139 60/6                | $\downarrow$                |                                       |                     |                   |                           |
| 5                                  |                             |                                       |                     |                   |                           |
| 6                                  |                             |                                       |                     |                   |                           |
| 7                                  |                             |                                       |                     |                   |                           |
| 8                                  |                             |                                       |                     |                   |                           |
| 9                                  |                             |                                       |                     |                   |                           |
| 0                                  |                             |                                       |                     |                   |                           |
|                                    |                             |                                       |                     |                   |                           |
|                                    | Volume (mL)                 | Acid                                  | Volume (mL)         | Lot#              | **Block Tamp * C          |
| Lot Numbers                        |                             | HNO3                                  |                     |                   | 923                       |
| mnO <sub>4</sub> : V- 335298       | 3.45                        | HCI                                   | 0.625               | v. 13427          | Time In Block: ( 1, - 3   |
| 3820: V- 324154<br>HJOH: V- 334567 | 2.0                         | H2SO4                                 | 120                 | V-13444           | Time Out of Block:        |
| . 40 () 61                         | <u> </u>                    | Aque Regia                            | 1-4-                | V. 7779           | -                         |
| pike Volume & Lot #                | 11717                       | · · · · · · · · · · · · · · · · · · · |                     | 0:036             | **Temperature             |
| lics v- 3.5                        | 6217 <sub>0.150</sub> (023) | nl Start tir                          | me: 10:00° End Time | : <u>1.00pm</u>   | 245.1 / 7470A: 90-<br>95C |
| 1 MS v- 33                         | 62170.250 ml                |                                       |                     |                   | 7471B : 92-98C            |
| A /                                | 1803                        |                                       |                     |                   |                           |

Run Log
Data File: W:\METALS.FRM\CPDATA\New\PEICP4A\T26307A4.txt

Analysis Date: 10/07/20

Instrument: PEICP4A

| Sample Id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Qc<br>Type | Time  |               | Test<br>Group         | Rept<br>Limit<br>Matrix | Qc<br>Matrix         | Anal<br>Metho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prep<br>d Batch         | Comments:              | Stds:                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|---------------|-----------------------|-------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|-----------------------------------------------|
| CALBLK V-333667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ····comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania de la comorania | CAL        | 15:27 | eriosoni<br>1 | er inskriver er er er | Carry Carry             | C. SPANSON STOR      | en and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of | THE REPORT OF THE PARTY |                        | V-333667(ICB/CCB)                             |
| CALST2 V-333672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CAL        | 15:31 | 2             |                       |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                        | V-333672(LLICV/CCV leachate)                  |
| CALST3 V-336234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CAL        | 15:35 | 3             |                       |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                        | V-336234(ICS3 · Middle Std)                   |
| CALST4 V-336235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CAL        | 15:39 | 4             |                       |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                        | V-336235(ICS4 High std)                       |
| ICV V-336236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ICV        | 15:44 | 5             |                       |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | Cr FAILED              | V-336236(CCV)                                 |
| ICB V-333667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ICB        | 15:48 | 6             |                       |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 0,7,7,000              | V-333667(ICB/CCB)                             |
| LRS V-335291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LRS        | 15:52 | 7             | METALS-TCLP           | TCI D                   | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   |                        | V-335291(LRS 1/2 Fe)                          |
| ICS3 V-336234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ICS        | 15:56 | 8             | METALS-TCEP           | ICLF                    | ICLF                 | 3 W 040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63307                   |                        | V-336234(ICS3 - Middle Std)                   |
| RINSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        | 16:00 | 9             |                       | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   |                        | 0                                             |
| LLICV V-333672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LLICV      | 16:04 | 10            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Be FAILED              | V-333672(LLICV/CCV leachate)                  |
| ICSA V-336303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ICSA       | 16:04 | 11            | METALS-TCLF           | ICLF                    | ICLF                 | 3 W 040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03307                   | DE L'ALLE              | V-336303(ICSA)                                |
| CCV V-336236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCV        | 16:13 | 12            |                       |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                        | V-336236(CCV)                                 |
| CCB V-333667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCB        | 16:17 | 13            |                       |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                        | V-333667(ICB/CCB)                             |
| MB 85367 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ <del></del> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB         | 16:20 | 14            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   |                        | ()                                            |
| LCSW 85367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LCS        | 16:24 | 15            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367<br>85367          |                        | 0                                             |
| LCSW MR 85367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LCS        | 16:28 | 16            |                       | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367<br>85367          |                        | 0                                             |
| AD19560-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        |       |               | METALS-TCLP           |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | Se.Zn NOT REPORTED>LR  | 0                                             |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 16:32 | 17            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Se,Zn NOT REPORTED>LR  | 0                                             |
| AD19560-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MR         | 16:36 | 18            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   |                        |                                               |
| AD19560-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MS         | 16:40 | 19            | METALS-TCLP           | TCLP                    | TCLP                 | SW846<br>SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85367                   | Se,Zn NOT REPORTED>LR  |                                               |
| AD19560-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PS<br>CD   | 16:45 | 20            | METALS-TCLP           | TCLP                    | TCLP                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85367                   | Se,Zn NOT REPORTED>LR  | 0                                             |
| AD19560-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SD         | 16:50 | 21            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Se,Zn NOT REPORTED>LR  | O V 224424/EE L WARRIES                       |
| EF-V-335534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EF         | 16:54 | 22            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   |                        | V-335534(EF-1 WARNING) V-336139(EF-1 WARNING) |
| EF-V-336139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EF         | 16:58 | 23            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   |                        | <del></del>                                   |
| CCV V-336236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCV        | 17:02 | 24            |                       |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                        | V-336236(CCV)                                 |
| CCB V-333667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CCB        | 17:06 | 25            | 1 CTC 1 C TC 1 D      |                         | <b>T</b> C! <b>D</b> | 01110.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 040/5                   | C. 7. NOT REPORTED: LP | V-333667(ICB/CCB)                             |
| AD19582-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        | 17:10 | 26            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Se,Zn NOT REPORTED>LR  |                                               |
| AD19587-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        | 17:14 | 27            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Zn NOT REPORTED>LR     | 0                                             |
| AD19575-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        | 17:18 | 28            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   |                        |                                               |
| AD19595-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SMP        | 17:22 | 29            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   |                        | 0                                             |
| AD19595-014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        | 17:26 | 30            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | 7 NOT DEBODEON / D     | 0                                             |
| AD19596-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        | 17:30 | 31            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Zn NOT REPORTED>LR     | 0                                             |
| CCV V-336236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCV        | 17:35 | 32            |                       |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                        | V-336236(CCV)                                 |
| CCB V-333667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CCB        | 17:39 | 33            |                       |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                        | V-333667(ICB/CCB)                             |
| AD19605-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        | 17:43 | 34            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   |                        | 0                                             |
| AD19605-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        | 17:47 | 3.5           | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   |                        | 0                                             |
| AD19601-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        | 17:51 | 36            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Pb NOT REPORTED>LR     |                                               |
| AD19601-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        | 17:55 | 37            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   |                        | 0                                             |
| AD19601-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        | 18:00 | 38            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Pb NOT REPORTED>LR     | 0                                             |
| AD19601-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        | 18:04 | 39            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Pb REPORTED            | 0                                             |
| AD19601-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA         | 18:08 | 40            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | MISSED CUP             | 0                                             |
| AD19601-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>SMP</u> | 18:12 | 41            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Pb REPORTED            | 0                                             |
| AD19582-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        | 18:16 | 42            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Zn,Se REPORTED         | 0                                             |
| CCV V-336236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCV        | 18:20 | 43            |                       |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                        | V-336236(CCV)                                 |
| CCB V-333667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCB        | 18:24 | 44            |                       |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                        | V-333667(ICB/CCB)                             |
| AD19560-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMP        | 18:28 | 45            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Zn,Se REPORTED         | 0                                             |
| AD19560-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MR         | 18:32 | 46            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Zn,Se REPORTED         | 0                                             |
| AD19560-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MS         | 18:37 | 47            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Zn, Se REPORTED        | 0                                             |
| AD19560-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PS         | 18:41 | 48            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Zn,Se REPORTED         | 0                                             |
| AD19560-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SD         | 18:45 | 49            | METALS-TCLP           | TCLP                    | TCLP                 | SW846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85367                   | Zn,Se REPORTED         | 0                                             |
| CCV V-336236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCV        | 18:49 | 50            |                       |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                        | V-336236(CCV)                                 |
| CCB V-333667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ССВ        | 18:53 | 51            |                       |                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                        | V-333667(ICB/CCB)                             |

| Comments/Reviewedby:                         |      |   |      |
|----------------------------------------------|------|---|------|
| carmela<br>192.168.1.89 10/8/2020 6:24:45 AM | <br> |   | <br> |
| OK                                           | <br> | , | <br> |

Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor:\_

Standard/Batch/SnCI2 Lot #:

ALL ELEMENTS REPORTED
Cr,Be NOT REPORTED

Run Log
Data File: W:\METALS.FRM\CPDATA\New\PEICP4A\T26307B4.txt

Analysis Date: 10/07/20

**Instrument: PEICP4A** 

|                 |               | Qc    |       |          | Test            | Rept<br>Limit | Qc     | Anal     | Prep    | 0                    | Otdo                         |
|-----------------|---------------|-------|-------|----------|-----------------|---------------|--------|----------|---------|----------------------|------------------------------|
| Sample Id       | DF            | Туре  | Time  | #        | Group           | Matrix        | Matrix | Method   | d Batch | Comments:            | Stds:                        |
| CALBLK V-333667 | 1             | CAL   | 18:56 | 1        |                 |               |        |          |         |                      | V-333667(ICB/CCB)            |
| CALST2 V-333672 | 1             | CAL   | 19:00 | 2        |                 |               |        |          |         |                      | V-333672(LLICV/CCV leachate) |
| CALST3 V-336234 | ŧ             | CAL   | 19:04 | 3        |                 |               |        |          |         |                      | V-336234(ICS3 - Middle Std)  |
| CALST4 V-336235 | 1             | CAL   | 19:08 | 4        |                 |               |        |          |         |                      | V-336235(ICS4 High std)      |
| ICV V-336236    | 1             | ICV   | 19:12 | 5        |                 |               |        |          |         |                      | V-336236(CCV)                |
| ICB V-333667    | 1             | ICB   | 19:16 | 6        |                 |               |        |          |         |                      | V-333667(ICB/CCB)            |
| LRS V-335291    | 1             | LRS   | 19:20 | 7        |                 | TCLP          | TCLP   | SW846    | 85367   |                      | V-335291(LRS 1/2 Fe)         |
| ICS3 V-336234   | 1             | ICS   | 19:25 | 8        |                 |               |        |          |         |                      | V-336234(ICS3 - Middle Std)  |
| RINSE           | 1             | SMP   | 19:29 | 9        |                 | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| LLICV V-333672  | 1             | LLICV | 19:33 | 10       |                 | TCLP          | TCLP   | SW846    | 85367   |                      | V-333672(LLICV/CCV leachate) |
| ICSA V-336303   | 1             | ICSA  | 19:37 | 11       |                 |               |        |          |         |                      | V-336303(ICSA)               |
| CCV V-336236    | 1             | CCV   | 19:41 | 12       |                 |               |        |          |         |                      | V-336236(CCV)                |
| CCB V-333667    | 1             | ССВ   | 19:45 | 13       |                 |               |        |          |         |                      | V-333667(ICB/CCB)            |
| MB 85367 (1)    | 1             | MB    | 19:49 | 14       |                 | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| LCSW 85367      | 1             | LCS   | 19:53 | 15       |                 | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| LCSW MR 85367   | 1             | LCS   | 19:57 | 16       |                 | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| AD19560-001     | 1             | SMP   | 20:01 | 17       | METALS-TCLP     | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| AD19560-001     | I             | MIR   | 20:05 | 18       | METALS-TCLP     | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| AD19560-001     | i             | MS    | 20:09 | 19       | METALS-TCLP     | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| AD19560-001     | i             | PS    | 20:13 | 20       | METALS-TCLP     | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| AD19560-001     | 5             | SD    | 20:17 | 21       | METALS-TCLP     |               | TCLP   | SW846    | 85367   | <del></del>          | 0                            |
| EF-V-335534     | l             | EF    | 20:22 | 22       |                 | TCLP          | TCLP   | SW846    | 85367   | <del></del>          | V-335534(EF-I WARNING)       |
| EF-V-336139     | i             | EF    | 20:25 | 23       |                 | TCLP          | TCLP   | SW846    | 85367   |                      | V-336139(EF-1 WARNING)       |
| CCV V-336236    | 1             | CCV   | 20:29 | 24       |                 |               |        | • • . •  | ****    |                      | V-336236(CCV)                |
| CCB V-333667    | 1             | CCB   | 20:33 | 25       |                 |               |        |          |         |                      | V-333667(ICB/CCB)            |
| AD19582-001     | 1             | SMP   | 20:37 | 26       | METALS-TCLP     | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| AD19587-007     | i             | SMP   | 20:41 | 27       | METALS-TCLP     | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| AD19575-002     | i             | SMP   | 20:45 | 28       | METALS-TCLP     | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| AD19595-013     | i             | SMP   | 20:49 | 29       | METALS-TCLP     | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| AD19595-014     | <u>'</u>      | SMP   | 20:53 | 30       | METALS-TCLP     | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| AD19596-001     | i             | SMP   | 20:57 | 31       | METALS-TCLP     |               | TCLP   | SW846    | 85367   |                      | <u> </u>                     |
| CCV V-336236    | i             | CCV   | 21:01 | 32       | WETT CO-TCE     | · CD:         |        | 311040   | 0,50,   |                      | V-336236(CCV)                |
| CCB V-333667    | i             | CCB   | 21:05 | 33       |                 |               |        |          |         |                      | V-333667(ICB/CCB)            |
| AD19605-002     | _ <del></del> | SMP   | 21:09 | 34       | METALS-TCLP     | TCLP          | TCLP   | SW846    | 85367   | ·                    | 0                            |
| AD19605-003     | i             | SMP   | 21:14 | 35       | METALS-TCLP     | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| AD19601-001     | i             | SMP   | 21:17 | 36       | METALS-TCLP     | TCLP          | TCLP   | SW846    | 85367   |                      | 0                            |
| AD19601-002     | 1             | SMP   | 21:17 | 30<br>37 | METALS-TCLP     | TCLP          | TCLP   | SW846    |         | Cr NOT REPORTED>LR   | 0                            |
| AD19601-002     |               | SMP   | 21:27 | 38       | METALS-TCLP     | TCLP          | TCLP   | SW846    | 85367   | or not the output by | 0                            |
| CCV V-336236    |               | CCV   | 21:27 | 39       | WILL TALLS TOLL | ICLF          | ICLF   | 3 17 040 | 0,307   |                      | V-336236(CCV)                |
|                 | - 1           | CCB   |       |          |                 |               |        |          |         |                      | V-333667(ICB/CCB)            |
| CCB V-333667    | •             | CCB   | 21:35 | 40       |                 |               |        |          |         |                      | V-33300 ((CB/CCB)            |

| Comments/Reviewedby:  carmela 192.168.1.89 10/8/2020 6:53:09 AM | Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor: |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OK<br>Cr. Be REPORTED                                           | Standard/Batch/SnCI2 Lot #:                                                                                                                                                   |

Page 1 of 1

### Run Log

Data File: W:\METALS.FRM\ICPDATA\New\HGCV3A\H26307T.txt

Analysis Date: 10/08/20

Instrument: HGCV3A

| Sample Id         | <b>DF</b> | Qc<br>Type | Time  |    | Test<br>Group | Rept<br>Limit<br>Matrix | Qc<br>Matrix                            | Anal<br>Method | Prep<br>IBatch | Comments: | Stds:                 |
|-------------------|-----------|------------|-------|----|---------------|-------------------------|-----------------------------------------|----------------|----------------|-----------|-----------------------|
| Calibration Blank | l         | CAL        | 12:23 | 1  |               |                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                |                |           | 0                     |
| 2 PPB             | 1         | CAL        | 12:24 | 2  |               |                         |                                         |                |                |           | 0                     |
| .5 PPB            | 1         | CAL        | 12:26 | 3  |               |                         |                                         |                |                |           | 0                     |
| 1 PPB             | 1         | CAL        | 12:27 | 4  |               |                         |                                         |                |                |           | 0                     |
| 2 PPB             | - 1       | CAL        | 12:28 | 5  |               |                         |                                         |                |                |           | ()                    |
| 5 PPB             | 1         | CAL        | 12:30 | 6  |               |                         |                                         |                |                |           | 0                     |
| to PPB            | 1         | CAL        | 12:31 | 7  |               |                         |                                         |                |                | -         | 0                     |
| 35 PPB            | 1         | CAL        | 12:33 | 8  |               |                         |                                         |                |                |           | 0                     |
| ICV (2)           | 1         | ICV        | 12:35 | 9  |               |                         |                                         |                |                |           | , O                   |
| ICB               | 1         | ICB        | 12:36 | 10 |               |                         |                                         |                |                |           | 0                     |
| MB 85367 (1)      | 1         | MB         | 12:38 | 11 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| LCS 85367         | ı         | LCS        | 12:39 | 12 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| LCS 85367 MR      | 1         | LCS        | 12:41 | 13 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| AD19560-001       | 1         | SMP        | 12:42 | 14 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| AD19560-001       | 1         | MIR        | 12:44 | 15 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| AD19560-001       | ı         | MS         | 12:45 | 16 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| AD19582-001       | 1         | SMP        | 12:47 | 17 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| AD19587-007       | 1         | SMP        | 12:48 | 18 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| AD19575-002       | 1         | SMP        | 12:49 | 19 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| AD19595-013       | 1         | SMP        | 12:51 | 20 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| CCV               | 1         | CCV        | 12:52 | 21 |               |                         |                                         |                |                |           | 0                     |
| CCB               | 1         | ССВ        | 12:54 | 22 |               |                         |                                         |                |                |           | 0                     |
| AD19595-014       | 1         | SMP        | 12:55 | 23 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| AD19596-001       | 1         | SMP        | 12:57 | 24 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| AD19605-002       | 1         | SMP        | 12:58 | 25 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| AD19605-003       | l         | SMP        | 12:59 | 26 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| AD19601-001       | 1         | SMP        | 13:01 | 27 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| AD19601-002       | 1         | SMP        | 13:02 | 28 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| AD19601-003       | 11        | SMP        | 13:03 | 29 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | 0                     |
| FF V-335534       | 1         | EF         | 13:04 | 30 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | V-335534(EF-1 WARNING |
| EF V-336139       | 1         | EF         | 13:06 | 31 | HG-TCLP       | TCLP                    | TCLP                                    | SW846          | 85367          |           | V-336139(EF-1 WARNING |
| CCV               | 1         | CCV        | 13:07 | 32 |               |                         |                                         |                |                |           | 0                     |
| CCB               | ı         | CCB        | 13:09 | 33 |               |                         |                                         |                |                |           | 0                     |

| Commen | s/Rev | iewedby: |
|--------|-------|----------|
|        |       |          |

bransaw 192 168 1 120 10/8/2020 1:23:59 PM

OK.

e\_\_\_\_ 18/20

Note: ICP-MS dilution factor column does not reflect dilution which is performed prior to analysis. Secondary analytical dilution is documented on prep log. Dilution Factor:\_\_\_\_\_\_

Standard/Batch/SnCl2 Lot #:

v-336364

Wet Chemistry Data

# VERITECH Wet Chem Form1 Analysis Summary % Solids

TestGroupName: % Solids SM2540G

TestGroup: %SOLIDS

Project #: 0100230

| Lab#        | Client SampleID  | Matrix         | Dilution: | Result | Units:  | RL | Prep Date | Analysis<br>Date | Received<br>Date | Collect<br>Date |
|-------------|------------------|----------------|-----------|--------|---------|----|-----------|------------------|------------------|-----------------|
| AD19595-001 | HSI-SB-05(4.5-5) | Soil/Terracore | 1         | 86     | Percent |    |           | 10/05/20         | 10/02/20         | 09/30/20        |
| AD19595-002 | HSI-SB-06(4.5-5) | Soil/Terracore | 1         | 85     | Percent |    |           | 10/05/20         | 10/02/20         | 09/30/20        |
| AD19595-003 | HSI-SB-07(4.5-5) | Soil/Terracore | 1         | 86     | Percent |    |           | 10/05/20         | 10/02/20         | 09/30/20        |
| AD19595-004 | HSI-SB-08(3.5-4) | Soil/Terracore | 1         | 87     | Percent |    |           | 10/05/20         | 10/02/20         | 10/01/20        |
| AD19595-005 | HSI-SB-08(8-8.5) | Soil/Terracore | 1         | 82     | Percent |    |           | 10/05/20         | 10/02/20         | 10/01/20        |
| AD19595-006 | HSI-SB-08(12-13) | Soil/Terracore | 1         | 76     | Percent |    |           | 10/05/20         | 10/02/20         | 10/01/20        |
| AD19595-007 | HSI-SB-08(13-13. | Soil/Terracore | 1         | 77     | Percent |    |           | 10/05/20         | 10/02/20         | 10/01/20        |
| AD19595-008 | HSI-SB-09(14-14. | Soil/Terracore | 1         | 80     | Percent |    |           | 10/05/20         | 10/02/20         | 10/01/20        |
| AD19595-009 | HSI-SB-10(5.5-6) | Soil/Terracore | 1         | 89     | Percent |    |           | 10/05/20         | 10/02/20         | 10/01/20        |
| AD19595-010 | HSI-SB-10(7-7.5) | Soil/Terracore | 1         | 83     | Percent |    |           | 10/05/20         | 10/02/20         | 10/01/20        |
| AD19595-011 | HSI-SB-10(8-8.5) | Soil/Terracore | 1         | 82     | Percent |    |           | 10/05/20         | 10/02/20         | 10/01/20        |
| AD19595-012 | HSI-SB-D2        | Soil/Terracore | 1         | 76     | Percent |    |           | 10/05/20         | 10/02/20         | 10/01/20        |
| AD19595-013 | HSI-WC-NH        | Soil           | 1         | 86     | Percent |    |           | 10/05/20         | 10/02/20         | 10/01/20        |
| AD19595-014 | HSI-WC-H         | Soil           | 1         | 83     | Percent |    |           | 10/05/20         | 10/02/20         | 10/01/20        |

# % Solids Report

Analysis Type: SOLIDS-SS BatchID: SOLIDS-SS-11039

| QcType | SampleID:   | Rounded<br>Result | Raw<br>Result | Units   | Tare<br>Weight | Wet<br>Weight | Dry<br>Weight | Analysis<br>Date | Analyzed<br>By | QC RPD | Rpd<br>Limit |
|--------|-------------|-------------------|---------------|---------|----------------|---------------|---------------|------------------|----------------|--------|--------------|
| DUP    | AD19575-001 | 85                | 84.83965      | Percent | 1.35           | 15.07         | 12.99         | 10/05/20         | BEENA          | 0.063  | 5            |
| Sample | AD19575-001 | 85                | 84.89270      | Percent | 1.34           | 12.99         | 11.23         | 10/05/20         | BEENA          |        |              |
| Sample | AD19575-002 | 85                | 84.95238      | Percent | 1.35           | 11.85         | 10.27         | 10/05/20         | BEENA          |        |              |
| Sample | AD19582-001 | 87                | 87.45946      | Percent | 1.35           | 10.60         | 9.44          | 10/05/20         | BEENA          |        |              |
| Sample | AD19587-007 | 97                | 97.30216      | Percent | 1.34           | 6.90          | 6.75          | 10/05/20         | BEENA          |        |              |
| Sample | AD19595-001 | 86                | 86.00605      | Percent | 1.34           | 14.56         | 12.71         | 10/05/20         | BEENA          |        |              |
| Sample | AD19595-002 | 85                | 84.95575      | Percent | 1.35           | 12.65         | 10.95         | 10/05/20         | BEENA          |        |              |
| Sample | AD19595-003 | 86                | 85.76481      | Percent | 1.35           | 12.66         | 11.05         | 10/05/20         | BEENA          |        |              |
| Sample | AD19595-004 | 87                | 86.74569      | Percent | 1.36           | 10.64         | 9.41          | 10/05/20         | BEENA          |        |              |
| Sample | AD19595-005 | 82                | 82.12670      | Percent | 1.36           | 14.62         | 12.25         | 10/05/20         | BEENA          |        |              |
| Sample | AD19595-006 | 76                | 75.68523      | Percent | 1.35           | 12.66         | 9.91          | 10/05/20         | BEENA          |        |              |
| Sample | AD19595-007 | 77                | 77.10938      | Percent | 1.35           | 14.15         | 11.23         | 10/05/20         | BEENA          |        |              |
| Sample | AD19595-008 | 80                | 80.25751      | Percent | 1.35           | 10.67         | 8.84          | 10/05/20         | BEENA          |        |              |
| Sample | AD19595-009 | 89                | 88.56640      | Percent | 1.34           | 12.71         | 11.41         | 10/05/20         | BEENA          |        |              |
| Sample | AD19595-010 | 83                | 83.33333      | Percent | 1.36           | 17.38         | 14.71         | 10/05/20         | BEENA          |        |              |
| Sample | AD19595-011 | 82                | 81.58436      | Percent | 1.34           | 11.06         | 9.27          | 10/05/20         | BEENA          |        |              |
| Sample | AD19595-012 | 76                | 75.99143      | Percent | 1.35           | 10.68         | 8.43          | 10/05/20         | BEENA          |        |              |
| Sample | AD19595-013 | 86                | 86.06742      | Percent | 1.35           | 14.70         | 12.84         | 10/05/20         | BEENA          |        |              |
| Sample | AD19595-014 | 83                | 83.46526      | Percent | 1.36           | 12.73         | 10.85         | 10/05/20         | BEENA          |        |              |
| Sample | AD19596-001 | 86                | 86.36771      | Percent | 1.34           | 12.49         | 10.97         | 10/05/20         | BEENA          |        |              |
| Sample | AD19596-002 | 83                | 82.50444      | Percent | 1.35           | 12.61         | 10.64         | 10/05/20         | BEENA          |        |              |

<sup>\* -</sup> Indicates Failed Rpd Criteria

Miscellaneous Data

0100230 0415

| _                                  |                |                                                                                     |                               |                                       | Z                  | RO H                     | EADS          | PAC!          | EXI            | TRAC           |              | ZERO HEADSPACE EXTRACTION- SAMPLE ENTRY | PLE EI         | YIRY<br>VIRY         |                      |          |
|------------------------------------|----------------|-------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|--------------------|--------------------------|---------------|---------------|----------------|----------------|--------------|-----------------------------------------|----------------|----------------------|----------------------|----------|
|                                    | Sample ID      | Vessel<br>#                                                                         | Initial<br>Pressur<br>e       | Final<br>Pressure                     | Ext.<br>Fluid<br># | Wt./Vol.<br>Of<br>Sample | Start<br>Date | Start<br>Time | Finish<br>Date | Finish<br>Time | Ext.<br>Type | pH of<br>HCI<br>preserv                 | Analys<br>t(s) | Transfe<br>r<br>To** | Transfe<br>r<br>To** | Comments |
|                                    | 1,20%          | #                                                                                   | 10                            | 10                                    | 13087              | Sam                      | loul of       | 9:57          | 10/03/20       | 2,E            | SPLP         | R                                       |                |                      |                      |          |
| 4                                  | 18811          | #33                                                                                 | ·                             |                                       |                    | 1405×                    |               |               |                |                |              |                                         |                |                      |                      |          |
|                                    | 200            | 404                                                                                 |                               |                                       |                    | 16.2                     |               |               |                |                |              |                                         |                |                      |                      |          |
|                                    | coo            | 01 # 600                                                                            |                               |                                       |                    | 14.42<br>124.45          |               |               |                |                |              |                                         |                |                      |                      |          |
|                                    | 400            | 45#                                                                                 |                               |                                       |                    | 14. Som                  |               |               |                |                | -            |                                         |                |                      |                      |          |
| <u>.</u> •                         | 005            | #02                                                                                 |                               |                                       |                    | 26.8<br>30m/             | -             |               |                |                |              |                                         |                |                      |                      |          |
|                                    | 900            | A05                                                                                 | $\checkmark$                  | V                                     | <b>(</b>           | 20.3                     | <u> </u>      | <             |                | $\leftarrow$   | $\leftarrow$ | J                                       |                |                      |                      |          |
|                                    |                |                                                                                     |                               |                                       |                    |                          |               |               |                |                |              |                                         |                |                      |                      |          |
|                                    | EF-553535      | #22                                                                                 | (٥)                           | e 01                                  | Ed:/<br>85534      | soom/                    | 926           | 15.20 B       | 16/6           | Shid<br>Wet    | DOUB TOCK    | 12                                      | de             |                      |                      |          |
|                                    | 19959<br>-93   | \$418                                                                               |                               |                                       |                    | SOOM                     |               |               |                |                |              |                                         |                |                      |                      |          |
|                                    | -0/4           | #11                                                                                 |                               |                                       |                    | )                        |               |               |                |                |              |                                         |                |                      | :                    |          |
| 1                                  | F/00-          | £1#0                                                                                |                               |                                       |                    |                          |               |               |                |                |              |                                         |                |                      | ,                    |          |
| _ <i>\mathcal{D}_{\mathcal{D}}</i> | 100-<br>145616 | \ T -                                                                               |                               |                                       |                    |                          |               |               |                |                |              |                                         |                |                      |                      |          |
|                                    | 2/3/2/4        | #37                                                                                 |                               |                                       |                    |                          |               |               |                |                |              |                                         |                |                      |                      |          |
|                                    | 150/161        | 11                                                                                  | 1 N                           | <u></u>                               |                    | <u> </u>                 | Ç.,           |               | -              | <u></u>        | C            | C                                       | 7              |                      |                      | 40185Kz  |
|                                    | ·Ext.          | *Ext. Type TCLP=T ASTM=A SPLP=S ** Initials of person taking custody of extractions | TCLP=T AS<br>xerson taking cu | ASTM=A SPLP=S g custody of extraction |                    | MEP - M                  |               | 6             |                |                |              |                                         |                | i                    |                      |          |

0700

Hampton-Clarke

Leachete prop log 2017]

LEACHATE PREPARATION LOG (TCLP, SPLP) Hampton-Clarke, Inc.

| Sau nee: 10/4/8/1                                        |               |         |         |                                    |                                                              |            | •       |         |         |         | SPLP Ext. Fluid #3 pH:   | (orthoria: 4.20 + 0.05) |
|----------------------------------------------------------|---------------|---------|---------|------------------------------------|--------------------------------------------------------------|------------|---------|---------|---------|---------|--------------------------|-------------------------|
|                                                          | £             | HCL S   | Final   | Fluid                              | of Sample                                                    | S S        | Finish  | Filler  | Analyst | TI<br>A |                          |                         |
| Sample #                                                 | (units)       | (units) | (units) | (number)                           | (g or mL)                                                    | Time       | Time    | Time    | €,      | Туре*   | Comments                 | 5                       |
| 19560 - 001                                              | 8.83          | 1.33    | 6.05    | 335534                             | 1500/3L                                                      | 16:10      |         | 9:45    | EF      | 7       | Belance ID: 037          | MET+ORG                 |
| 19395 - 013                                              | 5.38          | 1.34    | 4.86    |                                    | ľ                                                            |            |         | <b></b> |         |         | PH Meter ID: A - 381 C.8 |                         |
| 1                                                        | 5.26          | 1.35    | 4.84    |                                    | •                                                            |            |         | 10:25   |         |         | Pipette ID: 155          |                         |
| 19582 - 001                                              | 9.7           | 1.61    | 5.99    |                                    | 100e/21                                                      |            |         | f       |         |         |                          | MET                     |
| 19587 - 007                                              | 10.13         | 1.39    | 5.02    |                                    |                                                              |            |         | 10:45   |         |         |                          |                         |
|                                                          | 6.48          | 1.33    | 4.89    |                                    |                                                              |            |         | ¥       |         |         |                          |                         |
| ١.                                                       | 9.61          | 1.47    | 5.23    |                                    | *                                                            |            |         | 10:55   |         |         |                          |                         |
| FI 335534                                                | 4.90          | •       | 4.8%    | 1                                  | 3/                                                           | •          | w/      | Ţ       | ų.      | *       |                          | •                       |
| 19605-003                                                | 7.54          | 1.51    | 4.89    | 336/39                             | 1500/3/                                                      | 18:40      | #:D     | 11:30   |         |         | Metlora sludge           | 50% Solid 50% Lowid     |
| <b>-</b> 00a                                             | 7.39          | 1.49    | 4.90    |                                    | , Ó                                                          |            | _       | 13:0    |         |         | 1                        |                         |
| 19601 - 001                                              | 7.77          | 1.53    | 4.91    |                                    | 1000/2/                                                      |            |         | #:S     |         |         | NET                      |                         |
|                                                          | 10.62         | 1.67    | 10.44   |                                    | . 9                                                          |            |         | 1       |         |         |                          |                         |
| · ~003                                                   | 10.44         | L 77    | 7. 77   |                                    | 50e/11                                                       | <b>-</b>   |         | 121m    |         |         |                          |                         |
| EF1336139                                                | 4.97          | 1       | 4.85    | 18,                                | 2/                                                           | _          | <u></u> | //:3b   | i.      | de l    |                          |                         |
|                                                          |               |         |         |                                    | 1                                                            |            |         |         |         |         |                          |                         |
|                                                          |               |         |         |                                    |                                                              |            |         |         |         |         |                          |                         |
|                                                          |               |         |         |                                    |                                                              |            |         |         |         |         |                          |                         |
|                                                          |               |         |         |                                    |                                                              |            |         |         |         |         |                          |                         |
|                                                          |               |         |         |                                    |                                                              |            |         |         |         |         |                          |                         |
|                                                          |               |         |         |                                    |                                                              |            |         |         |         |         |                          |                         |
|                                                          |               |         |         |                                    |                                                              |            |         |         |         |         |                          |                         |
|                                                          |               |         |         |                                    |                                                              |            |         |         |         |         |                          |                         |
|                                                          |               |         |         |                                    |                                                              |            |         |         |         |         |                          |                         |
|                                                          |               |         |         |                                    |                                                              |            |         |         |         |         |                          |                         |
| Ext. Type: TCLP = 7 (Method 1311) SPLP = P (Method 1312) | (Method 1311) |         |         | (Methods 1311 / /<br>(Method 1320) | (Methods 1311 / ANSI/NEMA C78.LL 1256-2003)<br>(Method 1320) | L 1256-200 | ٩       |         |         |         |                          |                         |



Analytical & Field Services

Last Page of Report

#### ATTACHMENT H

CRAWL SPACE AIR, OUTDOOR AIR, AND SOIL VAPOR SAMPLE LABORATORY ANALYTICAL REPORT



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

### Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc. Date Received: October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045 Project Number: CG-09-0423.10

Submitted To: Nancy Love Purchase Order: CG09042310MS

Client Site I.D.: Montgomery Brothers

150/0/415

Enclosed are the results of analyses for samples received by the laboratory on 10/08/2020 14:02. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

**Technical Director** 

#### End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.





1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

### Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc. Date Received: October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Project Number: CG-09-0423.10

Purchase Order: CG09042310MS

Submitted To: Nancy Love

Client Site I.D.: Montgomery Brothers

#### **ANALYTICAL REPORT FOR SAMPLES**

| Sample ID    | Laboratory ID | Matrix | Date Sampled     | Date Received    |
|--------------|---------------|--------|------------------|------------------|
| SMP-VMP-10   | 2011167-01    | Air    | 10/07/2020 15:16 | 10/08/2020 14:02 |
| SMP-VMP-D    | 2011167-03    | Air    | 10/07/2020 05:00 | 10/08/2020 14:02 |
| SMP-VMP-11   | 2011167-04    | Air    | 10/07/2020 16:07 | 10/08/2020 14:02 |
| SMP-VMP-12   | 2011167-05    | Air    | 10/07/2020 13:58 | 10/08/2020 14:02 |
| SMP-VMP-13   | 2011167-06    | Air    | 10/07/2020 15:05 | 10/08/2020 14:02 |
| HSI-105M-CSA | 2011167-07    | Air    | 10/07/2020 12:00 | 10/08/2020 14:02 |
| HSI-105R-CSA | 2011167-08    | Air    | 10/07/2020 12:06 | 10/08/2020 14:02 |
| HSI-107M-CSA | 2011167-09    | Air    | 10/07/2020 12:35 | 10/08/2020 14:02 |
| HIS-107R-CSA | 2011167-10    | Air    | 10/07/2020 16:17 | 10/08/2020 14:02 |
| HSI-OAA      | 2011167-11    | Air    | 10/07/2020 14:58 | 10/08/2020 14:02 |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

5405 Twin Knolls Rd., Suite 1

Date Received:

Date Issued:

October 8, 2020 14:02

ed: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

Project Number:

CG-09-0423.10

Client Site I.D.: Montgomery Brothers

Purchase Order: CG09

CG09042310MS

**ANALYTICAL RESULTS** 

Project Location:

Field Sample #: SMP-VMP-10

Sample Description/Location: Sub Description/Location: Canister ID: 18171

Canister Size: 6L

Final Vacuum(in Hg): 2 Receipt Vacuum(in Hg): 2 Flow Controller Type: Passive

Initial Vacuum(in Hg): 30

Flow Controller ID: 2710

Sample ID: 20I1167-01 Sample Matrix: Air

Sampled: 10/7/2020 15:16

Sample Type: SG

|                                       |         | ppbv |      |           |         | ug/M³ |      |          |    | Date/Time      |         |
|---------------------------------------|---------|------|------|-----------|---------|-------|------|----------|----|----------------|---------|
| Analyte                               | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution | PF | Analyzed       | Analyst |
| 1,1,1-Trichloroethane                 | ND      | 0.20 | 0.40 |           | ND      | 1.1   | 2.2  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,1,1,2-Tetrachloroethane             | ND      | 0.20 | 0.40 |           | ND      | 1.4   | 2.7  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,1,2,2-Tetrachloroethane             | 17.9    | 0.20 | 0.40 |           | 120     | 1.4   | 2.7  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND      | 0.20 | 0.40 |           | ND      | 1.5   | 3.1  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,1,2-Trichloroethane                 | 0.59    | 0.20 | 0.40 |           | 3.2     | 1.1   | 2.2  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,1-Dichloroethane                    | ND      | 0.20 | 0.40 |           | ND      | 0.81  | 1.6  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,1-Dichloroethylene                  | ND      | 0.20 | 0.40 |           | ND      | 0.79  | 1.6  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,2,4-Trichlorobenzene                | ND      | 0.20 | 1.00 |           | ND      | 1.5   | 7.4  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,2,4-Trimethylbenzene                | 0.81    | 0.20 | 0.40 |           | 4.0     | 0.98  | 2.0  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,2-Dibromoethane (EDB)               | ND      | 0.20 | 0.40 |           | ND      | 1.5   | 3.1  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,2-Dichlorobenzene                   | ND      | 0.20 | 0.40 |           | ND      | 1.2   | 2.4  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,2-Dichloroethane                    | ND      | 0.20 | 0.40 |           | ND      | 0.81  | 1.6  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,2-Dichloropropane                   | ND      | 0.20 | 0.40 |           | ND      | 0.92  | 1.8  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,2-Dichlorotetrafluoroethane         | 0.34    | 0.20 | 0.40 | J         | 2.4     | 1.4   | 2.8  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,3,5-Trimethylbenzene                | ND      | 0.20 | 0.40 |           | ND      | 0.98  | 2.0  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,3-Butadiene                         | ND      | 0.20 | 0.40 |           | ND      | 0.44  | 0.88 | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,3-Dichlorobenzene                   | ND      | 0.20 | 0.40 |           | ND      | 1.2   | 2.4  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,4-Dichlorobenzene                   | ND      | 0.20 | 0.40 |           | ND      | 1.2   | 2.4  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1,4-Dioxane                           | ND      | 0.20 | 0.40 |           | ND      | 0.72  | 1.4  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 1-Ethyl-4-methyl benzene              | ND      | 0.20 | 0.40 |           | ND      | 0.98  | 2.0  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 2-Butanone (MEK)                      | 0.50    | 0.20 | 0.40 |           | 1.5     | 0.59  | 1.2  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 2-Chlorotoluene                       | ND      | 0.20 | 0.40 |           | ND      | 1.0   | 2.1  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 2-Hexanone (MBK)                      | ND      | 0.20 | 0.40 |           | ND      | 0.82  | 1.6  | 2        | 1  | 10/14/20 18:35 | DFH     |
| 4-Methyl-2-pentanone (MIBK)           | ND      | 0.20 | 0.40 |           | ND      | 2.3   | 4.6  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Acetone                               | 2.92    | 0.20 | 1.00 |           | 6.9     | 0.48  | 2.4  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Acrolein                              | ND      | 0.20 | 0.40 |           | ND      | 0.46  | 0.92 | 2        | 1  | 10/14/20 18:35 | DFH     |
| Allyl chloride                        | ND      | 0.20 | 0.40 |           | ND      | 0.63  | 1.3  | 2        | 1  | 10/14/20 18:35 | DFH     |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

CG-09-0423.10 Project Number:

Montgomery Brothers Purchase Order:

CG09042310MS

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: SMP-VMP-10

Client Site I.D.:

Sample ID: 20I1167-01

Sample Matrix: Air

Sampled: 10/7/2020 15:16

Sample Type: SG

Sample Description/Location: Sub Description/Location: Canister ID: 18171

Canister Size: 6L

---

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 2 Receipt Vacuum(in Hg): 2 Flow Controller Type: Passive

Flow Controller ID: 2710

|                          |         | ppbv |      |           |         | ug/M³ |      |          |    | Date/Time      |         |
|--------------------------|---------|------|------|-----------|---------|-------|------|----------|----|----------------|---------|
| Analyte                  | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution | PF | Analyzed       | Analyst |
| Benzene                  | ND      | 0.20 | 0.40 |           | ND      | 0.64  | 1.3  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Benzyl Chloride          | ND      | 0.20 | 0.40 |           | ND      | 1.0   | 2.1  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Bromodichloromethane     | 0.87    | 0.20 | 0.40 |           | 5.8     | 1.3   | 2.7  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Bromoform                | ND      | 0.20 | 0.40 |           | ND      | 2.1   | 4.1  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Bromomethane             | ND      | 0.20 | 0.40 |           | ND      | 0.78  | 1.6  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Carbon Disulfide         | 1.52    | 0.20 | 1.00 |           | 4.7     | 0.62  | 3.1  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Carbon Tetrachloride     | ND      | 0.20 | 0.40 |           | ND      | 1.3   | 2.5  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Chlorobenzene            | ND      | 0.20 | 0.40 |           | ND      | 0.92  | 1.8  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Chloroethane             | ND      | 0.20 | 0.40 |           | ND      | 0.53  | 1.1  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Chloroform               | 6.34    | 0.20 | 0.40 |           | 31      | 0.98  | 2.0  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Chloromethane            | ND      | 0.20 | 0.40 |           | ND      | 0.41  | 0.83 | 2        | 1  | 10/14/20 18:35 | DFH     |
| cis-1,2-Dichloroethylene | ND      | 0.20 | 0.40 |           | ND      | 0.79  | 1.6  | 2        | 1  | 10/14/20 18:35 | DFH     |
| cis-1,3-Dichloropropene  | ND      | 0.20 | 0.40 |           | ND      | 0.91  | 1.8  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Cyclohexane              | ND      | 0.20 | 0.40 |           | ND      | 0.69  | 1.4  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Dibromochloromethane     | ND      | 0.20 | 0.40 |           | ND      | 1.7   | 3.4  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Dichlorodifluoromethane  | 0.31    | 0.20 | 1.00 | J         | 1.5     | 0.99  | 4.9  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Ethanol                  | 1.34    | 0.20 | 1.00 |           | 2.5     | 0.38  | 1.9  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Ethyl acetate            | ND      | 0.20 | 0.40 |           | ND      | 0.72  | 1.4  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Ethylbenzene             | 0.28    | 0.20 | 0.40 | J         | 1.2     | 0.87  | 1.7  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Heptane                  | ND      | 0.20 | 0.40 |           | ND      | 0.82  | 1.6  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Hexachlorobutadiene      | ND      | 0.20 | 1.00 |           | ND      | 2.1   | 11   | 2        | 1  | 10/14/20 18:35 | DFH     |
| Hexane                   | ND      | 0.20 | 0.40 |           | ND      | 0.70  | 1.4  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Isooctane                | ND      | 0.20 | 0.40 |           | ND      | 0.93  | 1.9  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Isopropyl alcohol        | ND      | 0.20 | 1.00 |           | ND      | 0.49  | 2.5  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Isopropylbenzene         | ND      | 0.20 | 0.40 |           | ND      | 0.98  | 2.0  | 2        | 1  | 10/14/20 18:35 | DFH     |
| m+p-Xylenes              | 0.92    | 0.20 | 0.80 |           | 4.0     | 0.87  | 3.5  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Methyl methacrylate      | ND      | 0.20 | 0.40 |           | ND      | 0.82  | 1.6  | 2        | 1  | 10/14/20 18:35 | DFH     |
|                          |         |      |      |           |         |       |      |          |    |                |         |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

Date Received: October 8, 2020 14:02 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

CG-09-0423.10 Project Number:

Client Site I.D.: Montgomery Brothers

CG09042310MS Purchase Order:

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: SMP-VMP-10

Sample ID: 20I1167-01

Sample Matrix: Air

Sampled: 10/7/2020 15:16

4-Bromofluorobenzene (Surr)

4-Bromofluorobenzene (Surr)

Sample Type: SG

Sample Description/Location: Sub Description/Location: Canister ID: 18171

87.4

93.9

Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 2 Receipt Vacuum(in Hg): 2

Flow Controller Type: Passive

Flow Controller ID: 2710

Volatile Organic Compounds by GCMS

|                             |         |      |        | EPA TO-1  | 5       |            |      |          |    |                |         |
|-----------------------------|---------|------|--------|-----------|---------|------------|------|----------|----|----------------|---------|
|                             |         | ppbv |        |           |         | ug/M³      |      |          |    | Date/Time      |         |
| Analyte                     | Results | MDL  | LOQ    | Flag/Qual | Results | MDL        | LOQ  | Dilution | PF | Analyzed       | Analyst |
| Methylene chloride          | ND      | 0.20 | 2.00   |           | ND      | 0.69       | 6.9  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Methyl-t-butyl ether (MTBE) | ND      | 0.20 | 0.40   |           | ND      | 0.72       | 1.4  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Naphthalene                 | 0.45    | 0.20 | 0.40   |           | 2.3     | 1.0        | 2.1  | 2        | 1  | 10/14/20 18:35 | DFH     |
| n-Nonane (C9)               | ND      | 0.20 | 0.40   |           | ND      | 1.0        | 2.1  | 2        | 1  | 10/14/20 18:35 | DFH     |
| n-Propylbenzene             | ND      | 0.20 | 0.40   |           | ND      | 0.98       | 2.0  | 2        | 1  | 10/14/20 18:35 | DFH     |
| o-Xylene                    | 0.85    | 0.20 | 0.40   |           | 3.7     | 0.87       | 1.7  | 2        | 1  | 10/14/20 18:35 | DFH     |
| n-Pentane (C5)              | 0.30    | 0.20 | 0.40   | J         | 0.89    | 0.59       | 1.2  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Propylene                   | ND      | 0.20 | 0.40   |           | ND      | 0.34       | 0.69 | 2        | 1  | 10/14/20 18:35 | DFH     |
| Styrene                     | ND      | 0.20 | 0.40   |           | ND      | 0.85       | 1.7  | 2        | 1  | 10/14/20 18:35 | DFH     |
| TBA                         | 0.64    | 0.20 | 1.00   | J         | 1.9     | 0.61       | 3.0  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Tetrachloroethylene (PCE)   | 86.9    | 2.00 | 4.00   |           | 590     | 14         | 27   | 20       | 1  | 10/14/20 15:24 | DFH     |
| Tetrahydrofuran             | 0.81    | 0.20 | 0.40   |           | 2.4     | 0.59       | 1.2  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Toluene                     | 0.53    | 0.20 | 0.40   |           | 2.0     | 0.75       | 1.5  | 2        | 1  | 10/14/20 18:35 | DFH     |
| trans-1,2-Dichloroethylene  | ND      | 0.20 | 0.40   |           | ND      | 0.79       | 1.6  | 2        | 1  | 10/14/20 18:35 | DFH     |
| trans-1,3-Dichloropropene   | ND      | 0.20 | 0.40   |           | ND      | 0.91       | 1.8  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Trichloroethylene           | 3.49    | 0.20 | 0.40   |           | 19      | 1.1        | 2.1  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Trichlorofluoromethane      | 0.21    | 0.20 | 0.40   | J         | 1.2     | 1.1        | 2.2  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Vinyl acetate               | ND      | 0.20 | 0.40   |           | ND      | 0.70       | 1.4  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Vinyl bromide               | ND      | 0.20 | 0.40   |           | ND      | 0.87       | 1.7  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Vinyl chloride              | ND      | 0.20 | 0.40   |           | ND      | 0.51       | 1.0  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Xylenes, Total              | 1.77    | 0.20 | 1.20   |           | 7.7     | 0.87       | 5.2  | 2        | 1  | 10/14/20 18:35 | DFH     |
| Surrogate(s)                |         | % Re | covery |           | % Re    | covery Lin | nits |          |    |                |         |

80-120

80-120

10/14/20 15:24

10/14/20 18:35



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

Date Received: October 8, 2020 14:02 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love Project Number:

Client Site I.D.: Montgomery Brothers Purchase Order: CG09042310MS

### **ANALYTICAL RESULTS**

Project Location:

Sample Description/Location: Field Sample #: SMP-VMP-D Sub Description/Location:

ND

0.20

0.40

Sample ID: 20I1167-03 Sample Matrix: Air

Sampled: 10/7/2020 05:00

Canister ID: 20588 Canister Size: 6L

Final Vacuum(in Hg): 1 Receipt Vacuum(in Hg): 1 Flow Controller Type: Passive Flow Controller ID: 3477

Initial Vacuum(in Hg): 30

CG-09-0423.10

Sample Type: SG

Allyl chloride

#### Volatile Organic Compounds by GCMS EPA TO-15

|                                       |         | ppbv |      |           |         | ug/M³ |      | _        |    | Date/Time     |         |
|---------------------------------------|---------|------|------|-----------|---------|-------|------|----------|----|---------------|---------|
| Analyte                               | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution | PF | Analyzed      | Analyst |
| 1,1,1-Trichloroethane                 | ND      | 0.20 | 0.40 |           | ND      | 1.1   | 2.2  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,1,1,2-Tetrachloroethane             | ND      | 0.20 | 0.40 |           | ND      | 1.4   | 2.7  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,1,2,2-Tetrachloroethane             | 4.49    | 0.20 | 0.40 |           | 31      | 1.4   | 2.7  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND      | 0.20 | 0.40 |           | ND      | 1.5   | 3.1  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,1,2-Trichloroethane                 | 0.26    | 0.20 | 0.40 | J         | 1.4     | 1.1   | 2.2  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,1-Dichloroethane                    | ND      | 0.20 | 0.40 |           | ND      | 0.81  | 1.6  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,1-Dichloroethylene                  | ND      | 0.20 | 0.40 |           | ND      | 0.79  | 1.6  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,2,4-Trichlorobenzene                | 0.26    | 0.20 | 1.00 | J         | 1.9     | 1.5   | 7.4  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,2,4-Trimethylbenzene                | 1.61    | 0.20 | 0.40 |           | 7.9     | 0.98  | 2.0  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,2-Dibromoethane (EDB)               | ND      | 0.20 | 0.40 |           | ND      | 1.5   | 3.1  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,2-Dichlorobenzene                   | ND      | 0.20 | 0.40 |           | ND      | 1.2   | 2.4  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,2-Dichloroethane                    | ND      | 0.20 | 0.40 |           | ND      | 0.81  | 1.6  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,2-Dichloropropane                   | ND      | 0.20 | 0.40 |           | ND      | 0.92  | 1.8  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,2-Dichlorotetrafluoroethane         | 0.33    | 0.20 | 0.40 | J         | 2.3     | 1.4   | 2.8  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,3,5-Trimethylbenzene                | 0.67    | 0.20 | 0.40 |           | 3.3     | 0.98  | 2.0  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,3-Butadiene                         | ND      | 0.20 | 0.40 |           | ND      | 0.44  | 0.88 | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,3-Dichlorobenzene                   | ND      | 0.20 | 0.40 |           | ND      | 1.2   | 2.4  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,4-Dichlorobenzene                   | 0.49    | 0.20 | 0.40 |           | 2.9     | 1.2   | 2.4  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1,4-Dioxane                           | ND      | 0.20 | 0.40 |           | ND      | 0.72  | 1.4  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 1-Ethyl-4-methyl benzene              | ND      | 0.20 | 0.40 |           | ND      | 0.98  | 2.0  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 2-Butanone (MEK)                      | 0.80    | 0.20 | 0.40 |           | 2.3     | 0.59  | 1.2  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 2-Chlorotoluene                       | ND      | 0.20 | 0.40 |           | ND      | 1.0   | 2.1  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 2-Hexanone (MBK)                      | ND      | 0.20 | 0.40 |           | ND      | 0.82  | 1.6  | 2        | 1  | 10/15/20 3:00 | DFH     |
| 4-Methyl-2-pentanone (MIBK)           | 0.36    | 0.20 | 0.40 | J         | 4.1     | 2.3   | 4.6  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Acetone                               | 5.20    | 0.20 | 1.00 |           | 12      | 0.48  | 2.4  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Acrolein                              | 0.25    | 0.20 | 0.40 | J         | 0.58    | 0.46  | 0.92 | 2        | 1  | 10/15/20 3:00 | DFH     |
|                                       |         |      |      |           |         |       |      | _        |    |               |         |

ND

0.63

1.3

10/15/20 3:00 DFH



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

CG-09-0423.10 Project Number:

CG09042310MS Client Site I.D.: Montgomery Brothers Purchase Order:

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: SMP-VMP-D

Sample ID: 20I1167-03

Sample Matrix: Air

Sampled: 10/7/2020 05:00

Sample Type: SG

Sample Description/Location: Initial Vacuum(in Hg): 30 Sub Description/Location: Final Vacuum(in Hg): 1 Canister ID: 20588 Receipt Vacuum(in Hg): 1 Canister Size: 6L Flow Controller Type: Passive

Flow Controller ID: 3477

|                          | D Ita   | ppbv |      |           |         | ua/M³ |      |          |    |               |         |
|--------------------------|---------|------|------|-----------|---------|-------|------|----------|----|---------------|---------|
|                          |         | MARI | 1.00 | EL. (0)   |         |       | 1.00 |          |    | Date/Time     |         |
| Analyte                  | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution | PF | Analyzed      | Analyst |
| Benzene                  | ND      | 0.20 | 0.40 |           | ND      | 0.64  | 1.3  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Benzyl Chloride          | ND      | 0.20 | 0.40 |           | ND      | 1.0   | 2.1  | 2        | 1  | 10/15/20 3:00 |         |
| Bromodichloromethane     | 3.19    | 0.20 | 0.40 |           | 21      | 1.3   | 2.7  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Bromoform                | ND      | 0.20 | 0.40 |           | ND      | 2.1   | 4.1  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Bromomethane             | ND      | 0.20 | 0.40 |           | ND      | 0.78  | 1.6  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Carbon Disulfide         | 2.00    | 0.20 | 1.00 |           | 6.2     | 0.62  | 3.1  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Carbon Tetrachloride     | ND      | 0.20 | 0.40 |           | ND      | 1.3   | 2.5  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Chlorobenzene            | 0.51    | 0.20 | 0.40 |           | 2.3     | 0.92  | 1.8  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Chloroethane             | ND      | 0.20 | 0.40 |           | ND      | 0.53  | 1.1  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Chloroform               | 27.9    | 0.20 | 0.40 |           | 140     | 0.98  | 2.0  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Chloromethane            | ND      | 0.20 | 0.40 |           | ND      | 0.41  | 0.83 | 2        | 1  | 10/15/20 3:00 | DFH     |
| cis-1,2-Dichloroethylene | ND      | 0.20 | 0.40 |           | ND      | 0.79  | 1.6  | 2        | 1  | 10/15/20 3:00 | DFH     |
| cis-1,3-Dichloropropene  | ND      | 0.20 | 0.40 |           | ND      | 0.91  | 1.8  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Cyclohexane              | ND      | 0.20 | 0.40 |           | ND      | 0.69  | 1.4  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Dibromochloromethane     | 0.23    | 0.20 | 0.40 | J         | 2.0     | 1.7   | 3.4  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Dichlorodifluoromethane  | 0.35    | 0.20 | 1.00 | J         | 1.7     | 0.99  | 4.9  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Ethanol                  | 1.26    | 0.20 | 1.00 |           | 2.4     | 0.38  | 1.9  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Ethyl acetate            | ND      | 0.20 | 0.40 |           | ND      | 0.72  | 1.4  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Ethylbenzene             | 1.39    | 0.20 | 0.40 |           | 6.0     | 0.87  | 1.7  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Heptane                  | ND      | 0.20 | 0.40 |           | ND      | 0.82  | 1.6  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Hexachlorobutadiene      | ND      | 0.20 | 1.00 |           | ND      | 2.1   | 11   | 2        | 1  | 10/15/20 3:00 | DFH     |
| Hexane                   | ND      | 0.20 | 0.40 |           | ND      | 0.70  | 1.4  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Isooctane                | ND      | 0.20 | 0.40 |           | ND      | 0.93  | 1.9  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Isopropyl alcohol        | 0.86    | 0.20 | 1.00 | J         | 2.1     | 0.49  | 2.5  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Isopropylbenzene         | 0.38    | 0.20 | 0.40 | J         | 1.9     | 0.98  | 2.0  | 2        | 1  | 10/15/20 3:00 | DFH     |
| m+p-Xylenes              | 5.82    | 0.20 | 0.80 |           | 25      | 0.87  | 3.5  | 2        | 1  | 10/15/20 3:00 | DFH     |
| Methyl methacrylate      | ND      | 0.20 | 0.40 |           | ND      | 0.82  | 1.6  | 2        | 1  | 10/15/20 3:00 | DFH     |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

Date Received: October 8, 2020 14:02 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Canister Size: 6L

Submitted To: Nancy Love

CG-09-0423.10 Project Number:

Client Site I.D.: Montgomery Brothers

CG09042310MS Purchase Order:

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: SMP-VMP-D

Sample ID: 20I1167-03

Sample Matrix: Air

Sampled: 10/7/2020 05:00

4-Bromofluorobenzene (Surr)

Sample Type: SG

Sample Description/Location: Initial Vacuum(in Hg): 30 Sub Description/Location: Final Vacuum(in Hg): 1 Canister ID: 20588 Receipt Vacuum(in Hg): 1

Flow Controller Type: Passive Flow Controller ID: 3477

| Volatile | Organic | Compounds | by | GCMS |
|----------|---------|-----------|----|------|
|          |         |           |    |      |

|                             |         |      |        | EPA TO-15 |         |            |      |          |    |                |         |
|-----------------------------|---------|------|--------|-----------|---------|------------|------|----------|----|----------------|---------|
|                             |         | ppbv |        |           |         | ug/M³      |      |          |    | Date/Time      |         |
| Analyte                     | Results | MDL  | LOQ    | Flag/Qual | Results | MDL        | LOQ  | Dilution | PF | Analyzed       | Analyst |
| Methylene chloride          | 0.32    | 0.20 | 2.00   | J         | 1.1     | 0.69       | 6.9  | 2        | 1  | 10/15/20 3:00  | DFH     |
| Methyl-t-butyl ether (MTBE) | ND      | 0.20 | 0.40   |           | ND      | 0.72       | 1.4  | 2        | 1  | 10/15/20 3:00  | DFH     |
| Naphthalene                 | 1.00    | 0.20 | 0.40   |           | 5.2     | 1.0        | 2.1  | 2        | 1  | 10/15/20 3:00  | DFH     |
| n-Nonane (C9)               | ND      | 0.20 | 0.40   |           | ND      | 1.0        | 2.1  | 2        | 1  | 10/15/20 3:00  | DFH     |
| n-Propylbenzene             | 0.31    | 0.20 | 0.40   | J         | 1.5     | 0.98       | 2.0  | 2        | 1  | 10/15/20 3:00  | DFH     |
| o-Xylene                    | 2.31    | 0.20 | 0.40   |           | 10      | 0.87       | 1.7  | 2        | 1  | 10/15/20 3:00  | DFH     |
| n-Pentane (C5)              | 0.59    | 0.20 | 0.40   |           | 1.8     | 0.59       | 1.2  | 2        | 1  | 10/15/20 3:00  | DFH     |
| Propylene                   | 0.60    | 0.20 | 0.40   |           | 1.0     | 0.34       | 0.69 | 2        | 1  | 10/15/20 3:00  | DFH     |
| Styrene                     | ND      | 0.20 | 0.40   |           | ND      | 0.85       | 1.7  | 2        | 1  | 10/15/20 3:00  | DFH     |
| ТВА                         | 0.24    | 0.20 | 1.00   | J         | 0.73    | 0.61       | 3.0  | 2        | 1  | 10/15/20 3:00  | DFH     |
| Tetrachloroethylene (PCE)   | 78.7    | 2.00 | 4.00   |           | 530     | 14         | 27   | 20       | 1  | 10/14/20 16:08 | DFH     |
| Tetrahydrofuran             | 2.88    | 0.20 | 0.40   |           | 8.5     | 0.59       | 1.2  | 2        | 1  | 10/15/20 3:00  | DFH     |
| Toluene                     | 1.81    | 0.20 | 0.40   |           | 6.8     | 0.75       | 1.5  | 2        | 1  | 10/15/20 3:00  | DFH     |
| trans-1,2-Dichloroethylene  | ND      | 0.20 | 0.40   |           | ND      | 0.79       | 1.6  | 2        | 1  | 10/15/20 3:00  | DFH     |
| trans-1,3-Dichloropropene   | ND      | 0.20 | 0.40   |           | ND      | 0.91       | 1.8  | 2        | 1  | 10/15/20 3:00  | DFH     |
| Trichloroethylene           | 2.70    | 0.20 | 0.40   |           | 15      | 1.1        | 2.1  | 2        | 1  | 10/15/20 3:00  | DFH     |
| Trichlorofluoromethane      | 0.31    | 0.20 | 0.40   | J         | 1.8     | 1.1        | 2.2  | 2        | 1  | 10/15/20 3:00  | DFH     |
| Vinyl acetate               | ND      | 0.20 | 0.40   |           | ND      | 0.70       | 1.4  | 2        | 1  | 10/15/20 3:00  | DFH     |
| Vinyl bromide               | ND      | 0.20 | 0.40   |           | ND      | 0.87       | 1.7  | 2        | 1  | 10/15/20 3:00  | DFH     |
| Vinyl chloride              | ND      | 0.20 | 0.40   |           | ND      | 0.51       | 1.0  | 2        | 1  | 10/15/20 3:00  | DFH     |
| Xylenes, Total              | 8.14    | 0.20 | 1.20   |           | 35      | 0.87       | 5.2  | 2        | 1  | 10/15/20 3:00  | DFH     |
| Surrogate(s)                |         | % Re | covery |           | % Re    | covery Lin | nits |          |    |                |         |
| 4-Bromofluorobenzene (Surr) |         |      | 97.0   |           | 8       | 30-120     |      |          |    | 10/14/20 16:08 |         |

80-120

110

10/15/20 3:00



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love Project Number: CG-09-0423.10

CG09042310MS Client Site I.D.: Montgomery Brothers Purchase Order:

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: SMP-VMP-11

Sample ID: 2011167-04 Sample Matrix: Air

Sampled: 10/7/2020 16:07

Sample Type: SG

Sample Description/Location: Sub Description/Location: Canister ID: 29400 Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 3 Receipt Vacuum(in Hg): 3 Flow Controller Type: Passive

Flow Controller ID: 3953

|                                       |         |      |      | EPA TO-15 |         |       |      |            |    |               |         |
|---------------------------------------|---------|------|------|-----------|---------|-------|------|------------|----|---------------|---------|
| Averlide                              | DIt-    | ppbv |      | FI/OI     |         | ug/M³ | 1.00 | Dilastiasa | DE | Date/Time     | A l 4   |
| Analyte                               | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution   | PF | Analyzed      | Analyst |
| 1,1,1-Trichloroethane                 | ND      | 0.20 | 0.40 |           | ND      | 1.1   | 2.2  | 2          | 1  | 10/15/20 4:38 |         |
| 1,1,1,2-Tetrachloroethane             | ND      | 0.20 | 0.40 |           | ND      | 1.4   | 2.7  | 2          | 1  | 10/15/20 4:38 |         |
| 1,1,2,2-Tetrachloroethane             | 4.07    | 0.20 | 0.40 |           | 28      | 1.4   | 2.7  | 2          | 1  | 10/15/20 4:38 |         |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND      | 0.20 | 0.40 |           | ND      | 1.5   | 3.1  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,1,2-Trichloroethane                 | 0.27    | 0.20 | 0.40 | J         | 1.5     | 1.1   | 2.2  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,1-Dichloroethane                    | ND      | 0.20 | 0.40 |           | ND      | 0.81  | 1.6  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,1-Dichloroethylene                  | ND      | 0.20 | 0.40 |           | ND      | 0.79  | 1.6  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,2,4-Trichlorobenzene                | ND      | 0.20 | 1.00 |           | ND      | 1.5   | 7.4  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,2,4-Trimethylbenzene                | 1.59    | 0.20 | 0.40 |           | 7.8     | 0.98  | 2.0  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,2-Dibromoethane (EDB)               | ND      | 0.20 | 0.40 |           | ND      | 1.5   | 3.1  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,2-Dichlorobenzene                   | ND      | 0.20 | 0.40 |           | ND      | 1.2   | 2.4  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,2-Dichloroethane                    | ND      | 0.20 | 0.40 |           | ND      | 0.81  | 1.6  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,2-Dichloropropane                   | ND      | 0.20 | 0.40 |           | ND      | 0.92  | 1.8  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,2-Dichlorotetrafluoroethane         | 0.31    | 0.20 | 0.40 | J         | 2.2     | 1.4   | 2.8  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,3,5-Trimethylbenzene                | 0.72    | 0.20 | 0.40 |           | 3.5     | 0.98  | 2.0  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,3-Butadiene                         | ND      | 0.20 | 0.40 |           | ND      | 0.44  | 0.88 | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,3-Dichlorobenzene                   | ND      | 0.20 | 0.40 |           | ND      | 1.2   | 2.4  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,4-Dichlorobenzene                   | 0.21    | 0.20 | 0.40 | J         | 1.2     | 1.2   | 2.4  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1,4-Dioxane                           | ND      | 0.20 | 0.40 |           | ND      | 0.72  | 1.4  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 1-Ethyl-4-methyl benzene              | ND      | 0.20 | 0.40 |           | ND      | 0.98  | 2.0  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 2-Butanone (MEK)                      | 0.37    | 0.20 | 0.40 | J         | 1.1     | 0.59  | 1.2  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 2-Chlorotoluene                       | ND      | 0.20 | 0.40 |           | ND      | 1.0   | 2.1  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 2-Hexanone (MBK)                      | ND      | 0.20 | 0.40 |           | ND      | 0.82  | 1.6  | 2          | 1  | 10/15/20 4:38 | DFH     |
| 4-Methyl-2-pentanone (MIBK)           | ND      | 0.20 | 0.40 |           | ND      | 2.3   | 4.6  | 2          | 1  | 10/15/20 4:38 | DFH     |
| Acetone                               | 3.06    | 0.20 | 1.00 |           | 7.3     | 0.48  | 2.4  | 2          | 1  | 10/15/20 4:38 | DFH     |
| Acrolein                              | ND      | 0.20 | 0.40 |           | ND      | 0.46  | 0.92 | 2          | 1  | 10/15/20 4:38 | DFH     |
| Allyl chloride                        | ND      | 0.20 | 0.40 |           | ND      | 0.63  | 1.3  | 2          | 1  | 10/15/20 4:38 | DFH     |
|                                       |         |      |      |           |         |       |      |            |    |               |         |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To:

Nancy Love

Project Number:

CG-09-0423.10

Client Site I.D.:

**Montgomery Brothers** 

Purchase Order:

CG09042310MS

**ANALYTICAL RESULTS** 

Project Location:

Field Sample #: SMP-VMP-11

Sample Description/Location:

Sub Description/Location:

Canister ID: 29400

Canister ID. 29400 Canister Size: 6L Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 3

Receipt Vacuum(in Hg): 3

Flow Controller Type: Passive Flow Controller ID: 3953

Sample ID: 2011167-04 Sample Matrix: Air

Sampled: 10/7/2020 16:07

Sample Type: SG

Volatile Organic Compounds by GCMS

EPA TO-15

|                          |         |      |      | EPA IU-1  | •       |       |      |          |    |               |         |
|--------------------------|---------|------|------|-----------|---------|-------|------|----------|----|---------------|---------|
| A 1 4 .                  |         | ppbv |      | FI (0)    | - To    | ug/M³ |      | Bil di   | DF | Date/Time     |         |
| Analyte                  | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution | PF | Analyzed      | Analyst |
| Benzene                  | ND      | 0.20 | 0.40 |           | ND      | 0.64  | 1.3  | 2        | 1  | 10/15/20 4:38 |         |
| Benzyl Chloride          | ND      | 0.20 | 0.40 |           | ND      | 1.0   | 2.1  | 2        | 1  | 10/15/20 4:38 |         |
| Bromodichloromethane     | 3.09    | 0.20 | 0.40 |           | 21      | 1.3   | 2.7  | 2        | 1  | 10/15/20 4:38 |         |
| Bromoform                | ND      | 0.20 | 0.40 |           | ND      | 2.1   | 4.1  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Bromomethane             | ND      | 0.20 | 0.40 |           | ND      | 0.78  | 1.6  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Carbon Disulfide         | 2.05    | 0.20 | 1.00 |           | 6.4     | 0.62  | 3.1  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Carbon Tetrachloride     | ND      | 0.20 | 0.40 |           | ND      | 1.3   | 2.5  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Chlorobenzene            | 0.49    | 0.20 | 0.40 |           | 2.3     | 0.92  | 1.8  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Chloroethane             | ND      | 0.20 | 0.40 |           | ND      | 0.53  | 1.1  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Chloroform               | 29.4    | 0.20 | 0.40 |           | 140     | 0.98  | 2.0  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Chloromethane            | ND      | 0.20 | 0.40 |           | ND      | 0.41  | 0.83 | 2        | 1  | 10/15/20 4:38 | DFH     |
| cis-1,2-Dichloroethylene | ND      | 0.20 | 0.40 |           | ND      | 0.79  | 1.6  | 2        | 1  | 10/15/20 4:38 | DFH     |
| cis-1,3-Dichloropropene  | ND      | 0.20 | 0.40 |           | ND      | 0.91  | 1.8  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Cyclohexane              | ND      | 0.20 | 0.40 |           | ND      | 0.69  | 1.4  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Dibromochloromethane     | 0.23    | 0.20 | 0.40 | J         | 1.9     | 1.7   | 3.4  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Dichlorodifluoromethane  | 0.31    | 0.20 | 1.00 | J         | 1.5     | 0.99  | 4.9  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Ethanol                  | 0.73    | 0.20 | 1.00 | J         | 1.4     | 0.38  | 1.9  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Ethyl acetate            | ND      | 0.20 | 0.40 |           | ND      | 0.72  | 1.4  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Ethylbenzene             | 1.09    | 0.20 | 0.40 |           | 4.7     | 0.87  | 1.7  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Heptane                  | ND      | 0.20 | 0.40 |           | ND      | 0.82  | 1.6  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Hexachlorobutadiene      | ND      | 0.20 | 1.00 |           | ND      | 2.1   | 11   | 2        | 1  | 10/15/20 4:38 | DFH     |
| Hexane                   | ND      | 0.20 | 0.40 |           | ND      | 0.70  | 1.4  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Isooctane                | ND      | 0.20 | 0.40 |           | ND      | 0.93  | 1.9  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Isopropyl alcohol        | 0.32    | 0.20 | 1.00 | J         | 0.80    | 0.49  | 2.5  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Isopropylbenzene         | 0.33    | 0.20 | 0.40 | J         | 1.6     | 0.98  | 2.0  | 2        | 1  | 10/15/20 4:38 | DFH     |
| m+p-Xylenes              | 5.09    | 0.20 | 0.80 |           | 22      | 0.87  | 3.5  | 2        | 1  | 10/15/20 4:38 | DFH     |
| Methyl methacrylate      | ND      | 0.20 | 0.40 |           | ND      | 0.82  | 1.6  | 2        | 1  | 10/15/20 4:38 | DFH     |
|                          |         |      |      |           |         |       |      |          |    |               |         |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

CG-09-0423.10 **Project Number:** 

Client Site I.D.: Montgomery Brothers

CG09042310MS Purchase Order:

#### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: SMP-VMP-11

Sample ID: 2011167-04 Sample Matrix: Air

Sampled: 10/7/2020 16:07

Sample Type: SG

Sample Description/Location: Sub Description/Location: Canister ID: 29400

Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 3 Receipt Vacuum(in Hg): 3

Flow Controller Type: Passive Flow Controller ID: 3953

| Volatile Organic | Compounds | by GCMS |
|------------------|-----------|---------|
| FI               | PΔ TO-15  |         |

|                             |         |      |        | EPA TO-1  | 5       |            |      |          |    |                |         |
|-----------------------------|---------|------|--------|-----------|---------|------------|------|----------|----|----------------|---------|
|                             |         | ppbv |        |           |         | ug/M³      |      | _        |    | Date/Time      |         |
| Analyte                     | Results | MDL  | LOQ    | Flag/Qual | Results | MDL        | LOQ  | Dilution | PF | Analyzed       | Analyst |
| Methylene chloride          | 0.32    | 0.20 | 2.00   | J         | 1.1     | 0.69       | 6.9  | 2        | 1  | 10/15/20 4:38  | DFH     |
| Methyl-t-butyl ether (MTBE) | ND      | 0.20 | 0.40   |           | ND      | 0.72       | 1.4  | 2        | 1  | 10/15/20 4:38  | DFH     |
| Naphthalene                 | 0.74    | 0.20 | 0.40   |           | 3.9     | 1.0        | 2.1  | 2        | 1  | 10/15/20 4:38  | DFH     |
| n-Nonane (C9)               | ND      | 0.20 | 0.40   |           | ND      | 1.0        | 2.1  | 2        | 1  | 10/15/20 4:38  | DFH     |
| n-Propylbenzene             | 0.22    | 0.20 | 0.40   | J         | 1.1     | 0.98       | 2.0  | 2        | 1  | 10/15/20 4:38  | DFH     |
| o-Xylene                    | 2.10    | 0.20 | 0.40   |           | 9.1     | 0.87       | 1.7  | 2        | 1  | 10/15/20 4:38  | DFH     |
| n-Pentane (C5)              | 0.57    | 0.20 | 0.40   |           | 1.7     | 0.59       | 1.2  | 2        | 1  | 10/15/20 4:38  | DFH     |
| Propylene                   | 0.52    | 0.20 | 0.40   |           | 0.90    | 0.34       | 0.69 | 2        | 1  | 10/15/20 4:38  | DFH     |
| Styrene                     | ND      | 0.20 | 0.40   |           | ND      | 0.85       | 1.7  | 2        | 1  | 10/15/20 4:38  | DFH     |
| TBA                         | 0.22    | 0.20 | 1.00   | J         | 0.67    | 0.61       | 3.0  | 2        | 1  | 10/15/20 4:38  | DFH     |
| Tetrachloroethylene (PCE)   | 73.8    | 2.00 | 4.00   |           | 500     | 14         | 27   | 20       | 1  | 10/14/20 16:55 | DFH     |
| Tetrahydrofuran             | 3.32    | 0.20 | 0.40   |           | 9.8     | 0.59       | 1.2  | 2        | 1  | 10/15/20 4:38  | DFH     |
| Toluene                     | 1.36    | 0.20 | 0.40   |           | 5.1     | 0.75       | 1.5  | 2        | 1  | 10/15/20 4:38  | DFH     |
| trans-1,2-Dichloroethylene  | ND      | 0.20 | 0.40   |           | ND      | 0.79       | 1.6  | 2        | 1  | 10/15/20 4:38  | DFH     |
| trans-1,3-Dichloropropene   | ND      | 0.20 | 0.40   |           | ND      | 0.91       | 1.8  | 2        | 1  | 10/15/20 4:38  | DFH     |
| Trichloroethylene           | 2.17    | 0.20 | 0.40   |           | 12      | 1.1        | 2.1  | 2        | 1  | 10/15/20 4:38  | DFH     |
| Trichlorofluoromethane      | 0.31    | 0.20 | 0.40   | J         | 1.8     | 1.1        | 2.2  | 2        | 1  | 10/15/20 4:38  | DFH     |
| Vinyl acetate               | ND      | 0.20 | 0.40   |           | ND      | 0.70       | 1.4  | 2        | 1  | 10/15/20 4:38  | DFH     |
| Vinyl bromide               | ND      | 0.20 | 0.40   |           | ND      | 0.87       | 1.7  | 2        | 1  | 10/15/20 4:38  | DFH     |
| Vinyl chloride              | ND      | 0.20 | 0.40   |           | ND      | 0.51       | 1.0  | 2        | 1  | 10/15/20 4:38  | DFH     |
| Xylenes, Total              | 7.20    | 0.20 | 1.20   |           | 31      | 0.87       | 5.2  | 2        | 1  | 10/15/20 4:38  | DFH     |
| Surrogate(s)                |         | % Re | covery |           | % Re    | covery Lin | nits |          |    |                |         |

10/14/20 16:55 4-Bromofluorobenzene (Surr) 90.4 80-120 4-Bromofluorobenzene (Surr) 98.2 80-120 10/15/20 4:38



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love Project Number: CG-09-0423.10

CG09042310MS Client Site I.D.: Montgomery Brothers Purchase Order:

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: SMP-VMP-12

Sample ID: 2011167-05 Sample Matrix: Air

Sampled: 10/7/2020 13:58

Sample Type: SG

Sample Description/Location: Sub Description/Location: Canister ID: 36976 Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 26 Receipt Vacuum(in Hg): 26 Flow Controller Type: Passive

Flow Controller ID: 10114

|                                       |         |             |      | EPA TO-1  | 5       |              |     |          |               |                            |         |
|---------------------------------------|---------|-------------|------|-----------|---------|--------------|-----|----------|---------------|----------------------------|---------|
| Analyte                               | Results | ppbv<br>MDL | LOQ  | Flag/Qual | Results | ug/M³<br>MDL | LOQ | Dilution | PF            | Date/Time                  | Analyst |
| 1.1.1-Trichloroethane                 | ND      | 0.67        | 1.33 | riay/Quai | ND      | 3.6          | 7.3 | 6.67     | <del></del> 1 | Analyzed<br>10/14/20 23:42 | Analyst |
| 1,1,1-Thichloroethane                 | ND      | 0.67        | 1.33 |           | ND      | 4.6          | 9.2 | 6.67     | 1             | 10/14/20 23:42             |         |
|                                       |         |             |      |           |         |              |     |          |               |                            |         |
| 1,1,2,2-Tetrachloroethane             | ND      | 0.67        | 1.33 |           | ND      | 4.6          | 9.2 | 6.67     | 1             | 10/14/20 23:42             |         |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND      | 0.67        | 1.33 |           | ND      | 5.1          | 10  | 6.67     | 1             | 10/14/20 23:42             |         |
| 1,1,2-Trichloroethane                 | ND      | 0.67        | 1.33 |           | ND      | 3.6          | 7.3 | 6.67     | 1             | 10/14/20 23:42             |         |
| 1,1-Dichloroethane                    | ND      | 0.67        | 1.33 |           | ND      | 2.7          | 5.4 | 6.67     | 1             | 10/14/20 23:42             |         |
| 1,1-Dichloroethylene                  | ND      | 0.67        | 1.33 |           | ND      | 2.6          | 5.3 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 1,2,4-Trichlorobenzene                | ND      | 0.67        | 3.34 |           | ND      | 4.9          | 25  | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 1,2,4-Trimethylbenzene                | 1.29    | 0.67        | 1.33 | J         | 6.3     | 3.3          | 6.6 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 1,2-Dibromoethane (EDB)               | ND      | 0.67        | 1.33 |           | ND      | 5.1          | 10  | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 1,2-Dichlorobenzene                   | ND      | 0.67        | 1.33 |           | ND      | 4.0          | 8.0 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 1,2-Dichloroethane                    | 1.13    | 0.67        | 1.33 | J         | 4.6     | 2.7          | 5.4 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 1,2-Dichloropropane                   | ND      | 0.67        | 1.33 |           | ND      | 3.1          | 6.2 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 1,2-Dichlorotetrafluoroethane         | ND      | 0.67        | 1.33 |           | ND      | 4.7          | 9.3 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 1,3,5-Trimethylbenzene                | ND      | 0.67        | 1.33 |           | ND      | 3.3          | 6.6 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 1,3-Butadiene                         | ND      | 0.67        | 1.33 |           | ND      | 1.5          | 3.0 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 1,3-Dichlorobenzene                   | ND      | 0.67        | 1.33 |           | ND      | 4.0          | 8.0 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 1,4-Dichlorobenzene                   | ND      | 0.67        | 1.33 |           | ND      | 4.0          | 8.0 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 1,4-Dioxane                           | ND      | 0.67        | 1.33 |           | ND      | 2.4          | 4.8 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 1-Ethyl-4-methyl benzene              | 2.38    | 0.67        | 1.33 |           | 12      | 3.3          | 6.6 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 2-Butanone (MEK)                      | 0.95    | 0.67        | 1.33 | J         | 2.8     | 2.0          | 3.9 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 2-Chlorotoluene                       | ND      | 0.67        | 1.33 |           | ND      | 3.5          | 6.9 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 2-Hexanone (MBK)                      | ND      | 0.67        | 1.33 |           | ND      | 2.7          | 5.5 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| 4-Methyl-2-pentanone (MIBK)           | 1.47    | 0.67        | 1.33 |           | 17      | 7.6          | 15  | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| Acetone                               | ND      | 0.67        | 3.34 |           | ND      | 1.6          | 7.9 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| Acrolein                              | ND      | 0.67        | 1.33 |           | ND      | 1.5          | 3.1 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
| Allyl chloride                        | ND      | 0.67        | 1.33 |           | ND      | 2.1          | 4.2 | 6.67     | 1             | 10/14/20 23:42             | DFH     |
|                                       |         |             |      |           |         |              |     |          |               |                            |         |



1941 Reymet Road 
Richmond, Virginia 23237 
Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

5405 Twin Knolls Rd., Suite 1

Date Received: Date Issued:

October 8, 2020 14:02

October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love **Project Number:** 

CG-09-0423.10

Client Site I.D.:

Montgomery Brothers

ND

0.67

1.33

Purchase Order:

CG09042310MS

#### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: SMP-VMP-12

Sample Description/Location:

Sub Description/Location:

Canister ID: 36976 Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 26

Receipt Vacuum(in Hg): 26 Flow Controller Type: Passive

Flow Controller ID: 10114

Sample Matrix: Air Sampled: 10/7/2020 13:58

Sample ID: 20I1167-05

Sample Type: SG

Methyl methacrylate

Volatile Organic Compounds by GCMS **EPA TO-15** 

vdaa ug/M³ Date/Time LOQ Results MDL Flag/Qual Results MDL LOQ Dilution PF Analyte Analyzed Analyst Benzene 2 37 0.67 1.33 76 2 1 4.3 6.67 1 10/14/20 23:42 DFH Benzyl Chloride ND 0.67 1.33 ND 3.5 6.9 6.67 10/14/20 23:42 DFH 1 Bromodichloromethane 0.67 0.67 1.33 J 4.5 4.5 8.9 6.67 10/14/20 23:42 DFH Bromoform ND 0.67 1.33 NΠ 6.9 14 6 67 10/14/20 23:42 DFH ND Bromomethane ND 0.67 1.33 2.6 5.2 6.67 10/14/20 23:42 DFH 10/14/20 23:42 DFH Carbon Disulfide 1.69 0.67 3.34 5.3 10 6.67 Carbon Tetrachloride ND 0.67 1.33 ND 4.2 8.4 6.67 10/14/20 23:42 DFH Chlorobenzene 0.85 0.67 1.33 3.9 3.1 6.1 6.67 10/14/20 23:42 DFH Chloroethane ND 0.67 1.33 ND 1.8 3.5 6.67 10/14/20 23:42 DFH Chloroform 25.5 0.67 1.33 120 3.3 6.5 6.67 10/14/20 23:42 DFH Chloromethane ND 0.67 1.33 ND 1.4 2.8 6.67 1 10/14/20 23:42 DFH cis-1,2-Dichloroethylene 0.67 35 26 5.3 6 67 10/14/20 23:42 DFH 8.73 1.33 cis-1,3-Dichloropropene 0.67 1.33 ND 6.1 6.67 10/14/20 23:42 DFH ND 3.0 ND Cyclohexane ND 0.67 1.33 23 4.6 6.67 1 10/14/20 23:42 DFH Dibromochloromethane ND 0.67 1.33 ND 5.7 11 6.67 1 10/14/20 23:42 DFH Dichlorodifluoromethane NΠ 0.67 NΠ 10/14/20 23:42 DFH 3 34 3.3 16 6 67 Ethanol 1 11 0.67 3.34 J 21 13 6.3 6.67 10/14/20 23:42 DFH ND 0.67 1.33 ND 2.4 4.8 6.67 10/14/20 23:42 DFH Ethyl acetate Ethylbenzene 4.22 0.67 1.33 18 2.9 5.8 6.67 1 10/14/20 23:42 DFH Heptane 0.94 0.67 1.33 3.9 2.7 5.5 6.67 10/14/20 23:42 DFH Hexachlorobutadiene ND 0.67 3.34 ND 7.1 36 6.67 10/14/20 23:42 DFH 17 10/14/20 23:42 DFH Hexane 4.86 0.67 1.33 2.4 4.7 6.67 10/14/20 23:42 DFH Isooctane 0.78 0.67 1.33 3.6 3.1 6.2 6.67 Isopropyl alcohol 0.67 ND 8.2 6.67 10/14/20 23:42 DFH ND 3.34 1.6 Isopropylbenzene ND 0.67 1.33 ND 3.3 6.6 6.67 10/14/20 23:42 DFH m+p-Xylenes 9.57 0.67 2.67 42 2.9 12 6.67 10/14/20 23:42 DFH

ND

2.7

5.5

6.67

10/14/20 23:42 DFH



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

Date Received: October 8, 2020 14:02 5405 Twin Knolls Rd., Suite 1

Date Issued:

October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

CG-09-0423.10 Project Number:

Client Site I.D.: Montgomery Brothers

CG09042310MS Purchase Order:

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: SMP-VMP-12

Sample ID: 2011167-05

Sample Matrix: Air

Sampled: 10/7/2020 13:58

Sample Type: SG

Sample Description/Location: Sub Description/Location: Canister ID: 36976 Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 26 Receipt Vacuum(in Hg): 26 Flow Controller Type: Passive

Flow Controller ID: 10114

| Volatile Organic | Compounds | by | GCMS |
|------------------|-----------|----|------|
| FI               | PΔ TO-15  |    |      |

|                             |         | ppbv |        | LIA IO-II | •       | /843         |      |          |    |                       |         |
|-----------------------------|---------|------|--------|-----------|---------|--------------|------|----------|----|-----------------------|---------|
| Analyte                     | Results | MDL  | LOQ    | Flag/Qual | Results | ug/M³<br>MDL | LOQ  | Dilution | PF | Date/Time<br>Analyzed | Analyst |
| Methylene chloride          | 3.40    | 0.67 | 6.67   | J         | 12      | 2.3          | 23   | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| Methyl-t-butyl ether (MTBE) | 3.19    | 0.67 | 1.33   |           | 12      | 2.4          | 4.8  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| Naphthalene                 | 1.57    | 0.67 | 1.33   |           | 8.3     | 3.5          | 7.0  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| n-Nonane (C9)               | ND      | 0.67 | 1.33   |           | ND      | 3.5          | 7.0  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| n-Propylbenzene             | ND      | 0.67 | 1.33   |           | ND      | 3.3          | 6.6  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| o-Xylene                    | 2.62    | 0.67 | 1.33   |           | 11      | 2.9          | 5.8  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| n-Pentane (C5)              | 14.9    | 0.67 | 1.33   |           | 44      | 2.0          | 3.9  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| Propylene                   | 41.4    | 0.67 | 1.33   |           | 71      | 1.1          | 2.3  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| Styrene                     | ND      | 0.67 | 1.33   |           | ND      | 2.8          | 5.7  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| TBA                         | ND      | 0.67 | 3.34   |           | ND      | 2.0          | 10   | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| Tetrachloroethylene (PCE)   | 0.91    | 0.67 | 1.33   | J         | 6.2     | 4.5          | 9.0  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| Tetrahydrofuran             | 1.06    | 0.67 | 1.33   | J         | 3.1     | 2.0          | 3.9  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| Toluene                     | 6.68    | 0.67 | 1.33   |           | 25      | 2.5          | 5.0  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| trans-1,2-Dichloroethylene  | 0.75    | 0.67 | 1.33   | J         | 3.0     | 2.6          | 5.3  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| trans-1,3-Dichloropropene   | ND      | 0.67 | 1.33   |           | ND      | 3.0          | 6.1  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| Trichloroethylene           | 1.31    | 0.67 | 1.33   | J         | 7.0     | 3.6          | 7.2  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| Trichlorofluoromethane      | ND      | 0.67 | 1.33   |           | ND      | 3.7          | 7.5  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| Vinyl acetate               | ND      | 0.67 | 1.33   |           | ND      | 2.3          | 4.7  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| Vinyl bromide               | ND      | 0.67 | 1.33   |           | ND      | 2.9          | 5.8  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| Vinyl chloride              | 1.13    | 0.67 | 1.33   | J         | 2.9     | 1.7          | 3.4  | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| Xylenes, Total              | 12.2    | 0.67 | 4.00   |           | 53      | 2.9          | 17   | 6.67     | 1  | 10/14/20 23:42        | DFH     |
| Surrogate(s)                |         | % Re | covery |           | % Re    | covery Lim   | nits |          |    |                       |         |

4-Bromofluorobenzene (Surr) 95.6 80-120 10/14/20 23:42



1941 Reymet Road 
Richmond, Virginia 23237 
Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love **Project Number:** CG-09-0423.10

Montgomery Brothers Purchase Order: CG09042310MS

#### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: SMP-VMP-13

Client Site I.D.:

Sample ID: 2011167-06

Sample Matrix: Air

Sampled: 10/7/2020 15:05

Sample Type: SG

Sample Description/Location: Sub Description/Location: Canister ID: 36978 Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 2 Receipt Vacuum(in Hg): 2 Flow Controller Type: Passive Flow Controller ID: 10116

Volatile Organic Compounds by GCMS **EPA TO-15** 

ppbv ug/M³ Date/Time Flag/Qual Results MDL LOQ Results MDL LOQ Dilution PF Analyte Analyzed Analyst 1.1.1-Trichloroethane NΠ 0.20 0.40 ND 1 1 2.2 2 1 10/15/20 6:15 DFH 1,1,1,2-Tetrachloroethane ND 0.20 0.40 ND 1.4 2.7 2 10/15/20 6:15 DFH 1 1,1,2,2-Tetrachloroethane 57.6 2.00 4.00 400 14 27 20 10/14/20 17:41 DFH 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.20 0.40 ND 1.5 3 1 2 10/15/20 6:15 DFH 1,1,2-Trichloroethane 3.15 0.20 0.40 17 1.1 2.2 2 10/15/20 6:15 DFH ND 2 1,1-Dichloroethane ND 0.20 0.40 0.81 1.6 10/15/20 6:15 DFH 1,1-Dichloroethylene ND 0.20 0.40 ND 0.79 1.6 2 10/15/20 6:15 DFH 1,2,4-Trichlorobenzene ND 0.20 1.00 ND 7.4 2 10/15/20 6:15 DFH 1.5 10/15/20 6:15 DFH 1,2,4-Trimethylbenzene 0.35 0.20 0.40 J 1.7 0.98 20 2 1,2-Dibromoethane (EDB) ND 0.20 0.40 ND 1.5 3.1 2 10/15/20 6:15 DFH 1,2-Dichlorobenzene ND 0.20 0.40 ND 1.2 2.4 2 1 10/15/20 6:15 DFH 0.20 0.81 2 1.2-Dichloroethane 0.31 0.40 J 13 16 10/15/20 6:15 DFH 0.20 0.40 ND 0.92 2 10/15/20 6:15 DFH 1,2-Dichloropropane ND 1.8 ND 2 1,2-Dichlorotetrafluoroethane ND 0.20 0.40 1.4 2.8 1 10/15/20 6:15 DFH 1,3,5-Trimethylbenzene ND 0.20 0.40 ND 0.98 2.0 2 1 10/15/20 6:15 DFH NΠ 2 1.3-Butadiene ND 0.20 0.40 0.44 0.88 10/15/20 6:15 DFH 1 1.3-Dichlorobenzene ND 0.20 0.40 ND 12 24 2 1 10/15/20 6:15 DFH 0.28 0.20 0.40 1.7 1.2 2.4 2 1.4-Dichlorobenzene 10/15/20 6:15 DFH 1.4-Dioxane ND 0.20 0.40 ND 0.72 1.4 2 1 10/15/20 6:15 DFH 1-Ethyl-4-methyl benzene ND 0.20 0.40 ND 0.98 2.0 2 10/15/20 6:15 DFH 2-Butanone (MEK) 0.74 0.20 0.40 2.2 0.59 1.2 2 10/15/20 6:15 DFH ND 2 2-Chlorotoluene ND 0.20 0.40 1.0 2.1 10/15/20 6:15 DFH ND 2 2-Hexanone (MBK) ND 0.20 0.40 0.82 1.6 10/15/20 6:15 DFH 4-Methyl-2-pentanone (MIBK) 0.27 0.20 0.40 2.3 2 10/15/20 6:15 DFH 3.1 4.6 Acetone 18.6 0.20 1.00 44 0.48 2.4 2 10/15/20 6:15 Acrolein 0.38 0.20 0.40 0.87 0.46 0.92 2 10/15/20 6:15 DFH 1 Allyl chloride ND 0.20 0.40 ND 0.63 1.3 2 10/15/20 6:15 DFH



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

CG-09-0423.10 Project Number:

Client Site I.D.: Montgomery Brothers

CG09042310MS Purchase Order:

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: SMP-VMP-13

Sample ID: 2011167-06 Sample Matrix: Air

Sampled: 10/7/2020 15:05

Sample Type: SG

Sample Description/Location: Initial Vacuum(in Hg): 30 Sub Description/Location: Final Vacuum(in Hg): 2

Receipt Vacuum(in Hg): 2 Canister ID: 36978 Canister Size: 6L Flow Controller Type: Passive

Flow Controller ID: 10116

|         |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EPA TO-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                              |
|---------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------|
|         |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | ug/M³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date/Time     |                                                                                              |
| Results | MDL                                                                                                     | LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flag/Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Results                                | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analyzed      | Analyst                                                                                      |
| 0.97    | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1                                    | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| 2.59    | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                     | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| 1.98    | 0.20                                                                                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.2                                    | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| 23.8    | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120                                    | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| 5.97    | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                                     | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| 0.38    | 0.20                                                                                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9                                    | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| 1.37    | 0.20                                                                                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                                    | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| 0.57    | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                                    | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| 0.66    | 0.20                                                                                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6                                    | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| 1.59    | 0.20                                                                                                    | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.9                                    | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
| ND      | 0.20                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                     | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/20 6:15 | DFH                                                                                          |
|         | 0.97 ND 2.59 ND ND 1.98 ND ND ND 23.8 ND 5.97 ND ND ND 0.38 1.37 ND 0.57 ND ND ND ND ND 0.66 ND ND 1.59 | 0.97 0.20 ND 0.20 2.59 0.20 ND 0.20 ND 0.20 1.98 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 | Results         MDL         LOQ           0.97         0.20         0.40           ND         0.20         0.40           2.59         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           1.98         0.20         1.00           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0. | PPDV   Results   MDL   LOQ   Flag/Qual | Results         MDL         LOQ         Flag/Qual         Results           0.97         0.20         0.40         3.1           ND         0.20         0.40         ND           2.59         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND           5.97         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND           0.38         0.20         1.00         J         1.9           1. | Results         MDL         LOQ         Flag/Qual         Results         MDL           0.97         0.20         0.40         3.1         0.64           ND         0.20         0.40         ND         1.0           2.59         0.20         0.40         ND         2.1           ND         0.20         0.40         ND         0.78           1.98         0.20         1.00         6.2         0.62           ND         0.20         0.40         ND         1.3           ND         0.20         0.40         ND         0.92           ND         0.20         0.40         ND         0.53           23.8         0.20         0.40         ND         0.53           23.8         0.20         0.40         ND         0.41           5.97         0.20         0.40         ND         0.91           ND         0.20         0.40         ND         0.91           ND         0.20         0.40         ND         0.69           ND         0.20         0.40         ND         1.7           0.38         0.20         1.00         J         1.9 <t< td=""><td>Results         MDL         LOQ         Flag/Qual         Results         MDL         LOQ           0.97         0.20         0.40         3.1         0.64         1.3           ND         0.20         0.40         ND         1.0         2.1           2.59         0.20         0.40         ND         1.7         1.3         2.7           ND         0.20         0.40         ND         2.1         4.1           ND         0.20         0.40         ND         0.78         1.6           1.98         0.20         1.00         6.2         0.62         3.1           ND         0.20         0.40         ND         1.3         2.5           ND         0.20         0.40         ND         0.92         1.8           ND         0.20         0.40         ND         0.93         2.0           ND         0.20         0.40         ND         0.93         2.0           ND         0.20         0.40         ND         0.91         1.8           ND         0.20         0.40         ND         0.91         1.8           ND         0.20         0.40         ND</td><td>Results         MDL         LOQ         Flag/Qual         Results         MDL         LOQ         Dilution           0.97         0.20         0.40         3.1         0.64         1.3         2           ND         0.20         0.40         ND         1.0         2.1         2           2.59         0.20         0.40         ND         2.1         4.1         2           ND         0.20         0.40         ND         0.78         1.6         2           ND         0.20         0.40         ND         0.78         1.6         2           1.98         0.20         1.00         6.2         0.62         3.1         2           ND         0.20         0.40         ND         1.3         2.5         2           ND         0.20         0.40         ND         0.92         1.8         2           ND         0.20         0.40         ND         0.93         2.0         2           ND         0.20         0.40         ND         0.94         0.83         2           ND         0.20         0.40         ND         0.91         1.8         2</td><td>  ND</td><td>  Results   MDL   LOQ   Flag/Qual   Results   MDL   LOQ   Dilution   PF   Data/Time   Analyzed    </td></t<> | Results         MDL         LOQ         Flag/Qual         Results         MDL         LOQ           0.97         0.20         0.40         3.1         0.64         1.3           ND         0.20         0.40         ND         1.0         2.1           2.59         0.20         0.40         ND         1.7         1.3         2.7           ND         0.20         0.40         ND         2.1         4.1           ND         0.20         0.40         ND         0.78         1.6           1.98         0.20         1.00         6.2         0.62         3.1           ND         0.20         0.40         ND         1.3         2.5           ND         0.20         0.40         ND         0.92         1.8           ND         0.20         0.40         ND         0.93         2.0           ND         0.20         0.40         ND         0.93         2.0           ND         0.20         0.40         ND         0.91         1.8           ND         0.20         0.40         ND         0.91         1.8           ND         0.20         0.40         ND | Results         MDL         LOQ         Flag/Qual         Results         MDL         LOQ         Dilution           0.97         0.20         0.40         3.1         0.64         1.3         2           ND         0.20         0.40         ND         1.0         2.1         2           2.59         0.20         0.40         ND         2.1         4.1         2           ND         0.20         0.40         ND         0.78         1.6         2           ND         0.20         0.40         ND         0.78         1.6         2           1.98         0.20         1.00         6.2         0.62         3.1         2           ND         0.20         0.40         ND         1.3         2.5         2           ND         0.20         0.40         ND         0.92         1.8         2           ND         0.20         0.40         ND         0.93         2.0         2           ND         0.20         0.40         ND         0.94         0.83         2           ND         0.20         0.40         ND         0.91         1.8         2 | ND            | Results   MDL   LOQ   Flag/Qual   Results   MDL   LOQ   Dilution   PF   Data/Time   Analyzed |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love CG-09-0423.10 Project Number:

CG09042310MS Client Site I.D.: Montgomery Brothers Purchase Order:

### **ANALYTICAL RESULTS**

Project Location:

Sample Description/Location: Field Sample #: SMP-VMP-13 Sub Description/Location:

Sample ID: 2011167-06 Canister Size: 6L Sample Matrix: Air

Canister ID: 36978

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 2 Receipt Vacuum(in Hg): 2 Flow Controller Type: Passive

Flow Controller ID: 10116

Sampled: 10/7/2020 15:05

Sample Type: SG

|         |                                                                                  |                                                                                                                                                                                                                                                             | EPA TO-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                  |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | ug/M³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  | Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Results | MDL                                                                              | LOQ                                                                                                                                                                                                                                                         | Flag/Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Results                          | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PF                                                               | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.40    | 0.20                                                                             | 2.00                                                                                                                                                                                                                                                        | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4                              | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                               | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.54    | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.9                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                               | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                               | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.61    | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.6                              | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.09    | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.2                              | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.02    | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.5                              | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                               | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.23    | 0.20                                                                             | 1.00                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                               | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 18.3    | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120                              | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.01    | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                               | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.27    | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.6                              | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.79    | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27                               | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                               | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 45.8    | 2.00                                                                             | 4.00                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 250                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                | 10/14/20 17:4°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.21    | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                              | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                               | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                               | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND      | 0.20                                                                             | 0.40                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                               | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.19    | 0.20                                                                             | 1.20                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.5                              | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | 10/15/20 6:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | % Red                                                                            | covery                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | % Red                            | covery Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                  | 92.3                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                | 30-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  | 10/14/20 17:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | 0.40 ND 0.54 ND ND 0.61 1.09 2.02 ND 5.23 18.3 4.01 2.27 6.79 ND 45.8 0.21 ND ND | 0.40 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 1.09 0.20 1.09 0.20 2.02 0.20 ND 0.20 5.23 0.20 18.3 0.20 4.01 0.20 2.27 0.20 ND 0.20 45.8 2.00 0.21 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 ND 0.20 | Results         MDL         LOQ           0.40         0.20         2.00           ND         0.20         0.40           0.54         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           1.09         0.20         0.40           1.09         0.20         0.40           2.02         0.20         0.40           ND         0.20         0.40           5.23         0.20         1.00           18.3         0.20         0.40           4.01         0.20         0.40           6.79         0.20         0.40           ND         0.20         0.40           45.8         2.00         4.00           0.21         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND         0.20         0.40           ND <td>  PRESUITS   MDL   LOQ   Flag/Qual    </td> <td>Results         MDL         LOQ         Flag/Qual         Results           0.40         0.20         2.00         J         1.4           ND         0.20         0.40         ND           0.54         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND           0.61         0.20         0.40         3.2           2.02         0.20         0.40         3.5           ND         0.20         0.40         ND           5.23         0.20         1.00         16           18.3         0.20         0.40         120           4.01         0.20         0.40         12           2.27         0.20         0.40         8.6           6.79         0.20         0.40         8.6           6.79         0.20         0.40         ND           45.8         2.00         4.00         250           0.21         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND</td> <td>Results         MDL         LOQ         Flag/Qual         Results         MDL           0.40         0.20         2.00         J         1.4         0.69           ND         0.20         0.40         ND         0.72           0.54         0.20         0.40         ND         1.0           ND         0.20         0.40         ND         1.0           ND         0.20         0.40         ND         0.98           0.61         0.20         0.40         2.6         0.87           1.09         0.20         0.40         3.2         0.59           2.02         0.20         0.40         3.5         0.34           ND         0.20         0.40         ND         0.85           5.23         0.20         0.40         120         1.4           4.01         0.20         0.40         120         1.4           4.01         0.20         0.40         12         0.59           2.27         0.20         0.40         27         0.79           ND         0.20         0.40         ND         0.91           45.8         2.00         4.00         ND</td> <td>Results         MDL         LOQ         Flag/Qual         Results         MDL         LOQ           0.40         0.20         2.00         J         1.4         0.69         6.9           ND         0.20         0.40         ND         0.72         1.4           0.54         0.20         0.40         ND         0.72         1.4           ND         0.20         0.40         ND         1.0         2.1           ND         0.20         0.40         ND         0.98         2.0           0.61         0.20         0.40         2.6         0.87         1.7           1.09         0.20         0.40         3.2         0.59         1.2           2.02         0.20         0.40         3.5         0.34         0.69           ND         0.20         0.40         ND         0.85         1.7           5.23         0.20         1.00         16         0.61         3.0           18.3         0.20         0.40         120         1.4         2.7           4.01         0.20         0.40         27         0.79         1.6           6.79         0.20         0.40<td>  Results   MDL   LOQ   Flag/Qual   Results   MDL   LOQ   Dilution    </td><td>  Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph  </td><td>  Posults   MDL   LOQ   Flag/Qual   Results   MDL   LOQ   Dilution   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PT   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   Pate/The Analyse   PT   s           0.40         0.20         2.00         J         1.4           ND         0.20         0.40         ND           0.54         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND           0.61         0.20         0.40         3.2           2.02         0.20         0.40         3.5           ND         0.20         0.40         ND           5.23         0.20         1.00         16           18.3         0.20         0.40         120           4.01         0.20         0.40         12           2.27         0.20         0.40         8.6           6.79         0.20         0.40         8.6           6.79         0.20         0.40         ND           45.8         2.00         4.00         250           0.21         0.20         0.40         ND           ND         0.20         0.40         ND           ND         0.20         0.40         ND | Results         MDL         LOQ         Flag/Qual         Results         MDL           0.40         0.20         2.00         J         1.4         0.69           ND         0.20         0.40         ND         0.72           0.54         0.20         0.40         ND         1.0           ND         0.20         0.40         ND         1.0           ND         0.20         0.40         ND         0.98           0.61         0.20         0.40         2.6         0.87           1.09         0.20         0.40         3.2         0.59           2.02         0.20         0.40         3.5         0.34           ND         0.20         0.40         ND         0.85           5.23         0.20         0.40         120         1.4           4.01         0.20         0.40         120         1.4           4.01         0.20         0.40         12         0.59           2.27         0.20         0.40         27         0.79           ND         0.20         0.40         ND         0.91           45.8         2.00         4.00         ND | Results         MDL         LOQ         Flag/Qual         Results         MDL         LOQ           0.40         0.20         2.00         J         1.4         0.69         6.9           ND         0.20         0.40         ND         0.72         1.4           0.54         0.20         0.40         ND         0.72         1.4           ND         0.20         0.40         ND         1.0         2.1           ND         0.20         0.40         ND         0.98         2.0           0.61         0.20         0.40         2.6         0.87         1.7           1.09         0.20         0.40         3.2         0.59         1.2           2.02         0.20         0.40         3.5         0.34         0.69           ND         0.20         0.40         ND         0.85         1.7           5.23         0.20         1.00         16         0.61         3.0           18.3         0.20         0.40         120         1.4         2.7           4.01         0.20         0.40         27         0.79         1.6           6.79         0.20         0.40 <td>  Results   MDL   LOQ   Flag/Qual   Results   MDL   LOQ   Dilution    </td> <td>  Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph  </td> <td>  Posults   MDL   LOQ   Flag/Qual   Results   MDL   LOQ   Dilution   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PT   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   Pate/The Analyse   PT   ph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph   Poph | Posults   MDL   LOQ   Flag/Qual   Results   MDL   LOQ   Dilution   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PT   Pate/The Analyse   PF   Pate/The Analyse   PF   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   PT   Pate/The Analyse   Pate/The Analyse   PT   8b135797426a8998087212ad3.jpeg

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc. Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To:

Nancy Love

Project Number:

CG-09-0423.10

Client Site I.D.:

Montgomery Brothers

Purchase Order:

CG09042310MS

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: HSI-105M-CSA

Sample Description/Location:

Sub Description/Location:

Canister ID: 20254

Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 0

Flow Controller ID: 2667

Receipt Vacuum(in Hg): 0

Flow Controller Type: Passive

Sample Matrix: Air Sampled: 10/7/2020 12:00

Sample Type: AA

Sample ID: 2011167-07

|                                       |         | _    |      | EPA TO-1  | 5       |       |      |          |    |                |         |
|---------------------------------------|---------|------|------|-----------|---------|-------|------|----------|----|----------------|---------|
|                                       |         | ppbv |      |           |         | ug/M³ |      |          |    | Date/Time      |         |
| Analyte                               | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution | PF | Analyzed       | Analyst |
| 1,1,1-Trichloroethane                 | ND      | 0.12 | 0.25 |           | ND      | 0.68  | 1.4  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,1,1,2-Tetrachloroethane             | ND      | 0.12 | 0.25 |           | ND      | 0.86  | 1.7  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,1,2,2-Tetrachloroethane             | ND      | 0.12 | 0.25 |           | ND      | 0.86  | 1.7  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND      | 0.12 | 0.25 |           | ND      | 0.96  | 1.9  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,1,2-Trichloroethane                 | ND      | 0.12 | 0.25 |           | ND      | 0.68  | 1.4  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,1-Dichloroethane                    | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,1-Dichloroethylene                  | ND      | 0.12 | 0.25 |           | ND      | 0.50  | 0.99 | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,2,4-Trichlorobenzene                | ND      | 0.12 | 0.62 |           | ND      | 0.93  | 4.6  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,2,4-Trimethylbenzene                | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,2-Dibromoethane (EDB)               | ND      | 0.12 | 0.25 |           | ND      | 0.96  | 1.9  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,2-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,2-Dichloroethane                    | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,2-Dichloropropane                   | ND      | 0.12 | 0.25 |           | ND      | 0.58  | 1.2  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,2-Dichlorotetrafluoroethane         | ND      | 0.12 | 0.25 |           | ND      | 0.87  | 1.7  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,3,5-Trimethylbenzene                | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,3-Butadiene                         | ND      | 0.12 | 0.25 |           | ND      | 0.28  | 0.55 | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,3-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,4-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1,4-Dioxane                           | ND      | 0.12 | 0.25 |           | ND      | 0.45  | 0.90 | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 1-Ethyl-4-methyl benzene              | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 2-Butanone (MEK)                      | 0.23    | 0.12 | 0.25 | J         | 0.68    | 0.37  | 0.74 | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 2-Chlorotoluene                       | ND      | 0.12 | 0.25 |           | ND      | 0.65  | 1.3  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 2-Hexanone (MBK)                      | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| 4-Methyl-2-pentanone (MIBK)           | ND      | 0.12 | 0.25 |           | ND      | 1.4   | 2.9  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Acetone                               | 3.45    | 0.12 | 0.62 |           | 8.2     | 0.30  | 1.5  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Acrolein                              | ND      | 0.12 | 0.25 |           | ND      | 0.29  | 0.57 | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Allyl chloride                        | ND      | 0.12 | 0.25 |           | ND      | 0.39  | 0.78 | 1.25     | 1  | 10/15/20 14:21 | DFH     |
|                                       |         |      |      |           |         |       |      |          |    |                |         |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

Date Received: 5405 Twin Knolls Rd., Suite 1

Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Project Number: Submitted To: Nancy Love CG-09-0423.10

CG09042310MS Client Site I.D.: Montgomery Brothers Purchase Order:

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: HSI-105M-CSA

Sample ID: 2011167-07 Sample Matrix: Air

Sampled: 10/7/2020 12:00

Sample Type: AA

Sample Description/Location: Sub Description/Location: Canister ID: 20254 Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): 0 Flow Controller Type: Passive

Flow Controller ID: 2667

October 8, 2020 14:02

|                          |         | ppbv |      | EPA TO-1  | 5       | ug/M³ |      |               |    |                       |         |
|--------------------------|---------|------|------|-----------|---------|-------|------|---------------|----|-----------------------|---------|
| Analyte                  | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | -<br>Dilution | PF | Date/Time<br>Analyzed | Analyst |
| Benzene                  | ND      | 0.12 | 0.25 |           | ND      | 0.40  | 0.80 | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Benzyl Chloride          | ND      | 0.12 | 0.25 |           | ND      | 0.65  | 1.3  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Bromodichloromethane     | ND      | 0.12 | 0.25 |           | ND      | 0.84  | 1.7  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Bromoform                | ND      | 0.12 | 0.25 |           | ND      | 1.3   | 2.6  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Bromomethane             | ND      | 0.12 | 0.25 |           | ND      | 0.49  | 0.97 | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Carbon Disulfide         | 0.14    | 0.12 | 0.62 | J         | 0.44    | 0.39  | 1.9  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Carbon Tetrachloride     | ND      | 0.12 | 0.25 |           | ND      | 0.79  | 1.6  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Chlorobenzene            | ND      | 0.12 | 0.25 |           | ND      | 0.58  | 1.2  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Chloroethane             | ND      | 0.12 | 0.25 |           | ND      | 0.33  | 0.66 | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Chloroform               | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Chloromethane            | 0.48    | 0.12 | 0.25 |           | 0.99    | 0.26  | 0.52 | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| cis-1,2-Dichloroethylene | ND      | 0.12 | 0.25 |           | ND      | 0.50  | 0.99 | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| cis-1,3-Dichloropropene  | ND      | 0.12 | 0.25 |           | ND      | 0.57  | 1.1  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Cyclohexane              | ND      | 0.12 | 0.25 |           | ND      | 0.43  | 0.86 | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Dibromochloromethane     | ND      | 0.12 | 0.25 |           | ND      | 1.1   | 2.1  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Dichlorodifluoromethane  | 0.46    | 0.12 | 0.62 | J         | 2.3     | 0.62  | 3.1  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Ethanol                  | 1.69    | 0.12 | 0.62 |           | 3.2     | 0.24  | 1.2  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Ethyl acetate            | ND      | 0.12 | 0.25 |           | ND      | 0.45  | 0.90 | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Ethylbenzene             | ND      | 0.12 | 0.25 |           | ND      | 0.54  | 1.1  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Heptane                  | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Hexachlorobutadiene      | ND      | 0.12 | 0.62 |           | ND      | 1.3   | 6.7  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Hexane                   | 0.14    | 0.12 | 0.25 | J         | 0.49    | 0.44  | 0.88 | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Isooctane                | ND      | 0.12 | 0.25 |           | ND      | 0.58  | 1.2  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Isopropyl alcohol        | 0.22    | 0.12 | 0.62 | J         | 0.55    | 0.31  | 1.5  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Isopropylbenzene         | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| m+p-Xylenes              | ND      | 0.12 | 0.50 |           | ND      | 0.54  | 2.2  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
| Methyl methacrylate      | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25          | 1  | 10/15/20 14:21        | DFH     |
|                          |         |      |      |           |         |       |      |               |    |                       |         |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

CG-09-0423.10 Project Number:

Client Site I.D.: Montgomery Brothers

CG09042310MS Purchase Order:

### **ANALYTICAL RESULTS**

Project Location:

Sample Description/Location: Field Sample #: HSI-105M-CSA Sub Description/Location:

Sample ID: 2011167-07

Canister ID: 20254

Sample Matrix: Air

Canister Size: 6L

Receipt Vacuum(in Hg): 0 Flow Controller Type: Passive Flow Controller ID: 2667

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 0

Sampled: 10/7/2020 12:00

Sample Type: AA

### Volatile Organic Compounds by GCMS

|                             |         |      |        | EPA TO-1  | 5       |            |      |          |    |                |         |
|-----------------------------|---------|------|--------|-----------|---------|------------|------|----------|----|----------------|---------|
|                             |         | ppbv |        |           |         | ug/M³      |      |          |    | Date/Time      |         |
| Analyte                     | Results | MDL  | LOQ    | Flag/Qual | Results | MDL        | LOQ  | Dilution | PF | Analyzed       | Analyst |
| Methylene chloride          | 0.34    | 0.12 | 1.25   | J         | 1.2     | 0.43       | 4.3  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Methyl-t-butyl ether (MTBE) | ND      | 0.12 | 0.25   |           | ND      | 0.45       | 0.90 | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Naphthalene                 | 0.21    | 0.12 | 0.25   | J         | 1.1     | 0.66       | 1.3  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| n-Nonane (C9)               | ND      | 0.12 | 0.25   |           | ND      | 0.66       | 1.3  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| n-Propylbenzene             | ND      | 0.12 | 0.25   |           | ND      | 0.61       | 1.2  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| o-Xylene                    | ND      | 0.12 | 0.25   |           | ND      | 0.54       | 1.1  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| n-Pentane (C5)              | 0.37    | 0.12 | 0.25   |           | 1.1     | 0.37       | 0.74 | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Propylene                   | ND      | 0.12 | 0.25   |           | ND      | 0.22       | 0.43 | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Styrene                     | ND      | 0.12 | 0.25   |           | ND      | 0.53       | 1.1  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| TBA                         | ND      | 0.12 | 0.62   |           | ND      | 0.38       | 1.9  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Tetrachloroethylene (PCE)   | ND      | 0.12 | 0.25   |           | ND      | 0.85       | 1.7  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Tetrahydrofuran             | ND      | 0.12 | 0.25   |           | ND      | 0.37       | 0.74 | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Toluene                     | 0.23    | 0.12 | 0.25   | J         | 0.88    | 0.47       | 0.94 | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| trans-1,2-Dichloroethylene  | ND      | 0.12 | 0.25   |           | ND      | 0.50       | 0.99 | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| trans-1,3-Dichloropropene   | ND      | 0.12 | 0.25   |           | ND      | 0.57       | 1.1  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Trichloroethylene           | ND      | 0.12 | 0.25   |           | ND      | 0.67       | 1.3  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Trichlorofluoromethane      | 0.21    | 0.12 | 0.25   | J         | 1.2     | 0.70       | 1.4  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Vinyl acetate               | ND      | 0.12 | 0.25   |           | ND      | 0.44       | 0.88 | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Vinyl bromide               | ND      | 0.12 | 0.25   |           | ND      | 0.55       | 1.1  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Vinyl chloride              | ND      | 0.12 | 0.25   |           | ND      | 0.32       | 0.64 | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Xylenes, Total              | ND      | 0.12 | 0.75   |           | ND      | 0.54       | 3.3  | 1.25     | 1  | 10/15/20 14:21 | DFH     |
| Surrogate(s)                |         | % Re | covery |           | % Re    | covery Lin | nits |          |    |                |         |

4-Bromofluorobenzene (Surr) 90.1 80-120 10/15/20 14:21



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

5405 Twin Knolls Rd., Suite 1

October 8, 2020 14:02 Date Received: Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

CG-09-0423.10 Project Number:

Purchase Order:

Client Site I.D.: Montgomery Brothers CG09042310MS

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: HSI-105R-CSA

Sample ID: 2011167-08 Sample Matrix: Air

Sampled: 10/7/2020 12:06

Sample Type: AA

Sample Description/Location: Sub Description/Location: Canister ID: 29398 Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): 0 Flow Controller Type: Passive Flow Controller ID: 2714

|                                       |         | ppbv |      |           |         | ug/M³ |      |          |    | Date/Time      |         |
|---------------------------------------|---------|------|------|-----------|---------|-------|------|----------|----|----------------|---------|
| Analyte                               | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution | PF | Analyzed       | Analyst |
| 1,1,1-Trichloroethane                 | ND      | 0.12 | 0.25 |           | ND      | 0.68  | 1.4  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,1,1,2-Tetrachloroethane             | ND      | 0.12 | 0.25 |           | ND      | 0.86  | 1.7  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,1,2,2-Tetrachloroethane             | ND      | 0.12 | 0.25 |           | ND      | 0.86  | 1.7  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND      | 0.12 | 0.25 |           | ND      | 0.96  | 1.9  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,1,2-Trichloroethane                 | ND      | 0.12 | 0.25 |           | ND      | 0.68  | 1.4  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,1-Dichloroethane                    | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,1-Dichloroethylene                  | ND      | 0.12 | 0.25 |           | ND      | 0.50  | 0.99 | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,2,4-Trichlorobenzene                | ND      | 0.12 | 0.62 |           | ND      | 0.93  | 4.6  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,2,4-Trimethylbenzene                | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,2-Dibromoethane (EDB)               | ND      | 0.12 | 0.25 |           | ND      | 0.96  | 1.9  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,2-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,2-Dichloroethane                    | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,2-Dichloropropane                   | ND      | 0.12 | 0.25 |           | ND      | 0.58  | 1.2  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,2-Dichlorotetrafluoroethane         | ND      | 0.12 | 0.25 |           | ND      | 0.87  | 1.7  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,3,5-Trimethylbenzene                | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,3-Butadiene                         | ND      | 0.12 | 0.25 |           | ND      | 0.28  | 0.55 | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,3-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,4-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1,4-Dioxane                           | ND      | 0.12 | 0.25 |           | ND      | 0.45  | 0.90 | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 1-Ethyl-4-methyl benzene              | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 2-Butanone (MEK)                      | 0.24    | 0.12 | 0.25 | J         | 0.72    | 0.37  | 0.74 | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 2-Chlorotoluene                       | ND      | 0.12 | 0.25 |           | ND      | 0.65  | 1.3  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 2-Hexanone (MBK)                      | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| 4-Methyl-2-pentanone (MIBK)           | ND      | 0.12 | 0.25 |           | ND      | 1.4   | 2.9  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Acetone                               | 4.63    | 0.12 | 0.62 |           | 11      | 0.30  | 1.5  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Acrolein                              | 0.17    | 0.12 | 0.25 | J         | 0.40    | 0.29  | 0.57 | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Allyl chloride                        | ND      | 0.12 | 0.25 |           | ND      | 0.39  | 0.78 | 1.25     | 1  | 10/15/20 15:13 | DFH     |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

CG-09-0423.10 Project Number:

Montgomery Brothers Purchase Order: CG09042310MS

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: HSI-105R-CSA

Client Site I.D.:

Sample ID: 2011167-08

Sample Matrix: Air

Sampled: 10/7/2020 12:06

Sample Type: AA

Sample Description/Location: Sub Description/Location: Canister ID: 29398 Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): 0 Flow Controller Type: Passive Flow Controller ID: 2714

|         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EPA TO-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |         |
|---------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|
|         | ppbv                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/M³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date/Time      |         |
| Results | MDL                                      | LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flag/Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyzed       | Analyst |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| 0.73    | 0.12                                     | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| 0.48    | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| 0.45    | 0.12                                     | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| 0.87    | 0.12                                     | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| 0.17    | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| 0.42    | 0.12                                     | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
| ND      | 0.12                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/15/20 15:13 | DFH     |
|         | ND ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 ND 0.12 | Results         MDL         LOQ           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.62           ND         0.12         0.25           ND         0.12 <td>Results         MDL         LOQ         Flag/Qual           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.62           ND         0.12         0.62           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           N</td> <td>Results         MDL         LOQ         Flag/Qual         Results           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.62         J         2.2           0.87</td> <td>Results         MDL         LOQ         Flag/Qual         Results         MDL           ND         0.12         0.25         ND         0.40           ND         0.12         0.25         ND         0.65           ND         0.12         0.25         ND         0.84           ND         0.12         0.25         ND         0.84           ND         0.12         0.25         ND         0.49           0.73         0.12         0.62         2.3         0.39           ND         0.12         0.25         ND         0.79           ND         0.12         0.25         ND         0.79           ND         0.12         0.25         ND         0.58           ND         0.12         0.25         ND         0.58           ND         0.12         0.25         ND         0.58           ND         0.12         0.25         ND         0.61           0.48         0.12         0.25         ND         0.50           ND         0.12         0.25         ND         0.50           ND         0.12         0.25         ND         0.43      &lt;</td> <td>Results         MDL         LOQ         Flag/Qual         Results         MDL         LOQ           ND         0.12         0.25         ND         0.40         0.80           ND         0.12         0.25         ND         0.65         1.3           ND         0.12         0.25         ND         0.84         1.7           ND         0.12         0.25         ND         0.84         1.7           ND         0.12         0.25         ND         0.84         1.7           ND         0.12         0.25         ND         0.49         0.97           0.73         0.12         0.62         2.3         0.39         1.9           ND         0.12         0.25         ND         0.79         1.6           ND         0.12         0.25         ND         0.79         1.6           ND         0.12         0.25         ND         0.58         1.2           ND         0.12         0.25         ND         0.61         1.2           0.48         0.12         0.25         ND         0.57         1.1           ND         0.12         0.25         ND</td> <td>Results         MDL         LOQ         Flag/Qual         Results         MDL         LOQ         Dilution           ND         0.12         0.25         ND         0.40         0.80         1.25           ND         0.12         0.25         ND         0.65         1.3         1.25           ND         0.12         0.25         ND         0.84         1.7         1.25           ND         0.12         0.25         ND         0.84         1.7         1.25           ND         0.12         0.25         ND         0.49         0.97         1.25           ND         0.12         0.62         2.3         0.39         1.9         1.25           ND         0.12         0.62         2.3         0.39         1.9         1.25           ND         0.12         0.25         ND         0.79         1.6         1.25           ND         0.12         0.25         ND         0.58         1.2         1.25           ND         0.12         0.25         ND         0.61         1.2         1.25           ND         0.12         0.25         ND         0.50         0.99         1.25&lt;</td> <td>  ND</td> <td>  ND</td> | Results         MDL         LOQ         Flag/Qual           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.62           ND         0.12         0.62           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           ND         0.12         0.25           N | Results         MDL         LOQ         Flag/Qual         Results           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.25         ND           ND         0.12         0.62         J         2.2           0.87 | Results         MDL         LOQ         Flag/Qual         Results         MDL           ND         0.12         0.25         ND         0.40           ND         0.12         0.25         ND         0.65           ND         0.12         0.25         ND         0.84           ND         0.12         0.25         ND         0.84           ND         0.12         0.25         ND         0.49           0.73         0.12         0.62         2.3         0.39           ND         0.12         0.25         ND         0.79           ND         0.12         0.25         ND         0.79           ND         0.12         0.25         ND         0.58           ND         0.12         0.25         ND         0.58           ND         0.12         0.25         ND         0.58           ND         0.12         0.25         ND         0.61           0.48         0.12         0.25         ND         0.50           ND         0.12         0.25         ND         0.50           ND         0.12         0.25         ND         0.43      < | Results         MDL         LOQ         Flag/Qual         Results         MDL         LOQ           ND         0.12         0.25         ND         0.40         0.80           ND         0.12         0.25         ND         0.65         1.3           ND         0.12         0.25         ND         0.84         1.7           ND         0.12         0.25         ND         0.84         1.7           ND         0.12         0.25         ND         0.84         1.7           ND         0.12         0.25         ND         0.49         0.97           0.73         0.12         0.62         2.3         0.39         1.9           ND         0.12         0.25         ND         0.79         1.6           ND         0.12         0.25         ND         0.79         1.6           ND         0.12         0.25         ND         0.58         1.2           ND         0.12         0.25         ND         0.61         1.2           0.48         0.12         0.25         ND         0.57         1.1           ND         0.12         0.25         ND | Results         MDL         LOQ         Flag/Qual         Results         MDL         LOQ         Dilution           ND         0.12         0.25         ND         0.40         0.80         1.25           ND         0.12         0.25         ND         0.65         1.3         1.25           ND         0.12         0.25         ND         0.84         1.7         1.25           ND         0.12         0.25         ND         0.84         1.7         1.25           ND         0.12         0.25         ND         0.49         0.97         1.25           ND         0.12         0.62         2.3         0.39         1.9         1.25           ND         0.12         0.62         2.3         0.39         1.9         1.25           ND         0.12         0.25         ND         0.79         1.6         1.25           ND         0.12         0.25         ND         0.58         1.2         1.25           ND         0.12         0.25         ND         0.61         1.2         1.25           ND         0.12         0.25         ND         0.50         0.99         1.25< | ND             | ND      |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To:

Nancy Love

Project Number:

CG-09-0423.10

Client Site I.D.:

Montgomery Brothers

Purchase Order:

CG09042310MS

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: HSI-105R-CSA

Surrogate(s)

Sample Description/Location: Sub Description/Location:

Canister ID: 29398

Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): 0

Flow Controller Type: Passive

Flow Controller ID: 2714

Sampled: 10/7/2020 12:06

Sample ID: 2011167-08

Sample Type: AA

Sample Matrix: Air

### Volatile Organic Compounds by GCMS

|                             |         |      |      | EPA TO-15 | -       |       |      |          |    |                |         |
|-----------------------------|---------|------|------|-----------|---------|-------|------|----------|----|----------------|---------|
|                             |         | ppbv |      |           |         | ug/M³ |      |          |    | Date/Time      |         |
| Analyte                     | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution | PF | Analyzed       | Analyst |
| Methylene chloride          | 0.41    | 0.12 | 1.25 | J         | 1.4     | 0.43  | 4.3  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Methyl-t-butyl ether (MTBE) | ND      | 0.12 | 0.25 |           | ND      | 0.45  | 0.90 | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Naphthalene                 | 0.23    | 0.12 | 0.25 | J         | 1.2     | 0.66  | 1.3  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| n-Nonane (C9)               | ND      | 0.12 | 0.25 |           | ND      | 0.66  | 1.3  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| n-Propylbenzene             | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| o-Xylene                    | ND      | 0.12 | 0.25 |           | ND      | 0.54  | 1.1  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| n-Pentane (C5)              | 0.44    | 0.12 | 0.25 |           | 1.3     | 0.37  | 0.74 | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Propylene                   | 0.65    | 0.12 | 0.25 |           | 1.1     | 0.22  | 0.43 | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Styrene                     | ND      | 0.12 | 0.25 |           | ND      | 0.53  | 1.1  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| TBA                         | ND      | 0.12 | 0.62 |           | ND      | 0.38  | 1.9  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Tetrachloroethylene (PCE)   | ND      | 0.12 | 0.25 |           | ND      | 0.85  | 1.7  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Tetrahydrofuran             | ND      | 0.12 | 0.25 |           | ND      | 0.37  | 0.74 | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Toluene                     | 0.22    | 0.12 | 0.25 | J         | 0.83    | 0.47  | 0.94 | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| trans-1,2-Dichloroethylene  | ND      | 0.12 | 0.25 |           | ND      | 0.50  | 0.99 | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| trans-1,3-Dichloropropene   | ND      | 0.12 | 0.25 |           | ND      | 0.57  | 1.1  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Trichloroethylene           | ND      | 0.12 | 0.25 |           | ND      | 0.67  | 1.3  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Trichlorofluoromethane      | 0.21    | 0.12 | 0.25 | J         | 1.2     | 0.70  | 1.4  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Vinyl acetate               | ND      | 0.12 | 0.25 |           | ND      | 0.44  | 0.88 | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Vinyl bromide               | ND      | 0.12 | 0.25 |           | ND      | 0.55  | 1.1  | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Vinyl chloride              | ND      | 0.12 | 0.25 |           | ND      | 0.32  | 0.64 | 1.25     | 1  | 10/15/20 15:13 | DFH     |
| Xylenes, Total              | ND      | 0.12 | 0.75 |           | ND      | 0.54  | 3.3  | 1.25     | 1  | 10/15/20 15:13 | DFH     |

4-Bromofluorobenzene (Surr) 92.5 80-120 10/15/20 15:13

% Recovery Limits

% Recovery



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

CG-09-0423.10 Project Number:

CG09042310MS Client Site I.D.: Montgomery Brothers Purchase Order:

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: HSI-107M-CSA

Sample ID: 2011167-09 Sample Matrix: Air

Sampled: 10/7/2020 12:35

Sample Type: AA

Sample Description/Location: Sub Description/Location: Canister ID: 36448

Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): 0 Flow Controller Type: Passive

Flow Controller ID: 3476

|                                       |         |      |      | EPA TO-18 | 5       |       |      |          |    |                |         |
|---------------------------------------|---------|------|------|-----------|---------|-------|------|----------|----|----------------|---------|
|                                       |         | ppbv |      |           |         | ug/M³ |      | _        |    | Date/Time      |         |
| Analyte                               | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution | PF | Analyzed       | Analyst |
| 1,1,1-Trichloroethane                 | ND      | 0.12 | 0.25 |           | ND      | 0.68  | 1.4  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,1,1,2-Tetrachloroethane             | ND      | 0.12 | 0.25 |           | ND      | 0.86  | 1.7  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,1,2,2-Tetrachloroethane             | ND      | 0.12 | 0.25 |           | ND      | 0.86  | 1.7  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND      | 0.12 | 0.25 |           | ND      | 0.96  | 1.9  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,1,2-Trichloroethane                 | ND      | 0.12 | 0.25 |           | ND      | 0.68  | 1.4  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,1-Dichloroethane                    | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,1-Dichloroethylene                  | ND      | 0.12 | 0.25 |           | ND      | 0.50  | 0.99 | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,2,4-Trichlorobenzene                | ND      | 0.12 | 0.62 |           | ND      | 0.93  | 4.6  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,2,4-Trimethylbenzene                | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,2-Dibromoethane (EDB)               | ND      | 0.12 | 0.25 |           | ND      | 0.96  | 1.9  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,2-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,2-Dichloroethane                    | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,2-Dichloropropane                   | ND      | 0.12 | 0.25 |           | ND      | 0.58  | 1.2  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,2-Dichlorotetrafluoroethane         | ND      | 0.12 | 0.25 |           | ND      | 0.87  | 1.7  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,3,5-Trimethylbenzene                | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,3-Butadiene                         | ND      | 0.12 | 0.25 |           | ND      | 0.28  | 0.55 | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,3-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,4-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1,4-Dioxane                           | ND      | 0.12 | 0.25 |           | ND      | 0.45  | 0.90 | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 1-Ethyl-4-methyl benzene              | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 2-Butanone (MEK)                      | 0.27    | 0.12 | 0.25 |           | 0.81    | 0.37  | 0.74 | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 2-Chlorotoluene                       | ND      | 0.12 | 0.25 |           | ND      | 0.65  | 1.3  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 2-Hexanone (MBK)                      | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| 4-Methyl-2-pentanone (MIBK)           | 0.14    | 0.12 | 0.25 | J         | 1.6     | 1.4   | 2.9  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Acetone                               | 8.88    | 0.12 | 0.62 |           | 21      | 0.30  | 1.5  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Acrolein                              | 0.20    | 0.12 | 0.25 | J         | 0.46    | 0.29  | 0.57 | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Allyl chloride                        | ND      | 0.12 | 0.25 |           | ND      | 0.39  | 0.78 | 1.25     | 1  | 10/15/20 16:49 | DFH     |
|                                       |         |      |      |           |         |       |      |          |    |                |         |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

CG-09-0423.10 Project Number:

CG09042310MS Client Site I.D.: Montgomery Brothers Purchase Order:

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: HSI-107M-CSA

Sample ID: 2011167-09

Sample Matrix: Air

Sampled: 10/7/2020 12:35

Sample Type: AA

Sample Description/Location: Sub Description/Location: Canister ID: 36448

Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): 0 Flow Controller Type: Passive

Flow Controller ID: 3476

|                          |         | ppbv |      |           |         | ug/M³ |      |          |    | Data/Time             |         |
|--------------------------|---------|------|------|-----------|---------|-------|------|----------|----|-----------------------|---------|
| Analyte                  | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution | PF | Date/Time<br>Analyzed | Analyst |
| Benzene                  | ND      | 0.12 | 0.25 |           | ND      | 0.40  | 0.80 | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Benzyl Chloride          | ND      | 0.12 | 0.25 |           | ND      | 0.65  | 1.3  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Bromodichloromethane     | ND      | 0.12 | 0.25 |           | ND      | 0.84  | 1.7  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Bromoform                | ND      | 0.12 | 0.25 |           | ND      | 1.3   | 2.6  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Bromomethane             | ND      | 0.12 | 0.25 |           | ND      | 0.49  | 0.97 | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Carbon Disulfide         | ND      | 0.12 | 0.62 |           | ND      | 0.39  | 1.9  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Carbon Tetrachloride     | ND      | 0.12 | 0.25 |           | ND      | 0.79  | 1.6  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Chlorobenzene            | ND      | 0.12 | 0.25 |           | ND      | 0.58  | 1.2  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Chloroethane             | ND      | 0.12 | 0.25 |           | ND      | 0.33  | 0.66 | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Chloroform               | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Chloromethane            | 0.52    | 0.12 | 0.25 |           | 1.1     | 0.26  | 0.52 | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| cis-1,2-Dichloroethylene | ND      | 0.12 | 0.25 |           | ND      | 0.50  | 0.99 | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| cis-1,3-Dichloropropene  | ND      | 0.12 | 0.25 |           | ND      | 0.57  | 1.1  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Cyclohexane              | ND      | 0.12 | 0.25 |           | ND      | 0.43  | 0.86 | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Dibromochloromethane     | ND      | 0.12 | 0.25 |           | ND      | 1.1   | 2.1  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Dichlorodifluoromethane  | 0.44    | 0.12 | 0.62 | J         | 2.2     | 0.62  | 3.1  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Ethanol                  | 2.99    | 0.12 | 0.62 |           | 5.6     | 0.24  | 1.2  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Ethyl acetate            | ND      | 0.12 | 0.25 |           | ND      | 0.45  | 0.90 | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Ethylbenzene             | ND      | 0.12 | 0.25 |           | ND      | 0.54  | 1.1  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Heptane                  | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Hexachlorobutadiene      | ND      | 0.12 | 0.62 |           | ND      | 1.3   | 6.7  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Hexane                   | 0.16    | 0.12 | 0.25 | J         | 0.58    | 0.44  | 0.88 | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Isooctane                | ND      | 0.12 | 0.25 |           | ND      | 0.58  | 1.2  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Isopropyl alcohol        | 1.29    | 0.12 | 0.62 |           | 3.2     | 0.31  | 1.5  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Isopropylbenzene         | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| m+p-Xylenes              | ND      | 0.12 | 0.50 |           | ND      | 0.54  | 2.2  | 1.25     | 1  | 10/15/20 16:49        | DFH     |
| Methyl methacrylate      | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 16:49        | DFH     |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

Date Received: October 8, 2020 14:02 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

CG-09-0423.10 Project Number:

Client Site I.D.: Montgomery Brothers Purchase Order: CG09042310MS

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: HSI-107M-CSA

Sample ID: 2011167-09 Sample Matrix: Air

Sampled: 10/7/2020 12:35

Sample Type: AA

Sample Description/Location: Sub Description/Location: Canister ID: 36448 Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 0 Receipt Vacuum(in Hg): 0 Flow Controller Type: Passive Flow Controller ID: 3476

Volatile Organic Compounds by GCMS

|                             |         |      |        | EPA TO-1  | 5       |            |      |          |    |                |         |
|-----------------------------|---------|------|--------|-----------|---------|------------|------|----------|----|----------------|---------|
|                             |         | ppbv |        |           |         | ug/M³      |      |          |    | Date/Time      |         |
| Analyte                     | Results | MDL  | LOQ    | Flag/Qual | Results | MDL        | LOQ  | Dilution | PF | Analyzed       | Analyst |
| Methylene chloride          | 0.36    | 0.12 | 1.25   | J         | 1.3     | 0.43       | 4.3  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Methyl-t-butyl ether (MTBE) | ND      | 0.12 | 0.25   |           | ND      | 0.45       | 0.90 | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Naphthalene                 | 0.23    | 0.12 | 0.25   | J         | 1.2     | 0.66       | 1.3  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| n-Nonane (C9)               | ND      | 0.12 | 0.25   |           | ND      | 0.66       | 1.3  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| n-Propylbenzene             | ND      | 0.12 | 0.25   |           | ND      | 0.61       | 1.2  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| o-Xylene                    | ND      | 0.12 | 0.25   |           | ND      | 0.54       | 1.1  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| n-Pentane (C5)              | 0.47    | 0.12 | 0.25   |           | 1.4     | 0.37       | 0.74 | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Propylene                   | 0.20    | 0.12 | 0.25   | J         | 0.34    | 0.22       | 0.43 | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Styrene                     | ND      | 0.12 | 0.25   |           | ND      | 0.53       | 1.1  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| TBA                         | 4.66    | 0.12 | 0.62   |           | 14      | 0.38       | 1.9  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Tetrachloroethylene (PCE)   | ND      | 0.12 | 0.25   |           | ND      | 0.85       | 1.7  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Tetrahydrofuran             | ND      | 0.12 | 0.25   |           | ND      | 0.37       | 0.74 | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Toluene                     | 0.23    | 0.12 | 0.25   | J         | 0.86    | 0.47       | 0.94 | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| trans-1,2-Dichloroethylene  | ND      | 0.12 | 0.25   |           | ND      | 0.50       | 0.99 | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| trans-1,3-Dichloropropene   | ND      | 0.12 | 0.25   |           | ND      | 0.57       | 1.1  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Trichloroethylene           | ND      | 0.12 | 0.25   |           | ND      | 0.67       | 1.3  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Trichlorofluoromethane      | 0.20    | 0.12 | 0.25   | J         | 1.2     | 0.70       | 1.4  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Vinyl acetate               | ND      | 0.12 | 0.25   |           | ND      | 0.44       | 0.88 | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Vinyl bromide               | ND      | 0.12 | 0.25   |           | ND      | 0.55       | 1.1  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Vinyl chloride              | ND      | 0.12 | 0.25   |           | ND      | 0.32       | 0.64 | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Xylenes, Total              | ND      | 0.12 | 0.75   |           | ND      | 0.54       | 3.3  | 1.25     | 1  | 10/15/20 16:49 | DFH     |
| Surrogate(s)                |         | % Re | covery |           | % Re    | covery Lin | nits |          |    |                |         |

4-Bromofluorobenzene (Surr) 91.1 80-120 10/15/20 16:49



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

Date Received: 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love Project Number: CG-09-0423.10

CG09042310MS Client Site I.D.: Montgomery Brothers Purchase Order:

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: HIS-107R-CSA

Sample ID: 20I1167-10 Sample Matrix: Air

Sampled: 10/7/2020 16:17

Sample Type: AA

Sample Description/Location: Sub Description/Location: Canister ID: 36449

Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 4 Receipt Vacuum(in Hg): 4

October 8, 2020 14:02

Flow Controller Type: Passive Flow Controller ID: 3958

|                                       |         |      |      | EPA TO-1  | 5       |       |      |          |    |                |         |
|---------------------------------------|---------|------|------|-----------|---------|-------|------|----------|----|----------------|---------|
|                                       |         | ppbv |      |           |         | ug/M³ |      |          |    | Date/Time      |         |
| Analyte                               | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution | PF | Analyzed       | Analyst |
| 1,1,1-Trichloroethane                 | ND      | 0.12 | 0.25 |           | ND      | 0.68  | 1.4  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,1,1,2-Tetrachloroethane             | ND      | 0.12 | 0.25 |           | ND      | 0.86  | 1.7  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,1,2,2-Tetrachloroethane             | ND      | 0.12 | 0.25 |           | ND      | 0.86  | 1.7  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND      | 0.12 | 0.25 |           | ND      | 0.96  | 1.9  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,1,2-Trichloroethane                 | ND      | 0.12 | 0.25 |           | ND      | 0.68  | 1.4  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,1-Dichloroethane                    | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,1-Dichloroethylene                  | ND      | 0.12 | 0.25 |           | ND      | 0.50  | 0.99 | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,2,4-Trichlorobenzene                | ND      | 0.12 | 0.62 |           | ND      | 0.93  | 4.6  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,2,4-Trimethylbenzene                | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,2-Dibromoethane (EDB)               | ND      | 0.12 | 0.25 |           | ND      | 0.96  | 1.9  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,2-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,2-Dichloroethane                    | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,2-Dichloropropane                   | ND      | 0.12 | 0.25 |           | ND      | 0.58  | 1.2  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,2-Dichlorotetrafluoroethane         | ND      | 0.12 | 0.25 |           | ND      | 0.87  | 1.7  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,3,5-Trimethylbenzene                | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,3-Butadiene                         | ND      | 0.12 | 0.25 |           | ND      | 0.28  | 0.55 | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,3-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,4-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1,4-Dioxane                           | ND      | 0.12 | 0.25 |           | ND      | 0.45  | 0.90 | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 1-Ethyl-4-methyl benzene              | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 2-Butanone (MEK)                      | 0.40    | 0.12 | 0.25 |           | 1.2     | 0.37  | 0.74 | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 2-Chlorotoluene                       | ND      | 0.12 | 0.25 |           | ND      | 0.65  | 1.3  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 2-Hexanone (MBK)                      | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| 4-Methyl-2-pentanone (MIBK)           | 0.28    | 0.12 | 0.25 |           | 3.3     | 1.4   | 2.9  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Acetone                               | 13.8    | 0.12 | 0.62 |           | 33      | 0.30  | 1.5  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Acrolein                              | 0.20    | 0.12 | 0.25 | J         | 0.46    | 0.29  | 0.57 | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Allyl chloride                        | ND      | 0.12 | 0.25 |           | ND      | 0.39  | 0.78 | 1.25     | 1  | 10/15/20 17:42 | DFH     |
|                                       |         |      |      |           |         |       |      |          |    |                |         |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

CG-09-0423.10 Project Number:

Client Site I.D.: Montgomery Brothers Purchase Order: CG09042310MS

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: HIS-107R-CSA

Sample ID: 20I1167-10 Sample Matrix: Air

Sampled: 10/7/2020 16:17

Sample Type: AA

Sample Description/Location: Sub Description/Location: Canister ID: 36449

Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 4 Receipt Vacuum(in Hg): 4 Flow Controller Type: Passive

Flow Controller ID: 3958

|                          |         | ppbv |      |           |         | ug/M³ |      |          |    | Date/Time      |         |
|--------------------------|---------|------|------|-----------|---------|-------|------|----------|----|----------------|---------|
| Analyte                  | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution | PF | Analyzed       | Analyst |
| Benzene                  | 0.16    | 0.12 | 0.25 | J         | 0.50    | 0.40  | 0.80 | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Benzyl Chloride          | ND      | 0.12 | 0.25 |           | ND      | 0.65  | 1.3  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Bromodichloromethane     | ND      | 0.12 | 0.25 |           | ND      | 0.84  | 1.7  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Bromoform                | ND      | 0.12 | 0.25 |           | ND      | 1.3   | 2.6  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Bromomethane             | ND      | 0.12 | 0.25 |           | ND      | 0.49  | 0.97 | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Carbon Disulfide         | ND      | 0.12 | 0.62 |           | ND      | 0.39  | 1.9  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Carbon Tetrachloride     | ND      | 0.12 | 0.25 |           | ND      | 0.79  | 1.6  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Chlorobenzene            | ND      | 0.12 | 0.25 |           | ND      | 0.58  | 1.2  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Chloroethane             | ND      | 0.12 | 0.25 |           | ND      | 0.33  | 0.66 | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Chloroform               | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Chloromethane            | 0.50    | 0.12 | 0.25 |           | 1.0     | 0.26  | 0.52 | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| cis-1,2-Dichloroethylene | ND      | 0.12 | 0.25 |           | ND      | 0.50  | 0.99 | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| cis-1,3-Dichloropropene  | ND      | 0.12 | 0.25 |           | ND      | 0.57  | 1.1  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Cyclohexane              | ND      | 0.12 | 0.25 |           | ND      | 0.43  | 0.86 | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Dibromochloromethane     | ND      | 0.12 | 0.25 |           | ND      | 1.1   | 2.1  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Dichlorodifluoromethane  | 0.44    | 0.12 | 0.62 | J         | 2.2     | 0.62  | 3.1  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Ethanol                  | 4.04    | 0.12 | 0.62 |           | 7.6     | 0.24  | 1.2  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Ethyl acetate            | ND      | 0.12 | 0.25 |           | ND      | 0.45  | 0.90 | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Ethylbenzene             | ND      | 0.12 | 0.25 |           | ND      | 0.54  | 1.1  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Heptane                  | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Hexachlorobutadiene      | ND      | 0.12 | 0.62 |           | ND      | 1.3   | 6.7  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Hexane                   | 0.21    | 0.12 | 0.25 | J         | 0.74    | 0.44  | 0.88 | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Isooctane                | ND      | 0.12 | 0.25 |           | ND      | 0.58  | 1.2  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Isopropyl alcohol        | 2.03    | 0.12 | 0.62 |           | 5.0     | 0.31  | 1.5  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Isopropylbenzene         | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| m+p-Xylenes              | 0.16    | 0.12 | 0.50 | J         | 0.69    | 0.54  | 2.2  | 1.25     | 1  | 10/15/20 17:42 | DFH     |
| Methyl methacrylate      | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 17:42 | DFH     |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

October 8, 2020 14:02 Date Received:

5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love **Project Number:** CG-09-0423.10

Client Site I.D.: Montgomery Brothers Purchase Order: CG09042310MS

#### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: HIS-107R-CSA

Surrogate(s)

Sample ID: 20I1167-10 Sample Matrix: Air

Sample Type: AA

Sampled: 10/7/2020 16:17

Sample Description/Location: Sub Description/Location: Canister ID: 36449 Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 4 Receipt Vacuum(in Hg): 4 Flow Controller Type: Passive Flow Controller ID: 3958

Volatile Organic Compounds by GCMS

**EPA TO-15** vdaa ug/M³ Date/Time LOQ LOQ Analyte Results MDL Flag/Qual Results MDL Dilution PF Analyzed Analyst Methylene chloride 0.57 0.12 1.25 J 2.0 0.43 4.3 1.25 1 10/15/20 17:42 DFH Methyl-t-butyl ether (MTBE) ND 0.12 0.25 ND 0.45 0.90 1.25 1 10/15/20 17:42 DFH Naphthalene 0.36 0.12 0.25 1.9 0.66 1.3 1.25 10/15/20 17:42 DFH n-Nonane (C9) ND 0.12 0.25 NΠ 0.66 1.3 1 25 10/15/20 17:42 DFH ND 10/15/20 17:42 DFH n-Propylbenzene ND 0.12 0.25 0.61 1.2 1.25 ND 10/15/20 17:42 DFH o-Xylene ND 0.12 0.25 0.54 1.1 1.25 n-Pentane (C5) 0.47 0.12 0.25 1.4 0.37 0.74 1.25 10/15/20 17:42 DFH Propylene 0.35 0.12 0.25 0.60 0.22 0.43 1.25 10/15/20 17:42 DFH Styrene ND 0.12 0.25 ND 0.53 1.1 1 25 10/15/20 17:42 DFH TBA 13.4 0.12 0.62 41 0.38 1.9 1.25 10/15/20 17:42 DFH Tetrachloroethylene (PCE) ND 0.12 0.25 ND 0.85 1.7 1.25 10/15/20 17:42 DFH Tetrahydrofuran NΠ 0.12 0.25 ND 0.37 0.74 1 25 10/15/20 17:42 DFH Toluene 0.31 0.12 0.25 1.2 0.47 0.94 1.25 10/15/20 17:42 DFH ND 0.25 ND trans-1,2-Dichloroethylene 0.12 0.50 0.99 1.25 1 10/15/20 17:42 DFH trans-1,3-Dichloropropene ND 0.12 0.25 ND 0.57 1.1 1.25 1 10/15/20 17:42 DFH NΠ 0.12 0.25 ND 0.67 10/15/20 17:42 DFH Trichloroethylene 1.3 1 25 Trichlorofluoromethane 0.21 0.12 0.25 J 12 0.70 14 1.25 10/15/20 17:42 DFH ND 0.12 0.25 ND 0.44 0.88 1.25 10/15/20 17:42 DFH Vinyl acetate Vinyl bromide ND 0.12 0.25 ND 0.55 1.1 1.25 1 10/15/20 17:42 DFH Vinyl chloride ND 0.12 0.25 ND 0.32 0.64 1.25 10/15/20 17:42 DFH Xylenes, Total ND 0.12 0.75 ND 0.54 3.3 1.25 1 10/15/20 17:42 DFH

4-Bromofluorobenzene (Surr) 90.9 80-120 10/15/20 17:42

% Recovery Limits

% Recovery



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

5405 Twin Knolls Rd., Suite 1

Date Received: Date Issued:

October 8, 2020 14:02 October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love Project Number:

CG-09-0423.10

Client Site I.D.: Montgomery Brothers Purchase Order:

CG09042310MS

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: HSI-OAA

Sample ID: 20I1167-11 Sample Matrix: Air

Sample Type: AA

Sampled: 10/7/2020 14:58

Sample Description/Location: Sub Description/Location:

Canister ID: 36957 Canister Size: 6L

---

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 8

Receipt Vacuum(in Hg): 8 Flow Controller Type: Passive

Flow Controller ID: 7189

|                                       |         | ppbv |      |           |         | ug/M³ |      |          |    | Date/Time      |         |
|---------------------------------------|---------|------|------|-----------|---------|-------|------|----------|----|----------------|---------|
| Analyte                               | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution | PF | Analyzed       | Analyst |
| 1,1,1-Trichloroethane                 | ND      | 0.12 | 0.25 |           | ND      | 0.68  | 1.4  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,1,1,2-Tetrachloroethane             | ND      | 0.12 | 0.25 |           | ND      | 0.86  | 1.7  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,1,2,2-Tetrachloroethane             | ND      | 0.12 | 0.25 |           | ND      | 0.86  | 1.7  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND      | 0.12 | 0.25 |           | ND      | 0.96  | 1.9  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,1,2-Trichloroethane                 | ND      | 0.12 | 0.25 |           | ND      | 0.68  | 1.4  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,1-Dichloroethane                    | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,1-Dichloroethylene                  | ND      | 0.12 | 0.25 |           | ND      | 0.50  | 0.99 | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,2,4-Trichlorobenzene                | ND      | 0.12 | 0.62 |           | ND      | 0.93  | 4.6  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,2,4-Trimethylbenzene                | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,2-Dibromoethane (EDB)               | ND      | 0.12 | 0.25 |           | ND      | 0.96  | 1.9  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,2-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,2-Dichloroethane                    | ND      | 0.12 | 0.25 |           | ND      | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,2-Dichloropropane                   | ND      | 0.12 | 0.25 |           | ND      | 0.58  | 1.2  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,2-Dichlorotetrafluoroethane         | ND      | 0.12 | 0.25 |           | ND      | 0.87  | 1.7  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,3,5-Trimethylbenzene                | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,3-Butadiene                         | ND      | 0.12 | 0.25 |           | ND      | 0.28  | 0.55 | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,3-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,4-Dichlorobenzene                   | ND      | 0.12 | 0.25 |           | ND      | 0.75  | 1.5  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1,4-Dioxane                           | ND      | 0.12 | 0.25 |           | ND      | 0.45  | 0.90 | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 1-Ethyl-4-methyl benzene              | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 2-Butanone (MEK)                      | 0.32    | 0.12 | 0.25 |           | 0.95    | 0.37  | 0.74 | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 2-Chlorotoluene                       | ND      | 0.12 | 0.25 |           | ND      | 0.65  | 1.3  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 2-Hexanone (MBK)                      | 0.18    | 0.12 | 0.25 | J         | 0.72    | 0.51  | 1.0  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| 4-Methyl-2-pentanone (MIBK)           | 0.18    | 0.12 | 0.25 | J         | 2.0     | 1.4   | 2.9  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Acetone                               | 8.89    | 0.12 | 0.62 |           | 21      | 0.30  | 1.5  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Acrolein                              | 0.16    | 0.12 | 0.25 | J         | 0.37    | 0.29  | 0.57 | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Allyl chloride                        | ND      | 0.12 | 0.25 |           | ND      | 0.39  | 0.78 | 1.25     | 1  | 10/15/20 20:04 | DFH     |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

5405 Twin Knolls Rd., Suite 1

October 22, 2020 14:22 Date Issued:

Columbia, MD 21045

Submitted To: Nancy Love Project Number:

Date Received:

CG-09-0423.10

October 8, 2020 14:02

Client Site I.D.: Montgomery Brothers Purchase Order:

CG09042310MS

### **ANALYTICAL RESULTS**

Project Location:

Field Sample #: HSI-OAA

Sample ID: 20I1167-11

Sample Matrix: Air

Sample Type: AA

Sampled: 10/7/2020 14:58

Sample Description/Location: Sub Description/Location:

Canister ID: 36957 Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 8 Receipt Vacuum(in Hg): 8 Flow Controller Type: Passive Flow Controller ID: 7189

|                          |         | ppbv |      | 2.77.10.10 |         | ug/M³ |      |               |    |                       |         |
|--------------------------|---------|------|------|------------|---------|-------|------|---------------|----|-----------------------|---------|
| Analyte                  | Results | MDL  | LOQ  | Flag/Qual  | Results | MDL   | LOQ  | -<br>Dilution | PF | Date/Time<br>Analyzed | Analyst |
| Benzene                  | 0.14    | 0.12 | 0.25 | J          | 0.45    | 0.40  | 0.80 | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Benzyl Chloride          | ND      | 0.12 | 0.25 |            | ND      | 0.65  | 1.3  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Bromodichloromethane     | ND      | 0.12 | 0.25 |            | ND      | 0.84  | 1.7  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Bromoform                | ND      | 0.12 | 0.25 |            | ND      | 1.3   | 2.6  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Bromomethane             | ND      | 0.12 | 0.25 |            | ND      | 0.49  | 0.97 | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Carbon Disulfide         | ND      | 0.12 | 0.62 |            | ND      | 0.39  | 1.9  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Carbon Tetrachloride     | ND      | 0.12 | 0.25 |            | ND      | 0.79  | 1.6  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Chlorobenzene            | ND      | 0.12 | 0.25 |            | ND      | 0.58  | 1.2  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Chloroethane             | ND      | 0.12 | 0.25 |            | ND      | 0.33  | 0.66 | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Chloroform               | ND      | 0.12 | 0.25 |            | ND      | 0.61  | 1.2  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Chloromethane            | 0.52    | 0.12 | 0.25 |            | 1.1     | 0.26  | 0.52 | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| cis-1,2-Dichloroethylene | ND      | 0.12 | 0.25 |            | ND      | 0.50  | 0.99 | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| cis-1,3-Dichloropropene  | ND      | 0.12 | 0.25 |            | ND      | 0.57  | 1.1  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Cyclohexane              | ND      | 0.12 | 0.25 |            | ND      | 0.43  | 0.86 | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Dibromochloromethane     | ND      | 0.12 | 0.25 |            | ND      | 1.1   | 2.1  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Dichlorodifluoromethane  | 0.42    | 0.12 | 0.62 | J          | 2.1     | 0.62  | 3.1  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Ethanol                  | 2.69    | 0.12 | 0.62 |            | 5.1     | 0.24  | 1.2  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Ethyl acetate            | ND      | 0.12 | 0.25 |            | ND      | 0.45  | 0.90 | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Ethylbenzene             | ND      | 0.12 | 0.25 |            | ND      | 0.54  | 1.1  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Heptane                  | ND      | 0.12 | 0.25 |            | ND      | 0.51  | 1.0  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Hexachlorobutadiene      | ND      | 0.12 | 0.62 |            | ND      | 1.3   | 6.7  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Hexane                   | 0.20    | 0.12 | 0.25 | J          | 0.72    | 0.44  | 0.88 | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Isooctane                | ND      | 0.12 | 0.25 |            | ND      | 0.58  | 1.2  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Isopropyl alcohol        | 0.46    | 0.12 | 0.62 | J          | 1.1     | 0.31  | 1.5  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Isopropylbenzene         | ND      | 0.12 | 0.25 |            | ND      | 0.61  | 1.2  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| m+p-Xylenes              | 0.19    | 0.12 | 0.50 | J          | 0.84    | 0.54  | 2.2  | 1.25          | 1  | 10/15/20 20:04        | DFH     |
| Methyl methacrylate      | ND      | 0.12 | 0.25 |            | ND      | 0.51  | 1.0  | 1.25          | 1  | 10/15/20 20:04        | DFH     |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

Date Received: 5405 Twin Knolls Rd., Suite 1

Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

CG-09-0423.10 Project Number:

Purchase Order:

CG09042310MS

October 8, 2020 14:02

Montgomery Brothers

**ANALYTICAL RESULTS** 

Project Location:

Client Site I.D.:

Field Sample #: HSI-OAA

Sample Description/Location: Sub Description/Location:

Canister ID: 36957

Canister Size: 6L

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 8 Receipt Vacuum(in Hg): 8 Flow Controller Type: Passive

Flow Controller ID: 7189

Sample ID: 20I1167-11 Sample Matrix: Air

Sampled: 10/7/2020 14:58

Surrogate(s)

Sample Type: AA

Volatile Organic Compounds by GCMS

|                             |         |      |      | EPA TO-15 | -       |       |      |          |    |                |         |
|-----------------------------|---------|------|------|-----------|---------|-------|------|----------|----|----------------|---------|
|                             |         | ppbv |      |           |         | ug/M³ |      |          |    | Date/Time      |         |
| Analyte                     | Results | MDL  | LOQ  | Flag/Qual | Results | MDL   | LOQ  | Dilution | PF | Analyzed       | Analyst |
| Methylene chloride          | 0.44    | 0.12 | 1.25 | J         | 1.5     | 0.43  | 4.3  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Methyl-t-butyl ether (MTBE) | ND      | 0.12 | 0.25 |           | ND      | 0.45  | 0.90 | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Naphthalene                 | 0.22    | 0.12 | 0.25 | J         | 1.2     | 0.66  | 1.3  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| n-Nonane (C9)               | ND      | 0.12 | 0.25 |           | ND      | 0.66  | 1.3  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| n-Propylbenzene             | ND      | 0.12 | 0.25 |           | ND      | 0.61  | 1.2  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| o-Xylene                    | ND      | 0.12 | 0.25 |           | ND      | 0.54  | 1.1  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| n-Pentane (C5)              | 0.51    | 0.12 | 0.25 |           | 1.5     | 0.37  | 0.74 | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Propylene                   | 0.31    | 0.12 | 0.25 |           | 0.54    | 0.22  | 0.43 | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Styrene                     | ND      | 0.12 | 0.25 |           | ND      | 0.53  | 1.1  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| TBA                         | 34.5    | 0.50 | 2.50 |           | 100     | 1.5   | 7.6  | 5        | 1  | 10/16/20 14:27 | DFH     |
| Tetrachloroethylene (PCE)   | ND      | 0.12 | 0.25 |           | ND      | 0.85  | 1.7  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Tetrahydrofuran             | ND      | 0.12 | 0.25 |           | ND      | 0.37  | 0.74 | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Toluene                     | 0.31    | 0.12 | 0.25 |           | 1.2     | 0.47  | 0.94 | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| trans-1,2-Dichloroethylene  | ND      | 0.12 | 0.25 |           | ND      | 0.50  | 0.99 | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| trans-1,3-Dichloropropene   | ND      | 0.12 | 0.25 |           | ND      | 0.57  | 1.1  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Trichloroethylene           | ND      | 0.12 | 0.25 |           | ND      | 0.67  | 1.3  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Trichlorofluoromethane      | 0.20    | 0.12 | 0.25 | J         | 1.1     | 0.70  | 1.4  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Vinyl acetate               | ND      | 0.12 | 0.25 |           | ND      | 0.44  | 0.88 | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Vinyl bromide               | ND      | 0.12 | 0.25 |           | ND      | 0.55  | 1.1  | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Vinyl chloride              | ND      | 0.12 | 0.25 |           | ND      | 0.32  | 0.64 | 1.25     | 1  | 10/15/20 20:04 | DFH     |
| Xylenes, Total              | ND      | 0.12 | 0.75 |           | ND      | 0.54  | 3.3  | 1.25     | 1  | 10/15/20 20:04 | DFH     |

| 4-Bromofluorobenzene (Surr) | 89.8 | 80-120 | 10/16/20 14:27 |
|-----------------------------|------|--------|----------------|
| 4-Bromofluorobenzene (Surr) | 92.2 | 80-120 | 10/15/20 20:04 |

% Recovery Limits

% Recovery

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

Date Received: 5405 Twin Knolls Rd., Suite 1

October 22, 2020 14:22 Date Issued:

October 8, 2020 14:02

Columbia, MD 21045

**Montgomery Brothers** 

Submitted To: Nancy Love Project Number: CG-09-0423.10

> CG09042310MS Purchase Order:

Analytical Summary

Client Site I.D.:

|                      | ,                                      |           |                     |                 |                |
|----------------------|----------------------------------------|-----------|---------------------|-----------------|----------------|
| Sample ID            | Preparation Factors<br>Initial / Final | Method    | Batch ID            | Sequence ID     | Calibration ID |
| Volatile Organic Cor | mpounds by GCMS                        |           | Preparation Method: | No Prep VOC Air |                |
| 2011167-01           | 400 mL / 400 mL                        | EPA TO-15 | BDJ0409             | SDJ0354         | AH00105        |
| 20I1167-01RE1        | 400 mL / 400 mL                        | EPA TO-15 | BDJ0409             | SDJ0354         | AH00105        |
| 2011167-03           | 400 mL / 400 mL                        | EPA TO-15 | BDJ0409             | SDJ0354         | AH00105        |
| 20I1167-03RE1        | 400 mL / 400 mL                        | EPA TO-15 | BDJ0409             | SDJ0354         | AH00105        |
| 2011167-04           | 400 mL / 400 mL                        | EPA TO-15 | BDJ0409             | SDJ0354         | AH00105        |
| 20I1167-04RE1        | 400 mL / 400 mL                        | EPA TO-15 | BDJ0409             | SDJ0354         | AH00105        |
| 2011167-05           | 400 mL / 400 mL                        | EPA TO-15 | BDJ0409             | SDJ0354         | AH00105        |
| 2011167-06           | 400 mL / 400 mL                        | EPA TO-15 | BDJ0409             | SDJ0354         | AH00105        |
| 20I1167-06RE1        | 400 mL / 400 mL                        | EPA TO-15 | BDJ0409             | SDJ0354         | AH00105        |
| 2011167-07           | 400 mL / 400 mL                        | EPA TO-15 | BDJ0447             | SDJ0397         | AH00105        |
| 2011167-08           | 400 mL / 400 mL                        | EPA TO-15 | BDJ0447             | SDJ0397         | AH00105        |
| 2011167-09           | 400 mL / 400 mL                        | EPA TO-15 | BDJ0447             | SDJ0397         | AH00105        |
| 2011167-10           | 400 mL / 400 mL                        | EPA TO-15 | BDJ0447             | SDJ0397         | AH00105        |
| 2011167-11           | 400 mL / 400 mL                        | EPA TO-15 | BDJ0447             | SDJ0397         | AH00105        |
| 20I1167-11RE1        | 400 mL / 400 mL                        | EPA TO-15 | BDJ0497             | SDJ0442         | AH00105        |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc. Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

Date Issued:

October 22, 2020 14:22

Columbia, MD 21045

Submitted To:

Nancy Love

Project Number:

CG-09-0423.10

Client Site I.D.:

Bromomethane

**Montgomery Brothers** 

Purchase Order:

CG09042310MS

### **Volatile Organic Compounds by GCMS - Quality Control**

### Air Water & Soil Laboratories, Inc.

|         | Reporting |       |       | Spike | Source | %REC        |     | RPD   |      |  |
|---------|-----------|-------|-------|-------|--------|-------------|-----|-------|------|--|
| Analyte | Result    | Limit | Units | Level | Result | %REC Limits | RPD | Limit | Qual |  |

| Batch BDJ0409 - No Prep VOC A             | \ir |      |                                 |
|-------------------------------------------|-----|------|---------------------------------|
| Blank (BDJ0409-BLK1)                      |     |      | Prepared & Analyzed: 10/14/2020 |
| 1,1,1-Trichloroethane                     | <   | 0.20 | ppbv                            |
| 1,1,1,2-Tetrachloroethane                 | <   | 0.20 | ppbv                            |
| 1,1,2,2-Tetrachloroethane                 | <   | 0.20 | ppbv                            |
| 1,1,2-Trichloro-1,2,2-trifluoroetha<br>ne | <   | 0.20 | ppbv                            |
| 1,1,2-Trichloroethane                     | <   | 0.20 | ppbv                            |
| 1,1-Dichloroethane                        | <   | 0.20 | ppbv                            |
| 1,1-Dichloroethylene                      | <   | 0.20 | ppbv                            |
| 1,2,4-Trichlorobenzene                    | <   | 0.50 | ppbv                            |
| 1,2,4-Trimethylbenzene                    | <   | 0.20 | ppbv                            |
| 1,2-Dibromoethane (EDB)                   | <   | 0.20 | ppbv                            |
| 1,2-Dichlorobenzene                       | <   | 0.20 | ppbv                            |
| 1,2-Dichloroethane                        | <   | 0.20 | ppbv                            |
| 1,2-Dichloropropane                       | <   | 0.20 | ppbv                            |
| 1,2-Dichlorotetrafluoroethane             | <   | 0.20 | ppbv                            |
| 1,3,5-Trimethylbenzene                    | <   | 0.20 | ppbv                            |
| 1,3-Butadiene                             | <   | 0.20 | ppbv                            |
| 1,3-Dichlorobenzene                       | <   | 0.20 | ppbv                            |
| 1,4-Dichlorobenzene                       | <   | 0.20 | ppbv                            |
| 1,4-Dioxane                               | <   | 0.20 | ppbv                            |
| 1-Ethyl-4-methyl benzene                  | <   | 0.20 | ppbv                            |
| 2-Butanone (MEK)                          | <   | 0.20 | ppbv                            |
| 2-Chlorotoluene                           | <   | 0.20 | ppbv                            |
| 2-Hexanone (MBK)                          | <   | 0.20 | ppbv                            |
| 4-Methyl-2-pentanone (MIBK)               | <   | 0.20 | ppbv                            |
| Acrolein                                  | <   | 0.20 | ppbv                            |
| Allyl chloride                            | <   | 0.20 | ppbv                            |
| Benzene                                   | <   | 0.20 | ppbv                            |
| Benzyl Chloride                           | <   | 0.20 | ppbv                            |
| Bromodichloromethane                      | <   | 0.20 | ppbv                            |
| Bromoform                                 | <   | 0.20 | ppbv                            |
| <b>D</b> "                                |     |      |                                 |

0.20

ppbv



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

Date Issued:

October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nan

Nancy Love

Project Number:

CG-09-0423.10

Client Site I.D.:

**Montgomery Brothers** 

Purchase Order:

CG09042310MS

### **Volatile Organic Compounds by GCMS - Quality Control**

### Air Water & Soil Laboratories, Inc.

|         | F      | Reporting |       | Spike | Source | %       | REC       | RPD   |      |  |
|---------|--------|-----------|-------|-------|--------|---------|-----------|-------|------|--|
| Analyte | Result | Limit     | Units | Level | Result | %REC Li | imits RPD | Limit | Qual |  |

### Batch BDJ0409 - No Prep VOC Air

| Blank (BDJ0409-BLK1)       |      |      |      | Prepared & Analyzed: 10/14/2020 |
|----------------------------|------|------|------|---------------------------------|
| Carbon Tetrachloride       | <    | 0.20 | ppbv |                                 |
| Chlorobenzene              | <    | 0.20 | ppbv |                                 |
| Chloroethane               | <    | 0.20 | ppbv |                                 |
| Chloroform                 | <    | 0.20 | ppbv |                                 |
| Chloromethane              | <    | 0.20 | ppbv |                                 |
| s-1,2-Dichloroethylene     | <    | 0.20 | ppbv |                                 |
| s-1,3-Dichloropropene      | <    | 0.20 | ppbv |                                 |
| yclohexane                 | <    | 0.20 | ppbv |                                 |
| romochloromethane          | <    | 0.20 | ppbv |                                 |
| hlorodifluoromethane       | <    | 0.50 | ppbv |                                 |
| anol                       | <    | 0.50 | ppbv |                                 |
| yl acetate                 | <    | 0.20 | ppbv |                                 |
| ylbenzene                  | <    | 0.20 | ppbv |                                 |
| eptane                     | <    | 0.20 | ppbv |                                 |
| xachlorobutadiene          | <    | 0.50 | ppbv |                                 |
| xane                       | <    | 0.20 | ppbv |                                 |
| octane                     | <    | 0.20 | ppbv |                                 |
| propylbenzene              | <    | 0.20 | ppbv |                                 |
| p-Xylenes                  | <    | 0.40 | ppbv |                                 |
| ethyl methacrylate         | <    | 0.20 | ppbv |                                 |
| ethylene chloride          | <    | 1.00 | ppbv |                                 |
| ethyl-t-butyl ether (MTBE) | <    | 0.20 | ppbv |                                 |
| phthalene                  | 0.12 | 0.20 | ppbv |                                 |
| Vonane (C9)                | <    | 0.20 | ppbv |                                 |
| Propylbenzene              | <    | 0.20 | ppbv |                                 |
| Xylene                     | <    | 0.20 | ppbv |                                 |
| Pentane (C5)               | <    | 0.20 | ppbv |                                 |
| ropylene                   | <    | 0.20 | ppbv |                                 |
| tyrene                     | <    | 0.20 | ppbv |                                 |
| BA                         | <    | 0.50 | ppbv |                                 |
| etrachloroethylene (PCE)   | <    | 0.20 | ppbv |                                 |
| etrahydrofuran             | <    | 0.20 | ppbv |                                 |
| oluene                     | <    | 0.20 | ppbv |                                 |
| ns-1,2-Dichloroethylene    | <    | 0.20 | ppbv |                                 |
| •                          |      |      |      |                                 |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

## **Certificate of Analysis**

Final Report

### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

5.04

0.2

ppbv

5.00

Date Issued:

October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

Project Number:

CG-09-0423.10

Client Site I.D.:

4-Methyl-2-pentanone (MIBK)

Montgomery Brothers

Purchase Order:

CG09042310MS

### **Volatile Organic Compounds by GCMS - Quality Control**

### Air Water & Soil Laboratories, Inc.

| Analyte                              | Reporting |       |                | Spike | Source                          |        | %REC     |            | RPD   |      |  |
|--------------------------------------|-----------|-------|----------------|-------|---------------------------------|--------|----------|------------|-------|------|--|
|                                      | Result    | Limit | Units          | Level | Result                          | %REC   | Limits   | RPD        | Limit | Qual |  |
| Batch BDJ0409 - No Prep VO           | C Air     |       |                |       |                                 |        |          |            |       |      |  |
| Blank (BDJ0409-BLK1)                 |           |       |                |       | Prepared & Analyzed: 10/14/2020 |        |          |            |       |      |  |
| trans-1,3-Dichloropropene            | <         | 0.20  | ppbv           |       |                                 |        |          |            |       |      |  |
| Trichloroethylene                    | <         | 0.20  | ppbv           |       |                                 |        |          |            |       |      |  |
| Frichlorofluoromethane               | <         | 0.20  | ppbv           |       |                                 |        |          |            |       |      |  |
| /inyl acetate                        | <         | 0.20  | ppbv           |       |                                 |        |          |            |       |      |  |
| /inyl bromide                        | <         | 0.20  | ppbv           |       |                                 |        |          |            |       |      |  |
| /inyl chloride                       | <         | 0.20  | ppbv           |       |                                 |        |          |            |       |      |  |
| Xylenes, Total                       | <         | 0.60  | ppbv           |       |                                 |        |          |            |       |      |  |
| Surr: 4-Bromofluorobenzene<br>(Surr) | 4.81      |       | ppbv           | 5.00  |                                 | 96.2   | 80-120   |            |       |      |  |
| _CS (BDJ0409-BS1)                    |           |       |                |       | Prep                            | ared & | Analyzed | I: 10/14/2 | 020   |      |  |
| 1,1,1-Trichloroethane                | 4.98      | 0.2   | ppbv           | 5.00  |                                 | 99.6   | 70-130   |            |       |      |  |
| ,1,2,2-Tetrachloroethane             | 4.87      | 0.2   | ppbv           | 5.00  |                                 | 97.5   | 70-130   |            |       |      |  |
| 1,1,2-Trichloro-1,2,2-trifluoroetha  | 5.35      | 0.2   | ppbv           | 5.00  |                                 | 107    | 70-130   |            |       |      |  |
| ne                                   | 5.00      |       |                | 5.00  |                                 | 400    | 70.400   |            |       |      |  |
| 1,1,2-Trichloroethane                | 5.30      | 0.2   | ppbv           | 5.00  |                                 | 106    | 70-130   |            |       |      |  |
| ,1-Dichloroethane                    | 5.34      | 0.2   | ppbv           | 5.00  |                                 | 107    | 70-130   |            |       |      |  |
| I,1-Dichloroethylene                 | 5.39      | 0.2   | ppbv           | 5.00  |                                 | 108    | 70-130   |            |       |      |  |
| 1,2,4-Trichlorobenzene               | 4.34      | 0.5   | ppbv           | 5.00  |                                 | 86.8   | 60-140   |            |       |      |  |
| 1,2,4-Trimethylbenzene               | 5.09      | 0.2   | ppbv           | 5.00  |                                 | 102    | 70-130   |            |       |      |  |
| 1,2-Dibromoethane (EDB)              | 5.16      | 0.2   | ppbv           | 5.00  |                                 | 103    | 70-130   |            |       |      |  |
| 1,2-Dichlorobenzene                  | 4.59      | 0.2   | ppbv           | 5.00  |                                 | 91.8   | 70-130   |            |       |      |  |
| 1,2-Dichloroethane                   | 5.24      | 0.2   | ppbv           | 5.00  |                                 | 105    | 70-130   |            |       |      |  |
| 1,2-Dichloropropane                  | 5.36      | 0.2   | ppbv           | 5.00  |                                 | 107    | 70-130   |            |       |      |  |
| 1,2-Dichlorotetrafluoroethane        | 5.03      | 0.2   | ppbv           | 5.00  |                                 | 101    | 70-130   |            |       |      |  |
| 1,3,5-Trimethylbenzene               | 5.22      | 0.2   | ppbv           | 5.00  |                                 | 104    | 70-130   |            |       |      |  |
| 1,3-Butadiene                        | 5.07      | 0.2   | ppbv           | 5.00  |                                 | 101    | 70-130   |            |       |      |  |
| 1,3-Dichlorobenzene                  | 4.80      | 0.2   | ppbv           | 5.00  |                                 | 96.1   | 70-130   |            |       |      |  |
| 1,4-Dichlorobenzene                  | 5.04      | 0.2   | ppbv           | 5.00  |                                 | 101    | 70-130   |            |       |      |  |
| 1,4-Dioxane                          | 4.76      | 0.2   | ppbv           | 5.00  |                                 | 95.3   | 70-130   |            |       |      |  |
| 1-Ethyl-4-methyl benzene             | 4.68      | 0.2   | ppbv           | 5.00  |                                 | 93.7   | 70-130   |            |       |      |  |
| 2-Butanone (MEK)                     | 5.06      | 0.2   | ppbv           | 5.00  |                                 | 101    | 70-130   |            |       |      |  |
| 2-Chlorotoluene                      | 5.13      | 0.2   | ppbv           | 5.00  |                                 | 103    | 70-130   |            |       |      |  |
| 2-Hexanone (MBK)                     | 4.72      | 0.2   | ppbv           | 5.00  |                                 | 94.4   | 70-130   |            |       |      |  |
| A NA HILL O (NAIDIC)                 |           | 0.0   | and the second |       |                                 | 404    | 70 400   |            |       |      |  |

101 70-130



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

5405 Twin Knolls Rd., Suite 1

Date Issued: October 22, 2020 14:22

October 8, 2020 14:02

Columbia, MD 21045

Submitted To: Nancy Love

Project Number: CG-09-0423.10

Date Received:

Client Site I.D.: Montgomery Brothers

Purchase Order: CG09042310MS

#### **Volatile Organic Compounds by GCMS - Quality Control**

#### Air Water & Soil Laboratories, Inc.

|         | Reporting |       |       | Spike | Source |      | %REC   |     | RPD   |      |
|---------|-----------|-------|-------|-------|--------|------|--------|-----|-------|------|
| Analyte | Result    | Limit | Units | Level | Result | %REC | Limits | RPD | Limit | Qual |

#### Batch BDJ0409 - No Prep VOC Air LCS (BDJ0409-BS1) Prepared & Analyzed: 10/14/2020 Allyl chloride 5.70 5.00 114 70-130 ppbv Benzene 5.20 5.00 104 70-130 0.2 ppbv Benzyl Chloride 4.72 0.2 ppbv 5.00 94.5 70-130 Bromodichloromethane 4.88 0.2 ppbv 5.00 97.6 70-130 Bromoform 4.43 0.2 ppbv 5.00 88.7 70-130 Bromomethane 5.24 0.2 ppbv 5.00 105 70-130 Carbon Tetrachloride 106 70-130 5.31 0.2 ppbv 5.00 Chlorobenzene 5.03 0.2 5.00 101 70-130 ppbv 5 26 0.2 70-130 Chloroethane ppbv 5.00 105 Chloroform 5.17 0.2 5.00 103 70-130 ppbv 5.54 0.2 5.00 70-130 Chloromethane vdaa 111 cis-1,2-Dichloroethylene 5.30 0.2 ppbv 5.00 106 70-130 cis-1,3-Dichloropropene 5.30 0.2 ppbv 5.00 106 70-130 70-130 Cyclohexane 5.62 0.2 ppbv 5.00 112 Dibromochloromethane 5.04 0.2 5.00 101 70-130 ppbv Dichlorodifluoromethane 70-130 5.43 0.5 ppbv 5.00 109 70-130 Ethanol 3.44 0.5 ppbv 3.95 87.2 Ethyl acetate 5 41 0.2 ppbv 5.00 108 70-130 Ethylbenzene 5.31 0.2 ppbv 5.00 106 70-130 70-130 Heptane 5.06 0.2 ppbv 5.00 101 Hexachlorobutadiene 4.49 0.5 5.00 89.8 60-140 ppbv 0.2 70-130 Hexane 5.81 ppbv 5.00 116 Isooctane 5.50 0.2 ppbv 5.00 110 70-130 10.4 0.4 10.0 104 70-130 m+p-Xvlenes ppbv Methylene chloride 5.09 1 ppbv 5.00 102 70-130 Methyl-t-butyl ether (MTBE) 6.11 0.2 ppbv 5.00 122 70-130 Naphthalene 3 87 0.2 ppbv 5.00 77.5 60-140 n-Nonane (C9) 5.16 0.2 ppbv 5.00 103 70-130 5.06 0.2 5.00 101 70-130 n-Propylbenzene ppbv 5.28 0.2 5.00 106 70-130 o-Xylene ppbv n-Pentane (C5) 5.74 0.2 5.00 115 70-130 ppbv Propylene 5.59 0.2 ppbv 5.00 112 70-130 5.00 70-130 Styrene 5 18 0.2 ppbv 104 Tetrachloroethylene (PCE) 5.10 0.2 ppbv 5.00 102 70-130



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc. Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

Date Issued:

October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love Project Number:

CG-09-0423.10

Client Site I.D.:

**Montgomery Brothers** 

Purchase Order:

CG09042310MS

#### **Volatile Organic Compounds by GCMS - Quality Control**

|                                      | Re     | eporting |       | Spike | Source |         | %REC     |            | RPD   |      |
|--------------------------------------|--------|----------|-------|-------|--------|---------|----------|------------|-------|------|
| Analyte                              | Result | Limit    | Units | Level | Result | %REC    | Limits   | RPD        | Limit | Qual |
| Batch BDJ0409 - No Prep VOC          | Δir    |          |       |       |        |         |          |            |       |      |
| •                                    | All    |          |       |       | D      |         | A l      | 40/44/00   | 200   |      |
| LCS (BDJ0409-BS1)                    |        |          |       |       | Prep   |         |          | : 10/14/20 | )20   |      |
| Tetrahydrofuran<br>                  | 5.97   | 0.2      | ppbv  | 5.00  |        | 119     | 70-130   |            |       |      |
| Toluene                              | 5.27   | 0.2      | ppbv  | 5.00  |        | 105     | 70-130   |            |       |      |
| trans-1,2-Dichloroethylene           | 5.93   | 0.2      | ppbv  | 5.00  |        | 119     | 70-130   |            |       |      |
| trans-1,3-Dichloropropene            | 5.26   | 0.2      | ppbv  | 5.00  |        | 105     | 70-130   |            |       |      |
| Trichloroethylene                    | 5.33   | 0.2      | ppbv  | 5.00  |        | 107     | 70-130   |            |       |      |
| Trichlorofluoromethane               | 5.27   | 0.2      | ppbv  | 5.00  |        | 105     | 70-130   |            |       |      |
| Vinyl acetate                        | 5.91   | 0.2      | ppbv  | 5.00  |        | 118     | 70-130   |            |       |      |
| Vinyl bromide                        | 5.52   | 0.2      | ppbv  | 5.00  |        | 110     | 70-130   |            |       |      |
| Vinyl chloride                       | 5.12   | 0.2      | ppbv  | 5.00  |        | 102     | 70-130   |            |       |      |
| Surr: 4-Bromofluorobenzene<br>(Surr) | 5.01   |          | ppbv  | 5.00  |        | 100     | 70-130   |            |       |      |
| LCS Dup (BDJ0409-BSD1)               |        |          |       |       | Prep   | pared & | Analyzed | : 10/14/20 | )20   |      |
| 1,1,1-Trichloroethane                | 5.39   | 0.2      | ppbv  | 5.00  |        | 108     | 70-130   | 7.93       | 25    |      |
| 1,1,2,2-Tetrachloroethane            | 5.10   | 0.2      | ppbv  | 5.00  |        | 102     | 70-130   | 4.49       | 25    |      |
| 1,1,2-Trichloro-1,2,2-trifluoroetha  | 5.43   | 0.2      | ppbv  | 5.00  |        | 109     | 70-130   | 1.48       | 25    |      |
| ne<br>1,1,2-Trichloroethane          | 5.08   | 0.2      | ydqq  | 5.00  |        | 102     | 70-130   | 4.30       | 25    |      |
| 1,1-Dichloroethane                   | 5.34   | 0.2      | ppbv  | 5.00  |        | 107     | 70-130   | 0.112      | 25    |      |
| 1,1-Dichloroethylene                 | 5.56   | 0.2      | ppbv  | 5.00  |        | 111     | 70-130   | 3.10       | 25    |      |
| 1,2,4-Trichlorobenzene               | 4.72   | 0.5      | ppbv  | 5.00  |        | 94.4    | 60-140   | 8.48       | 25    |      |
| 1,2,4-Trimethylbenzene               | 4.80   | 0.2      | ppbv  | 5.00  |        | 95.9    | 70-130   | 5.93       | 25    |      |
| 1,2-Dibromoethane (EDB)              | 5.19   | 0.2      | ppbv  | 5.00  |        | 104     | 70-130   | 0.696      | 25    |      |
| 1,2-Dichlorobenzene                  | 4.48   | 0.2      | ppbv  | 5.00  |        | 89.6    | 70-130   | 2.45       | 25    |      |
| 1,2-Dichloroethane                   | 5.75   | 0.2      | ppbv  | 5.00  |        | 115     | 70-130   | 9.12       | 25    |      |
| 1,2-Dichloropropane                  | 5.14   | 0.2      | ppbv  | 5.00  |        | 103     | 70-130   | 4.10       | 25    |      |
| 1,2-Dichlorotetrafluoroethane        | 5.06   | 0.2      | ppbv  | 5.00  |        | 101     | 70-130   | 0.496      | 25    |      |
| 1,3,5-Trimethylbenzene               | 4.78   | 0.2      | ppbv  | 5.00  |        | 95.5    | 70-130   | 8.88       | 25    |      |
| 1,3-Butadiene                        | 4.86   | 0.2      | ppbv  | 5.00  |        | 97.2    | 70-130   | 4.17       | 25    |      |
| 1,3-Dichlorobenzene                  | 4.56   | 0.2      | ppbv  | 5.00  |        | 91.3    | 70-130   | 5.12       | 25    |      |
| 1,4-Dichlorobenzene                  | 4.76   | 0.2      | ppbv  | 5.00  |        | 95.1    | 70-130   | 5.72       | 25    |      |
| 1,4-Dioxane                          | 5.16   | 0.2      | ppbv  | 5.00  |        | 103     | 70-130   | 7.96       | 25    |      |
| 1-Ethyl-4-methyl benzene             | 5.07   | 0.2      | ppbv  | 5.00  |        | 101     | 70-130   | 7.88       | 25    |      |
| 2-Butanone (MEK)                     | 5.25   | 0.2      | ppbv  | 5.00  |        | 105     | 70-130   | 3.70       | 25    |      |
| 2-Chlorotoluene                      | 5.17   | 0.2      | ppbv  | 5.00  |        | 103     | 70-130   | 0.835      | 25    |      |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

# **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

Date Received: 5405 Twin Knolls Rd., Suite 1

October 8, 2020 14:02 October 22, 2020 14:22 Date Issued:

Columbia, MD 21045

Submitted To: Nancy Love Project Number: CG-09-0423.10

Client Site I.D.: **Montgomery Brothers** 

CG09042310MS Purchase Order:

#### **Volatile Organic Compounds by GCMS - Quality Control**

|         | Reporting |       |       | Spike | Source |      | %REC   |     | RPD   |      |  |
|---------|-----------|-------|-------|-------|--------|------|--------|-----|-------|------|--|
| Analyte | Result    | Limit | Units | Level | Result | %REC | Limits | RPD | Limit | Qual |  |

| 4-Methyl-2-pentanone (MIBK)         5.62         0.2         pbbv         5.00         112         70-130         10.8         25           Allyl chloride         5.71         0.2         pbbv         5.00         114         70-130         0.158         25           Benzene         5.40         0.2         pbbv         5.00         108         70-130         3.75         25           Benzyl Chloride         4.52         0.2         pbbv         5.00         90.4         70-130         4.35         25           Bromodichloromethane         5.22         0.2         pbbv         5.00         104         70-130         8.76         25           Bromomethane         5.31         0.2         pbbv         5.00         106         70-130         8.76         25           Bromomethane         5.15         0.2         pbbv         5.00         109         70-130         8.74         25           Carbon Tetrachloride         5.44         0.2         pbbv         5.00         109         70-130         8.24         25           Chlorobethane         5.09         0.2         pbbv         5.00         104         70-130         0.84e         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LCS Dup (BDJ0409-BSD1)      |      |     |      |      | Prepared & | Analyzed | : 10/14/20 | 20 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|-----|------|------|------------|----------|------------|----|
| Ally chloride 5.71 0.2 ppbv 5.00 114 70-130 0.158 25 Benzene 5.40 0.2 ppbv 5.00 108 70-130 3.75 25 Benzyl Chloride 4.52 0.2 ppbv 5.00 90.4 70-130 3.75 25 Benzyl Chloride 5.22 0.2 ppbv 5.00 90.4 70-130 4.35 25 Bromodichloromethane 5.22 0.2 ppbv 5.00 104 70-130 8.76 25 Bromodethane 5.31 0.2 ppbv 5.00 106 70-130 1.23 25 Bromomethane 5.31 0.2 ppbv 5.00 106 70-130 1.23 25 Carbon Tetrachloride 5.44 0.2 ppbv 5.00 109 70-130 2.47 25 Chlorobenzene 5.15 0.2 ppbv 5.00 103 70-130 2.36 25 Chlorobenzene 5.09 0.2 ppbv 5.00 103 70-130 3.31 25 Chloromethane 5.09 0.2 ppbv 5.00 103 70-130 3.31 25 Chloromethane 5.09 0.2 ppbv 5.00 104 70-130 0.636 25 Chloromethane 5.09 0.2 ppbv 5.00 102 70-130 3.31 25 Chloromethane 5.09 0.2 ppbv 5.00 102 70-130 3.31 25 Chloromethane 5.35 0.2 ppbv 5.00 102 70-130 8.49 25 Cisi-1,3-Dichlorothylene 5.35 0.2 ppbv 5.00 107 70-130 6.51 25 Cyclohexane 5.33 0.2 ppbv 5.00 107 70-130 5.26 25 Cyclohexane 5.33 0.2 ppbv 5.00 107 70-130 6.51 25 Cyclohexane 5.30 0.2 ppbv 5.00 107 70-130 5.26 25 Cyclohexane 5.30 0.2 ppbv 5.00 107 70-130 6.51 25 Cyclohexane 5.30 0.2 ppbv 5.00 107 70-130 6.51 25 Elthylacetate 5.30 0.2 ppbv 5.00 107 70-130 8.50 25 Elthylacetate 5.30 0.2 ppbv 5.00 107 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70- | 2-Hexanone (MBK)            | 4.82 | 0.2 | ppbv | 5.00 | 96.5       | 70-130   | 2.16       | 25 |
| Benzene         5.40         0.2         ppbv         5.00         108         70-130         3.75         25           Benzyl Chloride         4.52         0.2         ppbv         5.00         90.4         70-130         4.35         25           Bromodichloromethane         5.22         0.2         ppbv         5.00         104         70-130         8.76         25           Bromoform         4.06         0.2         ppbv         5.00         106         70-130         8.76         25           Bromoform         5.44         0.2         ppbv         5.00         109         70-130         1.23         25           Carbon Tetrachloride         5.44         0.2         ppbv         5.00         109         70-130         2.36         25           Chlorobenzene         5.15         0.2         ppbv         5.00         103         70-130         3.31         25           Chlorobethane         5.09         0.2         ppbv         5.00         102         70-130         8.49         25           Chloromethane         5.09         0.2         ppbv         5.00         102         70-130         8.49         25           cis-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-Methyl-2-pentanone (MIBK) | 5.62 | 0.2 | ppbv | 5.00 | 112        | 70-130   | 10.8       | 25 |
| Benzyl Chloride         4.52         0.2         ppbv         5.00         90.4         70-130         4.35         2           Bromodichloromethane         5.22         0.2         ppbv         5.00         104         70-130         6.70         25           Bromoform         4.06         0.2         ppbv         5.00         116         70-130         8.76         25           Bromomethane         5.31         0.2         ppbv         5.00         109         70-130         1.23         25           Carbon Tetrachloride         5.44         0.2         ppbv         5.00         109         70-130         2.47         25           Chlorobenzene         5.15         0.2         ppbv         5.00         103         70-130         2.36         25           Chloroform         5.20         0.2         ppbv         5.00         104         70-130         0.636         25           Chloromethane         5.09         0.2         ppbv         5.00         104         70-130         0.636         25           Chloromethane         5.99         0.2         ppbv         5.00         107         70-130         6.51         25           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Allyl chloride              | 5.71 | 0.2 | ppbv | 5.00 | 114        | 70-130   | 0.158      | 25 |
| Bromodichloromethane 5.22 0.2 ppbv 5.00 104 70-130 6.70 25 Bromoform 4.06 0.2 ppbv 5.00 81.2 70-130 8.76 25 Bromoform 5.31 0.2 ppbv 5.00 106 70-130 1.23 25 Carbon Tetrachloride 5.44 0.2 ppbv 5.00 109 70-130 1.23 25 Carbon Tetrachloride 5.44 0.2 ppbv 5.00 109 70-130 1.23 25 Chlorobetane 5.15 0.2 ppbv 5.00 103 70-130 2.36 25 Chlorobethane 5.09 0.2 ppbv 5.00 102 70-130 3.31 25 Chloroform 5.20 0.2 ppbv 5.00 102 70-130 8.49 25 Chlorobethane 5.09 0.2 ppbv 5.00 102 70-130 8.49 25 Chlorobethane 5.09 0.2 ppbv 5.00 102 70-130 8.49 25 Chlorobethane 5.35 0.2 ppbv 5.00 102 70-130 8.49 25 Chlorobethylene 5.35 0.2 ppbv 5.00 107 70-130 8.49 25 Chlorobethylene 5.33 0.2 ppbv 5.00 107 70-130 8.49 25 Chlorobethylene 5.33 0.2 ppbv 5.00 107 70-130 8.49 25 Chlorobethylene 5.33 0.2 ppbv 5.00 107 70-130 8.49 25 Chlorobethylene 5.33 0.2 ppbv 5.00 107 70-130 8.49 25 Chlorobethylene 5.33 0.2 ppbv 5.00 107 70-130 8.49 25 Chlorobethylene 5.33 0.2 ppbv 5.00 107 70-130 8.49 25 Chlorobethylene 5.33 0.2 ppbv 5.00 107 70-130 8.50 25 Chlorobethylene 5.36 0.2 ppbv 5.00 107 70-130 8.50 25 Ebblorholoromethane 5.16 0.2 ppbv 5.00 103 70-130 8.50 25 Ebblorholoromethane 5.16 0.2 ppbv 5.00 103 70-130 8.50 25 Ebblorholoromethane 5.16 0.2 ppbv 5.00 103 70-130 8.50 25 Ebblorholoromethane 5.30 0.2 ppbv 5.00 106 70-130 8.50 25 Ebblorholoromethylene 5.35 0.2 ppbv 5.00 106 70-130 0.751 25 Ebblorholoromethylene 5.35 0.2 ppbv 5.00 107 70-130 0.751 25 Ebblorholoromethylene 5.35 0.2 ppbv 5.00 101 60-140 12.2 25 Ebblorholoromethylene 5.30 0.2 ppbv 5.00 101 60-140 12.2 25 Ebblorholoromethylene 6.30 0.2 ppbv 5.00 101 60-140 12.2 25 Ebblorholoromethylene 6.30 0.2 ppbv 5.00 101 60-140 12.2 25 Ebblorholoromethylene 6.30 0.2 ppbv 5.00 101 60-140 12.2 25 Ebblorholoromethylene 6.30 0.2 ppbv 5.00 101 60-140 12.2 25 Ebblorholoromethylene 6.30 0.2 ppbv 5.00 101 60-140 12.2 25 Ebblorholoromethylene 6.30 0.2 ppbv 5.00 101 70-130 0.0344 25 Ebblorholoromethylene 6.30 0.2 ppbv 5.00 102 70-130 0.0342 25 Ebblorholoromethylene 6.30 0.2 ppbv 5.00 102 70-130 0.0342 25 Ebblorholoromethyl | Benzene                     | 5.40 | 0.2 | ppbv | 5.00 | 108        | 70-130   | 3.75       | 25 |
| Brownoform         4.06         0.2         ppbv         5.00         81.2         70-130         8.76         25           Bromomethane         5.31         0.2         ppbv         5.00         106         70-130         1.23         25           Carbon Tetrachloride         5.44         0.2         ppbv         5.00         109         70-130         2.47         25           Chlorobenzene         5.15         0.2         ppbv         5.00         103         70-130         2.36         25           Chlorotethane         5.09         0.2         ppbv         5.00         104         70-130         0.33         25           Chloromethane         5.09         0.2         ppbv         5.00         104         70-130         0.63         25           Chloromethane         5.09         0.2         ppbv         5.00         102         70-130         8.49         25           cis-1,2-Dichloroethylene         5.35         0.2         ppbv         5.00         107         70-130         6.51         25           Dybromochloromethane         5.16         0.2         ppbv         5.00         107         70-130         5.26         25 <t< td=""><td>Benzyl Chloride</td><td>4.52</td><td>0.2</td><td>ppbv</td><td>5.00</td><td>90.4</td><td>70-130</td><td>4.35</td><td>25</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzyl Chloride             | 4.52 | 0.2 | ppbv | 5.00 | 90.4       | 70-130   | 4.35       | 25 |
| Gromomethane         5.31         0.2         ppbv         5.00         106         70-130         1.23         25           Carbon Tetrachloride         5.44         0.2         ppbv         5.00         109         70-130         2.47         25           Chlorobenzene         5.15         0.2         ppbv         5.00         103         70-130         2.36         25           Chloroform         5.20         0.2         ppbv         5.00         102         70-130         0.636         25           Chloroform         5.20         0.2         ppbv         5.00         102         70-130         0.636         25           Chloromethane         5.09         0.2         ppbv         5.00         102         70-130         0.920         25           cis-1,2-Dichlorogethylene         5.35         0.2         ppbv         5.00         107         70-130         0.920         25           cis-1,3-Dichlorogropene         4.96         0.2         ppbv         5.00         107         70-130         6.51         25           Dibromochloromethane         5.16         0.2         ppbv         5.00         107         70-130         8.50         25     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bromodichloromethane        | 5.22 | 0.2 | ppbv | 5.00 | 104        | 70-130   | 6.70       | 25 |
| Carbon Tetrachloride         5.44         0.2         ppbv         5.00         109         70-130         2.47         25           Chlorobenzene         5.15         0.2         ppbv         5.00         103         70-130         2.36         25           Chloroethane         5.09         0.2         ppbv         5.00         102         70-130         3.31         25           Chloromethane         5.09         0.2         ppbv         5.00         104         70-130         0.636         25           Chloromethane         5.09         0.2         ppbv         5.00         102         70-130         0.49         25           Chloromethane         5.35         0.2         ppbv         5.00         107         70-130         0.92         25           cis-1,3-Dichloropropene         4.96         0.2         ppbv         5.00         107         70-130         6.51         25           Cyclohexane         5.33         0.2         ppbv         5.00         107         70-130         6.51         25           Dichlorodifluoromethane         4.99         0.5         ppbv         5.00         103         70-130         10.2         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bromoform                   | 4.06 | 0.2 | ppbv | 5.00 | 81.2       | 70-130   | 8.76       | 25 |
| Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect   | Bromomethane                | 5.31 | 0.2 | ppbv | 5.00 | 106        | 70-130   | 1.23       | 25 |
| Chloroethane         5.09         0.2         ppbv         5.00         102         70-130         3.31         25           Chlorofform         5.20         0.2         ppbv         5.00         104         70-130         0.636         25           Chloromethane         5.09         0.2         ppbv         5.00         102         70-130         8.49         25           cis-1,2-Dichloroethylene         5.35         0.2         ppbv         5.00         107         70-130         0.920         25           cis-1,3-Dichloroptopene         4.96         0.2         ppbv         5.00         107         70-130         6.51         25           Objectoroptopene         5.33         0.2         ppbv         5.00         103         70-130         6.51         25           Objectoroptopene         5.33         0.2         ppbv         5.00         107         70-130         6.51         25           Objectoroptopene         5.33         0.2         ppbv         5.00         103         70-130         6.51         25           Objectoroptopene         5.33         0.2         ppbv         5.00         103         70-130         0.12         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carbon Tetrachloride        | 5.44 | 0.2 | ppbv | 5.00 | 109        | 70-130   | 2.47       | 25 |
| Chloroform 5.20 0.2 ppbv 5.00 104 70-130 0.636 25 Chloromethane 5.09 0.2 ppbv 5.00 102 70-130 8.49 25 cis-1,2-Dichloroethylene 5.35 0.2 ppbv 5.00 107 70-130 0.920 25 cis-1,3-Dichloropropene 4.96 0.2 ppbv 5.00 99.3 70-130 6.51 25 Cyclohexane 5.33 0.2 ppbv 5.00 107 70-130 5.26 25 Dibromochloromethane 5.16 0.2 ppbv 5.00 103 70-130 2.39 25 Dichlorodifluoromethane 4.99 0.5 ppbv 5.00 99.8 70-130 8.50 25 Ethanol 3.11 0.5 ppbv 3.95 78.7 70-130 10.2 25 Ethyl acetate 5.30 0.2 ppbv 5.00 106 70-130 2.00 25 Ethyl acetate 5.30 0.2 ppbv 5.00 106 70-130 2.00 25 Ethylbenzene 5.35 0.2 ppbv 5.00 107 70-130 0.751 25 Hepstane 5.57 0.2 ppbv 5.00 101 70-130 0.751 25 Hexane 5.81 0.2 ppbv 5.00 101 60-140 12.2 25 Hexane 5.30 0.2 ppbv 5.00 101 60-140 12.2 25 Ethylensene 5.30 0.2 ppbv 5.00 101 60-140 12.2 25 Ethylensene 5.30 0.2 ppbv 5.00 101 60-140 12.2 25 Ethylensene 5.30 0.2 ppbv 5.00 101 60-140 12.2 25 Ethylensene 5.30 0.2 ppbv 5.00 101 60-140 12.2 25 Ethylensene 5.30 0.2 ppbv 5.00 101 60-140 12.2 25 Ethylensene 5.30 0.2 ppbv 5.00 101 60-140 12.2 25 Ethylensene 5.30 0.2 ppbv 5.00 101 70-130 0.0344 25 Ethylensene 5.30 0.2 ppbv 5.00 106 70-130 3.78 25 Methylense chloride 5.09 1 ppbv 5.00 102 70-130 0.0197 25 Methylense chloride 5.09 1 ppbv 5.00 102 70-130 0.0197 25 Methylense chloride 4.35 0.2 ppbv 5.00 102 70-130 0.425 25 Naphthalene 4.35 0.2 ppbv 5.00 102 70-130 0.425 25 Naphthalene 6.00 5.55 0.2 ppbv 5.00 105 70-130 3.32 25 0-Xylene 5.45 0.2 ppbv 5.00 105 70-130 3.24 25 0-Xylene 5.45 0.2 ppbv 5.00 105 70-130 3.24 25 0-Xylene 5.45 0.2 ppbv 5.00 106 70-130 3.24 25 0-Xylene 5.45 0.2 ppbv 5.00 106 70-130 3.24 25 0-Xylene 5.45 0.2 ppbv 5.00 106 70-130 3.24 25 0-Xylene 5.45 0.2 ppbv 5.00 106 70-130 3.24 25 0-Xylene 5.45 0.2 ppbv 5.00 106 70-130 3.24 25 0-Xylene 5.45 0.2 ppbv 5.00 106 70-130 3.24 25 0-Xylene 5.45 0.2 ppbv 5.00 106 70-130 3.24 25 0-Xylene 5.45 0.2 ppbv 5.00 106 70-130 3.24 25 0-Xylene 5.45 0.2 ppbv 5.00 106 70-130 3.24 25 0-Xylene 5.45 0.2 ppbv 5.00 106 70-130 3.24 25 0-Xylene 5.45 0.2 ppbv 5.00 106 70-130 3.24 25 0-Xylene 5 | Chlorobenzene               | 5.15 | 0.2 | ppbv | 5.00 | 103        | 70-130   | 2.36       | 25 |
| Chloromethane         5.09         0.2         ppbv         5.00         102         70-130         8.49         25           cis-1,2-Dichloroethylene         5.35         0.2         ppbv         5.00         107         70-130         0.920         25           cis-1,3-Dichloropropene         4.96         0.2         ppbv         5.00         99.3         70-130         6.51         25           Cyclohexane         5.33         0.2         ppbv         5.00         103         70-130         5.26         25           Dibromochloromethane         4.99         0.5         ppbv         5.00         103         70-130         8.50         25           Ethanol         3.11         0.5         ppbv         5.00         99.8         70-130         10.2         25           Ethyl acetate         5.30         0.2         ppbv         5.00         106         70-130         10.2         25           Ethyl benzene         5.35         0.2         ppbv         5.00         107         70-130         0.751         25           Hetyl acetate         5.07         0.5         ppbv         5.00         107         70-130         0.751         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chloroethane                | 5.09 | 0.2 | ppbv | 5.00 | 102        | 70-130   | 3.31       | 25 |
| Sist   2-Dichloroethylene   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist   Sist      | Chloroform                  | 5.20 | 0.2 | ppbv | 5.00 | 104        | 70-130   | 0.636      | 25 |
| A.96   0.2   ppbv   5.00   99.3   70-130   6.51   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chloromethane               | 5.09 | 0.2 | ppbv | 5.00 | 102        | 70-130   | 8.49       | 25 |
| Cyclohexane         5.33         0.2         ppbv         5.00         107         70-130         5.26         25           Dibiromochloromethane         5.16         0.2         ppbv         5.00         103         70-130         2.39         25           Dichlorodifluoromethane         4.99         0.5         ppbv         5.00         99.8         70-130         8.50         25           Ethanol         3.11         0.5         ppbv         5.00         106         70-130         10.2         25           Ethyl acetate         5.30         0.2         ppbv         5.00         106         70-130         0.751         25           Ethylbenzene         5.35         0.2         ppbv         5.00         107         70-130         0.751         25           Ethylbenzene         5.57         0.2         ppbv         5.00         111         70-130         0.751         25           Ethylbenzene         5.81         0.2         ppbv         5.00         101         60-140         12.2         25           Jesachlorobutadiene         5.81         0.2         ppbv         5.00         116         70-130         0.0344         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sis-1,2-Dichloroethylene    | 5.35 | 0.2 | ppbv | 5.00 | 107        | 70-130   | 0.920      | 25 |
| Dibromochloromethane         5.16         0.2         ppbv         5.00         103         70-130         2.39         25           Dichlorodifluoromethane         4.99         0.5         ppbv         5.00         99.8         70-130         8.50         25           Ethanol         3.11         0.5         ppbv         3.95         78.7         70-130         10.2         25           Ethyl acetate         5.30         0.2         ppbv         5.00         106         70-130         2.00         25           Ethylbenzene         5.35         0.2         ppbv         5.00         107         70-130         0.751         25           Heptane         5.57         0.2         ppbv         5.00         101         60-140         12.2         25           Hexachlorobutadiene         5.07         0.5         ppbv         5.00         101         60-140         12.2         25           Hexachlorobutadiene         5.81         0.2         ppbv         5.00         101         60-140         12.2         25           Hexachlorobutadiene         5.81         0.2         ppbv         5.00         106         70-130         0.0344         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cis-1,3-Dichloropropene     | 4.96 | 0.2 | ppbv | 5.00 | 99.3       | 70-130   | 6.51       | 25 |
| bicklorodifluoromethane         4.99         0.5         ppbv         5.00         99.8         70-130         8.50         25           Ethanol         3.11         0.5         ppbv         3.95         78.7         70-130         10.2         25           Ethyl acetate         5.30         0.2         ppbv         5.00         106         70-130         0.751         25           Ethyl benzene         5.35         0.2         ppbv         5.00         107         70-130         0.751         25           Ideptane         5.97         0.2         ppbv         5.00         111         70-130         0.751         25           Ideptane         5.07         0.5         ppbv         5.00         111         70-130         0.751         25           Ideptane         5.07         0.5         ppbv         5.00         101         60-140         12.2         25           Idexacelorobutadiene         5.07         0.5         ppbv         5.00         116         70-130         0.0344         25           Idexacelorobutadiene         5.81         0.2         ppbv         5.00         116         70-130         3.78         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cyclohexane                 | 5.33 | 0.2 | ppbv | 5.00 | 107        | 70-130   | 5.26       | 25 |
| hanol 3.11 0.5 ppbv 3.95 78.7 70-130 10.2 25 hyl acetate 5.30 0.2 ppbv 5.00 106 70-130 2.00 25 hylbenzene 5.35 0.2 ppbv 5.00 107 70-130 0.751 25 eptane 5.57 0.2 ppbv 5.00 111 70-130 9.62 25 exachlorobutadiene 5.07 0.5 ppbv 5.00 101 60-140 12.2 25 exane 5.81 0.2 ppbv 5.00 116 70-130 0.0344 25 exacted 5.30 0.2 ppbv 5.00 116 70-130 3.78 25 extended 5.30 0.2 ppbv 5.00 106 70-130 3.78 25 extended 5.09 1 ppbv 5.00 102 70-130 10.5 25 extended 5.09 1 ppbv 5.00 102 70-130 0.0197 25 extended 5.09 1 ppbv 5.00 123 70-130 0.0197 25 extended 5.09 1 ppbv 5.00 123 70-130 0.425 25 extended 5.09 1 ppbv 5.00 123 70-130 0.425 25 extended 5.09 1 ppbv 5.00 123 70-130 0.425 25 extended 5.09 1 ppbv 5.00 123 70-130 0.425 25 extended 5.09 5.00 123 70-130 0.425 25 extended 5.09 5.00 123 70-130 0.425 25 extended 5.09 5.00 123 70-130 0.425 25 extended 5.09 5.00 123 70-130 0.425 25 extended 5.09 5.00 123 70-130 0.425 25 extended 5.09 5.00 123 70-130 0.425 25 extended 5.09 5.00 123 70-130 0.425 25 extended 5.09 5.00 123 70-130 0.425 25 extended 5.09 5.00 123 70-130 0.425 25 extended 5.00 5.00 5.00 123 70-130 0.425 25 extended 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bromochloromethane          | 5.16 | 0.2 | ppbv | 5.00 | 103        | 70-130   | 2.39       | 25 |
| hyl acetate 5.30 0.2 ppbv 5.00 106 70-130 2.00 25 hylbenzene 5.35 0.2 ppbv 5.00 107 70-130 0.751 25 eptane 5.57 0.2 ppbv 5.00 111 70-130 9.62 25 exachlorobutadiene 5.07 0.5 ppbv 5.00 101 60-140 12.2 25 exachlorobutadiene 5.81 0.2 ppbv 5.00 116 70-130 0.0344 25 exachlorobutadiene 5.30 0.2 ppbv 5.00 116 70-130 3.78 25 expression 9.39 0.4 ppbv 10.0 93.9 70-130 10.5 25 exhylene chloride 5.09 1 ppbv 5.00 102 70-130 0.0197 25 exhyl-t-butyl ether (MTBE) 6.14 0.2 ppbv 5.00 123 70-130 0.425 25 exhyl-t-butyl ether (MTBE) 6.14 0.2 ppbv 5.00 87.0 60-140 11.6 25 exhyl-t-butyl ether (MTBE) 5.55 0.2 ppbv 5.00 105 70-130 7.19 25 exhyl-t-butyl ether (MTBE) 5.55 0.2 ppbv 5.00 105 70-130 3.32 25 exhyl-t-butyl ether (MTBE) 5.55 0.2 ppbv 5.00 105 70-130 3.24 25 exhyl-t-butyl ether (MTBE) 5.55 0.2 ppbv 5.00 105 70-130 3.24 25 exhyl-t-butyl ether (MTBE) 5.55 0.2 ppbv 5.00 105 70-130 3.24 25 exhyl-t-butyl ether (MTBE) 5.23 0.2 ppbv 5.00 105 70-130 3.24 25 exhyl-t-butyl ether (MTBE) 5.23 0.2 ppbv 5.00 105 70-130 3.24 25 exhyl-t-butyl ether (MTBE) 5.23 0.2 ppbv 5.00 105 70-130 3.24 25 exhyl-t-butyl ether (MTBE) 5.23 0.2 ppbv 5.00 105 70-130 3.24 25 exhyl-t-butyl ether (MTBE) 5.23 0.2 ppbv 5.00 105 70-130 3.24 25 exhyl-t-butyl ether (MTBE) 5.23 0.2 ppbv 5.00 105 70-130 3.24 25 exhyl-t-butyl ether (MTBE) 5.23 0.2 ppbv 5.00 105 70-130 3.24 25 exhyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl-t-butyl- | chlorodifluoromethane       | 4.99 | 0.5 | ppbv | 5.00 | 99.8       | 70-130   | 8.50       | 25 |
| thylbenzene 5.35 0.2 ppbv 5.00 107 70-130 0.751 25 eptane 5.57 0.2 ppbv 5.00 111 70-130 9.62 25 exachlorobutadiene 5.07 0.5 ppbv 5.00 101 60-140 12.2 25 exame 5.81 0.2 ppbv 5.00 116 70-130 0.0344 25 exame 5.30 0.2 ppbv 5.00 106 70-130 3.78 25 exame 5.30 0.2 ppbv 5.00 106 70-130 3.78 25 exp-xylenes 9.39 0.4 ppbv 10.0 93.9 70-130 10.5 25 exp-xylene 6.14 0.2 ppbv 5.00 102 70-130 0.0197 25 exp-xylene 6.14 0.2 ppbv 5.00 123 70-130 0.425 25 exp-xylene 6.14 0.2 ppbv 5.00 123 70-130 0.425 25 exp-xylene 6.14 0.2 ppbv 5.00 123 70-130 0.425 25 exp-xylene 6.14 0.2 ppbv 5.00 123 70-130 0.425 25 exp-xylene 6.14 0.2 ppbv 5.00 123 70-130 0.425 25 exp-xylene 6.555 0.2 ppbv 5.00 111 70-130 7.19 25 exp-xylene 5.55 0.2 ppbv 5.00 111 70-130 7.19 25 exp-xylene 5.23 0.2 ppbv 5.00 105 70-130 3.32 25 exp-xylene 5.45 0.2 ppbv 5.00 109 70-130 3.24 25 exp-xylene 6.582 0.2 ppbv 5.00 109 70-130 3.24 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene 6.582 0.2 ppbv 5.00 116 70-130 1.26 25 exp-xylene | thanol                      | 3.11 | 0.5 | ppbv | 3.95 | 78.7       | 70-130   | 10.2       | 25 |
| eptane 5.57 0.2 ppbv 5.00 111 70-130 9.62 25 exachlorobutadiene 5.07 0.5 ppbv 5.00 101 60-140 12.2 25 exame 5.81 0.2 ppbv 5.00 116 70-130 0.0344 25 exame 5.80 0.2 ppbv 5.00 106 70-130 3.78 25 exame 5.30 0.2 ppbv 5.00 106 70-130 3.78 25 example 5.00 106 70-130 10.5 25 example 6.14 0.2 ppbv 5.00 102 70-130 0.0197 25 example 6.14 0.2 ppbv 5.00 102 70-130 0.0197 25 example 6.14 0.2 ppbv 5.00 123 70-130 0.425 25 example 6.14 0.2 ppbv 5.00 123 70-130 0.425 25 example 6.14 0.2 ppbv 5.00 123 70-130 0.425 25 example 6.14 0.2 ppbv 5.00 123 70-130 0.425 25 example 6.14 0.2 ppbv 5.00 123 70-130 0.425 25 example 6.14 0.2 ppbv 5.00 123 70-130 0.425 25 example 6.14 0.2 ppbv 5.00 123 70-130 0.425 25 example 6.14 0.2 ppbv 5.00 111 70-130 7.19 25 example 6.14 0.2 ppbv 5.00 105 70-130 3.32 25 example 6.14 0.2 ppbv 5.00 105 70-130 3.24 25 example 6.14 0.2 ppbv 5.00 109 70-130 3.24 25 example 6.14 0.2 ppbv 5.00 109 70-130 3.24 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 5.00 116 70-130 1.26 25 example 6.14 0.2 ppbv 6.14 0.2 ppbv 6.14 0.2 ppbv 6.14 0.2 ppbv 6 | thyl acetate                | 5.30 | 0.2 | ppbv | 5.00 | 106        | 70-130   | 2.00       | 25 |
| lexachlorobutadiene 5.07 0.5 ppbv 5.00 101 60-140 12.2 25 lexane 5.81 0.2 ppbv 5.00 116 70-130 0.0344 25 lexane 5.81 0.2 ppbv 5.00 116 70-130 0.0344 25 lexane 5.30 0.2 ppbv 5.00 106 70-130 3.78 25 lexp-Xylenes 9.39 0.4 ppbv 10.0 93.9 70-130 10.5 25 lextlylene chloride 5.09 1 ppbv 5.00 102 70-130 0.0197 25 lextlylether (MTBE) 6.14 0.2 ppbv 5.00 123 70-130 0.425 25 laphthalene 4.35 0.2 ppbv 5.00 87.0 60-140 11.6 25 lexploration (C9) 5.55 0.2 ppbv 5.00 111 70-130 7.19 25 lexploration (C9) 5.45 0.2 ppbv 5.00 105 70-130 3.32 25 lexploration (C5) 5.82 0.2 ppbv 5.00 109 70-130 3.24 25 lexploration (C5) 5.82 0.2 ppbv 5.00 116 70-130 1.26 25 lexploration (C5) 5.82 0.2 ppbv 5.00 116 70-130 1.26 25 lexploration (C5) 5.82 0.2 ppbv 5.00 116 70-130 1.26 25 lexploration (C5) 5.82 0.2 ppbv 5.00 116 70-130 1.26 25 lexploration (C5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | thylbenzene                 | 5.35 | 0.2 | ppbv | 5.00 | 107        | 70-130   | 0.751      | 25 |
| exame         5.81         0.2         ppbv         5.00         116         70-130         0.0344         25           cooctane         5.30         0.2         ppbv         5.00         106         70-130         3.78         25           cooctane         9.39         0.4         ppbv         10.0         93.9         70-130         10.5         25           lethylene chloride         5.09         1         ppbv         5.00         102         70-130         0.0197         25           lethyl-t-butyl ether (MTBE)         6.14         0.2         ppbv         5.00         123         70-130         0.425         25           aphthalene         4.35         0.2         ppbv         5.00         87.0         60-140         11.6         25           -Nonane (C9)         5.55         0.2         ppbv         5.00         111         70-130         3.32         25           -Propylbenzene         5.23         0.2         ppbv         5.00         105         70-130         3.24         25           -Sylene         5.45         0.2         ppbv         5.00         109         70-130         3.24         25           -Pentane (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eptane                      | 5.57 | 0.2 | ppbv | 5.00 | 111        | 70-130   | 9.62       | 25 |
| bootdane         5.30         0.2         ppbv         5.00         106         70-130         3.78         25           1+p-Xylenes         9.39         0.4         ppbv         10.0         93.9         70-130         10.5         25           1ethylene chloride         5.09         1         ppbv         5.00         102         70-130         0.0197         25           1ethyl-t-butyl ether (MTBE)         6.14         0.2         ppbv         5.00         123         70-130         0.425         25           aphthalene         4.35         0.2         ppbv         5.00         87.0         60-140         11.6         25           Nonane (C9)         5.55         0.2         ppbv         5.00         111         70-130         7.19         25           Propylbenzene         5.23         0.2         ppbv         5.00         105         70-130         3.32         25           Xylene         5.45         0.2         ppbv         5.00         109         70-130         3.24         25           Pentane (C5)         5.82         0.2         ppbv         5.00         116         70-130         1.26         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | exachlorobutadiene          | 5.07 | 0.5 | ppbv | 5.00 | 101        | 60-140   | 12.2       | 25 |
| n+p-Xylenes       9.39       0.4       ppbv       10.0       93.9       70-130       10.5       25         Methylene chloride       5.09       1       ppbv       5.00       102       70-130       0.0197       25         Methyl-t-butyl ether (MTBE)       6.14       0.2       ppbv       5.00       123       70-130       0.425       25         Iaphthalene       4.35       0.2       ppbv       5.00       87.0       60-140       11.6       25         -Nonane (C9)       5.55       0.2       ppbv       5.00       111       70-130       7.19       25         -Propylbenzene       5.23       0.2       ppbv       5.00       105       70-130       3.32       25         -Xylene       5.45       0.2       ppbv       5.00       109       70-130       3.24       25         -Pentane (C5)       5.82       0.2       ppbv       5.00       116       70-130       1.26       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lexane                      | 5.81 | 0.2 | ppbv | 5.00 | 116        | 70-130   | 0.0344     | 25 |
| Idethylene chloride         5.09         1         ppbv         5.00         102         70-130         0.0197         25           Idethyl-t-butyl ether (MTBE)         6.14         0.2         ppbv         5.00         123         70-130         0.425         25           Idethyl-t-butyl ether (MTBE)         4.35         0.2         ppbv         5.00         87.0         60-140         11.6         25           Idethyl-t-butyl ether (MTBE)         5.55         0.2         ppbv         5.00         87.0         60-140         11.6         25           Idethyl-t-butyl ether (MTBE)         5.55         0.2         ppbv         5.00         87.0         60-140         11.6         25           Idethyl-t-butyl ether (MTBE)         5.55         0.2         ppbv         5.00         111         70-130         7.19         25           -Nonane (C9)         5.55         0.2         ppbv         5.00         105         70-130         3.32         25           -Propylbenzene         5.45         0.2         ppbv         5.00         109         70-130         3.24         25           -Pentane (C5)         5.82         0.2         ppbv         5.00         116         70-130<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sooctane                    | 5.30 | 0.2 | ppbv | 5.00 | 106        | 70-130   | 3.78       | 25 |
| Methyl-t-butyl ether (MTBE)       6.14       0.2       ppbv       5.00       123       70-130       0.425       25         Iaphthalene       4.35       0.2       ppbv       5.00       87.0       60-140       11.6       25         -Nonane (C9)       5.55       0.2       ppbv       5.00       111       70-130       7.19       25         -Propylbenzene       5.23       0.2       ppbv       5.00       105       70-130       3.32       25         -Xylene       5.45       0.2       ppbv       5.00       109       70-130       3.24       25         -Pentane (C5)       5.82       0.2       ppbv       5.00       116       70-130       1.26       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n+p-Xylenes                 | 9.39 | 0.4 | ppbv | 10.0 | 93.9       | 70-130   | 10.5       | 25 |
| aphthalene       4.35       0.2       ppbv       5.00       87.0       60-140       11.6       25         -Nonane (C9)       5.55       0.2       ppbv       5.00       111       70-130       7.19       25         -Propylbenzene       5.23       0.2       ppbv       5.00       105       70-130       3.32       25         -Xylene       5.45       0.2       ppbv       5.00       109       70-130       3.24       25         -Pentane (C5)       5.82       0.2       ppbv       5.00       116       70-130       1.26       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lethylene chloride          | 5.09 | 1   | ppbv | 5.00 | 102        | 70-130   | 0.0197     | 25 |
| -Nonane (C9) 5.55 0.2 ppbv 5.00 111 70-130 7.19 25 -Propylbenzene 5.23 0.2 ppbv 5.00 105 70-130 3.32 25 -Xylene 5.45 0.2 ppbv 5.00 109 70-130 3.24 25 -Pentane (C5) 5.82 0.2 ppbv 5.00 116 70-130 1.26 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lethyl-t-butyl ether (MTBE) | 6.14 | 0.2 | ppbv | 5.00 | 123        | 70-130   | 0.425      | 25 |
| Propylbenzene         5.23         0.2         ppbv         5.00         105         70-130         3.32         25           -Xylene         5.45         0.2         ppbv         5.00         109         70-130         3.24         25           -Pentane (C5)         5.82         0.2         ppbv         5.00         116         70-130         1.26         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | aphthalene                  | 4.35 | 0.2 | ppbv | 5.00 | 87.0       | 60-140   | 11.6       | 25 |
| -Xylene 5.45 0.2 ppbv 5.00 109 70-130 3.24 25<br>-Pentane (C5) 5.82 0.2 ppbv 5.00 116 70-130 1.26 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -Nonane (C9)                | 5.55 | 0.2 | ppbv | 5.00 | 111        | 70-130   | 7.19       | 25 |
| -Pentane (C5) 5.82 0.2 ppbv 5.00 116 70-130 1.26 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -Propylbenzene              | 5.23 | 0.2 | ppbv | 5.00 | 105        | 70-130   | 3.32       | 25 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o-Xylene                    | 5.45 | 0.2 | ppbv | 5.00 | 109        | 70-130   | 3.24       | 25 |
| Propulene 4.64 0.2 ppby 5.00 92.9 70-130 18.5 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ı-Pentane (C5)              | 5.82 | 0.2 | ppbv | 5.00 | 116        | 70-130   | 1.26       | 25 |
| 1.01 0.2 pp.01 0.00 02.0 10.10 10.0 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ropylene                    | 4.64 | 0.2 | ppbv | 5.00 | 92.9       | 70-130   | 18.5       | 25 |

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

Date Issued:

October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

Project Number:

CG-09-0423.10

Client Site I.D.: Montgomery Brothers

Purchase Order:

CG09042310MS

#### **Volatile Organic Compounds by GCMS - Quality Control**

#### Air Water & Soil Laboratories, Inc.

|         |        | Reporting | Spike | Source |        | %REC |        | RPD |       |      |
|---------|--------|-----------|-------|--------|--------|------|--------|-----|-------|------|
| Analyte | Result | Limit     | Units | Level  | Result | %REC | Limits | RPD | Limit | Qual |

#### Batch BDJ0409 - No Prep VOC Air

| LCS Dup (BDJ0409-BSD1)               |      | Prepared & Analyzed: 10/14/2020 |      |      |     |        |       |    |   |  |  |  |
|--------------------------------------|------|---------------------------------|------|------|-----|--------|-------|----|---|--|--|--|
| Styrene                              | 5.38 | 0.2                             | ppbv | 5.00 | 108 | 70-130 | 3.85  | 25 |   |  |  |  |
| Tetrachloroethylene (PCE)            | 5.16 | 0.2                             | ppbv | 5.00 | 103 | 70-130 | 1.03  | 25 |   |  |  |  |
| Tetrahydrofuran                      | 6.57 | 0.2                             | ppbv | 5.00 | 131 | 70-130 | 9.57  | 25 | L |  |  |  |
| Toluene                              | 5.67 | 0.2                             | ppbv | 5.00 | 113 | 70-130 | 7.39  | 25 |   |  |  |  |
| trans-1,2-Dichloroethylene           | 6.02 | 0.2                             | ppbv | 5.00 | 120 | 70-130 | 1.56  | 25 |   |  |  |  |
| trans-1,3-Dichloropropene            | 5.59 | 0.2                             | ppbv | 5.00 | 112 | 70-130 | 6.16  | 25 |   |  |  |  |
| Trichloroethylene                    | 5.79 | 0.2                             | ppbv | 5.00 | 116 | 70-130 | 8.24  | 25 |   |  |  |  |
| Trichlorofluoromethane               | 5.09 | 0.2                             | ppbv | 5.00 | 102 | 70-130 | 3.46  | 25 |   |  |  |  |
| Vinyl acetate                        | 6.01 | 0.2                             | ppbv | 5.00 | 120 | 70-130 | 1.63  | 25 |   |  |  |  |
| Vinyl bromide                        | 5.50 | 0.2                             | ppbv | 5.00 | 110 | 70-130 | 0.363 | 25 |   |  |  |  |
| Vinyl chloride                       | 5.21 | 0.2                             | ppbv | 5.00 | 104 | 70-130 | 1.67  | 25 |   |  |  |  |
| Surr: 4-Bromofluorobenzene<br>(Surr) | 5.20 |                                 | ppbv | 5.00 | 104 | 70-130 |       |    |   |  |  |  |

#### Batch BDJ0447 - No Prep VOC Air

1,3-Dichlorobenzene

| Blank (BDJ0447-BLK1)                |   |      |      | Prepared & Analyzed: 10/15/2020 |
|-------------------------------------|---|------|------|---------------------------------|
| 1,1,1-Trichloroethane               | < | 0.20 | ppbv |                                 |
| 1,1,1,2-Tetrachloroethane           | < | 0.20 | ppbv |                                 |
| 1,1,2,2-Tetrachloroethane           | < | 0.20 | ppbv |                                 |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | < | 0.20 | ppbv |                                 |
| ne                                  |   |      |      |                                 |
| 1,1,2-Trichloroethane               | < | 0.20 | ppbv |                                 |
| 1,1-Dichloroethane                  | < | 0.20 | ppbv |                                 |
| 1,1-Dichloroethylene                | < | 0.20 | ppbv |                                 |
| 1,2,4-Trichlorobenzene              | < | 0.50 | ppbv |                                 |
| 1,2,4-Trimethylbenzene              | < | 0.20 | ppbv |                                 |
| 1,2-Dibromoethane (EDB)             | < | 0.20 | ppbv |                                 |
| 1,2-Dichlorobenzene                 | < | 0.20 | ppbv |                                 |
| 1,2-Dichloroethane                  | < | 0.20 | ppbv |                                 |
| 1,2-Dichloropropane                 | < | 0.20 | ppbv |                                 |
| 1,2-Dichlorotetrafluoroethane       | < | 0.20 | ppbv |                                 |
| 1,3,5-Trimethylbenzene              | < | 0.20 | ppbv |                                 |
| 1,3-Butadiene                       | < | 0.20 | ppbv |                                 |

0.20

ppbv



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

Date Issued:

October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

Project Number:

CG-09-0423.10

Client Site I.D.:

Montgomery Brothers

Purchase Order:

CG09042310MS

#### **Volatile Organic Compounds by GCMS - Quality Control**

#### Air Water & Soil Laboratories, Inc.

|         | Reporting |       |       | Spike | Source |      | %REC   |     | RPD   |      |
|---------|-----------|-------|-------|-------|--------|------|--------|-----|-------|------|
| Analyte | Result    | Limit | Units | Level | Result | %REC | Limits | RPD | Limit | Qual |

#### Batch BDJ0447 - No Prep VOC Air

| Blank (BDJ0447-BLK1)        |      |      |      | Prepared & Analyzed: 10/15/2020 |
|-----------------------------|------|------|------|---------------------------------|
| 1,4-Dichlorobenzene         | <    | 0.20 | ppbv |                                 |
| 1,4-Dioxane                 | <    | 0.20 | ppbv |                                 |
| 1-Ethyl-4-methyl benzene    | <    | 0.20 | ppbv |                                 |
| 2-Butanone (MEK)            | <    | 0.20 | ppbv |                                 |
| 2-Chlorotoluene             | <    | 0.20 | ppbv |                                 |
| 2-Hexanone (MBK)            | <    | 0.20 | ppbv |                                 |
| 4-Methyl-2-pentanone (MIBK) | <    | 0.20 | ppbv |                                 |
| Acetone                     | 0.29 | 0.50 | ppbv |                                 |
| crolein                     | <    | 0.20 | ppbv |                                 |
| lyl chloride                | <    | 0.20 | ppbv |                                 |
| enzene                      | <    | 0.20 | ppbv |                                 |
| enzyl Chloride              | <    | 0.20 | ppbv |                                 |
| omodichloromethane          | <    | 0.20 | ppbv |                                 |
| romoform                    | <    | 0.20 | ppbv |                                 |
| romomethane                 | <    | 0.20 | ppbv |                                 |
| arbon Disulfide             | 0.12 | 0.50 | ppbv |                                 |
| Carbon Tetrachloride        | <    | 0.20 | ppbv |                                 |
| hlorobenzene                | <    | 0.20 | ppbv |                                 |
| hloroethane                 | <    | 0.20 | ppbv |                                 |
| hloroform                   | <    | 0.20 | ppbv |                                 |
| chloromethane               | <    | 0.20 | ppbv |                                 |
| is-1,2-Dichloroethylene     | <    | 0.20 | ppbv |                                 |
| is-1,3-Dichloropropene      | <    | 0.20 | ppbv |                                 |
| yclohexane                  | <    | 0.20 | ppbv |                                 |
| Dibromochloromethane        | <    | 0.20 | ppbv |                                 |
| richlorodifluoromethane     | <    | 0.50 | ppbv |                                 |
| thanol                      | <    | 0.50 | ppbv |                                 |
| Ethyl acetate               | <    | 0.20 | ppbv |                                 |
| Ethylbenzene                | <    | 0.20 | ppbv |                                 |
| -<br>Heptane                | <    | 0.20 | ppbv |                                 |
| lexachlorobutadiene         | <    | 0.50 | ppbv |                                 |
| lexane                      | <    | 0.20 | ppbv |                                 |
| sooctane                    | <    | 0.20 | ppbv |                                 |
| sopropyl alcohol            | 0.17 | 0.50 | ppbv |                                 |
|                             |      |      |      |                                 |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

# **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

Date Issued:

October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

Project Number:

CG-09-0423.10

Client Site I.D.: Montgomery Brothers

Purchase Order:

CG09042310MS

#### **Volatile Organic Compounds by GCMS - Quality Control**

|         | Reporting |       |       | Spike | Source |      | %REC   |     | RPD   |      |  |
|---------|-----------|-------|-------|-------|--------|------|--------|-----|-------|------|--|
| Analyte | Result    | Limit | Units | Level | Result | %REC | Limits | RPD | Limit | Qual |  |

| Blank (BDJ0447-BLK1)                 |      |            |      |              | Prepared & | Analyzed: 10/15/2020 |  |
|--------------------------------------|------|------------|------|--------------|------------|----------------------|--|
| sopropylbenzene                      | <    | 0.20       | ppbv |              |            |                      |  |
| n+p-Xylenes                          | <    | 0.40       | ppbv |              |            |                      |  |
| Methyl methacrylate                  | <    | 0.20       | ppbv |              |            |                      |  |
| Methylene chloride                   | <    | 1.00       | ppbv |              |            |                      |  |
| Methyl-t-butyl ether (MTBE)          | <    | 0.20       | ppbv |              |            |                      |  |
| Naphthalene                          | 0.11 | 0.20       | ppbv |              |            |                      |  |
| n-Nonane (C9)                        | <    | 0.20       | ppbv |              |            |                      |  |
| n-Propylbenzene                      | <    | 0.20       | ppbv |              |            |                      |  |
| o-Xylene                             | <    | 0.20       | ppbv |              |            |                      |  |
| n-Pentane (C5)                       | <    | 0.20       | ppbv |              |            |                      |  |
| Propylene                            | 0.11 | 0.20       | ppbv |              |            |                      |  |
| Styrene                              | <    | 0.20       | ppbv |              |            |                      |  |
| ГВА                                  | <    | 0.50       | ppbv |              |            |                      |  |
| Tetrachloroethylene (PCE)            | <    | 0.20       | ppbv |              |            |                      |  |
| Tetrahydrofuran                      | <    | 0.20       | ppbv |              |            |                      |  |
| Toluene                              | <    | 0.20       | ppbv |              |            |                      |  |
| rans-1,2-Dichloroethylene            | <    | 0.20       | ppbv |              |            |                      |  |
| rans-1,3-Dichloropropene             | <    | 0.20       | ppbv |              |            |                      |  |
| Trichloroethylene                    | <    | 0.20       | ppbv |              |            |                      |  |
| Trichlorofluoromethane               | <    | 0.20       | ppbv |              |            |                      |  |
| /inyl acetate                        | <    | 0.20       | ppbv |              |            |                      |  |
| Vinyl bromide                        | <    | 0.20       | ppbv |              |            |                      |  |
| Vinyl chloride                       | <    | 0.20       | ppbv |              |            |                      |  |
| Kylenes, Total                       | <    | 0.60       | ppbv |              |            |                      |  |
| Surr: 4-Bromofluorobenzene<br>(Surr) | 4.47 |            | ppbv | 5.00         | 89.3       | 80-120               |  |
| LCS (BDJ0447-BS1)                    |      |            |      |              | Prepared & | Analyzed: 10/15/2020 |  |
| 1,1,1-Trichloroethane                | 5.11 | 0.2        | ppbv | 5.00         | 102        | 70-130               |  |
| 1,1,2,2-Tetrachloroethane            | 5.16 | 0.2        | ppbv | 5.00         | 103        | 70-130               |  |
| 1,1,2-Trichloro-1,2,2-trifluoroetha  | 5.50 | 0.2        | ppbv | 5.00         | 110        | 70-130               |  |
| ne                                   |      |            |      |              |            |                      |  |
| 1,1,2-Trichloroethane                | 5.56 | 0.2<br>0.2 | ppbv | 5.00<br>5.00 | 111<br>109 | 70-130<br>70-130     |  |
| 1,1-Dichloroethane                   | 5.45 |            | ppbv |              |            |                      |  |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

Date Received: 5405 Twin Knolls Rd., Suite 1

Date Issued: October 22, 2020 14:22

October 8, 2020 14:02

Columbia, MD 21045

Submitted To: Nancy Love

Dibromochloromethane

5.21

0.2

ppbv

5.00

104

70-130

Project Number: CG-09-0423.10

Client Site I.D.: Montgomery Brothers

CG09042310MS Purchase Order:

#### **Volatile Organic Compounds by GCMS - Quality Control**

#### Air Water & Soil Laboratories, Inc.

|         | Reporting |       |       | Spike | Source |      | %REC   |     | RPD   |      |
|---------|-----------|-------|-------|-------|--------|------|--------|-----|-------|------|
| Analyte | Result    | Limit | Units | Level | Result | %REC | Limits | RPD | Limit | Qual |

#### Batch BDJ0447 - No Prep VOC Air LCS (BDJ0447-BS1) Prepared & Analyzed: 10/15/2020 1,2,4-Trichlorobenzene 4.72 5.00 94.4 60-140 ppbv 5.43 0.2 5.00 109 70-130 1,2,4-Trimethylbenzene ppbv 1,2-Dibromoethane (EDB) 5.31 0.2 ppbv 5.00 106 70-130 1,2-Dichlorobenzene 5.23 0.2 ppbv 5.00 105 70-130 1.2-Dichloroethane 5.43 0.2 ppbv 5.00 109 70-130 1,2-Dichloropropane 5.52 0.2 5.00 110 70-130 vdaa 70-130 105 1,2-Dichlorotetrafluoroethane 5.23 0.2 ppbv 5.00 5.37 107 70-130 1,3,5-Trimethylbenzene 0.2 ppbv 5.00 5 29 0.2 ppbv 5.00 106 70-130 1.3-Butadiene 1,3-Dichlorobenzene 5.43 0.2 5.00 109 70-130 ppbv 70-130 1 4-Dichlorobenzene 5 46 0.2 vdaa 5.00 109 1,4-Dioxane 4.82 0.2 ppbv 5.00 96.3 70-130 1-Ethyl-4-methyl benzene 5.20 0.2 ppbv 5.00 104 70-130 2-Butanone (MEK) 5.27 0.2 ppbv 5.00 105 70-130 2-Chlorotoluene 5.40 0.2 5.00 108 70-130 ppbv 2-Hexanone (MBK) 4.86 0.2 ppbv 5.00 97.3 70-130 4-Methyl-2-pentanone (MIBK) 5.24 0.2 ppbv 5.00 105 70-130 Acetone 5 14 0.5 ppbv 5.00 103 70-130 Allyl chloride 5.84 0.2 ppbv 5.00 117 70-130 Benzene 5.36 0.2 ppbv 5.00 107 70-130 Benzyl Chloride 5.28 0.2 5.00 106 70-130 ppbv 70-130 Bromodichloromethane 5.02 0.2 5.00 100 ppbv Bromoform 4.54 0.2 ppbv 5.00 90.9 70-130 Bromomethane 5.47 0.2 5.00 109 70-130 ppbv Carbon Disulfide 6.09 0.5 ppbv 5.00 122 70-130 Carbon Tetrachloride 5.41 0.2 ppbv 5.00 108 70-130 Chlorobenzene 5 17 0.2 ppbv 5.00 103 70-130 Chloroethane 5.56 0.2 ppbv 5.00 111 70-130 Chloroform 0.2 105 70-130 5 24 5.00 ppbv 0.2 5.00 70-130 Chloromethane 5.81 ppbv 116 5.00 cis-1,2-Dichloroethylene 5.37 0.2 107 70-130 ppbv cis-1,3-Dichloropropene 5.50 0.2 ppbv 5.00 110 70-130 70-130 Cyclohexane 5 77 0.2 vdaa 5.00 115

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

Date Received: 5405 Twin Knolls Rd., Suite 1

Date Issued: October 22, 2020 14:22

October 8, 2020 14:02

CG09042310MS

Columbia, MD 21045

Submitted To: Nancy Love

(Surr)

Project Number: CG-09-0423.10

Client Site I.D.: Montgomery Brothers Purchase Order:

### **Volatile Organic Compounds by GCMS - Quality Control**

#### Air Water & Soil Laboratories, Inc.

|         | Reporting |       |       | Spike | Source | %REC        |     | RPD   |      |
|---------|-----------|-------|-------|-------|--------|-------------|-----|-------|------|
| Analyte | Result    | Limit | Units | Level | Result | %REC Limits | RPD | Limit | Qual |

#### Batch BDJ0447 - No Prep VOC Air LCS (BDJ0447-BS1) Prepared & Analyzed: 10/15/2020 Dichlorodifluoromethane 5.56 5.00 111 70-130 ppbv Ethanol 3.65 0.5 3.95 92.3 70-130 ppbv Ethyl acetate 5.41 0.2 ppbv 5.00 108 70-130 Ethylbenzene 5.46 0.2 ppbv 5.00 109 70-130 Heptane 5.28 0.2 ppbv 5.00 106 70-130 Hexachlorobutadiene 5.18 0.5 ppbv 5.00 104 60-140 5.89 0.2 5.00 118 70-130 Hexane ppbv Isooctane 5.61 0.2 5.00 112 70-130 ppbv 4 98 0.5 70-130 Isopropyl alcohol ppbv 5.00 99.6 m+p-Xylenes 10.7 0.4 10.0 107 70-130 ppbv 5.16 1 5.00 103 70-130 Methylene chloride vdaa Methyl-t-butyl ether (MTBE) 6.13 0.2 ppbv 5.00 123 70-130 Naphthalene 4.26 0.2 ppbv 5.00 85.2 60-140 70-130 n-Nonane (C9) 5.55 0.2 ppbv 5.00 111 n-Propylbenzene 5.44 0.2 5.00 109 70-130 ppbv 5.46 70-130 o-Xylene 0.2 ppbv 5.00 109 n-Pentane (C5) 5.86 70-130 0.2 ppbv 5.00 117 Propylene 5 75 02 ppbv 5.00 115 70-130 Styrene 5.36 0.2 ppbv 5.00 107 70-130 70-130 Tetrachloroethylene (PCE) 5 21 0.2 ppbv 5.00 104 Tetrahydrofuran 6.23 0.2 5.00 125 70-130 ppbv 5.45 0.2 70-130 Toluene ppbv 5.00 109 trans-1,2-Dichloroethylene 6.11 0.2 ppbv 5.00 122 70-130 trans-1,3-Dichloropropene 5.46 0.2 5.00 109 70-130 ppbv Trichloroethylene 5.53 0.2 ppbv 5.00 111 70-130 Trichlorofluoromethane 5.39 0.2 ppbv 5.00 108 70-130 Vinyl acetate 6.02 0.2 ppbv 5.00 120 70-130 Vinyl bromide 5.64 0.2 ppbv 5.00 113 70-130 Vinyl chloride 5.31 0.2 5.00 106 70-130 ppbv Surr: 4-Bromofluorobenzene 5.24 ppbv 70-130



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

# **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

Date Issued:

October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love Project Number:

CG-09-0423.10

Client Site I.D.:

**Montgomery Brothers** 

Purchase Order:

CG09042310MS

### **Volatile Organic Compounds by GCMS - Quality Control**

|                             | Reporting |       |       | Spike | Source |      | %REC   |     | RPD   |      |  |
|-----------------------------|-----------|-------|-------|-------|--------|------|--------|-----|-------|------|--|
| Analyte                     | Result    | Limit | Units | Level | Result | %REC | Limits | RPD | Limit | Qual |  |
| Batch BDJ0447 - No Prep VOC | Air       |       |       |       |        |      |        |     |       |      |  |

| Batch BDJ0447 - No Prep VOC Ai            | r    |     |      |      |            |          |            |    |
|-------------------------------------------|------|-----|------|------|------------|----------|------------|----|
| LCS Dup (BDJ0447-BSD1)                    |      |     |      |      | Prepared & | Analyzed | : 10/15/20 | 20 |
| 1,1,1-Trichloroethane                     | 5.14 | 0.2 | ppbv | 5.00 | 103        | 70-130   | 0.527      | 25 |
| 1,1,2,2-Tetrachloroethane                 | 5.34 | 0.2 | ppbv | 5.00 | 107        | 70-130   | 3.43       | 25 |
| 1,1,2-Trichloro-1,2,2-trifluoroetha<br>ne | 5.53 | 0.2 | ppbv | 5.00 | 111        | 70-130   | 0.490      | 25 |
| 1,1,2-Trichloroethane                     | 5.60 | 0.2 | ppbv | 5.00 | 112        | 70-130   | 0.825      | 25 |
| 1,1-Dichloroethane                        | 5.51 | 0.2 | ppbv | 5.00 | 110        | 70-130   | 1.08       | 25 |
| 1,1-Dichloroethylene                      | 5.59 | 0.2 | ppbv | 5.00 | 112        | 70-130   | 0.161      | 25 |
| 1,2,4-Trichlorobenzene                    | 5.16 | 0.5 | ppbv | 5.00 | 103        | 60-140   | 8.96       | 25 |
| 1,2,4-Trimethylbenzene                    | 5.57 | 0.2 | ppbv | 5.00 | 111        | 70-130   | 2.47       | 25 |
| 1,2-Dibromoethane (EDB)                   | 5.41 | 0.2 | ppbv | 5.00 | 108        | 70-130   | 1.92       | 25 |
| 1,2-Dichlorobenzene                       | 5.39 | 0.2 | ppbv | 5.00 | 108        | 70-130   | 3.05       | 25 |
| 1,2-Dichloroethane                        | 5.46 | 0.2 | ppbv | 5.00 | 109        | 70-130   | 0.661      | 25 |
| 1,2-Dichloropropane                       | 5.67 | 0.2 | ppbv | 5.00 | 113        | 70-130   | 2.65       | 25 |
| 1,2-Dichlorotetrafluoroethane             | 5.27 | 0.2 | ppbv | 5.00 | 105        | 70-130   | 0.686      | 25 |
| 1,3,5-Trimethylbenzene                    | 5.52 | 0.2 | ppbv | 5.00 | 110        | 70-130   | 2.72       | 25 |
| 1,3-Butadiene                             | 5.23 | 0.2 | ppbv | 5.00 | 105        | 70-130   | 1.27       | 25 |
| 1,3-Dichlorobenzene                       | 5.54 | 0.2 | ppbv | 5.00 | 111        | 70-130   | 2.01       | 25 |
| 1,4-Dichlorobenzene                       | 5.63 | 0.2 | ppbv | 5.00 | 113        | 70-130   | 3.16       | 25 |
| 1,4-Dioxane                               | 5.00 | 0.2 | ppbv | 5.00 | 100        | 70-130   | 3.83       | 25 |
| 1-Ethyl-4-methyl benzene                  | 5.32 | 0.2 | ppbv | 5.00 | 106        | 70-130   | 2.24       | 25 |
| 2-Butanone (MEK)                          | 5.34 | 0.2 | ppbv | 5.00 | 107        | 70-130   | 1.28       | 25 |
| 2-Chlorotoluene                           | 5.49 | 0.2 | ppbv | 5.00 | 110        | 70-130   | 1.80       | 25 |
| 2-Hexanone (MBK)                          | 5.00 | 0.2 | ppbv | 5.00 | 99.9       | 70-130   | 2.72       | 25 |
| 4-Methyl-2-pentanone (MIBK)               | 5.24 | 0.2 | ppbv | 5.00 | 105        | 70-130   | 0.00       | 25 |
| Acetone                                   | 5.17 | 0.5 | ppbv | 5.00 | 103        | 70-130   | 0.543      | 25 |
| Allyl chloride                            | 5.93 | 0.2 | ppbv | 5.00 | 119        | 70-130   | 1.55       | 25 |
| Benzene                                   | 5.39 | 0.2 | ppbv | 5.00 | 108        | 70-130   | 0.670      | 25 |
| Benzyl Chloride                           | 5.53 | 0.2 | ppbv | 5.00 | 111        | 70-130   | 4.61       | 25 |
| Bromodichloromethane                      | 5.04 | 0.2 | ppbv | 5.00 | 101        | 70-130   | 0.258      | 25 |
| Bromoform                                 | 4.60 | 0.2 | ppbv | 5.00 | 92.0       | 70-130   | 1.27       | 25 |
| Bromomethane                              | 5.43 | 0.2 | ppbv | 5.00 | 109        | 70-130   | 0.789      | 25 |
| Carbon Disulfide                          | 6.13 | 0.5 | ppbv | 5.00 | 123        | 70-130   | 0.671      | 25 |
| Carbon Tetrachloride                      | 5.40 | 0.2 | ppbv | 5.00 | 108        | 70-130   | 0.203      | 25 |
| Chlorobenzene                             | 5.24 | 0.2 | ppbv | 5.00 | 105        | 70-130   | 1.40       | 25 |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

# **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1 October 22, 2020 14:22 Date Issued:

Columbia, MD 21045

Submitted To: Nancy Love Project Number: CG-09-0423.10 Client Site I.D.: **Montgomery Brothers** CG09042310MS Purchase Order:

#### **Volatile Organic Compounds by GCMS - Quality Control**

|         | F      | Reporting |       | Spike | Source |        | %REC   |     | RPD   |      |
|---------|--------|-----------|-------|-------|--------|--------|--------|-----|-------|------|
| Analyte | Result | Limit     | Units | Level | Result | %REC L | Limits | RPD | Limit | Qual |

| Analyte                     | Result | LIIIIII | Units | Level | Result | 70KEU  | Limits   | KPD        | LIIIIII | Quai |  |
|-----------------------------|--------|---------|-------|-------|--------|--------|----------|------------|---------|------|--|
| Batch BDJ0447 - No Prep VC  | OC Air |         |       |       |        |        |          |            |         |      |  |
| LCS Dup (BDJ0447-BSD1)      |        |         |       |       | Prep   | ared & | Analyzed | : 10/15/20 | )20     |      |  |
| Chloroethane                | 5.57   | 0.2     | ppbv  | 5.00  |        | 111    | 70-130   | 0.108      | 25      |      |  |
| Chloroform                  | 5.33   | 0.2     | ppbv  | 5.00  |        | 107    | 70-130   | 1.65       | 25      |      |  |
| Chloromethane               | 5.91   | 0.2     | ppbv  | 5.00  |        | 118    | 70-130   | 1.72       | 25      |      |  |
| cis-1,2-Dichloroethylene    | 5.47   | 0.2     | ppbv  | 5.00  |        | 109    | 70-130   | 1.81       | 25      |      |  |
| cis-1,3-Dichloropropene     | 5.55   | 0.2     | ppbv  | 5.00  |        | 111    | 70-130   | 1.03       | 25      |      |  |
| Cyclohexane                 | 5.80   | 0.2     | ppbv  | 5.00  |        | 116    | 70-130   | 0.467      | 25      |      |  |
| Dibromochloromethane        | 5.24   | 0.2     | ppbv  | 5.00  |        | 105    | 70-130   | 0.555      | 25      |      |  |
| Dichlorodifluoromethane     | 5.66   | 0.5     | ppbv  | 5.00  |        | 113    | 70-130   | 1.80       | 25      |      |  |
| Ethanol                     | 3.60   | 0.5     | ppbv  | 3.95  |        | 91.1   | 70-130   | 1.32       | 25      |      |  |
| Ethyl acetate               | 5.36   | 0.2     | ppbv  | 5.00  |        | 107    | 70-130   | 0.854      | 25      |      |  |
| Ethylbenzene                | 5.60   | 0.2     | ppbv  | 5.00  |        | 112    | 70-130   | 2.64       | 25      |      |  |
| Heptane                     | 5.34   | 0.2     | ppbv  | 5.00  |        | 107    | 70-130   | 1.21       | 25      |      |  |
| Hexachlorobutadiene         | 5.45   | 0.5     | ppbv  | 5.00  |        | 109    | 60-140   | 5.06       | 25      |      |  |
| lexane                      | 6.02   | 0.2     | ppbv  | 5.00  |        | 120    | 70-130   | 2.18       | 25      |      |  |
| sooctane                    | 5.68   | 0.2     | ppbv  | 5.00  |        | 114    | 70-130   | 1.26       | 25      |      |  |
| sopropyl alcohol            | 5.08   | 0.5     | ppbv  | 5.00  |        | 102    | 70-130   | 1.91       | 25      |      |  |
| n+p-Xylenes                 | 11.0   | 0.4     | ppbv  | 10.0  |        | 110    | 70-130   | 2.79       | 25      |      |  |
| Methylene chloride          | 5.31   | 1       | ppbv  | 5.00  |        | 106    | 70-130   | 2.87       | 25      |      |  |
| Methyl-t-butyl ether (MTBE) | 6.27   | 0.2     | ppbv  | 5.00  |        | 125    | 70-130   | 2.31       | 25      |      |  |
| Naphthalene                 | 4.59   | 0.2     | ppbv  | 5.00  |        | 91.7   | 60-140   | 7.32       | 25      |      |  |
| n-Nonane (C9)               | 5.75   | 0.2     | ppbv  | 5.00  |        | 115    | 70-130   | 3.51       | 25      |      |  |
| n-Propylbenzene             | 5.53   | 0.2     | ppbv  | 5.00  |        | 111    | 70-130   | 1.79       | 25      |      |  |
| o-Xylene                    | 5.57   | 0.2     | ppbv  | 5.00  |        | 111    | 70-130   | 2.01       | 25      |      |  |
| n-Pentane (C5)              | 5.92   | 0.2     | ppbv  | 5.00  |        | 118    | 70-130   | 0.933      | 25      |      |  |
| Propylene                   | 5.97   | 0.2     | ppbv  | 5.00  |        | 119    | 70-130   | 3.72       | 25      |      |  |
| Styrene                     | 5.51   | 0.2     | ppbv  | 5.00  |        | 110    | 70-130   | 2.76       | 25      |      |  |
| Tetrachloroethylene (PCE)   | 5.32   | 0.2     | ppbv  | 5.00  |        | 106    | 70-130   | 1.96       | 25      |      |  |
| etrahydrofuran              | 6.19   | 0.2     | ppbv  | 5.00  |        | 124    | 70-130   | 0.692      | 25      |      |  |
| oluene                      | 5.46   | 0.2     | ppbv  | 5.00  |        | 109    | 70-130   | 0.220      | 25      |      |  |
| rans-1,2-Dichloroethylene   | 6.17   | 0.2     | ppbv  | 5.00  |        | 123    | 70-130   | 0.912      | 25      |      |  |
| rans-1,3-Dichloropropene    | 5.58   | 0.2     | ppbv  | 5.00  |        | 112    | 70-130   | 2.17       | 25      |      |  |
| Frichloroethylene           | 5.53   | 0.2     | ppbv  | 5.00  |        | 111    | 70-130   | 0.0181     | 25      |      |  |
| Frichlorofluoromethane      | 5.43   | 0.2     | ppbv  | 5.00  |        | 109    | 70-130   | 0.721      | 25      |      |  |
| /inyl acetate               | 6.11   | 0.2     | ppbv  | 5.00  |        | 122    | 70-130   | 1.37       | 25      |      |  |
| •                           |        |         |       |       |        |        |          |            |         |      |  |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

# **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

Inc. Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

Date Issued: Octobe

October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

Project Number:

CG-09-0423.10

Client Site I.D.:

Montgomery Brothers

Purchase Order:

CG09042310MS

#### **Volatile Organic Compounds by GCMS - Quality Control**

#### Air Water & Soil Laboratories, Inc.

| Analyta            | Reporting |       |        |      |        |     |       |      |  |
|--------------------|-----------|-------|--------|------|--------|-----|-------|------|--|
| Analyte Result Lin | it Units  | Level | Result | %REC | Limits | RPD | Limit | Qual |  |

#### Batch BDJ0447 - No Prep VOC Air

| LCS Dup (BDJ0447-BSD1)     |      |     | Prepared & Analyzed: 10/15/2020 |      |     |        |       |    |  |  |  |  |  |
|----------------------------|------|-----|---------------------------------|------|-----|--------|-------|----|--|--|--|--|--|
| Vinyl bromide              | 5.62 | 0.2 | ppbv                            | 5.00 | 112 | 70-130 | 0.444 | 25 |  |  |  |  |  |
| Vinyl chloride             | 5.44 | 0.2 | ppbv                            | 5.00 | 109 | 70-130 | 2.46  | 25 |  |  |  |  |  |
| Surr: 4-Bromofluorobenzene | 5.31 |     | ppbv                            | 5.00 | 106 | 70-130 |       |    |  |  |  |  |  |

#### Batch BDJ0497 - No Prep VOC Air

| Blank (BDJ0497-BLK1)                |      |      |      | Prepared & Analyzed: 10/16/2020 |
|-------------------------------------|------|------|------|---------------------------------|
| 1,1,1-Trichloroethane               | <    | 0.20 | ppbv |                                 |
| 1,1,1,2-Tetrachloroethane           | <    | 0.20 | ppbv |                                 |
| 1,1,2,2-Tetrachloroethane           | <    | 0.20 | ppbv |                                 |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | <    | 0.20 | ppbv |                                 |
| ne                                  |      |      |      |                                 |
| 1,1,2-Trichloroethane               | <    | 0.20 | ppbv |                                 |
| 1,1-Dichloroethane                  | <    | 0.20 | ppbv |                                 |
| 1,1-Dichloroethylene                | <    | 0.20 | ppbv |                                 |
| 1,2,4-Trichlorobenzene              | <    | 0.50 | ppbv |                                 |
| 1,2,4-Trimethylbenzene              | <    | 0.20 | ppbv |                                 |
| 1,2-Dibromoethane (EDB)             | <    | 0.20 | ppbv |                                 |
| 1,2-Dichlorobenzene                 | <    | 0.20 | ppbv |                                 |
| 1,2-Dichloroethane                  | <    | 0.20 | ppbv |                                 |
| 1,2-Dichloropropane                 | <    | 0.20 | ppbv |                                 |
| 1,2-Dichlorotetrafluoroethane       | <    | 0.20 | ppbv |                                 |
| 1,3,5-Trimethylbenzene              | <    | 0.20 | ppbv |                                 |
| 1,3-Butadiene                       | <    | 0.20 | ppbv |                                 |
| 1,3-Dichlorobenzene                 | <    | 0.20 | ppbv |                                 |
| 1,4-Dichlorobenzene                 | <    | 0.20 | ppbv |                                 |
| 1,4-Dioxane                         | <    | 0.20 | ppbv |                                 |
| 1-Ethyl-4-methyl benzene            | <    | 0.20 | ppbv |                                 |
| 2-Butanone (MEK)                    | <    | 0.20 | ppbv |                                 |
| 2-Chlorotoluene                     | <    | 0.20 | ppbv |                                 |
| 2-Hexanone (MBK)                    | <    | 0.20 | ppbv |                                 |
| 4-Methyl-2-pentanone (MIBK)         | <    | 0.20 | ppbv |                                 |
| Acetone                             | 0.31 | 0.50 | ppbv |                                 |
| Acrolein                            | <    | 0.20 | ppbv |                                 |



1941 Reymet Road 
Richmond, Virginia 23237 Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

Date Issued:

October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

Project Number:

CG-09-0423.10

Client Site I.D.:

Montgomery Brothers

Purchase Order:

CG09042310MS

### **Volatile Organic Compounds by GCMS - Quality Control**

#### Air Water & Soil Laboratories, Inc.

|         | F      | Reporting |       | Spike | Source | %       | REC       | RPD   |      |  |
|---------|--------|-----------|-------|-------|--------|---------|-----------|-------|------|--|
| Analyte | Result | Limit     | Units | Level | Result | %REC Li | imits RPD | Limit | Qual |  |

#### Batch BDJ0497 - No Prep VOC Air

| Blank (BDJ0497-BLK1)       |      |      |      | Prepared & Analyzed: 10/16/2020 |
|----------------------------|------|------|------|---------------------------------|
| Allyl chloride             | <    | 0.20 | ppbv |                                 |
| Benzene                    | <    | 0.20 | ppbv |                                 |
| Benzyl Chloride            | <    | 0.20 | ppbv |                                 |
| Bromodichloromethane       | <    | 0.20 | ppbv |                                 |
| Bromoform                  | <    | 0.20 | ppbv |                                 |
| Bromomethane               | <    | 0.20 | ppbv |                                 |
| arbon Disulfide            | 0.12 | 0.50 | ppbv |                                 |
| arbon Tetrachloride        | <    | 0.20 | ppbv |                                 |
| nlorobenzene               | <    | 0.20 | ppbv |                                 |
| hloroethane                | <    | 0.20 | ppbv |                                 |
| hloroform                  | <    | 0.20 | ppbv |                                 |
| hloromethane               | <    | 0.20 | ppbv |                                 |
| is-1,2-Dichloroethylene    | <    | 0.20 | ppbv |                                 |
| s-1,3-Dichloropropene      | <    | 0.20 | ppbv |                                 |
| clohexane                  | <    | 0.20 | ppbv |                                 |
| bromochloromethane         | <    | 0.20 | ppbv |                                 |
| chlorodifluoromethane      | <    | 0.50 | ppbv |                                 |
| nanol                      | <    | 0.50 | ppbv |                                 |
| nyl acetate                | <    | 0.20 | ppbv |                                 |
| nylbenzene                 | <    | 0.20 | ppbv |                                 |
| ptane                      | <    | 0.20 | ppbv |                                 |
| xachlorobutadiene          | <    | 0.50 | ppbv |                                 |
| xane                       | <    | 0.20 | ppbv |                                 |
| octane                     | <    | 0.20 | ppbv |                                 |
| opropyl alcohol            | 0.16 | 0.50 | ppbv |                                 |
| propylbenzene              | <    | 0.20 | ppbv |                                 |
| p-Xylenes                  | <    | 0.40 | ppbv |                                 |
| thyl methacrylate          | <    | 0.20 | ppbv |                                 |
| thylene chloride           | <    | 1.00 | ppbv |                                 |
| ethyl-t-butyl ether (MTBE) | <    | 0.20 | ppbv |                                 |
| aphthalene                 | 0.10 | 0.20 | ppbv |                                 |
| Nonane (C9)                | <    | 0.20 | ppbv |                                 |
| -Propylbenzene             | <    | 0.20 | ppbv |                                 |
| p-Xylene                   | <    | 0.20 | ppbv |                                 |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

Reporting

Limit

Units

Date Issued:

October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

Project Number:

CG-09-0423.10

Client Site I.D.:

Analyte

1,1-Dichloroethane

1,1-Dichloroethylene

1,2,4-Trichlorobenzene

1,2,4-Trimethylbenzene

1,2-Dichlorobenzene

1,2-Dichloroethane

1,2-Dichloropropane

1,3-Butadiene

1,3,5-Trimethylbenzene

1,2-Dibromoethane (EDB)

1,2-Dichlorotetrafluoroethane

Montgomery Brothers

Result

4.85

5.66

5.56

5.86

5.86

6.13

5.58

5 60

5.60

6.56

4.75

0.2

0.2

0.5

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

97.1

113

111

117

117

123

112

112

112

131

94.9

70-130

70-130

60-140

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

Purchase Order:

%REC

RPD

%REC Limits

CG09042310MS

Qual

RPD

Limit

#### **Volatile Organic Compounds by GCMS - Quality Control**

#### Air Water & Soil Laboratories, Inc.

Source

Result

Spike

Level

| Batch BDJ0497 - No Prep VOC               | Air  |      |      |      |            |                      |
|-------------------------------------------|------|------|------|------|------------|----------------------|
| Blank (BDJ0497-BLK1)                      |      |      |      |      | Prepared & | Analyzed: 10/16/2020 |
| n-Pentane (C5)                            | <    | 0.20 | ppbv |      |            |                      |
| Propylene                                 | 0.11 | 0.20 | ppbv |      |            |                      |
| Styrene                                   | <    | 0.20 | ppbv |      |            |                      |
| TBA                                       | <    | 0.50 | ppbv |      |            |                      |
| Tetrachloroethylene (PCE)                 | <    | 0.20 | ppbv |      |            |                      |
| Tetrahydrofuran                           | <    | 0.20 | ppbv |      |            |                      |
| Toluene                                   | <    | 0.20 | ppbv |      |            |                      |
| trans-1,2-Dichloroethylene                | <    | 0.20 | ppbv |      |            |                      |
| trans-1,3-Dichloropropene                 | <    | 0.20 | ppbv |      |            |                      |
| Trichloroethylene                         | <    | 0.20 | ppbv |      |            |                      |
| Trichlorofluoromethane                    | <    | 0.20 | ppbv |      |            |                      |
| Vinyl acetate                             | <    | 0.20 | ppbv |      |            |                      |
| Vinyl bromide                             | <    | 0.20 | ppbv |      |            |                      |
| Vinyl chloride                            | <    | 0.20 | ppbv |      |            |                      |
| Xylenes, Total                            | <    | 0.60 | ppbv |      |            |                      |
| Surr: 4-Bromofluorobenzene<br>(Surr)      | 4.27 |      | ppbv | 5.00 | 85.4       | 80-120               |
| LCS (BDJ0497-BS1)                         |      |      |      |      | Prepared & | Analyzed: 10/16/2020 |
| 1,1,1-Trichloroethane                     | 5.16 | 0.2  | ppbv | 5.00 | 103        | 70-130               |
| 1,1,2,2-Tetrachloroethane                 | 5.31 | 0.2  | ppbv | 5.00 | 106        | 70-130               |
| 1,1,2-Trichloro-1,2,2-trifluoroetha<br>ne | 5.08 | 0.2  | ppbv | 5.00 | 102        | 70-130               |
| 1,1,2-Trichloroethane                     | 5.55 | 0.2  | ppbv | 5.00 | 111        | 70-130               |

L



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

5405 Twin Knolls Rd., Suite 1

Date Received: October 8, 2020 14:02

Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love

Project Number: CG-09-0

CG-09-0423.10

Client Site I.D.: M

Montgomery Brothers

Purchase Order:

CG09042310MS

### **Volatile Organic Compounds by GCMS - Quality Control**

|                              | Reporting |       |       | Spike | Source |      | %REC   |     | RPD   |      |  |
|------------------------------|-----------|-------|-------|-------|--------|------|--------|-----|-------|------|--|
| Analyte                      | Result    | Limit | Units | Level | Result | %REC | Limits | RPD | Limit | Qual |  |
| Batch BD.I0497 - No Pren VOC | Air       |       |       |       |        |      |        |     |       |      |  |

| CS (BDJ0497-BS1)           |      |     |      |      | Prepared & | Analyzed: 10/16/2020 |   |
|----------------------------|------|-----|------|------|------------|----------------------|---|
| ,3-Dichlorobenzene         | 6.57 | 0.2 | ppbv | 5.00 | 131        | 70-130               | L |
| ,4-Dichlorobenzene         | 6.55 | 0.2 | ppbv | 5.00 | 131        | 70-130               | L |
| ,4-Dioxane                 | 4.94 | 0.2 | ppbv | 5.00 | 98.7       | 70-130               |   |
| -Ethyl-4-methyl benzene    | 5.84 | 0.2 | ppbv | 5.00 | 117        | 70-130               |   |
| -Butanone (MEK)            | 4.63 | 0.2 | ppbv | 5.00 | 92.6       | 70-130               |   |
| -Chlorotoluene             | 5.76 | 0.2 | ppbv | 5.00 | 115        | 70-130               |   |
| -Hexanone (MBK)            | 4.79 | 0.2 | ppbv | 5.00 | 95.8       | 70-130               |   |
| -Methyl-2-pentanone (MIBK) | 5.69 | 0.2 | ppbv | 5.00 | 114        | 70-130               |   |
| cetone                     | 4.96 | 0.5 | ppbv | 5.00 | 99.3       | 70-130               |   |
| llyl chloride              | 5.22 | 0.2 | ppbv | 5.00 | 104        | 70-130               |   |
| enzene                     | 5.23 | 0.2 | ppbv | 5.00 | 105        | 70-130               |   |
| enzyl Chloride             | 6.53 | 0.2 | ppbv | 5.00 | 131        | 70-130               | L |
| romodichloromethane        | 5.08 | 0.2 | ppbv | 5.00 | 102        | 70-130               |   |
| romoform                   | 4.93 | 0.2 | ppbv | 5.00 | 98.5       | 70-130               |   |
| romomethane                | 5.30 | 0.2 | ppbv | 5.00 | 106        | 70-130               |   |
| arbon Disulfide            | 5.36 | 0.5 | ppbv | 5.00 | 107        | 70-130               |   |
| arbon Tetrachloride        | 5.55 | 0.2 | ppbv | 5.00 | 111        | 70-130               |   |
| hlorobenzene               | 5.37 | 0.2 | ppbv | 5.00 | 107        | 70-130               |   |
| hloroethane                | 5.07 | 0.2 | ppbv | 5.00 | 101        | 70-130               |   |
| hloroform                  | 4.85 | 0.2 | ppbv | 5.00 | 97.0       | 70-130               |   |
| hloromethane               | 5.35 | 0.2 | ppbv | 5.00 | 107        | 70-130               |   |
| s-1,2-Dichloroethylene     | 4.81 | 0.2 | ppbv | 5.00 | 96.2       | 70-130               |   |
| s-1,3-Dichloropropene      | 6.25 | 0.2 | ppbv | 5.00 | 125        | 70-130               |   |
| yclohexane                 | 5.72 | 0.2 | ppbv | 5.00 | 114        | 70-130               |   |
| ibromochloromethane        | 5.30 | 0.2 | ppbv | 5.00 | 106        | 70-130               |   |
| ichlorodifluoromethane     | 5.39 | 0.5 | ppbv | 5.00 | 108        | 70-130               |   |
| thanol                     | 2.91 | 0.5 | ppbv | 3.95 | 73.6       | 70-130               |   |
| thyl acetate               | 5.00 | 0.2 | ppbv | 5.00 | 100        | 70-130               |   |
| hylbenzene                 | 5.71 | 0.2 | ppbv | 5.00 | 114        | 70-130               |   |
| eptane                     | 5.08 | 0.2 | ppbv | 5.00 | 102        | 70-130               |   |
| exachlorobutadiene         | 5.84 | 0.5 | ppbv | 5.00 | 117        | 60-140               |   |
| exane                      | 5.65 | 0.2 | ppbv | 5.00 | 113        | 70-130               |   |
| ooctane                    | 5.35 | 0.2 | ppbv | 5.00 | 107        | 70-130               |   |
| opropyl alcohol            | 4.39 | 0.5 | ppbv | 5.00 | 87.8       | 70-130               |   |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

October 8, 2020 14:02 Date Received:

5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love CG-09-0423.10 Project Number:

Client Site I.D.: **Montgomery Brothers** Purchase Order: CG09042310MS

#### **Volatile Organic Compounds by GCMS - Quality Control**

|                                     | R      | eporting |       | Spike | Source |         | %REC     |            | RPD   |      |
|-------------------------------------|--------|----------|-------|-------|--------|---------|----------|------------|-------|------|
| Analyte                             | Result | Limit    | Units | Level | Result | %REC    | Limits   | RPD        | Limit | Qual |
| Batch BDJ0497 - No Prep VOC         | Δir    |          |       |       |        |         |          |            |       |      |
| •                                   | All    |          |       |       |        |         |          | 10/10/0    |       |      |
| LCS (BDJ0497-BS1)                   |        |          |       |       | Prep   |         | Analyzed | : 10/16/20 | )20   |      |
| m+p-Xylenes                         | 11.4   | 0.4      | ppbv  | 10.0  |        | 114     | 70-130   |            |       |      |
| Methylene chloride                  | 5.24   | 1        | ppbv  | 5.00  |        | 105     | 70-130   |            |       |      |
| Methyl-t-butyl ether (MTBE)         | 5.58   | 0.2      | ppbv  | 5.00  |        | 112     | 70-130   |            |       |      |
| Naphthalene                         | 4.67   | 0.2      | ppbv  | 5.00  |        | 93.5    | 60-140   |            |       |      |
| n-Nonane (C9)                       | 5.55   | 0.2      | ppbv  | 5.00  |        | 111     | 70-130   |            |       |      |
| n-Propylbenzene                     | 5.97   | 0.2      | ppbv  | 5.00  |        | 119     | 70-130   |            |       |      |
| o-Xylene                            | 5.82   | 0.2      | ppbv  | 5.00  |        | 116     | 70-130   |            |       |      |
| n-Pentane (C5)                      | 5.02   | 0.2      | ppbv  | 5.00  |        | 100     | 70-130   |            |       |      |
| Propylene                           | 5.12   | 0.2      | ppbv  | 5.00  |        | 102     | 70-130   |            |       |      |
| Styrene                             | 6.18   | 0.2      | ppbv  | 5.00  |        | 124     | 70-130   |            |       |      |
| Tetrachloroethylene (PCE)           | 5.56   | 0.2      | ppbv  | 5.00  |        | 111     | 70-130   |            |       |      |
| Tetrahydrofuran                     | 6.02   | 0.2      | ppbv  | 5.00  |        | 120     | 70-130   |            |       |      |
| Toluene                             | 5.50   | 0.2      | ppbv  | 5.00  |        | 110     | 70-130   |            |       |      |
| trans-1,2-Dichloroethylene          | 5.51   | 0.2      | ppbv  | 5.00  |        | 110     | 70-130   |            |       |      |
| trans-1,3-Dichloropropene           | 5.58   | 0.2      | ppbv  | 5.00  |        | 112     | 70-130   |            |       |      |
| Trichloroethylene                   | 5.63   | 0.2      | ppbv  | 5.00  |        | 113     | 70-130   |            |       |      |
| Trichlorofluoromethane              | 5.00   | 0.2      | ppbv  | 5.00  |        | 99.9    | 70-130   |            |       |      |
| Vinyl acetate                       | 5.18   | 0.2      | ppbv  | 5.00  |        | 104     | 70-130   |            |       |      |
| Vinyl bromide                       | 5.55   | 0.2      | ppbv  | 5.00  |        | 111     | 70-130   |            |       |      |
| Vinyl chloride                      | 5.72   | 0.2      | ppbv  | 5.00  |        | 114     | 70-130   |            |       |      |
| Surr: 4-Bromofluorobenzene          | 5.25   |          | ppbv  | 5.00  |        | 105     | 70-130   |            |       |      |
| (Surr)                              |        |          |       |       |        |         |          |            |       |      |
| LCS Dup (BDJ0497-BSD1)              |        |          |       |       | Prep   | pared & | Analyzed | : 10/16/20 | 020   |      |
| 1,1,1-Trichloroethane               | 5.46   | 0.2      | ppbv  | 5.00  |        | 109     | 70-130   | 5.65       | 25    |      |
| 1,1,2,2-Tetrachloroethane           | 6.05   | 0.2      | ppbv  | 5.00  |        | 121     | 70-130   | 13.0       | 25    |      |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 5.68   | 0.2      | ppbv  | 5.00  |        | 114     | 70-130   | 11.1       | 25    |      |
| ne                                  |        |          |       |       |        |         |          |            |       |      |
| 1,1,2-Trichloroethane               | 5.58   | 0.2      | ppbv  | 5.00  |        | 112     | 70-130   | 0.467      | 25    |      |
| 1,1-Dichloroethane                  | 5.58   | 0.2      | ppbv  | 5.00  |        | 112     | 70-130   | 14.0       | 25    |      |
| 1,1-Dichloroethylene                | 6.39   | 0.2      | ppbv  | 5.00  |        | 128     | 70-130   | 12.2       | 25    |      |
| 1,2,4-Trichlorobenzene              | 4.87   | 0.5      | ppbv  | 5.00  |        | 97.4    | 60-140   | 13.3       | 25    |      |
| 1,2,4-Trimethylbenzene              | 5.91   | 0.2      | ppbv  | 5.00  |        | 118     | 70-130   | 0.850      | 25    |      |
| 1,2-Dibromoethane (EDB)             | 5.42   | 0.2      | ppbv  | 5.00  |        | 108     | 70-130   | 7.66       | 25    |      |
| 1,2-Dichlorobenzene                 | 5.30   | 0.2      | ppbv  | 5.00  |        | 106     | 70-130   | 14.6       | 25    |      |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

Date Received: 5405 Twin Knolls Rd., Suite 1

Date Issued: October 22, 2020 14:22

October 8, 2020 14:02

Columbia, MD 21045

Reporting

Submitted To: Nancy Love

Ethyl acetate

Ethylbenzene

CG-09-0423.10 Project Number:

%REC

Client Site I.D.: **Montgomery Brothers**  Purchase Order: CG09042310MS

RPD

25

25

11 4

3.01

### **Volatile Organic Compounds by GCMS - Quality Control**

#### Air Water & Soil Laboratories, Inc.

Source

Spike

| Analyte                      | Result | Limit | Units | Level | Result | %REC    | Limits   | RPD        | Limit | Qual |
|------------------------------|--------|-------|-------|-------|--------|---------|----------|------------|-------|------|
| Batch BDJ0497 - No Prep VC   | OC Air |       |       |       |        |         |          |            |       |      |
| CS Dup (BDJ0497-BSD1)        |        |       |       |       | Prep   | pared & | Analyzed | : 10/16/20 | )20   |      |
| ,2-Dichloroethane            | 5.59   | 0.2   | ppbv  | 5.00  |        | 112     | 70-130   | 0.143      | 25    |      |
| ,2-Dichloropropane           | 6.79   | 0.2   | ppbv  | 5.00  |        | 136     | 70-130   | 19.2       | 25    | L    |
| ,2-Dichlorotetrafluoroethane | 5.98   | 0.2   | ppbv  | 5.00  |        | 120     | 70-130   | 6.68       | 25    |      |
| ,3,5-Trimethylbenzene        | 5.36   | 0.2   | ppbv  | 5.00  |        | 107     | 70-130   | 20.2       | 25    |      |
| ,3-Butadiene                 | 5.95   | 0.2   | ppbv  | 5.00  |        | 119     | 70-130   | 22.5       | 25    |      |
| ,3-Dichlorobenzene           | 5.58   | 0.2   | ppbv  | 5.00  |        | 112     | 70-130   | 16.2       | 25    |      |
| ,4-Dichlorobenzene           | 5.57   | 0.2   | ppbv  | 5.00  |        | 111     | 70-130   | 16.1       | 25    |      |
| ,4-Dioxane                   | 5.70   | 0.2   | ppbv  | 5.00  |        | 114     | 70-130   | 14.4       | 25    |      |
| -Ethyl-4-methyl benzene      | 5.14   | 0.2   | ppbv  | 5.00  |        | 103     | 70-130   | 12.8       | 25    |      |
| -Butanone (MEK)              | 5.68   | 0.2   | ppbv  | 5.00  |        | 114     | 70-130   | 20.5       | 25    |      |
| -Chlorotoluene               | 5.41   | 0.2   | ppbv  | 5.00  |        | 108     | 70-130   | 6.27       | 25    |      |
| -Hexanone (MBK)              | 5.06   | 0.2   | ppbv  | 5.00  |        | 101     | 70-130   | 5.52       | 25    |      |
| -Methyl-2-pentanone (MIBK)   | 5.31   | 0.2   | ppbv  | 5.00  |        | 106     | 70-130   | 7.00       | 25    |      |
| cetone                       | 5.00   | 0.5   | ppbv  | 5.00  |        | 100     | 70-130   | 0.843      | 25    |      |
| llyl chloride                | 5.96   | 0.2   | ppbv  | 5.00  |        | 119     | 70-130   | 13.4       | 25    |      |
| enzene                       | 5.44   | 0.2   | ppbv  | 5.00  |        | 109     | 70-130   | 3.99       | 25    |      |
| enzyl Chloride               | 5.44   | 0.2   | ppbv  | 5.00  |        | 109     | 70-130   | 18.3       | 25    |      |
| romodichloromethane          | 5.90   | 0.2   | ppbv  | 5.00  |        | 118     | 70-130   | 15.0       | 25    |      |
| romoform                     | 4.72   | 0.2   | ppbv  | 5.00  |        | 94.4    | 70-130   | 4.23       | 25    |      |
| romomethane                  | 6.27   | 0.2   | ppbv  | 5.00  |        | 125     | 70-130   | 16.8       | 25    |      |
| arbon Disulfide              | 6.02   | 0.5   | ppbv  | 5.00  |        | 120     | 70-130   | 11.5       | 25    |      |
| arbon Tetrachloride          | 5.77   | 0.2   | ppbv  | 5.00  |        | 115     | 70-130   | 3.92       | 25    |      |
| hlorobenzene                 | 5.25   | 0.2   | ppbv  | 5.00  |        | 105     | 70-130   | 2.26       | 25    |      |
| chloroethane                 | 6.89   | 0.2   | ppbv  | 5.00  |        | 138     | 70-130   | 30.3       | 25    | L, P |
| hloroform                    | 5.48   | 0.2   | ppbv  | 5.00  |        | 110     | 70-130   | 12.2       | 25    |      |
| hloromethane                 | 6.34   | 0.2   | ppbv  | 5.00  |        | 127     | 70-130   | 16.9       | 25    |      |
| is-1,2-Dichloroethylene      | 5.90   | 0.2   | ppbv  | 5.00  |        | 118     | 70-130   | 20.3       | 25    |      |
| s-1,3-Dichloropropene        | 5.54   | 0.2   | ppbv  | 5.00  |        | 111     | 70-130   | 12.1       | 25    |      |
| yclohexane                   | 6.06   | 0.2   | ppbv  | 5.00  |        | 121     | 70-130   | 5.77       | 25    |      |
| ibromochloromethane          | 5.54   | 0.2   | ppbv  | 5.00  |        | 111     | 70-130   | 4.38       | 25    |      |
| ichlorodifluoromethane       | 5.88   | 0.5   | ppbv  | 5.00  |        | 118     | 70-130   | 8.80       | 25    |      |
| thanol                       | 3.24   | 0.5   | ppbv  | 3.95  |        | 82.0    | 70-130   | 10.7       | 25    |      |

ppbv

ppbv

5.00

5.00

112

111

70-130

70-130

0.2

0.2

5 61

5.54

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc.

October 8, 2020 14:02 Date Received: 5405 Twin Knolls Rd., Suite 1

Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love **Project Number:** CG-09-0423.10

Client Site I.D.: Montgomery Brothers CG09042310MS Purchase Order:

#### **Volatile Organic Compounds by GCMS - Quality Control**

#### Air Water & Soil Laboratories, Inc.

|         | Reporting |       |       | Spike | Source |      | %REC   |     | RPD   | _    |
|---------|-----------|-------|-------|-------|--------|------|--------|-----|-------|------|
| Analyte | Result    | Limit | Units | Level | Result | %REC | Limits | RPD | Limit | Qual |

#### Batch BDJ0497 - No Prep VOC Air LCS Dup (BDJ0497-BSD1) Prepared & Analyzed: 10/16/2020 5.62 0.2 5.00 70-130 10.2 ppbv Hexachlorobutadiene 5.28 0.5 5.00 106 60-140 10.0 25 ppbv Hexane 6.40 0.2 ppbv 5.00 128 70-130 12.5 25 Isooctane 6.51 0.2 ppbv 5.00 130 70-130 19.6 25 L Isopropyl alcohol 5.02 0.5 ppbv 5.00 100 70-130 13.4 25 m+p-Xylenes 11.0 0.4 ppbv 10.0 110 70-130 4.19 25 Methylene chloride 5.30 106 70-130 1.01 25 1 ppbv 5.00 Methyl-t-butyl ether (MTBE) 6.85 0.2 5.00 137 70-130 20.4 25 ppbv 4.43 0.2 60-140 5.25 Naphthalene ppbv 5.00 88.7 25 n-Nonane (C9) 5.62 0.2 5.00 112 70-130 1.20 25 ppbv 5.27 5.00 105 70-130 12.4 25 n-Propylbenzene 02 vdaa o-Xylene 6.31 0.2 ppbv 5.00 126 70-130 8.18 25 n-Pentane (C5) 5.85 0.2 ppbv 5.00 117 70-130 15.2 25 70-130 Propylene 5.48 0.2 ppbv 5.00 110 6.87 25 Styrene 6.27 0.2 5.00 125 70-130 1.38 25 ppbv Tetrachloroethylene (PCE) 70-130 25 6.04 0.2 ppbv 5.00 121 8.23 70-130 25 Tetrahydrofuran 7.26 0.2 ppbv 5.00 145 18.8 70-130 Toluene 5 62 02 ppbv 5.00 112 2 14 25 trans-1,2-Dichloroethylene 6.28 0.2 ppbv 5.00 126 70-130 13.1 25 70-130 0.377 25 trans-1,3-Dichloropropene 5 56 0.2 ppbv 5.00 111 Trichloroethylene 6.50 0.2 5.00 130 70-130 14.3 25 L ppbv 5.60 0.2 70-130 11.4 25 Trichlorofluoromethane ppbv 5.00 112 L, P Vinyl acetate 7.02 0.2 ppbv 5.00 140 70-130 30.3 25 Vinyl bromide 5.56 0.2 5.00 111 70-130 0.0900 25 ppbv Vinyl chloride 6.20 0.2 ppbv 5.00 124 70-130 8.00 25 ppbv Surr: 4-Bromofluorobenzene 5.09 5.00 70-130 (Surr)



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

October 8, 2020 14:02 Date Received: Date Issued:

5405 Twin Knolls Rd., Suite 1

October 22, 2020 14:22

CG09042310MS

Columbia, MD 21045

Submitted To: Nancy Love

Client Site I.D.:

Project Number: CG-09-0423.10

**Montgomery Brothers** Purchase Order:

#### **Certified Analytes included in this Report**

| Analyte                               | Certifications | Analyte                     | Certifications |  |
|---------------------------------------|----------------|-----------------------------|----------------|--|
| EPA TO-15 in Air                      |                | Cyclohexane                 | VELAP          |  |
| 1,1,1-Trichloroethane                 | VELAP          | Dibromochloromethane        | VELAP          |  |
| 1,1,1,2-Tetrachloroethane             | VELAP          | Dichlorodifluoromethane     | VELAP          |  |
| 1,1,2,2-Tetrachloroethane             | VELAP          | Ethanol                     | VELAP          |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | VELAP          | Ethyl acetate               | VELAP          |  |
| 1,1,2-Trichloroethane                 | VELAP          | Ethylbenzene                | VELAP          |  |
| 1,1-Dichloroethane                    | VELAP          | Heptane                     | VELAP          |  |
| 1,1-Dichloroethylene                  | VELAP          | Hexachlorobutadiene         | VELAP          |  |
| 1,2,4-Trichlorobenzene                | VELAP          | Hexane                      | VELAP          |  |
| 1,2,4-Trimethylbenzene                | VELAP          | Isooctane                   | VELAP          |  |
| 1,2-Dibromoethane (EDB)               | VELAP          | Isopropyl alcohol           | VELAP          |  |
| 1,2-Dichlorobenzene                   | VELAP          | Isopropylbenzene            | VELAP          |  |
| 1,2-Dichloroethane                    | VELAP          | m+p-Xylenes                 | VELAP          |  |
| 1,2-Dichloropropane                   | VELAP          | Methyl methacrylate         | VELAP          |  |
| 1,2-Dichlorotetrafluoroethane         | VELAP          | Methylene chloride          | VELAP          |  |
| 1,3,5-Trimethylbenzene                | VELAP          | Methyl-t-butyl ether (MTBE) | VELAP          |  |
| 1,3-Butadiene                         | VELAP          | Naphthalene                 | VELAP          |  |
| 1,3-Dichlorobenzene                   | VELAP          | n-Nonane (C9)               | VELAP          |  |
| 1.4-Dichlorobenzene                   | VELAP          | n-Propylbenzene             | VELAP          |  |
| 1,4-Dioxane                           | VELAP          | o-Xylene                    | VELAP          |  |
| 1-Ethyl-4-methyl benzene              | VELAP          | n-Pentane (C5)              | VELAP          |  |
| 2-Butanone (MEK)                      | VELAP          | Propylene                   | VELAP          |  |
| 2-Chlorotoluene                       | VELAP          | Styrene                     | VELAP          |  |
| 2-Hexanone (MBK)                      | VELAP          | TBA                         | VELAP          |  |
| 4-Methyl-2-pentanone (MIBK)           | VELAP          | Tetrachloroethylene (PCE)   | VELAP          |  |
| Acetone                               | VELAP          | Tetrahydrofuran             | VELAP          |  |
| Acrolein                              | VELAP          | Toluene                     | VELAP          |  |
| Allyl chloride                        | VELAP          | trans-1,2-Dichloroethylene  | VELAP          |  |
| Benzene                               | VELAP          | trans-1,3-Dichloropropene   | VELAP          |  |
| Benzyl Chloride                       | VELAP          | Trichloroethylene           | VELAP          |  |
| Bromodichloromethane                  | VELAP          | Trichlorofluoromethane      | VELAP          |  |
| Bromoform                             | VELAP          | Vinyl acetate               | VELAP          |  |
| Bromomethane                          | VELAP          | Vinyl bromide               | VELAP          |  |
| Carbon Disulfide                      | VELAP          | Vinyl chloride              | VELAP          |  |
| Carbon Tetrachloride                  | VELAP          | Xylenes, Total              | VELAP          |  |
| Chlorobenzene                         | VELAP          |                             |                |  |
| Chloroethane                          | VELAP          |                             |                |  |
| Chloroform                            | VELAP          |                             |                |  |
| Chloromethane                         | VELAP          |                             |                |  |
| cis-1,2-Dichloroethylene              | VELAP          |                             |                |  |
| cis-1,3-Dichloropropene               | VELAP          |                             |                |  |



1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Chesapeake Geosciences, Inc. Client Name:

Date Received:

October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1

Date Issued:

October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love **Project Number:** 

CG-09-0423.10

Client Site I.D.:

Montgomery Brothers

Purchase Order:

CG09042310MS

| Code  | Description                         | Laboratory ID | Expires    |
|-------|-------------------------------------|---------------|------------|
| MdDOE | Maryland DE Drinking Water          | 341           | 12/31/2020 |
| NC    | North Carolina DENR                 | 495           | 12/31/2020 |
| NJDEP | NELAC-New Jersey DEP                | VA015         | 06/30/2021 |
| NYDOH | New York DOH Drinking Water         | 12096         | 04/01/2021 |
| PADEP | NELAC-Pennsylvania Certificate #005 | 68-03503      | 10/31/2020 |
| VELAP | NELAC-Virginia Certificate #11064   | 460021        | 06/14/2021 |
| WVDEP | West Virginia DEP                   | 350           | 11/30/2020 |

#### **Qualifiers and Definitions**

J The reported result is an estimated value.

L LCS recovery is outside of established acceptance limits

Duplicate analysis does not meet the acceptance criteria for precision

Relative Percent Difference **RPD** 

Qualifers Qual

TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor MDL Method Detection Limit LOQ Limit of Quantitation parts per billion by volume ppbv

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.



### **AIR ANALYSIS**

| LABORATORIES, INC.                    |                           |                |          |                |             |                      | ************************************** |              |                 |                               |                 |                                 |                | ment Due 10/16/20 |              |                |          |         |  |
|---------------------------------------|---------------------------|----------------|----------|----------------|-------------|----------------------|----------------------------------------|--------------|-----------------|-------------------------------|-----------------|---------------------------------|----------------|-------------------|--------------|----------------|----------|---------|--|
| C                                     | NAN YNA9MC                | 1E: Chesape    | eake G   | eoscience      | es, l       | nc. IN               | VOICE TO                               | : Same       |                 |                               |                 | PROJ                            | ECT NAM        | 15: Hof           | Doot 1       | AVE            | sti      | adior   |  |
| C                                     | ONTACT: Nan               | cy Love        |          |                |             | IN'                  | VOICE CC                               | NTACT:       |                 |                               |                 | SITE NAME: Mont gomery Brothers |                |                   |              |                |          |         |  |
| A                                     | DDRESS: 540               | Twin Knol      | ls Rd,   | Suite 1        |             | IN'                  | VOICE AD                               | DRESS:       |                 |                               |                 | PROJECT NUMBER: 09-0423,10      |                |                   |              |                |          |         |  |
| Pł                                    | HONE #: 410-7             | 40-1911        |          |                |             | IN                   | VOICE PH                               | ONE #:       |                 |                               |                 | P.O. #: CGOPO42310 MS           |                |                   |              |                |          |         |  |
| FAX #: <b>410-740-3299</b> EMAIL: NIo |                           |                |          |                |             | _: Nlove@e           |                                        |              |                 |                               |                 |                                 | atment Pr      |                   |              |                |          |         |  |
| Is                                    | sample for co             | mpliance rep   | orting?  | YES NO         | )           | Regulato             | ry State:                              | Is           | samplefro       | ma chlori                     | nated supp      | oly?                            | YES (          | 10 ) PV           | VS I.D. #:   |                |          |         |  |
| SA                                    | AMPLER NAM                | E (PRINT):     | Mea      | Hair           | les         | SA SA                | MPLER S                                | IGNATUR      | E:              | Dan                           | <b>&gt;&gt;</b> | Turn                            | Around T       | ime: Circ         | cle: 10 s    | Other_         |          |         |  |
| Ma                                    | trix Codes: AA=Ind        | loor/Ambient A |          |                |             |                      | Other                                  |              | 100             | )                             |                 |                                 |                |                   |              | WO 2           | 01116    | 7       |  |
|                                       |                           | Regulator      | Info     | Canister Ir    | nforr       | mation               | 1                                      | - V          |                 | Start Inform                  |                 |                                 | Sampling       | Stop Inform       |              |                | A ges    | NALYSIS |  |
|                                       | CLIENT                    |                |          |                |             |                      | LAB                                    | LAB          | Barometric      | Pres. (in Ho                  | The second of   | 8                               | Barometri      | Pres. (in H       |              | 7              | (See Coc | 0       |  |
|                                       | SAMPLE I.D. Flow Cal      |                |          |                |             | Outgoing<br>Canister | Receiving<br>Canister                  |              |                 | Initial<br>Canister           | 0               |                                 |                | Final<br>Canister |              | X (See         | 2 8      |         |  |
|                                       | Controller Flow D Cleanin |                |          | Cleaning Batch | Vacuum (in  | Vacuum (in           | Start Date                             | Start Time V |                 | Starting<br>Sample<br>Temp °F | Stop Time       |                                 | Vacuum (in Sam |                   |              | LL VOC<br>T015 |          |         |  |
| $\vdash$                              | SMP-                      |                | (monnin) | Carrister ID   | 0)          | 10                   | Tig/                                   | rigi         | I I             | (24III CIDCK)                 | Hg)             | Temp F                          | Stop Date      | (241) Clock)      | Hg)          | Temp °F        | -        |         |  |
| 1)                                    | VMP-10                    | 2710           | 4 HR     | 18171          | 6.01        | IC200924-01E         | 30                                     | 2            | 10/7/20         | 10:56                         | 30              | 67                              | 10/7/20        | 15:16             | 3,5          | 78             | 8        | X       |  |
| 2)                                    | NA                        | 3475           | 4 HR     | 20574          | 6.01        | IC200924-01E         | 30                                     | 22           | 10/7/20<br>Regu | 11:11<br>lator                | 27<br>leaker    | 1                               | do no          | 11:31<br>Aana     | 21.5<br>142e | 70             | 88       | X       |  |
| 3)                                    | SMP-I                     |                | 4 HR     | 20588          | 6.01        | IC200923-01E         | 30                                     | 1            | 10/7/20         | 000,00                        | 30              | 68                              | 19/1/20        | 05:00             | 5            | 78             | 96       | X       |  |
| 4)                                    | SMP-11                    | 3953           | 4 HR     | 29400          | 6.0L        | IC200923-01E         | 30                                     | 3            | 10/7/20         | 11:52                         | 30              | 70                              | iohlac         | 16:07             | 4            | 78             | 98       | Х       |  |
| <u> </u>                              | TA TO                     |                | 4 547    | - / -          | loc.        | CENTED A             | $\overline{}$                          |              |                 |                               |                 | 12 Section 11 2                 |                | 21.106            | seale        | $d_{in}$       | 010      | -6      |  |
| KE                                    | ANY QUISTIED:             | 10/8           |          | 11:09          | KE          | SEIVED:              | X                                      | T            | E / TIME 120    | QC Data P                     | ackage LA       | B USE                           | ONLY           |                   |              |                |          |         |  |
| 7                                     | DUISHED:                  |                | DAT      | E / TIME       |             | EIVED:               | 12                                     | DAT          | E / TIME        | (                             | ×               |                                 |                |                   |              |                |          |         |  |
| 3                                     | D COUISHED:               | 1              | -101     | 8/20210        | 1           | The                  |                                        |              | 0 1402          |                               |                 |                                 |                |                   |              |                | 0        | 2       |  |
|                                       | л<br>0                    | CGS            |          |                | 10000       | 11167                |                                        | DAT          | E / TIME        | Level III                     |                 | MOF                             | RMS            | 2014              | Contra       | not            | Rot      | 200     |  |
| 49                                    | <u></u>                   | Montgome       | ery Br   | others - T     | <b>(O</b> ) | 15                   |                                        |              |                 | Level IV                      |                 |                                 | 11110          | VC 11             | CHI          |                | ( )      |         |  |
| Recd: 10/08/2020 Due: 10/22/2020      |                           |                |          |                |             |                      |                                        | Bo           | 3 XC            | of 3                          | )               |                                 |                |                   |              |                |          |         |  |

v130325002

Montgomery Brothers 10-20.xls



### **AIR ANALYSIS**

| 1                                                                                 | ,                     | LABORA                   | TORIES                  | , INC.      |          |                      |                                           | CHAIN                                      | OF CUS           | TODY                        | Ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | quipm                         | ent Du    | 10/16/2                   | 20                                     |                             |            |          |                |
|-----------------------------------------------------------------------------------|-----------------------|--------------------------|-------------------------|-------------|----------|----------------------|-------------------------------------------|--------------------------------------------|------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|---------------------------|----------------------------------------|-----------------------------|------------|----------|----------------|
| CON                                                                               | PANY NAME:            | Chesape                  | ake G                   | eoscience   | s, I     | nc. IN               | OICE TO                                   | : Same                                     |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJ                          | ECT NAM   | IE: Hot                   | Soot"                                  | Link                        | D          | id       | व्हींका        |
| COV                                                                               | ITACT: Nancy          | Love                     |                         |             |          | INV                  | OICE CC                                   | NTACT:                                     |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SITE                          | NAME: /   | lontge                    | mery                                   | Bro                         |            | 1        |                |
| ADD                                                                               | RESS: <b>5405 T</b>   | win Knoll                | s Rd,                   | Suite 1     |          | INV                  | OICE AD                                   | DRESS:                                     |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT NUMBER: CG-09-0423-10 |           |                           |                                        |                             |            |          |                |
| PHC                                                                               | NE #: <b>410-74</b> 0 | -1911                    |                         |             |          | IN                   | OICE PH                                   | ONE #:                                     |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P.O. #: CG09042310 MS         |           |                           |                                        |                             |            |          |                |
| FAX                                                                               | #: 410-740-32         | 99                       |                         | EM          | 1AIL     | _: Nlove@d           | gs.us.co                                  | m                                          |                  | Pretreatment Program:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |           |                           |                                        |                             |            |          |                |
| Is sample for compliance reporting? YES NO Regulatory State: MD                   |                       |                          |                         |             |          |                      |                                           |                                            | sample fro       | m a chlori                  | nated supp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oly?                          | YES (N    | NO PV                     | VS I.D. #:                             |                             |            |          |                |
| SAMPLER NAME (PRINT): Men Sampler SIGNATURE: Turn Around Time: Circle: 10 5 Other |                       |                          |                         |             |          |                      |                                           |                                            |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                             |           |                           |                                        |                             |            |          |                |
| Matrix                                                                            | Codes: AA=Indoor      | /Ambient Air             | SG=Soil                 | as LV=Land  | dfill/\  | Vent Gas OT≕         | Other                                     |                                            | 1.               | )                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |           |                           |                                        | WO 2                        | 0111       | 67       |                |
|                                                                                   |                       | Regulator                | Info                    | Canister In | forr     | mation               |                                           |                                            |                  | Start Inform                | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                               | Sampling  | Stop Inform               |                                        |                             | Codes)     | ANA      | LYSIS          |
|                                                                                   | CLIENT                |                          |                         |             |          |                      | LAB                                       | LAB                                        | Barometric       | Pres. (in Ho                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t                             | Barometri | Pres. (in H               | g): 29.                                | 7                           |            | 15       |                |
|                                                                                   | SAMPLE I.D.           | Flow<br>Controller<br>ID | Cal<br>Flow<br>(mL/min) | Canister ID | Size (L) | Cleaning Batch<br>ID | Outgoing<br>Canister<br>Vacuum (in<br>Hg) | Receiving<br>Canister<br>Vacuum (in<br>Hg) | Start Date       | Start Time<br>(24hr clock)  | Initial<br>Canister<br>Vacuum (in<br>Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Starting<br>Sample<br>Temp °F | Stop Date | Stop Time<br>(24hr clock) | Final<br>Canister<br>Vacuum (in<br>Hg) | Ending<br>Sample<br>Temp °F | atr        | VOC TO-1 | LL VOC<br>T015 |
| 5)                                                                                | SMP-12                | 10114                    | 4 HR                    | 36976       | 6.0L     | IC200923-01E         | 30                                        | 26                                         | 10/7/20          | 10:05                       | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63                            | 10/7/20   | 14:06                     | 24                                     | 76                          | 98         |          | Х              |
| 6)                                                                                | SMP-13                | 10116                    | 4 HR                    | 36978       | 6.0L     | IC200924-02B         | 30                                        | 2                                          | 147/20           | 10:25                       | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63                            | 10/A/20   | 15:05                     | 1                                      | 78                          | <b>S</b> @ |          | Х              |
| 7)                                                                                | HOI-<br>SM-CSA        | 2667                     | 24 HR                   | 20254       | 6.0L     | IC200924-01B         | 30                                        | 0                                          | 10/6/20          | 11:39                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66                            | 10/7/20   | 12:00                     | a                                      | 72                          | АА         |          | X              |
| 8)                                                                                | HOI-                  | 2714                     | 24 HR                   | 29398       | 6.0L     | .IC200924-01B        | 30                                        | O                                          | 10/6/20          | 11:54                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66                            | 10/7/20   | 12:06                     | 3                                      | 72                          | АА         |          | Х              |
| #                                                                                 |                       |                          |                         |             | - E      |                      |                                           |                                            |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 21.1      | " sea                     | led, n                                 | oice                        |            | N        |                |
| KEUN                                                                              | QUISHED               | 101                      | 8/20                    | 11:09       | REC      | CEIVED:              | 1                                         | C LO                                       | 18 20 1:0°       | <b>\</b>                    | ackage LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B USE                         | ONLY      |                           |                                        | 1                           |            |          |                |
| Page 57                                                                           | QUISHED:              | CO                       | JO 8                    | 20 2.87     |          | 201                  | 1167                                      | DAT<br>18120                               | 1402<br>E / TIME | Level II Level III Level IV | X M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DE                            | RMS       | Contro                    | oct Ra                                 | tes                         | 20         | 314      | ł              |
| Montgomery Brothers - TO15  Recd: 10/08/2020 Due: 10/22/20                        |                       |                          |                         |             |          |                      | $\mathbb{R}$ , $\mathbb{C}$               |                                            |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |           |                           |                                        |                             |            |          |                |

v130325002

Montgomery Brothers 10-20.xls



### **AIR ANALYSIS**

|                                                                                          |                     | LABORA           | ATORIES  | , INC.      |       |                |                      | CHAIN                 | OF CUS     | TODY                       | Ed                  | quipm                          | ent Du                        | e 10/16/2                 | 20                |                             |        |       |                |
|------------------------------------------------------------------------------------------|---------------------|------------------|----------|-------------|-------|----------------|----------------------|-----------------------|------------|----------------------------|---------------------|--------------------------------|-------------------------------|---------------------------|-------------------|-----------------------------|--------|-------|----------------|
| CON                                                                                      | PANY NAME:          | Chesap           | eake G   | eoscience   | s, I  | nc. IN         | VOICE TO             | : Same                |            |                            |                     | PROJ                           | ECT NAM                       | 15: Hot                   | Doot -            | LINE                        | 23/    | 10    | ation          |
| CON                                                                                      | ITACT: Nancy        | Love             |          |             |       | IN'            | VOICE CO             | NTACT:                |            |                            |                     | SITE NAME: Montgomery Brothers |                               |                           |                   |                             |        |       |                |
| ADD                                                                                      | RESS: <b>5405 T</b> | win Kno          | lls Rd,  | Suite 1     |       | IN'            | VOICE AD             | DRESS:                |            |                            |                     | PROJECT NUMBER: 09-0423.10     |                               |                           |                   |                             |        |       |                |
| PHO                                                                                      | NE #: 410-740       | )-1911           |          |             |       | IN'            | VOICE PH             | DICE PHONE #:         |            |                            |                     |                                | P.O. #: CG09042310MS          |                           |                   |                             |        |       |                |
| FAX                                                                                      | #: 410-740-32       | 99               |          | EN          | ΛΑΙΙ  | _: Nlove@d     | cgs.us.co            | m                     |            |                            |                     | Pretreatment Program:          |                               |                           |                   |                             |        |       |                |
| ls sa                                                                                    | mple for comp       | liance rep       | porting? | YES NO      |       | Regulato       | ry State:            | MD Is                 | sample/fro | m a chlori                 | nated supp          | oly?                           | YES (                         | NO PV                     | VS I.D. #:        |                             |        |       |                |
| SAMPLER NAME (PRINT): No James SAMPLER SIGNATURE: Turn Around Time: Circle: 10 5 Other   |                     |                  |          |             |       |                |                      |                       |            |                            |                     | _                              |                               |                           |                   |                             |        |       |                |
| Matrix Codes: AA=Indoor/Ambient Air SG=Soil Gas LV=Landfill/Vent Gas OT=Other WO 20I1167 |                     |                  |          |             |       |                |                      |                       |            |                            |                     |                                |                               |                           |                   |                             |        |       |                |
|                                                                                          |                     | Regulator        | r Info   | Canister Ir | nforr | mation         |                      |                       |            | Start Inform               |                     |                                | Sampling                      | Stop Inform               |                   |                             | les)   | LYSIS |                |
|                                                                                          | CLIENT              |                  |          |             |       |                | LAB                  | LAB                   | Barometric | Pres. (in Ho               |                     | l                              | Barometri                     | c Pres. (in H             |                   | .7                          | зе Сос | 15    |                |
|                                                                                          | SAMPLE I.D.         | Flow             | Cal      |             | (-)   |                | Outgoing<br>Canister | Receiving<br>Canister |            |                            | Initial<br>Canister | C1                             |                               |                           | Final<br>Canister |                             | X (Se  | 입     | ၁              |
|                                                                                          |                     | Controller<br>ID | Flow     | Canister ID | ze    | Cleaning Batch | Vacuum (in           | Vacuum (in            | Start Date | Start Time<br>(24hr clock) |                     | Starting<br>Sample             | Stop Date                     | Stop Time<br>(24hr clock) | Vacuum (in        | Ending<br>Sample<br>Temp °F | Matrix | 700   | LL VOC<br>T015 |
|                                                                                          | HOI-                |                  |          |             |       |                |                      |                       |            |                            |                     |                                | 1.1                           |                           |                   |                             | П      |       |                |
| 9)                                                                                       | OHM-CSA             | 3476             | 24 HR    | 36448       | 6.01  | IC200922-01    | 30                   | 0                     | 19/6/20    | 12:09                      | 30                  | 67                             | 197120                        | 12:35                     | 1                 | 73                          | AA     |       | X              |
| 10)                                                                                      | HOIL-<br>OTR-COA    | 3958             | 24 HR    | 36449       | 6.0L  | IC200922-01    | 30                   | 4                     | 10/6/20    | 12:16                      | 28                  | 66                             | 10/1/20                       | 16:17                     | 3.5               | 77                          | АА     |       | X              |
| 11) <b>F</b>                                                                             | ISI-CAA             | 7189             | 24 HR    | 36957       | 6.0L  | IC200820-02    | 30                   | B                     | 10/6/20    | 12:49                      | 28.5                | 67                             | 19/1/20                       | H:58                      | 4                 | 78                          | АА     |       | Х              |
| 12)                                                                                      |                     | 13291            | 24 HR    | 36962       | 6.0L  | IC200820-02    | 30                   | 30                    | Not        | used                       |                     |                                |                               |                           |                   |                             | АА     |       | X              |
| DE: 4                                                                                    | t A                 |                  | 1 .5.    | - / TIL     | Inc   | DEIL #ED       |                      | 8.5                   | F / TI -   |                            |                     |                                |                               | 21.1                      | of sea            | led,                        | no     | 10    | <u></u>        |
| KEL                                                                                      | DUISHED             | 10               | 8/20     | 11509(      | KEC   | CEIVED:        | S                    | TO!                   | 8 2011-09  | QC Data P                  | ackage LA           | B USE                          | ONLY                          |                           |                   |                             |        |       |                |
| F T                                                                                      | QUISHED:            |                  | DAT      | E / TIME    | REC   | EIVED:         |                      | DAT                   | E / TIME   |                            | 1                   |                                |                               |                           |                   |                             |        |       |                |
| age                                                                                      | talls               | 7                | Tols     | 20 210      | 2     | "KI            | ~ 701                |                       | 1402       | Level II                   | X                   |                                |                               |                           |                   |                             |        |       |                |
| Page 59 of 60                                                                            | QUISHED:            | ( ) (            | CGS      |             |       | 20             | 0I1167               | DAT                   | E / TIME   | Level III                  |                     | MDE RMS 2014 Contract Rates    |                               |                           |                   |                             |        |       | 9              |
| 식육                                                                                       |                     |                  |          | mery Br     | oth   | ers - TO       |                      |                       | · ·        | Level IV                   |                     |                                | IUVI                          | 4011                      | Conlic            |                             | (CC)   | -     | <u> </u>       |
| Recd: 10/08/2020 Due: 10/22/2020                                                         |                     |                  |          |             |       |                |                      | Box 2 of 3            |            |                            |                     |                                | Montgomery Brothers 10-20 vis |                           |                   |                             |        |       |                |

v130325002

Montgomery Brothers 10-20.xls



1941 Reymet Road ● Richmond, Virginia 23237 ● Tel: (804)-358-8295 Fax: (804)-358-8297

### **Certificate of Analysis**

Final Report

#### Laboratory Order ID 20I1167

Client Name: Chesapeake Geosciences, Inc. Date Received: October 8, 2020 14:02

5405 Twin Knolls Rd., Suite 1 Date Issued: October 22, 2020 14:22

Columbia, MD 21045

Submitted To: Nancy Love Project Number: CG-09-0423.10

Client Site I.D.: Montgomery Brothers Purchase Order: CG09042310MS

# **Sample Conditions Checklist**

| Samples Received at:                                                                                                                                     | 21.10°C           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| How were samples received?                                                                                                                               | Logistics Courier |
| Were Custody Seals used? If so, were they received intact?                                                                                               | Yes               |
| Are the custody papers filled out completely and correctly?                                                                                              | Yes               |
| Do all bottle labels agree with custody papers?                                                                                                          | Yes               |
| Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?                                       | Yes               |
|                                                                                                                                                          |                   |
| Are all samples within holding time for requested laboratory tests?                                                                                      | Yes               |
| Is a sufficient amount of sample provided to perform the tests included?                                                                                 | Yes               |
| Are all samples in appropriate containers for the analyses requested?                                                                                    | Yes               |
| Were volatile organic containers received?                                                                                                               | No                |
| Are all volatile organic and TOX containers free of headspace?                                                                                           | NA                |
| Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.   | NA                |
| Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis. | Yes               |

#### **Work Order Comments**